mm/rmap: pass rmap flags to hugepage_add_anon_rmap()
[linux-block.git] / mm / swapfile.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9#include <linux/mm.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/task.h>
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
20#include <linux/shmem_fs.h>
21#include <linux/blk-cgroup.h>
22#include <linux/random.h>
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
27#include <linux/ksm.h>
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
31#include <linux/mutex.h>
32#include <linux/capability.h>
33#include <linux/syscalls.h>
34#include <linux/memcontrol.h>
35#include <linux/poll.h>
36#include <linux/oom.h>
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
39#include <linux/export.h>
40#include <linux/swap_slots.h>
41#include <linux/sort.h>
42#include <linux/completion.h>
43
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
46#include <linux/swap_cgroup.h>
47
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
51
52static DEFINE_SPINLOCK(swap_lock);
53static unsigned int nr_swapfiles;
54atomic_long_t nr_swap_pages;
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62long total_swap_pages;
63static int least_priority = -1;
64
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74static PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88static struct plist_head *swap_avail_heads;
89static DEFINE_SPINLOCK(swap_avail_lock);
90
91struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93static DEFINE_MUTEX(swapon_mutex);
94
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
103 if (type >= MAX_SWAPFILES)
104 return NULL;
105
106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107}
108
109static inline unsigned char swap_count(unsigned char ent)
110{
111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
112}
113
114/* Reclaim the swap entry anyway if possible */
115#define TTRS_ANYWAY 0x1
116/*
117 * Reclaim the swap entry if there are no more mappings of the
118 * corresponding page
119 */
120#define TTRS_UNMAPPED 0x2
121/* Reclaim the swap entry if swap is getting full*/
122#define TTRS_FULL 0x4
123
124/* returns 1 if swap entry is freed */
125static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 unsigned long offset, unsigned long flags)
127{
128 swp_entry_t entry = swp_entry(si->type, offset);
129 struct page *page;
130 int ret = 0;
131
132 page = find_get_page(swap_address_space(entry), offset);
133 if (!page)
134 return 0;
135 /*
136 * When this function is called from scan_swap_map_slots() and it's
137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 * here. We have to use trylock for avoiding deadlock. This is a special
139 * case and you should use try_to_free_swap() with explicit lock_page()
140 * in usual operations.
141 */
142 if (trylock_page(page)) {
143 if ((flags & TTRS_ANYWAY) ||
144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 ret = try_to_free_swap(page);
147 unlock_page(page);
148 }
149 put_page(page);
150 return ret;
151}
152
153static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154{
155 struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 return rb_entry(rb, struct swap_extent, rb_node);
157}
158
159static inline struct swap_extent *next_se(struct swap_extent *se)
160{
161 struct rb_node *rb = rb_next(&se->rb_node);
162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163}
164
165/*
166 * swapon tell device that all the old swap contents can be discarded,
167 * to allow the swap device to optimize its wear-levelling.
168 */
169static int discard_swap(struct swap_info_struct *si)
170{
171 struct swap_extent *se;
172 sector_t start_block;
173 sector_t nr_blocks;
174 int err = 0;
175
176 /* Do not discard the swap header page! */
177 se = first_se(si);
178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 if (nr_blocks) {
181 err = blkdev_issue_discard(si->bdev, start_block,
182 nr_blocks, GFP_KERNEL, 0);
183 if (err)
184 return err;
185 cond_resched();
186 }
187
188 for (se = next_se(se); se; se = next_se(se)) {
189 start_block = se->start_block << (PAGE_SHIFT - 9);
190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192 err = blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_KERNEL, 0);
194 if (err)
195 break;
196
197 cond_resched();
198 }
199 return err; /* That will often be -EOPNOTSUPP */
200}
201
202static struct swap_extent *
203offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204{
205 struct swap_extent *se;
206 struct rb_node *rb;
207
208 rb = sis->swap_extent_root.rb_node;
209 while (rb) {
210 se = rb_entry(rb, struct swap_extent, rb_node);
211 if (offset < se->start_page)
212 rb = rb->rb_left;
213 else if (offset >= se->start_page + se->nr_pages)
214 rb = rb->rb_right;
215 else
216 return se;
217 }
218 /* It *must* be present */
219 BUG();
220}
221
222sector_t swap_page_sector(struct page *page)
223{
224 struct swap_info_struct *sis = page_swap_info(page);
225 struct swap_extent *se;
226 sector_t sector;
227 pgoff_t offset;
228
229 offset = __page_file_index(page);
230 se = offset_to_swap_extent(sis, offset);
231 sector = se->start_block + (offset - se->start_page);
232 return sector << (PAGE_SHIFT - 9);
233}
234
235/*
236 * swap allocation tell device that a cluster of swap can now be discarded,
237 * to allow the swap device to optimize its wear-levelling.
238 */
239static void discard_swap_cluster(struct swap_info_struct *si,
240 pgoff_t start_page, pgoff_t nr_pages)
241{
242 struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244 while (nr_pages) {
245 pgoff_t offset = start_page - se->start_page;
246 sector_t start_block = se->start_block + offset;
247 sector_t nr_blocks = se->nr_pages - offset;
248
249 if (nr_blocks > nr_pages)
250 nr_blocks = nr_pages;
251 start_page += nr_blocks;
252 nr_pages -= nr_blocks;
253
254 start_block <<= PAGE_SHIFT - 9;
255 nr_blocks <<= PAGE_SHIFT - 9;
256 if (blkdev_issue_discard(si->bdev, start_block,
257 nr_blocks, GFP_NOIO, 0))
258 break;
259
260 se = next_se(se);
261 }
262}
263
264#ifdef CONFIG_THP_SWAP
265#define SWAPFILE_CLUSTER HPAGE_PMD_NR
266
267#define swap_entry_size(size) (size)
268#else
269#define SWAPFILE_CLUSTER 256
270
271/*
272 * Define swap_entry_size() as constant to let compiler to optimize
273 * out some code if !CONFIG_THP_SWAP
274 */
275#define swap_entry_size(size) 1
276#endif
277#define LATENCY_LIMIT 256
278
279static inline void cluster_set_flag(struct swap_cluster_info *info,
280 unsigned int flag)
281{
282 info->flags = flag;
283}
284
285static inline unsigned int cluster_count(struct swap_cluster_info *info)
286{
287 return info->data;
288}
289
290static inline void cluster_set_count(struct swap_cluster_info *info,
291 unsigned int c)
292{
293 info->data = c;
294}
295
296static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 unsigned int c, unsigned int f)
298{
299 info->flags = f;
300 info->data = c;
301}
302
303static inline unsigned int cluster_next(struct swap_cluster_info *info)
304{
305 return info->data;
306}
307
308static inline void cluster_set_next(struct swap_cluster_info *info,
309 unsigned int n)
310{
311 info->data = n;
312}
313
314static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 unsigned int n, unsigned int f)
316{
317 info->flags = f;
318 info->data = n;
319}
320
321static inline bool cluster_is_free(struct swap_cluster_info *info)
322{
323 return info->flags & CLUSTER_FLAG_FREE;
324}
325
326static inline bool cluster_is_null(struct swap_cluster_info *info)
327{
328 return info->flags & CLUSTER_FLAG_NEXT_NULL;
329}
330
331static inline void cluster_set_null(struct swap_cluster_info *info)
332{
333 info->flags = CLUSTER_FLAG_NEXT_NULL;
334 info->data = 0;
335}
336
337static inline bool cluster_is_huge(struct swap_cluster_info *info)
338{
339 if (IS_ENABLED(CONFIG_THP_SWAP))
340 return info->flags & CLUSTER_FLAG_HUGE;
341 return false;
342}
343
344static inline void cluster_clear_huge(struct swap_cluster_info *info)
345{
346 info->flags &= ~CLUSTER_FLAG_HUGE;
347}
348
349static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 unsigned long offset)
351{
352 struct swap_cluster_info *ci;
353
354 ci = si->cluster_info;
355 if (ci) {
356 ci += offset / SWAPFILE_CLUSTER;
357 spin_lock(&ci->lock);
358 }
359 return ci;
360}
361
362static inline void unlock_cluster(struct swap_cluster_info *ci)
363{
364 if (ci)
365 spin_unlock(&ci->lock);
366}
367
368/*
369 * Determine the locking method in use for this device. Return
370 * swap_cluster_info if SSD-style cluster-based locking is in place.
371 */
372static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 struct swap_info_struct *si, unsigned long offset)
374{
375 struct swap_cluster_info *ci;
376
377 /* Try to use fine-grained SSD-style locking if available: */
378 ci = lock_cluster(si, offset);
379 /* Otherwise, fall back to traditional, coarse locking: */
380 if (!ci)
381 spin_lock(&si->lock);
382
383 return ci;
384}
385
386static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 struct swap_cluster_info *ci)
388{
389 if (ci)
390 unlock_cluster(ci);
391 else
392 spin_unlock(&si->lock);
393}
394
395static inline bool cluster_list_empty(struct swap_cluster_list *list)
396{
397 return cluster_is_null(&list->head);
398}
399
400static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401{
402 return cluster_next(&list->head);
403}
404
405static void cluster_list_init(struct swap_cluster_list *list)
406{
407 cluster_set_null(&list->head);
408 cluster_set_null(&list->tail);
409}
410
411static void cluster_list_add_tail(struct swap_cluster_list *list,
412 struct swap_cluster_info *ci,
413 unsigned int idx)
414{
415 if (cluster_list_empty(list)) {
416 cluster_set_next_flag(&list->head, idx, 0);
417 cluster_set_next_flag(&list->tail, idx, 0);
418 } else {
419 struct swap_cluster_info *ci_tail;
420 unsigned int tail = cluster_next(&list->tail);
421
422 /*
423 * Nested cluster lock, but both cluster locks are
424 * only acquired when we held swap_info_struct->lock
425 */
426 ci_tail = ci + tail;
427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 cluster_set_next(ci_tail, idx);
429 spin_unlock(&ci_tail->lock);
430 cluster_set_next_flag(&list->tail, idx, 0);
431 }
432}
433
434static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 struct swap_cluster_info *ci)
436{
437 unsigned int idx;
438
439 idx = cluster_next(&list->head);
440 if (cluster_next(&list->tail) == idx) {
441 cluster_set_null(&list->head);
442 cluster_set_null(&list->tail);
443 } else
444 cluster_set_next_flag(&list->head,
445 cluster_next(&ci[idx]), 0);
446
447 return idx;
448}
449
450/* Add a cluster to discard list and schedule it to do discard */
451static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 unsigned int idx)
453{
454 /*
455 * If scan_swap_map_slots() can't find a free cluster, it will check
456 * si->swap_map directly. To make sure the discarding cluster isn't
457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 * It will be cleared after discard
459 */
460 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465 schedule_work(&si->discard_work);
466}
467
468static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469{
470 struct swap_cluster_info *ci = si->cluster_info;
471
472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 cluster_list_add_tail(&si->free_clusters, ci, idx);
474}
475
476/*
477 * Doing discard actually. After a cluster discard is finished, the cluster
478 * will be added to free cluster list. caller should hold si->lock.
479*/
480static void swap_do_scheduled_discard(struct swap_info_struct *si)
481{
482 struct swap_cluster_info *info, *ci;
483 unsigned int idx;
484
485 info = si->cluster_info;
486
487 while (!cluster_list_empty(&si->discard_clusters)) {
488 idx = cluster_list_del_first(&si->discard_clusters, info);
489 spin_unlock(&si->lock);
490
491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 SWAPFILE_CLUSTER);
493
494 spin_lock(&si->lock);
495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 __free_cluster(si, idx);
497 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 0, SWAPFILE_CLUSTER);
499 unlock_cluster(ci);
500 }
501}
502
503static void swap_discard_work(struct work_struct *work)
504{
505 struct swap_info_struct *si;
506
507 si = container_of(work, struct swap_info_struct, discard_work);
508
509 spin_lock(&si->lock);
510 swap_do_scheduled_discard(si);
511 spin_unlock(&si->lock);
512}
513
514static void swap_users_ref_free(struct percpu_ref *ref)
515{
516 struct swap_info_struct *si;
517
518 si = container_of(ref, struct swap_info_struct, users);
519 complete(&si->comp);
520}
521
522static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523{
524 struct swap_cluster_info *ci = si->cluster_info;
525
526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 cluster_list_del_first(&si->free_clusters, ci);
528 cluster_set_count_flag(ci + idx, 0, 0);
529}
530
531static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532{
533 struct swap_cluster_info *ci = si->cluster_info + idx;
534
535 VM_BUG_ON(cluster_count(ci) != 0);
536 /*
537 * If the swap is discardable, prepare discard the cluster
538 * instead of free it immediately. The cluster will be freed
539 * after discard.
540 */
541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 swap_cluster_schedule_discard(si, idx);
544 return;
545 }
546
547 __free_cluster(si, idx);
548}
549
550/*
551 * The cluster corresponding to page_nr will be used. The cluster will be
552 * removed from free cluster list and its usage counter will be increased.
553 */
554static void inc_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556{
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561 if (cluster_is_free(&cluster_info[idx]))
562 alloc_cluster(p, idx);
563
564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 cluster_set_count(&cluster_info[idx],
566 cluster_count(&cluster_info[idx]) + 1);
567}
568
569/*
570 * The cluster corresponding to page_nr decreases one usage. If the usage
571 * counter becomes 0, which means no page in the cluster is in using, we can
572 * optionally discard the cluster and add it to free cluster list.
