mm: vmscan: fix do_try_to_free_pages() livelock
[linux-2.6-block.git] / mm / sparse.c
... / ...
CommitLineData
1/*
2 * sparse memory mappings.
3 */
4#include <linux/mm.h>
5#include <linux/slab.h>
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
8#include <linux/highmem.h>
9#include <linux/export.h>
10#include <linux/spinlock.h>
11#include <linux/vmalloc.h>
12#include "internal.h"
13#include <asm/dma.h>
14#include <asm/pgalloc.h>
15#include <asm/pgtable.h>
16
17/*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
22#ifdef CONFIG_SPARSEMEM_EXTREME
23struct mem_section *mem_section[NR_SECTION_ROOTS]
24 ____cacheline_internodealigned_in_smp;
25#else
26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 ____cacheline_internodealigned_in_smp;
28#endif
29EXPORT_SYMBOL(mem_section);
30
31#ifdef NODE_NOT_IN_PAGE_FLAGS
32/*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37#if MAX_NUMNODES <= 256
38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#else
40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#endif
42
43int page_to_nid(const struct page *page)
44{
45 return section_to_node_table[page_to_section(page)];
46}
47EXPORT_SYMBOL(page_to_nid);
48
49static void set_section_nid(unsigned long section_nr, int nid)
50{
51 section_to_node_table[section_nr] = nid;
52}
53#else /* !NODE_NOT_IN_PAGE_FLAGS */
54static inline void set_section_nid(unsigned long section_nr, int nid)
55{
56}
57#endif
58
59#ifdef CONFIG_SPARSEMEM_EXTREME
60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61{
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
68 section = kzalloc_node(array_size, GFP_KERNEL, nid);
69 else
70 section = kzalloc(array_size, GFP_KERNEL);
71 } else {
72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73 }
74
75 return section;
76}
77
78static int __meminit sparse_index_init(unsigned long section_nr, int nid)
79{
80 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 struct mem_section *section;
82
83 if (mem_section[root])
84 return -EEXIST;
85
86 section = sparse_index_alloc(nid);
87 if (!section)
88 return -ENOMEM;
89
90 mem_section[root] = section;
91
92 return 0;
93}
94#else /* !SPARSEMEM_EXTREME */
95static inline int sparse_index_init(unsigned long section_nr, int nid)
96{
97 return 0;
98}
99#endif
100
101/*
102 * Although written for the SPARSEMEM_EXTREME case, this happens
103 * to also work for the flat array case because
104 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
105 */
106int __section_nr(struct mem_section* ms)
107{
108 unsigned long root_nr;
109 struct mem_section* root;
110
111 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
112 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
113 if (!root)
114 continue;
115
116 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
117 break;
118 }
119
120 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
121
122 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
123}
124
125/*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
130 */
131static inline unsigned long sparse_encode_early_nid(int nid)
132{
133 return (nid << SECTION_NID_SHIFT);
134}
135
136static inline int sparse_early_nid(struct mem_section *section)
137{
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
139}
140
141/* Validate the physical addressing limitations of the model */
142void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
144{
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147 /*
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
150 */
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
164 }
165}
166
167/* Record a memory area against a node. */
168void __init memory_present(int nid, unsigned long start, unsigned long end)
169{
170 unsigned long pfn;
171
172 start &= PAGE_SECTION_MASK;
173 mminit_validate_memmodel_limits(&start, &end);
174 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
175 unsigned long section = pfn_to_section_nr(pfn);
176 struct mem_section *ms;
177
178 sparse_index_init(section, nid);
179 set_section_nid(section, nid);
180
181 ms = __nr_to_section(section);
182 if (!ms->section_mem_map)
183 ms->section_mem_map = sparse_encode_early_nid(nid) |
184 SECTION_MARKED_PRESENT;
185 }
186}
187
188/*
189 * Only used by the i386 NUMA architecures, but relatively
190 * generic code.
