| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Virtual Memory Map support |
| 4 | * |
| 5 | * (C) 2007 sgi. Christoph Lameter. |
| 6 | * |
| 7 | * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, |
| 8 | * virt_to_page, page_address() to be implemented as a base offset |
| 9 | * calculation without memory access. |
| 10 | * |
| 11 | * However, virtual mappings need a page table and TLBs. Many Linux |
| 12 | * architectures already map their physical space using 1-1 mappings |
| 13 | * via TLBs. For those arches the virtual memory map is essentially |
| 14 | * for free if we use the same page size as the 1-1 mappings. In that |
| 15 | * case the overhead consists of a few additional pages that are |
| 16 | * allocated to create a view of memory for vmemmap. |
| 17 | * |
| 18 | * The architecture is expected to provide a vmemmap_populate() function |
| 19 | * to instantiate the mapping. |
| 20 | */ |
| 21 | #include <linux/mm.h> |
| 22 | #include <linux/mmzone.h> |
| 23 | #include <linux/memblock.h> |
| 24 | #include <linux/memremap.h> |
| 25 | #include <linux/highmem.h> |
| 26 | #include <linux/slab.h> |
| 27 | #include <linux/spinlock.h> |
| 28 | #include <linux/vmalloc.h> |
| 29 | #include <linux/sched.h> |
| 30 | |
| 31 | #include <asm/dma.h> |
| 32 | #include <asm/pgalloc.h> |
| 33 | #include <asm/tlbflush.h> |
| 34 | |
| 35 | #include "hugetlb_vmemmap.h" |
| 36 | |
| 37 | /* |
| 38 | * Flags for vmemmap_populate_range and friends. |
| 39 | */ |
| 40 | /* Get a ref on the head page struct page, for ZONE_DEVICE compound pages */ |
| 41 | #define VMEMMAP_POPULATE_PAGEREF 0x0001 |
| 42 | |
| 43 | #include "internal.h" |
| 44 | |
| 45 | /* |
| 46 | * Allocate a block of memory to be used to back the virtual memory map |
| 47 | * or to back the page tables that are used to create the mapping. |
| 48 | * Uses the main allocators if they are available, else bootmem. |
| 49 | */ |
| 50 | |
| 51 | static void * __ref __earlyonly_bootmem_alloc(int node, |
| 52 | unsigned long size, |
| 53 | unsigned long align, |
| 54 | unsigned long goal) |
| 55 | { |
| 56 | return memmap_alloc(size, align, goal, node, false); |
| 57 | } |
| 58 | |
| 59 | void * __meminit vmemmap_alloc_block(unsigned long size, int node) |
| 60 | { |
| 61 | /* If the main allocator is up use that, fallback to bootmem. */ |
| 62 | if (slab_is_available()) { |
| 63 | gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; |
| 64 | int order = get_order(size); |
| 65 | static bool warned; |
| 66 | struct page *page; |
| 67 | |
| 68 | page = alloc_pages_node(node, gfp_mask, order); |
| 69 | if (page) |
| 70 | return page_address(page); |
| 71 | |
| 72 | if (!warned) { |
| 73 | warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, |
| 74 | "vmemmap alloc failure: order:%u", order); |
| 75 | warned = true; |
| 76 | } |
| 77 | return NULL; |
| 78 | } else |
| 79 | return __earlyonly_bootmem_alloc(node, size, size, |
| 80 | __pa(MAX_DMA_ADDRESS)); |
| 81 | } |
| 82 | |
| 83 | static void * __meminit altmap_alloc_block_buf(unsigned long size, |
| 84 | struct vmem_altmap *altmap); |
| 85 | |
| 86 | /* need to make sure size is all the same during early stage */ |
| 87 | void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, |
| 88 | struct vmem_altmap *altmap) |
| 89 | { |
| 90 | void *ptr; |
| 91 | |
| 92 | if (altmap) |
| 93 | return altmap_alloc_block_buf(size, altmap); |
| 94 | |
| 95 | ptr = sparse_buffer_alloc(size); |
| 96 | if (!ptr) |
| 97 | ptr = vmemmap_alloc_block(size, node); |
