net/mlx4_core: Fix reset flow when in command polling mode
[linux-2.6-block.git] / mm / slub.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* struct reclaim_state */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
20#include "slab.h"
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/kasan.h>
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
28#include <linux/debugobjects.h>
29#include <linux/kallsyms.h>
30#include <linux/memory.h>
31#include <linux/math64.h>
32#include <linux/fault-inject.h>
33#include <linux/stacktrace.h>
34#include <linux/prefetch.h>
35#include <linux/memcontrol.h>
36#include <linux/random.h>
37
38#include <trace/events/kmem.h>
39
40#include "internal.h"
41
42/*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
120#ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122#else
123 return 0;
124#endif
125}
126
127void *fixup_red_left(struct kmem_cache *s, void *p)
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
144/*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162#define MIN_PARTIAL 5
163
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169#define MAX_PARTIAL 10
170
171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
182/*
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
186 */
187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192
193/* Internal SLUB flags */
194/* Poison object */
195#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
196/* Use cmpxchg_double */
197#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
198
199/*
200 * Tracking user of a slab.
201 */
202#define TRACK_ADDRS_COUNT 16
203struct track {
204 unsigned long addr; /* Called from address */
205#ifdef CONFIG_STACKTRACE
206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
207#endif
208 int cpu; /* Was running on cpu */
209 int pid; /* Pid context */
210 unsigned long when; /* When did the operation occur */
211};
212
213enum track_item { TRACK_ALLOC, TRACK_FREE };
214
215#ifdef CONFIG_SYSFS
216static int sysfs_slab_add(struct kmem_cache *);
217static int sysfs_slab_alias(struct kmem_cache *, const char *);
218static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219static void sysfs_slab_remove(struct kmem_cache *s);
220#else
221static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 { return 0; }
224static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226#endif
227
228static inline void stat(const struct kmem_cache *s, enum stat_item si)
229{
230#ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236#endif
237}
238
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
243/*
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
246 * random number.
247 */
248static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 unsigned long ptr_addr)
250{
251#ifdef CONFIG_SLAB_FREELIST_HARDENED
252 /*
253 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
254 * Normally, this doesn't cause any issues, as both set_freepointer()
255 * and get_freepointer() are called with a pointer with the same tag.
256 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
257 * example, when __free_slub() iterates over objects in a cache, it
258 * passes untagged pointers to check_object(). check_object() in turns
259 * calls get_freepointer() with an untagged pointer, which causes the
260 * freepointer to be restored incorrectly.
261 */
262 return (void *)((unsigned long)ptr ^ s->random ^
263 (unsigned long)kasan_reset_tag((void *)ptr_addr));
264#else
265 return ptr;
266#endif
267}
268
269/* Returns the freelist pointer recorded at location ptr_addr. */
270static inline void *freelist_dereference(const struct kmem_cache *s,
271 void *ptr_addr)
272{
273 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
274 (unsigned long)ptr_addr);
275}
276
277static inline void *get_freepointer(struct kmem_cache *s, void *object)
278{
279 return freelist_dereference(s, object + s->offset);
280}
281
282static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283{
284 prefetch(object + s->offset);
285}
286
287static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288{
289 unsigned long freepointer_addr;
290 void *p;
291
292 if (!debug_pagealloc_enabled())
293 return get_freepointer(s, object);
294
295 freepointer_addr = (unsigned long)object + s->offset;
296 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
297 return freelist_ptr(s, p, freepointer_addr);
298}
299
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
304#ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306#endif
307
308 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
309}
310
311/* Loop over all objects in a slab */
312#define for_each_object(__p, __s, __addr, __objects) \
313 for (__p = fixup_red_left(__s, __addr); \
314 __p < (__addr) + (__objects) * (__s)->size; \
315 __p += (__s)->size)
316
317/* Determine object index from a given position */
318static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
319{
320 return (kasan_reset_tag(p) - addr) / s->size;
321}
322
323static inline unsigned int order_objects(unsigned int order, unsigned int size)
324{
325 return ((unsigned int)PAGE_SIZE << order) / size;
326}
327
328static inline struct kmem_cache_order_objects oo_make(unsigned int order,
329 unsigned int size)
330{
331 struct kmem_cache_order_objects x = {
332 (order << OO_SHIFT) + order_objects(order, size)
333 };
334
335 return x;
336}
337
338static inline unsigned int oo_order(struct kmem_cache_order_objects x)
339{
340 return x.x >> OO_SHIFT;
341}
342
343static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
344{
345 return x.x & OO_MASK;
346}
347
348/*
349 * Per slab locking using the pagelock
350 */
351static __always_inline void slab_lock(struct page *page)
352{
353 VM_BUG_ON_PAGE(PageTail(page), page);
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 VM_BUG_ON_PAGE(PageTail(page), page);
360 __bit_spin_unlock(PG_locked, &page->flags);
361}
362
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s->flags & __CMPXCHG_DOUBLE) {
373 if (cmpxchg_double(&page->freelist, &page->counters,
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return true;
377 } else
378#endif
379 {
380 slab_lock(page);
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
383 page->freelist = freelist_new;
384 page->counters = counters_new;
385 slab_unlock(page);
386 return true;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
396#endif
397
398 return false;
399}
400
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s->flags & __CMPXCHG_DOUBLE) {
409 if (cmpxchg_double(&page->freelist, &page->counters,
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return true;
413 } else
414#endif
415 {
416 unsigned long flags;
417
418 local_irq_save(flags);
419 slab_lock(page);
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
422 page->freelist = freelist_new;
423 page->counters = counters_new;
424 slab_unlock(page);
425 local_irq_restore(flags);
426 return true;
427 }
428 slab_unlock(page);
429 local_irq_restore(flags);
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
437#endif
438
439 return false;
440}
441
442#ifdef CONFIG_SLUB_DEBUG
443/*
444 * Determine a map of object in use on a page.
445 *
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
458static inline unsigned int size_from_object(struct kmem_cache *s)
459{
460 if (s->flags & SLAB_RED_ZONE)
461 return s->size - s->red_left_pad;
462
463 return s->size;
464}
465
466static inline void *restore_red_left(struct kmem_cache *s, void *p)
467{
468 if (s->flags & SLAB_RED_ZONE)
469 p -= s->red_left_pad;
470
471 return p;
472}
473
474/*
475 * Debug settings:
476 */
477#if defined(CONFIG_SLUB_DEBUG_ON)
478static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
479#else
480static slab_flags_t slub_debug;
481#endif
482
483static char *slub_debug_slabs;
484static int disable_higher_order_debug;
485
486/*
487 * slub is about to manipulate internal object metadata. This memory lies
488 * outside the range of the allocated object, so accessing it would normally
489 * be reported by kasan as a bounds error. metadata_access_enable() is used
490 * to tell kasan that these accesses are OK.
491 */
492static inline void metadata_access_enable(void)
493{
494 kasan_disable_current();
495}
496
497static inline void metadata_access_disable(void)
498{
499 kasan_enable_current();
500}
501
502/*
503 * Object debugging
504 */
505
506/* Verify that a pointer has an address that is valid within a slab page */
507static inline int check_valid_pointer(struct kmem_cache *s,
508 struct page *page, void *object)
509{
510 void *base;
511
512 if (!object)
513 return 1;
514
515 base = page_address(page);
516 object = kasan_reset_tag(object);
517 object = restore_red_left(s, object);
518 if (object < base || object >= base + page->objects * s->size ||
519 (object - base) % s->size) {
520 return 0;
521 }
522
523 return 1;
524}
525
526static void print_section(char *level, char *text, u8 *addr,
527 unsigned int length)
528{
529 metadata_access_enable();
530 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
531 length, 1);
532 metadata_access_disable();
533}
534
535static struct track *get_track(struct kmem_cache *s, void *object,
536 enum track_item alloc)
537{
538 struct track *p;
539
540 if (s->offset)
541 p = object + s->offset + sizeof(void *);
542 else
543 p = object + s->inuse;
544
545 return p + alloc;
546}
547
548static void set_track(struct kmem_cache *s, void *object,
549 enum track_item alloc, unsigned long addr)
550{
551 struct track *p = get_track(s, object, alloc);
552
553 if (addr) {
554#ifdef CONFIG_STACKTRACE
555 struct stack_trace trace;
556 int i;
557
558 trace.nr_entries = 0;
559 trace.max_entries = TRACK_ADDRS_COUNT;
560 trace.entries = p->addrs;
561 trace.skip = 3;
562 metadata_access_enable();
563 save_stack_trace(&trace);
564 metadata_access_disable();
565
566 /* See rant in lockdep.c */
567 if (trace.nr_entries != 0 &&
568 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
569 trace.nr_entries--;
570
571 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
572 p->addrs[i] = 0;
573#endif
574 p->addr = addr;
575 p->cpu = smp_processor_id();
576 p->pid = current->pid;
577 p->when = jiffies;
578 } else
579 memset(p, 0, sizeof(struct track));
580}
581
582static void init_tracking(struct kmem_cache *s, void *object)
583{
584 if (!(s->flags & SLAB_STORE_USER))
585 return;
586
587 set_track(s, object, TRACK_FREE, 0UL);
588 set_track(s, object, TRACK_ALLOC, 0UL);
589}
590
591static void print_track(const char *s, struct track *t, unsigned long pr_time)
592{
593 if (!t->addr)
594 return;
595
596 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
597 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
598#ifdef CONFIG_STACKTRACE
599 {
600 int i;
601 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
602 if (t->addrs[i])
603 pr_err("\t%pS\n", (void *)t->addrs[i]);
604 else
605 break;
606 }
607#endif
608}
609
610static void print_tracking(struct kmem_cache *s, void *object)
611{
612 unsigned long pr_time = jiffies;
613 if (!(s->flags & SLAB_STORE_USER))
614 return;
615
616 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
617 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
618}
619
620static void print_page_info(struct page *page)
621{
622 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
623 page, page->objects, page->inuse, page->freelist, page->flags);
624
625}
626
627static void slab_bug(struct kmem_cache *s, char *fmt, ...)