191 */
192unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
193 unsigned long end_pfn)
194{
195 unsigned long pfn;
196 unsigned long nr_pages = 0;
197
198 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
199 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
200 if (nid != early_pfn_to_nid(pfn))
201 continue;
202
203 if (pfn_present(pfn))
204 nr_pages += PAGES_PER_SECTION;
205 }
206
207 return nr_pages * sizeof(struct page);
208}
209
210/*
211 * Subtle, we encode the real pfn into the mem_map such that
212 * the identity pfn - section_mem_map will return the actual
213 * physical page frame number.
214 */
215static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
216{
217 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
218}
219
220/*
221 * Decode mem_map from the coded memmap
222 */
223struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
224{
225 /* mask off the extra low bits of information */
226 coded_mem_map &= SECTION_MAP_MASK;
227 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
228}
229
230static int __meminit sparse_init_one_section(struct mem_section *ms,
231 unsigned long pnum, struct page *mem_map,
232 unsigned long *pageblock_bitmap)
233{
234 if (!present_section(ms))
235 return -EINVAL;
236
237 ms->section_mem_map &= ~SECTION_MAP_MASK;
238 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
239 SECTION_HAS_MEM_MAP;
240 ms->pageblock_flags = pageblock_bitmap;
241
242 return 1;
243}
244
245unsigned long usemap_size(void)
246{
247 unsigned long size_bytes;
248 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
249 size_bytes = roundup(size_bytes, sizeof(unsigned long));
250 return size_bytes;
251}
252
253#ifdef CONFIG_MEMORY_HOTPLUG
254static unsigned long *__kmalloc_section_usemap(void)
255{
256 return kmalloc(usemap_size(), GFP_KERNEL);
257}
258#endif /* CONFIG_MEMORY_HOTPLUG */
259
260#ifdef CONFIG_MEMORY_HOTREMOVE
261static unsigned long * __init
262sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
263 unsigned long size)
264{
265 unsigned long goal, limit;
266 unsigned long *p;
267 int nid;
268 /*
269 * A page may contain usemaps for other sections preventing the
270 * page being freed and making a section unremovable while
271 * other sections referencing the usemap retmain active. Similarly,
272 * a pgdat can prevent a section being removed. If section A
273 * contains a pgdat and section B contains the usemap, both
274 * sections become inter-dependent. This allocates usemaps
275 * from the same section as the pgdat where possible to avoid
276 * this problem.
277 */
278 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
279 limit = goal + (1UL << PA_SECTION_SHIFT);
280 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
281again:
282 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
283 SMP_CACHE_BYTES, goal, limit);
284 if (!p && limit) {
285 limit = 0;
286 goto again;
287 }
288 return p;
289}
290
291static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
292{
293 unsigned long usemap_snr, pgdat_snr;
294 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
295 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
296 struct pglist_data *pgdat = NODE_DATA(nid);
297 int usemap_nid;
298
299 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
300 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
301 if (usemap_snr == pgdat_snr)
302 return;
303
304 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
305 /* skip redundant message */
306 return;
307
308 old_usemap_snr = usemap_snr;
309 old_pgdat_snr = pgdat_snr;
310
311 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
312 if (usemap_nid != nid) {
313 printk(KERN_INFO
314 "node %d must be removed before remove section %ld\n",
315 nid, usemap_snr);
316 return;
317 }
318 /*
319 * There is a circular dependency.
320 * Some platforms allow un-removable section because they will just
321 * gather other removable sections for dynamic partitioning.
322 * Just notify un-removable section's number here.