573 */
574static void dec_cluster_info_page(struct swap_info_struct *p,
575 struct swap_cluster_info *cluster_info, unsigned long page_nr)
576{
577 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579 if (!cluster_info)
580 return;
581
582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 cluster_set_count(&cluster_info[idx],
584 cluster_count(&cluster_info[idx]) - 1);
585
586 if (cluster_count(&cluster_info[idx]) == 0)
587 free_cluster(p, idx);
588}
589
590/*
591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592 * cluster list. Avoiding such abuse to avoid list corruption.
593 */
594static bool
595scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 unsigned long offset)
597{
598 struct percpu_cluster *percpu_cluster;
599 bool conflict;
600
601 offset /= SWAPFILE_CLUSTER;
602 conflict = !cluster_list_empty(&si->free_clusters) &&
603 offset != cluster_list_first(&si->free_clusters) &&
604 cluster_is_free(&si->cluster_info[offset]);
605
606 if (!conflict)
607 return false;
608
609 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 cluster_set_null(&percpu_cluster->index);
611 return true;
612}
613
614/*
615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616 * might involve allocating a new cluster for current CPU too.
617 */
618static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 unsigned long *offset, unsigned long *scan_base)
620{
621 struct percpu_cluster *cluster;
622 struct swap_cluster_info *ci;
623 unsigned long tmp, max;
624
625new_cluster:
626 cluster = this_cpu_ptr(si->percpu_cluster);
627 if (cluster_is_null(&cluster->index)) {
628 if (!cluster_list_empty(&si->free_clusters)) {
629 cluster->index = si->free_clusters.head;
630 cluster->next = cluster_next(&cluster->index) *
631 SWAPFILE_CLUSTER;
632 } else if (!cluster_list_empty(&si->discard_clusters)) {
633 /*
634 * we don't have free cluster but have some clusters in
635 * discarding, do discard now and reclaim them, then
636 * reread cluster_next_cpu since we dropped si->lock
637 */
638 swap_do_scheduled_discard(si);
639 *scan_base = this_cpu_read(*si->cluster_next_cpu);
640 *offset = *scan_base;
641 goto new_cluster;
642 } else
643 return false;
644 }
645
646 /*
647 * Other CPUs can use our cluster if they can't find a free cluster,
648 * check if there is still free entry in the cluster
649 */
650 tmp = cluster->next;
651 max = min_t(unsigned long, si->max,
652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653 if (tmp < max) {
654 ci = lock_cluster(si, tmp);
655 while (tmp < max) {
656 if (!si->swap_map[tmp])
657 break;
658 tmp++;
659 }
660 unlock_cluster(ci);
661 }
662 if (tmp >= max) {
663 cluster_set_null(&cluster->index);
664 goto new_cluster;
665 }
666 cluster->next = tmp + 1;
667 *offset = tmp;
668 *scan_base = tmp;
669 return true;
670}
671
672static void __del_from_avail_list(struct swap_info_struct *p)
673{
674 int nid;
675
676 for_each_node(nid)
677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678}
679
680static void del_from_avail_list(struct swap_info_struct *p)
681{
682 spin_lock(&swap_avail_lock);
683 __del_from_avail_list(p);
684 spin_unlock(&swap_avail_lock);
685}
686
687static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 unsigned int nr_entries)
689{
690 unsigned int end = offset + nr_entries - 1;
691
692 if (offset == si->lowest_bit)
693 si->lowest_bit += nr_entries;
694 if (end == si->highest_bit)
695 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696 si->inuse_pages += nr_entries;
697 if (si->inuse_pages == si->pages) {
698 si->lowest_bit = si->max;
699 si->highest_bit = 0;
700 del_from_avail_list(si);
701 }
702}
703
704static void add_to_avail_list(struct swap_info_struct *p)
705{
706 int nid;
707
708 spin_lock(&swap_avail_lock);
709 for_each_node(nid) {
710 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712 }
713 spin_unlock(&swap_avail_lock);
714}
715
716static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 unsigned int nr_entries)
718{
719 unsigned long begin = offset;
720 unsigned long end = offset + nr_entries - 1;
721 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722
723 if (offset < si->lowest_bit)
724 si->lowest_bit = offset;
725 if (end > si->highest_bit) {
726 bool was_full = !si->highest_bit;
727
728 WRITE_ONCE(si->highest_bit, end);
729 if (was_full && (si->flags & SWP_WRITEOK))
730 add_to_avail_list(si);
731 }
732 atomic_long_add(nr_entries, &nr_swap_pages);
733 si->inuse_pages -= nr_entries;
734 if (si->flags & SWP_BLKDEV)
735 swap_slot_free_notify =
736 si->bdev->bd_disk->fops->swap_slot_free_notify;
737 else
738 swap_slot_free_notify = NULL;
739 while (offset <= end) {
740 arch_swap_invalidate_page(si->type, offset);
741 frontswap_invalidate_page(si->type, offset);
742 if (swap_slot_free_notify)
743 swap_slot_free_notify(si->bdev, offset);
744 offset++;
745 }
746 clear_shadow_from_swap_cache(si->type, begin, end);
747}
748
749static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750{
751 unsigned long prev;
752
753 if (!(si->flags & SWP_SOLIDSTATE)) {
754 si->cluster_next = next;
755 return;
756 }
757
758 prev = this_cpu_read(*si->cluster_next_cpu);
759 /*
760 * Cross the swap address space size aligned trunk, choose
761 * another trunk randomly to avoid lock contention on swap
762 * address space if possible.
763 */
764 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766 /* No free swap slots available */
767 if (si->highest_bit <= si->lowest_bit)
768 return;
769 next = si->lowest_bit +
770 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772 next = max_t(unsigned int, next, si->lowest_bit);
773 }
774 this_cpu_write(*si->cluster_next_cpu, next);
775}
776
777static int scan_swap_map_slots(struct swap_info_struct *si,
778 unsigned char usage, int nr,
779 swp_entry_t slots[])
780{
781 struct swap_cluster_info *ci;
782 unsigned long offset;
783 unsigned long scan_base;
784 unsigned long last_in_cluster = 0;
785 int latency_ration = LATENCY_LIMIT;
786 int n_ret = 0;
787 bool scanned_many = false;
788
789 /*
790 * We try to cluster swap pages by allocating them sequentially
791 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
792 * way, however, we resort to first-free allocation, starting
793 * a new cluster. This prevents us from scattering swap pages
794 * all over the entire swap partition, so that we reduce
795 * overall disk seek times between swap pages. -- sct
796 * But we do now try to find an empty cluster. -Andrea
797 * And we let swap pages go all over an SSD partition. Hugh
798 */
799
800 si->flags += SWP_SCANNING;
801 /*
802 * Use percpu scan base for SSD to reduce lock contention on
803 * cluster and swap cache. For HDD, sequential access is more
804 * important.
805 */
806 if (si->flags & SWP_SOLIDSTATE)
807 scan_base = this_cpu_read(*si->cluster_next_cpu);
808 else
809 scan_base = si->cluster_next;
810 offset = scan_base;
811
812 /* SSD algorithm */
813 if (si->cluster_info) {
814 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815 goto scan;
816 } else if (unlikely(!si->cluster_nr--)) {
817 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818 si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 goto checks;
820 }
821
822 spin_unlock(&si->lock);
823
824 /*
825 * If seek is expensive, start searching for new cluster from
826 * start of partition, to minimize the span of allocated swap.
827 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828 * case, just handled by scan_swap_map_try_ssd_cluster() above.
829 */
830 scan_base = offset = si->lowest_bit;
831 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832
833 /* Locate the first empty (unaligned) cluster */
834 for (; last_in_cluster <= si->highest_bit; offset++) {
835 if (si->swap_map[offset])
836 last_in_cluster = offset + SWAPFILE_CLUSTER;
837 else if (offset == last_in_cluster) {
838 spin_lock(&si->lock);
839 offset -= SWAPFILE_CLUSTER - 1;
840 si->cluster_next = offset;
841 si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 goto checks;
843 }
844 if (unlikely(--latency_ration < 0)) {
845 cond_resched();
846 latency_ration = LATENCY_LIMIT;
847 }
848 }
849
850 offset = scan_base;
851 spin_lock(&si->lock);
852 si->cluster_nr = SWAPFILE_CLUSTER - 1;
853 }
854
855checks:
856 if (si->cluster_info) {
857 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858 /* take a break if we already got some slots */
859 if (n_ret)
860 goto done;
861 if (!scan_swap_map_try_ssd_cluster(si, &offset,
862 &scan_base))
863 goto scan;
864 }
865 }
866 if (!(si->flags & SWP_WRITEOK))
867 goto no_page;
868 if (!si->highest_bit)
869 goto no_page;
870 if (offset > si->highest_bit)
871 scan_base = offset = si->lowest_bit;
872
873 ci = lock_cluster(si, offset);
874 /* reuse swap entry of cache-only swap if not busy. */
875 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876 int swap_was_freed;
877 unlock_cluster(ci);
878 spin_unlock(&si->lock);
879 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880 spin_lock(&si->lock);
881 /* entry was freed successfully, try to use this again */
882 if (swap_was_freed)
883 goto checks;
884 goto scan; /* check next one */
885 }
886
887 if (si->swap_map[offset]) {
888 unlock_cluster(ci);
889 if (!n_ret)
890 goto scan;
891 else
892 goto done;
893 }
894 WRITE_ONCE(si->swap_map[offset], usage);
895 inc_cluster_info_page(si, si->cluster_info, offset);
896 unlock_cluster(ci);
897
898 swap_range_alloc(si, offset, 1);
899 slots[n_ret++] = swp_entry(si->type, offset);
900
901 /* got enough slots or reach max slots? */
902 if ((n_ret == nr) || (offset >= si->highest_bit))
903 goto done;
904
905 /* search for next available slot */
906
907 /* time to take a break? */
908 if (unlikely(--latency_ration < 0)) {
909 if (n_ret)
910 goto done;
911 spin_unlock(&si->lock);
912 cond_resched();
913 spin_lock(&si->lock);
914 latency_ration = LATENCY_LIMIT;
915 }
916
917 /* try to get more slots in cluster */
918 if (si->cluster_info) {
919 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920 goto checks;
921 } else if (si->cluster_nr && !si->swap_map[++offset]) {
922 /* non-ssd case, still more slots in cluster? */
923 --si->cluster_nr;
924 goto checks;
925 }
926
927 /*
928 * Even if there's no free clusters available (fragmented),
929 * try to scan a little more quickly with lock held unless we
930 * have scanned too many slots already.
931 */
932 if (!scanned_many) {
933 unsigned long scan_limit;
934
935 if (offset < scan_base)
936 scan_limit = scan_base;
937 else
938 scan_limit = si->highest_bit;
939 for (; offset <= scan_limit && --latency_ration > 0;
940 offset++) {
941 if (!si->swap_map[offset])
942 goto checks;
943 }
944 }
945
946done:
947 set_cluster_next(si, offset + 1);
948 si->flags -= SWP_SCANNING;
949 return n_ret;
950
951scan:
952 spin_unlock(&si->lock);
953 while (++offset <= READ_ONCE(si->highest_bit)) {
954 if (data_race(!si->swap_map[offset])) {
955 spin_lock(&si->lock);
956 goto checks;
957 }
958 if (vm_swap_full() &&
959 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960 spin_lock(&si->lock);
961 goto checks;
962 }
963 if (unlikely(--latency_ration < 0)) {
964 cond_resched();
965 latency_ration = LATENCY_LIMIT;
966 scanned_many = true;
967 }
968 }
969 offset = si->lowest_bit;
970 while (offset < scan_base) {
971 if (data_race(!si->swap_map[offset])) {
972 spin_lock(&si->lock);
973 goto checks;
974 }
975 if (vm_swap_full() &&
976 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977 spin_lock(&si->lock);
978 goto checks;
979 }
980 if (unlikely(--latency_ration < 0)) {
981 cond_resched();
982 latency_ration = LATENCY_LIMIT;
983 scanned_many = true;
984 }
985 offset++;
986 }
987 spin_lock(&si->lock);
988
989no_page:
990 si->flags -= SWP_SCANNING;
991 return n_ret;
992}
993
994static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995{
996 unsigned long idx;
997 struct swap_cluster_info *ci;
998 unsigned long offset;
999
1000 /*
1001 * Should not even be attempting cluster allocations when huge
1002 * page swap is disabled. Warn and fail the allocation.
