Merge tag 'pm-6.16-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-block.git] / mm / sparse.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * sparse memory mappings.
4 */
5#include <linux/mm.h>
6#include <linux/slab.h>
7#include <linux/mmzone.h>
8#include <linux/memblock.h>
9#include <linux/compiler.h>
10#include <linux/highmem.h>
11#include <linux/export.h>
12#include <linux/spinlock.h>
13#include <linux/vmalloc.h>
14#include <linux/swap.h>
15#include <linux/swapops.h>
16#include <linux/bootmem_info.h>
17#include <linux/vmstat.h>
18#include "internal.h"
19#include <asm/dma.h>
20
21/*
22 * Permanent SPARSEMEM data:
23 *
24 * 1) mem_section - memory sections, mem_map's for valid memory
25 */
26#ifdef CONFIG_SPARSEMEM_EXTREME
27struct mem_section **mem_section;
28#else
29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 ____cacheline_internodealigned_in_smp;
31#endif
32EXPORT_SYMBOL(mem_section);
33
34#ifdef NODE_NOT_IN_PAGE_FLAGS
35/*
36 * If we did not store the node number in the page then we have to
37 * do a lookup in the section_to_node_table in order to find which
38 * node the page belongs to.
39 */
40#if MAX_NUMNODES <= 256
41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42#else
43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44#endif
45
46int page_to_nid(const struct page *page)
47{
48 return section_to_node_table[page_to_section(page)];
49}
50EXPORT_SYMBOL(page_to_nid);
51
52static void set_section_nid(unsigned long section_nr, int nid)
53{
54 section_to_node_table[section_nr] = nid;
55}
56#else /* !NODE_NOT_IN_PAGE_FLAGS */
57static inline void set_section_nid(unsigned long section_nr, int nid)
58{
59}
60#endif
61
62#ifdef CONFIG_SPARSEMEM_EXTREME
63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64{
65 struct mem_section *section = NULL;
66 unsigned long array_size = SECTIONS_PER_ROOT *
67 sizeof(struct mem_section);
68
69 if (slab_is_available()) {
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 } else {
72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 nid);
74 if (!section)
75 panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 __func__, array_size, nid);
77 }
78
79 return section;
80}
81
82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83{
84 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 struct mem_section *section;
86
87 /*
88 * An existing section is possible in the sub-section hotplug
89 * case. First hot-add instantiates, follow-on hot-add reuses
90 * the existing section.
91 *
92 * The mem_hotplug_lock resolves the apparent race below.
93 */
94 if (mem_section[root])
95 return 0;
96
97 section = sparse_index_alloc(nid);
98 if (!section)
99 return -ENOMEM;
100
101 mem_section[root] = section;
102
103 return 0;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108 return 0;
109}
110#endif
111
112/*
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node. This keeps us from having to use another data structure. The
116 * node information is cleared just before we store the real mem_map.
