mm/slub: remove redundant kasan_reset_tag() from freelist_ptr calculations
[linux-block.git] / mm / slub.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* mm_account_reclaimed_pages() */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/proc_fs.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/kmsan.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
30#include <linux/stackdepot.h>
31#include <linux/debugobjects.h>
32#include <linux/kallsyms.h>
33#include <linux/kfence.h>
34#include <linux/memory.h>
35#include <linux/math64.h>
36#include <linux/fault-inject.h>
37#include <linux/stacktrace.h>
38#include <linux/prefetch.h>
39#include <linux/memcontrol.h>
40#include <linux/random.h>
41#include <kunit/test.h>
42#include <kunit/test-bug.h>
43#include <linux/sort.h>
44
45#include <linux/debugfs.h>
46#include <trace/events/kmem.h>
47
48#include "internal.h"
49
50/*
51 * Lock order:
52 * 1. slab_mutex (Global Mutex)
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
55 * 4. slab_lock(slab) (Only on some arches)
56 * 5. object_map_lock (Only for debugging)
57 *
58 * slab_mutex
59 *
60 * The role of the slab_mutex is to protect the list of all the slabs
61 * and to synchronize major metadata changes to slab cache structures.
62 * Also synchronizes memory hotplug callbacks.
63 *
64 * slab_lock
65 *
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * spinlock.
68 *
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
71 *
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
76 *
77 * Frozen slabs
78 *
79 * If a slab is frozen then it is exempt from list management. It is not
80 * on any list except per cpu partial list. The processor that froze the
81 * slab is the one who can perform list operations on the slab. Other
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
84 * slab's freelist.
85 *
86 * list_lock
87 *
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
93 *
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
98 * the list lock.
99 *
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
102 *
103 * cpu_slab->lock local lock
104 *
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
109 *
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
114 *
115 * lockless fastpaths
116 *
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
122 * another cpu.
123 *
124 * irq, preemption, migration considerations
125 *
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
129 *
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
148 * slab->frozen The slab is frozen and exempt from list processing.
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
156 *
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
160 * freelist that allows lockless access to
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
163 *
164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
165 * options set. This moves slab handling out of
166 * the fast path and disables lockless freelists.
167 */
168
169/*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173#ifndef CONFIG_PREEMPT_RT
174#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176#define USE_LOCKLESS_FAST_PATH() (true)
177#else
178#define slub_get_cpu_ptr(var) \
179({ \
180 migrate_disable(); \
181 this_cpu_ptr(var); \
182})
183#define slub_put_cpu_ptr(var) \
184do { \
185 (void)(var); \
186 migrate_enable(); \
187} while (0)
188#define USE_LOCKLESS_FAST_PATH() (false)
189#endif
190
191#ifndef CONFIG_SLUB_TINY
192#define __fastpath_inline __always_inline
193#else
194#define __fastpath_inline
195#endif
196
197#ifdef CONFIG_SLUB_DEBUG
198#ifdef CONFIG_SLUB_DEBUG_ON
199DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200#else
201DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202#endif
203#endif /* CONFIG_SLUB_DEBUG */
204
205/* Structure holding parameters for get_partial() call chain */
206struct partial_context {
207 struct slab **slab;
208 gfp_t flags;
209 unsigned int orig_size;
210};
211
212static inline bool kmem_cache_debug(struct kmem_cache *s)
213{
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215}
216
217static inline bool slub_debug_orig_size(struct kmem_cache *s)
218{
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
221}
222
223void *fixup_red_left(struct kmem_cache *s, void *p)
224{
225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 p += s->red_left_pad;
227
228 return p;
229}
230
231static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232{
233#ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
235#else
236 return false;
237#endif
238}
239
240/*
241 * Issues still to be resolved:
242 *
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
245 * - Variable sizing of the per node arrays
246 */
247
248/* Enable to log cmpxchg failures */
249#undef SLUB_DEBUG_CMPXCHG
250
251#ifndef CONFIG_SLUB_TINY
252/*
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
256#define MIN_PARTIAL 5
257
258/*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
262 */
263#define MAX_PARTIAL 10
264#else
265#define MIN_PARTIAL 0
266#define MAX_PARTIAL 0
267#endif
268
269#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 SLAB_POISON | SLAB_STORE_USER)
271
272/*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 SLAB_TRACE)
278
279
280/*
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
284 */
285#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286
287#define OO_SHIFT 16
288#define OO_MASK ((1 << OO_SHIFT) - 1)
289#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
290
291/* Internal SLUB flags */
292/* Poison object */
293#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
294/* Use cmpxchg_double */
295
296#ifdef system_has_freelist_aba
297#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
298#else
299#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
300#endif
301
302/*
303 * Tracking user of a slab.
304 */
305#define TRACK_ADDRS_COUNT 16
306struct track {
307 unsigned long addr; /* Called from address */
308#ifdef CONFIG_STACKDEPOT
309 depot_stack_handle_t handle;
310#endif
311 int cpu; /* Was running on cpu */
312 int pid; /* Pid context */
313 unsigned long when; /* When did the operation occur */
314};
315
316enum track_item { TRACK_ALLOC, TRACK_FREE };
317
318#ifdef SLAB_SUPPORTS_SYSFS
319static int sysfs_slab_add(struct kmem_cache *);
320static int sysfs_slab_alias(struct kmem_cache *, const char *);
321#else
322static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 { return 0; }
325#endif
326
327#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328static void debugfs_slab_add(struct kmem_cache *);
329#else
330static inline void debugfs_slab_add(struct kmem_cache *s) { }
331#endif
332
333static inline void stat(const struct kmem_cache *s, enum stat_item si)
334{
335#ifdef CONFIG_SLUB_STATS
336 /*
337 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 * avoid this_cpu_add()'s irq-disable overhead.
339 */
340 raw_cpu_inc(s->cpu_slab->stat[si]);
341#endif
342}
343
344/*
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
349 */
350static nodemask_t slab_nodes;
351
352#ifndef CONFIG_SLUB_TINY
353/*
354 * Workqueue used for flush_cpu_slab().
355 */
356static struct workqueue_struct *flushwq;
357#endif
358
359/********************************************************************
360 * Core slab cache functions
361 *******************************************************************/
362
363/*
364 * freeptr_t represents a SLUB freelist pointer, which might be encoded
365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
366 */
367typedef struct { unsigned long v; } freeptr_t;
368
369/*
370 * Returns freelist pointer (ptr). With hardening, this is obfuscated
371 * with an XOR of the address where the pointer is held and a per-cache
372 * random number.
373 */
374static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
375 void *ptr, unsigned long ptr_addr)
376{
377 unsigned long encoded;
378
379#ifdef CONFIG_SLAB_FREELIST_HARDENED
380 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
381#else
382 encoded = (unsigned long)ptr;
383#endif
384 return (freeptr_t){.v = encoded};
385}
386
387static inline void *freelist_ptr_decode(const struct kmem_cache *s,
388 freeptr_t ptr, unsigned long ptr_addr)
389{
390 void *decoded;
391
392#ifdef CONFIG_SLAB_FREELIST_HARDENED
393 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
394#else
395 decoded = (void *)ptr.v;
396#endif
397 return decoded;
398}
399
400/* Returns the freelist pointer recorded at location ptr_addr. */
401static inline void *freelist_dereference(const struct kmem_cache *s,
402 void *ptr_addr)
403{
404 return freelist_ptr_decode(s, *(freeptr_t *)(ptr_addr),
405 (unsigned long)ptr_addr);
406}
407
408static inline void *get_freepointer(struct kmem_cache *s, void *object)
409{
410 object = kasan_reset_tag(object);
411 return freelist_dereference(s, (freeptr_t *)(object + s->offset));
412}
413
414#ifndef CONFIG_SLUB_TINY
415static void prefetch_freepointer(const struct kmem_cache *s, void *object)
416{
417 prefetchw(object + s->offset);
418}
419#endif
420
421/*
422 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
423 * pointer value in the case the current thread loses the race for the next
424 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
425 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
426 * KMSAN will still check all arguments of cmpxchg because of imperfect
427 * handling of inline assembly.
428 * To work around this problem, we apply __no_kmsan_checks to ensure that
429 * get_freepointer_safe() returns initialized memory.
430 */
431__no_kmsan_checks
432static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
433{
434 unsigned long freepointer_addr;
435 freeptr_t p;
436
437 if (!debug_pagealloc_enabled_static())
438 return get_freepointer(s, object);
439
440 object = kasan_reset_tag(object);
441 freepointer_addr = (unsigned long)object + s->offset;
442 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
443 return freelist_ptr_decode(s, p, freepointer_addr);
444}
445
446static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
447{
448 unsigned long freeptr_addr = (unsigned long)object + s->offset;
449
450#ifdef CONFIG_SLAB_FREELIST_HARDENED
451 BUG_ON(object == fp); /* naive detection of double free or corruption */
452#endif
453
454 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
455 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
456}
457
458/* Loop over all objects in a slab */
459#define for_each_object(__p, __s, __addr, __objects) \
460 for (__p = fixup_red_left(__s, __addr); \
461 __p < (__addr) + (__objects) * (__s)->size; \
462 __p += (__s)->size)
463
464static inline unsigned int order_objects(unsigned int order, unsigned int size)
465{
466 return ((unsigned int)PAGE_SIZE << order) / size;
467}
468
469static inline struct kmem_cache_order_objects oo_make(unsigned int order,
470 unsigned int size)
471{
472 struct kmem_cache_order_objects x = {
473 (order << OO_SHIFT) + order_objects(order, size)
474 };
475
476 return x;
477}
478
479static inline unsigned int oo_order(struct kmem_cache_order_objects x)
480{
481 return x.x >> OO_SHIFT;
482}
483
484static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
485{
486 return x.x & OO_MASK;
487}
488
489#ifdef CONFIG_SLUB_CPU_PARTIAL
490static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
491{
492 unsigned int nr_slabs;
493
494 s->cpu_partial = nr_objects;
495
496 /*
497 * We take the number of objects but actually limit the number of
498 * slabs on the per cpu partial list, in order to limit excessive
499 * growth of the list. For simplicity we assume that the slabs will
500 * be half-full.
501 */
502 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
503 s->cpu_partial_slabs = nr_slabs;
504}
505#else
506static inline void
507slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
508{
509}
510#endif /* CONFIG_SLUB_CPU_PARTIAL */
511
512/*
513 * Per slab locking using the pagelock
514 */
515static __always_inline void slab_lock(struct slab *slab)
516{
517 struct page *page = slab_page(slab);
518
519 VM_BUG_ON_PAGE(PageTail(page), page);
520 bit_spin_lock(PG_locked, &page->flags);
521}
522
523static __always_inline void slab_unlock(struct slab *slab)
524{
525 struct page *page = slab_page(slab);
526
527 VM_BUG_ON_PAGE(PageTail(page), page);
528 __bit_spin_unlock(PG_locked, &page->flags);
529}
530
531static inline bool
532__update_freelist_fast(struct slab *slab,
533 void *freelist_old, unsigned long counters_old,
534 void *freelist_new, unsigned long counters_new)
535{
536#ifdef system_has_freelist_aba
537 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
538 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
539
540 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
541#else
542 return false;
543#endif
544}
545
546static inline bool
547__update_freelist_slow(struct slab *slab,
548 void *freelist_old, unsigned long counters_old,
549 void *freelist_new, unsigned long counters_new)
550{
551 bool ret = false;
552
553 slab_lock(slab);
554 if (slab->freelist == freelist_old &&
555 slab->counters == counters_old) {
556 slab->freelist = freelist_new;
557 slab->counters = counters_new;
558 ret = true;
559 }
560 slab_unlock(slab);
561
562 return ret;
563}
564
565/*
566 * Interrupts must be disabled (for the fallback code to work right), typically
567 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
568 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
569 * allocation/ free operation in hardirq context. Therefore nothing can
570 * interrupt the operation.
571 */
572static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
573 void *freelist_old, unsigned long counters_old,
574 void *freelist_new, unsigned long counters_new,
575 const char *n)
576{
577 bool ret;
578
579 if (USE_LOCKLESS_FAST_PATH())
580 lockdep_assert_irqs_disabled();
581
582 if (s->flags & __CMPXCHG_DOUBLE) {
583 ret = __update_freelist_fast(slab, freelist_old, counters_old,
584 freelist_new, counters_new);
585 } else {
586 ret = __update_freelist_slow(slab, freelist_old, counters_old,
587 freelist_new, counters_new);
588 }
589 if (likely(ret))
590 return true;
591
592 cpu_relax();
593 stat(s, CMPXCHG_DOUBLE_FAIL);
594
595#ifdef SLUB_DEBUG_CMPXCHG
596 pr_info("%s %s: cmpxchg double redo ", n, s->name);
597#endif
598
599 return false;
600}
601
602static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
603 void *freelist_old, unsigned long counters_old,
604 void *freelist_new, unsigned long counters_new,
605 const char *n)
606{
607 bool ret;
608
609 if (s->flags & __CMPXCHG_DOUBLE) {
610 ret = __update_freelist_fast(slab, freelist_old, counters_old,
611 freelist_new, counters_new);
612 } else {
613 unsigned long flags;
614
615 local_irq_save(flags);
616 ret = __update_freelist_slow(slab, freelist_old, counters_old,
617 freelist_new, counters_new);
618 local_irq_restore(flags);
619 }
620 if (likely(ret))
621 return true;
622
623 cpu_relax();
624 stat(s, CMPXCHG_DOUBLE_FAIL);
625
626#ifdef SLUB_DEBUG_CMPXCHG
627 pr_info("%s %s: cmpxchg double redo ", n, s->name);
628#endif
629
630 return false;
631}
632
633#ifdef CONFIG_SLUB_DEBUG
634static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
635static DEFINE_SPINLOCK(object_map_lock);
636
637static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
638 struct slab *slab)
639{
640 void *addr = slab_address(slab);
641 void *p;
642
643 bitmap_zero(obj_map, slab->objects);
644
645 for (p = slab->freelist; p; p = get_freepointer(s, p))
646 set_bit(__obj_to_index(s, addr, p), obj_map);
647}
648
649#if IS_ENABLED(CONFIG_KUNIT)
650static bool slab_add_kunit_errors(void)
651{
652 struct kunit_resource *resource;
653
654 if (!kunit_get_current_test())
655 return false;
656
657 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
658 if (!resource)
659 return false;
660
661 (*(int *)resource->data)++;
662 kunit_put_resource(resource);
663 return true;
664}
665#else
666static inline bool slab_add_kunit_errors(void) { return false; }
667#endif
668
669static inline unsigned int size_from_object(struct kmem_cache *s)
670{
671 if (s->flags & SLAB_RED_ZONE)
672 return s->size - s->red_left_pad;
673
674 return s->size;
675}
676
677static inline void *restore_red_left(struct kmem_cache *s, void *p)
678{
679 if (s->flags & SLAB_RED_ZONE)
680 p -= s->red_left_pad;
681
682 return p;
683}
684
685/*
686 * Debug settings:
687 */
688#if defined(CONFIG_SLUB_DEBUG_ON)
689static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
690#else
691static slab_flags_t slub_debug;
692#endif
693
694static char *slub_debug_string;
695static int disable_higher_order_debug;
696
697/*
698 * slub is about to manipulate internal object metadata. This memory lies
699 * outside the range of the allocated object, so accessing it would normally
700 * be reported by kasan as a bounds error. metadata_access_enable() is used
701 * to tell kasan that these accesses are OK.
702 */
703static inline void metadata_access_enable(void)
704{
705 kasan_disable_current();
706}
707
708static inline void metadata_access_disable(void)
709{
710 kasan_enable_current();
711}
712
713/*
714 * Object debugging
715 */
716
717/* Verify that a pointer has an address that is valid within a slab page */
718static inline int check_valid_pointer(struct kmem_cache *s,
719 struct slab *slab, void *object)
720{
721 void *base;
722
723 if (!object)
724 return 1;
725
726 base = slab_address(slab);
727 object = kasan_reset_tag(object);
728 object = restore_red_left(s, object);
729 if (object < base || object >= base + slab->objects * s->size ||
730 (object - base) % s->size) {
731 return 0;
732 }
733
734 return 1;
735}
736
737static void print_section(char *level, char *text, u8 *addr,
738 unsigned int length)
739{
740 metadata_access_enable();
741 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
742 16, 1, kasan_reset_tag((void *)addr), length, 1);
743 metadata_access_disable();
744}
745
746/*
747 * See comment in calculate_sizes().
748 */
749static inline bool freeptr_outside_object(struct kmem_cache *s)
750{
751 return s->offset >= s->inuse;
752}
753
754/*
755 * Return offset of the end of info block which is inuse + free pointer if
756 * not overlapping with object.
757 */
758static inline unsigned int get_info_end(struct kmem_cache *s)
759{
760 if (freeptr_outside_object(s))
761 return s->inuse + sizeof(void *);
762 else
763 return s->inuse;
764}
765
766static struct track *get_track(struct kmem_cache *s, void *object,
767 enum track_item alloc)
768{
769 struct track *p;
770
771 p = object + get_info_end(s);
772
773 return kasan_reset_tag(p + alloc);
774}
775
776#ifdef CONFIG_STACKDEPOT
777static noinline depot_stack_handle_t set_track_prepare(void)
778{
779 depot_stack_handle_t handle;
780 unsigned long entries[TRACK_ADDRS_COUNT];
781 unsigned int nr_entries;
782
783 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
784 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
785
786 return handle;
787}
788#else
789static inline depot_stack_handle_t set_track_prepare(void)
790{
791 return 0;
792}
793#endif
794
795static void set_track_update(struct kmem_cache *s, void *object,
796 enum track_item alloc, unsigned long addr,
797 depot_stack_handle_t handle)
798{
799 struct track *p = get_track(s, object, alloc);
800
801#ifdef CONFIG_STACKDEPOT
802 p->handle = handle;
803#endif
804 p->addr = addr;
805 p->cpu = smp_processor_id();
806 p->pid = current->pid;
807 p->when = jiffies;
808}
809
810static __always_inline void set_track(struct kmem_cache *s, void *object,
811 enum track_item alloc, unsigned long addr)
812{
813 depot_stack_handle_t handle = set_track_prepare();
814
815 set_track_update(s, object, alloc, addr, handle);
816}
817
818static void init_tracking(struct kmem_cache *s, void *object)
819{
820 struct track *p;
821
822 if (!(s->flags & SLAB_STORE_USER))
823 return;
824
825 p = get_track(s, object, TRACK_ALLOC);
826 memset(p, 0, 2*sizeof(struct track));
827}
828
829static void print_track(const char *s, struct track *t, unsigned long pr_time)
830{
831 depot_stack_handle_t handle __maybe_unused;
832
833 if (!t->addr)
834 return;
835
836 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
837 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
838#ifdef CONFIG_STACKDEPOT
839 handle = READ_ONCE(t->handle);
840 if (handle)
841 stack_depot_print(handle);
842 else
843 pr_err("object allocation/free stack trace missing\n");
844#endif
845}
846
847void print_tracking(struct kmem_cache *s, void *object)
848{
849 unsigned long pr_time = jiffies;
850 if (!(s->flags & SLAB_STORE_USER))
851 return;
852
853 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
854 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
855}
856
857static void print_slab_info(const struct slab *slab)
858{
859 struct folio *folio = (struct folio *)slab_folio(slab);
860
861 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
862 slab, slab->objects, slab->inuse, slab->freelist,
863 folio_flags(folio, 0));
864}
865
866/*
867 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
868 * family will round up the real request size to these fixed ones, so
869 * there could be an extra area than what is requested. Save the original
870 * request size in the meta data area, for better debug and sanity check.
871 */
872static inline void set_orig_size(struct kmem_cache *s,
873 void *object, unsigned int orig_size)
874{
875 void *p = kasan_reset_tag(object);
876
877 if (!slub_debug_orig_size(s))
878 return;
879
880#ifdef CONFIG_KASAN_GENERIC
881 /*
882 * KASAN could save its free meta data in object's data area at
883 * offset 0, if the size is larger than 'orig_size', it will
884 * overlap the data redzone in [orig_size+1, object_size], and
885 * the check should be skipped.
886 */
887 if (kasan_metadata_size(s, true) > orig_size)
888 orig_size = s->object_size;
889#endif
890
891 p += get_info_end(s);
892 p += sizeof(struct track) * 2;
893
894 *(unsigned int *)p = orig_size;
895}
896
897static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
898{
899 void *p = kasan_reset_tag(object);
900
901 if (!slub_debug_orig_size(s))
902 return s->object_size;
903
904 p += get_info_end(s);
905 p += sizeof(struct track) * 2;
906
907 return *(unsigned int *)p;
908}
909
910void skip_orig_size_check(struct kmem_cache *s, const void *object)
911{
912 set_orig_size(s, (void *)object, s->object_size);
913}
914
915static void slab_bug(struct kmem_cache *s, char *fmt, ...)
916{
917 struct va_format vaf;
918 va_list args;
919
920 va_start(args, fmt);
921 vaf.fmt = fmt;
922 vaf.va = &args;
923 pr_err("=============================================================================\n");
924 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
925 pr_err("-----------------------------------------------------------------------------\n\n");
926 va_end(args);
927}
928
929__printf(2, 3)
930static void slab_fix(struct kmem_cache *s, char *fmt, ...)
931{
932 struct va_format vaf;
933 va_list args;
934
935 if (slab_add_kunit_errors())
936 return;
937
938 va_start(args, fmt);
939 vaf.fmt = fmt;
940 vaf.va = &args;
941 pr_err("FIX %s: %pV\n", s->name, &vaf);
942 va_end(args);
943}
944
945static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
946{
947 unsigned int off; /* Offset of last byte */
948 u8 *addr = slab_address(slab);
949
950 print_tracking(s, p);
951
952 print_slab_info(slab);
953
954 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
955 p, p - addr, get_freepointer(s, p));
956
957 if (s->flags & SLAB_RED_ZONE)
958 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
959 s->red_left_pad);
960 else if (p > addr + 16)
961 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
962
963 print_section(KERN_ERR, "Object ", p,
964 min_t(unsigned int, s->object_size, PAGE_SIZE));
965 if (s->flags & SLAB_RED_ZONE)
966 print_section(KERN_ERR, "Redzone ", p + s->object_size,
967 s->inuse - s->object_size);
968
969 off = get_info_end(s);
970
971 if (s->flags & SLAB_STORE_USER)
972 off += 2 * sizeof(struct track);
973
974 if (slub_debug_orig_size(s))
975 off += sizeof(unsigned int);
976
977 off += kasan_metadata_size(s, false);
978
979 if (off != size_from_object(s))
980 /* Beginning of the filler is the free pointer */
981 print_section(KERN_ERR, "Padding ", p + off,
982 size_from_object(s) - off);
983
984 dump_stack();
985}
986
987static void object_err(struct kmem_cache *s, struct slab *slab,
988 u8 *object, char *reason)
989{
990 if (slab_add_kunit_errors())
991 return;
992
993 slab_bug(s, "%s", reason);
994 print_trailer(s, slab, object);
995 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
996}
997
998static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
999 void **freelist, void *nextfree)
1000{
1001 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1002 !check_valid_pointer(s, slab, nextfree) && freelist) {
1003 object_err(s, slab, *freelist, "Freechain corrupt");
1004 *freelist = NULL;
1005 slab_fix(s, "Isolate corrupted freechain");
1006 return true;
1007 }
1008
1009 return false;
1010}
1011
1012static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1013 const char *fmt, ...)
