ext4: switch to using ext4_do_writepages() for ordered data writeout
[linux-block.git] / mm / sparse-vmemmap.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Virtual Memory Map support
4 *
5 * (C) 2007 sgi. Christoph Lameter.
6 *
7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8 * virt_to_page, page_address() to be implemented as a base offset
9 * calculation without memory access.
10 *
11 * However, virtual mappings need a page table and TLBs. Many Linux
12 * architectures already map their physical space using 1-1 mappings
13 * via TLBs. For those arches the virtual memory map is essentially
14 * for free if we use the same page size as the 1-1 mappings. In that
15 * case the overhead consists of a few additional pages that are
16 * allocated to create a view of memory for vmemmap.
17 *
18 * The architecture is expected to provide a vmemmap_populate() function
19 * to instantiate the mapping.
20 */
21#include <linux/mm.h>
22#include <linux/mmzone.h>
23#include <linux/memblock.h>
24#include <linux/memremap.h>
25#include <linux/highmem.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28#include <linux/vmalloc.h>
29#include <linux/sched.h>
30
31#include <asm/dma.h>
32#include <asm/pgalloc.h>
33
34/*
35 * Allocate a block of memory to be used to back the virtual memory map
36 * or to back the page tables that are used to create the mapping.
37 * Uses the main allocators if they are available, else bootmem.
38 */
39
40static void * __ref __earlyonly_bootmem_alloc(int node,
41 unsigned long size,
42 unsigned long align,
43 unsigned long goal)
44{
45 return memblock_alloc_try_nid_raw(size, align, goal,
46 MEMBLOCK_ALLOC_ACCESSIBLE, node);
47}
48
49void * __meminit vmemmap_alloc_block(unsigned long size, int node)
50{
51 /* If the main allocator is up use that, fallback to bootmem. */
52 if (slab_is_available()) {
53 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
54 int order = get_order(size);
55 static bool warned;
56 struct page *page;
57
58 page = alloc_pages_node(node, gfp_mask, order);
59 if (page)
60 return page_address(page);
61
62 if (!warned) {
63 warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
64 "vmemmap alloc failure: order:%u", order);
65 warned = true;
66 }
67 return NULL;
68 } else
69 return __earlyonly_bootmem_alloc(node, size, size,
70 __pa(MAX_DMA_ADDRESS));
71}
72
73static void * __meminit altmap_alloc_block_buf(unsigned long size,
74 struct vmem_altmap *altmap);
75
76/* need to make sure size is all the same during early stage */
77void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
78 struct vmem_altmap *altmap)
79{
80 void *ptr;
81
82 if (altmap)
83 return altmap_alloc_block_buf(size, altmap);
84
85 ptr = sparse_buffer_alloc(size);
86 if (!ptr)
87 ptr = vmemmap_alloc_block(size, node);
88 return ptr;
89}
90
91static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
92{
93 return altmap->base_pfn + altmap->reserve + altmap->alloc
94 + altmap->align;
95}
96
97static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
98{
99 unsigned long allocated = altmap->alloc + altmap->align;
100
101 if (altmap->free > allocated)
102 return altmap->free - allocated;
103 return 0;
104}
105
106static void * __meminit altmap_alloc_block_buf(unsigned long size,
107 struct vmem_altmap *altmap)
108{
109 unsigned long pfn, nr_pfns, nr_align;
110
111 if (size & ~PAGE_MASK) {
112 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
113 __func__, size);
114 return NULL;
115 }
116
117 pfn = vmem_altmap_next_pfn(altmap);
118 nr_pfns = size >> PAGE_SHIFT;
119 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
120 nr_align = ALIGN(pfn, nr_align) - pfn;
121 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
122 return NULL;
123
124 altmap->alloc += nr_pfns;
125 altmap->align += nr_align;
126 pfn += nr_align;
127
128 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
129 __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
130 return __va(__pfn_to_phys(pfn));
131}
132
133void __meminit vmemmap_verify(pte_t *pte, int node,
134 unsigned long start, unsigned long end)
135{
136 unsigned long pfn = pte_pfn(*pte);
137 int actual_node = early_pfn_to_nid(pfn);
138
139 if (node_distance(actual_node, node) > LOCAL_DISTANCE)
140 pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
141 start, end - 1);
142}
143
144pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
145 struct vmem_altmap *altmap,
146 struct page *reuse)
147{
148 pte_t *pte = pte_offset_kernel(pmd, addr);
149 if (pte_none(*pte)) {
150 pte_t entry;
151 void *p;
152
153 if (!reuse) {
154 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
155 if (!p)
156 return NULL;
157 } else {
158 /*
159 * When a PTE/PMD entry is freed from the init_mm
160 * there's a free_pages() call to this page allocated
161 * above. Thus this get_page() is paired with the
162 * put_page_testzero() on the freeing path.
163 * This can only called by certain ZONE_DEVICE path,
164 * and through vmemmap_populate_compound_pages() when
165 * slab is available.