117 */
118static inline unsigned long sparse_encode_early_nid(int nid)
119{
120 return ((unsigned long)nid << SECTION_NID_SHIFT);
121}
122
123static inline int sparse_early_nid(struct mem_section *section)
124{
125 return (section->section_mem_map >> SECTION_NID_SHIFT);
126}
127
128/* Validate the physical addressing limitations of the model */
129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130 unsigned long *end_pfn)
131{
132 unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT;
133
134 /*
135 * Sanity checks - do not allow an architecture to pass
136 * in larger pfns than the maximum scope of sparsemem:
137 */
138 if (*start_pfn > max_sparsemem_pfn) {
139 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141 *start_pfn, *end_pfn, max_sparsemem_pfn);
142 WARN_ON_ONCE(1);
143 *start_pfn = max_sparsemem_pfn;
144 *end_pfn = max_sparsemem_pfn;
145 } else if (*end_pfn > max_sparsemem_pfn) {
146 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148 *start_pfn, *end_pfn, max_sparsemem_pfn);
149 WARN_ON_ONCE(1);
150 *end_pfn = max_sparsemem_pfn;
151 }
152}
153
154/*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each. But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163unsigned long __highest_present_section_nr;
164static void __section_mark_present(struct mem_section *ms,
165 unsigned long section_nr)
166{
167 if (section_nr > __highest_present_section_nr)
168 __highest_present_section_nr = section_nr;
169
170 ms->section_mem_map |= SECTION_MARKED_PRESENT;
171}
172
173static inline unsigned long first_present_section_nr(void)
174{
175 return next_present_section_nr(-1);
176}
177
178#ifdef CONFIG_SPARSEMEM_VMEMMAP
179static void subsection_mask_set(unsigned long *map, unsigned long pfn,
180 unsigned long nr_pages)
181{
182 int idx = subsection_map_index(pfn);
183 int end = subsection_map_index(pfn + nr_pages - 1);
184
185 bitmap_set(map, idx, end - idx + 1);
186}
187
188void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
189{
190 int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
191 unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
192
193 for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
194 struct mem_section *ms;
195 unsigned long pfns;
196
197 pfns = min(nr_pages, PAGES_PER_SECTION
198 - (pfn & ~PAGE_SECTION_MASK));
199 ms = __nr_to_section(nr);
200 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
201
202 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
203 pfns, subsection_map_index(pfn),
204 subsection_map_index(pfn + pfns - 1));
205
206 pfn += pfns;
207 nr_pages -= pfns;
208 }
209}
210#else
211void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
212{
213}
214#endif
215
216/* Record a memory area against a node. */
217static void __init memory_present(int nid, unsigned long start, unsigned long end)
218{
219 unsigned long pfn;
220
221 start &= PAGE_SECTION_MASK;
222 mminit_validate_memmodel_limits(&start, &end);
223 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
224 unsigned long section_nr = pfn_to_section_nr(pfn);
225 struct mem_section *ms;
226
227 sparse_index_init(section_nr, nid);
228 set_section_nid(section_nr, nid);
229
230 ms = __nr_to_section(section_nr);
231 if (!ms->section_mem_map) {
232 ms->section_mem_map = sparse_encode_early_nid(nid) |
233 SECTION_IS_ONLINE;
234 __section_mark_present(ms, section_nr);
235 }
236 }
237}
238
239/*
240 * Mark all memblocks as present using memory_present().
241 * This is a convenience function that is useful to mark all of the systems
242 * memory as present during initialization.
243 */
244static void __init memblocks_present(void)
245{
246 unsigned long start, end;
247 int i, nid;
248
249#ifdef CONFIG_SPARSEMEM_EXTREME
250 if (unlikely(!mem_section)) {
251 unsigned long size, align;
252
253 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
254 align = 1 << (INTERNODE_CACHE_SHIFT);
255 mem_section = memblock_alloc_or_panic(size, align);
256 }
257#endif
258
259 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
260 memory_present(nid, start, end);
261}
262
263/*
264 * Subtle, we encode the real pfn into the mem_map such that
265 * the identity pfn - section_mem_map will return the actual
266 * physical page frame number.
