| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * sparse memory mappings. |
| 4 | */ |
| 5 | #include <linux/mm.h> |
| 6 | #include <linux/slab.h> |
| 7 | #include <linux/mmzone.h> |
| 8 | #include <linux/memblock.h> |
| 9 | #include <linux/compiler.h> |
| 10 | #include <linux/highmem.h> |
| 11 | #include <linux/export.h> |
| 12 | #include <linux/spinlock.h> |
| 13 | #include <linux/vmalloc.h> |
| 14 | #include <linux/swap.h> |
| 15 | #include <linux/swapops.h> |
| 16 | #include <linux/bootmem_info.h> |
| 17 | #include <linux/vmstat.h> |
| 18 | #include "internal.h" |
| 19 | #include <asm/dma.h> |
| 20 | |
| 21 | /* |
| 22 | * Permanent SPARSEMEM data: |
| 23 | * |
| 24 | * 1) mem_section - memory sections, mem_map's for valid memory |
| 25 | */ |
| 26 | #ifdef CONFIG_SPARSEMEM_EXTREME |
| 27 | struct mem_section **mem_section; |
| 28 | #else |
| 29 | struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] |
| 30 | ____cacheline_internodealigned_in_smp; |
| 31 | #endif |
| 32 | EXPORT_SYMBOL(mem_section); |
| 33 | |
| 34 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
| 35 | /* |
| 36 | * If we did not store the node number in the page then we have to |
| 37 | * do a lookup in the section_to_node_table in order to find which |
| 38 | * node the page belongs to. |
| 39 | */ |
| 40 | #if MAX_NUMNODES <= 256 |
| 41 | static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; |
| 42 | #else |
| 43 | static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; |
| 44 | #endif |
| 45 | |
| 46 | int page_to_nid(const struct page *page) |
| 47 | { |
| 48 | return section_to_node_table[page_to_section(page)]; |
| 49 | } |
| 50 | EXPORT_SYMBOL(page_to_nid); |
| 51 | |
| 52 | static void set_section_nid(unsigned long section_nr, int nid) |
| 53 | { |
| 54 | section_to_node_table[section_nr] = nid; |
| 55 | } |
| 56 | #else /* !NODE_NOT_IN_PAGE_FLAGS */ |
| 57 | static inline void set_section_nid(unsigned long section_nr, int nid) |
| 58 | { |
| 59 | } |
| 60 | #endif |
| 61 | |
| 62 | #ifdef CONFIG_SPARSEMEM_EXTREME |
| 63 | static noinline struct mem_section __ref *sparse_index_alloc(int nid) |
| 64 | { |
| 65 | struct mem_section *section = NULL; |
| 66 | unsigned long array_size = SECTIONS_PER_ROOT * |
| 67 | sizeof(struct mem_section); |
| 68 | |
| 69 | if (slab_is_available()) { |
| 70 | section = kzalloc_node(array_size, GFP_KERNEL, nid); |
| 71 | } else { |
| 72 | section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, |
| 73 | nid); |
| 74 | if (!section) |
| 75 | panic("%s: Failed to allocate %lu bytes nid=%d\n", |
| 76 | __func__, array_size, nid); |
| 77 | } |
| 78 | |
| 79 | return section; |
| 80 | } |
| 81 | |
| 82 | static int __meminit sparse_index_init(unsigned long section_nr, int nid) |
| 83 | { |
| 84 | unsigned long root = SECTION_NR_TO_ROOT(section_nr); |
| 85 | struct mem_section *section; |
| 86 | |
| 87 | /* |
| 88 | * An existing section is possible in the sub-section hotplug |
| 89 | * case. First hot-add instantiates, follow-on hot-add reuses |
| 90 | * the existing section. |
| 91 | * |
| 92 | * The mem_hotplug_lock resolves the apparent race below. |
| 93 | */ |
| 94 | if (mem_section[root]) |
| 95 | return 0; |
| 96 | |
| 97 | section = sparse_index_alloc(nid); |
| 98 | if (!section) |
| 99 | return -ENOMEM; |
| 100 | |
| 101 | mem_section[root] = section; |
| 102 | |
| 103 | return 0; |
| 104 | } |
| 105 | #else /* !SPARSEMEM_EXTREME */ |
| 106 | static inline int sparse_index_init(unsigned long section_nr, int nid) |
| 107 | { |
| 108 | return 0; |
| 109 | } |
| 110 | #endif |
| 111 | |
| 112 | /* |
| 113 | * During early boot, before section_mem_map is used for an actual |
| 114 | * mem_map, we use section_mem_map to store the section's NUMA |
| 115 | * node. This keeps us from having to use another data structure. The |
| 116 | * node information is cleared just before we store the real mem_map. |
| 117 | */ |
| 118 | static inline unsigned long sparse_encode_early_nid(int nid) |
| 119 | { |
| 120 | return ((unsigned long)nid << SECTION_NID_SHIFT); |
| 121 | } |
| 122 | |
| 123 | static inline int sparse_early_nid(struct mem_section *section) |
| 124 | { |
| 125 | return (section->section_mem_map >> SECTION_NID_SHIFT); |
| 126 | } |
| 127 | |
| 128 | /* Validate the physical addressing limitations of the model */ |
| 129 | static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, |