628{
629 struct va_format vaf;
630 va_list args;
631
632 va_start(args, fmt);
633 vaf.fmt = fmt;
634 vaf.va = &args;
635 pr_err("=============================================================================\n");
636 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
637 pr_err("-----------------------------------------------------------------------------\n\n");
638
639 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
640 va_end(args);
641}
642
643static void slab_fix(struct kmem_cache *s, char *fmt, ...)
644{
645 struct va_format vaf;
646 va_list args;
647
648 va_start(args, fmt);
649 vaf.fmt = fmt;
650 vaf.va = &args;
651 pr_err("FIX %s: %pV\n", s->name, &vaf);
652 va_end(args);
653}
654
655static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
656{
657 unsigned int off; /* Offset of last byte */
658 u8 *addr = page_address(page);
659
660 print_tracking(s, p);
661
662 print_page_info(page);
663
664 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
665 p, p - addr, get_freepointer(s, p));
666
667 if (s->flags & SLAB_RED_ZONE)
668 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
669 s->red_left_pad);
670 else if (p > addr + 16)
671 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
672
673 print_section(KERN_ERR, "Object ", p,
674 min_t(unsigned int, s->object_size, PAGE_SIZE));
675 if (s->flags & SLAB_RED_ZONE)
676 print_section(KERN_ERR, "Redzone ", p + s->object_size,
677 s->inuse - s->object_size);
678
679 if (s->offset)
680 off = s->offset + sizeof(void *);
681 else
682 off = s->inuse;
683
684 if (s->flags & SLAB_STORE_USER)
685 off += 2 * sizeof(struct track);
686
687 off += kasan_metadata_size(s);
688
689 if (off != size_from_object(s))
690 /* Beginning of the filler is the free pointer */
691 print_section(KERN_ERR, "Padding ", p + off,
692 size_from_object(s) - off);
693
694 dump_stack();
695}
696
697void object_err(struct kmem_cache *s, struct page *page,
698 u8 *object, char *reason)
699{
700 slab_bug(s, "%s", reason);
701 print_trailer(s, page, object);
702}
703
704static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
705 const char *fmt, ...)
706{
707 va_list args;
708 char buf[100];
709
710 va_start(args, fmt);
711 vsnprintf(buf, sizeof(buf), fmt, args);
712 va_end(args);
713 slab_bug(s, "%s", buf);
714 print_page_info(page);
715 dump_stack();
716}
717
718static void init_object(struct kmem_cache *s, void *object, u8 val)
719{
720 u8 *p = object;
721
722 if (s->flags & SLAB_RED_ZONE)
723 memset(p - s->red_left_pad, val, s->red_left_pad);
724
725 if (s->flags & __OBJECT_POISON) {
726 memset(p, POISON_FREE, s->object_size - 1);
727 p[s->object_size - 1] = POISON_END;
728 }
729
730 if (s->flags & SLAB_RED_ZONE)
731 memset(p + s->object_size, val, s->inuse - s->object_size);
732}
733
734static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
735 void *from, void *to)
736{
737 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
738 memset(from, data, to - from);
739}
740
741static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
742 u8 *object, char *what,
743 u8 *start, unsigned int value, unsigned int bytes)
744{
745 u8 *fault;
746 u8 *end;
747
748 metadata_access_enable();
749 fault = memchr_inv(start, value, bytes);
750 metadata_access_disable();
751 if (!fault)
752 return 1;
753
754 end = start + bytes;
755 while (end > fault && end[-1] == value)
756 end--;
757
758 slab_bug(s, "%s overwritten", what);
759 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
760 fault, end - 1, fault[0], value);
761 print_trailer(s, page, object);
762
763 restore_bytes(s, what, value, fault, end);
764 return 0;
765}
766
767/*
768 * Object layout:
769 *
770 * object address
771 * Bytes of the object to be managed.
772 * If the freepointer may overlay the object then the free
773 * pointer is the first word of the object.
774 *
775 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
776 * 0xa5 (POISON_END)
777 *
778 * object + s->object_size
779 * Padding to reach word boundary. This is also used for Redzoning.
780 * Padding is extended by another word if Redzoning is enabled and
781 * object_size == inuse.
782 *
783 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
784 * 0xcc (RED_ACTIVE) for objects in use.
785 *
786 * object + s->inuse
787 * Meta data starts here.
788 *
789 * A. Free pointer (if we cannot overwrite object on free)
790 * B. Tracking data for SLAB_STORE_USER
791 * C. Padding to reach required alignment boundary or at mininum
792 * one word if debugging is on to be able to detect writes
793 * before the word boundary.
794 *
795 * Padding is done using 0x5a (POISON_INUSE)
796 *
797 * object + s->size
798 * Nothing is used beyond s->size.
799 *
800 * If slabcaches are merged then the object_size and inuse boundaries are mostly
801 * ignored. And therefore no slab options that rely on these boundaries
802 * may be used with merged slabcaches.
803 */
804
805static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
806{
807 unsigned long off = s->inuse; /* The end of info */
808
809 if (s->offset)
810 /* Freepointer is placed after the object. */
811 off += sizeof(void *);
812
813 if (s->flags & SLAB_STORE_USER)
814 /* We also have user information there */
815 off += 2 * sizeof(struct track);
816
817 off += kasan_metadata_size(s);
818
819 if (size_from_object(s) == off)
820 return 1;
821
822 return check_bytes_and_report(s, page, p, "Object padding",
823 p + off, POISON_INUSE, size_from_object(s) - off);
824}
825
826/* Check the pad bytes at the end of a slab page */
827static int slab_pad_check(struct kmem_cache *s, struct page *page)
828{
829 u8 *start;
830 u8 *fault;
831 u8 *end;
832 u8 *pad;
833 int length;
834 int remainder;
835
836 if (!(s->flags & SLAB_POISON))
837 return 1;
838
839 start = page_address(page);
840 length = PAGE_SIZE << compound_order(page);
841 end = start + length;
842 remainder = length % s->size;
843 if (!remainder)
844 return 1;
845
846 pad = end - remainder;
847 metadata_access_enable();
848 fault = memchr_inv(pad, POISON_INUSE, remainder);
849 metadata_access_disable();
850 if (!fault)
851 return 1;
852 while (end > fault && end[-1] == POISON_INUSE)
853 end--;
854
855 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
856 print_section(KERN_ERR, "Padding ", pad, remainder);
857
858 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
859 return 0;
860}
861
862static int check_object(struct kmem_cache *s, struct page *page,
863 void *object, u8 val)
864{
865 u8 *p = object;
866 u8 *endobject = object + s->object_size;
867
868 if (s->flags & SLAB_RED_ZONE) {
869 if (!check_bytes_and_report(s, page, object, "Redzone",
870 object - s->red_left_pad, val, s->red_left_pad))
871 return 0;
872
873 if (!check_bytes_and_report(s, page, object, "Redzone",
874 endobject, val, s->inuse - s->object_size))
875 return 0;
876 } else {
877 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
878 check_bytes_and_report(s, page, p, "Alignment padding",
879 endobject, POISON_INUSE,
880 s->inuse - s->object_size);
881 }
882 }
883
884 if (s->flags & SLAB_POISON) {
885 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
886 (!check_bytes_and_report(s, page, p, "Poison", p,
887 POISON_FREE, s->object_size - 1) ||
888 !check_bytes_and_report(s, page, p, "Poison",
889 p + s->object_size - 1, POISON_END, 1)))
890 return 0;
891 /*
892 * check_pad_bytes cleans up on its own.
893 */
894 check_pad_bytes(s, page, p);
895 }
896
897 if (!s->offset && val == SLUB_RED_ACTIVE)
898 /*
899 * Object and freepointer overlap. Cannot check
900 * freepointer while object is allocated.