| 98 | return ptr; |
| 99 | } |
| 100 | |
| 101 | static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) |
| 102 | { |
| 103 | return altmap->base_pfn + altmap->reserve + altmap->alloc |
| 104 | + altmap->align; |
| 105 | } |
| 106 | |
| 107 | static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) |
| 108 | { |
| 109 | unsigned long allocated = altmap->alloc + altmap->align; |
| 110 | |
| 111 | if (altmap->free > allocated) |
| 112 | return altmap->free - allocated; |
| 113 | return 0; |
| 114 | } |
| 115 | |
| 116 | static void * __meminit altmap_alloc_block_buf(unsigned long size, |
| 117 | struct vmem_altmap *altmap) |
| 118 | { |
| 119 | unsigned long pfn, nr_pfns, nr_align; |
| 120 | |
| 121 | if (size & ~PAGE_MASK) { |
| 122 | pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", |
| 123 | __func__, size); |
| 124 | return NULL; |
| 125 | } |
| 126 | |
| 127 | pfn = vmem_altmap_next_pfn(altmap); |
| 128 | nr_pfns = size >> PAGE_SHIFT; |
| 129 | nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); |
| 130 | nr_align = ALIGN(pfn, nr_align) - pfn; |
| 131 | if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) |
| 132 | return NULL; |
| 133 | |
| 134 | altmap->alloc += nr_pfns; |
| 135 | altmap->align += nr_align; |
| 136 | pfn += nr_align; |
| 137 | |
| 138 | pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", |
| 139 | __func__, pfn, altmap->alloc, altmap->align, nr_pfns); |
| 140 | return __va(__pfn_to_phys(pfn)); |
| 141 | } |
| 142 | |
| 143 | void __meminit vmemmap_verify(pte_t *pte, int node, |
| 144 | unsigned long start, unsigned long end) |
| 145 | { |
| 146 | unsigned long pfn = pte_pfn(ptep_get(pte)); |
| 147 | int actual_node = early_pfn_to_nid(pfn); |
| 148 | |
| 149 | if (node_distance(actual_node, node) > LOCAL_DISTANCE) |
| 150 | pr_warn_once("[%lx-%lx] potential offnode page_structs\n", |
| 151 | start, end - 1); |
| 152 | } |
| 153 | |
| 154 | pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, |
| 155 | struct vmem_altmap *altmap, |
| 156 | unsigned long ptpfn, unsigned long flags) |
| 157 | { |
| 158 | pte_t *pte = pte_offset_kernel(pmd, addr); |
| 159 | if (pte_none(ptep_get(pte))) { |
| 160 | pte_t entry; |
| 161 | void *p; |
| 162 | |
| 163 | if (ptpfn == (unsigned long)-1) { |
| 164 | p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); |
| 165 | if (!p) |
| 166 | return NULL; |
| 167 | ptpfn = PHYS_PFN(__pa(p)); |
| 168 | } else { |
| 169 | /* |
| 170 | * When a PTE/PMD entry is freed from the init_mm |
| 171 | * there's a free_pages() call to this page allocated |
| 172 | * above. Thus this get_page() is paired with the |
| 173 | * put_page_testzero() on the freeing path. |
| 174 | * This can only called by certain ZONE_DEVICE path, |
| 175 | * and through vmemmap_populate_compound_pages() when |
| 176 | * slab is available. |
| 177 | */ |
| 178 | if (flags & VMEMMAP_POPULATE_PAGEREF) |
| 179 | get_page(pfn_to_page(ptpfn)); |
| 180 | } |
| 181 | entry = pfn_pte(ptpfn, PAGE_KERNEL); |
| 182 | set_pte_at(&init_mm, addr, pte, entry); |
| 183 | } |
| 184 | return pte; |
| 185 | } |
| 186 | |
| 187 | static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) |
| 188 | { |
| 189 | void *p = vmemmap_alloc_block(size, node); |
| 190 | |
| 191 | if (!p) |
| 192 | return NULL; |
| 193 | memset(p, 0, size); |
| 194 | |
| 195 | return p; |
| 196 | } |
| 197 | |
| 198 | pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) |
| 199 | { |
| 200 | pmd_t *pmd = pmd_offset(pud, addr); |
| 201 | if (pmd_none(*pmd)) { |