| 130 | unsigned long *end_pfn) |
| 131 | { |
| 132 | unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT; |
| 133 | |
| 134 | /* |
| 135 | * Sanity checks - do not allow an architecture to pass |
| 136 | * in larger pfns than the maximum scope of sparsemem: |
| 137 | */ |
| 138 | if (*start_pfn > max_sparsemem_pfn) { |
| 139 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
| 140 | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
| 141 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
| 142 | WARN_ON_ONCE(1); |
| 143 | *start_pfn = max_sparsemem_pfn; |
| 144 | *end_pfn = max_sparsemem_pfn; |
| 145 | } else if (*end_pfn > max_sparsemem_pfn) { |
| 146 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
| 147 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
| 148 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
| 149 | WARN_ON_ONCE(1); |
| 150 | *end_pfn = max_sparsemem_pfn; |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * There are a number of times that we loop over NR_MEM_SECTIONS, |
| 156 | * looking for section_present() on each. But, when we have very |
| 157 | * large physical address spaces, NR_MEM_SECTIONS can also be |
| 158 | * very large which makes the loops quite long. |
| 159 | * |
| 160 | * Keeping track of this gives us an easy way to break out of |
| 161 | * those loops early. |
| 162 | */ |
| 163 | unsigned long __highest_present_section_nr; |
| 164 | static void __section_mark_present(struct mem_section *ms, |
| 165 | unsigned long section_nr) |
| 166 | { |
| 167 | if (section_nr > __highest_present_section_nr) |
| 168 | __highest_present_section_nr = section_nr; |
| 169 | |
| 170 | ms->section_mem_map |= SECTION_MARKED_PRESENT; |
| 171 | } |
| 172 | |
| 173 | static inline unsigned long first_present_section_nr(void) |
| 174 | { |
| 175 | return next_present_section_nr(-1); |
| 176 | } |
| 177 | |
| 178 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 179 | static void subsection_mask_set(unsigned long *map, unsigned long pfn, |
| 180 | unsigned long nr_pages) |
| 181 | { |
| 182 | int idx = subsection_map_index(pfn); |
| 183 | int end = subsection_map_index(pfn + nr_pages - 1); |
| 184 | |
| 185 | bitmap_set(map, idx, end - idx + 1); |
| 186 | } |
| 187 | |
| 188 | void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) |
| 189 | { |
| 190 | int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1); |
| 191 | unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn); |
| 192 | |
| 193 | for (nr = start_sec_nr; nr <= end_sec_nr; nr++) { |
| 194 | struct mem_section *ms; |
| 195 | unsigned long pfns; |
| 196 | |
| 197 | pfns = min(nr_pages, PAGES_PER_SECTION |
| 198 | - (pfn & ~PAGE_SECTION_MASK)); |
| 199 | ms = __nr_to_section(nr); |
| 200 | subsection_mask_set(ms->usage->subsection_map, pfn, pfns); |
| 201 | |
| 202 | pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, |
| 203 | pfns, subsection_map_index(pfn), |
| 204 | subsection_map_index(pfn + pfns - 1)); |
| 205 | |
| 206 | pfn += pfns; |
| 207 | nr_pages -= pfns; |
| 208 | } |
| 209 | } |
| 210 | #else |
| 211 | void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) |
| 212 | { |
| 213 | } |
| 214 | #endif |
| 215 | |
| 216 | /* Record a memory area against a node. */ |
| 217 | static void __init memory_present(int nid, unsigned long start, unsigned long end) |
| 218 | { |
| 219 | unsigned long pfn; |
| 220 | |
| 221 | start &= PAGE_SECTION_MASK; |
| 222 | mminit_validate_memmodel_limits(&start, &end); |
| 223 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
| 224 | unsigned long section_nr = pfn_to_section_nr(pfn); |
| 225 | struct mem_section *ms; |
| 226 | |
| 227 | sparse_index_init(section_nr, nid); |
| 228 | set_section_nid(section_nr, nid); |
| 229 | |
| 230 | ms = __nr_to_section(section_nr); |
| 231 | if (!ms->section_mem_map) { |
| 232 | ms->section_mem_map = sparse_encode_early_nid(nid) | |
| 233 | SECTION_IS_ONLINE; |
| 234 | __section_mark_present(ms, section_nr); |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * Mark all memblocks as present using memory_present(). |
| 241 | * This is a convenience function that is useful to mark all of the systems |
| 242 | * memory as present during initialization. |
| 243 | */ |
| 244 | static void __init memblocks_present(void) |
| 245 | { |
| 246 | unsigned long start, end; |
| 247 | int i, nid; |
| 248 | |
| 249 | #ifdef CONFIG_SPARSEMEM_EXTREME |