901 */
902 return 1;
903
904 /* Check free pointer validity */
905 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
906 object_err(s, page, p, "Freepointer corrupt");
907 /*
908 * No choice but to zap it and thus lose the remainder
909 * of the free objects in this slab. May cause
910 * another error because the object count is now wrong.
911 */
912 set_freepointer(s, p, NULL);
913 return 0;
914 }
915 return 1;
916}
917
918static int check_slab(struct kmem_cache *s, struct page *page)
919{
920 int maxobj;
921
922 VM_BUG_ON(!irqs_disabled());
923
924 if (!PageSlab(page)) {
925 slab_err(s, page, "Not a valid slab page");
926 return 0;
927 }
928
929 maxobj = order_objects(compound_order(page), s->size);
930 if (page->objects > maxobj) {
931 slab_err(s, page, "objects %u > max %u",
932 page->objects, maxobj);
933 return 0;
934 }
935 if (page->inuse > page->objects) {
936 slab_err(s, page, "inuse %u > max %u",
937 page->inuse, page->objects);
938 return 0;
939 }
940 /* Slab_pad_check fixes things up after itself */
941 slab_pad_check(s, page);
942 return 1;
943}
944
945/*
946 * Determine if a certain object on a page is on the freelist. Must hold the
947 * slab lock to guarantee that the chains are in a consistent state.
948 */
949static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
950{
951 int nr = 0;
952 void *fp;
953 void *object = NULL;
954 int max_objects;
955
956 fp = page->freelist;
957 while (fp && nr <= page->objects) {
958 if (fp == search)
959 return 1;
960 if (!check_valid_pointer(s, page, fp)) {
961 if (object) {
962 object_err(s, page, object,
963 "Freechain corrupt");
964 set_freepointer(s, object, NULL);
965 } else {
966 slab_err(s, page, "Freepointer corrupt");
967 page->freelist = NULL;
968 page->inuse = page->objects;
969 slab_fix(s, "Freelist cleared");
970 return 0;
971 }
972 break;
973 }
974 object = fp;
975 fp = get_freepointer(s, object);
976 nr++;
977 }
978
979 max_objects = order_objects(compound_order(page), s->size);
980 if (max_objects > MAX_OBJS_PER_PAGE)
981 max_objects = MAX_OBJS_PER_PAGE;
982
983 if (page->objects != max_objects) {
984 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
985 page->objects, max_objects);
986 page->objects = max_objects;
987 slab_fix(s, "Number of objects adjusted.");
988 }
989 if (page->inuse != page->objects - nr) {
990 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
991 page->inuse, page->objects - nr);
992 page->inuse = page->objects - nr;
993 slab_fix(s, "Object count adjusted.");
994 }
995 return search == NULL;
996}
997
998static void trace(struct kmem_cache *s, struct page *page, void *object,
999 int alloc)
1000{
1001 if (s->flags & SLAB_TRACE) {
1002 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1003 s->name,
1004 alloc ? "alloc" : "free",
1005 object, page->inuse,
1006 page->freelist);
1007
1008 if (!alloc)
1009 print_section(KERN_INFO, "Object ", (void *)object,
1010 s->object_size);
1011
1012 dump_stack();
1013 }
1014}
1015
1016/*
1017 * Tracking of fully allocated slabs for debugging purposes.
1018 */
1019static void add_full(struct kmem_cache *s,
1020 struct kmem_cache_node *n, struct page *page)
1021{
1022 if (!(s->flags & SLAB_STORE_USER))
1023 return;
1024
1025 lockdep_assert_held(&n->list_lock);
1026 list_add(&page->lru, &n->full);
1027}
1028
1029static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1030{
1031 if (!(s->flags & SLAB_STORE_USER))
1032 return;
1033
1034 lockdep_assert_held(&n->list_lock);
1035 list_del(&page->lru);
1036}
1037
1038/* Tracking of the number of slabs for debugging purposes */
1039static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1040{
1041 struct kmem_cache_node *n = get_node(s, node);
1042
1043 return atomic_long_read(&n->nr_slabs);
1044}
1045
1046static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1047{
1048 return atomic_long_read(&n->nr_slabs);
1049}
1050
1051static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 /*
1056 * May be called early in order to allocate a slab for the
1057 * kmem_cache_node structure. Solve the chicken-egg
1058 * dilemma by deferring the increment of the count during
1059 * bootstrap (see early_kmem_cache_node_alloc).
1060 */
1061 if (likely(n)) {
1062 atomic_long_inc(&n->nr_slabs);
1063 atomic_long_add(objects, &n->total_objects);
1064 }
1065}
1066static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1067{
1068 struct kmem_cache_node *n = get_node(s, node);
1069
1070 atomic_long_dec(&n->nr_slabs);
1071 atomic_long_sub(objects, &n->total_objects);
1072}
1073
1074/* Object debug checks for alloc/free paths */
1075static void setup_object_debug(struct kmem_cache *s, struct page *page,
1076 void *object)
1077{
1078 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1079 return;
1080
1081 init_object(s, object, SLUB_RED_INACTIVE);
1082 init_tracking(s, object);
1083}
1084
1085static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1086{
1087 if (!(s->flags & SLAB_POISON))
1088 return;
1089
1090 metadata_access_enable();
1091 memset(addr, POISON_INUSE, PAGE_SIZE << order);
1092 metadata_access_disable();
1093}
1094
1095static inline int alloc_consistency_checks(struct kmem_cache *s,
1096 struct page *page,
1097 void *object, unsigned long addr)
1098{
1099 if (!check_slab(s, page))
1100 return 0;
1101
1102 if (!check_valid_pointer(s, page, object)) {
1103 object_err(s, page, object, "Freelist Pointer check fails");
1104 return 0;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108 return 0;
1109
1110 return 1;
1111}
1112
1113static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 struct page *page,
1115 void *object, unsigned long addr)
1116{
1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 if (!alloc_consistency_checks(s, page, object, addr))
1119 goto bad;
1120 }
1121
1122 /* Success perform special debug activities for allocs */
1123 if (s->flags & SLAB_STORE_USER)
1124 set_track(s, object, TRACK_ALLOC, addr);
1125 trace(s, page, object, 1);
1126 init_object(s, object, SLUB_RED_ACTIVE);
1127 return 1;
1128
1129bad:
1130 if (PageSlab(page)) {
1131 /*
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
1134 * as used avoids touching the remaining objects.
1135 */
1136 slab_fix(s, "Marking all objects used");
1137 page->inuse = page->objects;
1138 page->freelist = NULL;
1139 }
1140 return 0;
1141}
1142
1143static inline int free_consistency_checks(struct kmem_cache *s,
1144 struct page *page, void *object, unsigned long addr)
1145{
1146 if (!check_valid_pointer(s, page, object)) {
1147 slab_err(s, page, "Invalid object pointer 0x%p", object);
1148 return 0;
1149 }
1150
1151 if (on_freelist(s, page, object)) {
1152 object_err(s, page, object, "Object already free");
1153 return 0;
1154 }
1155
1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157 return 0;
1158
1159 if (unlikely(s != page->slab_cache)) {
1160 if (!PageSlab(page)) {
1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 object);
1163 } else if (!page->slab_cache) {
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 object);
1166 dump_stack();
1167 } else
1168 object_err(s, page, object,
1169 "page slab pointer corrupt.");
1170 return 0;
1171 }
1172 return 1;
1173}
1174
1175/* Supports checking bulk free of a constructed freelist */
1176static noinline int free_debug_processing(
1177 struct kmem_cache *s, struct page *page,
1178 void *head, void *tail, int bulk_cnt,
1179 unsigned long addr)
1180{
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 void *object = head;
1183 int cnt = 0;
1184 unsigned long uninitialized_var(flags);
1185 int ret = 0;
1186
1187 spin_lock_irqsave(&n->list_lock, flags);
1188 slab_lock(page);
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!check_slab(s, page))
1192 goto out;
1193 }
1194
1195next_object:
1196 cnt++;
1197
1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 if (!free_consistency_checks(s, page, object, addr))
1200 goto out;
1201 }
1202
1203 if (s->flags & SLAB_STORE_USER)
1204 set_track(s, object, TRACK_FREE, addr);
1205 trace(s, page, object, 0);
1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 init_object(s, object, SLUB_RED_INACTIVE);
1208
1209 /* Reached end of constructed freelist yet? */
1210 if (object != tail) {
1211 object = get_freepointer(s, object);
1212 goto next_object;
1213 }
1214 ret = 1;
1215
1216out:
1217 if (cnt != bulk_cnt)
1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 bulk_cnt, cnt);
1220
1221 slab_unlock(page);
1222 spin_unlock_irqrestore(&n->list_lock, flags);
1223 if (!ret)
1224 slab_fix(s, "Object at 0x%p not freed", object);
1225 return ret;
1226}
1227
1228static int __init setup_slub_debug(char *str)
1229{
1230 slub_debug = DEBUG_DEFAULT_FLAGS;
1231 if (*str++ != '=' || !*str)
1232 /*
1233 * No options specified. Switch on full debugging.