1003 */
1004 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005 VM_WARN_ON_ONCE(1);
1006 return 0;
1007 }
1008
1009 if (cluster_list_empty(&si->free_clusters))
1010 return 0;
1011
1012 idx = cluster_list_first(&si->free_clusters);
1013 offset = idx * SWAPFILE_CLUSTER;
1014 ci = lock_cluster(si, offset);
1015 alloc_cluster(si, idx);
1016 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017
1018 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019 unlock_cluster(ci);
1020 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021 *slot = swp_entry(si->type, offset);
1022
1023 return 1;
1024}
1025
1026static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027{
1028 unsigned long offset = idx * SWAPFILE_CLUSTER;
1029 struct swap_cluster_info *ci;
1030
1031 ci = lock_cluster(si, offset);
1032 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033 cluster_set_count_flag(ci, 0, 0);
1034 free_cluster(si, idx);
1035 unlock_cluster(ci);
1036 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037}
1038
1039int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040{
1041 unsigned long size = swap_entry_size(entry_size);
1042 struct swap_info_struct *si, *next;
1043 long avail_pgs;
1044 int n_ret = 0;
1045 int node;
1046
1047 /* Only single cluster request supported */
1048 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049
1050 spin_lock(&swap_avail_lock);
1051
1052 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053 if (avail_pgs <= 0) {
1054 spin_unlock(&swap_avail_lock);
1055 goto noswap;
1056 }
1057
1058 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059
1060 atomic_long_sub(n_goal * size, &nr_swap_pages);
1061
1062start_over:
1063 node = numa_node_id();
1064 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065 /* requeue si to after same-priority siblings */
1066 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067 spin_unlock(&swap_avail_lock);
1068 spin_lock(&si->lock);
1069 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070 spin_lock(&swap_avail_lock);
1071 if (plist_node_empty(&si->avail_lists[node])) {
1072 spin_unlock(&si->lock);
1073 goto nextsi;
1074 }
1075 WARN(!si->highest_bit,
1076 "swap_info %d in list but !highest_bit\n",
1077 si->type);
1078 WARN(!(si->flags & SWP_WRITEOK),
1079 "swap_info %d in list but !SWP_WRITEOK\n",
1080 si->type);
1081 __del_from_avail_list(si);
1082 spin_unlock(&si->lock);
1083 goto nextsi;
1084 }
1085 if (size == SWAPFILE_CLUSTER) {
1086 if (si->flags & SWP_BLKDEV)
1087 n_ret = swap_alloc_cluster(si, swp_entries);
1088 } else
1089 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090 n_goal, swp_entries);
1091 spin_unlock(&si->lock);
1092 if (n_ret || size == SWAPFILE_CLUSTER)
1093 goto check_out;
1094 pr_debug("scan_swap_map of si %d failed to find offset\n",
1095 si->type);
1096
1097 spin_lock(&swap_avail_lock);
1098nextsi:
1099 /*
1100 * if we got here, it's likely that si was almost full before,
1101 * and since scan_swap_map_slots() can drop the si->lock,
1102 * multiple callers probably all tried to get a page from the
1103 * same si and it filled up before we could get one; or, the si
1104 * filled up between us dropping swap_avail_lock and taking
1105 * si->lock. Since we dropped the swap_avail_lock, the
1106 * swap_avail_head list may have been modified; so if next is
1107 * still in the swap_avail_head list then try it, otherwise
1108 * start over if we have not gotten any slots.
1109 */
1110 if (plist_node_empty(&next->avail_lists[node]))
1111 goto start_over;
1112 }
1113
1114 spin_unlock(&swap_avail_lock);
1115
1116check_out:
1117 if (n_ret < n_goal)
1118 atomic_long_add((long)(n_goal - n_ret) * size,
1119 &nr_swap_pages);
1120noswap:
1121 return n_ret;
1122}
1123
1124static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125{
1126 struct swap_info_struct *p;
1127 unsigned long offset;
1128
1129 if (!entry.val)
1130 goto out;
1131 p = swp_swap_info(entry);
1132 if (!p)
1133 goto bad_nofile;
1134 if (data_race(!(p->flags & SWP_USED)))
1135 goto bad_device;
1136 offset = swp_offset(entry);
1137 if (offset >= p->max)
1138 goto bad_offset;
1139 return p;
1140
1141bad_offset:
1142 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143 goto out;
1144bad_device:
1145 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146 goto out;
1147bad_nofile:
1148 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149out:
1150 return NULL;
1151}
1152
1153static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154{
1155 struct swap_info_struct *p;
1156
1157 p = __swap_info_get(entry);
1158 if (!p)
1159 goto out;
1160 if (data_race(!p->swap_map[swp_offset(entry)]))
1161 goto bad_free;
1162 return p;
1163
1164bad_free:
1165 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166out:
1167 return NULL;
1168}
1169
1170static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1171 struct swap_info_struct *q)
1172{
1173 struct swap_info_struct *p;
1174
1175 p = _swap_info_get(entry);
1176
1177 if (p != q) {
1178 if (q != NULL)
1179 spin_unlock(&q->lock);
1180 if (p != NULL)
1181 spin_lock(&p->lock);
1182 }
1183 return p;
1184}
1185
1186static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1187 unsigned long offset,
1188 unsigned char usage)
1189{
1190 unsigned char count;
1191 unsigned char has_cache;
1192
1193 count = p->swap_map[offset];
1194
1195 has_cache = count & SWAP_HAS_CACHE;
1196 count &= ~SWAP_HAS_CACHE;
1197
1198 if (usage == SWAP_HAS_CACHE) {
1199 VM_BUG_ON(!has_cache);
1200 has_cache = 0;
1201 } else if (count == SWAP_MAP_SHMEM) {
1202 /*
1203 * Or we could insist on shmem.c using a special
1204 * swap_shmem_free() and free_shmem_swap_and_cache()...
1205 */
1206 count = 0;
1207 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1208 if (count == COUNT_CONTINUED) {
1209 if (swap_count_continued(p, offset, count))
1210 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1211 else
1212 count = SWAP_MAP_MAX;
1213 } else
1214 count--;
1215 }
1216
1217 usage = count | has_cache;
1218 if (usage)
1219 WRITE_ONCE(p->swap_map[offset], usage);
1220 else
1221 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1222
1223 return usage;
1224}
1225
1226/*
1227 * Check whether swap entry is valid in the swap device. If so,
1228 * return pointer to swap_info_struct, and keep the swap entry valid
1229 * via preventing the swap device from being swapoff, until
1230 * put_swap_device() is called. Otherwise return NULL.
1231 *
1232 * Notice that swapoff or swapoff+swapon can still happen before the
1233 * percpu_ref_tryget_live() in get_swap_device() or after the
1234 * percpu_ref_put() in put_swap_device() if there isn't any other way
1235 * to prevent swapoff, such as page lock, page table lock, etc. The
1236 * caller must be prepared for that. For example, the following
1237 * situation is possible.
1238 *
1239 * CPU1 CPU2
1240 * do_swap_page()
1241 * ... swapoff+swapon
1242 * __read_swap_cache_async()
1243 * swapcache_prepare()
1244 * __swap_duplicate()
1245 * // check swap_map
1246 * // verify PTE not changed
1247 *
1248 * In __swap_duplicate(), the swap_map need to be checked before
1249 * changing partly because the specified swap entry may be for another
1250 * swap device which has been swapoff. And in do_swap_page(), after
1251 * the page is read from the swap device, the PTE is verified not
1252 * changed with the page table locked to check whether the swap device
1253 * has been swapoff or swapoff+swapon.
1254 */
1255struct swap_info_struct *get_swap_device(swp_entry_t entry)
1256{
1257 struct swap_info_struct *si;
1258 unsigned long offset;
1259
1260 if (!entry.val)
1261 goto out;
1262 si = swp_swap_info(entry);
1263 if (!si)
1264 goto bad_nofile;
1265 if (!percpu_ref_tryget_live(&si->users))
1266 goto out;
1267 /*
1268 * Guarantee the si->users are checked before accessing other
1269 * fields of swap_info_struct.
1270 *
1271 * Paired with the spin_unlock() after setup_swap_info() in
1272 * enable_swap_info().
1273 */
1274 smp_rmb();
1275 offset = swp_offset(entry);
1276 if (offset >= si->max)
1277 goto put_out;
1278
1279 return si;
1280bad_nofile:
1281 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1282out:
1283 return NULL;
1284put_out:
1285 percpu_ref_put(&si->users);
1286 return NULL;
1287}
1288
1289static unsigned char __swap_entry_free(struct swap_info_struct *p,
1290 swp_entry_t entry)
1291{
1292 struct swap_cluster_info *ci;
1293 unsigned long offset = swp_offset(entry);
1294 unsigned char usage;
1295
1296 ci = lock_cluster_or_swap_info(p, offset);
1297 usage = __swap_entry_free_locked(p, offset, 1);
1298 unlock_cluster_or_swap_info(p, ci);
1299 if (!usage)
1300 free_swap_slot(entry);
1301
1302 return usage;
1303}
1304
1305static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1306{
1307 struct swap_cluster_info *ci;
1308 unsigned long offset = swp_offset(entry);
1309 unsigned char count;
1310
1311 ci = lock_cluster(p, offset);
1312 count = p->swap_map[offset];
1313 VM_BUG_ON(count != SWAP_HAS_CACHE);
1314 p->swap_map[offset] = 0;
1315 dec_cluster_info_page(p, p->cluster_info, offset);
1316 unlock_cluster(ci);
1317
1318 mem_cgroup_uncharge_swap(entry, 1);
1319 swap_range_free(p, offset, 1);
1320}
1321
1322/*
1323 * Caller has made sure that the swap device corresponding to entry
1324 * is still around or has not been recycled.
1325 */
1326void swap_free(swp_entry_t entry)
1327{
1328 struct swap_info_struct *p;
1329
1330 p = _swap_info_get(entry);
1331 if (p)
1332 __swap_entry_free(p, entry);
1333}
1334
1335/*
1336 * Called after dropping swapcache to decrease refcnt to swap entries.
1337 */
1338void put_swap_page(struct page *page, swp_entry_t entry)
1339{
1340 unsigned long offset = swp_offset(entry);
1341 unsigned long idx = offset / SWAPFILE_CLUSTER;
1342 struct swap_cluster_info *ci;
1343 struct swap_info_struct *si;
1344 unsigned char *map;
1345 unsigned int i, free_entries = 0;
1346 unsigned char val;
1347 int size = swap_entry_size(thp_nr_pages(page));
1348
1349 si = _swap_info_get(entry);
1350 if (!si)
1351 return;
1352
1353 ci = lock_cluster_or_swap_info(si, offset);
1354 if (size == SWAPFILE_CLUSTER) {
1355 VM_BUG_ON(!cluster_is_huge(ci));
1356 map = si->swap_map + offset;
1357 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1358 val = map[i];
1359 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1360 if (val == SWAP_HAS_CACHE)
1361 free_entries++;
1362 }
1363 cluster_clear_huge(ci);
1364 if (free_entries == SWAPFILE_CLUSTER) {
1365 unlock_cluster_or_swap_info(si, ci);
1366 spin_lock(&si->lock);
1367 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1368 swap_free_cluster(si, idx);
1369 spin_unlock(&si->lock);
1370 return;
1371 }
1372 }
1373 for (i = 0; i < size; i++, entry.val++) {
1374 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1375 unlock_cluster_or_swap_info(si, ci);
1376 free_swap_slot(entry);
1377 if (i == size - 1)
1378 return;
1379 lock_cluster_or_swap_info(si, offset);
1380 }
1381 }
1382 unlock_cluster_or_swap_info(si, ci);
1383}
1384
1385#ifdef CONFIG_THP_SWAP
1386int split_swap_cluster(swp_entry_t entry)
1387{
1388 struct swap_info_struct *si;
1389 struct swap_cluster_info *ci;
1390 unsigned long offset = swp_offset(entry);
1391
1392 si = _swap_info_get(entry);
1393 if (!si)
1394 return -EBUSY;
1395 ci = lock_cluster(si, offset);
1396 cluster_clear_huge(ci);
1397 unlock_cluster(ci);
1398 return 0;
1399}
1400#endif
1401
1402static int swp_entry_cmp(const void *ent1, const void *ent2)
1403{
1404 const swp_entry_t *e1 = ent1, *e2 = ent2;
1405
1406 return (int)swp_type(*e1) - (int)swp_type(*e2);
1407}
1408
1409void swapcache_free_entries(swp_entry_t *entries, int n)
1410{
1411 struct swap_info_struct *p, *prev;
1412 int i;
1413
1414 if (n <= 0)
1415 return;
1416
1417 prev = NULL;
1418 p = NULL;
1419
1420 /*
1421 * Sort swap entries by swap device, so each lock is only taken once.
1422 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1423 * so low that it isn't necessary to optimize further.
1424 */
1425 if (nr_swapfiles > 1)
1426 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1427 for (i = 0; i < n; ++i) {
1428 p = swap_info_get_cont(entries[i], prev);
1429 if (p)
1430 swap_entry_free(p, entries[i]);
1431 prev = p;
1432 }
1433 if (p)
1434 spin_unlock(&p->lock);
1435}
1436
1437/*
1438 * How many references to page are currently swapped out?
1439 * This does not give an exact answer when swap count is continued,
1440 * but does include the high COUNT_CONTINUED flag to allow for that.
1441 */
1442int page_swapcount(struct page *page)
1443{
1444 int count = 0;
1445 struct swap_info_struct *p;
1446 struct swap_cluster_info *ci;
1447 swp_entry_t entry;
1448 unsigned long offset;
1449
1450 entry.val = page_private(page);
1451 p = _swap_info_get(entry);
1452 if (p) {
1453 offset = swp_offset(entry);
1454 ci = lock_cluster_or_swap_info(p, offset);
1455 count = swap_count(p->swap_map[offset]);
1456 unlock_cluster_or_swap_info(p, ci);
1457 }
1458 return count;
1459}
1460
1461int __swap_count(swp_entry_t entry)
1462{
1463 struct swap_info_struct *si;
1464 pgoff_t offset = swp_offset(entry);
1465 int count = 0;
1466
1467 si = get_swap_device(entry);
1468 if (si) {
1469 count = swap_count(si->swap_map[offset]);
1470 put_swap_device(si);
1471 }
1472 return count;
1473}
1474
1475static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1476{
1477 int count = 0;
1478 pgoff_t offset = swp_offset(entry);
1479 struct swap_cluster_info *ci;
1480
1481 ci = lock_cluster_or_swap_info(si, offset);
1482 count = swap_count(si->swap_map[offset]);
1483 unlock_cluster_or_swap_info(si, ci);
1484 return count;
1485}
1486
1487/*
1488 * How many references to @entry are currently swapped out?
