zswap: shrink zswap pool based on memory pressure
[linux-2.6-block.git] / mm / swap_state.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10#include <linux/mm.h>
11#include <linux/gfp.h>
12#include <linux/kernel_stat.h>
13#include <linux/mempolicy.h>
14#include <linux/swap.h>
15#include <linux/swapops.h>
16#include <linux/init.h>
17#include <linux/pagemap.h>
18#include <linux/backing-dev.h>
19#include <linux/blkdev.h>
20#include <linux/migrate.h>
21#include <linux/vmalloc.h>
22#include <linux/swap_slots.h>
23#include <linux/huge_mm.h>
24#include <linux/shmem_fs.h>
25#include "internal.h"
26#include "swap.h"
27
28/*
29 * swapper_space is a fiction, retained to simplify the path through
30 * vmscan's shrink_page_list.
31 */
32static const struct address_space_operations swap_aops = {
33 .writepage = swap_writepage,
34 .dirty_folio = noop_dirty_folio,
35#ifdef CONFIG_MIGRATION
36 .migrate_folio = migrate_folio,
37#endif
38};
39
40struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42static bool enable_vma_readahead __read_mostly = true;
43
44#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48
49#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
52
53#define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
57
58/* Initial readahead hits is 4 to start up with a small window */
59#define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61
62static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63
64void show_swap_cache_info(void)
65{
66 printk("%lu pages in swap cache\n", total_swapcache_pages());
67 printk("Free swap = %ldkB\n", K(get_nr_swap_pages()));
68 printk("Total swap = %lukB\n", K(total_swap_pages));
69}
70
71void *get_shadow_from_swap_cache(swp_entry_t entry)
72{
73 struct address_space *address_space = swap_address_space(entry);
74 pgoff_t idx = swp_offset(entry);
75 struct page *page;
76
77 page = xa_load(&address_space->i_pages, idx);
78 if (xa_is_value(page))
79 return page;
80 return NULL;
81}
82
83/*
84 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
85 * but sets SwapCache flag and private instead of mapping and index.
86 */
87int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
88 gfp_t gfp, void **shadowp)
89{
90 struct address_space *address_space = swap_address_space(entry);
91 pgoff_t idx = swp_offset(entry);
92 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
93 unsigned long i, nr = folio_nr_pages(folio);
94 void *old;
95
96 xas_set_update(&xas, workingset_update_node);
97
98 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
99 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
100 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
101
102 folio_ref_add(folio, nr);
103 folio_set_swapcache(folio);
104 folio->swap = entry;
105
106 do {
107 xas_lock_irq(&xas);
108 xas_create_range(&xas);
109 if (xas_error(&xas))
110 goto unlock;
111 for (i = 0; i < nr; i++) {
112 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113 if (shadowp) {
114 old = xas_load(&xas);
115 if (xa_is_value(old))
116 *shadowp = old;
117 }
118 xas_store(&xas, folio);
119 xas_next(&xas);
120 }
121 address_space->nrpages += nr;
122 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
123 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
124unlock:
125 xas_unlock_irq(&xas);
126 } while (xas_nomem(&xas, gfp));
127
128 if (!xas_error(&xas))
129 return 0;
130
131 folio_clear_swapcache(folio);
132 folio_ref_sub(folio, nr);
133 return xas_error(&xas);
134}
135
136/*
137 * This must be called only on folios that have
138 * been verified to be in the swap cache.
139 */
140void __delete_from_swap_cache(struct folio *folio,
141 swp_entry_t entry, void *shadow)
142{
143 struct address_space *address_space = swap_address_space(entry);
144 int i;
145 long nr = folio_nr_pages(folio);
146 pgoff_t idx = swp_offset(entry);
147 XA_STATE(xas, &address_space->i_pages, idx);
148
149 xas_set_update(&xas, workingset_update_node);
150
151 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
152 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
153 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
154
155 for (i = 0; i < nr; i++) {
156 void *entry = xas_store(&xas, shadow);
157 VM_BUG_ON_PAGE(entry != folio, entry);
158 xas_next(&xas);
159 }
160 folio->swap.val = 0;
161 folio_clear_swapcache(folio);
162 address_space->nrpages -= nr;
163 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
164 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
165}
166
167/**
168 * add_to_swap - allocate swap space for a folio
169 * @folio: folio we want to move to swap
170 *
171 * Allocate swap space for the folio and add the folio to the
172 * swap cache.