1234 */
1235 goto out;
1236
1237 if (*str == ',')
1238 /*
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1241 */
1242 goto check_slabs;
1243
1244 slub_debug = 0;
1245 if (*str == '-')
1246 /*
1247 * Switch off all debugging measures.
1248 */
1249 goto out;
1250
1251 /*
1252 * Determine which debug features should be switched on
1253 */
1254 for (; *str && *str != ','; str++) {
1255 switch (tolower(*str)) {
1256 case 'f':
1257 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258 break;
1259 case 'z':
1260 slub_debug |= SLAB_RED_ZONE;
1261 break;
1262 case 'p':
1263 slub_debug |= SLAB_POISON;
1264 break;
1265 case 'u':
1266 slub_debug |= SLAB_STORE_USER;
1267 break;
1268 case 't':
1269 slub_debug |= SLAB_TRACE;
1270 break;
1271 case 'a':
1272 slub_debug |= SLAB_FAILSLAB;
1273 break;
1274 case 'o':
1275 /*
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1278 */
1279 disable_higher_order_debug = 1;
1280 break;
1281 default:
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1283 *str);
1284 }
1285 }
1286
1287check_slabs:
1288 if (*str == ',')
1289 slub_debug_slabs = str + 1;
1290out:
1291 return 1;
1292}
1293
1294__setup("slub_debug", setup_slub_debug);
1295
1296/*
1297 * kmem_cache_flags - apply debugging options to the cache
1298 * @object_size: the size of an object without meta data
1299 * @flags: flags to set
1300 * @name: name of the cache
1301 * @ctor: constructor function
1302 *
1303 * Debug option(s) are applied to @flags. In addition to the debug
1304 * option(s), if a slab name (or multiple) is specified i.e.
1305 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1306 * then only the select slabs will receive the debug option(s).
1307 */
1308slab_flags_t kmem_cache_flags(unsigned int object_size,
1309 slab_flags_t flags, const char *name,
1310 void (*ctor)(void *))
1311{
1312 char *iter;
1313 size_t len;
1314
1315 /* If slub_debug = 0, it folds into the if conditional. */
1316 if (!slub_debug_slabs)
1317 return flags | slub_debug;
1318
1319 len = strlen(name);
1320 iter = slub_debug_slabs;
1321 while (*iter) {
1322 char *end, *glob;
1323 size_t cmplen;
1324
1325 end = strchr(iter, ',');
1326 if (!end)
1327 end = iter + strlen(iter);
1328
1329 glob = strnchr(iter, end - iter, '*');
1330 if (glob)
1331 cmplen = glob - iter;
1332 else
1333 cmplen = max_t(size_t, len, (end - iter));
1334
1335 if (!strncmp(name, iter, cmplen)) {
1336 flags |= slub_debug;
1337 break;
1338 }
1339
1340 if (!*end)
1341 break;
1342 iter = end + 1;
1343 }
1344
1345 return flags;
1346}
1347#else /* !CONFIG_SLUB_DEBUG */
1348static inline void setup_object_debug(struct kmem_cache *s,
1349 struct page *page, void *object) {}
1350static inline void setup_page_debug(struct kmem_cache *s,
1351 void *addr, int order) {}
1352
1353static inline int alloc_debug_processing(struct kmem_cache *s,
1354 struct page *page, void *object, unsigned long addr) { return 0; }
1355
1356static inline int free_debug_processing(
1357 struct kmem_cache *s, struct page *page,
1358 void *head, void *tail, int bulk_cnt,
1359 unsigned long addr) { return 0; }
1360
1361static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1362 { return 1; }
1363static inline int check_object(struct kmem_cache *s, struct page *page,
1364 void *object, u8 val) { return 1; }
1365static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1366 struct page *page) {}
1367static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1368 struct page *page) {}
1369slab_flags_t kmem_cache_flags(unsigned int object_size,
1370 slab_flags_t flags, const char *name,
1371 void (*ctor)(void *))
1372{
1373 return flags;
1374}
1375#define slub_debug 0
1376
1377#define disable_higher_order_debug 0
1378
1379static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1380 { return 0; }
1381static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1382 { return 0; }
1383static inline void inc_slabs_node(struct kmem_cache *s, int node,
1384 int objects) {}
1385static inline void dec_slabs_node(struct kmem_cache *s, int node,
1386 int objects) {}
1387
1388#endif /* CONFIG_SLUB_DEBUG */
1389
1390/*
1391 * Hooks for other subsystems that check memory allocations. In a typical
1392 * production configuration these hooks all should produce no code at all.
1393 */
1394static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1395{
1396 ptr = kasan_kmalloc_large(ptr, size, flags);
1397 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1398 kmemleak_alloc(ptr, size, 1, flags);
1399 return ptr;
1400}
1401
1402static __always_inline void kfree_hook(void *x)
1403{
1404 kmemleak_free(x);
1405 kasan_kfree_large(x, _RET_IP_);
1406}
1407
1408static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1409{
1410 kmemleak_free_recursive(x, s->flags);
1411
1412 /*
1413 * Trouble is that we may no longer disable interrupts in the fast path
1414 * So in order to make the debug calls that expect irqs to be
1415 * disabled we need to disable interrupts temporarily.
1416 */
1417#ifdef CONFIG_LOCKDEP
1418 {
1419 unsigned long flags;
1420
1421 local_irq_save(flags);
1422 debug_check_no_locks_freed(x, s->object_size);
1423 local_irq_restore(flags);
1424 }
1425#endif
1426 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1427 debug_check_no_obj_freed(x, s->object_size);
1428
1429 /* KASAN might put x into memory quarantine, delaying its reuse */
1430 return kasan_slab_free(s, x, _RET_IP_);
1431}
1432
1433static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1434 void **head, void **tail)
1435{
1436/*
1437 * Compiler cannot detect this function can be removed if slab_free_hook()
1438 * evaluates to nothing. Thus, catch all relevant config debug options here.
1439 */
1440#if defined(CONFIG_LOCKDEP) || \
1441 defined(CONFIG_DEBUG_KMEMLEAK) || \
1442 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1443 defined(CONFIG_KASAN)
1444
1445 void *object;
1446 void *next = *head;
1447 void *old_tail = *tail ? *tail : *head;
1448
1449 /* Head and tail of the reconstructed freelist */
1450 *head = NULL;
1451 *tail = NULL;
1452
1453 do {
1454 object = next;
1455 next = get_freepointer(s, object);
1456 /* If object's reuse doesn't have to be delayed */
1457 if (!slab_free_hook(s, object)) {
1458 /* Move object to the new freelist */
1459 set_freepointer(s, object, *head);
1460 *head = object;
1461 if (!*tail)
1462 *tail = object;
1463 }
1464 } while (object != old_tail);
1465
1466 if (*head == *tail)
1467 *tail = NULL;
1468
1469 return *head != NULL;
1470#else
1471 return true;
1472#endif
1473}
1474
1475static void *setup_object(struct kmem_cache *s, struct page *page,
1476 void *object)
1477{
1478 setup_object_debug(s, page, object);
1479 object = kasan_init_slab_obj(s, object);
1480 if (unlikely(s->ctor)) {
1481 kasan_unpoison_object_data(s, object);
1482 s->ctor(object);
1483 kasan_poison_object_data(s, object);
1484 }
1485 return object;
1486}
1487
1488/*
1489 * Slab allocation and freeing
1490 */
1491static inline struct page *alloc_slab_page(struct kmem_cache *s,
1492 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1493{
1494 struct page *page;
1495 unsigned int order = oo_order(oo);
1496
1497 if (node == NUMA_NO_NODE)
1498 page = alloc_pages(flags, order);
1499 else
1500 page = __alloc_pages_node(node, flags, order);
1501
1502 if (page && memcg_charge_slab(page, flags, order, s)) {
1503 __free_pages(page, order);
1504 page = NULL;
1505 }
1506
1507 return page;
1508}
1509
1510#ifdef CONFIG_SLAB_FREELIST_RANDOM
1511/* Pre-initialize the random sequence cache */
1512static int init_cache_random_seq(struct kmem_cache *s)
1513{
1514 unsigned int count = oo_objects(s->oo);
1515 int err;
1516
1517 /* Bailout if already initialised */
1518 if (s->random_seq)
1519 return 0;
1520
1521 err = cache_random_seq_create(s, count, GFP_KERNEL);
1522 if (err) {
1523 pr_err("SLUB: Unable to initialize free list for %s\n",
1524 s->name);
1525 return err;
1526 }
1527
1528 /* Transform to an offset on the set of pages */
1529 if (s->random_seq) {
1530 unsigned int i;
1531
1532 for (i = 0; i < count; i++)
1533 s->random_seq[i] *= s->size;
1534 }
1535 return 0;
1536}
1537
1538/* Initialize each random sequence freelist per cache */
1539static void __init init_freelist_randomization(void)
1540{
1541 struct kmem_cache *s;
1542
1543 mutex_lock(&slab_mutex);
1544
1545 list_for_each_entry(s, &slab_caches, list)
1546 init_cache_random_seq(s);
1547
1548 mutex_unlock(&slab_mutex);
1549}
1550
1551/* Get the next entry on the pre-computed freelist randomized */
1552static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1553 unsigned long *pos, void *start,
1554 unsigned long page_limit,
1555 unsigned long freelist_count)
1556{
1557 unsigned int idx;
1558
1559 /*
1560 * If the target page allocation failed, the number of objects on the
1561 * page might be smaller than the usual size defined by the cache.