| 250 | if (unlikely(!mem_section)) { |
| 251 | unsigned long size, align; |
| 252 | |
| 253 | size = sizeof(struct mem_section *) * NR_SECTION_ROOTS; |
| 254 | align = 1 << (INTERNODE_CACHE_SHIFT); |
| 255 | mem_section = memblock_alloc_or_panic(size, align); |
| 256 | } |
| 257 | #endif |
| 258 | |
| 259 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) |
| 260 | memory_present(nid, start, end); |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * Subtle, we encode the real pfn into the mem_map such that |
| 265 | * the identity pfn - section_mem_map will return the actual |
| 266 | * physical page frame number. |
| 267 | */ |
| 268 | static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) |
| 269 | { |
| 270 | unsigned long coded_mem_map = |
| 271 | (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); |
| 272 | BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT); |
| 273 | BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); |
| 274 | return coded_mem_map; |
| 275 | } |
| 276 | |
| 277 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 278 | /* |
| 279 | * Decode mem_map from the coded memmap |
| 280 | */ |
| 281 | struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) |
| 282 | { |
| 283 | /* mask off the extra low bits of information */ |
| 284 | coded_mem_map &= SECTION_MAP_MASK; |
| 285 | return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); |
| 286 | } |
| 287 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
| 288 | |
| 289 | static void __meminit sparse_init_one_section(struct mem_section *ms, |
| 290 | unsigned long pnum, struct page *mem_map, |
| 291 | struct mem_section_usage *usage, unsigned long flags) |
| 292 | { |
| 293 | ms->section_mem_map &= ~SECTION_MAP_MASK; |
| 294 | ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
| 295 | | SECTION_HAS_MEM_MAP | flags; |
| 296 | ms->usage = usage; |
| 297 | } |
| 298 | |
| 299 | static unsigned long usemap_size(void) |
| 300 | { |
| 301 | return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); |
| 302 | } |
| 303 | |
| 304 | size_t mem_section_usage_size(void) |
| 305 | { |
| 306 | return sizeof(struct mem_section_usage) + usemap_size(); |
| 307 | } |
| 308 | |
| 309 | #ifdef CONFIG_MEMORY_HOTREMOVE |
| 310 | static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat) |
| 311 | { |
| 312 | #ifndef CONFIG_NUMA |
| 313 | VM_BUG_ON(pgdat != &contig_page_data); |
| 314 | return __pa_symbol(&contig_page_data); |
| 315 | #else |
| 316 | return __pa(pgdat); |
| 317 | #endif |
| 318 | } |
| 319 | |
| 320 | static struct mem_section_usage * __init |
| 321 | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, |
| 322 | unsigned long size) |
| 323 | { |
| 324 | struct mem_section_usage *usage; |
| 325 | unsigned long goal, limit; |
| 326 | int nid; |
| 327 | /* |
| 328 | * A page may contain usemaps for other sections preventing the |
| 329 | * page being freed and making a section unremovable while |
| 330 | * other sections referencing the usemap remain active. Similarly, |
| 331 | * a pgdat can prevent a section being removed. If section A |
| 332 | * contains a pgdat and section B contains the usemap, both |
| 333 | * sections become inter-dependent. This allocates usemaps |
| 334 | * from the same section as the pgdat where possible to avoid |
| 335 | * this problem. |
| 336 | */ |
| 337 | goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); |
| 338 | limit = goal + (1UL << PA_SECTION_SHIFT); |
| 339 | nid = early_pfn_to_nid(goal >> PAGE_SHIFT); |
| 340 | again: |
| 341 | usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); |
| 342 | if (!usage && limit) { |
| 343 | limit = MEMBLOCK_ALLOC_ACCESSIBLE; |
| 344 | goto again; |
| 345 | } |
| 346 | return usage; |
| 347 | } |
| 348 | |
| 349 | static void __init check_usemap_section_nr(int nid, |
| 350 | struct mem_section_usage *usage) |
| 351 | { |
| 352 | unsigned long usemap_snr, pgdat_snr; |
| 353 | static unsigned long old_usemap_snr; |
| 354 | static unsigned long old_pgdat_snr; |
| 355 | struct pglist_data *pgdat = NODE_DATA(nid); |
| 356 | int usemap_nid; |
| 357 | |
| 358 | /* First call */ |
| 359 | if (!old_usemap_snr) { |
| 360 | old_usemap_snr = NR_MEM_SECTIONS; |
| 361 | old_pgdat_snr = NR_MEM_SECTIONS; |
| 362 | } |
| 363 | |
| 364 | usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); |
| 365 | pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT); |