173 *
174 * Context: Caller needs to hold the folio lock.
175 * Return: Whether the folio was added to the swap cache.
176 */
177bool add_to_swap(struct folio *folio)
178{
179 swp_entry_t entry;
180 int err;
181
182 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
183 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
184
185 entry = folio_alloc_swap(folio);
186 if (!entry.val)
187 return false;
188
189 /*
190 * XArray node allocations from PF_MEMALLOC contexts could
191 * completely exhaust the page allocator. __GFP_NOMEMALLOC
192 * stops emergency reserves from being allocated.
193 *
194 * TODO: this could cause a theoretical memory reclaim
195 * deadlock in the swap out path.
196 */
197 /*
198 * Add it to the swap cache.
199 */
200 err = add_to_swap_cache(folio, entry,
201 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
202 if (err)
203 /*
204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 * clear SWAP_HAS_CACHE flag.
206 */
207 goto fail;
208 /*
209 * Normally the folio will be dirtied in unmap because its
210 * pte should be dirty. A special case is MADV_FREE page. The
211 * page's pte could have dirty bit cleared but the folio's
212 * SwapBacked flag is still set because clearing the dirty bit
213 * and SwapBacked flag has no lock protected. For such folio,
214 * unmap will not set dirty bit for it, so folio reclaim will
215 * not write the folio out. This can cause data corruption when
216 * the folio is swapped in later. Always setting the dirty flag
217 * for the folio solves the problem.
218 */
219 folio_mark_dirty(folio);
220
221 return true;
222
223fail:
224 put_swap_folio(folio, entry);
225 return false;
226}
227
228/*
229 * This must be called only on folios that have
230 * been verified to be in the swap cache and locked.
231 * It will never put the folio into the free list,
232 * the caller has a reference on the folio.
233 */
234void delete_from_swap_cache(struct folio *folio)
235{
236 swp_entry_t entry = folio->swap;
237 struct address_space *address_space = swap_address_space(entry);
238
239 xa_lock_irq(&address_space->i_pages);
240 __delete_from_swap_cache(folio, entry, NULL);
241 xa_unlock_irq(&address_space->i_pages);
242
243 put_swap_folio(folio, entry);
244 folio_ref_sub(folio, folio_nr_pages(folio));
245}
246
247void clear_shadow_from_swap_cache(int type, unsigned long begin,
248 unsigned long end)
249{
250 unsigned long curr = begin;
251 void *old;
252
253 for (;;) {
254 swp_entry_t entry = swp_entry(type, curr);
255 struct address_space *address_space = swap_address_space(entry);
256 XA_STATE(xas, &address_space->i_pages, curr);
257
258 xas_set_update(&xas, workingset_update_node);
259
260 xa_lock_irq(&address_space->i_pages);
261 xas_for_each(&xas, old, end) {
262 if (!xa_is_value(old))
263 continue;
264 xas_store(&xas, NULL);
265 }
266 xa_unlock_irq(&address_space->i_pages);
267
268 /* search the next swapcache until we meet end */
269 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
270 curr++;
271 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
272 if (curr > end)
273 break;
274 }
275}
276
277/*
278 * If we are the only user, then try to free up the swap cache.
279 *
280 * Its ok to check the swapcache flag without the folio lock
281 * here because we are going to recheck again inside
282 * folio_free_swap() _with_ the lock.
283 * - Marcelo
284 */
285void free_swap_cache(struct page *page)
286{
287 struct folio *folio = page_folio(page);
288
289 if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
290 folio_trylock(folio)) {
291 folio_free_swap(folio);
292 folio_unlock(folio);
293 }
294}
295
296/*
297 * Perform a free_page(), also freeing any swap cache associated with
298 * this page if it is the last user of the page.