166 */
167 get_page(reuse);
168 p = page_to_virt(reuse);
169 }
170 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
171 set_pte_at(&init_mm, addr, pte, entry);
172 }
173 return pte;
174}
175
176static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
177{
178 void *p = vmemmap_alloc_block(size, node);
179
180 if (!p)
181 return NULL;
182 memset(p, 0, size);
183
184 return p;
185}
186
187pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
188{
189 pmd_t *pmd = pmd_offset(pud, addr);
190 if (pmd_none(*pmd)) {
191 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
192 if (!p)
193 return NULL;
194 pmd_populate_kernel(&init_mm, pmd, p);
195 }
196 return pmd;
197}
198
199pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
200{
201 pud_t *pud = pud_offset(p4d, addr);
202 if (pud_none(*pud)) {
203 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
204 if (!p)
205 return NULL;
206 pud_populate(&init_mm, pud, p);
207 }
208 return pud;
209}
210
211p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
212{
213 p4d_t *p4d = p4d_offset(pgd, addr);
214 if (p4d_none(*p4d)) {
215 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
216 if (!p)
217 return NULL;
218 p4d_populate(&init_mm, p4d, p);
219 }
220 return p4d;
221}
222
223pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
224{
225 pgd_t *pgd = pgd_offset_k(addr);
226 if (pgd_none(*pgd)) {
227 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
228 if (!p)
229 return NULL;
230 pgd_populate(&init_mm, pgd, p);
231 }
232 return pgd;
233}
234
235static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
236 struct vmem_altmap *altmap,
237 struct page *reuse)
238{
239 pgd_t *pgd;
240 p4d_t *p4d;
241 pud_t *pud;
242 pmd_t *pmd;
243 pte_t *pte;
244
245 pgd = vmemmap_pgd_populate(addr, node);
246 if (!pgd)
247 return NULL;
248 p4d = vmemmap_p4d_populate(pgd, addr, node);
249 if (!p4d)
250 return NULL;
251 pud = vmemmap_pud_populate(p4d, addr, node);
252 if (!pud)
253 return NULL;
254 pmd = vmemmap_pmd_populate(pud, addr, node);
255 if (!pmd)
256 return NULL;
257 pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
258 if (!pte)
259 return NULL;
260 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
261
262 return pte;
263}
264
265static int __meminit vmemmap_populate_range(unsigned long start,
266 unsigned long end, int node,
267 struct vmem_altmap *altmap,
268 struct page *reuse)
269{
270 unsigned long addr = start;
271 pte_t *pte;
272
273 for (; addr < end; addr += PAGE_SIZE) {
274 pte = vmemmap_populate_address(addr, node, altmap, reuse);
275 if (!pte)
276 return -ENOMEM;
277 }
278
279 return 0;
280}
281
282int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
283 int node, struct vmem_altmap *altmap)
284{
285 return vmemmap_populate_range(start, end, node, altmap, NULL);
286}
287
288/*
289 * For compound pages bigger than section size (e.g. x86 1G compound
290 * pages with 2M subsection size) fill the rest of sections as tail
291 * pages.
292 *
293 * Note that memremap_pages() resets @nr_range value and will increment
294 * it after each range successful onlining. Thus the value or @nr_range
295 * at section memmap populate corresponds to the in-progress range
296 * being onlined here.
297 */
298static bool __meminit reuse_compound_section(unsigned long start_pfn,
299 struct dev_pagemap *pgmap)
300{
301 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
302 unsigned long offset = start_pfn -
303 PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
304
305 return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
306}
307
308static pte_t * __meminit compound_section_tail_page(unsigned long addr)
309{
310 pte_t *pte;
311
312 addr -= PAGE_SIZE;
313
314 /*
315 * Assuming sections are populated sequentially, the previous section's
316 * page data can be reused.
317 */
318 pte = pte_offset_kernel(pmd_off_k(addr), addr);
319 if (!pte)
320 return NULL;
321
322 return pte;
323}
324
325static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
326 unsigned long start,
327 unsigned long end, int node,
328 struct dev_pagemap *pgmap)
329{
330 unsigned long size, addr;
331 pte_t *pte;
332 int rc;
333
334 if (reuse_compound_section(start_pfn, pgmap)) {
335 pte = compound_section_tail_page(start);
336 if (!pte)
337 return -ENOMEM;
338
339 /*
340 * Reuse the page that was populated in the prior iteration
341 * with just tail struct pages.
342 */
343 return vmemmap_populate_range(start, end, node, NULL,
344 pte_page(*pte));
345 }
346
347 size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
348 for (addr = start; addr < end; addr += size) {
349 unsigned long next, last = addr + size;
350
351 /* Populate the head page vmemmap page */
352 pte = vmemmap_populate_address(addr, node, NULL, NULL);
353 if (!pte)
354 return -ENOMEM;
355
356 /* Populate the tail pages vmemmap page */
357 next = addr + PAGE_SIZE;
358 pte = vmemmap_populate_address(next, node, NULL, NULL);
359 if (!pte)
360 return -ENOMEM;
361
362 /*
363 * Reuse the previous page for the rest of tail pages
364 * See layout diagram in Documentation/mm/vmemmap_dedup.rst
365 */
366 next += PAGE_SIZE;
367 rc = vmemmap_populate_range(next, last, node, NULL,
368 pte_page(*pte));
369 if (rc)
370 return -ENOMEM;
371 }
372
373 return 0;
374}
375
376struct page * __meminit __populate_section_memmap(unsigned long pfn,
377 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
378 struct dev_pagemap *pgmap)
379{
380 unsigned long start = (unsigned long) pfn_to_page(pfn);
381 unsigned long end = start + nr_pages * sizeof(struct page);
382 int r;
383
384 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
385 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
386 return NULL;
387
388 if (is_power_of_2(sizeof(struct page)) &&
389 pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap)
390 r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
391 else
392 r = vmemmap_populate(start, end, nid, altmap);
393
394 if (r < 0)
395 return NULL;
396
397 return pfn_to_page(pfn);
398}