| 202 | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| 203 | if (!p) |
| 204 | return NULL; |
| 205 | kernel_pte_init(p); |
| 206 | pmd_populate_kernel(&init_mm, pmd, p); |
| 207 | } |
| 208 | return pmd; |
| 209 | } |
| 210 | |
| 211 | pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) |
| 212 | { |
| 213 | pud_t *pud = pud_offset(p4d, addr); |
| 214 | if (pud_none(*pud)) { |
| 215 | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| 216 | if (!p) |
| 217 | return NULL; |
| 218 | pmd_init(p); |
| 219 | pud_populate(&init_mm, pud, p); |
| 220 | } |
| 221 | return pud; |
| 222 | } |
| 223 | |
| 224 | p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) |
| 225 | { |
| 226 | p4d_t *p4d = p4d_offset(pgd, addr); |
| 227 | if (p4d_none(*p4d)) { |
| 228 | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| 229 | if (!p) |
| 230 | return NULL; |
| 231 | pud_init(p); |
| 232 | p4d_populate(&init_mm, p4d, p); |
| 233 | } |
| 234 | return p4d; |
| 235 | } |
| 236 | |
| 237 | pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) |
| 238 | { |
| 239 | pgd_t *pgd = pgd_offset_k(addr); |
| 240 | if (pgd_none(*pgd)) { |
| 241 | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); |
| 242 | if (!p) |
| 243 | return NULL; |
| 244 | pgd_populate(&init_mm, pgd, p); |
| 245 | } |
| 246 | return pgd; |
| 247 | } |
| 248 | |
| 249 | static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, |
| 250 | struct vmem_altmap *altmap, |
| 251 | unsigned long ptpfn, |
| 252 | unsigned long flags) |
| 253 | { |
| 254 | pgd_t *pgd; |
| 255 | p4d_t *p4d; |
| 256 | pud_t *pud; |
| 257 | pmd_t *pmd; |
| 258 | pte_t *pte; |
| 259 | |
| 260 | pgd = vmemmap_pgd_populate(addr, node); |
| 261 | if (!pgd) |
| 262 | return NULL; |
| 263 | p4d = vmemmap_p4d_populate(pgd, addr, node); |
| 264 | if (!p4d) |
| 265 | return NULL; |
| 266 | pud = vmemmap_pud_populate(p4d, addr, node); |
| 267 | if (!pud) |
| 268 | return NULL; |
| 269 | pmd = vmemmap_pmd_populate(pud, addr, node); |
| 270 | if (!pmd) |
| 271 | return NULL; |
| 272 | pte = vmemmap_pte_populate(pmd, addr, node, altmap, ptpfn, flags); |
| 273 | if (!pte) |
| 274 | return NULL; |
| 275 | vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); |
| 276 | |
| 277 | return pte; |
| 278 | } |
| 279 | |
| 280 | static int __meminit vmemmap_populate_range(unsigned long start, |
| 281 | unsigned long end, int node, |
| 282 | struct vmem_altmap *altmap, |
| 283 | unsigned long ptpfn, |
| 284 | unsigned long flags) |
| 285 | { |
| 286 | unsigned long addr = start; |
| 287 | pte_t *pte; |
| 288 | |
| 289 | for (; addr < end; addr += PAGE_SIZE) { |
| 290 | pte = vmemmap_populate_address(addr, node, altmap, |
| 291 | ptpfn, flags); |
| 292 | if (!pte) |
| 293 | return -ENOMEM; |
| 294 | } |
| 295 | |
| 296 | return 0; |
| 297 | } |
| 298 | |
| 299 | int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, |
| 300 | int node, struct vmem_altmap *altmap) |
| 301 | { |
| 302 | return vmemmap_populate_range(start, end, node, altmap, -1, 0); |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * Undo populate_hvo, and replace it with a normal base page mapping. |
| 307 | * Used in memory init in case a HVO mapping needs to be undone. |
| 308 | * |
| 309 | * This can happen when it is discovered that a memblock allocated |
| 310 | * hugetlb page spans multiple zones, which can only be verified |
| 311 | * after zones have been initialized. |
| 312 | * |
| 313 | * We know that: |
| 314 | * 1) The first @headsize / PAGE_SIZE vmemmap pages were individually |