1562 */
1563 do {
1564 idx = s->random_seq[*pos];
1565 *pos += 1;
1566 if (*pos >= freelist_count)
1567 *pos = 0;
1568 } while (unlikely(idx >= page_limit));
1569
1570 return (char *)start + idx;
1571}
1572
1573/* Shuffle the single linked freelist based on a random pre-computed sequence */
1574static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1575{
1576 void *start;
1577 void *cur;
1578 void *next;
1579 unsigned long idx, pos, page_limit, freelist_count;
1580
1581 if (page->objects < 2 || !s->random_seq)
1582 return false;
1583
1584 freelist_count = oo_objects(s->oo);
1585 pos = get_random_int() % freelist_count;
1586
1587 page_limit = page->objects * s->size;
1588 start = fixup_red_left(s, page_address(page));
1589
1590 /* First entry is used as the base of the freelist */
1591 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1592 freelist_count);
1593 cur = setup_object(s, page, cur);
1594 page->freelist = cur;
1595
1596 for (idx = 1; idx < page->objects; idx++) {
1597 next = next_freelist_entry(s, page, &pos, start, page_limit,
1598 freelist_count);
1599 next = setup_object(s, page, next);
1600 set_freepointer(s, cur, next);
1601 cur = next;
1602 }
1603 set_freepointer(s, cur, NULL);
1604
1605 return true;
1606}
1607#else
1608static inline int init_cache_random_seq(struct kmem_cache *s)
1609{
1610 return 0;
1611}
1612static inline void init_freelist_randomization(void) { }
1613static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1614{
1615 return false;
1616}
1617#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1618
1619static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1620{
1621 struct page *page;
1622 struct kmem_cache_order_objects oo = s->oo;
1623 gfp_t alloc_gfp;
1624 void *start, *p, *next;
1625 int idx, order;
1626 bool shuffle;
1627
1628 flags &= gfp_allowed_mask;
1629
1630 if (gfpflags_allow_blocking(flags))
1631 local_irq_enable();
1632
1633 flags |= s->allocflags;
1634
1635 /*
1636 * Let the initial higher-order allocation fail under memory pressure
1637 * so we fall-back to the minimum order allocation.
1638 */
1639 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1640 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1641 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1642
1643 page = alloc_slab_page(s, alloc_gfp, node, oo);
1644 if (unlikely(!page)) {
1645 oo = s->min;
1646 alloc_gfp = flags;
1647 /*
1648 * Allocation may have failed due to fragmentation.
1649 * Try a lower order alloc if possible
1650 */
1651 page = alloc_slab_page(s, alloc_gfp, node, oo);
1652 if (unlikely(!page))
1653 goto out;
1654 stat(s, ORDER_FALLBACK);
1655 }
1656
1657 page->objects = oo_objects(oo);
1658
1659 order = compound_order(page);
1660 page->slab_cache = s;
1661 __SetPageSlab(page);
1662 if (page_is_pfmemalloc(page))
1663 SetPageSlabPfmemalloc(page);
1664
1665 kasan_poison_slab(page);
1666
1667 start = page_address(page);
1668
1669 setup_page_debug(s, start, order);
1670
1671 shuffle = shuffle_freelist(s, page);
1672
1673 if (!shuffle) {
1674 start = fixup_red_left(s, start);
1675 start = setup_object(s, page, start);
1676 page->freelist = start;
1677 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1678 next = p + s->size;
1679 next = setup_object(s, page, next);
1680 set_freepointer(s, p, next);
1681 p = next;
1682 }
1683 set_freepointer(s, p, NULL);
1684 }
1685
1686 page->inuse = page->objects;
1687 page->frozen = 1;
1688
1689out:
1690 if (gfpflags_allow_blocking(flags))
1691 local_irq_disable();
1692 if (!page)
1693 return NULL;
1694
1695 mod_lruvec_page_state(page,
1696 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1697 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1698 1 << oo_order(oo));
1699
1700 inc_slabs_node(s, page_to_nid(page), page->objects);
1701
1702 return page;
1703}
1704
1705static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1706{
1707 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1708 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1709 flags &= ~GFP_SLAB_BUG_MASK;
1710 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1711 invalid_mask, &invalid_mask, flags, &flags);
1712 dump_stack();
1713 }
1714
1715 return allocate_slab(s,
1716 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1717}
1718
1719static void __free_slab(struct kmem_cache *s, struct page *page)
1720{
1721 int order = compound_order(page);
1722 int pages = 1 << order;
1723
1724 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1725 void *p;
1726
1727 slab_pad_check(s, page);
1728 for_each_object(p, s, page_address(page),
1729 page->objects)
1730 check_object(s, page, p, SLUB_RED_INACTIVE);
1731 }
1732
1733 mod_lruvec_page_state(page,
1734 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1735 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1736 -pages);
1737
1738 __ClearPageSlabPfmemalloc(page);
1739 __ClearPageSlab(page);
1740
1741 page->mapping = NULL;
1742 if (current->reclaim_state)
1743 current->reclaim_state->reclaimed_slab += pages;
1744 memcg_uncharge_slab(page, order, s);
1745 __free_pages(page, order);
1746}
1747
1748static void rcu_free_slab(struct rcu_head *h)
1749{
1750 struct page *page = container_of(h, struct page, rcu_head);
1751
1752 __free_slab(page->slab_cache, page);
1753}
1754
1755static void free_slab(struct kmem_cache *s, struct page *page)
1756{
1757 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1758 call_rcu(&page->rcu_head, rcu_free_slab);
1759 } else
1760 __free_slab(s, page);
1761}
1762
1763static void discard_slab(struct kmem_cache *s, struct page *page)
1764{
1765 dec_slabs_node(s, page_to_nid(page), page->objects);
1766 free_slab(s, page);
1767}
1768
1769/*
1770 * Management of partially allocated slabs.
1771 */
1772static inline void
1773__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1774{
1775 n->nr_partial++;
1776 if (tail == DEACTIVATE_TO_TAIL)
1777 list_add_tail(&page->lru, &n->partial);
1778 else
1779 list_add(&page->lru, &n->partial);
1780}
1781
1782static inline void add_partial(struct kmem_cache_node *n,
1783 struct page *page, int tail)
1784{
1785 lockdep_assert_held(&n->list_lock);
1786 __add_partial(n, page, tail);
1787}
1788
1789static inline void remove_partial(struct kmem_cache_node *n,
1790 struct page *page)
1791{
1792 lockdep_assert_held(&n->list_lock);
1793 list_del(&page->lru);
1794 n->nr_partial--;
1795}
1796
1797/*
1798 * Remove slab from the partial list, freeze it and
1799 * return the pointer to the freelist.
1800 *
1801 * Returns a list of objects or NULL if it fails.
1802 */
1803static inline void *acquire_slab(struct kmem_cache *s,
1804 struct kmem_cache_node *n, struct page *page,
1805 int mode, int *objects)
1806{
1807 void *freelist;
1808 unsigned long counters;
1809 struct page new;
1810
1811 lockdep_assert_held(&n->list_lock);
1812
1813 /*
1814 * Zap the freelist and set the frozen bit.
1815 * The old freelist is the list of objects for the
1816 * per cpu allocation list.
1817 */
1818 freelist = page->freelist;
1819 counters = page->counters;
1820 new.counters = counters;
1821 *objects = new.objects - new.inuse;
1822 if (mode) {
1823 new.inuse = page->objects;
1824 new.freelist = NULL;
1825 } else {
1826 new.freelist = freelist;
1827 }
1828
1829 VM_BUG_ON(new.frozen);
1830 new.frozen = 1;
1831
1832 if (!__cmpxchg_double_slab(s, page,
1833 freelist, counters,
1834 new.freelist, new.counters,
1835 "acquire_slab"))
1836 return NULL;
1837
1838 remove_partial(n, page);
1839 WARN_ON(!freelist);
1840 return freelist;
1841}
1842
1843static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1844static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1845
1846/*
1847 * Try to allocate a partial slab from a specific node.
1848 */
1849static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1850 struct kmem_cache_cpu *c, gfp_t flags)
1851{
1852 struct page *page, *page2;
1853 void *object = NULL;
1854 unsigned int available = 0;
1855 int objects;
1856
1857 /*
1858 * Racy check. If we mistakenly see no partial slabs then we
1859 * just allocate an empty slab. If we mistakenly try to get a
1860 * partial slab and there is none available then get_partials()
1861 * will return NULL.