299 */
300void free_page_and_swap_cache(struct page *page)
301{
302 free_swap_cache(page);
303 if (!is_huge_zero_page(page))
304 put_page(page);
305}
306
307/*
308 * Passed an array of pages, drop them all from swapcache and then release
309 * them. They are removed from the LRU and freed if this is their last use.
310 */
311void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
312{
313 lru_add_drain();
314 for (int i = 0; i < nr; i++)
315 free_swap_cache(encoded_page_ptr(pages[i]));
316 release_pages(pages, nr);
317}
318
319static inline bool swap_use_vma_readahead(void)
320{
321 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
322}
323
324/*
325 * Lookup a swap entry in the swap cache. A found folio will be returned
326 * unlocked and with its refcount incremented - we rely on the kernel
327 * lock getting page table operations atomic even if we drop the folio
328 * lock before returning.
329 *
330 * Caller must lock the swap device or hold a reference to keep it valid.
331 */
332struct folio *swap_cache_get_folio(swp_entry_t entry,
333 struct vm_area_struct *vma, unsigned long addr)
334{
335 struct folio *folio;
336
337 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
338 if (!IS_ERR(folio)) {
339 bool vma_ra = swap_use_vma_readahead();
340 bool readahead;
341
342 /*
343 * At the moment, we don't support PG_readahead for anon THP
344 * so let's bail out rather than confusing the readahead stat.
345 */
346 if (unlikely(folio_test_large(folio)))
347 return folio;
348
349 readahead = folio_test_clear_readahead(folio);
350 if (vma && vma_ra) {
351 unsigned long ra_val;
352 int win, hits;
353
354 ra_val = GET_SWAP_RA_VAL(vma);
355 win = SWAP_RA_WIN(ra_val);
356 hits = SWAP_RA_HITS(ra_val);
357 if (readahead)
358 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
359 atomic_long_set(&vma->swap_readahead_info,
360 SWAP_RA_VAL(addr, win, hits));
361 }
362
363 if (readahead) {
364 count_vm_event(SWAP_RA_HIT);
365 if (!vma || !vma_ra)
366 atomic_inc(&swapin_readahead_hits);
367 }
368 } else {
369 folio = NULL;
370 }
371
372 return folio;
373}
374
375/**
376 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
377 * @mapping: The address_space to search.
378 * @index: The page cache index.
379 *
380 * This differs from filemap_get_folio() in that it will also look for the
381 * folio in the swap cache.
382 *
383 * Return: The found folio or %NULL.
384 */
385struct folio *filemap_get_incore_folio(struct address_space *mapping,
386 pgoff_t index)
387{
388 swp_entry_t swp;
389 struct swap_info_struct *si;
390 struct folio *folio = filemap_get_entry(mapping, index);
391
392 if (!folio)
393 return ERR_PTR(-ENOENT);
394 if (!xa_is_value(folio))
395 return folio;
396 if (!shmem_mapping(mapping))
397 return ERR_PTR(-ENOENT);
398
399 swp = radix_to_swp_entry(folio);
400 /* There might be swapin error entries in shmem mapping. */
401 if (non_swap_entry(swp))
402 return ERR_PTR(-ENOENT);
403 /* Prevent swapoff from happening to us */
404 si = get_swap_device(swp);
405 if (!si)
406 return ERR_PTR(-ENOENT);
407 index = swp_offset(swp);
408 folio = filemap_get_folio(swap_address_space(swp), index);
409 put_swap_device(si);
410 return folio;
411}
412
413struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
414 struct mempolicy *mpol, pgoff_t ilx,
415 bool *new_page_allocated,
416 bool skip_if_exists)
417{
418 struct swap_info_struct *si;
419 struct folio *folio;
420 struct page *page;
421 void *shadow = NULL;
422
423 *new_page_allocated = false;
424 si = get_swap_device(entry);
425 if (!si)
426 return NULL;
427
428 for (;;) {
429 int err;
430 /*
431 * First check the swap cache. Since this is normally
432 * called after swap_cache_get_folio() failed, re-calling
433 * that would confuse statistics.