323 */
324 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
325 pgdat_snr, nid);
326 printk(KERN_CONT
327 " have a circular dependency on usemap and pgdat allocations\n");
328}
329#else
330static unsigned long * __init
331sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
332 unsigned long size)
333{
334 return alloc_bootmem_node_nopanic(pgdat, size);
335}
336
337static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
338{
339}
340#endif /* CONFIG_MEMORY_HOTREMOVE */
341
342static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
343 unsigned long pnum_begin,
344 unsigned long pnum_end,
345 unsigned long usemap_count, int nodeid)
346{
347 void *usemap;
348 unsigned long pnum;
349 int size = usemap_size();
350
351 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
352 size * usemap_count);
353 if (!usemap) {
354 printk(KERN_WARNING "%s: allocation failed\n", __func__);
355 return;
356 }
357
358 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
359 if (!present_section_nr(pnum))
360 continue;
361 usemap_map[pnum] = usemap;
362 usemap += size;
363 check_usemap_section_nr(nodeid, usemap_map[pnum]);
364 }
365}
366
367#ifndef CONFIG_SPARSEMEM_VMEMMAP
368struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
369{
370 struct page *map;
371 unsigned long size;
372
373 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
374 if (map)
375 return map;
376
377 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
378 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
379 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
380 return map;
381}
382void __init sparse_mem_maps_populate_node(struct page **map_map,
383 unsigned long pnum_begin,
384 unsigned long pnum_end,
385 unsigned long map_count, int nodeid)
386{
387 void *map;
388 unsigned long pnum;
389 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
390
391 map = alloc_remap(nodeid, size * map_count);
392 if (map) {
393 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
394 if (!present_section_nr(pnum))
395 continue;
396 map_map[pnum] = map;
397 map += size;
398 }
399 return;
400 }
401
402 size = PAGE_ALIGN(size);
403 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
404 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
405 if (map) {
406 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
407 if (!present_section_nr(pnum))
408 continue;
409 map_map[pnum] = map;
410 map += size;
411 }
412 return;
413 }
414
415 /* fallback */
416 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
417 struct mem_section *ms;
418
419 if (!present_section_nr(pnum))
420 continue;
421 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
422 if (map_map[pnum])
423 continue;
424 ms = __nr_to_section(pnum);
425 printk(KERN_ERR "%s: sparsemem memory map backing failed "
426 "some memory will not be available.\n", __func__);
427 ms->section_mem_map = 0;
428 }
429}
430#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
431
432#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
433static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
434 unsigned long pnum_begin,
435 unsigned long pnum_end,
436 unsigned long map_count, int nodeid)
437{
438 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
439 map_count, nodeid);
440}
441#else
442static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
443{
444 struct page *map;
445 struct mem_section *ms = __nr_to_section(pnum);
446 int nid = sparse_early_nid(ms);
447
448 map = sparse_mem_map_populate(pnum, nid);
449 if (map)
450 return map;
451
452 printk(KERN_ERR "%s: sparsemem memory map backing failed "
453 "some memory will not be available.\n", __func__);
454 ms->section_mem_map = 0;
455 return NULL;
456}
457#endif
458
459void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
460{
461}
462
463/*
464 * Allocate the accumulated non-linear sections, allocate a mem_map
465 * for each and record the physical to section mapping.
466 */
467void __init sparse_init(void)
468{
469 unsigned long pnum;
470 struct page *map;
471 unsigned long *usemap;
472 unsigned long **usemap_map;
473 int size;
474 int nodeid_begin = 0;
475 unsigned long pnum_begin = 0;
476 unsigned long usemap_count;
477#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
478 unsigned long map_count;
479 int size2;
480 struct page **map_map;
481#endif
482
483 /* see include/linux/mmzone.h 'struct mem_section' definition */
484 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
485
486 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
487 set_pageblock_order();
488
489 /*
490 * map is using big page (aka 2M in x86 64 bit)
491 * usemap is less one page (aka 24 bytes)
492 * so alloc 2M (with 2M align) and 24 bytes in turn will
493 * make next 2M slip to one more 2M later.
494 * then in big system, the memory will have a lot of holes...
495 * here try to allocate 2M pages continuously.