| 366 | if (usemap_snr == pgdat_snr) |
| 367 | return; |
| 368 | |
| 369 | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) |
| 370 | /* skip redundant message */ |
| 371 | return; |
| 372 | |
| 373 | old_usemap_snr = usemap_snr; |
| 374 | old_pgdat_snr = pgdat_snr; |
| 375 | |
| 376 | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); |
| 377 | if (usemap_nid != nid) { |
| 378 | pr_info("node %d must be removed before remove section %ld\n", |
| 379 | nid, usemap_snr); |
| 380 | return; |
| 381 | } |
| 382 | /* |
| 383 | * There is a circular dependency. |
| 384 | * Some platforms allow un-removable section because they will just |
| 385 | * gather other removable sections for dynamic partitioning. |
| 386 | * Just notify un-removable section's number here. |
| 387 | */ |
| 388 | pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", |
| 389 | usemap_snr, pgdat_snr, nid); |
| 390 | } |
| 391 | #else |
| 392 | static struct mem_section_usage * __init |
| 393 | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, |
| 394 | unsigned long size) |
| 395 | { |
| 396 | return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); |
| 397 | } |
| 398 | |
| 399 | static void __init check_usemap_section_nr(int nid, |
| 400 | struct mem_section_usage *usage) |
| 401 | { |
| 402 | } |
| 403 | #endif /* CONFIG_MEMORY_HOTREMOVE */ |
| 404 | |
| 405 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 406 | unsigned long __init section_map_size(void) |
| 407 | { |
| 408 | return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); |
| 409 | } |
| 410 | |
| 411 | #else |
| 412 | unsigned long __init section_map_size(void) |
| 413 | { |
| 414 | return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); |
| 415 | } |
| 416 | |
| 417 | struct page __init *__populate_section_memmap(unsigned long pfn, |
| 418 | unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| 419 | struct dev_pagemap *pgmap) |
| 420 | { |
| 421 | unsigned long size = section_map_size(); |
| 422 | struct page *map = sparse_buffer_alloc(size); |
| 423 | phys_addr_t addr = __pa(MAX_DMA_ADDRESS); |
| 424 | |
| 425 | if (map) |
| 426 | return map; |
| 427 | |
| 428 | map = memmap_alloc(size, size, addr, nid, false); |
| 429 | if (!map) |
| 430 | panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", |
| 431 | __func__, size, PAGE_SIZE, nid, &addr); |
| 432 | |
| 433 | return map; |
| 434 | } |
| 435 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ |
| 436 | |
| 437 | static void *sparsemap_buf __meminitdata; |
| 438 | static void *sparsemap_buf_end __meminitdata; |
| 439 | |
| 440 | static inline void __meminit sparse_buffer_free(unsigned long size) |
| 441 | { |
| 442 | WARN_ON(!sparsemap_buf || size == 0); |
| 443 | memblock_free(sparsemap_buf, size); |
| 444 | } |
| 445 | |
| 446 | static void __init sparse_buffer_init(unsigned long size, int nid) |
| 447 | { |
| 448 | phys_addr_t addr = __pa(MAX_DMA_ADDRESS); |
| 449 | WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ |
| 450 | /* |
| 451 | * Pre-allocated buffer is mainly used by __populate_section_memmap |
| 452 | * and we want it to be properly aligned to the section size - this is |
| 453 | * especially the case for VMEMMAP which maps memmap to PMDs |
| 454 | */ |
| 455 | sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true); |
| 456 | sparsemap_buf_end = sparsemap_buf + size; |
| 457 | #ifndef CONFIG_SPARSEMEM_VMEMMAP |
| 458 | memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); |
| 459 | #endif |
| 460 | } |
| 461 | |
| 462 | static void __init sparse_buffer_fini(void) |
| 463 | { |
| 464 | unsigned long size = sparsemap_buf_end - sparsemap_buf; |
| 465 | |
| 466 | if (sparsemap_buf && size > 0) |
| 467 | sparse_buffer_free(size); |
| 468 | sparsemap_buf = NULL; |
| 469 | } |
| 470 | |
| 471 | void * __meminit sparse_buffer_alloc(unsigned long size) |
| 472 | { |
| 473 | void *ptr = NULL; |
| 474 | |
| 475 | if (sparsemap_buf) { |
| 476 | ptr = (void *) roundup((unsigned long)sparsemap_buf, size); |
| 477 | if (ptr + size > sparsemap_buf_end) |
| 478 | ptr = NULL; |
| 479 | else { |
| 480 | /* Free redundant aligned space */ |
| 481 | if ((unsigned long)(ptr - sparsemap_buf) > 0) |
| 482 | sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); |
| 483 | sparsemap_buf = ptr + size; |
| 484 | } |
| 485 | } |
| 486 | return ptr; |
| 487 | } |