1862 */
1863 if (!n || !n->nr_partial)
1864 return NULL;
1865
1866 spin_lock(&n->list_lock);
1867 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1868 void *t;
1869
1870 if (!pfmemalloc_match(page, flags))
1871 continue;
1872
1873 t = acquire_slab(s, n, page, object == NULL, &objects);
1874 if (!t)
1875 break;
1876
1877 available += objects;
1878 if (!object) {
1879 c->page = page;
1880 stat(s, ALLOC_FROM_PARTIAL);
1881 object = t;
1882 } else {
1883 put_cpu_partial(s, page, 0);
1884 stat(s, CPU_PARTIAL_NODE);
1885 }
1886 if (!kmem_cache_has_cpu_partial(s)
1887 || available > slub_cpu_partial(s) / 2)
1888 break;
1889
1890 }
1891 spin_unlock(&n->list_lock);
1892 return object;
1893}
1894
1895/*
1896 * Get a page from somewhere. Search in increasing NUMA distances.
1897 */
1898static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1899 struct kmem_cache_cpu *c)
1900{
1901#ifdef CONFIG_NUMA
1902 struct zonelist *zonelist;
1903 struct zoneref *z;
1904 struct zone *zone;
1905 enum zone_type high_zoneidx = gfp_zone(flags);
1906 void *object;
1907 unsigned int cpuset_mems_cookie;
1908
1909 /*
1910 * The defrag ratio allows a configuration of the tradeoffs between
1911 * inter node defragmentation and node local allocations. A lower
1912 * defrag_ratio increases the tendency to do local allocations
1913 * instead of attempting to obtain partial slabs from other nodes.
1914 *
1915 * If the defrag_ratio is set to 0 then kmalloc() always
1916 * returns node local objects. If the ratio is higher then kmalloc()
1917 * may return off node objects because partial slabs are obtained
1918 * from other nodes and filled up.
1919 *
1920 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1921 * (which makes defrag_ratio = 1000) then every (well almost)
1922 * allocation will first attempt to defrag slab caches on other nodes.
1923 * This means scanning over all nodes to look for partial slabs which
1924 * may be expensive if we do it every time we are trying to find a slab
1925 * with available objects.
1926 */
1927 if (!s->remote_node_defrag_ratio ||
1928 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1929 return NULL;
1930
1931 do {
1932 cpuset_mems_cookie = read_mems_allowed_begin();
1933 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1934 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1935 struct kmem_cache_node *n;
1936
1937 n = get_node(s, zone_to_nid(zone));
1938
1939 if (n && cpuset_zone_allowed(zone, flags) &&
1940 n->nr_partial > s->min_partial) {
1941 object = get_partial_node(s, n, c, flags);
1942 if (object) {
1943 /*
1944 * Don't check read_mems_allowed_retry()
1945 * here - if mems_allowed was updated in
1946 * parallel, that was a harmless race
1947 * between allocation and the cpuset
1948 * update
1949 */
1950 return object;
1951 }
1952 }
1953 }
1954 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1955#endif
1956 return NULL;
1957}
1958
1959/*
1960 * Get a partial page, lock it and return it.
1961 */
1962static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1963 struct kmem_cache_cpu *c)
1964{
1965 void *object;
1966 int searchnode = node;
1967
1968 if (node == NUMA_NO_NODE)
1969 searchnode = numa_mem_id();
1970 else if (!node_present_pages(node))
1971 searchnode = node_to_mem_node(node);
1972
1973 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1974 if (object || node != NUMA_NO_NODE)
1975 return object;
1976
1977 return get_any_partial(s, flags, c);
1978}
1979
1980#ifdef CONFIG_PREEMPT
1981/*
1982 * Calculate the next globally unique transaction for disambiguiation
1983 * during cmpxchg. The transactions start with the cpu number and are then
1984 * incremented by CONFIG_NR_CPUS.
1985 */
1986#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1987#else
1988/*
1989 * No preemption supported therefore also no need to check for
1990 * different cpus.
1991 */
1992#define TID_STEP 1
1993#endif
1994
1995static inline unsigned long next_tid(unsigned long tid)
1996{
1997 return tid + TID_STEP;
1998}
1999
2000static inline unsigned int tid_to_cpu(unsigned long tid)
2001{
2002 return tid % TID_STEP;
2003}
2004
2005static inline unsigned long tid_to_event(unsigned long tid)
2006{
2007 return tid / TID_STEP;
2008}
2009
2010static inline unsigned int init_tid(int cpu)
2011{
2012 return cpu;
2013}
2014
2015static inline void note_cmpxchg_failure(const char *n,
2016 const struct kmem_cache *s, unsigned long tid)
2017{
2018#ifdef SLUB_DEBUG_CMPXCHG
2019 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2020
2021 pr_info("%s %s: cmpxchg redo ", n, s->name);
2022
2023#ifdef CONFIG_PREEMPT
2024 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2025 pr_warn("due to cpu change %d -> %d\n",
2026 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2027 else
2028#endif
2029 if (tid_to_event(tid) != tid_to_event(actual_tid))
2030 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2031 tid_to_event(tid), tid_to_event(actual_tid));
2032 else
2033 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2034 actual_tid, tid, next_tid(tid));
2035#endif
2036 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2037}
2038
2039static void init_kmem_cache_cpus(struct kmem_cache *s)
2040{
2041 int cpu;
2042
2043 for_each_possible_cpu(cpu)
2044 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2045}
2046
2047/*
2048 * Remove the cpu slab
2049 */
2050static void deactivate_slab(struct kmem_cache *s, struct page *page,
2051 void *freelist, struct kmem_cache_cpu *c)
2052{
2053 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2054 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2055 int lock = 0;
2056 enum slab_modes l = M_NONE, m = M_NONE;
2057 void *nextfree;
2058 int tail = DEACTIVATE_TO_HEAD;
2059 struct page new;
2060 struct page old;
2061
2062 if (page->freelist) {
2063 stat(s, DEACTIVATE_REMOTE_FREES);
2064 tail = DEACTIVATE_TO_TAIL;
2065 }
2066
2067 /*
2068 * Stage one: Free all available per cpu objects back
2069 * to the page freelist while it is still frozen. Leave the
2070 * last one.
2071 *
2072 * There is no need to take the list->lock because the page
2073 * is still frozen.
2074 */
2075 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2076 void *prior;
2077 unsigned long counters;
2078
2079 do {
2080 prior = page->freelist;
2081 counters = page->counters;
2082 set_freepointer(s, freelist, prior);
2083 new.counters = counters;
2084 new.inuse--;
2085 VM_BUG_ON(!new.frozen);
2086
2087 } while (!__cmpxchg_double_slab(s, page,
2088 prior, counters,
2089 freelist, new.counters,
2090 "drain percpu freelist"));
2091
2092 freelist = nextfree;
2093 }
2094
2095 /*
2096 * Stage two: Ensure that the page is unfrozen while the
2097 * list presence reflects the actual number of objects
2098 * during unfreeze.
2099 *
2100 * We setup the list membership and then perform a cmpxchg
2101 * with the count. If there is a mismatch then the page
2102 * is not unfrozen but the page is on the wrong list.
2103 *
2104 * Then we restart the process which may have to remove
2105 * the page from the list that we just put it on again
2106 * because the number of objects in the slab may have
2107 * changed.
2108 */
2109redo:
2110
2111 old.freelist = page->freelist;
2112 old.counters = page->counters;
2113 VM_BUG_ON(!old.frozen);
2114
2115 /* Determine target state of the slab */
2116 new.counters = old.counters;
2117 if (freelist) {
2118 new.inuse--;
2119 set_freepointer(s, freelist, old.freelist);
2120 new.freelist = freelist;
2121 } else
2122 new.freelist = old.freelist;
2123
2124 new.frozen = 0;
2125
2126 if (!new.inuse && n->nr_partial >= s->min_partial)
2127 m = M_FREE;
2128 else if (new.freelist) {
2129 m = M_PARTIAL;
2130 if (!lock) {
2131 lock = 1;
2132 /*
2133 * Taking the spinlock removes the possiblity
2134 * that acquire_slab() will see a slab page that
2135 * is frozen
2136 */
2137 spin_lock(&n->list_lock);
2138 }
2139 } else {
2140 m = M_FULL;
2141 if (kmem_cache_debug(s) && !lock) {
2142 lock = 1;
2143 /*
2144 * This also ensures that the scanning of full
2145 * slabs from diagnostic functions will not see
2146 * any frozen slabs.