434 */
435 folio = filemap_get_folio(swap_address_space(entry),
436 swp_offset(entry));
437 if (!IS_ERR(folio)) {
438 page = folio_file_page(folio, swp_offset(entry));
439 goto got_page;
440 }
441
442 /*
443 * Just skip read ahead for unused swap slot.
444 * During swap_off when swap_slot_cache is disabled,
445 * we have to handle the race between putting
446 * swap entry in swap cache and marking swap slot
447 * as SWAP_HAS_CACHE. That's done in later part of code or
448 * else swap_off will be aborted if we return NULL.
449 */
450 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
451 goto fail_put_swap;
452
453 /*
454 * Get a new page to read into from swap. Allocate it now,
455 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
456 * cause any racers to loop around until we add it to cache.
457 */
458 folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
459 mpol, ilx, numa_node_id());
460 if (!folio)
461 goto fail_put_swap;
462
463 /*
464 * Swap entry may have been freed since our caller observed it.
465 */
466 err = swapcache_prepare(entry);
467 if (!err)
468 break;
469
470 folio_put(folio);
471 if (err != -EEXIST)
472 goto fail_put_swap;
473
474 /*
475 * Protect against a recursive call to __read_swap_cache_async()
476 * on the same entry waiting forever here because SWAP_HAS_CACHE
477 * is set but the folio is not the swap cache yet. This can
478 * happen today if mem_cgroup_swapin_charge_folio() below
479 * triggers reclaim through zswap, which may call
480 * __read_swap_cache_async() in the writeback path.
481 */
482 if (skip_if_exists)
483 goto fail_put_swap;
484
485 /*
486 * We might race against __delete_from_swap_cache(), and
487 * stumble across a swap_map entry whose SWAP_HAS_CACHE
488 * has not yet been cleared. Or race against another
489 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
490 * in swap_map, but not yet added its page to swap cache.
491 */
492 schedule_timeout_uninterruptible(1);
493 }
494
495 /*
496 * The swap entry is ours to swap in. Prepare the new page.
497 */
498
499 __folio_set_locked(folio);
500 __folio_set_swapbacked(folio);
501
502 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
503 goto fail_unlock;
504
505 /* May fail (-ENOMEM) if XArray node allocation failed. */
506 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
507 goto fail_unlock;
508
509 mem_cgroup_swapin_uncharge_swap(entry);
510
511 if (shadow)
512 workingset_refault(folio, shadow);
513
514 /* Caller will initiate read into locked folio */
515 folio_add_lru(folio);
516 *new_page_allocated = true;
517 page = &folio->page;
518got_page:
519 put_swap_device(si);
520 return page;
521
522fail_unlock:
523 put_swap_folio(folio, entry);
524 folio_unlock(folio);
525 folio_put(folio);
526fail_put_swap:
527 put_swap_device(si);
528 return NULL;
529}
530
531/*
532 * Locate a page of swap in physical memory, reserving swap cache space
533 * and reading the disk if it is not already cached.
534 * A failure return means that either the page allocation failed or that
535 * the swap entry is no longer in use.
536 *
537 * get/put_swap_device() aren't needed to call this function, because
538 * __read_swap_cache_async() call them and swap_readpage() holds the
539 * swap cache folio lock.
540 */
541struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
542 struct vm_area_struct *vma,
543 unsigned long addr, struct swap_iocb **plug)
544{
545 bool page_allocated;
546 struct mempolicy *mpol;
547 pgoff_t ilx;
548 struct page *page;
549
550 mpol = get_vma_policy(vma, addr, 0, &ilx);
551 page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
552 &page_allocated, false);
553 mpol_cond_put(mpol);
554
555 if (page_allocated)
556 swap_readpage(page, false, plug);
557 return page;
558}
559
560static unsigned int __swapin_nr_pages(unsigned long prev_offset,
561 unsigned long offset,
562 int hits,
563 int max_pages,
564 int prev_win)
565{
566 unsigned int pages, last_ra;
567
568 /*
569 * This heuristic has been found to work well on both sequential and
570 * random loads, swapping to hard disk or to SSD: please don't ask
571 * what the "+ 2" means, it just happens to work well, that's all.