1014{
1015 va_list args;
1016 char buf[100];
1017
1018 if (slab_add_kunit_errors())
1019 return;
1020
1021 va_start(args, fmt);
1022 vsnprintf(buf, sizeof(buf), fmt, args);
1023 va_end(args);
1024 slab_bug(s, "%s", buf);
1025 print_slab_info(slab);
1026 dump_stack();
1027 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1028}
1029
1030static void init_object(struct kmem_cache *s, void *object, u8 val)
1031{
1032 u8 *p = kasan_reset_tag(object);
1033 unsigned int poison_size = s->object_size;
1034
1035 if (s->flags & SLAB_RED_ZONE) {
1036 memset(p - s->red_left_pad, val, s->red_left_pad);
1037
1038 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1039 /*
1040 * Redzone the extra allocated space by kmalloc than
1041 * requested, and the poison size will be limited to
1042 * the original request size accordingly.
1043 */
1044 poison_size = get_orig_size(s, object);
1045 }
1046 }
1047
1048 if (s->flags & __OBJECT_POISON) {
1049 memset(p, POISON_FREE, poison_size - 1);
1050 p[poison_size - 1] = POISON_END;
1051 }
1052
1053 if (s->flags & SLAB_RED_ZONE)
1054 memset(p + poison_size, val, s->inuse - poison_size);
1055}
1056
1057static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1058 void *from, void *to)
1059{
1060 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1061 memset(from, data, to - from);
1062}
1063
1064static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1065 u8 *object, char *what,
1066 u8 *start, unsigned int value, unsigned int bytes)
1067{
1068 u8 *fault;
1069 u8 *end;
1070 u8 *addr = slab_address(slab);
1071
1072 metadata_access_enable();
1073 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1074 metadata_access_disable();
1075 if (!fault)
1076 return 1;
1077
1078 end = start + bytes;
1079 while (end > fault && end[-1] == value)
1080 end--;
1081
1082 if (slab_add_kunit_errors())
1083 goto skip_bug_print;
1084
1085 slab_bug(s, "%s overwritten", what);
1086 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1087 fault, end - 1, fault - addr,
1088 fault[0], value);
1089 print_trailer(s, slab, object);
1090 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1091
1092skip_bug_print:
1093 restore_bytes(s, what, value, fault, end);
1094 return 0;
1095}
1096
1097/*
1098 * Object layout:
1099 *
1100 * object address
1101 * Bytes of the object to be managed.
1102 * If the freepointer may overlay the object then the free
1103 * pointer is at the middle of the object.
1104 *
1105 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1106 * 0xa5 (POISON_END)
1107 *
1108 * object + s->object_size
1109 * Padding to reach word boundary. This is also used for Redzoning.
1110 * Padding is extended by another word if Redzoning is enabled and
1111 * object_size == inuse.
1112 *
1113 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1114 * 0xcc (RED_ACTIVE) for objects in use.
1115 *
1116 * object + s->inuse
1117 * Meta data starts here.
1118 *
1119 * A. Free pointer (if we cannot overwrite object on free)
1120 * B. Tracking data for SLAB_STORE_USER
1121 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1122 * D. Padding to reach required alignment boundary or at minimum
1123 * one word if debugging is on to be able to detect writes
1124 * before the word boundary.
1125 *
1126 * Padding is done using 0x5a (POISON_INUSE)
1127 *
1128 * object + s->size
1129 * Nothing is used beyond s->size.
1130 *
1131 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1132 * ignored. And therefore no slab options that rely on these boundaries
1133 * may be used with merged slabcaches.
1134 */
1135
1136static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1137{
1138 unsigned long off = get_info_end(s); /* The end of info */
1139
1140 if (s->flags & SLAB_STORE_USER) {
1141 /* We also have user information there */
1142 off += 2 * sizeof(struct track);
1143
1144 if (s->flags & SLAB_KMALLOC)
1145 off += sizeof(unsigned int);
1146 }
1147
1148 off += kasan_metadata_size(s, false);
1149
1150 if (size_from_object(s) == off)
1151 return 1;
1152
1153 return check_bytes_and_report(s, slab, p, "Object padding",
1154 p + off, POISON_INUSE, size_from_object(s) - off);
1155}
1156
1157/* Check the pad bytes at the end of a slab page */
1158static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1159{
1160 u8 *start;
1161 u8 *fault;
1162 u8 *end;
1163 u8 *pad;
1164 int length;
1165 int remainder;
1166
1167 if (!(s->flags & SLAB_POISON))
1168 return;
1169
1170 start = slab_address(slab);
1171 length = slab_size(slab);
1172 end = start + length;
1173 remainder = length % s->size;
1174 if (!remainder)
1175 return;
1176
1177 pad = end - remainder;
1178 metadata_access_enable();
1179 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1180 metadata_access_disable();
1181 if (!fault)
1182 return;
1183 while (end > fault && end[-1] == POISON_INUSE)
1184 end--;
1185
1186 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1187 fault, end - 1, fault - start);
1188 print_section(KERN_ERR, "Padding ", pad, remainder);
1189
1190 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1191}
1192
1193static int check_object(struct kmem_cache *s, struct slab *slab,
1194 void *object, u8 val)
1195{
1196 u8 *p = object;
1197 u8 *endobject = object + s->object_size;
1198 unsigned int orig_size;
1199
1200 if (s->flags & SLAB_RED_ZONE) {
1201 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1202 object - s->red_left_pad, val, s->red_left_pad))
1203 return 0;
1204
1205 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1206 endobject, val, s->inuse - s->object_size))
1207 return 0;
1208
1209 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1210 orig_size = get_orig_size(s, object);
1211
1212 if (s->object_size > orig_size &&
1213 !check_bytes_and_report(s, slab, object,
1214 "kmalloc Redzone", p + orig_size,
1215 val, s->object_size - orig_size)) {
1216 return 0;
1217 }
1218 }
1219 } else {
1220 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1221 check_bytes_and_report(s, slab, p, "Alignment padding",
1222 endobject, POISON_INUSE,
1223 s->inuse - s->object_size);
1224 }
1225 }
1226
1227 if (s->flags & SLAB_POISON) {
1228 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1229 (!check_bytes_and_report(s, slab, p, "Poison", p,
1230 POISON_FREE, s->object_size - 1) ||
1231 !check_bytes_and_report(s, slab, p, "End Poison",
1232 p + s->object_size - 1, POISON_END, 1)))
1233 return 0;
1234 /*
1235 * check_pad_bytes cleans up on its own.
1236 */
1237 check_pad_bytes(s, slab, p);
1238 }
1239
1240 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1241 /*
1242 * Object and freepointer overlap. Cannot check
1243 * freepointer while object is allocated.
1244 */
1245 return 1;
1246
1247 /* Check free pointer validity */
1248 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1249 object_err(s, slab, p, "Freepointer corrupt");
1250 /*
1251 * No choice but to zap it and thus lose the remainder
1252 * of the free objects in this slab. May cause
1253 * another error because the object count is now wrong.
1254 */
1255 set_freepointer(s, p, NULL);
1256 return 0;
1257 }
1258 return 1;
1259}
1260
1261static int check_slab(struct kmem_cache *s, struct slab *slab)
1262{
1263 int maxobj;
1264
1265 if (!folio_test_slab(slab_folio(slab))) {
1266 slab_err(s, slab, "Not a valid slab page");
1267 return 0;
1268 }
1269
1270 maxobj = order_objects(slab_order(slab), s->size);
1271 if (slab->objects > maxobj) {
1272 slab_err(s, slab, "objects %u > max %u",
1273 slab->objects, maxobj);
1274 return 0;
1275 }
1276 if (slab->inuse > slab->objects) {
1277 slab_err(s, slab, "inuse %u > max %u",
1278 slab->inuse, slab->objects);
1279 return 0;
1280 }
1281 /* Slab_pad_check fixes things up after itself */
1282 slab_pad_check(s, slab);
1283 return 1;
1284}
1285
1286/*
1287 * Determine if a certain object in a slab is on the freelist. Must hold the
1288 * slab lock to guarantee that the chains are in a consistent state.
1289 */
1290static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1291{
1292 int nr = 0;
1293 void *fp;
1294 void *object = NULL;
1295 int max_objects;
1296
1297 fp = slab->freelist;
1298 while (fp && nr <= slab->objects) {
1299 if (fp == search)
1300 return 1;
1301 if (!check_valid_pointer(s, slab, fp)) {
1302 if (object) {
1303 object_err(s, slab, object,
1304 "Freechain corrupt");
1305 set_freepointer(s, object, NULL);
1306 } else {
1307 slab_err(s, slab, "Freepointer corrupt");
1308 slab->freelist = NULL;
1309 slab->inuse = slab->objects;
1310 slab_fix(s, "Freelist cleared");
1311 return 0;
1312 }
1313 break;
1314 }
1315 object = fp;
1316 fp = get_freepointer(s, object);
1317 nr++;
1318 }
1319
1320 max_objects = order_objects(slab_order(slab), s->size);
1321 if (max_objects > MAX_OBJS_PER_PAGE)
1322 max_objects = MAX_OBJS_PER_PAGE;
1323
1324 if (slab->objects != max_objects) {
1325 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1326 slab->objects, max_objects);
1327 slab->objects = max_objects;
1328 slab_fix(s, "Number of objects adjusted");
1329 }
1330 if (slab->inuse != slab->objects - nr) {
1331 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1332 slab->inuse, slab->objects - nr);
1333 slab->inuse = slab->objects - nr;
1334 slab_fix(s, "Object count adjusted");
1335 }
1336 return search == NULL;
1337}
1338
1339static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1340 int alloc)
1341{
1342 if (s->flags & SLAB_TRACE) {
1343 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1344 s->name,
1345 alloc ? "alloc" : "free",
1346 object, slab->inuse,
1347 slab->freelist);
1348
1349 if (!alloc)
1350 print_section(KERN_INFO, "Object ", (void *)object,
1351 s->object_size);
1352
1353 dump_stack();
1354 }
1355}
1356
1357/*
1358 * Tracking of fully allocated slabs for debugging purposes.
1359 */
1360static void add_full(struct kmem_cache *s,
1361 struct kmem_cache_node *n, struct slab *slab)
1362{
1363 if (!(s->flags & SLAB_STORE_USER))
1364 return;
1365
1366 lockdep_assert_held(&n->list_lock);
1367 list_add(&slab->slab_list, &n->full);
1368}
1369
1370static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1371{
1372 if (!(s->flags & SLAB_STORE_USER))
1373 return;
1374
1375 lockdep_assert_held(&n->list_lock);
1376 list_del(&slab->slab_list);
1377}
1378
1379static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1380{
1381 return atomic_long_read(&n->nr_slabs);
1382}
1383
1384static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1385{
1386 struct kmem_cache_node *n = get_node(s, node);
1387
1388 /*
1389 * May be called early in order to allocate a slab for the
1390 * kmem_cache_node structure. Solve the chicken-egg
1391 * dilemma by deferring the increment of the count during
1392 * bootstrap (see early_kmem_cache_node_alloc).
1393 */
1394 if (likely(n)) {
1395 atomic_long_inc(&n->nr_slabs);
1396 atomic_long_add(objects, &n->total_objects);
1397 }
1398}
1399static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1400{
1401 struct kmem_cache_node *n = get_node(s, node);
1402
1403 atomic_long_dec(&n->nr_slabs);
1404 atomic_long_sub(objects, &n->total_objects);
1405}
1406
1407/* Object debug checks for alloc/free paths */
1408static void setup_object_debug(struct kmem_cache *s, void *object)
1409{
1410 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1411 return;
1412
1413 init_object(s, object, SLUB_RED_INACTIVE);
1414 init_tracking(s, object);
1415}
1416
1417static
1418void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1419{
1420 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1421 return;
1422
1423 metadata_access_enable();
1424 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1425 metadata_access_disable();
1426}
1427
1428static inline int alloc_consistency_checks(struct kmem_cache *s,
1429 struct slab *slab, void *object)
1430{
1431 if (!check_slab(s, slab))
1432 return 0;
1433
1434 if (!check_valid_pointer(s, slab, object)) {
1435 object_err(s, slab, object, "Freelist Pointer check fails");
1436 return 0;
1437 }
1438
1439 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1440 return 0;
1441
1442 return 1;
1443}
1444
1445static noinline bool alloc_debug_processing(struct kmem_cache *s,
1446 struct slab *slab, void *object, int orig_size)
1447{
1448 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1449 if (!alloc_consistency_checks(s, slab, object))
1450 goto bad;
1451 }
1452
1453 /* Success. Perform special debug activities for allocs */
1454 trace(s, slab, object, 1);
1455 set_orig_size(s, object, orig_size);
1456 init_object(s, object, SLUB_RED_ACTIVE);
1457 return true;
1458
1459bad:
1460 if (folio_test_slab(slab_folio(slab))) {
1461 /*
1462 * If this is a slab page then lets do the best we can
1463 * to avoid issues in the future. Marking all objects
1464 * as used avoids touching the remaining objects.
1465 */
1466 slab_fix(s, "Marking all objects used");
1467 slab->inuse = slab->objects;
1468 slab->freelist = NULL;
1469 }
1470 return false;
1471}
1472
1473static inline int free_consistency_checks(struct kmem_cache *s,
1474 struct slab *slab, void *object, unsigned long addr)
1475{
1476 if (!check_valid_pointer(s, slab, object)) {
1477 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1478 return 0;
1479 }
1480
1481 if (on_freelist(s, slab, object)) {
1482 object_err(s, slab, object, "Object already free");
1483 return 0;
1484 }
1485
1486 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1487 return 0;
1488
1489 if (unlikely(s != slab->slab_cache)) {
1490 if (!folio_test_slab(slab_folio(slab))) {
1491 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1492 object);
1493 } else if (!slab->slab_cache) {
1494 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1495 object);
1496 dump_stack();
1497 } else
1498 object_err(s, slab, object,
1499 "page slab pointer corrupt.");
1500 return 0;
1501 }
1502 return 1;
1503}
1504
1505/*
1506 * Parse a block of slub_debug options. Blocks are delimited by ';'
1507 *
1508 * @str: start of block
1509 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1510 * @slabs: return start of list of slabs, or NULL when there's no list
1511 * @init: assume this is initial parsing and not per-kmem-create parsing
1512 *
1513 * returns the start of next block if there's any, or NULL
1514 */
1515static char *
1516parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1517{
1518 bool higher_order_disable = false;
1519
1520 /* Skip any completely empty blocks */
1521 while (*str && *str == ';')
1522 str++;
1523
1524 if (*str == ',') {
1525 /*
1526 * No options but restriction on slabs. This means full
1527 * debugging for slabs matching a pattern.
1528 */
1529 *flags = DEBUG_DEFAULT_FLAGS;
1530 goto check_slabs;
1531 }
1532 *flags = 0;
1533
1534 /* Determine which debug features should be switched on */
1535 for (; *str && *str != ',' && *str != ';'; str++) {
1536 switch (tolower(*str)) {
1537 case '-':
1538 *flags = 0;
1539 break;
1540 case 'f':
1541 *flags |= SLAB_CONSISTENCY_CHECKS;
1542 break;
1543 case 'z':
1544 *flags |= SLAB_RED_ZONE;
1545 break;
1546 case 'p':
1547 *flags |= SLAB_POISON;
1548 break;
1549 case 'u':
1550 *flags |= SLAB_STORE_USER;
1551 break;
1552 case 't':
1553 *flags |= SLAB_TRACE;
1554 break;
1555 case 'a':
1556 *flags |= SLAB_FAILSLAB;
1557 break;
1558 case 'o':
1559 /*
1560 * Avoid enabling debugging on caches if its minimum
1561 * order would increase as a result.
1562 */
1563 higher_order_disable = true;
1564 break;
1565 default:
1566 if (init)
1567 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1568 }
1569 }
1570check_slabs:
1571 if (*str == ',')
1572 *slabs = ++str;
1573 else
1574 *slabs = NULL;
1575
1576 /* Skip over the slab list */
1577 while (*str && *str != ';')
1578 str++;
1579
1580 /* Skip any completely empty blocks */
1581 while (*str && *str == ';')
1582 str++;
1583
1584 if (init && higher_order_disable)
1585 disable_higher_order_debug = 1;
1586
1587 if (*str)
1588 return str;
1589 else
1590 return NULL;
1591}
1592
1593static int __init setup_slub_debug(char *str)
1594{
1595 slab_flags_t flags;
1596 slab_flags_t global_flags;
1597 char *saved_str;
1598 char *slab_list;
1599 bool global_slub_debug_changed = false;
1600 bool slab_list_specified = false;
1601
1602 global_flags = DEBUG_DEFAULT_FLAGS;
1603 if (*str++ != '=' || !*str)
1604 /*
1605 * No options specified. Switch on full debugging.
1606 */
1607 goto out;
1608
1609 saved_str = str;
1610 while (str) {
1611 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1612
1613 if (!slab_list) {
1614 global_flags = flags;
1615 global_slub_debug_changed = true;
1616 } else {
1617 slab_list_specified = true;
1618 if (flags & SLAB_STORE_USER)
1619 stack_depot_request_early_init();
1620 }
1621 }
1622
1623 /*
1624 * For backwards compatibility, a single list of flags with list of
1625 * slabs means debugging is only changed for those slabs, so the global
1626 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1627 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1628 * long as there is no option specifying flags without a slab list.
1629 */
1630 if (slab_list_specified) {
1631 if (!global_slub_debug_changed)
1632 global_flags = slub_debug;
1633 slub_debug_string = saved_str;
1634 }
1635out:
1636 slub_debug = global_flags;
1637 if (slub_debug & SLAB_STORE_USER)
1638 stack_depot_request_early_init();
1639 if (slub_debug != 0 || slub_debug_string)
1640 static_branch_enable(&slub_debug_enabled);
1641 else
1642 static_branch_disable(&slub_debug_enabled);
1643 if ((static_branch_unlikely(&init_on_alloc) ||
1644 static_branch_unlikely(&init_on_free)) &&
1645 (slub_debug & SLAB_POISON))
1646 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1647 return 1;
1648}
1649
1650__setup("slub_debug", setup_slub_debug);
1651
1652/*
1653 * kmem_cache_flags - apply debugging options to the cache
1654 * @object_size: the size of an object without meta data
1655 * @flags: flags to set
1656 * @name: name of the cache
1657 *
1658 * Debug option(s) are applied to @flags. In addition to the debug
1659 * option(s), if a slab name (or multiple) is specified i.e.
1660 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1661 * then only the select slabs will receive the debug option(s).
1662 */
1663slab_flags_t kmem_cache_flags(unsigned int object_size,
1664 slab_flags_t flags, const char *name)
1665{
1666 char *iter;
1667 size_t len;
1668 char *next_block;
1669 slab_flags_t block_flags;
1670 slab_flags_t slub_debug_local = slub_debug;
1671
1672 if (flags & SLAB_NO_USER_FLAGS)
1673 return flags;
1674
1675 /*
1676 * If the slab cache is for debugging (e.g. kmemleak) then
1677 * don't store user (stack trace) information by default,
1678 * but let the user enable it via the command line below.
1679 */
1680 if (flags & SLAB_NOLEAKTRACE)
1681 slub_debug_local &= ~SLAB_STORE_USER;
1682
1683 len = strlen(name);
1684 next_block = slub_debug_string;
1685 /* Go through all blocks of debug options, see if any matches our slab's name */
1686 while (next_block) {
1687 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1688 if (!iter)
1689 continue;
1690 /* Found a block that has a slab list, search it */
1691 while (*iter) {
1692 char *end, *glob;
1693 size_t cmplen;
1694
1695 end = strchrnul(iter, ',');
1696 if (next_block && next_block < end)
1697 end = next_block - 1;
1698
1699 glob = strnchr(iter, end - iter, '*');
1700 if (glob)
1701 cmplen = glob - iter;
1702 else
1703 cmplen = max_t(size_t, len, (end - iter));
1704
1705 if (!strncmp(name, iter, cmplen)) {
1706 flags |= block_flags;
1707 return flags;
1708 }
1709
1710 if (!*end || *end == ';')
1711 break;
1712 iter = end + 1;
1713 }
1714 }
1715
1716 return flags | slub_debug_local;
1717}
1718#else /* !CONFIG_SLUB_DEBUG */
1719static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1720static inline
1721void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1722
1723static inline bool alloc_debug_processing(struct kmem_cache *s,
1724 struct slab *slab, void *object, int orig_size) { return true; }
1725
1726static inline bool free_debug_processing(struct kmem_cache *s,
1727 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1728 unsigned long addr, depot_stack_handle_t handle) { return true; }
1729
1730static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1731static inline int check_object(struct kmem_cache *s, struct slab *slab,
1732 void *object, u8 val) { return 1; }
1733static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1734static inline void set_track(struct kmem_cache *s, void *object,
1735 enum track_item alloc, unsigned long addr) {}
1736static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1737 struct slab *slab) {}
1738static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1739 struct slab *slab) {}
1740slab_flags_t kmem_cache_flags(unsigned int object_size,
1741 slab_flags_t flags, const char *name)
1742{
1743 return flags;
1744}
1745#define slub_debug 0
1746
1747#define disable_higher_order_debug 0
1748
1749static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1750 { return 0; }
1751static inline void inc_slabs_node(struct kmem_cache *s, int node,
1752 int objects) {}
1753static inline void dec_slabs_node(struct kmem_cache *s, int node,
1754 int objects) {}
1755
1756#ifndef CONFIG_SLUB_TINY
1757static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1758 void **freelist, void *nextfree)
1759{
1760 return false;
1761}
1762#endif
1763#endif /* CONFIG_SLUB_DEBUG */
1764
1765/*
1766 * Hooks for other subsystems that check memory allocations. In a typical
1767 * production configuration these hooks all should produce no code at all.
1768 */
1769static __always_inline bool slab_free_hook(struct kmem_cache *s,
1770 void *x, bool init)
1771{
1772 kmemleak_free_recursive(x, s->flags);
1773 kmsan_slab_free(s, x);
1774
1775 debug_check_no_locks_freed(x, s->object_size);
1776
1777 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1778 debug_check_no_obj_freed(x, s->object_size);
1779
1780 /* Use KCSAN to help debug racy use-after-free. */
1781 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1782 __kcsan_check_access(x, s->object_size,
1783 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1784
1785 /*
1786 * As memory initialization might be integrated into KASAN,
1787 * kasan_slab_free and initialization memset's must be
1788 * kept together to avoid discrepancies in behavior.