267 */
268static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
269{
270 unsigned long coded_mem_map =
271 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
272 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
273 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
274 return coded_mem_map;
275}
276
277#ifdef CONFIG_MEMORY_HOTPLUG
278/*
279 * Decode mem_map from the coded memmap
280 */
281struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
282{
283 /* mask off the extra low bits of information */
284 coded_mem_map &= SECTION_MAP_MASK;
285 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
286}
287#endif /* CONFIG_MEMORY_HOTPLUG */
288
289static void __meminit sparse_init_one_section(struct mem_section *ms,
290 unsigned long pnum, struct page *mem_map,
291 struct mem_section_usage *usage, unsigned long flags)
292{
293 ms->section_mem_map &= ~SECTION_MAP_MASK;
294 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
295 | SECTION_HAS_MEM_MAP | flags;
296 ms->usage = usage;
297}
298
299static unsigned long usemap_size(void)
300{
301 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
302}
303
304size_t mem_section_usage_size(void)
305{
306 return sizeof(struct mem_section_usage) + usemap_size();
307}
308
309#ifdef CONFIG_MEMORY_HOTREMOVE
310static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
311{
312#ifndef CONFIG_NUMA
313 VM_BUG_ON(pgdat != &contig_page_data);
314 return __pa_symbol(&contig_page_data);
315#else
316 return __pa(pgdat);
317#endif
318}
319
320static struct mem_section_usage * __init
321sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
322 unsigned long size)
323{
324 struct mem_section_usage *usage;
325 unsigned long goal, limit;
326 int nid;
327 /*
328 * A page may contain usemaps for other sections preventing the
329 * page being freed and making a section unremovable while
330 * other sections referencing the usemap remain active. Similarly,
331 * a pgdat can prevent a section being removed. If section A
332 * contains a pgdat and section B contains the usemap, both
333 * sections become inter-dependent. This allocates usemaps
334 * from the same section as the pgdat where possible to avoid
335 * this problem.
336 */
337 goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
338 limit = goal + (1UL << PA_SECTION_SHIFT);
339 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
340again:
341 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
342 if (!usage && limit) {
343 limit = MEMBLOCK_ALLOC_ACCESSIBLE;
344 goto again;
345 }
346 return usage;
347}
348
349static void __init check_usemap_section_nr(int nid,
350 struct mem_section_usage *usage)
351{
352 unsigned long usemap_snr, pgdat_snr;
353 static unsigned long old_usemap_snr;
354 static unsigned long old_pgdat_snr;
355 struct pglist_data *pgdat = NODE_DATA(nid);
356 int usemap_nid;
357
358 /* First call */
359 if (!old_usemap_snr) {
360 old_usemap_snr = NR_MEM_SECTIONS;
361 old_pgdat_snr = NR_MEM_SECTIONS;
362 }
363
364 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
365 pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
366 if (usemap_snr == pgdat_snr)
367 return;
368
369 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
370 /* skip redundant message */
371 return;
372
373 old_usemap_snr = usemap_snr;
374 old_pgdat_snr = pgdat_snr;
375
376 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
377 if (usemap_nid != nid) {
378 pr_info("node %d must be removed before remove section %ld\n",
379 nid, usemap_snr);
380 return;
381 }
382 /*
383 * There is a circular dependency.
384 * Some platforms allow un-removable section because they will just
385 * gather other removable sections for dynamic partitioning.
386 * Just notify un-removable section's number here.
387 */
388 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
389 usemap_snr, pgdat_snr, nid);
390}
391#else
392static struct mem_section_usage * __init
393sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
394 unsigned long size)
395{
396 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
397}
398
399static void __init check_usemap_section_nr(int nid,
400 struct mem_section_usage *usage)
401{
402}
403#endif /* CONFIG_MEMORY_HOTREMOVE */
404
405#ifdef CONFIG_SPARSEMEM_VMEMMAP
406unsigned long __init section_map_size(void)
407{
408 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
409}
410
411#else
412unsigned long __init section_map_size(void)
413{
414 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
415}
416
417struct page __init *__populate_section_memmap(unsigned long pfn,
418 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
419 struct dev_pagemap *pgmap)