1489 * This does not give an exact answer when swap count is continued,
1490 * but does include the high COUNT_CONTINUED flag to allow for that.
1491 */
1492int __swp_swapcount(swp_entry_t entry)
1493{
1494 int count = 0;
1495 struct swap_info_struct *si;
1496
1497 si = get_swap_device(entry);
1498 if (si) {
1499 count = swap_swapcount(si, entry);
1500 put_swap_device(si);
1501 }
1502 return count;
1503}
1504
1505/*
1506 * How many references to @entry are currently swapped out?
1507 * This considers COUNT_CONTINUED so it returns exact answer.
1508 */
1509int swp_swapcount(swp_entry_t entry)
1510{
1511 int count, tmp_count, n;
1512 struct swap_info_struct *p;
1513 struct swap_cluster_info *ci;
1514 struct page *page;
1515 pgoff_t offset;
1516 unsigned char *map;
1517
1518 p = _swap_info_get(entry);
1519 if (!p)
1520 return 0;
1521
1522 offset = swp_offset(entry);
1523
1524 ci = lock_cluster_or_swap_info(p, offset);
1525
1526 count = swap_count(p->swap_map[offset]);
1527 if (!(count & COUNT_CONTINUED))
1528 goto out;
1529
1530 count &= ~COUNT_CONTINUED;
1531 n = SWAP_MAP_MAX + 1;
1532
1533 page = vmalloc_to_page(p->swap_map + offset);
1534 offset &= ~PAGE_MASK;
1535 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1536
1537 do {
1538 page = list_next_entry(page, lru);
1539 map = kmap_atomic(page);
1540 tmp_count = map[offset];
1541 kunmap_atomic(map);
1542
1543 count += (tmp_count & ~COUNT_CONTINUED) * n;
1544 n *= (SWAP_CONT_MAX + 1);
1545 } while (tmp_count & COUNT_CONTINUED);
1546out:
1547 unlock_cluster_or_swap_info(p, ci);
1548 return count;
1549}
1550
1551static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1552 swp_entry_t entry)
1553{
1554 struct swap_cluster_info *ci;
1555 unsigned char *map = si->swap_map;
1556 unsigned long roffset = swp_offset(entry);
1557 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1558 int i;
1559 bool ret = false;
1560
1561 ci = lock_cluster_or_swap_info(si, offset);
1562 if (!ci || !cluster_is_huge(ci)) {
1563 if (swap_count(map[roffset]))
1564 ret = true;
1565 goto unlock_out;
1566 }
1567 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1568 if (swap_count(map[offset + i])) {
1569 ret = true;
1570 break;
1571 }
1572 }
1573unlock_out:
1574 unlock_cluster_or_swap_info(si, ci);
1575 return ret;
1576}
1577
1578static bool page_swapped(struct page *page)
1579{
1580 swp_entry_t entry;
1581 struct swap_info_struct *si;
1582
1583 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1584 return page_swapcount(page) != 0;
1585
1586 page = compound_head(page);
1587 entry.val = page_private(page);
1588 si = _swap_info_get(entry);
1589 if (si)
1590 return swap_page_trans_huge_swapped(si, entry);
1591 return false;
1592}
1593
1594/*
1595 * If swap is getting full, or if there are no more mappings of this page,
1596 * then try_to_free_swap is called to free its swap space.
1597 */
1598int try_to_free_swap(struct page *page)
1599{
1600 VM_BUG_ON_PAGE(!PageLocked(page), page);
1601
1602 if (!PageSwapCache(page))
1603 return 0;
1604 if (PageWriteback(page))
1605 return 0;
1606 if (page_swapped(page))
1607 return 0;
1608
1609 /*
1610 * Once hibernation has begun to create its image of memory,
1611 * there's a danger that one of the calls to try_to_free_swap()
1612 * - most probably a call from __try_to_reclaim_swap() while
1613 * hibernation is allocating its own swap pages for the image,
1614 * but conceivably even a call from memory reclaim - will free
1615 * the swap from a page which has already been recorded in the
1616 * image as a clean swapcache page, and then reuse its swap for
1617 * another page of the image. On waking from hibernation, the
1618 * original page might be freed under memory pressure, then
1619 * later read back in from swap, now with the wrong data.
1620 *
1621 * Hibernation suspends storage while it is writing the image
1622 * to disk so check that here.
1623 */
1624 if (pm_suspended_storage())
1625 return 0;
1626
1627 page = compound_head(page);
1628 delete_from_swap_cache(page);
1629 SetPageDirty(page);
1630 return 1;
1631}
1632
1633/*
1634 * Free the swap entry like above, but also try to
1635 * free the page cache entry if it is the last user.
1636 */
1637int free_swap_and_cache(swp_entry_t entry)
1638{
1639 struct swap_info_struct *p;
1640 unsigned char count;
1641
1642 if (non_swap_entry(entry))
1643 return 1;
1644
1645 p = _swap_info_get(entry);
1646 if (p) {
1647 count = __swap_entry_free(p, entry);
1648 if (count == SWAP_HAS_CACHE &&
1649 !swap_page_trans_huge_swapped(p, entry))
1650 __try_to_reclaim_swap(p, swp_offset(entry),
1651 TTRS_UNMAPPED | TTRS_FULL);
1652 }
1653 return p != NULL;
1654}
1655
1656#ifdef CONFIG_HIBERNATION
1657
1658swp_entry_t get_swap_page_of_type(int type)
1659{
1660 struct swap_info_struct *si = swap_type_to_swap_info(type);
1661 swp_entry_t entry = {0};
1662
1663 if (!si)
1664 goto fail;
1665
1666 /* This is called for allocating swap entry, not cache */
1667 spin_lock(&si->lock);
1668 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1669 atomic_long_dec(&nr_swap_pages);
1670 spin_unlock(&si->lock);
1671fail:
1672 return entry;
1673}
1674
1675/*
1676 * Find the swap type that corresponds to given device (if any).
1677 *
1678 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1679 * from 0, in which the swap header is expected to be located.
1680 *
1681 * This is needed for the suspend to disk (aka swsusp).
1682 */
1683int swap_type_of(dev_t device, sector_t offset)
1684{
1685 int type;
1686
1687 if (!device)
1688 return -1;
1689
1690 spin_lock(&swap_lock);
1691 for (type = 0; type < nr_swapfiles; type++) {
1692 struct swap_info_struct *sis = swap_info[type];
1693
1694 if (!(sis->flags & SWP_WRITEOK))
1695 continue;
1696
1697 if (device == sis->bdev->bd_dev) {
1698 struct swap_extent *se = first_se(sis);
1699
1700 if (se->start_block == offset) {
1701 spin_unlock(&swap_lock);
1702 return type;
1703 }
1704 }
1705 }
1706 spin_unlock(&swap_lock);
1707 return -ENODEV;
1708}
1709
1710int find_first_swap(dev_t *device)
1711{
1712 int type;
1713
1714 spin_lock(&swap_lock);
1715 for (type = 0; type < nr_swapfiles; type++) {
1716 struct swap_info_struct *sis = swap_info[type];
1717
1718 if (!(sis->flags & SWP_WRITEOK))
1719 continue;
1720 *device = sis->bdev->bd_dev;
1721 spin_unlock(&swap_lock);
1722 return type;
1723 }
1724 spin_unlock(&swap_lock);
1725 return -ENODEV;
1726}
1727
1728/*
1729 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1730 * corresponding to given index in swap_info (swap type).
1731 */
1732sector_t swapdev_block(int type, pgoff_t offset)
1733{
1734 struct swap_info_struct *si = swap_type_to_swap_info(type);
1735 struct swap_extent *se;
1736
1737 if (!si || !(si->flags & SWP_WRITEOK))
1738 return 0;
1739 se = offset_to_swap_extent(si, offset);
1740 return se->start_block + (offset - se->start_page);
1741}
1742
1743/*
1744 * Return either the total number of swap pages of given type, or the number
1745 * of free pages of that type (depending on @free)
1746 *
1747 * This is needed for software suspend
1748 */
1749unsigned int count_swap_pages(int type, int free)
1750{
1751 unsigned int n = 0;
1752
1753 spin_lock(&swap_lock);
1754 if ((unsigned int)type < nr_swapfiles) {
1755 struct swap_info_struct *sis = swap_info[type];
1756
1757 spin_lock(&sis->lock);
1758 if (sis->flags & SWP_WRITEOK) {
1759 n = sis->pages;
1760 if (free)
1761 n -= sis->inuse_pages;
1762 }
1763 spin_unlock(&sis->lock);
1764 }
1765 spin_unlock(&swap_lock);
1766 return n;
1767}
1768#endif /* CONFIG_HIBERNATION */
1769
1770static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1771{
1772 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1773}
1774
1775/*
1776 * No need to decide whether this PTE shares the swap entry with others,
1777 * just let do_wp_page work it out if a write is requested later - to
1778 * force COW, vm_page_prot omits write permission from any private vma.
1779 */
1780static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1781 unsigned long addr, swp_entry_t entry, struct page *page)
1782{
1783 struct page *swapcache;
1784 spinlock_t *ptl;
1785 pte_t *pte;
1786 int ret = 1;
1787
1788 swapcache = page;
1789 page = ksm_might_need_to_copy(page, vma, addr);
1790 if (unlikely(!page))
1791 return -ENOMEM;
1792
1793 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1794 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1795 ret = 0;
1796 goto out;
1797 }
1798
1799 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1800 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1801 get_page(page);
1802 if (page == swapcache) {
1803 page_add_anon_rmap(page, vma, addr, RMAP_NONE);
1804 } else { /* ksm created a completely new copy */
1805 page_add_new_anon_rmap(page, vma, addr, false);
1806 lru_cache_add_inactive_or_unevictable(page, vma);
1807 }
1808 set_pte_at(vma->vm_mm, addr, pte,
1809 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1810 swap_free(entry);
1811out:
1812 pte_unmap_unlock(pte, ptl);
1813 if (page != swapcache) {
1814 unlock_page(page);
1815 put_page(page);
1816 }
1817 return ret;
1818}
1819
1820static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1821 unsigned long addr, unsigned long end,
1822 unsigned int type)
1823{
1824 struct page *page;
1825 swp_entry_t entry;
1826 pte_t *pte;
1827 struct swap_info_struct *si;
1828 unsigned long offset;
1829 int ret = 0;
1830 volatile unsigned char *swap_map;
1831
1832 si = swap_info[type];
1833 pte = pte_offset_map(pmd, addr);
1834 do {
1835 if (!is_swap_pte(*pte))
1836 continue;
1837
1838 entry = pte_to_swp_entry(*pte);
1839 if (swp_type(entry) != type)
1840 continue;
1841
1842 offset = swp_offset(entry);
1843 pte_unmap(pte);
1844 swap_map = &si->swap_map[offset];
1845 page = lookup_swap_cache(entry, vma, addr);
1846 if (!page) {
1847 struct vm_fault vmf = {
1848 .vma = vma,
1849 .address = addr,
1850 .real_address = addr,
1851 .pmd = pmd,
1852 };
1853
1854 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1855 &vmf);
1856 }
1857 if (!page) {
1858 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1859 goto try_next;
1860 return -ENOMEM;
1861 }
1862
1863 lock_page(page);
1864 wait_on_page_writeback(page);
1865 ret = unuse_pte(vma, pmd, addr, entry, page);
1866 if (ret < 0) {
1867 unlock_page(page);
1868 put_page(page);
1869 goto out;
1870 }
1871
1872 try_to_free_swap(page);
1873 unlock_page(page);
1874 put_page(page);
1875try_next:
1876 pte = pte_offset_map(pmd, addr);
1877 } while (pte++, addr += PAGE_SIZE, addr != end);
1878 pte_unmap(pte - 1);
1879
1880 ret = 0;
1881out:
1882 return ret;
1883}
1884
1885static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1886 unsigned long addr, unsigned long end,
1887 unsigned int type)
1888{
1889 pmd_t *pmd;
1890 unsigned long next;
1891 int ret;
1892
1893 pmd = pmd_offset(pud, addr);
1894 do {
1895 cond_resched();
1896 next = pmd_addr_end(addr, end);
1897 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1898 continue;
1899 ret = unuse_pte_range(vma, pmd, addr, next, type);
1900 if (ret)
1901 return ret;
1902 } while (pmd++, addr = next, addr != end);
1903 return 0;
1904}
1905
1906static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1907 unsigned long addr, unsigned long end,
1908 unsigned int type)
1909{
1910 pud_t *pud;
1911 unsigned long next;
1912 int ret;
1913
1914 pud = pud_offset(p4d, addr);
1915 do {
1916 next = pud_addr_end(addr, end);
1917 if (pud_none_or_clear_bad(pud))
1918 continue;
1919 ret = unuse_pmd_range(vma, pud, addr, next, type);
1920 if (ret)
1921 return ret;
1922 } while (pud++, addr = next, addr != end);
1923 return 0;
1924}
1925
1926static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1927 unsigned long addr, unsigned long end,
1928 unsigned int type)
1929{
1930 p4d_t *p4d;
1931 unsigned long next;
1932 int ret;
1933
1934 p4d = p4d_offset(pgd, addr);
1935 do {
1936 next = p4d_addr_end(addr, end);
1937 if (p4d_none_or_clear_bad(p4d))
1938 continue;
1939 ret = unuse_pud_range(vma, p4d, addr, next, type);
1940 if (ret)
1941 return ret;
1942 } while (p4d++, addr = next, addr != end);
1943 return 0;
1944}
1945
1946static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1947{
1948 pgd_t *pgd;
1949 unsigned long addr, end, next;
1950 int ret;
1951
1952 addr = vma->vm_start;
1953 end = vma->vm_end;
1954
1955 pgd = pgd_offset(vma->vm_mm, addr);
1956 do {
1957 next = pgd_addr_end(addr, end);
1958 if (pgd_none_or_clear_bad(pgd))
1959 continue;
1960 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1961 if (ret)
1962 return ret;
1963 } while (pgd++, addr = next, addr != end);
1964 return 0;
1965}
1966
1967static int unuse_mm(struct mm_struct *mm, unsigned int type)
1968{
1969 struct vm_area_struct *vma;
1970 int ret = 0;
1971
1972 mmap_read_lock(mm);
1973 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1974 if (vma->anon_vma) {
1975 ret = unuse_vma(vma, type);
1976 if (ret)
1977 break;
1978 }
1979 cond_resched();
1980 }
1981 mmap_read_unlock(mm);
1982 return ret;
1983}
1984
1985/*
1986 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1987 * from current position to next entry still in use. Return 0
1988 * if there are no inuse entries after prev till end of the map.