2147 */
2148 spin_lock(&n->list_lock);
2149 }
2150 }
2151
2152 if (l != m) {
2153 if (l == M_PARTIAL)
2154 remove_partial(n, page);
2155 else if (l == M_FULL)
2156 remove_full(s, n, page);
2157
2158 if (m == M_PARTIAL)
2159 add_partial(n, page, tail);
2160 else if (m == M_FULL)
2161 add_full(s, n, page);
2162 }
2163
2164 l = m;
2165 if (!__cmpxchg_double_slab(s, page,
2166 old.freelist, old.counters,
2167 new.freelist, new.counters,
2168 "unfreezing slab"))
2169 goto redo;
2170
2171 if (lock)
2172 spin_unlock(&n->list_lock);
2173
2174 if (m == M_PARTIAL)
2175 stat(s, tail);
2176 else if (m == M_FULL)
2177 stat(s, DEACTIVATE_FULL);
2178 else if (m == M_FREE) {
2179 stat(s, DEACTIVATE_EMPTY);
2180 discard_slab(s, page);
2181 stat(s, FREE_SLAB);
2182 }
2183
2184 c->page = NULL;
2185 c->freelist = NULL;
2186}
2187
2188/*
2189 * Unfreeze all the cpu partial slabs.
2190 *
2191 * This function must be called with interrupts disabled
2192 * for the cpu using c (or some other guarantee must be there
2193 * to guarantee no concurrent accesses).
2194 */
2195static void unfreeze_partials(struct kmem_cache *s,
2196 struct kmem_cache_cpu *c)
2197{
2198#ifdef CONFIG_SLUB_CPU_PARTIAL
2199 struct kmem_cache_node *n = NULL, *n2 = NULL;
2200 struct page *page, *discard_page = NULL;
2201
2202 while ((page = c->partial)) {
2203 struct page new;
2204 struct page old;
2205
2206 c->partial = page->next;
2207
2208 n2 = get_node(s, page_to_nid(page));
2209 if (n != n2) {
2210 if (n)
2211 spin_unlock(&n->list_lock);
2212
2213 n = n2;
2214 spin_lock(&n->list_lock);
2215 }
2216
2217 do {
2218
2219 old.freelist = page->freelist;
2220 old.counters = page->counters;
2221 VM_BUG_ON(!old.frozen);
2222
2223 new.counters = old.counters;
2224 new.freelist = old.freelist;
2225
2226 new.frozen = 0;
2227
2228 } while (!__cmpxchg_double_slab(s, page,
2229 old.freelist, old.counters,
2230 new.freelist, new.counters,
2231 "unfreezing slab"));
2232
2233 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2234 page->next = discard_page;
2235 discard_page = page;
2236 } else {
2237 add_partial(n, page, DEACTIVATE_TO_TAIL);
2238 stat(s, FREE_ADD_PARTIAL);
2239 }
2240 }
2241
2242 if (n)
2243 spin_unlock(&n->list_lock);
2244
2245 while (discard_page) {
2246 page = discard_page;
2247 discard_page = discard_page->next;
2248
2249 stat(s, DEACTIVATE_EMPTY);
2250 discard_slab(s, page);
2251 stat(s, FREE_SLAB);
2252 }
2253#endif
2254}
2255
2256/*
2257 * Put a page that was just frozen (in __slab_free) into a partial page
2258 * slot if available.
2259 *
2260 * If we did not find a slot then simply move all the partials to the
2261 * per node partial list.
2262 */
2263static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2264{
2265#ifdef CONFIG_SLUB_CPU_PARTIAL
2266 struct page *oldpage;
2267 int pages;
2268 int pobjects;
2269
2270 preempt_disable();
2271 do {
2272 pages = 0;
2273 pobjects = 0;
2274 oldpage = this_cpu_read(s->cpu_slab->partial);
2275
2276 if (oldpage) {
2277 pobjects = oldpage->pobjects;
2278 pages = oldpage->pages;
2279 if (drain && pobjects > s->cpu_partial) {
2280 unsigned long flags;
2281 /*
2282 * partial array is full. Move the existing
2283 * set to the per node partial list.
2284 */
2285 local_irq_save(flags);
2286 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2287 local_irq_restore(flags);
2288 oldpage = NULL;
2289 pobjects = 0;
2290 pages = 0;
2291 stat(s, CPU_PARTIAL_DRAIN);
2292 }
2293 }
2294
2295 pages++;
2296 pobjects += page->objects - page->inuse;
2297
2298 page->pages = pages;
2299 page->pobjects = pobjects;
2300 page->next = oldpage;
2301
2302 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2303 != oldpage);
2304 if (unlikely(!s->cpu_partial)) {
2305 unsigned long flags;
2306
2307 local_irq_save(flags);
2308 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2309 local_irq_restore(flags);
2310 }
2311 preempt_enable();
2312#endif
2313}
2314
2315static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2316{
2317 stat(s, CPUSLAB_FLUSH);
2318 deactivate_slab(s, c->page, c->freelist, c);
2319
2320 c->tid = next_tid(c->tid);
2321}
2322
2323/*
2324 * Flush cpu slab.
2325 *
2326 * Called from IPI handler with interrupts disabled.
2327 */
2328static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2329{
2330 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2331
2332 if (c->page)
2333 flush_slab(s, c);
2334
2335 unfreeze_partials(s, c);
2336}
2337
2338static void flush_cpu_slab(void *d)
2339{
2340 struct kmem_cache *s = d;
2341
2342 __flush_cpu_slab(s, smp_processor_id());
2343}
2344
2345static bool has_cpu_slab(int cpu, void *info)
2346{
2347 struct kmem_cache *s = info;
2348 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2349
2350 return c->page || slub_percpu_partial(c);
2351}
2352
2353static void flush_all(struct kmem_cache *s)
2354{
2355 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2356}
2357
2358/*
2359 * Use the cpu notifier to insure that the cpu slabs are flushed when
2360 * necessary.
2361 */
2362static int slub_cpu_dead(unsigned int cpu)
2363{
2364 struct kmem_cache *s;
2365 unsigned long flags;
2366
2367 mutex_lock(&slab_mutex);
2368 list_for_each_entry(s, &slab_caches, list) {
2369 local_irq_save(flags);
2370 __flush_cpu_slab(s, cpu);
2371 local_irq_restore(flags);
2372 }
2373 mutex_unlock(&slab_mutex);
2374 return 0;
2375}
2376
2377/*
2378 * Check if the objects in a per cpu structure fit numa
2379 * locality expectations.
2380 */
2381static inline int node_match(struct page *page, int node)
2382{
2383#ifdef CONFIG_NUMA
2384 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2385 return 0;
2386#endif
2387 return 1;
2388}
2389
2390#ifdef CONFIG_SLUB_DEBUG
2391static int count_free(struct page *page)
2392{
2393 return page->objects - page->inuse;
2394}
2395
2396static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2397{
2398 return atomic_long_read(&n->total_objects);
2399}
2400#endif /* CONFIG_SLUB_DEBUG */
2401
2402#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2403static unsigned long count_partial(struct kmem_cache_node *n,
2404 int (*get_count)(struct page *))
2405{
2406 unsigned long flags;
2407 unsigned long x = 0;
2408 struct page *page;
2409
2410 spin_lock_irqsave(&n->list_lock, flags);
2411 list_for_each_entry(page, &n->partial, lru)
2412 x += get_count(page);
2413 spin_unlock_irqrestore(&n->list_lock, flags);
2414 return x;
2415}
2416#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2417
2418static noinline void
2419slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2420{
2421#ifdef CONFIG_SLUB_DEBUG
2422 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2423 DEFAULT_RATELIMIT_BURST);
2424 int node;
2425 struct kmem_cache_node *n;
2426
2427 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2428 return;
2429
2430 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2431 nid, gfpflags, &gfpflags);
2432 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2433 s->name, s->object_size, s->size, oo_order(s->oo),
2434 oo_order(s->min));
2435
2436 if (oo_order(s->min) > get_order(s->object_size))
2437 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2438 s->name);
2439
2440 for_each_kmem_cache_node(s, node, n) {
2441 unsigned long nr_slabs;
2442 unsigned long nr_objs;
2443 unsigned long nr_free;
2444
2445 nr_free = count_partial(n, count_free);
2446 nr_slabs = node_nr_slabs(n);
2447 nr_objs = node_nr_objs(n);
2448
2449 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2450 node, nr_slabs, nr_objs, nr_free);
2451 }
2452#endif
2453}
2454
2455static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2456 int node, struct kmem_cache_cpu **pc)
2457{
2458 void *freelist;
2459 struct kmem_cache_cpu *c = *pc;
2460 struct page *page;
2461
2462 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2463
2464 freelist = get_partial(s, flags, node, c);
2465
2466 if (freelist)
2467 return freelist;
2468
2469 page = new_slab(s, flags, node);
2470 if (page) {
2471 c = raw_cpu_ptr(s->cpu_slab);
2472 if (c->page)
2473 flush_slab(s, c);
2474
2475 /*
2476 * No other reference to the page yet so we can
2477 * muck around with it freely without cmpxchg
2478 */
2479 freelist = page->freelist;
2480 page->freelist = NULL;
2481
2482 stat(s, ALLOC_SLAB);
2483 c->page = page;
2484 *pc = c;
2485 } else
2486 freelist = NULL;
2487
2488 return freelist;
2489}
2490
2491static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2492{
2493 if (unlikely(PageSlabPfmemalloc(page)))
2494 return gfp_pfmemalloc_allowed(gfpflags);
2495
2496 return true;
2497}
2498
2499/*
2500 * Check the page->freelist of a page and either transfer the freelist to the
2501 * per cpu freelist or deactivate the page.