420{
421 unsigned long size = section_map_size();
422 struct page *map = sparse_buffer_alloc(size);
423 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
424
425 if (map)
426 return map;
427
428 map = memmap_alloc(size, size, addr, nid, false);
429 if (!map)
430 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
431 __func__, size, PAGE_SIZE, nid, &addr);
432
433 return map;
434}
435#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
436
437static void *sparsemap_buf __meminitdata;
438static void *sparsemap_buf_end __meminitdata;
439
440static inline void __meminit sparse_buffer_free(unsigned long size)
441{
442 WARN_ON(!sparsemap_buf || size == 0);
443 memblock_free(sparsemap_buf, size);
444}
445
446static void __init sparse_buffer_init(unsigned long size, int nid)
447{
448 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
449 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
450 /*
451 * Pre-allocated buffer is mainly used by __populate_section_memmap
452 * and we want it to be properly aligned to the section size - this is
453 * especially the case for VMEMMAP which maps memmap to PMDs
454 */
455 sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
456 sparsemap_buf_end = sparsemap_buf + size;
457#ifndef CONFIG_SPARSEMEM_VMEMMAP
458 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
459#endif
460}
461
462static void __init sparse_buffer_fini(void)
463{
464 unsigned long size = sparsemap_buf_end - sparsemap_buf;
465
466 if (sparsemap_buf && size > 0)
467 sparse_buffer_free(size);
468 sparsemap_buf = NULL;
469}
470
471void * __meminit sparse_buffer_alloc(unsigned long size)
472{
473 void *ptr = NULL;
474
475 if (sparsemap_buf) {
476 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
477 if (ptr + size > sparsemap_buf_end)
478 ptr = NULL;
479 else {
480 /* Free redundant aligned space */
481 if ((unsigned long)(ptr - sparsemap_buf) > 0)
482 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
483 sparsemap_buf = ptr + size;
484 }
485 }
486 return ptr;
487}
488
489void __weak __meminit vmemmap_populate_print_last(void)
490{
491}
492
493static void *sparse_usagebuf __meminitdata;
494static void *sparse_usagebuf_end __meminitdata;
495
496/*
497 * Helper function that is used for generic section initialization, and
498 * can also be used by any hooks added above.
499 */
500void __init sparse_init_early_section(int nid, struct page *map,
501 unsigned long pnum, unsigned long flags)
502{
503 BUG_ON(!sparse_usagebuf || sparse_usagebuf >= sparse_usagebuf_end);
504 check_usemap_section_nr(nid, sparse_usagebuf);
505 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
506 sparse_usagebuf, SECTION_IS_EARLY | flags);
507 sparse_usagebuf = (void *)sparse_usagebuf + mem_section_usage_size();
508}
509
510static int __init sparse_usage_init(int nid, unsigned long map_count)
511{
512 unsigned long size;
513
514 size = mem_section_usage_size() * map_count;
515 sparse_usagebuf = sparse_early_usemaps_alloc_pgdat_section(
516 NODE_DATA(nid), size);
517 if (!sparse_usagebuf) {
518 sparse_usagebuf_end = NULL;
519 return -ENOMEM;
520 }
521
522 sparse_usagebuf_end = sparse_usagebuf + size;
523 return 0;
524}
525
526static void __init sparse_usage_fini(void)
527{
528 sparse_usagebuf = sparse_usagebuf_end = NULL;
529}
530
531/*
532 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
533 * And number of present sections in this node is map_count.
534 */
535static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
536 unsigned long pnum_end,
537 unsigned long map_count)
538{
539 unsigned long pnum;
540 struct page *map;
541 struct mem_section *ms;
542
543 if (sparse_usage_init(nid, map_count)) {
544 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
545 goto failed;
546 }
547
548 sparse_buffer_init(map_count * section_map_size(), nid);
549
550 sparse_vmemmap_init_nid_early(nid);
551
552 for_each_present_section_nr(pnum_begin, pnum) {
553 unsigned long pfn = section_nr_to_pfn(pnum);
554
555 if (pnum >= pnum_end)
556 break;
557
558 ms = __nr_to_section(pnum);
559 if (!preinited_vmemmap_section(ms)) {
560 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
561 nid, NULL, NULL);
562 if (!map) {
563 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
564 __func__, nid);
565 pnum_begin = pnum;
566 sparse_usage_fini();
567 sparse_buffer_fini();
568 goto failed;
569 }
570 sparse_init_early_section(nid, map, pnum, 0);
571 }
572 }
573 sparse_usage_fini();
574 sparse_buffer_fini();
575 return;
576failed:
577 /*
578 * We failed to allocate, mark all the following pnums as not present,
579 * except the ones already initialized earlier.