572 */
573 pages = hits + 2;
574 if (pages == 2) {
575 /*
576 * We can have no readahead hits to judge by: but must not get
577 * stuck here forever, so check for an adjacent offset instead
578 * (and don't even bother to check whether swap type is same).
579 */
580 if (offset != prev_offset + 1 && offset != prev_offset - 1)
581 pages = 1;
582 } else {
583 unsigned int roundup = 4;
584 while (roundup < pages)
585 roundup <<= 1;
586 pages = roundup;
587 }
588
589 if (pages > max_pages)
590 pages = max_pages;
591
592 /* Don't shrink readahead too fast */
593 last_ra = prev_win / 2;
594 if (pages < last_ra)
595 pages = last_ra;
596
597 return pages;
598}
599
600static unsigned long swapin_nr_pages(unsigned long offset)
601{
602 static unsigned long prev_offset;
603 unsigned int hits, pages, max_pages;
604 static atomic_t last_readahead_pages;
605
606 max_pages = 1 << READ_ONCE(page_cluster);
607 if (max_pages <= 1)
608 return 1;
609
610 hits = atomic_xchg(&swapin_readahead_hits, 0);
611 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
612 max_pages,
613 atomic_read(&last_readahead_pages));
614 if (!hits)
615 WRITE_ONCE(prev_offset, offset);
616 atomic_set(&last_readahead_pages, pages);
617
618 return pages;
619}
620
621/**
622 * swap_cluster_readahead - swap in pages in hope we need them soon
623 * @entry: swap entry of this memory
624 * @gfp_mask: memory allocation flags
625 * @mpol: NUMA memory allocation policy to be applied
626 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
627 *
628 * Returns the struct page for entry and addr, after queueing swapin.
629 *
630 * Primitive swap readahead code. We simply read an aligned block of
631 * (1 << page_cluster) entries in the swap area. This method is chosen
632 * because it doesn't cost us any seek time. We also make sure to queue
633 * the 'original' request together with the readahead ones...
634 *
635 * Note: it is intentional that the same NUMA policy and interleave index
636 * are used for every page of the readahead: neighbouring pages on swap
637 * are fairly likely to have been swapped out from the same node.
638 */
639struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
640 struct mempolicy *mpol, pgoff_t ilx)
641{
642 struct page *page;
643 unsigned long entry_offset = swp_offset(entry);
644 unsigned long offset = entry_offset;
645 unsigned long start_offset, end_offset;
646 unsigned long mask;
647 struct swap_info_struct *si = swp_swap_info(entry);
648 struct blk_plug plug;
649 struct swap_iocb *splug = NULL;
650 bool page_allocated;
651
652 mask = swapin_nr_pages(offset) - 1;
653 if (!mask)
654 goto skip;
655
656 /* Read a page_cluster sized and aligned cluster around offset. */
657 start_offset = offset & ~mask;
658 end_offset = offset | mask;
659 if (!start_offset) /* First page is swap header. */
660 start_offset++;
661 if (end_offset >= si->max)
662 end_offset = si->max - 1;
663
664 blk_start_plug(&plug);
665 for (offset = start_offset; offset <= end_offset ; offset++) {
666 /* Ok, do the async read-ahead now */
667 page = __read_swap_cache_async(
668 swp_entry(swp_type(entry), offset),
669 gfp_mask, mpol, ilx, &page_allocated, false);
670 if (!page)
671 continue;
672 if (page_allocated) {
673 swap_readpage(page, false, &splug);
674 if (offset != entry_offset) {
675 SetPageReadahead(page);
676 count_vm_event(SWAP_RA);
677 }
678 }
679 put_page(page);
680 }
681 blk_finish_plug(&plug);
682 swap_read_unplug(splug);
683 lru_add_drain(); /* Push any new pages onto the LRU now */