| 488 | |
| 489 | void __weak __meminit vmemmap_populate_print_last(void) |
| 490 | { |
| 491 | } |
| 492 | |
| 493 | static void *sparse_usagebuf __meminitdata; |
| 494 | static void *sparse_usagebuf_end __meminitdata; |
| 495 | |
| 496 | /* |
| 497 | * Helper function that is used for generic section initialization, and |
| 498 | * can also be used by any hooks added above. |
| 499 | */ |
| 500 | void __init sparse_init_early_section(int nid, struct page *map, |
| 501 | unsigned long pnum, unsigned long flags) |
| 502 | { |
| 503 | BUG_ON(!sparse_usagebuf || sparse_usagebuf >= sparse_usagebuf_end); |
| 504 | check_usemap_section_nr(nid, sparse_usagebuf); |
| 505 | sparse_init_one_section(__nr_to_section(pnum), pnum, map, |
| 506 | sparse_usagebuf, SECTION_IS_EARLY | flags); |
| 507 | sparse_usagebuf = (void *)sparse_usagebuf + mem_section_usage_size(); |
| 508 | } |
| 509 | |
| 510 | static int __init sparse_usage_init(int nid, unsigned long map_count) |
| 511 | { |
| 512 | unsigned long size; |
| 513 | |
| 514 | size = mem_section_usage_size() * map_count; |
| 515 | sparse_usagebuf = sparse_early_usemaps_alloc_pgdat_section( |
| 516 | NODE_DATA(nid), size); |
| 517 | if (!sparse_usagebuf) { |
| 518 | sparse_usagebuf_end = NULL; |
| 519 | return -ENOMEM; |
| 520 | } |
| 521 | |
| 522 | sparse_usagebuf_end = sparse_usagebuf + size; |
| 523 | return 0; |
| 524 | } |
| 525 | |
| 526 | static void __init sparse_usage_fini(void) |
| 527 | { |
| 528 | sparse_usagebuf = sparse_usagebuf_end = NULL; |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) |
| 533 | * And number of present sections in this node is map_count. |
| 534 | */ |
| 535 | static void __init sparse_init_nid(int nid, unsigned long pnum_begin, |
| 536 | unsigned long pnum_end, |
| 537 | unsigned long map_count) |
| 538 | { |
| 539 | unsigned long pnum; |
| 540 | struct page *map; |
| 541 | struct mem_section *ms; |
| 542 | |
| 543 | if (sparse_usage_init(nid, map_count)) { |
| 544 | pr_err("%s: node[%d] usemap allocation failed", __func__, nid); |
| 545 | goto failed; |
| 546 | } |
| 547 | |
| 548 | sparse_buffer_init(map_count * section_map_size(), nid); |
| 549 | |
| 550 | sparse_vmemmap_init_nid_early(nid); |
| 551 | |
| 552 | for_each_present_section_nr(pnum_begin, pnum) { |
| 553 | unsigned long pfn = section_nr_to_pfn(pnum); |
| 554 | |
| 555 | if (pnum >= pnum_end) |
| 556 | break; |
| 557 | |
| 558 | ms = __nr_to_section(pnum); |
| 559 | if (!preinited_vmemmap_section(ms)) { |
| 560 | map = __populate_section_memmap(pfn, PAGES_PER_SECTION, |
| 561 | nid, NULL, NULL); |
| 562 | if (!map) { |
| 563 | pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", |
| 564 | __func__, nid); |
| 565 | pnum_begin = pnum; |
| 566 | sparse_usage_fini(); |
| 567 | sparse_buffer_fini(); |
| 568 | goto failed; |
| 569 | } |
| 570 | sparse_init_early_section(nid, map, pnum, 0); |
| 571 | } |
| 572 | } |
| 573 | sparse_usage_fini(); |
| 574 | sparse_buffer_fini(); |
| 575 | return; |
| 576 | failed: |
| 577 | /* |
| 578 | * We failed to allocate, mark all the following pnums as not present, |
| 579 | * except the ones already initialized earlier. |
| 580 | */ |
| 581 | for_each_present_section_nr(pnum_begin, pnum) { |
| 582 | if (pnum >= pnum_end) |
| 583 | break; |
| 584 | ms = __nr_to_section(pnum); |
| 585 | if (!preinited_vmemmap_section(ms)) |
| 586 | ms->section_mem_map = 0; |
| 587 | ms->section_mem_map = 0; |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | /* |
| 592 | * Allocate the accumulated non-linear sections, allocate a mem_map |
| 593 | * for each and record the physical to section mapping. |
| 594 | */ |
| 595 | void __init sparse_init(void) |
| 596 | { |
| 597 | unsigned long pnum_end, pnum_begin, map_count = 1; |
| 598 | int nid_begin; |
| 599 | |
| 600 | /* see include/linux/mmzone.h 'struct mem_section' definition */ |
| 601 | BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); |
| 602 | memblocks_present(); |
| 603 | |
| 604 | pnum_begin = first_present_section_nr(); |
| 605 | nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); |
| 606 | |
| 607 | /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ |
| 608 | set_pageblock_order(); |
| 609 | |
| 610 | for_each_present_section_nr(pnum_begin + 1, pnum_end) { |
| 611 | int nid = sparse_early_nid(__nr_to_section(pnum_end)); |
| 612 | |
| 613 | if (nid == nid_begin) { |
| 614 | map_count++; |