580 */
581 for_each_present_section_nr(pnum_begin, pnum) {
582 if (pnum >= pnum_end)
583 break;
584 ms = __nr_to_section(pnum);
585 if (!preinited_vmemmap_section(ms))
586 ms->section_mem_map = 0;
587 ms->section_mem_map = 0;
588 }
589}
590
591/*
592 * Allocate the accumulated non-linear sections, allocate a mem_map
593 * for each and record the physical to section mapping.
594 */
595void __init sparse_init(void)
596{
597 unsigned long pnum_end, pnum_begin, map_count = 1;
598 int nid_begin;
599
600 /* see include/linux/mmzone.h 'struct mem_section' definition */
601 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
602 memblocks_present();
603
604 pnum_begin = first_present_section_nr();
605 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
606
607 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
608 set_pageblock_order();
609
610 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
611 int nid = sparse_early_nid(__nr_to_section(pnum_end));
612
613 if (nid == nid_begin) {
614 map_count++;
615 continue;
616 }
617 /* Init node with sections in range [pnum_begin, pnum_end) */
618 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
619 nid_begin = nid;
620 pnum_begin = pnum_end;
621 map_count = 1;
622 }
623 /* cover the last node */
624 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
625 vmemmap_populate_print_last();
626}
627
628#ifdef CONFIG_MEMORY_HOTPLUG
629
630/* Mark all memory sections within the pfn range as online */
631void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
632{
633 unsigned long pfn;
634
635 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
636 unsigned long section_nr = pfn_to_section_nr(pfn);
637 struct mem_section *ms;
638
639 /* onlining code should never touch invalid ranges */
640 if (WARN_ON(!valid_section_nr(section_nr)))
641 continue;
642
643 ms = __nr_to_section(section_nr);
644 ms->section_mem_map |= SECTION_IS_ONLINE;
645 }
646}
647
648/* Mark all memory sections within the pfn range as offline */
649void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
650{
651 unsigned long pfn;
652
653 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
654 unsigned long section_nr = pfn_to_section_nr(pfn);
655 struct mem_section *ms;
656
657 /*
658 * TODO this needs some double checking. Offlining code makes
659 * sure to check pfn_valid but those checks might be just bogus
660 */
661 if (WARN_ON(!valid_section_nr(section_nr)))
662 continue;
663
664 ms = __nr_to_section(section_nr);
665 ms->section_mem_map &= ~SECTION_IS_ONLINE;
666 }
667}
668
669#ifdef CONFIG_SPARSEMEM_VMEMMAP
670static struct page * __meminit populate_section_memmap(unsigned long pfn,
671 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
672 struct dev_pagemap *pgmap)
673{
674 return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
675}
676
677static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
678 struct vmem_altmap *altmap)
679{
680 unsigned long start = (unsigned long) pfn_to_page(pfn);
681 unsigned long end = start + nr_pages * sizeof(struct page);
682
683 memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
684 vmemmap_free(start, end, altmap);
685}
686static void free_map_bootmem(struct page *memmap)
687{
688 unsigned long start = (unsigned long)memmap;
689 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
690
691 vmemmap_free(start, end, NULL);
692}
693
694static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
695{
696 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
697 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
698 struct mem_section *ms = __pfn_to_section(pfn);
699 unsigned long *subsection_map = ms->usage
700 ? &ms->usage->subsection_map[0] : NULL;
701
702 subsection_mask_set(map, pfn, nr_pages);
703 if (subsection_map)
704 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
705
706 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
707 "section already deactivated (%#lx + %ld)\n",
708 pfn, nr_pages))
709 return -EINVAL;
710
711 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
712 return 0;
713}
714