| 315 | * allocated through memblock, and mapped. |
| 316 | * |
| 317 | * 2) The rest of the vmemmap pages are mirrors of the last head page. |
| 318 | */ |
| 319 | int __meminit vmemmap_undo_hvo(unsigned long addr, unsigned long end, |
| 320 | int node, unsigned long headsize) |
| 321 | { |
| 322 | unsigned long maddr, pfn; |
| 323 | pte_t *pte; |
| 324 | int headpages; |
| 325 | |
| 326 | /* |
| 327 | * Should only be called early in boot, so nothing will |
| 328 | * be accessing these page structures. |
| 329 | */ |
| 330 | WARN_ON(!early_boot_irqs_disabled); |
| 331 | |
| 332 | headpages = headsize >> PAGE_SHIFT; |
| 333 | |
| 334 | /* |
| 335 | * Clear mirrored mappings for tail page structs. |
| 336 | */ |
| 337 | for (maddr = addr + headsize; maddr < end; maddr += PAGE_SIZE) { |
| 338 | pte = virt_to_kpte(maddr); |
| 339 | pte_clear(&init_mm, maddr, pte); |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * Clear and free mappings for head page and first tail page |
| 344 | * structs. |
| 345 | */ |
| 346 | for (maddr = addr; headpages-- > 0; maddr += PAGE_SIZE) { |
| 347 | pte = virt_to_kpte(maddr); |
| 348 | pfn = pte_pfn(ptep_get(pte)); |
| 349 | pte_clear(&init_mm, maddr, pte); |
| 350 | memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE); |
| 351 | } |
| 352 | |
| 353 | flush_tlb_kernel_range(addr, end); |
| 354 | |
| 355 | return vmemmap_populate(addr, end, node, NULL); |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * Write protect the mirrored tail page structs for HVO. This will be |
| 360 | * called from the hugetlb code when gathering and initializing the |
| 361 | * memblock allocated gigantic pages. The write protect can't be |
| 362 | * done earlier, since it can't be guaranteed that the reserved |
| 363 | * page structures will not be written to during initialization, |
| 364 | * even if CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled. |
| 365 | * |
| 366 | * The PTEs are known to exist, and nothing else should be touching |
| 367 | * these pages. The caller is responsible for any TLB flushing. |
| 368 | */ |
| 369 | void vmemmap_wrprotect_hvo(unsigned long addr, unsigned long end, |
| 370 | int node, unsigned long headsize) |
| 371 | { |
| 372 | unsigned long maddr; |
| 373 | pte_t *pte; |
| 374 | |
| 375 | for (maddr = addr + headsize; maddr < end; maddr += PAGE_SIZE) { |
| 376 | pte = virt_to_kpte(maddr); |
| 377 | ptep_set_wrprotect(&init_mm, maddr, pte); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * Populate vmemmap pages HVO-style. The first page contains the head |
| 383 | * page and needed tail pages, the other ones are mirrors of the first |
| 384 | * page. |
| 385 | */ |
| 386 | int __meminit vmemmap_populate_hvo(unsigned long addr, unsigned long end, |
| 387 | int node, unsigned long headsize) |
| 388 | { |
| 389 | pte_t *pte; |
| 390 | unsigned long maddr; |
| 391 | |
| 392 | for (maddr = addr; maddr < addr + headsize; maddr += PAGE_SIZE) { |
| 393 | pte = vmemmap_populate_address(maddr, node, NULL, -1, 0); |
| 394 | if (!pte) |
| 395 | return -ENOMEM; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * Reuse the last page struct page mapped above for the rest. |
| 400 | */ |
| 401 | return vmemmap_populate_range(maddr, end, node, NULL, |
| 402 | pte_pfn(ptep_get(pte)), 0); |
| 403 | } |
| 404 | |
| 405 | void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, |
| 406 | unsigned long addr, unsigned long next) |
| 407 | { |
| 408 | } |
| 409 | |