| 615 | continue; |
| 616 | } |
| 617 | /* Init node with sections in range [pnum_begin, pnum_end) */ |
| 618 | sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); |
| 619 | nid_begin = nid; |
| 620 | pnum_begin = pnum_end; |
| 621 | map_count = 1; |
| 622 | } |
| 623 | /* cover the last node */ |
| 624 | sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); |
| 625 | vmemmap_populate_print_last(); |
| 626 | } |
| 627 | |
| 628 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 629 | |
| 630 | /* Mark all memory sections within the pfn range as online */ |
| 631 | void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) |
| 632 | { |
| 633 | unsigned long pfn; |
| 634 | |
| 635 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
| 636 | unsigned long section_nr = pfn_to_section_nr(pfn); |
| 637 | struct mem_section *ms; |
| 638 | |
| 639 | /* onlining code should never touch invalid ranges */ |
| 640 | if (WARN_ON(!valid_section_nr(section_nr))) |
| 641 | continue; |
| 642 | |
| 643 | ms = __nr_to_section(section_nr); |
| 644 | ms->section_mem_map |= SECTION_IS_ONLINE; |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | /* Mark all memory sections within the pfn range as offline */ |
| 649 | void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) |
| 650 | { |
| 651 | unsigned long pfn; |
| 652 | |
| 653 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
| 654 | unsigned long section_nr = pfn_to_section_nr(pfn); |
| 655 | struct mem_section *ms; |
| 656 | |
| 657 | /* |
| 658 | * TODO this needs some double checking. Offlining code makes |
| 659 | * sure to check pfn_valid but those checks might be just bogus |
| 660 | */ |
| 661 | if (WARN_ON(!valid_section_nr(section_nr))) |
| 662 | continue; |
| 663 | |
| 664 | ms = __nr_to_section(section_nr); |
| 665 | ms->section_mem_map &= ~SECTION_IS_ONLINE; |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 670 | static struct page * __meminit populate_section_memmap(unsigned long pfn, |
| 671 | unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| 672 | struct dev_pagemap *pgmap) |
| 673 | { |
| 674 | return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap); |
| 675 | } |
| 676 | |
| 677 | static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, |
| 678 | struct vmem_altmap *altmap) |
| 679 | { |
| 680 | unsigned long start = (unsigned long) pfn_to_page(pfn); |
| 681 | unsigned long end = start + nr_pages * sizeof(struct page); |
| 682 | |
| 683 | memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE))); |
| 684 | vmemmap_free(start, end, altmap); |
| 685 | } |
| 686 | static void free_map_bootmem(struct page *memmap) |
| 687 | { |
| 688 | unsigned long start = (unsigned long)memmap; |
| 689 | unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); |
| 690 | |
| 691 | vmemmap_free(start, end, NULL); |
| 692 | } |
| 693 | |
| 694 | static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) |
| 695 | { |
| 696 | DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; |
| 697 | DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; |
| 698 | struct mem_section *ms = __pfn_to_section(pfn); |
| 699 | unsigned long *subsection_map = ms->usage |
| 700 | ? &ms->usage->subsection_map[0] : NULL; |
| 701 | |
| 702 | subsection_mask_set(map, pfn, nr_pages); |
| 703 | if (subsection_map) |
| 704 | bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); |
| 705 | |
| 706 | if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), |
| 707 | "section already deactivated (%#lx + %ld)\n", |
| 708 | pfn, nr_pages)) |
| 709 | return -EINVAL; |
| 710 | |
| 711 | bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); |
| 712 | return 0; |
| 713 | } |
| 714 | |
| 715 | static bool is_subsection_map_empty(struct mem_section *ms) |
| 716 | { |
| 717 | return bitmap_empty(&ms->usage->subsection_map[0], |
| 718 | SUBSECTIONS_PER_SECTION); |
| 719 | } |
| 720 | |
| 721 | static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) |
| 722 | { |
| 723 | struct mem_section *ms = __pfn_to_section(pfn); |
| 724 | DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; |
| 725 | unsigned long *subsection_map; |
| 726 | int rc = 0; |
| 727 | |
| 728 | subsection_mask_set(map, pfn, nr_pages); |
| 729 | |
| 730 | subsection_map = &ms->usage->subsection_map[0]; |
| 731 | |
| 732 | if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) |
| 733 | rc = -EINVAL; |