1789 *
1790 * The initialization memset's clear the object and the metadata,
1791 * but don't touch the SLAB redzone.
1792 */
1793 if (init) {
1794 int rsize;
1795
1796 if (!kasan_has_integrated_init())
1797 memset(kasan_reset_tag(x), 0, s->object_size);
1798 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1799 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1800 s->size - s->inuse - rsize);
1801 }
1802 /* KASAN might put x into memory quarantine, delaying its reuse. */
1803 return kasan_slab_free(s, x, init);
1804}
1805
1806static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1807 void **head, void **tail,
1808 int *cnt)
1809{
1810
1811 void *object;
1812 void *next = *head;
1813 void *old_tail = *tail ? *tail : *head;
1814
1815 if (is_kfence_address(next)) {
1816 slab_free_hook(s, next, false);
1817 return true;
1818 }
1819
1820 /* Head and tail of the reconstructed freelist */
1821 *head = NULL;
1822 *tail = NULL;
1823
1824 do {
1825 object = next;
1826 next = get_freepointer(s, object);
1827
1828 /* If object's reuse doesn't have to be delayed */
1829 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1830 /* Move object to the new freelist */
1831 set_freepointer(s, object, *head);
1832 *head = object;
1833 if (!*tail)
1834 *tail = object;
1835 } else {
1836 /*
1837 * Adjust the reconstructed freelist depth
1838 * accordingly if object's reuse is delayed.
1839 */
1840 --(*cnt);
1841 }
1842 } while (object != old_tail);
1843
1844 if (*head == *tail)
1845 *tail = NULL;
1846
1847 return *head != NULL;
1848}
1849
1850static void *setup_object(struct kmem_cache *s, void *object)
1851{
1852 setup_object_debug(s, object);
1853 object = kasan_init_slab_obj(s, object);
1854 if (unlikely(s->ctor)) {
1855 kasan_unpoison_object_data(s, object);
1856 s->ctor(object);
1857 kasan_poison_object_data(s, object);
1858 }
1859 return object;
1860}
1861
1862/*
1863 * Slab allocation and freeing
1864 */
1865static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1866 struct kmem_cache_order_objects oo)
1867{
1868 struct folio *folio;
1869 struct slab *slab;
1870 unsigned int order = oo_order(oo);
1871
1872 if (node == NUMA_NO_NODE)
1873 folio = (struct folio *)alloc_pages(flags, order);
1874 else
1875 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1876
1877 if (!folio)
1878 return NULL;
1879
1880 slab = folio_slab(folio);
1881 __folio_set_slab(folio);
1882 /* Make the flag visible before any changes to folio->mapping */
1883 smp_wmb();
1884 if (folio_is_pfmemalloc(folio))
1885 slab_set_pfmemalloc(slab);
1886
1887 return slab;
1888}
1889
1890#ifdef CONFIG_SLAB_FREELIST_RANDOM
1891/* Pre-initialize the random sequence cache */
1892static int init_cache_random_seq(struct kmem_cache *s)
1893{
1894 unsigned int count = oo_objects(s->oo);
1895 int err;
1896
1897 /* Bailout if already initialised */
1898 if (s->random_seq)
1899 return 0;
1900
1901 err = cache_random_seq_create(s, count, GFP_KERNEL);
1902 if (err) {
1903 pr_err("SLUB: Unable to initialize free list for %s\n",
1904 s->name);
1905 return err;
1906 }
1907
1908 /* Transform to an offset on the set of pages */
1909 if (s->random_seq) {
1910 unsigned int i;
1911
1912 for (i = 0; i < count; i++)
1913 s->random_seq[i] *= s->size;
1914 }
1915 return 0;
1916}
1917
1918/* Initialize each random sequence freelist per cache */
1919static void __init init_freelist_randomization(void)
1920{
1921 struct kmem_cache *s;
1922
1923 mutex_lock(&slab_mutex);
1924
1925 list_for_each_entry(s, &slab_caches, list)
1926 init_cache_random_seq(s);
1927
1928 mutex_unlock(&slab_mutex);
1929}
1930
1931/* Get the next entry on the pre-computed freelist randomized */
1932static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1933 unsigned long *pos, void *start,
1934 unsigned long page_limit,
1935 unsigned long freelist_count)
1936{
1937 unsigned int idx;
1938
1939 /*
1940 * If the target page allocation failed, the number of objects on the
1941 * page might be smaller than the usual size defined by the cache.
1942 */
1943 do {
1944 idx = s->random_seq[*pos];
1945 *pos += 1;
1946 if (*pos >= freelist_count)
1947 *pos = 0;
1948 } while (unlikely(idx >= page_limit));
1949
1950 return (char *)start + idx;
1951}
1952
1953/* Shuffle the single linked freelist based on a random pre-computed sequence */
1954static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1955{
1956 void *start;
1957 void *cur;
1958 void *next;
1959 unsigned long idx, pos, page_limit, freelist_count;
1960
1961 if (slab->objects < 2 || !s->random_seq)
1962 return false;
1963
1964 freelist_count = oo_objects(s->oo);
1965 pos = get_random_u32_below(freelist_count);
1966
1967 page_limit = slab->objects * s->size;
1968 start = fixup_red_left(s, slab_address(slab));
1969
1970 /* First entry is used as the base of the freelist */
1971 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1972 freelist_count);
1973 cur = setup_object(s, cur);
1974 slab->freelist = cur;
1975
1976 for (idx = 1; idx < slab->objects; idx++) {
1977 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1978 freelist_count);
1979 next = setup_object(s, next);
1980 set_freepointer(s, cur, next);
1981 cur = next;
1982 }
1983 set_freepointer(s, cur, NULL);
1984
1985 return true;
1986}
1987#else
1988static inline int init_cache_random_seq(struct kmem_cache *s)
1989{
1990 return 0;
1991}
1992static inline void init_freelist_randomization(void) { }
1993static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1994{
1995 return false;
1996}
1997#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1998
1999static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2000{
2001 struct slab *slab;
2002 struct kmem_cache_order_objects oo = s->oo;
2003 gfp_t alloc_gfp;
2004 void *start, *p, *next;
2005 int idx;
2006 bool shuffle;
2007
2008 flags &= gfp_allowed_mask;
2009
2010 flags |= s->allocflags;
2011
2012 /*
2013 * Let the initial higher-order allocation fail under memory pressure
2014 * so we fall-back to the minimum order allocation.
2015 */
2016 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2017 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2018 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2019
2020 slab = alloc_slab_page(alloc_gfp, node, oo);
2021 if (unlikely(!slab)) {
2022 oo = s->min;
2023 alloc_gfp = flags;
2024 /*
2025 * Allocation may have failed due to fragmentation.
2026 * Try a lower order alloc if possible
2027 */
2028 slab = alloc_slab_page(alloc_gfp, node, oo);
2029 if (unlikely(!slab))
2030 return NULL;
2031 stat(s, ORDER_FALLBACK);
2032 }
2033
2034 slab->objects = oo_objects(oo);
2035 slab->inuse = 0;
2036 slab->frozen = 0;
2037
2038 account_slab(slab, oo_order(oo), s, flags);
2039
2040 slab->slab_cache = s;
2041
2042 kasan_poison_slab(slab);
2043
2044 start = slab_address(slab);
2045
2046 setup_slab_debug(s, slab, start);
2047
2048 shuffle = shuffle_freelist(s, slab);
2049
2050 if (!shuffle) {
2051 start = fixup_red_left(s, start);
2052 start = setup_object(s, start);
2053 slab->freelist = start;
2054 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2055 next = p + s->size;
2056 next = setup_object(s, next);
2057 set_freepointer(s, p, next);
2058 p = next;
2059 }
2060 set_freepointer(s, p, NULL);
2061 }
2062
2063 return slab;
2064}
2065
2066static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2067{
2068 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2069 flags = kmalloc_fix_flags(flags);
2070
2071 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2072
2073 return allocate_slab(s,
2074 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2075}
2076
2077static void __free_slab(struct kmem_cache *s, struct slab *slab)
2078{
2079 struct folio *folio = slab_folio(slab);
2080 int order = folio_order(folio);
2081 int pages = 1 << order;
2082
2083 __slab_clear_pfmemalloc(slab);
2084 folio->mapping = NULL;
2085 /* Make the mapping reset visible before clearing the flag */
2086 smp_wmb();
2087 __folio_clear_slab(folio);
2088 mm_account_reclaimed_pages(pages);
2089 unaccount_slab(slab, order, s);
2090 __free_pages(&folio->page, order);
2091}
2092
2093static void rcu_free_slab(struct rcu_head *h)
2094{
2095 struct slab *slab = container_of(h, struct slab, rcu_head);
2096
2097 __free_slab(slab->slab_cache, slab);
2098}
2099
2100static void free_slab(struct kmem_cache *s, struct slab *slab)
2101{
2102 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2103 void *p;
2104
2105 slab_pad_check(s, slab);
2106 for_each_object(p, s, slab_address(slab), slab->objects)
2107 check_object(s, slab, p, SLUB_RED_INACTIVE);
2108 }
2109
2110 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2111 call_rcu(&slab->rcu_head, rcu_free_slab);
2112 else
2113 __free_slab(s, slab);
2114}
2115
2116static void discard_slab(struct kmem_cache *s, struct slab *slab)
2117{
2118 dec_slabs_node(s, slab_nid(slab), slab->objects);
2119 free_slab(s, slab);
2120}
2121
2122/*
2123 * Management of partially allocated slabs.
2124 */
2125static inline void
2126__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2127{
2128 n->nr_partial++;
2129 if (tail == DEACTIVATE_TO_TAIL)
2130 list_add_tail(&slab->slab_list, &n->partial);
2131 else
2132 list_add(&slab->slab_list, &n->partial);
2133}
2134
2135static inline void add_partial(struct kmem_cache_node *n,
2136 struct slab *slab, int tail)
2137{
2138 lockdep_assert_held(&n->list_lock);
2139 __add_partial(n, slab, tail);
2140}
2141
2142static inline void remove_partial(struct kmem_cache_node *n,
2143 struct slab *slab)
2144{
2145 lockdep_assert_held(&n->list_lock);
2146 list_del(&slab->slab_list);
2147 n->nr_partial--;
2148}
2149
2150/*
2151 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2152 * slab from the n->partial list. Remove only a single object from the slab, do
2153 * the alloc_debug_processing() checks and leave the slab on the list, or move
2154 * it to full list if it was the last free object.
2155 */
2156static void *alloc_single_from_partial(struct kmem_cache *s,
2157 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2158{
2159 void *object;
2160
2161 lockdep_assert_held(&n->list_lock);
2162
2163 object = slab->freelist;
2164 slab->freelist = get_freepointer(s, object);
2165 slab->inuse++;
2166
2167 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2168 remove_partial(n, slab);
2169 return NULL;
2170 }
2171
2172 if (slab->inuse == slab->objects) {
2173 remove_partial(n, slab);
2174 add_full(s, n, slab);
2175 }
2176
2177 return object;
2178}
2179
2180/*
2181 * Called only for kmem_cache_debug() caches to allocate from a freshly
2182 * allocated slab. Allocate a single object instead of whole freelist
2183 * and put the slab to the partial (or full) list.
2184 */
2185static void *alloc_single_from_new_slab(struct kmem_cache *s,
2186 struct slab *slab, int orig_size)
2187{
2188 int nid = slab_nid(slab);
2189 struct kmem_cache_node *n = get_node(s, nid);
2190 unsigned long flags;
2191 void *object;
2192
2193
2194 object = slab->freelist;
2195 slab->freelist = get_freepointer(s, object);
2196 slab->inuse = 1;
2197
2198 if (!alloc_debug_processing(s, slab, object, orig_size))
2199 /*
2200 * It's not really expected that this would fail on a
2201 * freshly allocated slab, but a concurrent memory
2202 * corruption in theory could cause that.
2203 */
2204 return NULL;
2205
2206 spin_lock_irqsave(&n->list_lock, flags);
2207
2208 if (slab->inuse == slab->objects)
2209 add_full(s, n, slab);
2210 else
2211 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2212
2213 inc_slabs_node(s, nid, slab->objects);
2214 spin_unlock_irqrestore(&n->list_lock, flags);
2215
2216 return object;
2217}
2218
2219/*
2220 * Remove slab from the partial list, freeze it and
2221 * return the pointer to the freelist.
2222 *
2223 * Returns a list of objects or NULL if it fails.
2224 */
2225static inline void *acquire_slab(struct kmem_cache *s,
2226 struct kmem_cache_node *n, struct slab *slab,
2227 int mode)
2228{
2229 void *freelist;
2230 unsigned long counters;
2231 struct slab new;
2232
2233 lockdep_assert_held(&n->list_lock);
2234
2235 /*
2236 * Zap the freelist and set the frozen bit.
2237 * The old freelist is the list of objects for the
2238 * per cpu allocation list.
2239 */
2240 freelist = slab->freelist;
2241 counters = slab->counters;
2242 new.counters = counters;
2243 if (mode) {
2244 new.inuse = slab->objects;
2245 new.freelist = NULL;
2246 } else {
2247 new.freelist = freelist;
2248 }
2249
2250 VM_BUG_ON(new.frozen);
2251 new.frozen = 1;
2252
2253 if (!__slab_update_freelist(s, slab,
2254 freelist, counters,
2255 new.freelist, new.counters,
2256 "acquire_slab"))
2257 return NULL;
2258
2259 remove_partial(n, slab);
2260 WARN_ON(!freelist);
2261 return freelist;
2262}
2263
2264#ifdef CONFIG_SLUB_CPU_PARTIAL
2265static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2266#else
2267static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2268 int drain) { }
2269#endif
2270static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2271
2272/*
2273 * Try to allocate a partial slab from a specific node.
2274 */
2275static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2276 struct partial_context *pc)
2277{
2278 struct slab *slab, *slab2;
2279 void *object = NULL;
2280 unsigned long flags;
2281 unsigned int partial_slabs = 0;
2282
2283 /*
2284 * Racy check. If we mistakenly see no partial slabs then we
2285 * just allocate an empty slab. If we mistakenly try to get a
2286 * partial slab and there is none available then get_partial()
2287 * will return NULL.
2288 */
2289 if (!n || !n->nr_partial)
2290 return NULL;
2291
2292 spin_lock_irqsave(&n->list_lock, flags);
2293 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2294 void *t;
2295
2296 if (!pfmemalloc_match(slab, pc->flags))
2297 continue;
2298
2299 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2300 object = alloc_single_from_partial(s, n, slab,
2301 pc->orig_size);
2302 if (object)
2303 break;
2304 continue;
2305 }
2306
2307 t = acquire_slab(s, n, slab, object == NULL);
2308 if (!t)
2309 break;
2310
2311 if (!object) {
2312 *pc->slab = slab;
2313 stat(s, ALLOC_FROM_PARTIAL);
2314 object = t;
2315 } else {
2316 put_cpu_partial(s, slab, 0);
2317 stat(s, CPU_PARTIAL_NODE);
2318 partial_slabs++;
2319 }
2320#ifdef CONFIG_SLUB_CPU_PARTIAL
2321 if (!kmem_cache_has_cpu_partial(s)
2322 || partial_slabs > s->cpu_partial_slabs / 2)
2323 break;
2324#else
2325 break;
2326#endif
2327
2328 }
2329 spin_unlock_irqrestore(&n->list_lock, flags);
2330 return object;
2331}
2332
2333/*
2334 * Get a slab from somewhere. Search in increasing NUMA distances.
2335 */
2336static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2337{
2338#ifdef CONFIG_NUMA
2339 struct zonelist *zonelist;
2340 struct zoneref *z;
2341 struct zone *zone;
2342 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2343 void *object;
2344 unsigned int cpuset_mems_cookie;
2345
2346 /*
2347 * The defrag ratio allows a configuration of the tradeoffs between
2348 * inter node defragmentation and node local allocations. A lower
2349 * defrag_ratio increases the tendency to do local allocations
2350 * instead of attempting to obtain partial slabs from other nodes.
2351 *
2352 * If the defrag_ratio is set to 0 then kmalloc() always
2353 * returns node local objects. If the ratio is higher then kmalloc()
2354 * may return off node objects because partial slabs are obtained
2355 * from other nodes and filled up.
2356 *
2357 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2358 * (which makes defrag_ratio = 1000) then every (well almost)
2359 * allocation will first attempt to defrag slab caches on other nodes.
2360 * This means scanning over all nodes to look for partial slabs which
2361 * may be expensive if we do it every time we are trying to find a slab
2362 * with available objects.
2363 */
2364 if (!s->remote_node_defrag_ratio ||
2365 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2366 return NULL;
2367
2368 do {
2369 cpuset_mems_cookie = read_mems_allowed_begin();
2370 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2371 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2372 struct kmem_cache_node *n;
2373
2374 n = get_node(s, zone_to_nid(zone));
2375
2376 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2377 n->nr_partial > s->min_partial) {
2378 object = get_partial_node(s, n, pc);
2379 if (object) {
2380 /*
2381 * Don't check read_mems_allowed_retry()
2382 * here - if mems_allowed was updated in
2383 * parallel, that was a harmless race
2384 * between allocation and the cpuset
2385 * update
2386 */
2387 return object;
2388 }
2389 }
2390 }
2391 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2392#endif /* CONFIG_NUMA */
2393 return NULL;
2394}
2395
2396/*
2397 * Get a partial slab, lock it and return it.
2398 */
2399static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2400{
2401 void *object;
2402 int searchnode = node;
2403
2404 if (node == NUMA_NO_NODE)
2405 searchnode = numa_mem_id();
2406
2407 object = get_partial_node(s, get_node(s, searchnode), pc);
2408 if (object || node != NUMA_NO_NODE)
2409 return object;
2410
2411 return get_any_partial(s, pc);
2412}
2413
2414#ifndef CONFIG_SLUB_TINY
2415
2416#ifdef CONFIG_PREEMPTION
2417/*
2418 * Calculate the next globally unique transaction for disambiguation
2419 * during cmpxchg. The transactions start with the cpu number and are then
2420 * incremented by CONFIG_NR_CPUS.
2421 */
2422#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2423#else
2424/*
2425 * No preemption supported therefore also no need to check for
2426 * different cpus.
2427 */
2428#define TID_STEP 1
2429#endif /* CONFIG_PREEMPTION */
2430
2431static inline unsigned long next_tid(unsigned long tid)
2432{
2433 return tid + TID_STEP;
2434}
2435
2436#ifdef SLUB_DEBUG_CMPXCHG
2437static inline unsigned int tid_to_cpu(unsigned long tid)
2438{
2439 return tid % TID_STEP;
2440}
2441
2442static inline unsigned long tid_to_event(unsigned long tid)
2443{
2444 return tid / TID_STEP;
2445}
2446#endif
2447
2448static inline unsigned int init_tid(int cpu)
2449{
2450 return cpu;
2451}
2452
2453static inline void note_cmpxchg_failure(const char *n,
2454 const struct kmem_cache *s, unsigned long tid)
2455{
2456#ifdef SLUB_DEBUG_CMPXCHG
2457 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2458
2459 pr_info("%s %s: cmpxchg redo ", n, s->name);
2460
2461#ifdef CONFIG_PREEMPTION
2462 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2463 pr_warn("due to cpu change %d -> %d\n",
2464 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2465 else
2466#endif
2467 if (tid_to_event(tid) != tid_to_event(actual_tid))
2468 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2469 tid_to_event(tid), tid_to_event(actual_tid));
2470 else
2471 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2472 actual_tid, tid, next_tid(tid));
2473#endif
2474 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2475}
2476
2477static void init_kmem_cache_cpus(struct kmem_cache *s)
2478{
2479 int cpu;
2480 struct kmem_cache_cpu *c;
2481
2482 for_each_possible_cpu(cpu) {
2483 c = per_cpu_ptr(s->cpu_slab, cpu);
2484 local_lock_init(&c->lock);
2485 c->tid = init_tid(cpu);
2486 }
2487}
2488
2489/*
2490 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2491 * unfreezes the slabs and puts it on the proper list.
2492 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2493 * by the caller.
2494 */
2495static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2496 void *freelist)
2497{
2498 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2499 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2500 int free_delta = 0;
2501 enum slab_modes mode = M_NONE;
2502 void *nextfree, *freelist_iter, *freelist_tail;
2503 int tail = DEACTIVATE_TO_HEAD;
2504 unsigned long flags = 0;
2505 struct slab new;
2506 struct slab old;
2507
2508 if (slab->freelist) {
2509 stat(s, DEACTIVATE_REMOTE_FREES);
2510 tail = DEACTIVATE_TO_TAIL;
2511 }
2512
2513 /*
2514 * Stage one: Count the objects on cpu's freelist as free_delta and
2515 * remember the last object in freelist_tail for later splicing.
2516 */
2517 freelist_tail = NULL;
2518 freelist_iter = freelist;
2519 while (freelist_iter) {
2520 nextfree = get_freepointer(s, freelist_iter);
2521
2522 /*
2523 * If 'nextfree' is invalid, it is possible that the object at
2524 * 'freelist_iter' is already corrupted. So isolate all objects
2525 * starting at 'freelist_iter' by skipping them.
2526 */
2527 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2528 break;
2529
2530 freelist_tail = freelist_iter;
2531 free_delta++;
2532
2533 freelist_iter = nextfree;
2534 }
2535
2536 /*
2537 * Stage two: Unfreeze the slab while splicing the per-cpu
2538 * freelist to the head of slab's freelist.
2539 *
2540 * Ensure that the slab is unfrozen while the list presence
2541 * reflects the actual number of objects during unfreeze.
2542 *
2543 * We first perform cmpxchg holding lock and insert to list
2544 * when it succeed. If there is mismatch then the slab is not
2545 * unfrozen and number of objects in the slab may have changed.
2546 * Then release lock and retry cmpxchg again.