| 410 | int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node, |
| 411 | unsigned long addr, unsigned long next) |
| 412 | { |
| 413 | return 0; |
| 414 | } |
| 415 | |
| 416 | int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end, |
| 417 | int node, struct vmem_altmap *altmap) |
| 418 | { |
| 419 | unsigned long addr; |
| 420 | unsigned long next; |
| 421 | pgd_t *pgd; |
| 422 | p4d_t *p4d; |
| 423 | pud_t *pud; |
| 424 | pmd_t *pmd; |
| 425 | |
| 426 | for (addr = start; addr < end; addr = next) { |
| 427 | next = pmd_addr_end(addr, end); |
| 428 | |
| 429 | pgd = vmemmap_pgd_populate(addr, node); |
| 430 | if (!pgd) |
| 431 | return -ENOMEM; |
| 432 | |
| 433 | p4d = vmemmap_p4d_populate(pgd, addr, node); |
| 434 | if (!p4d) |
| 435 | return -ENOMEM; |
| 436 | |
| 437 | pud = vmemmap_pud_populate(p4d, addr, node); |
| 438 | if (!pud) |
| 439 | return -ENOMEM; |
| 440 | |
| 441 | pmd = pmd_offset(pud, addr); |
| 442 | if (pmd_none(READ_ONCE(*pmd))) { |
| 443 | void *p; |
| 444 | |
| 445 | p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); |
| 446 | if (p) { |
| 447 | vmemmap_set_pmd(pmd, p, node, addr, next); |
| 448 | continue; |
| 449 | } else if (altmap) { |
| 450 | /* |
| 451 | * No fallback: In any case we care about, the |
| 452 | * altmap should be reasonably sized and aligned |
| 453 | * such that vmemmap_alloc_block_buf() will always |
| 454 | * succeed. For consistency with the PTE case, |
| 455 | * return an error here as failure could indicate |
| 456 | * a configuration issue with the size of the altmap. |
| 457 | */ |
| 458 | return -ENOMEM; |
| 459 | } |
| 460 | } else if (vmemmap_check_pmd(pmd, node, addr, next)) |
| 461 | continue; |
| 462 | if (vmemmap_populate_basepages(addr, next, node, altmap)) |
| 463 | return -ENOMEM; |
| 464 | } |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | #ifndef vmemmap_populate_compound_pages |
| 469 | /* |
| 470 | * For compound pages bigger than section size (e.g. x86 1G compound |
| 471 | * pages with 2M subsection size) fill the rest of sections as tail |
| 472 | * pages. |
| 473 | * |
| 474 | * Note that memremap_pages() resets @nr_range value and will increment |
| 475 | * it after each range successful onlining. Thus the value or @nr_range |
| 476 | * at section memmap populate corresponds to the in-progress range |
| 477 | * being onlined here. |
| 478 | */ |
| 479 | static bool __meminit reuse_compound_section(unsigned long start_pfn, |
| 480 | struct dev_pagemap *pgmap) |
| 481 | { |
| 482 | unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); |
| 483 | unsigned long offset = start_pfn - |
| 484 | PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); |
| 485 | |
| 486 | return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; |
| 487 | } |
| 488 | |
| 489 | static pte_t * __meminit compound_section_tail_page(unsigned long addr) |
| 490 | { |
| 491 | pte_t *pte; |
| 492 | |
| 493 | addr -= PAGE_SIZE; |
| 494 | |
| 495 | /* |
| 496 | * Assuming sections are populated sequentially, the previous section's |
| 497 | * page data can be reused. |
| 498 | */ |
| 499 | pte = pte_offset_kernel(pmd_off_k(addr), addr); |
| 500 | if (!pte) |
| 501 | return NULL; |
| 502 | |
| 503 | return pte; |
| 504 | } |
| 505 | |
| 506 | static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, |
| 507 | unsigned long start, |
| 508 | unsigned long end, int node, |
| 509 | struct dev_pagemap *pgmap) |
| 510 | { |
| 511 | unsigned long size, addr; |
| 512 | pte_t *pte; |
| 513 | int rc; |