715static bool is_subsection_map_empty(struct mem_section *ms)
716{
717 return bitmap_empty(&ms->usage->subsection_map[0],
718 SUBSECTIONS_PER_SECTION);
719}
720
721static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
722{
723 struct mem_section *ms = __pfn_to_section(pfn);
724 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
725 unsigned long *subsection_map;
726 int rc = 0;
727
728 subsection_mask_set(map, pfn, nr_pages);
729
730 subsection_map = &ms->usage->subsection_map[0];
731
732 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
733 rc = -EINVAL;
734 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
735 rc = -EEXIST;
736 else
737 bitmap_or(subsection_map, map, subsection_map,
738 SUBSECTIONS_PER_SECTION);
739
740 return rc;
741}
742#else
743static struct page * __meminit populate_section_memmap(unsigned long pfn,
744 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
745 struct dev_pagemap *pgmap)
746{
747 return kvmalloc_node(array_size(sizeof(struct page),
748 PAGES_PER_SECTION), GFP_KERNEL, nid);
749}
750
751static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
752 struct vmem_altmap *altmap)
753{
754 kvfree(pfn_to_page(pfn));
755}
756
757static void free_map_bootmem(struct page *memmap)
758{
759 unsigned long maps_section_nr, removing_section_nr, i;
760 unsigned long type, nr_pages;
761 struct page *page = virt_to_page(memmap);
762
763 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
764 >> PAGE_SHIFT;
765
766 for (i = 0; i < nr_pages; i++, page++) {
767 type = bootmem_type(page);
768
769 BUG_ON(type == NODE_INFO);
770
771 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
772 removing_section_nr = bootmem_info(page);
773
774 /*
775 * When this function is called, the removing section is
776 * logical offlined state. This means all pages are isolated
777 * from page allocator. If removing section's memmap is placed
778 * on the same section, it must not be freed.
779 * If it is freed, page allocator may allocate it which will
780 * be removed physically soon.
781 */
782 if (maps_section_nr != removing_section_nr)
783 put_page_bootmem(page);
784 }
785}
786
787static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
788{
789 return 0;
790}
791
792static bool is_subsection_map_empty(struct mem_section *ms)
793{
794 return true;
795}
796
797static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
798{
799 return 0;
800}
801#endif /* CONFIG_SPARSEMEM_VMEMMAP */
802
803/*
804 * To deactivate a memory region, there are 3 cases to handle across
805 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
806 *
807 * 1. deactivation of a partial hot-added section (only possible in
808 * the SPARSEMEM_VMEMMAP=y case).
809 * a) section was present at memory init.
810 * b) section was hot-added post memory init.
811 * 2. deactivation of a complete hot-added section.
812 * 3. deactivation of a complete section from memory init.
813 *
814 * For 1, when subsection_map does not empty we will not be freeing the
815 * usage map, but still need to free the vmemmap range.
816 *
817 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
818 */
819static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
820 struct vmem_altmap *altmap)
821{
822 struct mem_section *ms = __pfn_to_section(pfn);
823 bool section_is_early = early_section(ms);
824 struct page *memmap = NULL;
825 bool empty;
826
827 if (clear_subsection_map(pfn, nr_pages))
828 return;
829
830 empty = is_subsection_map_empty(ms);
831 if (empty) {
832 unsigned long section_nr = pfn_to_section_nr(pfn);
833
834 /*
835 * Mark the section invalid so that valid_section()
836 * return false. This prevents code from dereferencing
837 * ms->usage array.
838 */
839 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
840
841 /*
842 * When removing an early section, the usage map is kept (as the
843 * usage maps of other sections fall into the same page). It
844 * will be re-used when re-adding the section - which is then no
845 * longer an early section. If the usage map is PageReserved, it
846 * was allocated during boot.