2547 */
2548redo:
2549
2550 old.freelist = READ_ONCE(slab->freelist);
2551 old.counters = READ_ONCE(slab->counters);
2552 VM_BUG_ON(!old.frozen);
2553
2554 /* Determine target state of the slab */
2555 new.counters = old.counters;
2556 if (freelist_tail) {
2557 new.inuse -= free_delta;
2558 set_freepointer(s, freelist_tail, old.freelist);
2559 new.freelist = freelist;
2560 } else
2561 new.freelist = old.freelist;
2562
2563 new.frozen = 0;
2564
2565 if (!new.inuse && n->nr_partial >= s->min_partial) {
2566 mode = M_FREE;
2567 } else if (new.freelist) {
2568 mode = M_PARTIAL;
2569 /*
2570 * Taking the spinlock removes the possibility that
2571 * acquire_slab() will see a slab that is frozen
2572 */
2573 spin_lock_irqsave(&n->list_lock, flags);
2574 } else {
2575 mode = M_FULL_NOLIST;
2576 }
2577
2578
2579 if (!slab_update_freelist(s, slab,
2580 old.freelist, old.counters,
2581 new.freelist, new.counters,
2582 "unfreezing slab")) {
2583 if (mode == M_PARTIAL)
2584 spin_unlock_irqrestore(&n->list_lock, flags);
2585 goto redo;
2586 }
2587
2588
2589 if (mode == M_PARTIAL) {
2590 add_partial(n, slab, tail);
2591 spin_unlock_irqrestore(&n->list_lock, flags);
2592 stat(s, tail);
2593 } else if (mode == M_FREE) {
2594 stat(s, DEACTIVATE_EMPTY);
2595 discard_slab(s, slab);
2596 stat(s, FREE_SLAB);
2597 } else if (mode == M_FULL_NOLIST) {
2598 stat(s, DEACTIVATE_FULL);
2599 }
2600}
2601
2602#ifdef CONFIG_SLUB_CPU_PARTIAL
2603static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2604{
2605 struct kmem_cache_node *n = NULL, *n2 = NULL;
2606 struct slab *slab, *slab_to_discard = NULL;
2607 unsigned long flags = 0;
2608
2609 while (partial_slab) {
2610 struct slab new;
2611 struct slab old;
2612
2613 slab = partial_slab;
2614 partial_slab = slab->next;
2615
2616 n2 = get_node(s, slab_nid(slab));
2617 if (n != n2) {
2618 if (n)
2619 spin_unlock_irqrestore(&n->list_lock, flags);
2620
2621 n = n2;
2622 spin_lock_irqsave(&n->list_lock, flags);
2623 }
2624
2625 do {
2626
2627 old.freelist = slab->freelist;
2628 old.counters = slab->counters;
2629 VM_BUG_ON(!old.frozen);
2630
2631 new.counters = old.counters;
2632 new.freelist = old.freelist;
2633
2634 new.frozen = 0;
2635
2636 } while (!__slab_update_freelist(s, slab,
2637 old.freelist, old.counters,
2638 new.freelist, new.counters,
2639 "unfreezing slab"));
2640
2641 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2642 slab->next = slab_to_discard;
2643 slab_to_discard = slab;
2644 } else {
2645 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2646 stat(s, FREE_ADD_PARTIAL);
2647 }
2648 }
2649
2650 if (n)
2651 spin_unlock_irqrestore(&n->list_lock, flags);
2652
2653 while (slab_to_discard) {
2654 slab = slab_to_discard;
2655 slab_to_discard = slab_to_discard->next;
2656
2657 stat(s, DEACTIVATE_EMPTY);
2658 discard_slab(s, slab);
2659 stat(s, FREE_SLAB);
2660 }
2661}
2662
2663/*
2664 * Unfreeze all the cpu partial slabs.
2665 */
2666static void unfreeze_partials(struct kmem_cache *s)
2667{
2668 struct slab *partial_slab;
2669 unsigned long flags;
2670
2671 local_lock_irqsave(&s->cpu_slab->lock, flags);
2672 partial_slab = this_cpu_read(s->cpu_slab->partial);
2673 this_cpu_write(s->cpu_slab->partial, NULL);
2674 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2675
2676 if (partial_slab)
2677 __unfreeze_partials(s, partial_slab);
2678}
2679
2680static void unfreeze_partials_cpu(struct kmem_cache *s,
2681 struct kmem_cache_cpu *c)
2682{
2683 struct slab *partial_slab;
2684
2685 partial_slab = slub_percpu_partial(c);
2686 c->partial = NULL;
2687
2688 if (partial_slab)
2689 __unfreeze_partials(s, partial_slab);
2690}
2691
2692/*
2693 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2694 * partial slab slot if available.
2695 *
2696 * If we did not find a slot then simply move all the partials to the
2697 * per node partial list.
2698 */
2699static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2700{
2701 struct slab *oldslab;
2702 struct slab *slab_to_unfreeze = NULL;
2703 unsigned long flags;
2704 int slabs = 0;
2705
2706 local_lock_irqsave(&s->cpu_slab->lock, flags);
2707
2708 oldslab = this_cpu_read(s->cpu_slab->partial);
2709
2710 if (oldslab) {
2711 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2712 /*
2713 * Partial array is full. Move the existing set to the
2714 * per node partial list. Postpone the actual unfreezing
2715 * outside of the critical section.
2716 */
2717 slab_to_unfreeze = oldslab;
2718 oldslab = NULL;
2719 } else {
2720 slabs = oldslab->slabs;
2721 }
2722 }
2723
2724 slabs++;
2725
2726 slab->slabs = slabs;
2727 slab->next = oldslab;
2728
2729 this_cpu_write(s->cpu_slab->partial, slab);
2730
2731 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2732
2733 if (slab_to_unfreeze) {
2734 __unfreeze_partials(s, slab_to_unfreeze);
2735 stat(s, CPU_PARTIAL_DRAIN);
2736 }
2737}
2738
2739#else /* CONFIG_SLUB_CPU_PARTIAL */
2740
2741static inline void unfreeze_partials(struct kmem_cache *s) { }
2742static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2743 struct kmem_cache_cpu *c) { }
2744
2745#endif /* CONFIG_SLUB_CPU_PARTIAL */
2746
2747static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2748{
2749 unsigned long flags;
2750 struct slab *slab;
2751 void *freelist;
2752
2753 local_lock_irqsave(&s->cpu_slab->lock, flags);
2754
2755 slab = c->slab;
2756 freelist = c->freelist;
2757
2758 c->slab = NULL;
2759 c->freelist = NULL;
2760 c->tid = next_tid(c->tid);
2761
2762 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2763
2764 if (slab) {
2765 deactivate_slab(s, slab, freelist);
2766 stat(s, CPUSLAB_FLUSH);
2767 }
2768}
2769
2770static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2771{
2772 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2773 void *freelist = c->freelist;
2774 struct slab *slab = c->slab;
2775
2776 c->slab = NULL;
2777 c->freelist = NULL;
2778 c->tid = next_tid(c->tid);
2779
2780 if (slab) {
2781 deactivate_slab(s, slab, freelist);
2782 stat(s, CPUSLAB_FLUSH);
2783 }
2784
2785 unfreeze_partials_cpu(s, c);
2786}
2787
2788struct slub_flush_work {
2789 struct work_struct work;
2790 struct kmem_cache *s;
2791 bool skip;
2792};
2793
2794/*
2795 * Flush cpu slab.
2796 *
2797 * Called from CPU work handler with migration disabled.
2798 */
2799static void flush_cpu_slab(struct work_struct *w)
2800{
2801 struct kmem_cache *s;
2802 struct kmem_cache_cpu *c;
2803 struct slub_flush_work *sfw;
2804
2805 sfw = container_of(w, struct slub_flush_work, work);
2806
2807 s = sfw->s;
2808 c = this_cpu_ptr(s->cpu_slab);
2809
2810 if (c->slab)
2811 flush_slab(s, c);
2812
2813 unfreeze_partials(s);
2814}
2815
2816static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2817{
2818 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2819
2820 return c->slab || slub_percpu_partial(c);
2821}
2822
2823static DEFINE_MUTEX(flush_lock);
2824static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2825
2826static void flush_all_cpus_locked(struct kmem_cache *s)
2827{
2828 struct slub_flush_work *sfw;
2829 unsigned int cpu;
2830
2831 lockdep_assert_cpus_held();
2832 mutex_lock(&flush_lock);
2833
2834 for_each_online_cpu(cpu) {
2835 sfw = &per_cpu(slub_flush, cpu);
2836 if (!has_cpu_slab(cpu, s)) {
2837 sfw->skip = true;
2838 continue;
2839 }
2840 INIT_WORK(&sfw->work, flush_cpu_slab);
2841 sfw->skip = false;
2842 sfw->s = s;
2843 queue_work_on(cpu, flushwq, &sfw->work);
2844 }
2845
2846 for_each_online_cpu(cpu) {
2847 sfw = &per_cpu(slub_flush, cpu);
2848 if (sfw->skip)
2849 continue;
2850 flush_work(&sfw->work);
2851 }
2852
2853 mutex_unlock(&flush_lock);
2854}
2855
2856static void flush_all(struct kmem_cache *s)
2857{
2858 cpus_read_lock();
2859 flush_all_cpus_locked(s);
2860 cpus_read_unlock();
2861}
2862
2863/*
2864 * Use the cpu notifier to insure that the cpu slabs are flushed when
2865 * necessary.
2866 */
2867static int slub_cpu_dead(unsigned int cpu)
2868{
2869 struct kmem_cache *s;
2870
2871 mutex_lock(&slab_mutex);
2872 list_for_each_entry(s, &slab_caches, list)
2873 __flush_cpu_slab(s, cpu);
2874 mutex_unlock(&slab_mutex);
2875 return 0;
2876}
2877
2878#else /* CONFIG_SLUB_TINY */
2879static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2880static inline void flush_all(struct kmem_cache *s) { }
2881static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2882static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2883#endif /* CONFIG_SLUB_TINY */
2884
2885/*
2886 * Check if the objects in a per cpu structure fit numa
2887 * locality expectations.
2888 */
2889static inline int node_match(struct slab *slab, int node)
2890{
2891#ifdef CONFIG_NUMA
2892 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2893 return 0;
2894#endif
2895 return 1;
2896}
2897
2898#ifdef CONFIG_SLUB_DEBUG
2899static int count_free(struct slab *slab)
2900{
2901 return slab->objects - slab->inuse;
2902}
2903
2904static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2905{
2906 return atomic_long_read(&n->total_objects);
2907}
2908
2909/* Supports checking bulk free of a constructed freelist */
2910static inline bool free_debug_processing(struct kmem_cache *s,
2911 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2912 unsigned long addr, depot_stack_handle_t handle)
2913{
2914 bool checks_ok = false;
2915 void *object = head;
2916 int cnt = 0;
2917
2918 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2919 if (!check_slab(s, slab))
2920 goto out;
2921 }
2922
2923 if (slab->inuse < *bulk_cnt) {
2924 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2925 slab->inuse, *bulk_cnt);
2926 goto out;
2927 }
2928
2929next_object:
2930
2931 if (++cnt > *bulk_cnt)
2932 goto out_cnt;
2933
2934 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2935 if (!free_consistency_checks(s, slab, object, addr))
2936 goto out;
2937 }
2938
2939 if (s->flags & SLAB_STORE_USER)
2940 set_track_update(s, object, TRACK_FREE, addr, handle);
2941 trace(s, slab, object, 0);
2942 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2943 init_object(s, object, SLUB_RED_INACTIVE);
2944
2945 /* Reached end of constructed freelist yet? */
2946 if (object != tail) {
2947 object = get_freepointer(s, object);
2948 goto next_object;
2949 }
2950 checks_ok = true;
2951
2952out_cnt:
2953 if (cnt != *bulk_cnt) {
2954 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2955 *bulk_cnt, cnt);
2956 *bulk_cnt = cnt;
2957 }
2958
2959out:
2960
2961 if (!checks_ok)
2962 slab_fix(s, "Object at 0x%p not freed", object);
2963
2964 return checks_ok;
2965}
2966#endif /* CONFIG_SLUB_DEBUG */
2967
2968#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2969static unsigned long count_partial(struct kmem_cache_node *n,
2970 int (*get_count)(struct slab *))
2971{
2972 unsigned long flags;
2973 unsigned long x = 0;
2974 struct slab *slab;
2975
2976 spin_lock_irqsave(&n->list_lock, flags);
2977 list_for_each_entry(slab, &n->partial, slab_list)
2978 x += get_count(slab);
2979 spin_unlock_irqrestore(&n->list_lock, flags);
2980 return x;
2981}
2982#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2983
2984#ifdef CONFIG_SLUB_DEBUG
2985static noinline void
2986slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2987{
2988 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2989 DEFAULT_RATELIMIT_BURST);
2990 int node;
2991 struct kmem_cache_node *n;
2992
2993 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2994 return;
2995
2996 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2997 nid, gfpflags, &gfpflags);
2998 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2999 s->name, s->object_size, s->size, oo_order(s->oo),
3000 oo_order(s->min));
3001
3002 if (oo_order(s->min) > get_order(s->object_size))
3003 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
3004 s->name);
3005
3006 for_each_kmem_cache_node(s, node, n) {
3007 unsigned long nr_slabs;
3008 unsigned long nr_objs;
3009 unsigned long nr_free;
3010
3011 nr_free = count_partial(n, count_free);
3012 nr_slabs = node_nr_slabs(n);
3013 nr_objs = node_nr_objs(n);
3014
3015 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3016 node, nr_slabs, nr_objs, nr_free);
3017 }
3018}
3019#else /* CONFIG_SLUB_DEBUG */
3020static inline void
3021slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3022#endif
3023
3024static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3025{
3026 if (unlikely(slab_test_pfmemalloc(slab)))
3027 return gfp_pfmemalloc_allowed(gfpflags);
3028
3029 return true;
3030}
3031
3032#ifndef CONFIG_SLUB_TINY
3033static inline bool
3034__update_cpu_freelist_fast(struct kmem_cache *s,
3035 void *freelist_old, void *freelist_new,
3036 unsigned long tid)
3037{
3038 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3039 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3040
3041 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3042 &old.full, new.full);
3043}
3044
3045/*
3046 * Check the slab->freelist and either transfer the freelist to the
3047 * per cpu freelist or deactivate the slab.
3048 *
3049 * The slab is still frozen if the return value is not NULL.
3050 *
3051 * If this function returns NULL then the slab has been unfrozen.
3052 */
3053static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3054{
3055 struct slab new;
3056 unsigned long counters;
3057 void *freelist;
3058
3059 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3060
3061 do {
3062 freelist = slab->freelist;
3063 counters = slab->counters;
3064
3065 new.counters = counters;
3066 VM_BUG_ON(!new.frozen);
3067
3068 new.inuse = slab->objects;
3069 new.frozen = freelist != NULL;
3070
3071 } while (!__slab_update_freelist(s, slab,
3072 freelist, counters,
3073 NULL, new.counters,
3074 "get_freelist"));
3075
3076 return freelist;
3077}
3078
3079/*
3080 * Slow path. The lockless freelist is empty or we need to perform
3081 * debugging duties.
3082 *
3083 * Processing is still very fast if new objects have been freed to the
3084 * regular freelist. In that case we simply take over the regular freelist
3085 * as the lockless freelist and zap the regular freelist.
3086 *
3087 * If that is not working then we fall back to the partial lists. We take the
3088 * first element of the freelist as the object to allocate now and move the
3089 * rest of the freelist to the lockless freelist.
3090 *
3091 * And if we were unable to get a new slab from the partial slab lists then
3092 * we need to allocate a new slab. This is the slowest path since it involves
3093 * a call to the page allocator and the setup of a new slab.
3094 *
3095 * Version of __slab_alloc to use when we know that preemption is
3096 * already disabled (which is the case for bulk allocation).
3097 */
3098static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3099 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3100{
3101 void *freelist;
3102 struct slab *slab;
3103 unsigned long flags;
3104 struct partial_context pc;
3105
3106 stat(s, ALLOC_SLOWPATH);
3107
3108reread_slab:
3109
3110 slab = READ_ONCE(c->slab);
3111 if (!slab) {
3112 /*
3113 * if the node is not online or has no normal memory, just
3114 * ignore the node constraint
3115 */
3116 if (unlikely(node != NUMA_NO_NODE &&
3117 !node_isset(node, slab_nodes)))
3118 node = NUMA_NO_NODE;
3119 goto new_slab;
3120 }
3121redo:
3122
3123 if (unlikely(!node_match(slab, node))) {
3124 /*
3125 * same as above but node_match() being false already
3126 * implies node != NUMA_NO_NODE
3127 */
3128 if (!node_isset(node, slab_nodes)) {
3129 node = NUMA_NO_NODE;
3130 } else {
3131 stat(s, ALLOC_NODE_MISMATCH);
3132 goto deactivate_slab;
3133 }
3134 }
3135
3136 /*
3137 * By rights, we should be searching for a slab page that was
3138 * PFMEMALLOC but right now, we are losing the pfmemalloc
3139 * information when the page leaves the per-cpu allocator
3140 */
3141 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3142 goto deactivate_slab;
3143
3144 /* must check again c->slab in case we got preempted and it changed */
3145 local_lock_irqsave(&s->cpu_slab->lock, flags);
3146 if (unlikely(slab != c->slab)) {
3147 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3148 goto reread_slab;
3149 }
3150 freelist = c->freelist;
3151 if (freelist)
3152 goto load_freelist;
3153
3154 freelist = get_freelist(s, slab);
3155
3156 if (!freelist) {
3157 c->slab = NULL;
3158 c->tid = next_tid(c->tid);
3159 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3160 stat(s, DEACTIVATE_BYPASS);
3161 goto new_slab;
3162 }
3163
3164 stat(s, ALLOC_REFILL);
3165
3166load_freelist:
3167
3168 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3169
3170 /*
3171 * freelist is pointing to the list of objects to be used.
3172 * slab is pointing to the slab from which the objects are obtained.
3173 * That slab must be frozen for per cpu allocations to work.
3174 */
3175 VM_BUG_ON(!c->slab->frozen);
3176 c->freelist = get_freepointer(s, freelist);
3177 c->tid = next_tid(c->tid);
3178 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3179 return freelist;
3180
3181deactivate_slab:
3182
3183 local_lock_irqsave(&s->cpu_slab->lock, flags);
3184 if (slab != c->slab) {
3185 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3186 goto reread_slab;
3187 }
3188 freelist = c->freelist;
3189 c->slab = NULL;
3190 c->freelist = NULL;
3191 c->tid = next_tid(c->tid);
3192 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3193 deactivate_slab(s, slab, freelist);
3194
3195new_slab:
3196
3197 if (slub_percpu_partial(c)) {
3198 local_lock_irqsave(&s->cpu_slab->lock, flags);
3199 if (unlikely(c->slab)) {
3200 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3201 goto reread_slab;
3202 }
3203 if (unlikely(!slub_percpu_partial(c))) {
3204 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3205 /* we were preempted and partial list got empty */
3206 goto new_objects;
3207 }
3208
3209 slab = c->slab = slub_percpu_partial(c);
3210 slub_set_percpu_partial(c, slab);
3211 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3212 stat(s, CPU_PARTIAL_ALLOC);
3213 goto redo;
3214 }
3215
3216new_objects:
3217
3218 pc.flags = gfpflags;
3219 pc.slab = &slab;
3220 pc.orig_size = orig_size;
3221 freelist = get_partial(s, node, &pc);
3222 if (freelist)
3223 goto check_new_slab;
3224
3225 slub_put_cpu_ptr(s->cpu_slab);
3226 slab = new_slab(s, gfpflags, node);
3227 c = slub_get_cpu_ptr(s->cpu_slab);
3228
3229 if (unlikely(!slab)) {
3230 slab_out_of_memory(s, gfpflags, node);
3231 return NULL;
3232 }
3233
3234 stat(s, ALLOC_SLAB);
3235
3236 if (kmem_cache_debug(s)) {
3237 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3238
3239 if (unlikely(!freelist))
3240 goto new_objects;
3241
3242 if (s->flags & SLAB_STORE_USER)
3243 set_track(s, freelist, TRACK_ALLOC, addr);
3244
3245 return freelist;
3246 }
3247
3248 /*
3249 * No other reference to the slab yet so we can
3250 * muck around with it freely without cmpxchg
3251 */
3252 freelist = slab->freelist;
3253 slab->freelist = NULL;
3254 slab->inuse = slab->objects;
3255 slab->frozen = 1;
3256
3257 inc_slabs_node(s, slab_nid(slab), slab->objects);
3258
3259check_new_slab:
3260
3261 if (kmem_cache_debug(s)) {
3262 /*
3263 * For debug caches here we had to go through
3264 * alloc_single_from_partial() so just store the tracking info
3265 * and return the object
3266 */
3267 if (s->flags & SLAB_STORE_USER)
3268 set_track(s, freelist, TRACK_ALLOC, addr);
3269
3270 return freelist;
3271 }
3272
3273 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3274 /*
3275 * For !pfmemalloc_match() case we don't load freelist so that
3276 * we don't make further mismatched allocations easier.
3277 */
3278 deactivate_slab(s, slab, get_freepointer(s, freelist));
3279 return freelist;
3280 }
3281
3282retry_load_slab:
3283
3284 local_lock_irqsave(&s->cpu_slab->lock, flags);
3285 if (unlikely(c->slab)) {
3286 void *flush_freelist = c->freelist;
3287 struct slab *flush_slab = c->slab;
3288
3289 c->slab = NULL;
3290 c->freelist = NULL;
3291 c->tid = next_tid(c->tid);
3292
3293 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3294
3295 deactivate_slab(s, flush_slab, flush_freelist);
3296
3297 stat(s, CPUSLAB_FLUSH);
3298
3299 goto retry_load_slab;
3300 }
3301 c->slab = slab;
3302
3303 goto load_freelist;
3304}
3305
3306/*
3307 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3308 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3309 * pointer.
3310 */
3311static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3312 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3313{
3314 void *p;
3315
3316#ifdef CONFIG_PREEMPT_COUNT
3317 /*
3318 * We may have been preempted and rescheduled on a different
3319 * cpu before disabling preemption. Need to reload cpu area
3320 * pointer.
3321 */
3322 c = slub_get_cpu_ptr(s->cpu_slab);
3323#endif
3324
3325 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3326#ifdef CONFIG_PREEMPT_COUNT
3327 slub_put_cpu_ptr(s->cpu_slab);
3328#endif
3329 return p;
3330}
3331
3332static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3333 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3334{
3335 struct kmem_cache_cpu *c;
3336 struct slab *slab;
3337 unsigned long tid;
3338 void *object;
3339
3340redo:
3341 /*
3342 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3343 * enabled. We may switch back and forth between cpus while
3344 * reading from one cpu area. That does not matter as long
3345 * as we end up on the original cpu again when doing the cmpxchg.
3346 *
3347 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3348 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3349 * the tid. If we are preempted and switched to another cpu between the
3350 * two reads, it's OK as the two are still associated with the same cpu
3351 * and cmpxchg later will validate the cpu.
3352 */
3353 c = raw_cpu_ptr(s->cpu_slab);
3354 tid = READ_ONCE(c->tid);
3355
3356 /*
3357 * Irqless object alloc/free algorithm used here depends on sequence
3358 * of fetching cpu_slab's data. tid should be fetched before anything
3359 * on c to guarantee that object and slab associated with previous tid
3360 * won't be used with current tid. If we fetch tid first, object and
3361 * slab could be one associated with next tid and our alloc/free
3362 * request will be failed. In this case, we will retry. So, no problem.