| 514 | |
| 515 | if (reuse_compound_section(start_pfn, pgmap)) { |
| 516 | pte = compound_section_tail_page(start); |
| 517 | if (!pte) |
| 518 | return -ENOMEM; |
| 519 | |
| 520 | /* |
| 521 | * Reuse the page that was populated in the prior iteration |
| 522 | * with just tail struct pages. |
| 523 | */ |
| 524 | return vmemmap_populate_range(start, end, node, NULL, |
| 525 | pte_pfn(ptep_get(pte)), |
| 526 | VMEMMAP_POPULATE_PAGEREF); |
| 527 | } |
| 528 | |
| 529 | size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); |
| 530 | for (addr = start; addr < end; addr += size) { |
| 531 | unsigned long next, last = addr + size; |
| 532 | |
| 533 | /* Populate the head page vmemmap page */ |
| 534 | pte = vmemmap_populate_address(addr, node, NULL, -1, 0); |
| 535 | if (!pte) |
| 536 | return -ENOMEM; |
| 537 | |
| 538 | /* Populate the tail pages vmemmap page */ |
| 539 | next = addr + PAGE_SIZE; |
| 540 | pte = vmemmap_populate_address(next, node, NULL, -1, 0); |
| 541 | if (!pte) |
| 542 | return -ENOMEM; |
| 543 | |
| 544 | /* |
| 545 | * Reuse the previous page for the rest of tail pages |
| 546 | * See layout diagram in Documentation/mm/vmemmap_dedup.rst |
| 547 | */ |
| 548 | next += PAGE_SIZE; |
| 549 | rc = vmemmap_populate_range(next, last, node, NULL, |
| 550 | pte_pfn(ptep_get(pte)), |
| 551 | VMEMMAP_POPULATE_PAGEREF); |
| 552 | if (rc) |
| 553 | return -ENOMEM; |
| 554 | } |
| 555 | |
| 556 | return 0; |
| 557 | } |
| 558 | |
| 559 | #endif |
| 560 | |
| 561 | struct page * __meminit __populate_section_memmap(unsigned long pfn, |
| 562 | unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| 563 | struct dev_pagemap *pgmap) |
| 564 | { |
| 565 | unsigned long start = (unsigned long) pfn_to_page(pfn); |
| 566 | unsigned long end = start + nr_pages * sizeof(struct page); |
| 567 | int r; |
| 568 | |
| 569 | if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || |
| 570 | !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) |
| 571 | return NULL; |
| 572 | |
| 573 | if (vmemmap_can_optimize(altmap, pgmap)) |
| 574 | r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); |
| 575 | else |
| 576 | r = vmemmap_populate(start, end, nid, altmap); |
| 577 | |
| 578 | if (r < 0) |
| 579 | return NULL; |
| 580 | |
| 581 | if (system_state == SYSTEM_BOOTING) |
| 582 | memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); |
| 583 | else |
| 584 | memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); |
| 585 | |
| 586 | return pfn_to_page(pfn); |
| 587 | } |
| 588 | |
| 589 | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT |
| 590 | /* |
| 591 | * This is called just before initializing sections for a NUMA node. |
| 592 | * Any special initialization that needs to be done before the |
| 593 | * generic initialization can be done from here. Sections that |
| 594 | * are initialized in hooks called from here will be skipped by |
| 595 | * the generic initialization. |
| 596 | */ |
| 597 | void __init sparse_vmemmap_init_nid_early(int nid) |
| 598 | { |
| 599 | hugetlb_vmemmap_init_early(nid); |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * This is called just before the initialization of page structures |
| 604 | * through memmap_init. Zones are now initialized, so any work that |
| 605 | * needs to be done that needs zone information can be done from |
| 606 | * here. |
| 607 | */ |
| 608 | void __init sparse_vmemmap_init_nid_late(int nid) |
| 609 | { |
| 610 | hugetlb_vmemmap_init_late(nid); |
| 611 | } |
| 612 | #endif |