496 *
497 * powerpc need to call sparse_init_one_section right after each
498 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
499 */
500 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
501 usemap_map = alloc_bootmem(size);
502 if (!usemap_map)
503 panic("can not allocate usemap_map\n");
504
505 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
506 struct mem_section *ms;
507
508 if (!present_section_nr(pnum))
509 continue;
510 ms = __nr_to_section(pnum);
511 nodeid_begin = sparse_early_nid(ms);
512 pnum_begin = pnum;
513 break;
514 }
515 usemap_count = 1;
516 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
517 struct mem_section *ms;
518 int nodeid;
519
520 if (!present_section_nr(pnum))
521 continue;
522 ms = __nr_to_section(pnum);
523 nodeid = sparse_early_nid(ms);
524 if (nodeid == nodeid_begin) {
525 usemap_count++;
526 continue;
527 }
528 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
529 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
530 usemap_count, nodeid_begin);
531 /* new start, update count etc*/
532 nodeid_begin = nodeid;
533 pnum_begin = pnum;
534 usemap_count = 1;
535 }
536 /* ok, last chunk */
537 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
538 usemap_count, nodeid_begin);
539
540#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
541 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
542 map_map = alloc_bootmem(size2);
543 if (!map_map)
544 panic("can not allocate map_map\n");
545
546 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
547 struct mem_section *ms;
548
549 if (!present_section_nr(pnum))
550 continue;
551 ms = __nr_to_section(pnum);
552 nodeid_begin = sparse_early_nid(ms);
553 pnum_begin = pnum;
554 break;
555 }
556 map_count = 1;
557 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
558 struct mem_section *ms;
559 int nodeid;
560
561 if (!present_section_nr(pnum))
562 continue;
563 ms = __nr_to_section(pnum);
564 nodeid = sparse_early_nid(ms);
565 if (nodeid == nodeid_begin) {
566 map_count++;
567 continue;
568 }
569 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
570 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
571 map_count, nodeid_begin);
572 /* new start, update count etc*/
573 nodeid_begin = nodeid;
574 pnum_begin = pnum;
575 map_count = 1;
576 }
577 /* ok, last chunk */
578 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
579 map_count, nodeid_begin);
580#endif
581
582 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
583 if (!present_section_nr(pnum))
584 continue;
585
586 usemap = usemap_map[pnum];
587 if (!usemap)
588 continue;
589
590#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591 map = map_map[pnum];
592#else
593 map = sparse_early_mem_map_alloc(pnum);
594#endif
595 if (!map)
596 continue;
597
598 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
599 usemap);
600 }
601
602 vmemmap_populate_print_last();
603
604#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
605 free_bootmem(__pa(map_map), size2);
606#endif
607 free_bootmem(__pa(usemap_map), size);
608}
609
610#ifdef CONFIG_MEMORY_HOTPLUG
611#ifdef CONFIG_SPARSEMEM_VMEMMAP
612static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
613 unsigned long nr_pages)
614{
615 /* This will make the necessary allocations eventually. */
616 return sparse_mem_map_populate(pnum, nid);
617}
618static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
619{
620 unsigned long start = (unsigned long)memmap;
621 unsigned long end = (unsigned long)(memmap + nr_pages);
622
623 vmemmap_free(start, end);
624}
625#ifdef CONFIG_MEMORY_HOTREMOVE
626static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
627{
628 unsigned long start = (unsigned long)memmap;
629 unsigned long end = (unsigned long)(memmap + nr_pages);
630
631 vmemmap_free(start, end);
632}
633#endif /* CONFIG_MEMORY_HOTREMOVE */
634#else
635static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
636{
637 struct page *page, *ret;
638 unsigned long memmap_size = sizeof(struct page) * nr_pages;
639
640 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
641 if (page)
642 goto got_map_page;
643
644 ret = vmalloc(memmap_size);
645 if (ret)
646 goto got_map_ptr;
647
648 return NULL;
649got_map_page:
650 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
651got_map_ptr:
652
653 return ret;
654}
655
656static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
657 unsigned long nr_pages)
658{
659 return __kmalloc_section_memmap(nr_pages);
660}
661
662static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
663{
664 if (is_vmalloc_addr(memmap))
665 vfree(memmap);
666 else
667 free_pages((unsigned long)memmap,
668 get_order(sizeof(struct page) * nr_pages));
669}
670
671#ifdef CONFIG_MEMORY_HOTREMOVE
672static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
673{
674 unsigned long maps_section_nr, removing_section_nr, i;
675 unsigned long magic;
676 struct page *page = virt_to_page(memmap);
677
678 for (i = 0; i < nr_pages; i++, page++) {
679 magic = (unsigned long) page->lru.next;
680
681 BUG_ON(magic == NODE_INFO);
682
683 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
684 removing_section_nr = page->private;
685
686 /*
687 * When this function is called, the removing section is
688 * logical offlined state. This means all pages are isolated
689 * from page allocator. If removing section's memmap is placed
690 * on the same section, it must not be freed.