3363 */
3364 barrier();
3365
3366 /*
3367 * The transaction ids are globally unique per cpu and per operation on
3368 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3369 * occurs on the right processor and that there was no operation on the
3370 * linked list in between.
3371 */
3372
3373 object = c->freelist;
3374 slab = c->slab;
3375
3376 if (!USE_LOCKLESS_FAST_PATH() ||
3377 unlikely(!object || !slab || !node_match(slab, node))) {
3378 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3379 } else {
3380 void *next_object = get_freepointer_safe(s, object);
3381
3382 /*
3383 * The cmpxchg will only match if there was no additional
3384 * operation and if we are on the right processor.
3385 *
3386 * The cmpxchg does the following atomically (without lock
3387 * semantics!)
3388 * 1. Relocate first pointer to the current per cpu area.
3389 * 2. Verify that tid and freelist have not been changed
3390 * 3. If they were not changed replace tid and freelist
3391 *
3392 * Since this is without lock semantics the protection is only
3393 * against code executing on this cpu *not* from access by
3394 * other cpus.
3395 */
3396 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3397 note_cmpxchg_failure("slab_alloc", s, tid);
3398 goto redo;
3399 }
3400 prefetch_freepointer(s, next_object);
3401 stat(s, ALLOC_FASTPATH);
3402 }
3403
3404 return object;
3405}
3406#else /* CONFIG_SLUB_TINY */
3407static void *__slab_alloc_node(struct kmem_cache *s,
3408 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3409{
3410 struct partial_context pc;
3411 struct slab *slab;
3412 void *object;
3413
3414 pc.flags = gfpflags;
3415 pc.slab = &slab;
3416 pc.orig_size = orig_size;
3417 object = get_partial(s, node, &pc);
3418
3419 if (object)
3420 return object;
3421
3422 slab = new_slab(s, gfpflags, node);
3423 if (unlikely(!slab)) {
3424 slab_out_of_memory(s, gfpflags, node);
3425 return NULL;
3426 }
3427
3428 object = alloc_single_from_new_slab(s, slab, orig_size);
3429
3430 return object;
3431}
3432#endif /* CONFIG_SLUB_TINY */
3433
3434/*
3435 * If the object has been wiped upon free, make sure it's fully initialized by
3436 * zeroing out freelist pointer.
3437 */
3438static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3439 void *obj)
3440{
3441 if (unlikely(slab_want_init_on_free(s)) && obj)
3442 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3443 0, sizeof(void *));
3444}
3445
3446/*
3447 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3448 * have the fastpath folded into their functions. So no function call
3449 * overhead for requests that can be satisfied on the fastpath.
3450 *
3451 * The fastpath works by first checking if the lockless freelist can be used.
3452 * If not then __slab_alloc is called for slow processing.
3453 *
3454 * Otherwise we can simply pick the next object from the lockless free list.
3455 */
3456static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3457 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3458{
3459 void *object;
3460 struct obj_cgroup *objcg = NULL;
3461 bool init = false;
3462
3463 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3464 if (!s)
3465 return NULL;
3466
3467 object = kfence_alloc(s, orig_size, gfpflags);
3468 if (unlikely(object))
3469 goto out;
3470
3471 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3472
3473 maybe_wipe_obj_freeptr(s, object);
3474 init = slab_want_init_on_alloc(gfpflags, s);
3475
3476out:
3477 /*
3478 * When init equals 'true', like for kzalloc() family, only
3479 * @orig_size bytes might be zeroed instead of s->object_size
3480 */
3481 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3482
3483 return object;
3484}
3485
3486static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3487 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3488{
3489 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3490}
3491
3492static __fastpath_inline
3493void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3494 gfp_t gfpflags)
3495{
3496 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3497
3498 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3499
3500 return ret;
3501}
3502
3503void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3504{
3505 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3506}
3507EXPORT_SYMBOL(kmem_cache_alloc);
3508
3509void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3510 gfp_t gfpflags)
3511{
3512 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3513}
3514EXPORT_SYMBOL(kmem_cache_alloc_lru);
3515
3516void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3517 int node, size_t orig_size,
3518 unsigned long caller)
3519{
3520 return slab_alloc_node(s, NULL, gfpflags, node,
3521 caller, orig_size);
3522}
3523
3524void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3525{
3526 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3527
3528 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3529
3530 return ret;
3531}
3532EXPORT_SYMBOL(kmem_cache_alloc_node);
3533
3534static noinline void free_to_partial_list(
3535 struct kmem_cache *s, struct slab *slab,
3536 void *head, void *tail, int bulk_cnt,
3537 unsigned long addr)
3538{
3539 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3540 struct slab *slab_free = NULL;
3541 int cnt = bulk_cnt;
3542 unsigned long flags;
3543 depot_stack_handle_t handle = 0;
3544
3545 if (s->flags & SLAB_STORE_USER)
3546 handle = set_track_prepare();
3547
3548 spin_lock_irqsave(&n->list_lock, flags);
3549
3550 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3551 void *prior = slab->freelist;
3552
3553 /* Perform the actual freeing while we still hold the locks */
3554 slab->inuse -= cnt;
3555 set_freepointer(s, tail, prior);
3556 slab->freelist = head;
3557
3558 /*
3559 * If the slab is empty, and node's partial list is full,
3560 * it should be discarded anyway no matter it's on full or
3561 * partial list.
3562 */
3563 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3564 slab_free = slab;
3565
3566 if (!prior) {
3567 /* was on full list */
3568 remove_full(s, n, slab);
3569 if (!slab_free) {
3570 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3571 stat(s, FREE_ADD_PARTIAL);
3572 }
3573 } else if (slab_free) {
3574 remove_partial(n, slab);
3575 stat(s, FREE_REMOVE_PARTIAL);
3576 }
3577 }
3578
3579 if (slab_free) {
3580 /*
3581 * Update the counters while still holding n->list_lock to
3582 * prevent spurious validation warnings
3583 */
3584 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3585 }
3586
3587 spin_unlock_irqrestore(&n->list_lock, flags);
3588
3589 if (slab_free) {
3590 stat(s, FREE_SLAB);
3591 free_slab(s, slab_free);
3592 }
3593}
3594
3595/*
3596 * Slow path handling. This may still be called frequently since objects
3597 * have a longer lifetime than the cpu slabs in most processing loads.
3598 *
3599 * So we still attempt to reduce cache line usage. Just take the slab
3600 * lock and free the item. If there is no additional partial slab
3601 * handling required then we can return immediately.
3602 */
3603static void __slab_free(struct kmem_cache *s, struct slab *slab,
3604 void *head, void *tail, int cnt,
3605 unsigned long addr)
3606
3607{
3608 void *prior;
3609 int was_frozen;
3610 struct slab new;
3611 unsigned long counters;
3612 struct kmem_cache_node *n = NULL;
3613 unsigned long flags;
3614
3615 stat(s, FREE_SLOWPATH);
3616
3617 if (kfence_free(head))
3618 return;
3619
3620 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3621 free_to_partial_list(s, slab, head, tail, cnt, addr);
3622 return;
3623 }
3624
3625 do {
3626 if (unlikely(n)) {
3627 spin_unlock_irqrestore(&n->list_lock, flags);
3628 n = NULL;
3629 }
3630 prior = slab->freelist;
3631 counters = slab->counters;
3632 set_freepointer(s, tail, prior);
3633 new.counters = counters;
3634 was_frozen = new.frozen;
3635 new.inuse -= cnt;
3636 if ((!new.inuse || !prior) && !was_frozen) {
3637
3638 if (kmem_cache_has_cpu_partial(s) && !prior) {
3639
3640 /*
3641 * Slab was on no list before and will be
3642 * partially empty
3643 * We can defer the list move and instead
3644 * freeze it.
3645 */
3646 new.frozen = 1;
3647
3648 } else { /* Needs to be taken off a list */
3649
3650 n = get_node(s, slab_nid(slab));
3651 /*
3652 * Speculatively acquire the list_lock.
3653 * If the cmpxchg does not succeed then we may
3654 * drop the list_lock without any processing.
3655 *
3656 * Otherwise the list_lock will synchronize with
3657 * other processors updating the list of slabs.
3658 */
3659 spin_lock_irqsave(&n->list_lock, flags);
3660
3661 }
3662 }
3663
3664 } while (!slab_update_freelist(s, slab,
3665 prior, counters,
3666 head, new.counters,
3667 "__slab_free"));
3668
3669 if (likely(!n)) {
3670
3671 if (likely(was_frozen)) {
3672 /*
3673 * The list lock was not taken therefore no list
3674 * activity can be necessary.
3675 */
3676 stat(s, FREE_FROZEN);
3677 } else if (new.frozen) {
3678 /*
3679 * If we just froze the slab then put it onto the
3680 * per cpu partial list.
3681 */
3682 put_cpu_partial(s, slab, 1);
3683 stat(s, CPU_PARTIAL_FREE);
3684 }
3685
3686 return;
3687 }
3688
3689 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3690 goto slab_empty;
3691
3692 /*
3693 * Objects left in the slab. If it was not on the partial list before
3694 * then add it.
3695 */
3696 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3697 remove_full(s, n, slab);
3698 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3699 stat(s, FREE_ADD_PARTIAL);
3700 }
3701 spin_unlock_irqrestore(&n->list_lock, flags);
3702 return;
3703
3704slab_empty:
3705 if (prior) {
3706 /*
3707 * Slab on the partial list.
3708 */
3709 remove_partial(n, slab);
3710 stat(s, FREE_REMOVE_PARTIAL);
3711 } else {
3712 /* Slab must be on the full list */
3713 remove_full(s, n, slab);
3714 }
3715
3716 spin_unlock_irqrestore(&n->list_lock, flags);
3717 stat(s, FREE_SLAB);
3718 discard_slab(s, slab);
3719}
3720
3721#ifndef CONFIG_SLUB_TINY
3722/*
3723 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3724 * can perform fastpath freeing without additional function calls.
3725 *
3726 * The fastpath is only possible if we are freeing to the current cpu slab
3727 * of this processor. This typically the case if we have just allocated
3728 * the item before.
3729 *
3730 * If fastpath is not possible then fall back to __slab_free where we deal
3731 * with all sorts of special processing.
3732 *
3733 * Bulk free of a freelist with several objects (all pointing to the
3734 * same slab) possible by specifying head and tail ptr, plus objects
3735 * count (cnt). Bulk free indicated by tail pointer being set.
3736 */
3737static __always_inline void do_slab_free(struct kmem_cache *s,
3738 struct slab *slab, void *head, void *tail,
3739 int cnt, unsigned long addr)
3740{
3741 void *tail_obj = tail ? : head;
3742 struct kmem_cache_cpu *c;
3743 unsigned long tid;
3744 void **freelist;
3745
3746redo:
3747 /*
3748 * Determine the currently cpus per cpu slab.
3749 * The cpu may change afterward. However that does not matter since
3750 * data is retrieved via this pointer. If we are on the same cpu
3751 * during the cmpxchg then the free will succeed.
3752 */
3753 c = raw_cpu_ptr(s->cpu_slab);
3754 tid = READ_ONCE(c->tid);
3755
3756 /* Same with comment on barrier() in slab_alloc_node() */
3757 barrier();
3758
3759 if (unlikely(slab != c->slab)) {
3760 __slab_free(s, slab, head, tail_obj, cnt, addr);
3761 return;
3762 }
3763
3764 if (USE_LOCKLESS_FAST_PATH()) {
3765 freelist = READ_ONCE(c->freelist);
3766
3767 set_freepointer(s, tail_obj, freelist);
3768
3769 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3770 note_cmpxchg_failure("slab_free", s, tid);
3771 goto redo;
3772 }
3773 } else {
3774 /* Update the free list under the local lock */
3775 local_lock(&s->cpu_slab->lock);
3776 c = this_cpu_ptr(s->cpu_slab);
3777 if (unlikely(slab != c->slab)) {
3778 local_unlock(&s->cpu_slab->lock);
3779 goto redo;
3780 }
3781 tid = c->tid;
3782 freelist = c->freelist;
3783
3784 set_freepointer(s, tail_obj, freelist);
3785 c->freelist = head;
3786 c->tid = next_tid(tid);
3787
3788 local_unlock(&s->cpu_slab->lock);
3789 }
3790 stat(s, FREE_FASTPATH);
3791}
3792#else /* CONFIG_SLUB_TINY */
3793static void do_slab_free(struct kmem_cache *s,
3794 struct slab *slab, void *head, void *tail,
3795 int cnt, unsigned long addr)
3796{
3797 void *tail_obj = tail ? : head;
3798
3799 __slab_free(s, slab, head, tail_obj, cnt, addr);
3800}
3801#endif /* CONFIG_SLUB_TINY */
3802
3803static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3804 void *head, void *tail, void **p, int cnt,
3805 unsigned long addr)
3806{
3807 memcg_slab_free_hook(s, slab, p, cnt);
3808 /*
3809 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3810 * to remove objects, whose reuse must be delayed.
3811 */
3812 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3813 do_slab_free(s, slab, head, tail, cnt, addr);
3814}
3815
3816#ifdef CONFIG_KASAN_GENERIC
3817void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3818{
3819 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3820}
3821#endif
3822
3823void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3824{
3825 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3826}
3827
3828void kmem_cache_free(struct kmem_cache *s, void *x)
3829{
3830 s = cache_from_obj(s, x);
3831 if (!s)
3832 return;
3833 trace_kmem_cache_free(_RET_IP_, x, s);
3834 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3835}
3836EXPORT_SYMBOL(kmem_cache_free);
3837
3838struct detached_freelist {
3839 struct slab *slab;
3840 void *tail;
3841 void *freelist;
3842 int cnt;
3843 struct kmem_cache *s;
3844};
3845
3846/*
3847 * This function progressively scans the array with free objects (with
3848 * a limited look ahead) and extract objects belonging to the same
3849 * slab. It builds a detached freelist directly within the given
3850 * slab/objects. This can happen without any need for
3851 * synchronization, because the objects are owned by running process.
3852 * The freelist is build up as a single linked list in the objects.
3853 * The idea is, that this detached freelist can then be bulk
3854 * transferred to the real freelist(s), but only requiring a single
3855 * synchronization primitive. Look ahead in the array is limited due
3856 * to performance reasons.
3857 */
3858static inline
3859int build_detached_freelist(struct kmem_cache *s, size_t size,
3860 void **p, struct detached_freelist *df)
3861{
3862 int lookahead = 3;
3863 void *object;
3864 struct folio *folio;
3865 size_t same;
3866
3867 object = p[--size];
3868 folio = virt_to_folio(object);
3869 if (!s) {
3870 /* Handle kalloc'ed objects */
3871 if (unlikely(!folio_test_slab(folio))) {
3872 free_large_kmalloc(folio, object);
3873 df->slab = NULL;
3874 return size;
3875 }
3876 /* Derive kmem_cache from object */
3877 df->slab = folio_slab(folio);
3878 df->s = df->slab->slab_cache;
3879 } else {
3880 df->slab = folio_slab(folio);
3881 df->s = cache_from_obj(s, object); /* Support for memcg */
3882 }
3883
3884 /* Start new detached freelist */
3885 df->tail = object;
3886 df->freelist = object;
3887 df->cnt = 1;
3888
3889 if (is_kfence_address(object))
3890 return size;
3891
3892 set_freepointer(df->s, object, NULL);
3893
3894 same = size;
3895 while (size) {
3896 object = p[--size];
3897 /* df->slab is always set at this point */
3898 if (df->slab == virt_to_slab(object)) {
3899 /* Opportunity build freelist */
3900 set_freepointer(df->s, object, df->freelist);
3901 df->freelist = object;
3902 df->cnt++;
3903 same--;
3904 if (size != same)
3905 swap(p[size], p[same]);
3906 continue;
3907 }
3908
3909 /* Limit look ahead search */
3910 if (!--lookahead)
3911 break;
3912 }
3913
3914 return same;
3915}
3916
3917/* Note that interrupts must be enabled when calling this function. */
3918void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3919{
3920 if (!size)
3921 return;
3922
3923 do {
3924 struct detached_freelist df;
3925
3926 size = build_detached_freelist(s, size, p, &df);
3927 if (!df.slab)
3928 continue;
3929
3930 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3931 _RET_IP_);
3932 } while (likely(size));
3933}
3934EXPORT_SYMBOL(kmem_cache_free_bulk);
3935
3936#ifndef CONFIG_SLUB_TINY
3937static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3938 size_t size, void **p, struct obj_cgroup *objcg)
3939{
3940 struct kmem_cache_cpu *c;
3941 unsigned long irqflags;
3942 int i;
3943
3944 /*
3945 * Drain objects in the per cpu slab, while disabling local
3946 * IRQs, which protects against PREEMPT and interrupts
3947 * handlers invoking normal fastpath.
3948 */
3949 c = slub_get_cpu_ptr(s->cpu_slab);
3950 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3951
3952 for (i = 0; i < size; i++) {
3953 void *object = kfence_alloc(s, s->object_size, flags);
3954
3955 if (unlikely(object)) {
3956 p[i] = object;
3957 continue;
3958 }
3959
3960 object = c->freelist;
3961 if (unlikely(!object)) {
3962 /*
3963 * We may have removed an object from c->freelist using
3964 * the fastpath in the previous iteration; in that case,
3965 * c->tid has not been bumped yet.
3966 * Since ___slab_alloc() may reenable interrupts while
3967 * allocating memory, we should bump c->tid now.
3968 */
3969 c->tid = next_tid(c->tid);
3970
3971 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3972
3973 /*
3974 * Invoking slow path likely have side-effect
3975 * of re-populating per CPU c->freelist
3976 */
3977 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3978 _RET_IP_, c, s->object_size);
3979 if (unlikely(!p[i]))
3980 goto error;
3981
3982 c = this_cpu_ptr(s->cpu_slab);
3983 maybe_wipe_obj_freeptr(s, p[i]);
3984
3985 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3986
3987 continue; /* goto for-loop */
3988 }
3989 c->freelist = get_freepointer(s, object);
3990 p[i] = object;
3991 maybe_wipe_obj_freeptr(s, p[i]);
3992 }
3993 c->tid = next_tid(c->tid);
3994 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3995 slub_put_cpu_ptr(s->cpu_slab);
3996
3997 return i;
3998
3999error:
4000 slub_put_cpu_ptr(s->cpu_slab);
4001 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4002 kmem_cache_free_bulk(s, i, p);
4003 return 0;
4004
4005}
4006#else /* CONFIG_SLUB_TINY */
4007static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4008 size_t size, void **p, struct obj_cgroup *objcg)
4009{
4010 int i;
4011
4012 for (i = 0; i < size; i++) {
4013 void *object = kfence_alloc(s, s->object_size, flags);
4014
4015 if (unlikely(object)) {
4016 p[i] = object;
4017 continue;
4018 }
4019
4020 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4021 _RET_IP_, s->object_size);
4022 if (unlikely(!p[i]))
4023 goto error;
4024
4025 maybe_wipe_obj_freeptr(s, p[i]);
4026 }
4027
4028 return i;
4029
4030error:
4031 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4032 kmem_cache_free_bulk(s, i, p);
4033 return 0;
4034}
4035#endif /* CONFIG_SLUB_TINY */
4036
4037/* Note that interrupts must be enabled when calling this function. */
4038int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4039 void **p)
4040{
4041 int i;
4042 struct obj_cgroup *objcg = NULL;
4043
4044 if (!size)
4045 return 0;
4046
4047 /* memcg and kmem_cache debug support */
4048 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4049 if (unlikely(!s))
4050 return 0;
4051
4052 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4053
4054 /*
4055 * memcg and kmem_cache debug support and memory initialization.
4056 * Done outside of the IRQ disabled fastpath loop.
4057 */
4058 if (i != 0)
4059 slab_post_alloc_hook(s, objcg, flags, size, p,
4060 slab_want_init_on_alloc(flags, s), s->object_size);
4061 return i;
4062}
4063EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4064
4065
4066/*
4067 * Object placement in a slab is made very easy because we always start at
4068 * offset 0. If we tune the size of the object to the alignment then we can
4069 * get the required alignment by putting one properly sized object after
4070 * another.
4071 *
4072 * Notice that the allocation order determines the sizes of the per cpu
4073 * caches. Each processor has always one slab available for allocations.
4074 * Increasing the allocation order reduces the number of times that slabs
4075 * must be moved on and off the partial lists and is therefore a factor in
4076 * locking overhead.
4077 */
4078
4079/*
4080 * Minimum / Maximum order of slab pages. This influences locking overhead
4081 * and slab fragmentation. A higher order reduces the number of partial slabs
4082 * and increases the number of allocations possible without having to
4083 * take the list_lock.
4084 */
4085static unsigned int slub_min_order;
4086static unsigned int slub_max_order =
4087 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4088static unsigned int slub_min_objects;
4089
4090/*
4091 * Calculate the order of allocation given an slab object size.
4092 *
4093 * The order of allocation has significant impact on performance and other
4094 * system components. Generally order 0 allocations should be preferred since
4095 * order 0 does not cause fragmentation in the page allocator. Larger objects
4096 * be problematic to put into order 0 slabs because there may be too much
4097 * unused space left. We go to a higher order if more than 1/16th of the slab
4098 * would be wasted.
4099 *
4100 * In order to reach satisfactory performance we must ensure that a minimum
4101 * number of objects is in one slab. Otherwise we may generate too much
4102 * activity on the partial lists which requires taking the list_lock. This is
4103 * less a concern for large slabs though which are rarely used.
4104 *
4105 * slub_max_order specifies the order where we begin to stop considering the
4106 * number of objects in a slab as critical. If we reach slub_max_order then
4107 * we try to keep the page order as low as possible. So we accept more waste
4108 * of space in favor of a small page order.
4109 *
4110 * Higher order allocations also allow the placement of more objects in a
4111 * slab and thereby reduce object handling overhead. If the user has
4112 * requested a higher minimum order then we start with that one instead of
4113 * the smallest order which will fit the object.
4114 */
4115static inline unsigned int calc_slab_order(unsigned int size,
4116 unsigned int min_objects, unsigned int max_order,
4117 unsigned int fract_leftover)
4118{
4119 unsigned int min_order = slub_min_order;
4120 unsigned int order;
4121
4122 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4123 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4124
4125 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4126 order <= max_order; order++) {
4127
4128 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4129 unsigned int rem;
4130
4131 rem = slab_size % size;
4132
4133 if (rem <= slab_size / fract_leftover)
4134 break;
4135 }
4136
4137 return order;
4138}
4139
4140static inline int calculate_order(unsigned int size)
4141{
4142 unsigned int order;
4143 unsigned int min_objects;
4144 unsigned int max_objects;
4145 unsigned int nr_cpus;
4146
4147 /*
4148 * Attempt to find best configuration for a slab. This
4149 * works by first attempting to generate a layout with
4150 * the best configuration and backing off gradually.