847 */
848 if (!PageReserved(virt_to_page(ms->usage))) {
849 kfree_rcu(ms->usage, rcu);
850 WRITE_ONCE(ms->usage, NULL);
851 }
852 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
853 }
854
855 /*
856 * The memmap of early sections is always fully populated. See
857 * section_activate() and pfn_valid() .
858 */
859 if (!section_is_early)
860 depopulate_section_memmap(pfn, nr_pages, altmap);
861 else if (memmap)
862 free_map_bootmem(memmap);
863
864 if (empty)
865 ms->section_mem_map = (unsigned long)NULL;
866}
867
868static struct page * __meminit section_activate(int nid, unsigned long pfn,
869 unsigned long nr_pages, struct vmem_altmap *altmap,
870 struct dev_pagemap *pgmap)
871{
872 struct mem_section *ms = __pfn_to_section(pfn);
873 struct mem_section_usage *usage = NULL;
874 struct page *memmap;
875 int rc;
876
877 if (!ms->usage) {
878 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
879 if (!usage)
880 return ERR_PTR(-ENOMEM);
881 ms->usage = usage;
882 }
883
884 rc = fill_subsection_map(pfn, nr_pages);
885 if (rc) {
886 if (usage)
887 ms->usage = NULL;
888 kfree(usage);
889 return ERR_PTR(rc);
890 }
891
892 /*
893 * The early init code does not consider partially populated
894 * initial sections, it simply assumes that memory will never be
895 * referenced. If we hot-add memory into such a section then we
896 * do not need to populate the memmap and can simply reuse what
897 * is already there.
898 */
899 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
900 return pfn_to_page(pfn);
901
902 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
903 if (!memmap) {
904 section_deactivate(pfn, nr_pages, altmap);
905 return ERR_PTR(-ENOMEM);
906 }
907
908 return memmap;
909}
910
911/**
912 * sparse_add_section - add a memory section, or populate an existing one
913 * @nid: The node to add section on
914 * @start_pfn: start pfn of the memory range
915 * @nr_pages: number of pfns to add in the section
916 * @altmap: alternate pfns to allocate the memmap backing store
917 * @pgmap: alternate compound page geometry for devmap mappings
918 *
919 * This is only intended for hotplug.
920 *
921 * Note that only VMEMMAP supports sub-section aligned hotplug,
922 * the proper alignment and size are gated by check_pfn_span().
923 *
924 *
925 * Return:
926 * * 0 - On success.
927 * * -EEXIST - Section has been present.
928 * * -ENOMEM - Out of memory.
929 */
930int __meminit sparse_add_section(int nid, unsigned long start_pfn,
931 unsigned long nr_pages, struct vmem_altmap *altmap,
932 struct dev_pagemap *pgmap)
933{
934 unsigned long section_nr = pfn_to_section_nr(start_pfn);
935 struct mem_section *ms;
936 struct page *memmap;
937 int ret;
938
939 ret = sparse_index_init(section_nr, nid);
940 if (ret < 0)
941 return ret;
942
943 memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
944 if (IS_ERR(memmap))
945 return PTR_ERR(memmap);
946
947 /*
948 * Poison uninitialized struct pages in order to catch invalid flags
949 * combinations.
950 */
951 if (!altmap || !altmap->inaccessible)
952 page_init_poison(memmap, sizeof(struct page) * nr_pages);
953
954 ms = __nr_to_section(section_nr);
955 set_section_nid(section_nr, nid);
956 __section_mark_present(ms, section_nr);
957
958 /* Align memmap to section boundary in the subsection case */
959 if (section_nr_to_pfn(section_nr) != start_pfn)
960 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
961 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
962
963 return 0;
964}
965
966void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
967 struct vmem_altmap *altmap)
968{
969 struct mem_section *ms = __pfn_to_section(pfn);
970
971 if (WARN_ON_ONCE(!valid_section(ms)))
972 return;
973
974 section_deactivate(pfn, nr_pages, altmap);
975}
976#endif /* CONFIG_MEMORY_HOTPLUG */