1989 */
1990static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1991 unsigned int prev)
1992{
1993 unsigned int i;
1994 unsigned char count;
1995
1996 /*
1997 * No need for swap_lock here: we're just looking
1998 * for whether an entry is in use, not modifying it; false
1999 * hits are okay, and sys_swapoff() has already prevented new
2000 * allocations from this area (while holding swap_lock).
2001 */
2002 for (i = prev + 1; i < si->max; i++) {
2003 count = READ_ONCE(si->swap_map[i]);
2004 if (count && swap_count(count) != SWAP_MAP_BAD)
2005 break;
2006 if ((i % LATENCY_LIMIT) == 0)
2007 cond_resched();
2008 }
2009
2010 if (i == si->max)
2011 i = 0;
2012
2013 return i;
2014}
2015
2016static int try_to_unuse(unsigned int type)
2017{
2018 struct mm_struct *prev_mm;
2019 struct mm_struct *mm;
2020 struct list_head *p;
2021 int retval = 0;
2022 struct swap_info_struct *si = swap_info[type];
2023 struct page *page;
2024 swp_entry_t entry;
2025 unsigned int i;
2026
2027 if (!READ_ONCE(si->inuse_pages))
2028 return 0;
2029
2030retry:
2031 retval = shmem_unuse(type);
2032 if (retval)
2033 return retval;
2034
2035 prev_mm = &init_mm;
2036 mmget(prev_mm);
2037
2038 spin_lock(&mmlist_lock);
2039 p = &init_mm.mmlist;
2040 while (READ_ONCE(si->inuse_pages) &&
2041 !signal_pending(current) &&
2042 (p = p->next) != &init_mm.mmlist) {
2043
2044 mm = list_entry(p, struct mm_struct, mmlist);
2045 if (!mmget_not_zero(mm))
2046 continue;
2047 spin_unlock(&mmlist_lock);
2048 mmput(prev_mm);
2049 prev_mm = mm;
2050 retval = unuse_mm(mm, type);
2051 if (retval) {
2052 mmput(prev_mm);
2053 return retval;
2054 }
2055
2056 /*
2057 * Make sure that we aren't completely killing
2058 * interactive performance.
2059 */
2060 cond_resched();
2061 spin_lock(&mmlist_lock);
2062 }
2063 spin_unlock(&mmlist_lock);
2064
2065 mmput(prev_mm);
2066
2067 i = 0;
2068 while (READ_ONCE(si->inuse_pages) &&
2069 !signal_pending(current) &&
2070 (i = find_next_to_unuse(si, i)) != 0) {
2071
2072 entry = swp_entry(type, i);
2073 page = find_get_page(swap_address_space(entry), i);
2074 if (!page)
2075 continue;
2076
2077 /*
2078 * It is conceivable that a racing task removed this page from
2079 * swap cache just before we acquired the page lock. The page
2080 * might even be back in swap cache on another swap area. But
2081 * that is okay, try_to_free_swap() only removes stale pages.
2082 */
2083 lock_page(page);
2084 wait_on_page_writeback(page);
2085 try_to_free_swap(page);
2086 unlock_page(page);
2087 put_page(page);
2088 }
2089
2090 /*
2091 * Lets check again to see if there are still swap entries in the map.
2092 * If yes, we would need to do retry the unuse logic again.
2093 * Under global memory pressure, swap entries can be reinserted back
2094 * into process space after the mmlist loop above passes over them.
2095 *
2096 * Limit the number of retries? No: when mmget_not_zero() above fails,
2097 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2098 * at its own independent pace; and even shmem_writepage() could have
2099 * been preempted after get_swap_page(), temporarily hiding that swap.
2100 * It's easy and robust (though cpu-intensive) just to keep retrying.
2101 */
2102 if (READ_ONCE(si->inuse_pages)) {
2103 if (!signal_pending(current))
2104 goto retry;
2105 return -EINTR;
2106 }
2107
2108 return 0;
2109}
2110
2111/*
2112 * After a successful try_to_unuse, if no swap is now in use, we know
2113 * we can empty the mmlist. swap_lock must be held on entry and exit.
2114 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2115 * added to the mmlist just after page_duplicate - before would be racy.
2116 */
2117static void drain_mmlist(void)
2118{
2119 struct list_head *p, *next;
2120 unsigned int type;
2121
2122 for (type = 0; type < nr_swapfiles; type++)
2123 if (swap_info[type]->inuse_pages)
2124 return;
2125 spin_lock(&mmlist_lock);
2126 list_for_each_safe(p, next, &init_mm.mmlist)
2127 list_del_init(p);
2128 spin_unlock(&mmlist_lock);
2129}
2130
2131/*
2132 * Free all of a swapdev's extent information
2133 */
2134static void destroy_swap_extents(struct swap_info_struct *sis)
2135{
2136 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2137 struct rb_node *rb = sis->swap_extent_root.rb_node;
2138 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2139
2140 rb_erase(rb, &sis->swap_extent_root);
2141 kfree(se);
2142 }
2143
2144 if (sis->flags & SWP_ACTIVATED) {
2145 struct file *swap_file = sis->swap_file;
2146 struct address_space *mapping = swap_file->f_mapping;
2147
2148 sis->flags &= ~SWP_ACTIVATED;
2149 if (mapping->a_ops->swap_deactivate)
2150 mapping->a_ops->swap_deactivate(swap_file);
2151 }
2152}
2153
2154/*
2155 * Add a block range (and the corresponding page range) into this swapdev's
2156 * extent tree.
2157 *
2158 * This function rather assumes that it is called in ascending page order.
2159 */
2160int
2161add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2162 unsigned long nr_pages, sector_t start_block)
2163{
2164 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2165 struct swap_extent *se;
2166 struct swap_extent *new_se;
2167
2168 /*
2169 * place the new node at the right most since the
2170 * function is called in ascending page order.
2171 */
2172 while (*link) {
2173 parent = *link;
2174 link = &parent->rb_right;
2175 }
2176
2177 if (parent) {
2178 se = rb_entry(parent, struct swap_extent, rb_node);
2179 BUG_ON(se->start_page + se->nr_pages != start_page);
2180 if (se->start_block + se->nr_pages == start_block) {
2181 /* Merge it */
2182 se->nr_pages += nr_pages;
2183 return 0;
2184 }
2185 }
2186
2187 /* No merge, insert a new extent. */
2188 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2189 if (new_se == NULL)
2190 return -ENOMEM;
2191 new_se->start_page = start_page;
2192 new_se->nr_pages = nr_pages;
2193 new_se->start_block = start_block;
2194
2195 rb_link_node(&new_se->rb_node, parent, link);
2196 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2197 return 1;
2198}
2199EXPORT_SYMBOL_GPL(add_swap_extent);
2200
2201/*
2202 * A `swap extent' is a simple thing which maps a contiguous range of pages
2203 * onto a contiguous range of disk blocks. An ordered list of swap extents
2204 * is built at swapon time and is then used at swap_writepage/swap_readpage
2205 * time for locating where on disk a page belongs.
2206 *
2207 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2208 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2209 * swap files identically.
2210 *
2211 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2212 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2213 * swapfiles are handled *identically* after swapon time.
2214 *
2215 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2216 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2217 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2218 * requirements, they are simply tossed out - we will never use those blocks
2219 * for swapping.
2220 *
2221 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2222 * prevents users from writing to the swap device, which will corrupt memory.
2223 *
2224 * The amount of disk space which a single swap extent represents varies.
2225 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2226 * extents in the list. To avoid much list walking, we cache the previous
2227 * search location in `curr_swap_extent', and start new searches from there.
2228 * This is extremely effective. The average number of iterations in
2229 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2230 */
2231static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2232{
2233 struct file *swap_file = sis->swap_file;
2234 struct address_space *mapping = swap_file->f_mapping;
2235 struct inode *inode = mapping->host;
2236 int ret;
2237
2238 if (S_ISBLK(inode->i_mode)) {
2239 ret = add_swap_extent(sis, 0, sis->max, 0);
2240 *span = sis->pages;
2241 return ret;
2242 }
2243
2244 if (mapping->a_ops->swap_activate) {
2245 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2246 if (ret >= 0)
2247 sis->flags |= SWP_ACTIVATED;
2248 if (!ret) {
2249 sis->flags |= SWP_FS_OPS;
2250 ret = add_swap_extent(sis, 0, sis->max, 0);
2251 *span = sis->pages;
2252 }
2253 return ret;
2254 }
2255
2256 return generic_swapfile_activate(sis, swap_file, span);
2257}
2258
2259static int swap_node(struct swap_info_struct *p)
2260{
2261 struct block_device *bdev;
2262
2263 if (p->bdev)
2264 bdev = p->bdev;
2265 else
2266 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2267
2268 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2269}
2270
2271static void setup_swap_info(struct swap_info_struct *p, int prio,
2272 unsigned char *swap_map,
2273 struct swap_cluster_info *cluster_info)
2274{
2275 int i;
2276
2277 if (prio >= 0)
2278 p->prio = prio;
2279 else
2280 p->prio = --least_priority;
2281 /*
2282 * the plist prio is negated because plist ordering is
2283 * low-to-high, while swap ordering is high-to-low
2284 */
2285 p->list.prio = -p->prio;
2286 for_each_node(i) {
2287 if (p->prio >= 0)
2288 p->avail_lists[i].prio = -p->prio;
2289 else {
2290 if (swap_node(p) == i)
2291 p->avail_lists[i].prio = 1;
2292 else
2293 p->avail_lists[i].prio = -p->prio;
2294 }
2295 }
2296 p->swap_map = swap_map;
2297 p->cluster_info = cluster_info;
2298}
2299
2300static void _enable_swap_info(struct swap_info_struct *p)
2301{
2302 p->flags |= SWP_WRITEOK;
2303 atomic_long_add(p->pages, &nr_swap_pages);
2304 total_swap_pages += p->pages;
2305
2306 assert_spin_locked(&swap_lock);
2307 /*
2308 * both lists are plists, and thus priority ordered.
2309 * swap_active_head needs to be priority ordered for swapoff(),
2310 * which on removal of any swap_info_struct with an auto-assigned
2311 * (i.e. negative) priority increments the auto-assigned priority
2312 * of any lower-priority swap_info_structs.
2313 * swap_avail_head needs to be priority ordered for get_swap_page(),
2314 * which allocates swap pages from the highest available priority
2315 * swap_info_struct.
2316 */
2317 plist_add(&p->list, &swap_active_head);
2318 add_to_avail_list(p);
2319}
2320
2321static void enable_swap_info(struct swap_info_struct *p, int prio,
2322 unsigned char *swap_map,
2323 struct swap_cluster_info *cluster_info,
2324 unsigned long *frontswap_map)
2325{
2326 if (IS_ENABLED(CONFIG_FRONTSWAP))
2327 frontswap_init(p->type, frontswap_map);
2328 spin_lock(&swap_lock);
2329 spin_lock(&p->lock);
2330 setup_swap_info(p, prio, swap_map, cluster_info);
2331 spin_unlock(&p->lock);
2332 spin_unlock(&swap_lock);
2333 /*
2334 * Finished initializing swap device, now it's safe to reference it.