4151 *
4152 * First we increase the acceptable waste in a slab. Then
4153 * we reduce the minimum objects required in a slab.
4154 */
4155 min_objects = slub_min_objects;
4156 if (!min_objects) {
4157 /*
4158 * Some architectures will only update present cpus when
4159 * onlining them, so don't trust the number if it's just 1. But
4160 * we also don't want to use nr_cpu_ids always, as on some other
4161 * architectures, there can be many possible cpus, but never
4162 * onlined. Here we compromise between trying to avoid too high
4163 * order on systems that appear larger than they are, and too
4164 * low order on systems that appear smaller than they are.
4165 */
4166 nr_cpus = num_present_cpus();
4167 if (nr_cpus <= 1)
4168 nr_cpus = nr_cpu_ids;
4169 min_objects = 4 * (fls(nr_cpus) + 1);
4170 }
4171 max_objects = order_objects(slub_max_order, size);
4172 min_objects = min(min_objects, max_objects);
4173
4174 while (min_objects > 1) {
4175 unsigned int fraction;
4176
4177 fraction = 16;
4178 while (fraction >= 4) {
4179 order = calc_slab_order(size, min_objects,
4180 slub_max_order, fraction);
4181 if (order <= slub_max_order)
4182 return order;
4183 fraction /= 2;
4184 }
4185 min_objects--;
4186 }
4187
4188 /*
4189 * We were unable to place multiple objects in a slab. Now
4190 * lets see if we can place a single object there.
4191 */
4192 order = calc_slab_order(size, 1, slub_max_order, 1);
4193 if (order <= slub_max_order)
4194 return order;
4195
4196 /*
4197 * Doh this slab cannot be placed using slub_max_order.
4198 */
4199 order = calc_slab_order(size, 1, MAX_ORDER, 1);
4200 if (order <= MAX_ORDER)
4201 return order;
4202 return -ENOSYS;
4203}
4204
4205static void
4206init_kmem_cache_node(struct kmem_cache_node *n)
4207{
4208 n->nr_partial = 0;
4209 spin_lock_init(&n->list_lock);
4210 INIT_LIST_HEAD(&n->partial);
4211#ifdef CONFIG_SLUB_DEBUG
4212 atomic_long_set(&n->nr_slabs, 0);
4213 atomic_long_set(&n->total_objects, 0);
4214 INIT_LIST_HEAD(&n->full);
4215#endif
4216}
4217
4218#ifndef CONFIG_SLUB_TINY
4219static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4220{
4221 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4222 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4223 sizeof(struct kmem_cache_cpu));
4224
4225 /*
4226 * Must align to double word boundary for the double cmpxchg
4227 * instructions to work; see __pcpu_double_call_return_bool().
4228 */
4229 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4230 2 * sizeof(void *));
4231
4232 if (!s->cpu_slab)
4233 return 0;
4234
4235 init_kmem_cache_cpus(s);
4236
4237 return 1;
4238}
4239#else
4240static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4241{
4242 return 1;
4243}
4244#endif /* CONFIG_SLUB_TINY */
4245
4246static struct kmem_cache *kmem_cache_node;
4247
4248/*
4249 * No kmalloc_node yet so do it by hand. We know that this is the first
4250 * slab on the node for this slabcache. There are no concurrent accesses
4251 * possible.
4252 *
4253 * Note that this function only works on the kmem_cache_node
4254 * when allocating for the kmem_cache_node. This is used for bootstrapping
4255 * memory on a fresh node that has no slab structures yet.
4256 */
4257static void early_kmem_cache_node_alloc(int node)
4258{
4259 struct slab *slab;
4260 struct kmem_cache_node *n;
4261
4262 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4263
4264 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4265
4266 BUG_ON(!slab);
4267 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4268 if (slab_nid(slab) != node) {
4269 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4270 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4271 }
4272
4273 n = slab->freelist;
4274 BUG_ON(!n);
4275#ifdef CONFIG_SLUB_DEBUG
4276 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4277 init_tracking(kmem_cache_node, n);
4278#endif
4279 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4280 slab->freelist = get_freepointer(kmem_cache_node, n);
4281 slab->inuse = 1;
4282 kmem_cache_node->node[node] = n;
4283 init_kmem_cache_node(n);
4284 inc_slabs_node(kmem_cache_node, node, slab->objects);
4285
4286 /*
4287 * No locks need to be taken here as it has just been
4288 * initialized and there is no concurrent access.
4289 */
4290 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4291}
4292
4293static void free_kmem_cache_nodes(struct kmem_cache *s)
4294{
4295 int node;
4296 struct kmem_cache_node *n;
4297
4298 for_each_kmem_cache_node(s, node, n) {
4299 s->node[node] = NULL;
4300 kmem_cache_free(kmem_cache_node, n);
4301 }
4302}
4303
4304void __kmem_cache_release(struct kmem_cache *s)
4305{
4306 cache_random_seq_destroy(s);
4307#ifndef CONFIG_SLUB_TINY
4308 free_percpu(s->cpu_slab);
4309#endif
4310 free_kmem_cache_nodes(s);
4311}
4312
4313static int init_kmem_cache_nodes(struct kmem_cache *s)
4314{
4315 int node;
4316
4317 for_each_node_mask(node, slab_nodes) {
4318 struct kmem_cache_node *n;
4319
4320 if (slab_state == DOWN) {
4321 early_kmem_cache_node_alloc(node);
4322 continue;
4323 }
4324 n = kmem_cache_alloc_node(kmem_cache_node,
4325 GFP_KERNEL, node);
4326
4327 if (!n) {
4328 free_kmem_cache_nodes(s);
4329 return 0;
4330 }
4331
4332 init_kmem_cache_node(n);
4333 s->node[node] = n;
4334 }
4335 return 1;
4336}
4337
4338static void set_cpu_partial(struct kmem_cache *s)
4339{
4340#ifdef CONFIG_SLUB_CPU_PARTIAL
4341 unsigned int nr_objects;
4342
4343 /*
4344 * cpu_partial determined the maximum number of objects kept in the
4345 * per cpu partial lists of a processor.
4346 *
4347 * Per cpu partial lists mainly contain slabs that just have one
4348 * object freed. If they are used for allocation then they can be
4349 * filled up again with minimal effort. The slab will never hit the
4350 * per node partial lists and therefore no locking will be required.
4351 *
4352 * For backwards compatibility reasons, this is determined as number
4353 * of objects, even though we now limit maximum number of pages, see
4354 * slub_set_cpu_partial()
4355 */
4356 if (!kmem_cache_has_cpu_partial(s))
4357 nr_objects = 0;
4358 else if (s->size >= PAGE_SIZE)
4359 nr_objects = 6;
4360 else if (s->size >= 1024)
4361 nr_objects = 24;
4362 else if (s->size >= 256)
4363 nr_objects = 52;
4364 else
4365 nr_objects = 120;
4366
4367 slub_set_cpu_partial(s, nr_objects);
4368#endif
4369}
4370
4371/*
4372 * calculate_sizes() determines the order and the distribution of data within
4373 * a slab object.
4374 */
4375static int calculate_sizes(struct kmem_cache *s)
4376{
4377 slab_flags_t flags = s->flags;
4378 unsigned int size = s->object_size;
4379 unsigned int order;
4380
4381 /*
4382 * Round up object size to the next word boundary. We can only
4383 * place the free pointer at word boundaries and this determines
4384 * the possible location of the free pointer.
4385 */
4386 size = ALIGN(size, sizeof(void *));
4387
4388#ifdef CONFIG_SLUB_DEBUG
4389 /*
4390 * Determine if we can poison the object itself. If the user of
4391 * the slab may touch the object after free or before allocation
4392 * then we should never poison the object itself.
4393 */
4394 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4395 !s->ctor)
4396 s->flags |= __OBJECT_POISON;
4397 else
4398 s->flags &= ~__OBJECT_POISON;
4399
4400
4401 /*
4402 * If we are Redzoning then check if there is some space between the
4403 * end of the object and the free pointer. If not then add an
4404 * additional word to have some bytes to store Redzone information.
4405 */
4406 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4407 size += sizeof(void *);
4408#endif
4409
4410 /*
4411 * With that we have determined the number of bytes in actual use
4412 * by the object and redzoning.
4413 */
4414 s->inuse = size;
4415
4416 if (slub_debug_orig_size(s) ||
4417 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4418 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4419 s->ctor) {
4420 /*
4421 * Relocate free pointer after the object if it is not
4422 * permitted to overwrite the first word of the object on
4423 * kmem_cache_free.
4424 *
4425 * This is the case if we do RCU, have a constructor or
4426 * destructor, are poisoning the objects, or are
4427 * redzoning an object smaller than sizeof(void *).
4428 *
4429 * The assumption that s->offset >= s->inuse means free
4430 * pointer is outside of the object is used in the
4431 * freeptr_outside_object() function. If that is no
4432 * longer true, the function needs to be modified.
4433 */
4434 s->offset = size;
4435 size += sizeof(void *);
4436 } else {
4437 /*
4438 * Store freelist pointer near middle of object to keep
4439 * it away from the edges of the object to avoid small
4440 * sized over/underflows from neighboring allocations.
4441 */
4442 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4443 }
4444
4445#ifdef CONFIG_SLUB_DEBUG
4446 if (flags & SLAB_STORE_USER) {
4447 /*
4448 * Need to store information about allocs and frees after
4449 * the object.
4450 */
4451 size += 2 * sizeof(struct track);
4452
4453 /* Save the original kmalloc request size */
4454 if (flags & SLAB_KMALLOC)
4455 size += sizeof(unsigned int);
4456 }
4457#endif
4458
4459 kasan_cache_create(s, &size, &s->flags);
4460#ifdef CONFIG_SLUB_DEBUG
4461 if (flags & SLAB_RED_ZONE) {
4462 /*
4463 * Add some empty padding so that we can catch
4464 * overwrites from earlier objects rather than let
4465 * tracking information or the free pointer be
4466 * corrupted if a user writes before the start
4467 * of the object.
4468 */
4469 size += sizeof(void *);
4470
4471 s->red_left_pad = sizeof(void *);
4472 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4473 size += s->red_left_pad;
4474 }
4475#endif
4476
4477 /*
4478 * SLUB stores one object immediately after another beginning from
4479 * offset 0. In order to align the objects we have to simply size
4480 * each object to conform to the alignment.
4481 */
4482 size = ALIGN(size, s->align);
4483 s->size = size;
4484 s->reciprocal_size = reciprocal_value(size);
4485 order = calculate_order(size);
4486
4487 if ((int)order < 0)
4488 return 0;
4489
4490 s->allocflags = 0;
4491 if (order)
4492 s->allocflags |= __GFP_COMP;
4493
4494 if (s->flags & SLAB_CACHE_DMA)
4495 s->allocflags |= GFP_DMA;
4496
4497 if (s->flags & SLAB_CACHE_DMA32)
4498 s->allocflags |= GFP_DMA32;
4499
4500 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4501 s->allocflags |= __GFP_RECLAIMABLE;
4502
4503 /*
4504 * Determine the number of objects per slab
4505 */
4506 s->oo = oo_make(order, size);
4507 s->min = oo_make(get_order(size), size);
4508
4509 return !!oo_objects(s->oo);
4510}
4511
4512static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4513{
4514 s->flags = kmem_cache_flags(s->size, flags, s->name);
4515#ifdef CONFIG_SLAB_FREELIST_HARDENED
4516 s->random = get_random_long();
4517#endif
4518
4519 if (!calculate_sizes(s))
4520 goto error;
4521 if (disable_higher_order_debug) {
4522 /*
4523 * Disable debugging flags that store metadata if the min slab
4524 * order increased.
4525 */
4526 if (get_order(s->size) > get_order(s->object_size)) {
4527 s->flags &= ~DEBUG_METADATA_FLAGS;
4528 s->offset = 0;
4529 if (!calculate_sizes(s))
4530 goto error;
4531 }
4532 }
4533
4534#ifdef system_has_freelist_aba
4535 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4536 /* Enable fast mode */
4537 s->flags |= __CMPXCHG_DOUBLE;
4538 }
4539#endif
4540
4541 /*
4542 * The larger the object size is, the more slabs we want on the partial
4543 * list to avoid pounding the page allocator excessively.
4544 */
4545 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4546 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4547
4548 set_cpu_partial(s);
4549
4550#ifdef CONFIG_NUMA
4551 s->remote_node_defrag_ratio = 1000;
4552#endif
4553
4554 /* Initialize the pre-computed randomized freelist if slab is up */
4555 if (slab_state >= UP) {
4556 if (init_cache_random_seq(s))
4557 goto error;
4558 }
4559
4560 if (!init_kmem_cache_nodes(s))
4561 goto error;
4562
4563 if (alloc_kmem_cache_cpus(s))
4564 return 0;
4565
4566error:
4567 __kmem_cache_release(s);
4568 return -EINVAL;
4569}
4570
4571static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4572 const char *text)
4573{
4574#ifdef CONFIG_SLUB_DEBUG
4575 void *addr = slab_address(slab);
4576 void *p;
4577
4578 slab_err(s, slab, text, s->name);
4579
4580 spin_lock(&object_map_lock);
4581 __fill_map(object_map, s, slab);
4582
4583 for_each_object(p, s, addr, slab->objects) {
4584
4585 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4586 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4587 print_tracking(s, p);
4588 }
4589 }
4590 spin_unlock(&object_map_lock);
4591#endif
4592}
4593
4594/*
4595 * Attempt to free all partial slabs on a node.
4596 * This is called from __kmem_cache_shutdown(). We must take list_lock
4597 * because sysfs file might still access partial list after the shutdowning.
4598 */
4599static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4600{
4601 LIST_HEAD(discard);
4602 struct slab *slab, *h;
4603
4604 BUG_ON(irqs_disabled());
4605 spin_lock_irq(&n->list_lock);
4606 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4607 if (!slab->inuse) {
4608 remove_partial(n, slab);
4609 list_add(&slab->slab_list, &discard);
4610 } else {
4611 list_slab_objects(s, slab,
4612 "Objects remaining in %s on __kmem_cache_shutdown()");
4613 }
4614 }
4615 spin_unlock_irq(&n->list_lock);
4616
4617 list_for_each_entry_safe(slab, h, &discard, slab_list)
4618 discard_slab(s, slab);
4619}
4620
4621bool __kmem_cache_empty(struct kmem_cache *s)
4622{
4623 int node;
4624 struct kmem_cache_node *n;
4625
4626 for_each_kmem_cache_node(s, node, n)
4627 if (n->nr_partial || node_nr_slabs(n))
4628 return false;
4629 return true;
4630}
4631
4632/*
4633 * Release all resources used by a slab cache.
4634 */
4635int __kmem_cache_shutdown(struct kmem_cache *s)
4636{
4637 int node;
4638 struct kmem_cache_node *n;
4639
4640 flush_all_cpus_locked(s);
4641 /* Attempt to free all objects */
4642 for_each_kmem_cache_node(s, node, n) {
4643 free_partial(s, n);
4644 if (n->nr_partial || node_nr_slabs(n))
4645 return 1;
4646 }
4647 return 0;
4648}
4649
4650#ifdef CONFIG_PRINTK
4651void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4652{
4653 void *base;
4654 int __maybe_unused i;
4655 unsigned int objnr;
4656 void *objp;
4657 void *objp0;
4658 struct kmem_cache *s = slab->slab_cache;
4659 struct track __maybe_unused *trackp;
4660
4661 kpp->kp_ptr = object;
4662 kpp->kp_slab = slab;
4663 kpp->kp_slab_cache = s;
4664 base = slab_address(slab);
4665 objp0 = kasan_reset_tag(object);
4666#ifdef CONFIG_SLUB_DEBUG
4667 objp = restore_red_left(s, objp0);
4668#else
4669 objp = objp0;
4670#endif
4671 objnr = obj_to_index(s, slab, objp);
4672 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4673 objp = base + s->size * objnr;
4674 kpp->kp_objp = objp;
4675 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4676 || (objp - base) % s->size) ||
4677 !(s->flags & SLAB_STORE_USER))
4678 return;
4679#ifdef CONFIG_SLUB_DEBUG
4680 objp = fixup_red_left(s, objp);
4681 trackp = get_track(s, objp, TRACK_ALLOC);
4682 kpp->kp_ret = (void *)trackp->addr;
4683#ifdef CONFIG_STACKDEPOT
4684 {
4685 depot_stack_handle_t handle;
4686 unsigned long *entries;
4687 unsigned int nr_entries;
4688
4689 handle = READ_ONCE(trackp->handle);
4690 if (handle) {
4691 nr_entries = stack_depot_fetch(handle, &entries);
4692 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4693 kpp->kp_stack[i] = (void *)entries[i];
4694 }
4695
4696 trackp = get_track(s, objp, TRACK_FREE);
4697 handle = READ_ONCE(trackp->handle);
4698 if (handle) {
4699 nr_entries = stack_depot_fetch(handle, &entries);
4700 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4701 kpp->kp_free_stack[i] = (void *)entries[i];
4702 }
4703 }
4704#endif
4705#endif
4706}
4707#endif
4708
4709/********************************************************************
4710 * Kmalloc subsystem
4711 *******************************************************************/
4712
4713static int __init setup_slub_min_order(char *str)
4714{
4715 get_option(&str, (int *)&slub_min_order);
4716
4717 return 1;
4718}
4719
4720__setup("slub_min_order=", setup_slub_min_order);
4721
4722static int __init setup_slub_max_order(char *str)
4723{
4724 get_option(&str, (int *)&slub_max_order);
4725 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4726
4727 return 1;
4728}
4729
4730__setup("slub_max_order=", setup_slub_max_order);
4731
4732static int __init setup_slub_min_objects(char *str)
4733{
4734 get_option(&str, (int *)&slub_min_objects);
4735
4736 return 1;
4737}
4738
4739__setup("slub_min_objects=", setup_slub_min_objects);
4740
4741#ifdef CONFIG_HARDENED_USERCOPY
4742/*
4743 * Rejects incorrectly sized objects and objects that are to be copied
4744 * to/from userspace but do not fall entirely within the containing slab
4745 * cache's usercopy region.
4746 *
4747 * Returns NULL if check passes, otherwise const char * to name of cache
4748 * to indicate an error.
4749 */
4750void __check_heap_object(const void *ptr, unsigned long n,
4751 const struct slab *slab, bool to_user)
4752{
4753 struct kmem_cache *s;
4754 unsigned int offset;
4755 bool is_kfence = is_kfence_address(ptr);
4756
4757 ptr = kasan_reset_tag(ptr);
4758
4759 /* Find object and usable object size. */
4760 s = slab->slab_cache;
4761
4762 /* Reject impossible pointers. */
4763 if (ptr < slab_address(slab))
4764 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4765 to_user, 0, n);
4766
4767 /* Find offset within object. */
4768 if (is_kfence)
4769 offset = ptr - kfence_object_start(ptr);
4770 else
4771 offset = (ptr - slab_address(slab)) % s->size;
4772
4773 /* Adjust for redzone and reject if within the redzone. */
4774 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4775 if (offset < s->red_left_pad)
4776 usercopy_abort("SLUB object in left red zone",
4777 s->name, to_user, offset, n);
4778 offset -= s->red_left_pad;
4779 }
4780
4781 /* Allow address range falling entirely within usercopy region. */
4782 if (offset >= s->useroffset &&
4783 offset - s->useroffset <= s->usersize &&
4784 n <= s->useroffset - offset + s->usersize)
4785 return;
4786
4787 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4788}
4789#endif /* CONFIG_HARDENED_USERCOPY */
4790
4791#define SHRINK_PROMOTE_MAX 32
4792
4793/*
4794 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4795 * up most to the head of the partial lists. New allocations will then
4796 * fill those up and thus they can be removed from the partial lists.
4797 *
4798 * The slabs with the least items are placed last. This results in them
4799 * being allocated from last increasing the chance that the last objects
4800 * are freed in them.
4801 */
4802static int __kmem_cache_do_shrink(struct kmem_cache *s)
4803{
4804 int node;
4805 int i;
4806 struct kmem_cache_node *n;
4807 struct slab *slab;
4808 struct slab *t;
4809 struct list_head discard;
4810 struct list_head promote[SHRINK_PROMOTE_MAX];
4811 unsigned long flags;
4812 int ret = 0;
4813
4814 for_each_kmem_cache_node(s, node, n) {
4815 INIT_LIST_HEAD(&discard);
4816 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4817 INIT_LIST_HEAD(promote + i);
4818
4819 spin_lock_irqsave(&n->list_lock, flags);
4820
4821 /*
4822 * Build lists of slabs to discard or promote.
4823 *
4824 * Note that concurrent frees may occur while we hold the
4825 * list_lock. slab->inuse here is the upper limit.
4826 */
4827 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4828 int free = slab->objects - slab->inuse;
4829
4830 /* Do not reread slab->inuse */
4831 barrier();
4832
4833 /* We do not keep full slabs on the list */
4834 BUG_ON(free <= 0);
4835
4836 if (free == slab->objects) {
4837 list_move(&slab->slab_list, &discard);
4838 n->nr_partial--;
4839 dec_slabs_node(s, node, slab->objects);
4840 } else if (free <= SHRINK_PROMOTE_MAX)
4841 list_move(&slab->slab_list, promote + free - 1);
4842 }
4843
4844 /*
4845 * Promote the slabs filled up most to the head of the
4846 * partial list.
4847 */
4848 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4849 list_splice(promote + i, &n->partial);
4850
4851 spin_unlock_irqrestore(&n->list_lock, flags);
4852
4853 /* Release empty slabs */
4854 list_for_each_entry_safe(slab, t, &discard, slab_list)
4855 free_slab(s, slab);
4856
4857 if (node_nr_slabs(n))
4858 ret = 1;
4859 }
4860
4861 return ret;
4862}
4863
4864int __kmem_cache_shrink(struct kmem_cache *s)
4865{
4866 flush_all(s);
4867 return __kmem_cache_do_shrink(s);
4868}
4869
4870static int slab_mem_going_offline_callback(void *arg)
4871{
4872 struct kmem_cache *s;
4873
4874 mutex_lock(&slab_mutex);
4875 list_for_each_entry(s, &slab_caches, list) {
4876 flush_all_cpus_locked(s);
4877 __kmem_cache_do_shrink(s);
4878 }
4879 mutex_unlock(&slab_mutex);
4880
4881 return 0;
4882}
4883
4884static void slab_mem_offline_callback(void *arg)
4885{
4886 struct memory_notify *marg = arg;
4887 int offline_node;
4888
4889 offline_node = marg->status_change_nid_normal;
4890
4891 /*
4892 * If the node still has available memory. we need kmem_cache_node
4893 * for it yet.