| 734 | else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) |
| 735 | rc = -EEXIST; |
| 736 | else |
| 737 | bitmap_or(subsection_map, map, subsection_map, |
| 738 | SUBSECTIONS_PER_SECTION); |
| 739 | |
| 740 | return rc; |
| 741 | } |
| 742 | #else |
| 743 | static struct page * __meminit populate_section_memmap(unsigned long pfn, |
| 744 | unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| 745 | struct dev_pagemap *pgmap) |
| 746 | { |
| 747 | return kvmalloc_node(array_size(sizeof(struct page), |
| 748 | PAGES_PER_SECTION), GFP_KERNEL, nid); |
| 749 | } |
| 750 | |
| 751 | static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, |
| 752 | struct vmem_altmap *altmap) |
| 753 | { |
| 754 | kvfree(pfn_to_page(pfn)); |
| 755 | } |
| 756 | |
| 757 | static void free_map_bootmem(struct page *memmap) |
| 758 | { |
| 759 | unsigned long maps_section_nr, removing_section_nr, i; |
| 760 | unsigned long type, nr_pages; |
| 761 | struct page *page = virt_to_page(memmap); |
| 762 | |
| 763 | nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) |
| 764 | >> PAGE_SHIFT; |
| 765 | |
| 766 | for (i = 0; i < nr_pages; i++, page++) { |
| 767 | type = bootmem_type(page); |
| 768 | |
| 769 | BUG_ON(type == NODE_INFO); |
| 770 | |
| 771 | maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); |
| 772 | removing_section_nr = bootmem_info(page); |
| 773 | |
| 774 | /* |
| 775 | * When this function is called, the removing section is |
| 776 | * logical offlined state. This means all pages are isolated |
| 777 | * from page allocator. If removing section's memmap is placed |
| 778 | * on the same section, it must not be freed. |
| 779 | * If it is freed, page allocator may allocate it which will |
| 780 | * be removed physically soon. |
| 781 | */ |
| 782 | if (maps_section_nr != removing_section_nr) |
| 783 | put_page_bootmem(page); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) |
| 788 | { |
| 789 | return 0; |
| 790 | } |
| 791 | |
| 792 | static bool is_subsection_map_empty(struct mem_section *ms) |
| 793 | { |
| 794 | return true; |
| 795 | } |
| 796 | |
| 797 | static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) |
| 798 | { |
| 799 | return 0; |
| 800 | } |
| 801 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| 802 | |
| 803 | /* |
| 804 | * To deactivate a memory region, there are 3 cases to handle across |
| 805 | * two configurations (SPARSEMEM_VMEMMAP={y,n}): |
| 806 | * |
| 807 | * 1. deactivation of a partial hot-added section (only possible in |
| 808 | * the SPARSEMEM_VMEMMAP=y case). |
| 809 | * a) section was present at memory init. |
| 810 | * b) section was hot-added post memory init. |
| 811 | * 2. deactivation of a complete hot-added section. |
| 812 | * 3. deactivation of a complete section from memory init. |
| 813 | * |
| 814 | * For 1, when subsection_map does not empty we will not be freeing the |
| 815 | * usage map, but still need to free the vmemmap range. |
| 816 | * |
| 817 | * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified |
| 818 | */ |
| 819 | static void section_deactivate(unsigned long pfn, unsigned long nr_pages, |
| 820 | struct vmem_altmap *altmap) |
| 821 | { |
| 822 | struct mem_section *ms = __pfn_to_section(pfn); |
| 823 | bool section_is_early = early_section(ms); |
| 824 | struct page *memmap = NULL; |
| 825 | bool empty; |
| 826 | |
| 827 | if (clear_subsection_map(pfn, nr_pages)) |
| 828 | return; |
| 829 | |
| 830 | empty = is_subsection_map_empty(ms); |
| 831 | if (empty) { |
| 832 | unsigned long section_nr = pfn_to_section_nr(pfn); |
| 833 | |
| 834 | /* |
| 835 | * Mark the section invalid so that valid_section() |
| 836 | * return false. This prevents code from dereferencing |
| 837 | * ms->usage array. |
| 838 | */ |
| 839 | ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; |
| 840 | |
| 841 | /* |
| 842 | * When removing an early section, the usage map is kept (as the |
| 843 | * usage maps of other sections fall into the same page). It |
| 844 | * will be re-used when re-adding the section - which is then no |
| 845 | * longer an early section. If the usage map is PageReserved, it |
| 846 | * was allocated during boot. |
| 847 | */ |
| 848 | if (!PageReserved(virt_to_page(ms->usage))) { |
| 849 | kfree_rcu(ms->usage, rcu); |
| 850 | WRITE_ONCE(ms->usage, NULL); |
| 851 | } |
| 852 | memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); |