2335 */
2336 percpu_ref_resurrect(&p->users);
2337 spin_lock(&swap_lock);
2338 spin_lock(&p->lock);
2339 _enable_swap_info(p);
2340 spin_unlock(&p->lock);
2341 spin_unlock(&swap_lock);
2342}
2343
2344static void reinsert_swap_info(struct swap_info_struct *p)
2345{
2346 spin_lock(&swap_lock);
2347 spin_lock(&p->lock);
2348 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2349 _enable_swap_info(p);
2350 spin_unlock(&p->lock);
2351 spin_unlock(&swap_lock);
2352}
2353
2354bool has_usable_swap(void)
2355{
2356 bool ret = true;
2357
2358 spin_lock(&swap_lock);
2359 if (plist_head_empty(&swap_active_head))
2360 ret = false;
2361 spin_unlock(&swap_lock);
2362 return ret;
2363}
2364
2365SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2366{
2367 struct swap_info_struct *p = NULL;
2368 unsigned char *swap_map;
2369 struct swap_cluster_info *cluster_info;
2370 unsigned long *frontswap_map;
2371 struct file *swap_file, *victim;
2372 struct address_space *mapping;
2373 struct inode *inode;
2374 struct filename *pathname;
2375 int err, found = 0;
2376 unsigned int old_block_size;
2377
2378 if (!capable(CAP_SYS_ADMIN))
2379 return -EPERM;
2380
2381 BUG_ON(!current->mm);
2382
2383 pathname = getname(specialfile);
2384 if (IS_ERR(pathname))
2385 return PTR_ERR(pathname);
2386
2387 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2388 err = PTR_ERR(victim);
2389 if (IS_ERR(victim))
2390 goto out;
2391
2392 mapping = victim->f_mapping;
2393 spin_lock(&swap_lock);
2394 plist_for_each_entry(p, &swap_active_head, list) {
2395 if (p->flags & SWP_WRITEOK) {
2396 if (p->swap_file->f_mapping == mapping) {
2397 found = 1;
2398 break;
2399 }
2400 }
2401 }
2402 if (!found) {
2403 err = -EINVAL;
2404 spin_unlock(&swap_lock);
2405 goto out_dput;
2406 }
2407 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2408 vm_unacct_memory(p->pages);
2409 else {
2410 err = -ENOMEM;
2411 spin_unlock(&swap_lock);
2412 goto out_dput;
2413 }
2414 del_from_avail_list(p);
2415 spin_lock(&p->lock);
2416 if (p->prio < 0) {
2417 struct swap_info_struct *si = p;
2418 int nid;
2419
2420 plist_for_each_entry_continue(si, &swap_active_head, list) {
2421 si->prio++;
2422 si->list.prio--;
2423 for_each_node(nid) {
2424 if (si->avail_lists[nid].prio != 1)
2425 si->avail_lists[nid].prio--;
2426 }
2427 }
2428 least_priority++;
2429 }
2430 plist_del(&p->list, &swap_active_head);
2431 atomic_long_sub(p->pages, &nr_swap_pages);
2432 total_swap_pages -= p->pages;
2433 p->flags &= ~SWP_WRITEOK;
2434 spin_unlock(&p->lock);
2435 spin_unlock(&swap_lock);
2436
2437 disable_swap_slots_cache_lock();
2438
2439 set_current_oom_origin();
2440 err = try_to_unuse(p->type);
2441 clear_current_oom_origin();
2442
2443 if (err) {
2444 /* re-insert swap space back into swap_list */
2445 reinsert_swap_info(p);
2446 reenable_swap_slots_cache_unlock();
2447 goto out_dput;
2448 }
2449
2450 reenable_swap_slots_cache_unlock();
2451
2452 /*
2453 * Wait for swap operations protected by get/put_swap_device()
2454 * to complete.
2455 *
2456 * We need synchronize_rcu() here to protect the accessing to
2457 * the swap cache data structure.
2458 */
2459 percpu_ref_kill(&p->users);
2460 synchronize_rcu();
2461 wait_for_completion(&p->comp);
2462
2463 flush_work(&p->discard_work);
2464
2465 destroy_swap_extents(p);
2466 if (p->flags & SWP_CONTINUED)
2467 free_swap_count_continuations(p);
2468
2469 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2470 atomic_dec(&nr_rotate_swap);
2471
2472 mutex_lock(&swapon_mutex);
2473 spin_lock(&swap_lock);
2474 spin_lock(&p->lock);
2475 drain_mmlist();
2476
2477 /* wait for anyone still in scan_swap_map_slots */
2478 p->highest_bit = 0; /* cuts scans short */
2479 while (p->flags >= SWP_SCANNING) {
2480 spin_unlock(&p->lock);
2481 spin_unlock(&swap_lock);
2482 schedule_timeout_uninterruptible(1);
2483 spin_lock(&swap_lock);
2484 spin_lock(&p->lock);
2485 }
2486
2487 swap_file = p->swap_file;
2488 old_block_size = p->old_block_size;
2489 p->swap_file = NULL;
2490 p->max = 0;
2491 swap_map = p->swap_map;
2492 p->swap_map = NULL;
2493 cluster_info = p->cluster_info;
2494 p->cluster_info = NULL;
2495 frontswap_map = frontswap_map_get(p);
2496 spin_unlock(&p->lock);
2497 spin_unlock(&swap_lock);
2498 arch_swap_invalidate_area(p->type);
2499 frontswap_invalidate_area(p->type);
2500 frontswap_map_set(p, NULL);
2501 mutex_unlock(&swapon_mutex);
2502 free_percpu(p->percpu_cluster);
2503 p->percpu_cluster = NULL;
2504 free_percpu(p->cluster_next_cpu);
2505 p->cluster_next_cpu = NULL;
2506 vfree(swap_map);
2507 kvfree(cluster_info);
2508 kvfree(frontswap_map);
2509 /* Destroy swap account information */
2510 swap_cgroup_swapoff(p->type);
2511 exit_swap_address_space(p->type);
2512
2513 inode = mapping->host;
2514 if (S_ISBLK(inode->i_mode)) {
2515 struct block_device *bdev = I_BDEV(inode);
2516
2517 set_blocksize(bdev, old_block_size);
2518 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2519 }
2520
2521 inode_lock(inode);
2522 inode->i_flags &= ~S_SWAPFILE;
2523 inode_unlock(inode);
2524 filp_close(swap_file, NULL);
2525
2526 /*
2527 * Clear the SWP_USED flag after all resources are freed so that swapon
2528 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2529 * not hold p->lock after we cleared its SWP_WRITEOK.
2530 */
2531 spin_lock(&swap_lock);
2532 p->flags = 0;
2533 spin_unlock(&swap_lock);
2534
2535 err = 0;
2536 atomic_inc(&proc_poll_event);
2537 wake_up_interruptible(&proc_poll_wait);
2538
2539out_dput:
2540 filp_close(victim, NULL);
2541out:
2542 putname(pathname);
2543 return err;
2544}
2545
2546#ifdef CONFIG_PROC_FS
2547static __poll_t swaps_poll(struct file *file, poll_table *wait)
2548{
2549 struct seq_file *seq = file->private_data;
2550
2551 poll_wait(file, &proc_poll_wait, wait);
2552
2553 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2554 seq->poll_event = atomic_read(&proc_poll_event);
2555 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2556 }
2557
2558 return EPOLLIN | EPOLLRDNORM;
2559}
2560
2561/* iterator */
2562static void *swap_start(struct seq_file *swap, loff_t *pos)
2563{
2564 struct swap_info_struct *si;
2565 int type;
2566 loff_t l = *pos;
2567
2568 mutex_lock(&swapon_mutex);
2569
2570 if (!l)
2571 return SEQ_START_TOKEN;
2572
2573 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2574 if (!(si->flags & SWP_USED) || !si->swap_map)
2575 continue;
2576 if (!--l)
2577 return si;
2578 }
2579
2580 return NULL;
2581}
2582
2583static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2584{
2585 struct swap_info_struct *si = v;
2586 int type;
2587
2588 if (v == SEQ_START_TOKEN)
2589 type = 0;
2590 else
2591 type = si->type + 1;
2592
2593 ++(*pos);
2594 for (; (si = swap_type_to_swap_info(type)); type++) {
2595 if (!(si->flags & SWP_USED) || !si->swap_map)
2596 continue;
2597 return si;
2598 }
2599
2600 return NULL;
2601}
2602
2603static void swap_stop(struct seq_file *swap, void *v)
2604{
2605 mutex_unlock(&swapon_mutex);
2606}
2607
2608static int swap_show(struct seq_file *swap, void *v)
2609{
2610 struct swap_info_struct *si = v;
2611 struct file *file;
2612 int len;
2613 unsigned long bytes, inuse;
2614
2615 if (si == SEQ_START_TOKEN) {
2616 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2617 return 0;
2618 }
2619
2620 bytes = si->pages << (PAGE_SHIFT - 10);
2621 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2622
2623 file = si->swap_file;
2624 len = seq_file_path(swap, file, " \t\n\\");
2625 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2626 len < 40 ? 40 - len : 1, " ",
2627 S_ISBLK(file_inode(file)->i_mode) ?
2628 "partition" : "file\t",
2629 bytes, bytes < 10000000 ? "\t" : "",
2630 inuse, inuse < 10000000 ? "\t" : "",
2631 si->prio);
2632 return 0;
2633}
2634
2635static const struct seq_operations swaps_op = {
2636 .start = swap_start,
2637 .next = swap_next,
2638 .stop = swap_stop,
2639 .show = swap_show
2640};
2641
2642static int swaps_open(struct inode *inode, struct file *file)
2643{
2644 struct seq_file *seq;
2645 int ret;
2646
2647 ret = seq_open(file, &swaps_op);
2648 if (ret)
2649 return ret;
2650
2651 seq = file->private_data;
2652 seq->poll_event = atomic_read(&proc_poll_event);
2653 return 0;
2654}
2655
2656static const struct proc_ops swaps_proc_ops = {
2657 .proc_flags = PROC_ENTRY_PERMANENT,
2658 .proc_open = swaps_open,
2659 .proc_read = seq_read,
2660 .proc_lseek = seq_lseek,
2661 .proc_release = seq_release,
2662 .proc_poll = swaps_poll,
2663};
2664
2665static int __init procswaps_init(void)
2666{
2667 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2668 return 0;
2669}
2670__initcall(procswaps_init);
2671#endif /* CONFIG_PROC_FS */
2672
2673#ifdef MAX_SWAPFILES_CHECK
2674static int __init max_swapfiles_check(void)
2675{
2676 MAX_SWAPFILES_CHECK();
2677 return 0;
2678}
2679late_initcall(max_swapfiles_check);
2680#endif
2681
2682static struct swap_info_struct *alloc_swap_info(void)
2683{
2684 struct swap_info_struct *p;
2685 struct swap_info_struct *defer = NULL;
2686 unsigned int type;
2687 int i;
2688
2689 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2690 if (!p)
2691 return ERR_PTR(-ENOMEM);
2692
2693 if (percpu_ref_init(&p->users, swap_users_ref_free,
2694 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2695 kvfree(p);
2696 return ERR_PTR(-ENOMEM);
2697 }
2698
2699 spin_lock(&swap_lock);
2700 for (type = 0; type < nr_swapfiles; type++) {
2701 if (!(swap_info[type]->flags & SWP_USED))
2702 break;
2703 }
2704 if (type >= MAX_SWAPFILES) {
2705 spin_unlock(&swap_lock);
2706 percpu_ref_exit(&p->users);
2707 kvfree(p);
2708 return ERR_PTR(-EPERM);
2709 }
2710 if (type >= nr_swapfiles) {
2711 p->type = type;
2712 /*
2713 * Publish the swap_info_struct after initializing it.
2714 * Note that kvzalloc() above zeroes all its fields.
2715 */
2716 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2717 nr_swapfiles++;
2718 } else {
2719 defer = p;
2720 p = swap_info[type];
2721 /*
2722 * Do not memset this entry: a racing procfs swap_next()
2723 * would be relying on p->type to remain valid.
2724 */
2725 }
2726 p->swap_extent_root = RB_ROOT;
2727 plist_node_init(&p->list, 0);
2728 for_each_node(i)
2729 plist_node_init(&p->avail_lists[i], 0);
2730 p->flags = SWP_USED;
2731 spin_unlock(&swap_lock);
2732 if (defer) {
2733 percpu_ref_exit(&defer->users);
2734 kvfree(defer);
2735 }
2736 spin_lock_init(&p->lock);
2737 spin_lock_init(&p->cont_lock);
2738 init_completion(&p->comp);
2739
2740 return p;
2741}
2742
2743static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2744{
2745 int error;
2746
2747 if (S_ISBLK(inode->i_mode)) {
2748 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2749 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2750 if (IS_ERR(p->bdev)) {
2751 error = PTR_ERR(p->bdev);
2752 p->bdev = NULL;
2753 return error;
2754 }
2755 p->old_block_size = block_size(p->bdev);
2756 error = set_blocksize(p->bdev, PAGE_SIZE);
2757 if (error < 0)
2758 return error;
2759 /*
2760 * Zoned block devices contain zones that have a sequential
2761 * write only restriction. Hence zoned block devices are not
2762 * suitable for swapping. Disallow them here.
2763 */
2764 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2765 return -EINVAL;
2766 p->flags |= SWP_BLKDEV;
2767 } else if (S_ISREG(inode->i_mode)) {
2768 p->bdev = inode->i_sb->s_bdev;
2769 }
2770
2771 return 0;
2772}
2773
2774
2775/*
2776 * Find out how many pages are allowed for a single swap device. There
2777 * are two limiting factors:
2778 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2779 * 2) the number of bits in the swap pte, as defined by the different
2780 * architectures.