684skip:
685 /* The page was likely read above, so no need for plugging here */
686 page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
687 &page_allocated, false);
688 if (unlikely(page_allocated))
689 swap_readpage(page, false, NULL);
690 zswap_page_swapin(page);
691 return page;
692}
693
694int init_swap_address_space(unsigned int type, unsigned long nr_pages)
695{
696 struct address_space *spaces, *space;
697 unsigned int i, nr;
698
699 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
700 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
701 if (!spaces)
702 return -ENOMEM;
703 for (i = 0; i < nr; i++) {
704 space = spaces + i;
705 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
706 atomic_set(&space->i_mmap_writable, 0);
707 space->a_ops = &swap_aops;
708 /* swap cache doesn't use writeback related tags */
709 mapping_set_no_writeback_tags(space);
710 }
711 nr_swapper_spaces[type] = nr;
712 swapper_spaces[type] = spaces;
713
714 return 0;
715}
716
717void exit_swap_address_space(unsigned int type)
718{
719 int i;
720 struct address_space *spaces = swapper_spaces[type];
721
722 for (i = 0; i < nr_swapper_spaces[type]; i++)
723 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
724 kvfree(spaces);
725 nr_swapper_spaces[type] = 0;
726 swapper_spaces[type] = NULL;
727}
728
729#define SWAP_RA_ORDER_CEILING 5
730
731struct vma_swap_readahead {
732 unsigned short win;
733 unsigned short offset;
734 unsigned short nr_pte;
735};
736
737static void swap_ra_info(struct vm_fault *vmf,
738 struct vma_swap_readahead *ra_info)
739{
740 struct vm_area_struct *vma = vmf->vma;
741 unsigned long ra_val;
742 unsigned long faddr, pfn, fpfn, lpfn, rpfn;
743 unsigned long start, end;
744 unsigned int max_win, hits, prev_win, win;
745
746 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
747 SWAP_RA_ORDER_CEILING);
748 if (max_win == 1) {
749 ra_info->win = 1;
750 return;
751 }
752
753 faddr = vmf->address;
754 fpfn = PFN_DOWN(faddr);
755 ra_val = GET_SWAP_RA_VAL(vma);
756 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
757 prev_win = SWAP_RA_WIN(ra_val);
758 hits = SWAP_RA_HITS(ra_val);
759 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
760 max_win, prev_win);
761 atomic_long_set(&vma->swap_readahead_info,
762 SWAP_RA_VAL(faddr, win, 0));
763 if (win == 1)
764 return;
765
766 if (fpfn == pfn + 1) {
767 lpfn = fpfn;
768 rpfn = fpfn + win;
769 } else if (pfn == fpfn + 1) {
770 lpfn = fpfn - win + 1;
771 rpfn = fpfn + 1;
772 } else {
773 unsigned int left = (win - 1) / 2;
774
775 lpfn = fpfn - left;
776 rpfn = fpfn + win - left;
777 }
778 start = max3(lpfn, PFN_DOWN(vma->vm_start),
779 PFN_DOWN(faddr & PMD_MASK));
780 end = min3(rpfn, PFN_DOWN(vma->vm_end),
781 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
782
783 ra_info->nr_pte = end - start;
784 ra_info->offset = fpfn - start;
785}
786
787/**
788 * swap_vma_readahead - swap in pages in hope we need them soon
789 * @targ_entry: swap entry of the targeted memory
790 * @gfp_mask: memory allocation flags
791 * @mpol: NUMA memory allocation policy to be applied
792 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
793 * @vmf: fault information
794 *
795 * Returns the struct page for entry and addr, after queueing swapin.
796 *
797 * Primitive swap readahead code. We simply read in a few pages whose
798 * virtual addresses are around the fault address in the same vma.
799 *
800 * Caller must hold read mmap_lock if vmf->vma is not NULL.