4894 */
4895 if (offline_node < 0)
4896 return;
4897
4898 mutex_lock(&slab_mutex);
4899 node_clear(offline_node, slab_nodes);
4900 /*
4901 * We no longer free kmem_cache_node structures here, as it would be
4902 * racy with all get_node() users, and infeasible to protect them with
4903 * slab_mutex.
4904 */
4905 mutex_unlock(&slab_mutex);
4906}
4907
4908static int slab_mem_going_online_callback(void *arg)
4909{
4910 struct kmem_cache_node *n;
4911 struct kmem_cache *s;
4912 struct memory_notify *marg = arg;
4913 int nid = marg->status_change_nid_normal;
4914 int ret = 0;
4915
4916 /*
4917 * If the node's memory is already available, then kmem_cache_node is
4918 * already created. Nothing to do.
4919 */
4920 if (nid < 0)
4921 return 0;
4922
4923 /*
4924 * We are bringing a node online. No memory is available yet. We must
4925 * allocate a kmem_cache_node structure in order to bring the node
4926 * online.
4927 */
4928 mutex_lock(&slab_mutex);
4929 list_for_each_entry(s, &slab_caches, list) {
4930 /*
4931 * The structure may already exist if the node was previously
4932 * onlined and offlined.
4933 */
4934 if (get_node(s, nid))
4935 continue;
4936 /*
4937 * XXX: kmem_cache_alloc_node will fallback to other nodes
4938 * since memory is not yet available from the node that
4939 * is brought up.
4940 */
4941 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4942 if (!n) {
4943 ret = -ENOMEM;
4944 goto out;
4945 }
4946 init_kmem_cache_node(n);
4947 s->node[nid] = n;
4948 }
4949 /*
4950 * Any cache created after this point will also have kmem_cache_node
4951 * initialized for the new node.
4952 */
4953 node_set(nid, slab_nodes);
4954out:
4955 mutex_unlock(&slab_mutex);
4956 return ret;
4957}
4958
4959static int slab_memory_callback(struct notifier_block *self,
4960 unsigned long action, void *arg)
4961{
4962 int ret = 0;
4963
4964 switch (action) {
4965 case MEM_GOING_ONLINE:
4966 ret = slab_mem_going_online_callback(arg);
4967 break;
4968 case MEM_GOING_OFFLINE:
4969 ret = slab_mem_going_offline_callback(arg);
4970 break;
4971 case MEM_OFFLINE:
4972 case MEM_CANCEL_ONLINE:
4973 slab_mem_offline_callback(arg);
4974 break;
4975 case MEM_ONLINE:
4976 case MEM_CANCEL_OFFLINE:
4977 break;
4978 }
4979 if (ret)
4980 ret = notifier_from_errno(ret);
4981 else
4982 ret = NOTIFY_OK;
4983 return ret;
4984}
4985
4986/********************************************************************
4987 * Basic setup of slabs
4988 *******************************************************************/
4989
4990/*
4991 * Used for early kmem_cache structures that were allocated using
4992 * the page allocator. Allocate them properly then fix up the pointers
4993 * that may be pointing to the wrong kmem_cache structure.
4994 */
4995
4996static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4997{
4998 int node;
4999 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5000 struct kmem_cache_node *n;
5001
5002 memcpy(s, static_cache, kmem_cache->object_size);
5003
5004 /*
5005 * This runs very early, and only the boot processor is supposed to be
5006 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5007 * IPIs around.
5008 */
5009 __flush_cpu_slab(s, smp_processor_id());
5010 for_each_kmem_cache_node(s, node, n) {
5011 struct slab *p;
5012
5013 list_for_each_entry(p, &n->partial, slab_list)
5014 p->slab_cache = s;
5015
5016#ifdef CONFIG_SLUB_DEBUG
5017 list_for_each_entry(p, &n->full, slab_list)
5018 p->slab_cache = s;
5019#endif
5020 }
5021 list_add(&s->list, &slab_caches);
5022 return s;
5023}
5024
5025void __init kmem_cache_init(void)
5026{
5027 static __initdata struct kmem_cache boot_kmem_cache,
5028 boot_kmem_cache_node;
5029 int node;
5030
5031 if (debug_guardpage_minorder())
5032 slub_max_order = 0;
5033
5034 /* Print slub debugging pointers without hashing */
5035 if (__slub_debug_enabled())
5036 no_hash_pointers_enable(NULL);
5037
5038 kmem_cache_node = &boot_kmem_cache_node;
5039 kmem_cache = &boot_kmem_cache;
5040
5041 /*
5042 * Initialize the nodemask for which we will allocate per node
5043 * structures. Here we don't need taking slab_mutex yet.
5044 */
5045 for_each_node_state(node, N_NORMAL_MEMORY)
5046 node_set(node, slab_nodes);
5047
5048 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5049 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5050
5051 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5052
5053 /* Able to allocate the per node structures */
5054 slab_state = PARTIAL;
5055
5056 create_boot_cache(kmem_cache, "kmem_cache",
5057 offsetof(struct kmem_cache, node) +
5058 nr_node_ids * sizeof(struct kmem_cache_node *),
5059 SLAB_HWCACHE_ALIGN, 0, 0);
5060
5061 kmem_cache = bootstrap(&boot_kmem_cache);
5062 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5063
5064 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5065 setup_kmalloc_cache_index_table();
5066 create_kmalloc_caches(0);
5067
5068 /* Setup random freelists for each cache */
5069 init_freelist_randomization();
5070
5071 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5072 slub_cpu_dead);
5073
5074 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5075 cache_line_size(),
5076 slub_min_order, slub_max_order, slub_min_objects,
5077 nr_cpu_ids, nr_node_ids);
5078}
5079
5080void __init kmem_cache_init_late(void)
5081{
5082#ifndef CONFIG_SLUB_TINY
5083 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5084 WARN_ON(!flushwq);
5085#endif
5086}
5087
5088struct kmem_cache *
5089__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5090 slab_flags_t flags, void (*ctor)(void *))
5091{
5092 struct kmem_cache *s;
5093
5094 s = find_mergeable(size, align, flags, name, ctor);
5095 if (s) {
5096 if (sysfs_slab_alias(s, name))
5097 return NULL;
5098
5099 s->refcount++;
5100
5101 /*
5102 * Adjust the object sizes so that we clear
5103 * the complete object on kzalloc.
5104 */
5105 s->object_size = max(s->object_size, size);
5106 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5107 }
5108
5109 return s;
5110}
5111
5112int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5113{
5114 int err;
5115
5116 err = kmem_cache_open(s, flags);
5117 if (err)
5118 return err;
5119
5120 /* Mutex is not taken during early boot */
5121 if (slab_state <= UP)
5122 return 0;
5123
5124 err = sysfs_slab_add(s);
5125 if (err) {
5126 __kmem_cache_release(s);
5127 return err;
5128 }
5129
5130 if (s->flags & SLAB_STORE_USER)
5131 debugfs_slab_add(s);
5132
5133 return 0;
5134}
5135
5136#ifdef SLAB_SUPPORTS_SYSFS
5137static int count_inuse(struct slab *slab)
5138{
5139 return slab->inuse;
5140}
5141
5142static int count_total(struct slab *slab)
5143{
5144 return slab->objects;
5145}
5146#endif
5147
5148#ifdef CONFIG_SLUB_DEBUG
5149static void validate_slab(struct kmem_cache *s, struct slab *slab,
5150 unsigned long *obj_map)
5151{
5152 void *p;
5153 void *addr = slab_address(slab);
5154
5155 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5156 return;
5157
5158 /* Now we know that a valid freelist exists */
5159 __fill_map(obj_map, s, slab);
5160 for_each_object(p, s, addr, slab->objects) {
5161 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5162 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5163
5164 if (!check_object(s, slab, p, val))
5165 break;
5166 }
5167}
5168
5169static int validate_slab_node(struct kmem_cache *s,
5170 struct kmem_cache_node *n, unsigned long *obj_map)
5171{
5172 unsigned long count = 0;
5173 struct slab *slab;
5174 unsigned long flags;
5175
5176 spin_lock_irqsave(&n->list_lock, flags);
5177
5178 list_for_each_entry(slab, &n->partial, slab_list) {
5179 validate_slab(s, slab, obj_map);
5180 count++;
5181 }
5182 if (count != n->nr_partial) {
5183 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5184 s->name, count, n->nr_partial);
5185 slab_add_kunit_errors();
5186 }
5187
5188 if (!(s->flags & SLAB_STORE_USER))
5189 goto out;
5190
5191 list_for_each_entry(slab, &n->full, slab_list) {
5192 validate_slab(s, slab, obj_map);
5193 count++;
5194 }
5195 if (count != node_nr_slabs(n)) {
5196 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5197 s->name, count, node_nr_slabs(n));
5198 slab_add_kunit_errors();
5199 }
5200
5201out:
5202 spin_unlock_irqrestore(&n->list_lock, flags);
5203 return count;
5204}
5205
5206long validate_slab_cache(struct kmem_cache *s)
5207{
5208 int node;
5209 unsigned long count = 0;
5210 struct kmem_cache_node *n;
5211 unsigned long *obj_map;
5212
5213 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5214 if (!obj_map)
5215 return -ENOMEM;
5216
5217 flush_all(s);
5218 for_each_kmem_cache_node(s, node, n)
5219 count += validate_slab_node(s, n, obj_map);
5220
5221 bitmap_free(obj_map);
5222
5223 return count;
5224}
5225EXPORT_SYMBOL(validate_slab_cache);
5226
5227#ifdef CONFIG_DEBUG_FS
5228/*
5229 * Generate lists of code addresses where slabcache objects are allocated
5230 * and freed.
5231 */
5232
5233struct location {
5234 depot_stack_handle_t handle;
5235 unsigned long count;
5236 unsigned long addr;
5237 unsigned long waste;
5238 long long sum_time;
5239 long min_time;
5240 long max_time;
5241 long min_pid;
5242 long max_pid;
5243 DECLARE_BITMAP(cpus, NR_CPUS);
5244 nodemask_t nodes;
5245};
5246
5247struct loc_track {
5248 unsigned long max;
5249 unsigned long count;
5250 struct location *loc;
5251 loff_t idx;
5252};
5253
5254static struct dentry *slab_debugfs_root;
5255
5256static void free_loc_track(struct loc_track *t)
5257{
5258 if (t->max)
5259 free_pages((unsigned long)t->loc,
5260 get_order(sizeof(struct location) * t->max));
5261}
5262
5263static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5264{
5265 struct location *l;
5266 int order;
5267
5268 order = get_order(sizeof(struct location) * max);
5269
5270 l = (void *)__get_free_pages(flags, order);
5271 if (!l)
5272 return 0;
5273
5274 if (t->count) {
5275 memcpy(l, t->loc, sizeof(struct location) * t->count);
5276 free_loc_track(t);
5277 }
5278 t->max = max;
5279 t->loc = l;
5280 return 1;
5281}
5282
5283static int add_location(struct loc_track *t, struct kmem_cache *s,
5284 const struct track *track,
5285 unsigned int orig_size)
5286{
5287 long start, end, pos;
5288 struct location *l;
5289 unsigned long caddr, chandle, cwaste;
5290 unsigned long age = jiffies - track->when;
5291 depot_stack_handle_t handle = 0;
5292 unsigned int waste = s->object_size - orig_size;
5293
5294#ifdef CONFIG_STACKDEPOT
5295 handle = READ_ONCE(track->handle);
5296#endif
5297 start = -1;
5298 end = t->count;
5299
5300 for ( ; ; ) {
5301 pos = start + (end - start + 1) / 2;
5302
5303 /*
5304 * There is nothing at "end". If we end up there
5305 * we need to add something to before end.
5306 */
5307 if (pos == end)
5308 break;
5309
5310 l = &t->loc[pos];
5311 caddr = l->addr;
5312 chandle = l->handle;
5313 cwaste = l->waste;
5314 if ((track->addr == caddr) && (handle == chandle) &&
5315 (waste == cwaste)) {
5316
5317 l->count++;
5318 if (track->when) {
5319 l->sum_time += age;
5320 if (age < l->min_time)
5321 l->min_time = age;
5322 if (age > l->max_time)
5323 l->max_time = age;
5324
5325 if (track->pid < l->min_pid)
5326 l->min_pid = track->pid;
5327 if (track->pid > l->max_pid)
5328 l->max_pid = track->pid;
5329
5330 cpumask_set_cpu(track->cpu,
5331 to_cpumask(l->cpus));
5332 }
5333 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5334 return 1;
5335 }
5336
5337 if (track->addr < caddr)
5338 end = pos;
5339 else if (track->addr == caddr && handle < chandle)
5340 end = pos;
5341 else if (track->addr == caddr && handle == chandle &&
5342 waste < cwaste)
5343 end = pos;
5344 else
5345 start = pos;
5346 }
5347
5348 /*
5349 * Not found. Insert new tracking element.
5350 */
5351 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5352 return 0;
5353
5354 l = t->loc + pos;
5355 if (pos < t->count)
5356 memmove(l + 1, l,
5357 (t->count - pos) * sizeof(struct location));
5358 t->count++;
5359 l->count = 1;
5360 l->addr = track->addr;
5361 l->sum_time = age;
5362 l->min_time = age;
5363 l->max_time = age;
5364 l->min_pid = track->pid;
5365 l->max_pid = track->pid;
5366 l->handle = handle;
5367 l->waste = waste;
5368 cpumask_clear(to_cpumask(l->cpus));
5369 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5370 nodes_clear(l->nodes);
5371 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5372 return 1;
5373}
5374
5375static void process_slab(struct loc_track *t, struct kmem_cache *s,
5376 struct slab *slab, enum track_item alloc,
5377 unsigned long *obj_map)
5378{
5379 void *addr = slab_address(slab);
5380 bool is_alloc = (alloc == TRACK_ALLOC);
5381 void *p;
5382
5383 __fill_map(obj_map, s, slab);
5384
5385 for_each_object(p, s, addr, slab->objects)
5386 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5387 add_location(t, s, get_track(s, p, alloc),
5388 is_alloc ? get_orig_size(s, p) :
5389 s->object_size);
5390}
5391#endif /* CONFIG_DEBUG_FS */
5392#endif /* CONFIG_SLUB_DEBUG */
5393
5394#ifdef SLAB_SUPPORTS_SYSFS
5395enum slab_stat_type {
5396 SL_ALL, /* All slabs */
5397 SL_PARTIAL, /* Only partially allocated slabs */
5398 SL_CPU, /* Only slabs used for cpu caches */
5399 SL_OBJECTS, /* Determine allocated objects not slabs */
5400 SL_TOTAL /* Determine object capacity not slabs */
5401};
5402
5403#define SO_ALL (1 << SL_ALL)
5404#define SO_PARTIAL (1 << SL_PARTIAL)
5405#define SO_CPU (1 << SL_CPU)
5406#define SO_OBJECTS (1 << SL_OBJECTS)
5407#define SO_TOTAL (1 << SL_TOTAL)
5408
5409static ssize_t show_slab_objects(struct kmem_cache *s,
5410 char *buf, unsigned long flags)
5411{
5412 unsigned long total = 0;
5413 int node;
5414 int x;
5415 unsigned long *nodes;
5416 int len = 0;
5417
5418 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5419 if (!nodes)
5420 return -ENOMEM;
5421
5422 if (flags & SO_CPU) {
5423 int cpu;
5424
5425 for_each_possible_cpu(cpu) {
5426 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5427 cpu);
5428 int node;
5429 struct slab *slab;
5430
5431 slab = READ_ONCE(c->slab);
5432 if (!slab)
5433 continue;
5434
5435 node = slab_nid(slab);
5436 if (flags & SO_TOTAL)
5437 x = slab->objects;
5438 else if (flags & SO_OBJECTS)
5439 x = slab->inuse;
5440 else
5441 x = 1;
5442
5443 total += x;
5444 nodes[node] += x;
5445
5446#ifdef CONFIG_SLUB_CPU_PARTIAL
5447 slab = slub_percpu_partial_read_once(c);
5448 if (slab) {
5449 node = slab_nid(slab);
5450 if (flags & SO_TOTAL)
5451 WARN_ON_ONCE(1);
5452 else if (flags & SO_OBJECTS)
5453 WARN_ON_ONCE(1);
5454 else
5455 x = slab->slabs;
5456 total += x;
5457 nodes[node] += x;
5458 }
5459#endif
5460 }
5461 }
5462
5463 /*
5464 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5465 * already held which will conflict with an existing lock order:
5466 *
5467 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5468 *
5469 * We don't really need mem_hotplug_lock (to hold off
5470 * slab_mem_going_offline_callback) here because slab's memory hot
5471 * unplug code doesn't destroy the kmem_cache->node[] data.