2781 *
2782 * In order to find the largest possible bit mask, a swap entry with
2783 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2784 * decoded to a swp_entry_t again, and finally the swap offset is
2785 * extracted.
2786 *
2787 * This will mask all the bits from the initial ~0UL mask that can't
2788 * be encoded in either the swp_entry_t or the architecture definition
2789 * of a swap pte.
2790 */
2791unsigned long generic_max_swapfile_size(void)
2792{
2793 return swp_offset(pte_to_swp_entry(
2794 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2795}
2796
2797/* Can be overridden by an architecture for additional checks. */
2798__weak unsigned long max_swapfile_size(void)
2799{
2800 return generic_max_swapfile_size();
2801}
2802
2803static unsigned long read_swap_header(struct swap_info_struct *p,
2804 union swap_header *swap_header,
2805 struct inode *inode)
2806{
2807 int i;
2808 unsigned long maxpages;
2809 unsigned long swapfilepages;
2810 unsigned long last_page;
2811
2812 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2813 pr_err("Unable to find swap-space signature\n");
2814 return 0;
2815 }
2816
2817 /* swap partition endianness hack... */
2818 if (swab32(swap_header->info.version) == 1) {
2819 swab32s(&swap_header->info.version);
2820 swab32s(&swap_header->info.last_page);
2821 swab32s(&swap_header->info.nr_badpages);
2822 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2823 return 0;
2824 for (i = 0; i < swap_header->info.nr_badpages; i++)
2825 swab32s(&swap_header->info.badpages[i]);
2826 }
2827 /* Check the swap header's sub-version */
2828 if (swap_header->info.version != 1) {
2829 pr_warn("Unable to handle swap header version %d\n",
2830 swap_header->info.version);
2831 return 0;
2832 }
2833
2834 p->lowest_bit = 1;
2835 p->cluster_next = 1;
2836 p->cluster_nr = 0;
2837
2838 maxpages = max_swapfile_size();
2839 last_page = swap_header->info.last_page;
2840 if (!last_page) {
2841 pr_warn("Empty swap-file\n");
2842 return 0;
2843 }
2844 if (last_page > maxpages) {
2845 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2846 maxpages << (PAGE_SHIFT - 10),
2847 last_page << (PAGE_SHIFT - 10));
2848 }
2849 if (maxpages > last_page) {
2850 maxpages = last_page + 1;
2851 /* p->max is an unsigned int: don't overflow it */
2852 if ((unsigned int)maxpages == 0)
2853 maxpages = UINT_MAX;
2854 }
2855 p->highest_bit = maxpages - 1;
2856
2857 if (!maxpages)
2858 return 0;
2859 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2860 if (swapfilepages && maxpages > swapfilepages) {
2861 pr_warn("Swap area shorter than signature indicates\n");
2862 return 0;
2863 }
2864 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2865 return 0;
2866 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2867 return 0;
2868
2869 return maxpages;
2870}
2871
2872#define SWAP_CLUSTER_INFO_COLS \
2873 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2874#define SWAP_CLUSTER_SPACE_COLS \
2875 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2876#define SWAP_CLUSTER_COLS \
2877 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2878
2879static int setup_swap_map_and_extents(struct swap_info_struct *p,
2880 union swap_header *swap_header,
2881 unsigned char *swap_map,
2882 struct swap_cluster_info *cluster_info,
2883 unsigned long maxpages,
2884 sector_t *span)
2885{
2886 unsigned int j, k;
2887 unsigned int nr_good_pages;
2888 int nr_extents;
2889 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2890 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2891 unsigned long i, idx;
2892
2893 nr_good_pages = maxpages - 1; /* omit header page */
2894
2895 cluster_list_init(&p->free_clusters);
2896 cluster_list_init(&p->discard_clusters);
2897
2898 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2899 unsigned int page_nr = swap_header->info.badpages[i];
2900 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2901 return -EINVAL;
2902 if (page_nr < maxpages) {
2903 swap_map[page_nr] = SWAP_MAP_BAD;
2904 nr_good_pages--;
2905 /*
2906 * Haven't marked the cluster free yet, no list
2907 * operation involved
2908 */
2909 inc_cluster_info_page(p, cluster_info, page_nr);
2910 }
2911 }
2912
2913 /* Haven't marked the cluster free yet, no list operation involved */
2914 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2915 inc_cluster_info_page(p, cluster_info, i);
2916
2917 if (nr_good_pages) {
2918 swap_map[0] = SWAP_MAP_BAD;
2919 /*
2920 * Not mark the cluster free yet, no list
2921 * operation involved
2922 */
2923 inc_cluster_info_page(p, cluster_info, 0);
2924 p->max = maxpages;
2925 p->pages = nr_good_pages;
2926 nr_extents = setup_swap_extents(p, span);
2927 if (nr_extents < 0)
2928 return nr_extents;
2929 nr_good_pages = p->pages;
2930 }
2931 if (!nr_good_pages) {
2932 pr_warn("Empty swap-file\n");
2933 return -EINVAL;
2934 }
2935
2936 if (!cluster_info)
2937 return nr_extents;
2938
2939
2940 /*
2941 * Reduce false cache line sharing between cluster_info and
2942 * sharing same address space.
2943 */
2944 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2945 j = (k + col) % SWAP_CLUSTER_COLS;
2946 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2947 idx = i * SWAP_CLUSTER_COLS + j;
2948 if (idx >= nr_clusters)
2949 continue;
2950 if (cluster_count(&cluster_info[idx]))
2951 continue;
2952 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2953 cluster_list_add_tail(&p->free_clusters, cluster_info,
2954 idx);
2955 }
2956 }
2957 return nr_extents;
2958}
2959
2960/*
2961 * Helper to sys_swapon determining if a given swap
2962 * backing device queue supports DISCARD operations.
2963 */
2964static bool swap_discardable(struct swap_info_struct *si)
2965{
2966 struct request_queue *q = bdev_get_queue(si->bdev);
2967
2968 if (!blk_queue_discard(q))
2969 return false;
2970
2971 return true;
2972}
2973
2974SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2975{
2976 struct swap_info_struct *p;
2977 struct filename *name;
2978 struct file *swap_file = NULL;
2979 struct address_space *mapping;
2980 struct dentry *dentry;
2981 int prio;
2982 int error;
2983 union swap_header *swap_header;
2984 int nr_extents;
2985 sector_t span;
2986 unsigned long maxpages;
2987 unsigned char *swap_map = NULL;
2988 struct swap_cluster_info *cluster_info = NULL;
2989 unsigned long *frontswap_map = NULL;
2990 struct page *page = NULL;
2991 struct inode *inode = NULL;
2992 bool inced_nr_rotate_swap = false;
2993
2994 if (swap_flags & ~SWAP_FLAGS_VALID)
2995 return -EINVAL;
2996
2997 if (!capable(CAP_SYS_ADMIN))
2998 return -EPERM;
2999
3000 if (!swap_avail_heads)
3001 return -ENOMEM;
3002
3003 p = alloc_swap_info();
3004 if (IS_ERR(p))
3005 return PTR_ERR(p);
3006
3007 INIT_WORK(&p->discard_work, swap_discard_work);
3008
3009 name = getname(specialfile);
3010 if (IS_ERR(name)) {
3011 error = PTR_ERR(name);
3012 name = NULL;
3013 goto bad_swap;
3014 }
3015 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3016 if (IS_ERR(swap_file)) {
3017 error = PTR_ERR(swap_file);
3018 swap_file = NULL;
3019 goto bad_swap;
3020 }
3021
3022 p->swap_file = swap_file;
3023 mapping = swap_file->f_mapping;
3024 dentry = swap_file->f_path.dentry;
3025 inode = mapping->host;
3026
3027 error = claim_swapfile(p, inode);
3028 if (unlikely(error))
3029 goto bad_swap;
3030
3031 inode_lock(inode);
3032 if (d_unlinked(dentry) || cant_mount(dentry)) {
3033 error = -ENOENT;
3034 goto bad_swap_unlock_inode;
3035 }
3036 if (IS_SWAPFILE(inode)) {
3037 error = -EBUSY;
3038 goto bad_swap_unlock_inode;
3039 }
3040
3041 /*
3042 * Read the swap header.
3043 */
3044 if (!mapping->a_ops->readpage) {
3045 error = -EINVAL;
3046 goto bad_swap_unlock_inode;
3047 }
3048 page = read_mapping_page(mapping, 0, swap_file);
3049 if (IS_ERR(page)) {
3050 error = PTR_ERR(page);
3051 goto bad_swap_unlock_inode;
3052 }
3053 swap_header = kmap(page);
3054
3055 maxpages = read_swap_header(p, swap_header, inode);
3056 if (unlikely(!maxpages)) {
3057 error = -EINVAL;
3058 goto bad_swap_unlock_inode;
3059 }
3060
3061 /* OK, set up the swap map and apply the bad block list */
3062 swap_map = vzalloc(maxpages);
3063 if (!swap_map) {
3064 error = -ENOMEM;
3065 goto bad_swap_unlock_inode;
3066 }
3067
3068 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3069 p->flags |= SWP_STABLE_WRITES;
3070
3071 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3072 p->flags |= SWP_SYNCHRONOUS_IO;
3073
3074 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3075 int cpu;
3076 unsigned long ci, nr_cluster;
3077
3078 p->flags |= SWP_SOLIDSTATE;
3079 p->cluster_next_cpu = alloc_percpu(unsigned int);
3080 if (!p->cluster_next_cpu) {
3081 error = -ENOMEM;
3082 goto bad_swap_unlock_inode;
3083 }
3084 /*
3085 * select a random position to start with to help wear leveling
3086 * SSD
3087 */
3088 for_each_possible_cpu(cpu) {
3089 per_cpu(*p->cluster_next_cpu, cpu) =
3090 1 + prandom_u32_max(p->highest_bit);
3091 }
3092 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3093
3094 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3095 GFP_KERNEL);
3096 if (!cluster_info) {
3097 error = -ENOMEM;
3098 goto bad_swap_unlock_inode;
3099 }
3100
3101 for (ci = 0; ci < nr_cluster; ci++)
3102 spin_lock_init(&((cluster_info + ci)->lock));
3103
3104 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3105 if (!p->percpu_cluster) {
3106 error = -ENOMEM;
3107 goto bad_swap_unlock_inode;
3108 }
3109 for_each_possible_cpu(cpu) {
3110 struct percpu_cluster *cluster;
3111 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3112 cluster_set_null(&cluster->index);
3113 }
3114 } else {
3115 atomic_inc(&nr_rotate_swap);
3116 inced_nr_rotate_swap = true;
3117 }
3118
3119 error = swap_cgroup_swapon(p->type, maxpages);
3120 if (error)
3121 goto bad_swap_unlock_inode;
3122
3123 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3124 cluster_info, maxpages, &span);
3125 if (unlikely(nr_extents < 0)) {
3126 error = nr_extents;
3127 goto bad_swap_unlock_inode;
3128 }
3129 /* frontswap enabled? set up bit-per-page map for frontswap */
3130 if (IS_ENABLED(CONFIG_FRONTSWAP))
3131 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3132 sizeof(long),
3133 GFP_KERNEL);
3134
3135 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3136 /*
3137 * When discard is enabled for swap with no particular
3138 * policy flagged, we set all swap discard flags here in
3139 * order to sustain backward compatibility with older
3140 * swapon(8) releases.
3141 */
3142 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3143 SWP_PAGE_DISCARD);
3144
3145 /*
3146 * By flagging sys_swapon, a sysadmin can tell us to
3147 * either do single-time area discards only, or to just
3148 * perform discards for released swap page-clusters.
3149 * Now it's time to adjust the p->flags accordingly.
3150 */
3151 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3152 p->flags &= ~SWP_PAGE_DISCARD;
3153 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3154 p->flags &= ~SWP_AREA_DISCARD;
3155
3156 /* issue a swapon-time discard if it's still required */
3157 if (p->flags & SWP_AREA_DISCARD) {
3158 int err = discard_swap(p);
3159 if (unlikely(err))
3160 pr_err("swapon: discard_swap(%p): %d\n",
3161 p, err);
3162 }
3163 }
3164
3165 error = init_swap_address_space(p->type, maxpages);
3166 if (error)
3167 goto bad_swap_unlock_inode;
3168
3169 /*
3170 * Flush any pending IO and dirty mappings before we start using this
3171 * swap device.