801 *
802 */
803static struct page *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
804 struct mempolicy *mpol, pgoff_t targ_ilx,
805 struct vm_fault *vmf)
806{
807 struct blk_plug plug;
808 struct swap_iocb *splug = NULL;
809 struct page *page;
810 pte_t *pte = NULL, pentry;
811 unsigned long addr;
812 swp_entry_t entry;
813 pgoff_t ilx;
814 unsigned int i;
815 bool page_allocated;
816 struct vma_swap_readahead ra_info = {
817 .win = 1,
818 };
819
820 swap_ra_info(vmf, &ra_info);
821 if (ra_info.win == 1)
822 goto skip;
823
824 addr = vmf->address - (ra_info.offset * PAGE_SIZE);
825 ilx = targ_ilx - ra_info.offset;
826
827 blk_start_plug(&plug);
828 for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
829 if (!pte++) {
830 pte = pte_offset_map(vmf->pmd, addr);
831 if (!pte)
832 break;
833 }
834 pentry = ptep_get_lockless(pte);
835 if (!is_swap_pte(pentry))
836 continue;
837 entry = pte_to_swp_entry(pentry);
838 if (unlikely(non_swap_entry(entry)))
839 continue;
840 pte_unmap(pte);
841 pte = NULL;
842 page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
843 &page_allocated, false);
844 if (!page)
845 continue;
846 if (page_allocated) {
847 swap_readpage(page, false, &splug);
848 if (i != ra_info.offset) {
849 SetPageReadahead(page);
850 count_vm_event(SWAP_RA);
851 }
852 }
853 put_page(page);
854 }
855 if (pte)
856 pte_unmap(pte);
857 blk_finish_plug(&plug);
858 swap_read_unplug(splug);
859 lru_add_drain();
860skip:
861 /* The page was likely read above, so no need for plugging here */
862 page = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
863 &page_allocated, false);
864 if (unlikely(page_allocated))
865 swap_readpage(page, false, NULL);
866 zswap_page_swapin(page);
867 return page;
868}
869
870/**
871 * swapin_readahead - swap in pages in hope we need them soon
872 * @entry: swap entry of this memory
873 * @gfp_mask: memory allocation flags
874 * @vmf: fault information
875 *
876 * Returns the struct page for entry and addr, after queueing swapin.
877 *
878 * It's a main entry function for swap readahead. By the configuration,
879 * it will read ahead blocks by cluster-based(ie, physical disk based)
880 * or vma-based(ie, virtual address based on faulty address) readahead.
881 */
882struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
883 struct vm_fault *vmf)
884{
885 struct mempolicy *mpol;
886 pgoff_t ilx;
887 struct page *page;
888
889 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
890 page = swap_use_vma_readahead() ?
891 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
892 swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
893 mpol_cond_put(mpol);
894 return page;
895}
896
897#ifdef CONFIG_SYSFS
898static ssize_t vma_ra_enabled_show(struct kobject *kobj,
899 struct kobj_attribute *attr, char *buf)
900{
901 return sysfs_emit(buf, "%s\n",
902 enable_vma_readahead ? "true" : "false");
903}
904static ssize_t vma_ra_enabled_store(struct kobject *kobj,
905 struct kobj_attribute *attr,
906 const char *buf, size_t count)
907{
908 ssize_t ret;
909
910 ret = kstrtobool(buf, &enable_vma_readahead);
911 if (ret)
912 return ret;
913
914 return count;
915}
916static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
917
918static struct attribute *swap_attrs[] = {
919 &vma_ra_enabled_attr.attr,
920 NULL,
921};
922
923static const struct attribute_group swap_attr_group = {
924 .attrs = swap_attrs,
925};
926
927static int __init swap_init_sysfs(void)
928{
929 int err;
930 struct kobject *swap_kobj;
931
932 swap_kobj = kobject_create_and_add("swap", mm_kobj);
933 if (!swap_kobj) {
934 pr_err("failed to create swap kobject\n");
935 return -ENOMEM;
936 }
937 err = sysfs_create_group(swap_kobj, &swap_attr_group);
938 if (err) {
939 pr_err("failed to register swap group\n");
940 goto delete_obj;
941 }
942 return 0;
943
944delete_obj:
945 kobject_put(swap_kobj);
946 return err;
947}
948subsys_initcall(swap_init_sysfs);
949#endif