5472 */
5473
5474#ifdef CONFIG_SLUB_DEBUG
5475 if (flags & SO_ALL) {
5476 struct kmem_cache_node *n;
5477
5478 for_each_kmem_cache_node(s, node, n) {
5479
5480 if (flags & SO_TOTAL)
5481 x = node_nr_objs(n);
5482 else if (flags & SO_OBJECTS)
5483 x = node_nr_objs(n) - count_partial(n, count_free);
5484 else
5485 x = node_nr_slabs(n);
5486 total += x;
5487 nodes[node] += x;
5488 }
5489
5490 } else
5491#endif
5492 if (flags & SO_PARTIAL) {
5493 struct kmem_cache_node *n;
5494
5495 for_each_kmem_cache_node(s, node, n) {
5496 if (flags & SO_TOTAL)
5497 x = count_partial(n, count_total);
5498 else if (flags & SO_OBJECTS)
5499 x = count_partial(n, count_inuse);
5500 else
5501 x = n->nr_partial;
5502 total += x;
5503 nodes[node] += x;
5504 }
5505 }
5506
5507 len += sysfs_emit_at(buf, len, "%lu", total);
5508#ifdef CONFIG_NUMA
5509 for (node = 0; node < nr_node_ids; node++) {
5510 if (nodes[node])
5511 len += sysfs_emit_at(buf, len, " N%d=%lu",
5512 node, nodes[node]);
5513 }
5514#endif
5515 len += sysfs_emit_at(buf, len, "\n");
5516 kfree(nodes);
5517
5518 return len;
5519}
5520
5521#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5522#define to_slab(n) container_of(n, struct kmem_cache, kobj)
5523
5524struct slab_attribute {
5525 struct attribute attr;
5526 ssize_t (*show)(struct kmem_cache *s, char *buf);
5527 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5528};
5529
5530#define SLAB_ATTR_RO(_name) \
5531 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5532
5533#define SLAB_ATTR(_name) \
5534 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5535
5536static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5537{
5538 return sysfs_emit(buf, "%u\n", s->size);
5539}
5540SLAB_ATTR_RO(slab_size);
5541
5542static ssize_t align_show(struct kmem_cache *s, char *buf)
5543{
5544 return sysfs_emit(buf, "%u\n", s->align);
5545}
5546SLAB_ATTR_RO(align);
5547
5548static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5549{
5550 return sysfs_emit(buf, "%u\n", s->object_size);
5551}
5552SLAB_ATTR_RO(object_size);
5553
5554static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5555{
5556 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5557}
5558SLAB_ATTR_RO(objs_per_slab);
5559
5560static ssize_t order_show(struct kmem_cache *s, char *buf)
5561{
5562 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5563}
5564SLAB_ATTR_RO(order);
5565
5566static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5567{
5568 return sysfs_emit(buf, "%lu\n", s->min_partial);
5569}
5570
5571static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5572 size_t length)
5573{
5574 unsigned long min;
5575 int err;
5576
5577 err = kstrtoul(buf, 10, &min);
5578 if (err)
5579 return err;
5580
5581 s->min_partial = min;
5582 return length;
5583}
5584SLAB_ATTR(min_partial);
5585
5586static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5587{
5588 unsigned int nr_partial = 0;
5589#ifdef CONFIG_SLUB_CPU_PARTIAL
5590 nr_partial = s->cpu_partial;
5591#endif
5592
5593 return sysfs_emit(buf, "%u\n", nr_partial);
5594}
5595
5596static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5597 size_t length)
5598{
5599 unsigned int objects;
5600 int err;
5601
5602 err = kstrtouint(buf, 10, &objects);
5603 if (err)
5604 return err;
5605 if (objects && !kmem_cache_has_cpu_partial(s))
5606 return -EINVAL;
5607
5608 slub_set_cpu_partial(s, objects);
5609 flush_all(s);
5610 return length;
5611}
5612SLAB_ATTR(cpu_partial);
5613
5614static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5615{
5616 if (!s->ctor)
5617 return 0;
5618 return sysfs_emit(buf, "%pS\n", s->ctor);
5619}
5620SLAB_ATTR_RO(ctor);
5621
5622static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5623{
5624 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5625}
5626SLAB_ATTR_RO(aliases);
5627
5628static ssize_t partial_show(struct kmem_cache *s, char *buf)
5629{
5630 return show_slab_objects(s, buf, SO_PARTIAL);
5631}
5632SLAB_ATTR_RO(partial);
5633
5634static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5635{
5636 return show_slab_objects(s, buf, SO_CPU);
5637}
5638SLAB_ATTR_RO(cpu_slabs);
5639
5640static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5641{
5642 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5643}
5644SLAB_ATTR_RO(objects_partial);
5645
5646static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5647{
5648 int objects = 0;
5649 int slabs = 0;
5650 int cpu __maybe_unused;
5651 int len = 0;
5652
5653#ifdef CONFIG_SLUB_CPU_PARTIAL
5654 for_each_online_cpu(cpu) {
5655 struct slab *slab;
5656
5657 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5658
5659 if (slab)
5660 slabs += slab->slabs;
5661 }
5662#endif
5663
5664 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5665 objects = (slabs * oo_objects(s->oo)) / 2;
5666 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5667
5668#ifdef CONFIG_SLUB_CPU_PARTIAL
5669 for_each_online_cpu(cpu) {
5670 struct slab *slab;
5671
5672 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5673 if (slab) {
5674 slabs = READ_ONCE(slab->slabs);
5675 objects = (slabs * oo_objects(s->oo)) / 2;
5676 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5677 cpu, objects, slabs);
5678 }
5679 }
5680#endif
5681 len += sysfs_emit_at(buf, len, "\n");
5682
5683 return len;
5684}
5685SLAB_ATTR_RO(slabs_cpu_partial);
5686
5687static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5688{
5689 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5690}
5691SLAB_ATTR_RO(reclaim_account);
5692
5693static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5694{
5695 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5696}
5697SLAB_ATTR_RO(hwcache_align);
5698
5699#ifdef CONFIG_ZONE_DMA
5700static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5701{
5702 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5703}
5704SLAB_ATTR_RO(cache_dma);
5705#endif
5706
5707#ifdef CONFIG_HARDENED_USERCOPY
5708static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5709{
5710 return sysfs_emit(buf, "%u\n", s->usersize);
5711}
5712SLAB_ATTR_RO(usersize);
5713#endif
5714
5715static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5716{
5717 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5718}
5719SLAB_ATTR_RO(destroy_by_rcu);
5720
5721#ifdef CONFIG_SLUB_DEBUG
5722static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5723{
5724 return show_slab_objects(s, buf, SO_ALL);
5725}
5726SLAB_ATTR_RO(slabs);
5727
5728static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5729{
5730 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5731}
5732SLAB_ATTR_RO(total_objects);
5733
5734static ssize_t objects_show(struct kmem_cache *s, char *buf)
5735{
5736 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5737}
5738SLAB_ATTR_RO(objects);
5739
5740static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5741{
5742 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5743}
5744SLAB_ATTR_RO(sanity_checks);
5745
5746static ssize_t trace_show(struct kmem_cache *s, char *buf)
5747{
5748 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5749}
5750SLAB_ATTR_RO(trace);
5751
5752static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5753{
5754 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5755}
5756
5757SLAB_ATTR_RO(red_zone);
5758
5759static ssize_t poison_show(struct kmem_cache *s, char *buf)
5760{
5761 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5762}
5763
5764SLAB_ATTR_RO(poison);
5765
5766static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5767{
5768 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5769}
5770
5771SLAB_ATTR_RO(store_user);
5772
5773static ssize_t validate_show(struct kmem_cache *s, char *buf)
5774{
5775 return 0;
5776}
5777
5778static ssize_t validate_store(struct kmem_cache *s,
5779 const char *buf, size_t length)
5780{
5781 int ret = -EINVAL;
5782
5783 if (buf[0] == '1' && kmem_cache_debug(s)) {
5784 ret = validate_slab_cache(s);
5785 if (ret >= 0)
5786 ret = length;
5787 }
5788 return ret;
5789}
5790SLAB_ATTR(validate);
5791
5792#endif /* CONFIG_SLUB_DEBUG */
5793
5794#ifdef CONFIG_FAILSLAB
5795static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5796{
5797 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5798}
5799
5800static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5801 size_t length)
5802{
5803 if (s->refcount > 1)
5804 return -EINVAL;
5805
5806 if (buf[0] == '1')
5807 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5808 else
5809 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5810
5811 return length;
5812}
5813SLAB_ATTR(failslab);
5814#endif
5815
5816static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5817{
5818 return 0;
5819}
5820
5821static ssize_t shrink_store(struct kmem_cache *s,
5822 const char *buf, size_t length)
5823{
5824 if (buf[0] == '1')
5825 kmem_cache_shrink(s);
5826 else
5827 return -EINVAL;
5828 return length;
5829}
5830SLAB_ATTR(shrink);
5831
5832#ifdef CONFIG_NUMA
5833static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5834{
5835 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5836}
5837
5838static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5839 const char *buf, size_t length)
5840{
5841 unsigned int ratio;
5842 int err;
5843
5844 err = kstrtouint(buf, 10, &ratio);
5845 if (err)
5846 return err;
5847 if (ratio > 100)
5848 return -ERANGE;
5849
5850 s->remote_node_defrag_ratio = ratio * 10;
5851
5852 return length;
5853}
5854SLAB_ATTR(remote_node_defrag_ratio);
5855#endif
5856
5857#ifdef CONFIG_SLUB_STATS
5858static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5859{
5860 unsigned long sum = 0;
5861 int cpu;
5862 int len = 0;
5863 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5864
5865 if (!data)
5866 return -ENOMEM;
5867
5868 for_each_online_cpu(cpu) {
5869 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5870
5871 data[cpu] = x;
5872 sum += x;
5873 }
5874
5875 len += sysfs_emit_at(buf, len, "%lu", sum);
5876
5877#ifdef CONFIG_SMP
5878 for_each_online_cpu(cpu) {
5879 if (data[cpu])
5880 len += sysfs_emit_at(buf, len, " C%d=%u",
5881 cpu, data[cpu]);
5882 }
5883#endif
5884 kfree(data);
5885 len += sysfs_emit_at(buf, len, "\n");
5886
5887 return len;
5888}
5889
5890static void clear_stat(struct kmem_cache *s, enum stat_item si)
5891{
5892 int cpu;
5893
5894 for_each_online_cpu(cpu)
5895 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5896}
5897
5898#define STAT_ATTR(si, text) \
5899static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5900{ \
5901 return show_stat(s, buf, si); \
5902} \
5903static ssize_t text##_store(struct kmem_cache *s, \
5904 const char *buf, size_t length) \
5905{ \
5906 if (buf[0] != '0') \
5907 return -EINVAL; \
5908 clear_stat(s, si); \
5909 return length; \
5910} \
5911SLAB_ATTR(text); \
5912
5913STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5914STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5915STAT_ATTR(FREE_FASTPATH, free_fastpath);
5916STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5917STAT_ATTR(FREE_FROZEN, free_frozen);
5918STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5919STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5920STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5921STAT_ATTR(ALLOC_SLAB, alloc_slab);
5922STAT_ATTR(ALLOC_REFILL, alloc_refill);
5923STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5924STAT_ATTR(FREE_SLAB, free_slab);
5925STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5926STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5927STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5928STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5929STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5930STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5931STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5932STAT_ATTR(ORDER_FALLBACK, order_fallback);
5933STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5934STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5935STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5936STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5937STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5938STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5939#endif /* CONFIG_SLUB_STATS */
5940
5941#ifdef CONFIG_KFENCE
5942static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5943{
5944 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5945}
5946
5947static ssize_t skip_kfence_store(struct kmem_cache *s,
5948 const char *buf, size_t length)
5949{
5950 int ret = length;
5951
5952 if (buf[0] == '0')
5953 s->flags &= ~SLAB_SKIP_KFENCE;
5954 else if (buf[0] == '1')
5955 s->flags |= SLAB_SKIP_KFENCE;
5956 else
5957 ret = -EINVAL;
5958
5959 return ret;
5960}
5961SLAB_ATTR(skip_kfence);
5962#endif
5963
5964static struct attribute *slab_attrs[] = {
5965 &slab_size_attr.attr,
5966 &object_size_attr.attr,
5967 &objs_per_slab_attr.attr,
5968 &order_attr.attr,
5969 &min_partial_attr.attr,
5970 &cpu_partial_attr.attr,
5971 &objects_partial_attr.attr,
5972 &partial_attr.attr,
5973 &cpu_slabs_attr.attr,
5974 &ctor_attr.attr,
5975 &aliases_attr.attr,
5976 &align_attr.attr,
5977 &hwcache_align_attr.attr,
5978 &reclaim_account_attr.attr,
5979 &destroy_by_rcu_attr.attr,
5980 &shrink_attr.attr,
5981 &slabs_cpu_partial_attr.attr,
5982#ifdef CONFIG_SLUB_DEBUG
5983 &total_objects_attr.attr,
5984 &objects_attr.attr,
5985 &slabs_attr.attr,
5986 &sanity_checks_attr.attr,
5987 &trace_attr.attr,
5988 &red_zone_attr.attr,
5989 &poison_attr.attr,
5990 &store_user_attr.attr,
5991 &validate_attr.attr,
5992#endif
5993#ifdef CONFIG_ZONE_DMA
5994 &cache_dma_attr.attr,
5995#endif
5996#ifdef CONFIG_NUMA
5997 &remote_node_defrag_ratio_attr.attr,
5998#endif
5999#ifdef CONFIG_SLUB_STATS
6000 &alloc_fastpath_attr.attr,
6001 &alloc_slowpath_attr.attr,
6002 &free_fastpath_attr.attr,
6003 &free_slowpath_attr.attr,
6004 &free_frozen_attr.attr,
6005 &free_add_partial_attr.attr,
6006 &free_remove_partial_attr.attr,
6007 &alloc_from_partial_attr.attr,
6008 &alloc_slab_attr.attr,
6009 &alloc_refill_attr.attr,
6010 &alloc_node_mismatch_attr.attr,
6011 &free_slab_attr.attr,
6012 &cpuslab_flush_attr.attr,
6013 &deactivate_full_attr.attr,
6014 &deactivate_empty_attr.attr,
6015 &deactivate_to_head_attr.attr,
6016 &deactivate_to_tail_attr.attr,
6017 &deactivate_remote_frees_attr.attr,
6018 &deactivate_bypass_attr.attr,
6019 &order_fallback_attr.attr,
6020 &cmpxchg_double_fail_attr.attr,
6021 &cmpxchg_double_cpu_fail_attr.attr,
6022 &cpu_partial_alloc_attr.attr,
6023 &cpu_partial_free_attr.attr,
6024 &cpu_partial_node_attr.attr,
6025 &cpu_partial_drain_attr.attr,
6026#endif
6027#ifdef CONFIG_FAILSLAB
6028 &failslab_attr.attr,
6029#endif
6030#ifdef CONFIG_HARDENED_USERCOPY
6031 &usersize_attr.attr,
6032#endif
6033#ifdef CONFIG_KFENCE
6034 &skip_kfence_attr.attr,
6035#endif
6036
6037 NULL
6038};
6039
6040static const struct attribute_group slab_attr_group = {
6041 .attrs = slab_attrs,
6042};
6043
6044static ssize_t slab_attr_show(struct kobject *kobj,
6045 struct attribute *attr,
6046 char *buf)
6047{
6048 struct slab_attribute *attribute;
6049 struct kmem_cache *s;
6050
6051 attribute = to_slab_attr(attr);
6052 s = to_slab(kobj);
6053
6054 if (!attribute->show)
6055 return -EIO;
6056
6057 return attribute->show(s, buf);
6058}
6059
6060static ssize_t slab_attr_store(struct kobject *kobj,
6061 struct attribute *attr,
6062 const char *buf, size_t len)
6063{
6064 struct slab_attribute *attribute;
6065 struct kmem_cache *s;
6066
6067 attribute = to_slab_attr(attr);
6068 s = to_slab(kobj);
6069
6070 if (!attribute->store)
6071 return -EIO;
6072
6073 return attribute->store(s, buf, len);
6074}
6075
6076static void kmem_cache_release(struct kobject *k)
6077{
6078 slab_kmem_cache_release(to_slab(k));
6079}
6080
6081static const struct sysfs_ops slab_sysfs_ops = {
6082 .show = slab_attr_show,
6083 .store = slab_attr_store,
6084};
6085
6086static const struct kobj_type slab_ktype = {
6087 .sysfs_ops = &slab_sysfs_ops,
6088 .release = kmem_cache_release,
6089};
6090
6091static struct kset *slab_kset;
6092
6093static inline struct kset *cache_kset(struct kmem_cache *s)
6094{
6095 return slab_kset;
6096}
6097
6098#define ID_STR_LENGTH 32
6099
6100/* Create a unique string id for a slab cache:
6101 *
6102 * Format :[flags-]size
6103 */
6104static char *create_unique_id(struct kmem_cache *s)
6105{
6106 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6107 char *p = name;
6108
6109 if (!name)
6110 return ERR_PTR(-ENOMEM);
6111
6112 *p++ = ':';
6113 /*
6114 * First flags affecting slabcache operations. We will only
6115 * get here for aliasable slabs so we do not need to support
6116 * too many flags. The flags here must cover all flags that
6117 * are matched during merging to guarantee that the id is
6118 * unique.
6119 */
6120 if (s->flags & SLAB_CACHE_DMA)
6121 *p++ = 'd';
6122 if (s->flags & SLAB_CACHE_DMA32)
6123 *p++ = 'D';
6124 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6125 *p++ = 'a';
6126 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6127 *p++ = 'F';
6128 if (s->flags & SLAB_ACCOUNT)
6129 *p++ = 'A';
6130 if (p != name + 1)
6131 *p++ = '-';
6132 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6133
6134 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6135 kfree(name);
6136 return ERR_PTR(-EINVAL);
6137 }
6138 kmsan_unpoison_memory(name, p - name);
6139 return name;
6140}
6141
6142static int sysfs_slab_add(struct kmem_cache *s)
6143{
6144 int err;
6145 const char *name;
6146 struct kset *kset = cache_kset(s);
6147 int unmergeable = slab_unmergeable(s);
6148
6149 if (!unmergeable && disable_higher_order_debug &&
6150 (slub_debug & DEBUG_METADATA_FLAGS))
6151 unmergeable = 1;
6152
6153 if (unmergeable) {
6154 /*
6155 * Slabcache can never be merged so we can use the name proper.
6156 * This is typically the case for debug situations. In that
6157 * case we can catch duplicate names easily.
6158 */
6159 sysfs_remove_link(&slab_kset->kobj, s->name);
6160 name = s->name;
6161 } else {
6162 /*
6163 * Create a unique name for the slab as a target
6164 * for the symlinks.
6165 */
6166 name = create_unique_id(s);
6167 if (IS_ERR(name))
6168 return PTR_ERR(name);
6169 }
6170
6171 s->kobj.kset = kset;
6172 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6173 if (err)
6174 goto out;
6175
6176 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6177 if (err)
6178 goto out_del_kobj;
6179
6180 if (!unmergeable) {
6181 /* Setup first alias */
6182 sysfs_slab_alias(s, s->name);
6183 }
6184out:
6185 if (!unmergeable)
6186 kfree(name);
6187 return err;
6188out_del_kobj:
6189 kobject_del(&s->kobj);
6190 goto out;
6191}
6192
6193void sysfs_slab_unlink(struct kmem_cache *s)
6194{
6195 if (slab_state >= FULL)
6196 kobject_del(&s->kobj);
6197}
6198
6199void sysfs_slab_release(struct kmem_cache *s)
6200{
6201 if (slab_state >= FULL)
6202 kobject_put(&s->kobj);
6203}
6204
6205/*
6206 * Need to buffer aliases during bootup until sysfs becomes
6207 * available lest we lose that information.
6208 */
6209struct saved_alias {
6210 struct kmem_cache *s;
6211 const char *name;
6212 struct saved_alias *next;
6213};
6214
6215static struct saved_alias *alias_list;
6216
6217static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6218{
6219 struct saved_alias *al;
6220
6221 if (slab_state == FULL) {
6222 /*
6223 * If we have a leftover link then remove it.
6224 */
6225 sysfs_remove_link(&slab_kset->kobj, name);
6226 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6227 }
6228
6229 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6230 if (!al)
6231 return -ENOMEM;
6232
6233 al->s = s;
6234 al->name = name;
6235 al->next = alias_list;
6236 alias_list = al;
6237 kmsan_unpoison_memory(al, sizeof(*al));
6238 return 0;
6239}
6240
6241static int __init slab_sysfs_init(void)
6242{
6243 struct kmem_cache *s;
6244 int err;
6245
6246 mutex_lock(&slab_mutex);
6247
6248 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6249 if (!slab_kset) {
6250 mutex_unlock(&slab_mutex);
6251 pr_err("Cannot register slab subsystem.\n");
6252 return -ENOMEM;
6253 }
6254
6255 slab_state = FULL;
6256
6257 list_for_each_entry(s, &slab_caches, list) {
6258 err = sysfs_slab_add(s);
6259 if (err)
6260 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6261 s->name);
6262 }
6263
6264 while (alias_list) {
6265 struct saved_alias *al = alias_list;
6266
6267 alias_list = alias_list->next;
6268 err = sysfs_slab_alias(al->s, al->name);
6269 if (err)
6270 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6271 al->name);
6272 kfree(al);
6273 }
6274
6275 mutex_unlock(&slab_mutex);
6276 return 0;
6277}
6278late_initcall(slab_sysfs_init);
6279#endif /* SLAB_SUPPORTS_SYSFS */
6280
6281#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6282static int slab_debugfs_show(struct seq_file *seq, void *v)
6283{
6284 struct loc_track *t = seq->private;
6285 struct location *l;
6286 unsigned long idx;
6287
6288 idx = (unsigned long) t->idx;
6289 if (idx < t->count) {
6290 l = &t->loc[idx];
6291
6292 seq_printf(seq, "%7ld ", l->count);
6293
6294 if (l->addr)
6295 seq_printf(seq, "%pS", (void *)l->addr);
6296 else
6297 seq_puts(seq, "<not-available>");
6298
6299 if (l->waste)
6300 seq_printf(seq, " waste=%lu/%lu",
6301 l->count * l->waste, l->waste);
6302
6303 if (l->sum_time != l->min_time) {
6304 seq_printf(seq, " age=%ld/%llu/%ld",
6305 l->min_time, div_u64(l->sum_time, l->count),
6306 l->max_time);
6307 } else
6308 seq_printf(seq, " age=%ld", l->min_time);
6309
6310 if (l->min_pid != l->max_pid)
6311 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6312 else
6313 seq_printf(seq, " pid=%ld",
6314 l->min_pid);
6315
6316 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6317 seq_printf(seq, " cpus=%*pbl",
6318 cpumask_pr_args(to_cpumask(l->cpus)));
6319
6320 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6321 seq_printf(seq, " nodes=%*pbl",
6322 nodemask_pr_args(&l->nodes));
6323
6324#ifdef CONFIG_STACKDEPOT
6325 {
6326 depot_stack_handle_t handle;
6327 unsigned long *entries;
6328 unsigned int nr_entries, j;
6329
6330 handle = READ_ONCE(l->handle);
6331 if (handle) {
6332 nr_entries = stack_depot_fetch(handle, &entries);
6333 seq_puts(seq, "\n");
6334 for (j = 0; j < nr_entries; j++)
6335 seq_printf(seq, " %pS\n", (void *)entries[j]);
6336 }
6337 }
6338#endif
6339 seq_puts(seq, "\n");
6340 }
6341
6342 if (!idx && !t->count)
6343 seq_puts(seq, "No data\n");
6344
6345 return 0;
6346}
6347
6348static void slab_debugfs_stop(struct seq_file *seq, void *v)
6349{
6350}
6351
6352static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6353{
6354 struct loc_track *t = seq->private;
6355
6356 t->idx = ++(*ppos);
6357 if (*ppos <= t->count)
6358 return ppos;
6359
6360 return NULL;
6361}
6362
6363static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6364{
6365 struct location *loc1 = (struct location *)a;
6366 struct location *loc2 = (struct location *)b;
6367
6368 if (loc1->count > loc2->count)
6369 return -1;
6370 else
6371 return 1;
6372}
6373
6374static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6375{
6376 struct loc_track *t = seq->private;
6377
6378 t->idx = *ppos;
6379 return ppos;
6380}
6381
6382static const struct seq_operations slab_debugfs_sops = {
6383 .start = slab_debugfs_start,
6384 .next = slab_debugfs_next,
6385 .stop = slab_debugfs_stop,
6386 .show = slab_debugfs_show,
6387};
6388
6389static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6390{
6391
6392 struct kmem_cache_node *n;
6393 enum track_item alloc;
6394 int node;
6395 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6396 sizeof(struct loc_track));
6397 struct kmem_cache *s = file_inode(filep)->i_private;
6398 unsigned long *obj_map;
6399
6400 if (!t)
6401 return -ENOMEM;
6402
6403 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6404 if (!obj_map) {
6405 seq_release_private(inode, filep);
6406 return -ENOMEM;
6407 }
6408
6409 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6410 alloc = TRACK_ALLOC;
6411 else
6412 alloc = TRACK_FREE;
6413
6414 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6415 bitmap_free(obj_map);
6416 seq_release_private(inode, filep);
6417 return -ENOMEM;
6418 }
6419
6420 for_each_kmem_cache_node(s, node, n) {
6421 unsigned long flags;
6422 struct slab *slab;
6423
6424 if (!node_nr_slabs(n))
6425 continue;
6426
6427 spin_lock_irqsave(&n->list_lock, flags);
6428 list_for_each_entry(slab, &n->partial, slab_list)
6429 process_slab(t, s, slab, alloc, obj_map);
6430 list_for_each_entry(slab, &n->full, slab_list)
6431 process_slab(t, s, slab, alloc, obj_map);
6432 spin_unlock_irqrestore(&n->list_lock, flags);
6433 }
6434
6435 /* Sort locations by count */
6436 sort_r(t->loc, t->count, sizeof(struct location),
6437 cmp_loc_by_count, NULL, NULL);
6438
6439 bitmap_free(obj_map);
6440 return 0;
6441}
6442
6443static int slab_debug_trace_release(struct inode *inode, struct file *file)
6444{
6445 struct seq_file *seq = file->private_data;
6446 struct loc_track *t = seq->private;
6447
6448 free_loc_track(t);
6449 return seq_release_private(inode, file);
6450}
6451
6452static const struct file_operations slab_debugfs_fops = {
6453 .open = slab_debug_trace_open,
6454 .read = seq_read,
6455 .llseek = seq_lseek,
6456 .release = slab_debug_trace_release,
6457};
6458
6459static void debugfs_slab_add(struct kmem_cache *s)
6460{
6461 struct dentry *slab_cache_dir;
6462
6463 if (unlikely(!slab_debugfs_root))
6464 return;
6465
6466 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6467
6468 debugfs_create_file("alloc_traces", 0400,
6469 slab_cache_dir, s, &slab_debugfs_fops);
6470
6471 debugfs_create_file("free_traces", 0400,
6472 slab_cache_dir, s, &slab_debugfs_fops);
6473}
6474
6475void debugfs_slab_release(struct kmem_cache *s)
6476{
6477 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6478}
6479
6480static int __init slab_debugfs_init(void)
6481{
6482 struct kmem_cache *s;
6483
6484 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6485
6486 list_for_each_entry(s, &slab_caches, list)
6487 if (s->flags & SLAB_STORE_USER)
6488 debugfs_slab_add(s);
6489
6490 return 0;
6491
6492}
6493__initcall(slab_debugfs_init);
6494#endif
6495/*
6496 * The /proc/slabinfo ABI
6497 */
6498#ifdef CONFIG_SLUB_DEBUG
6499void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6500{
6501 unsigned long nr_slabs = 0;
6502 unsigned long nr_objs = 0;
6503 unsigned long nr_free = 0;
6504 int node;
6505 struct kmem_cache_node *n;
6506
6507 for_each_kmem_cache_node(s, node, n) {
6508 nr_slabs += node_nr_slabs(n);
6509 nr_objs += node_nr_objs(n);
6510 nr_free += count_partial(n, count_free);
6511 }
6512
6513 sinfo->active_objs = nr_objs - nr_free;
6514 sinfo->num_objs = nr_objs;
6515 sinfo->active_slabs = nr_slabs;
6516 sinfo->num_slabs = nr_slabs;
6517 sinfo->objects_per_slab = oo_objects(s->oo);
6518 sinfo->cache_order = oo_order(s->oo);
6519}
6520
6521void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6522{
6523}
6524
6525ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6526 size_t count, loff_t *ppos)
6527{
6528 return -EIO;
6529}
6530#endif /* CONFIG_SLUB_DEBUG */