| 853 | } |
| 854 | |
| 855 | /* |
| 856 | * The memmap of early sections is always fully populated. See |
| 857 | * section_activate() and pfn_valid() . |
| 858 | */ |
| 859 | if (!section_is_early) |
| 860 | depopulate_section_memmap(pfn, nr_pages, altmap); |
| 861 | else if (memmap) |
| 862 | free_map_bootmem(memmap); |
| 863 | |
| 864 | if (empty) |
| 865 | ms->section_mem_map = (unsigned long)NULL; |
| 866 | } |
| 867 | |
| 868 | static struct page * __meminit section_activate(int nid, unsigned long pfn, |
| 869 | unsigned long nr_pages, struct vmem_altmap *altmap, |
| 870 | struct dev_pagemap *pgmap) |
| 871 | { |
| 872 | struct mem_section *ms = __pfn_to_section(pfn); |
| 873 | struct mem_section_usage *usage = NULL; |
| 874 | struct page *memmap; |
| 875 | int rc; |
| 876 | |
| 877 | if (!ms->usage) { |
| 878 | usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); |
| 879 | if (!usage) |
| 880 | return ERR_PTR(-ENOMEM); |
| 881 | ms->usage = usage; |
| 882 | } |
| 883 | |
| 884 | rc = fill_subsection_map(pfn, nr_pages); |
| 885 | if (rc) { |
| 886 | if (usage) |
| 887 | ms->usage = NULL; |
| 888 | kfree(usage); |
| 889 | return ERR_PTR(rc); |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * The early init code does not consider partially populated |
| 894 | * initial sections, it simply assumes that memory will never be |
| 895 | * referenced. If we hot-add memory into such a section then we |
| 896 | * do not need to populate the memmap and can simply reuse what |
| 897 | * is already there. |
| 898 | */ |
| 899 | if (nr_pages < PAGES_PER_SECTION && early_section(ms)) |
| 900 | return pfn_to_page(pfn); |
| 901 | |
| 902 | memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap); |
| 903 | if (!memmap) { |
| 904 | section_deactivate(pfn, nr_pages, altmap); |
| 905 | return ERR_PTR(-ENOMEM); |
| 906 | } |
| 907 | |
| 908 | return memmap; |
| 909 | } |
| 910 | |
| 911 | /** |
| 912 | * sparse_add_section - add a memory section, or populate an existing one |
| 913 | * @nid: The node to add section on |
| 914 | * @start_pfn: start pfn of the memory range |
| 915 | * @nr_pages: number of pfns to add in the section |
| 916 | * @altmap: alternate pfns to allocate the memmap backing store |
| 917 | * @pgmap: alternate compound page geometry for devmap mappings |
| 918 | * |
| 919 | * This is only intended for hotplug. |
| 920 | * |
| 921 | * Note that only VMEMMAP supports sub-section aligned hotplug, |
| 922 | * the proper alignment and size are gated by check_pfn_span(). |
| 923 | * |
| 924 | * |
| 925 | * Return: |
| 926 | * * 0 - On success. |
| 927 | * * -EEXIST - Section has been present. |
| 928 | * * -ENOMEM - Out of memory. |
| 929 | */ |
| 930 | int __meminit sparse_add_section(int nid, unsigned long start_pfn, |
| 931 | unsigned long nr_pages, struct vmem_altmap *altmap, |
| 932 | struct dev_pagemap *pgmap) |
| 933 | { |
| 934 | unsigned long section_nr = pfn_to_section_nr(start_pfn); |
| 935 | struct mem_section *ms; |
| 936 | struct page *memmap; |
| 937 | int ret; |
| 938 | |
| 939 | ret = sparse_index_init(section_nr, nid); |
| 940 | if (ret < 0) |
| 941 | return ret; |
| 942 | |
| 943 | memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap); |
| 944 | if (IS_ERR(memmap)) |
| 945 | return PTR_ERR(memmap); |
| 946 | |
| 947 | /* |
| 948 | * Poison uninitialized struct pages in order to catch invalid flags |
| 949 | * combinations. |
| 950 | */ |
| 951 | if (!altmap || !altmap->inaccessible) |
| 952 | page_init_poison(memmap, sizeof(struct page) * nr_pages); |
| 953 | |
| 954 | ms = __nr_to_section(section_nr); |
| 955 | set_section_nid(section_nr, nid); |
| 956 | __section_mark_present(ms, section_nr); |
| 957 | |
| 958 | /* Align memmap to section boundary in the subsection case */ |
| 959 | if (section_nr_to_pfn(section_nr) != start_pfn) |
| 960 | memmap = pfn_to_page(section_nr_to_pfn(section_nr)); |
| 961 | sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); |
| 962 | |
| 963 | return 0; |
| 964 | } |
| 965 | |
| 966 | void sparse_remove_section(unsigned long pfn, unsigned long nr_pages, |
| 967 | struct vmem_altmap *altmap) |
| 968 | { |
| 969 | struct mem_section *ms = __pfn_to_section(pfn); |
| 970 | |
| 971 | if (WARN_ON_ONCE(!valid_section(ms))) |
| 972 | return; |
| 973 | |
| 974 | section_deactivate(pfn, nr_pages, altmap); |
| 975 | } |
| 976 | #endif /* CONFIG_MEMORY_HOTPLUG */ |