3172 */
3173 inode->i_flags |= S_SWAPFILE;
3174 error = inode_drain_writes(inode);
3175 if (error) {
3176 inode->i_flags &= ~S_SWAPFILE;
3177 goto free_swap_address_space;
3178 }
3179
3180 mutex_lock(&swapon_mutex);
3181 prio = -1;
3182 if (swap_flags & SWAP_FLAG_PREFER)
3183 prio =
3184 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3185 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3186
3187 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3188 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3189 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3190 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3191 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3192 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3193 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3194 (frontswap_map) ? "FS" : "");
3195
3196 mutex_unlock(&swapon_mutex);
3197 atomic_inc(&proc_poll_event);
3198 wake_up_interruptible(&proc_poll_wait);
3199
3200 error = 0;
3201 goto out;
3202free_swap_address_space:
3203 exit_swap_address_space(p->type);
3204bad_swap_unlock_inode:
3205 inode_unlock(inode);
3206bad_swap:
3207 free_percpu(p->percpu_cluster);
3208 p->percpu_cluster = NULL;
3209 free_percpu(p->cluster_next_cpu);
3210 p->cluster_next_cpu = NULL;
3211 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3212 set_blocksize(p->bdev, p->old_block_size);
3213 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3214 }
3215 inode = NULL;
3216 destroy_swap_extents(p);
3217 swap_cgroup_swapoff(p->type);
3218 spin_lock(&swap_lock);
3219 p->swap_file = NULL;
3220 p->flags = 0;
3221 spin_unlock(&swap_lock);
3222 vfree(swap_map);
3223 kvfree(cluster_info);
3224 kvfree(frontswap_map);
3225 if (inced_nr_rotate_swap)
3226 atomic_dec(&nr_rotate_swap);
3227 if (swap_file)
3228 filp_close(swap_file, NULL);
3229out:
3230 if (page && !IS_ERR(page)) {
3231 kunmap(page);
3232 put_page(page);
3233 }
3234 if (name)
3235 putname(name);
3236 if (inode)
3237 inode_unlock(inode);
3238 if (!error)
3239 enable_swap_slots_cache();
3240 return error;
3241}
3242
3243void si_swapinfo(struct sysinfo *val)
3244{
3245 unsigned int type;
3246 unsigned long nr_to_be_unused = 0;
3247
3248 spin_lock(&swap_lock);
3249 for (type = 0; type < nr_swapfiles; type++) {
3250 struct swap_info_struct *si = swap_info[type];
3251
3252 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253 nr_to_be_unused += si->inuse_pages;
3254 }
3255 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256 val->totalswap = total_swap_pages + nr_to_be_unused;
3257 spin_unlock(&swap_lock);
3258}
3259
3260/*
3261 * Verify that a swap entry is valid and increment its swap map count.
3262 *
3263 * Returns error code in following case.
3264 * - success -> 0
3265 * - swp_entry is invalid -> EINVAL
3266 * - swp_entry is migration entry -> EINVAL
3267 * - swap-cache reference is requested but there is already one. -> EEXIST
3268 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270 */
3271static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272{
3273 struct swap_info_struct *p;
3274 struct swap_cluster_info *ci;
3275 unsigned long offset;
3276 unsigned char count;
3277 unsigned char has_cache;
3278 int err;
3279
3280 p = get_swap_device(entry);
3281 if (!p)
3282 return -EINVAL;
3283
3284 offset = swp_offset(entry);
3285 ci = lock_cluster_or_swap_info(p, offset);
3286
3287 count = p->swap_map[offset];
3288
3289 /*
3290 * swapin_readahead() doesn't check if a swap entry is valid, so the
3291 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3292 */
3293 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3294 err = -ENOENT;
3295 goto unlock_out;
3296 }
3297
3298 has_cache = count & SWAP_HAS_CACHE;
3299 count &= ~SWAP_HAS_CACHE;
3300 err = 0;
3301
3302 if (usage == SWAP_HAS_CACHE) {
3303
3304 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3305 if (!has_cache && count)
3306 has_cache = SWAP_HAS_CACHE;
3307 else if (has_cache) /* someone else added cache */
3308 err = -EEXIST;
3309 else /* no users remaining */
3310 err = -ENOENT;
3311
3312 } else if (count || has_cache) {
3313
3314 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3315 count += usage;
3316 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3317 err = -EINVAL;
3318 else if (swap_count_continued(p, offset, count))
3319 count = COUNT_CONTINUED;
3320 else
3321 err = -ENOMEM;
3322 } else
3323 err = -ENOENT; /* unused swap entry */
3324
3325 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3326
3327unlock_out:
3328 unlock_cluster_or_swap_info(p, ci);
3329 if (p)
3330 put_swap_device(p);
3331 return err;
3332}
3333
3334/*
3335 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3336 * (in which case its reference count is never incremented).
3337 */
3338void swap_shmem_alloc(swp_entry_t entry)
3339{
3340 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3341}
3342
3343/*
3344 * Increase reference count of swap entry by 1.
3345 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3346 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3347 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3348 * might occur if a page table entry has got corrupted.
3349 */
3350int swap_duplicate(swp_entry_t entry)
3351{
3352 int err = 0;
3353
3354 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3355 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3356 return err;
3357}
3358
3359/*
3360 * @entry: swap entry for which we allocate swap cache.
3361 *
3362 * Called when allocating swap cache for existing swap entry,
3363 * This can return error codes. Returns 0 at success.
3364 * -EEXIST means there is a swap cache.
3365 * Note: return code is different from swap_duplicate().
3366 */
3367int swapcache_prepare(swp_entry_t entry)
3368{
3369 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3370}
3371
3372struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3373{
3374 return swap_type_to_swap_info(swp_type(entry));
3375}
3376
3377struct swap_info_struct *page_swap_info(struct page *page)
3378{
3379 swp_entry_t entry = { .val = page_private(page) };
3380 return swp_swap_info(entry);
3381}
3382
3383/*
3384 * out-of-line methods to avoid include hell.
3385 */
3386struct address_space *swapcache_mapping(struct folio *folio)
3387{
3388 return page_swap_info(&folio->page)->swap_file->f_mapping;
3389}
3390EXPORT_SYMBOL_GPL(swapcache_mapping);
3391
3392pgoff_t __page_file_index(struct page *page)
3393{
3394 swp_entry_t swap = { .val = page_private(page) };
3395 return swp_offset(swap);
3396}
3397EXPORT_SYMBOL_GPL(__page_file_index);
3398
3399/*
3400 * add_swap_count_continuation - called when a swap count is duplicated
3401 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3402 * page of the original vmalloc'ed swap_map, to hold the continuation count
3403 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3404 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3405 *
3406 * These continuation pages are seldom referenced: the common paths all work
3407 * on the original swap_map, only referring to a continuation page when the
3408 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3409 *
3410 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3411 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3412 * can be called after dropping locks.
3413 */
3414int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3415{
3416 struct swap_info_struct *si;
3417 struct swap_cluster_info *ci;
3418 struct page *head;
3419 struct page *page;
3420 struct page *list_page;
3421 pgoff_t offset;
3422 unsigned char count;
3423 int ret = 0;
3424
3425 /*
3426 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3427 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3428 */
3429 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3430
3431 si = get_swap_device(entry);
3432 if (!si) {
3433 /*
3434 * An acceptable race has occurred since the failing
3435 * __swap_duplicate(): the swap device may be swapoff
3436 */
3437 goto outer;
3438 }
3439 spin_lock(&si->lock);
3440
3441 offset = swp_offset(entry);
3442
3443 ci = lock_cluster(si, offset);
3444
3445 count = swap_count(si->swap_map[offset]);
3446
3447 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3448 /*
3449 * The higher the swap count, the more likely it is that tasks
3450 * will race to add swap count continuation: we need to avoid
3451 * over-provisioning.
3452 */
3453 goto out;
3454 }
3455
3456 if (!page) {
3457 ret = -ENOMEM;
3458 goto out;
3459 }
3460
3461 /*
3462 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3463 * no architecture is using highmem pages for kernel page tables: so it
3464 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3465 */
3466 head = vmalloc_to_page(si->swap_map + offset);
3467 offset &= ~PAGE_MASK;
3468
3469 spin_lock(&si->cont_lock);
3470 /*
3471 * Page allocation does not initialize the page's lru field,
3472 * but it does always reset its private field.
3473 */
3474 if (!page_private(head)) {
3475 BUG_ON(count & COUNT_CONTINUED);
3476 INIT_LIST_HEAD(&head->lru);
3477 set_page_private(head, SWP_CONTINUED);
3478 si->flags |= SWP_CONTINUED;
3479 }
3480
3481 list_for_each_entry(list_page, &head->lru, lru) {
3482 unsigned char *map;
3483
3484 /*
3485 * If the previous map said no continuation, but we've found
3486 * a continuation page, free our allocation and use this one.
3487 */
3488 if (!(count & COUNT_CONTINUED))
3489 goto out_unlock_cont;
3490
3491 map = kmap_atomic(list_page) + offset;
3492 count = *map;
3493 kunmap_atomic(map);
3494
3495 /*
3496 * If this continuation count now has some space in it,
3497 * free our allocation and use this one.
3498 */
3499 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3500 goto out_unlock_cont;
3501 }
3502
3503 list_add_tail(&page->lru, &head->lru);
3504 page = NULL; /* now it's attached, don't free it */
3505out_unlock_cont:
3506 spin_unlock(&si->cont_lock);
3507out:
3508 unlock_cluster(ci);
3509 spin_unlock(&si->lock);
3510 put_swap_device(si);
3511outer:
3512 if (page)
3513 __free_page(page);
3514 return ret;
3515}
3516
3517/*
3518 * swap_count_continued - when the original swap_map count is incremented
3519 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3520 * into, carry if so, or else fail until a new continuation page is allocated;
3521 * when the original swap_map count is decremented from 0 with continuation,
3522 * borrow from the continuation and report whether it still holds more.
3523 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3524 * lock.
3525 */
3526static bool swap_count_continued(struct swap_info_struct *si,
3527 pgoff_t offset, unsigned char count)
3528{
3529 struct page *head;
3530 struct page *page;
3531 unsigned char *map;
3532 bool ret;
3533
3534 head = vmalloc_to_page(si->swap_map + offset);
3535 if (page_private(head) != SWP_CONTINUED) {
3536 BUG_ON(count & COUNT_CONTINUED);
3537 return false; /* need to add count continuation */
3538 }
3539
3540 spin_lock(&si->cont_lock);
3541 offset &= ~PAGE_MASK;
3542 page = list_next_entry(head, lru);
3543 map = kmap_atomic(page) + offset;
3544
3545 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3546 goto init_map; /* jump over SWAP_CONT_MAX checks */
3547
3548 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3549 /*
3550 * Think of how you add 1 to 999
3551 */
3552 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3553 kunmap_atomic(map);
3554 page = list_next_entry(page, lru);
3555 BUG_ON(page == head);
3556 map = kmap_atomic(page) + offset;
3557 }
3558 if (*map == SWAP_CONT_MAX) {
3559 kunmap_atomic(map);
3560 page = list_next_entry(page, lru);
3561 if (page == head) {
3562 ret = false; /* add count continuation */
3563 goto out;
3564 }
3565 map = kmap_atomic(page) + offset;
3566init_map: *map = 0; /* we didn't zero the page */
3567 }
3568 *map += 1;
3569 kunmap_atomic(map);
3570 while ((page = list_prev_entry(page, lru)) != head) {
3571 map = kmap_atomic(page) + offset;
3572 *map = COUNT_CONTINUED;
3573 kunmap_atomic(map);
3574 }
3575 ret = true; /* incremented */
3576
3577 } else { /* decrementing */
3578 /*
3579 * Think of how you subtract 1 from 1000
3580 */
3581 BUG_ON(count != COUNT_CONTINUED);
3582 while (*map == COUNT_CONTINUED) {
3583 kunmap_atomic(map);
3584 page = list_next_entry(page, lru);
3585 BUG_ON(page == head);
3586 map = kmap_atomic(page) + offset;
3587 }
3588 BUG_ON(*map == 0);
3589 *map -= 1;
3590 if (*map == 0)
3591 count = 0;
3592 kunmap_atomic(map);
3593 while ((page = list_prev_entry(page, lru)) != head) {
3594 map = kmap_atomic(page) + offset;
3595 *map = SWAP_CONT_MAX | count;
3596 count = COUNT_CONTINUED;
3597 kunmap_atomic(map);
3598 }
3599 ret = count == COUNT_CONTINUED;
3600 }
3601out:
3602 spin_unlock(&si->cont_lock);
3603 return ret;
3604}
3605
3606/*
3607 * free_swap_count_continuations - swapoff free all the continuation pages
3608 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3609 */
3610static void free_swap_count_continuations(struct swap_info_struct *si)
3611{
3612 pgoff_t offset;
3613
3614 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3615 struct page *head;
3616 head = vmalloc_to_page(si->swap_map + offset);
3617 if (page_private(head)) {
3618 struct page *page, *next;
3619
3620 list_for_each_entry_safe(page, next, &head->lru, lru) {
3621 list_del(&page->lru);
3622 __free_page(page);
3623 }
3624 }
3625 }
3626}
3627
3628#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3629void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3630{
3631 struct swap_info_struct *si, *next;
3632 int nid = page_to_nid(page);
3633
3634 if (!(gfp_mask & __GFP_IO))
3635 return;
3636
3637 if (!blk_cgroup_congested())
3638 return;
3639
3640 /*
3641 * We've already scheduled a throttle, avoid taking the global swap
3642 * lock.
3643 */
3644 if (current->throttle_queue)
3645 return;
3646
3647 spin_lock(&swap_avail_lock);
3648 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3649 avail_lists[nid]) {
3650 if (si->bdev) {
3651 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3652 break;
3653 }
3654 }
3655 spin_unlock(&swap_avail_lock);
3656}
3657#endif
3658
3659static int __init swapfile_init(void)
3660{
3661 int nid;
3662
3663 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3664 GFP_KERNEL);
3665 if (!swap_avail_heads) {
3666 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3667 return -ENOMEM;
3668 }
3669
3670 for_each_node(nid)
3671 plist_head_init(&swap_avail_heads[nid]);
3672
3673 return 0;
3674}
3675subsys_initcall(swapfile_init);