691 * If it is freed, page allocator may allocate it which will
692 * be removed physically soon.
693 */
694 if (maps_section_nr != removing_section_nr)
695 put_page_bootmem(page);
696 }
697}
698#endif /* CONFIG_MEMORY_HOTREMOVE */
699#endif /* CONFIG_SPARSEMEM_VMEMMAP */
700
701/*
702 * returns the number of sections whose mem_maps were properly
703 * set. If this is <=0, then that means that the passed-in
704 * map was not consumed and must be freed.
705 */
706int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
707 int nr_pages)
708{
709 unsigned long section_nr = pfn_to_section_nr(start_pfn);
710 struct pglist_data *pgdat = zone->zone_pgdat;
711 struct mem_section *ms;
712 struct page *memmap;
713 unsigned long *usemap;
714 unsigned long flags;
715 int ret;
716
717 /*
718 * no locking for this, because it does its own
719 * plus, it does a kmalloc
720 */
721 ret = sparse_index_init(section_nr, pgdat->node_id);
722 if (ret < 0 && ret != -EEXIST)
723 return ret;
724 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
725 if (!memmap)
726 return -ENOMEM;
727 usemap = __kmalloc_section_usemap();
728 if (!usemap) {
729 __kfree_section_memmap(memmap, nr_pages);
730 return -ENOMEM;
731 }
732
733 pgdat_resize_lock(pgdat, &flags);
734
735 ms = __pfn_to_section(start_pfn);
736 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
737 ret = -EEXIST;
738 goto out;
739 }
740
741 memset(memmap, 0, sizeof(struct page) * nr_pages);
742
743 ms->section_mem_map |= SECTION_MARKED_PRESENT;
744
745 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
746
747out:
748 pgdat_resize_unlock(pgdat, &flags);
749 if (ret <= 0) {
750 kfree(usemap);
751 __kfree_section_memmap(memmap, nr_pages);
752 }
753 return ret;
754}
755
756#ifdef CONFIG_MEMORY_HOTREMOVE
757#ifdef CONFIG_MEMORY_FAILURE
758static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
759{
760 int i;
761
762 if (!memmap)
763 return;
764
765 for (i = 0; i < PAGES_PER_SECTION; i++) {
766 if (PageHWPoison(&memmap[i])) {
767 atomic_long_sub(1, &num_poisoned_pages);
768 ClearPageHWPoison(&memmap[i]);
769 }
770 }
771}
772#else
773static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
774{
775}
776#endif
777
778static void free_section_usemap(struct page *memmap, unsigned long *usemap)
779{
780 struct page *usemap_page;
781 unsigned long nr_pages;
782
783 if (!usemap)
784 return;
785
786 usemap_page = virt_to_page(usemap);
787 /*
788 * Check to see if allocation came from hot-plug-add
789 */
790 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
791 kfree(usemap);
792 if (memmap)
793 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
794 return;
795 }
796
797 /*
798 * The usemap came from bootmem. This is packed with other usemaps
799 * on the section which has pgdat at boot time. Just keep it as is now.
800 */
801
802 if (memmap) {
803 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
804 >> PAGE_SHIFT;
805
806 free_map_bootmem(memmap, nr_pages);
807 }
808}
809
810void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
811{
812 struct page *memmap = NULL;
813 unsigned long *usemap = NULL, flags;
814 struct pglist_data *pgdat = zone->zone_pgdat;
815
816 pgdat_resize_lock(pgdat, &flags);
817 if (ms->section_mem_map) {
818 usemap = ms->pageblock_flags;
819 memmap = sparse_decode_mem_map(ms->section_mem_map,
820 __section_nr(ms));
821 ms->section_mem_map = 0;
822 ms->pageblock_flags = NULL;
823 }
824 pgdat_resize_unlock(pgdat, &flags);
825
826 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
827 free_section_usemap(memmap, usemap);
828}
829#endif /* CONFIG_MEMORY_HOTREMOVE */
830#endif /* CONFIG_MEMORY_HOTPLUG */