2502 *
2503 * The page is still frozen if the return value is not NULL.
2504 *
2505 * If this function returns NULL then the page has been unfrozen.
2506 *
2507 * This function must be called with interrupt disabled.
2508 */
2509static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2510{
2511 struct page new;
2512 unsigned long counters;
2513 void *freelist;
2514
2515 do {
2516 freelist = page->freelist;
2517 counters = page->counters;
2518
2519 new.counters = counters;
2520 VM_BUG_ON(!new.frozen);
2521
2522 new.inuse = page->objects;
2523 new.frozen = freelist != NULL;
2524
2525 } while (!__cmpxchg_double_slab(s, page,
2526 freelist, counters,
2527 NULL, new.counters,
2528 "get_freelist"));
2529
2530 return freelist;
2531}
2532
2533/*
2534 * Slow path. The lockless freelist is empty or we need to perform
2535 * debugging duties.
2536 *
2537 * Processing is still very fast if new objects have been freed to the
2538 * regular freelist. In that case we simply take over the regular freelist
2539 * as the lockless freelist and zap the regular freelist.
2540 *
2541 * If that is not working then we fall back to the partial lists. We take the
2542 * first element of the freelist as the object to allocate now and move the
2543 * rest of the freelist to the lockless freelist.
2544 *
2545 * And if we were unable to get a new slab from the partial slab lists then
2546 * we need to allocate a new slab. This is the slowest path since it involves
2547 * a call to the page allocator and the setup of a new slab.
2548 *
2549 * Version of __slab_alloc to use when we know that interrupts are
2550 * already disabled (which is the case for bulk allocation).
2551 */
2552static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2553 unsigned long addr, struct kmem_cache_cpu *c)
2554{
2555 void *freelist;
2556 struct page *page;
2557
2558 page = c->page;
2559 if (!page)
2560 goto new_slab;
2561redo:
2562
2563 if (unlikely(!node_match(page, node))) {
2564 int searchnode = node;
2565
2566 if (node != NUMA_NO_NODE && !node_present_pages(node))
2567 searchnode = node_to_mem_node(node);
2568
2569 if (unlikely(!node_match(page, searchnode))) {
2570 stat(s, ALLOC_NODE_MISMATCH);
2571 deactivate_slab(s, page, c->freelist, c);
2572 goto new_slab;
2573 }
2574 }
2575
2576 /*
2577 * By rights, we should be searching for a slab page that was
2578 * PFMEMALLOC but right now, we are losing the pfmemalloc
2579 * information when the page leaves the per-cpu allocator
2580 */
2581 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2582 deactivate_slab(s, page, c->freelist, c);
2583 goto new_slab;
2584 }
2585
2586 /* must check again c->freelist in case of cpu migration or IRQ */
2587 freelist = c->freelist;
2588 if (freelist)
2589 goto load_freelist;
2590
2591 freelist = get_freelist(s, page);
2592
2593 if (!freelist) {
2594 c->page = NULL;
2595 stat(s, DEACTIVATE_BYPASS);
2596 goto new_slab;
2597 }
2598
2599 stat(s, ALLOC_REFILL);
2600
2601load_freelist:
2602 /*
2603 * freelist is pointing to the list of objects to be used.
2604 * page is pointing to the page from which the objects are obtained.
2605 * That page must be frozen for per cpu allocations to work.
2606 */
2607 VM_BUG_ON(!c->page->frozen);
2608 c->freelist = get_freepointer(s, freelist);
2609 c->tid = next_tid(c->tid);
2610 return freelist;
2611
2612new_slab:
2613
2614 if (slub_percpu_partial(c)) {
2615 page = c->page = slub_percpu_partial(c);
2616 slub_set_percpu_partial(c, page);
2617 stat(s, CPU_PARTIAL_ALLOC);
2618 goto redo;
2619 }
2620
2621 freelist = new_slab_objects(s, gfpflags, node, &c);
2622
2623 if (unlikely(!freelist)) {
2624 slab_out_of_memory(s, gfpflags, node);
2625 return NULL;
2626 }
2627
2628 page = c->page;
2629 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2630 goto load_freelist;
2631
2632 /* Only entered in the debug case */
2633 if (kmem_cache_debug(s) &&
2634 !alloc_debug_processing(s, page, freelist, addr))
2635 goto new_slab; /* Slab failed checks. Next slab needed */
2636
2637 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2638 return freelist;
2639}
2640
2641/*
2642 * Another one that disabled interrupt and compensates for possible
2643 * cpu changes by refetching the per cpu area pointer.
2644 */
2645static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2646 unsigned long addr, struct kmem_cache_cpu *c)
2647{
2648 void *p;
2649 unsigned long flags;
2650
2651 local_irq_save(flags);
2652#ifdef CONFIG_PREEMPT
2653 /*
2654 * We may have been preempted and rescheduled on a different
2655 * cpu before disabling interrupts. Need to reload cpu area
2656 * pointer.
2657 */
2658 c = this_cpu_ptr(s->cpu_slab);
2659#endif
2660
2661 p = ___slab_alloc(s, gfpflags, node, addr, c);
2662 local_irq_restore(flags);
2663 return p;
2664}
2665
2666/*
2667 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2668 * have the fastpath folded into their functions. So no function call
2669 * overhead for requests that can be satisfied on the fastpath.
2670 *
2671 * The fastpath works by first checking if the lockless freelist can be used.
2672 * If not then __slab_alloc is called for slow processing.
2673 *
2674 * Otherwise we can simply pick the next object from the lockless free list.
2675 */
2676static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2677 gfp_t gfpflags, int node, unsigned long addr)
2678{
2679 void *object;
2680 struct kmem_cache_cpu *c;
2681 struct page *page;
2682 unsigned long tid;
2683
2684 s = slab_pre_alloc_hook(s, gfpflags);
2685 if (!s)
2686 return NULL;
2687redo:
2688 /*
2689 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2690 * enabled. We may switch back and forth between cpus while
2691 * reading from one cpu area. That does not matter as long
2692 * as we end up on the original cpu again when doing the cmpxchg.
2693 *
2694 * We should guarantee that tid and kmem_cache are retrieved on
2695 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2696 * to check if it is matched or not.
2697 */
2698 do {
2699 tid = this_cpu_read(s->cpu_slab->tid);
2700 c = raw_cpu_ptr(s->cpu_slab);
2701 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2702 unlikely(tid != READ_ONCE(c->tid)));
2703
2704 /*
2705 * Irqless object alloc/free algorithm used here depends on sequence
2706 * of fetching cpu_slab's data. tid should be fetched before anything
2707 * on c to guarantee that object and page associated with previous tid
2708 * won't be used with current tid. If we fetch tid first, object and
2709 * page could be one associated with next tid and our alloc/free
2710 * request will be failed. In this case, we will retry. So, no problem.
2711 */
2712 barrier();
2713
2714 /*
2715 * The transaction ids are globally unique per cpu and per operation on
2716 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2717 * occurs on the right processor and that there was no operation on the
2718 * linked list in between.
2719 */
2720
2721 object = c->freelist;
2722 page = c->page;
2723 if (unlikely(!object || !node_match(page, node))) {
2724 object = __slab_alloc(s, gfpflags, node, addr, c);
2725 stat(s, ALLOC_SLOWPATH);
2726 } else {
2727 void *next_object = get_freepointer_safe(s, object);
2728
2729 /*
2730 * The cmpxchg will only match if there was no additional
2731 * operation and if we are on the right processor.
2732 *
2733 * The cmpxchg does the following atomically (without lock
2734 * semantics!)
2735 * 1. Relocate first pointer to the current per cpu area.
2736 * 2. Verify that tid and freelist have not been changed
2737 * 3. If they were not changed replace tid and freelist
2738 *
2739 * Since this is without lock semantics the protection is only
2740 * against code executing on this cpu *not* from access by
2741 * other cpus.
2742 */
2743 if (unlikely(!this_cpu_cmpxchg_double(
2744 s->cpu_slab->freelist, s->cpu_slab->tid,
2745 object, tid,
2746 next_object, next_tid(tid)))) {
2747
2748 note_cmpxchg_failure("slab_alloc", s, tid);
2749 goto redo;
2750 }
2751 prefetch_freepointer(s, next_object);
2752 stat(s, ALLOC_FASTPATH);
2753 }
2754
2755 if (unlikely(gfpflags & __GFP_ZERO) && object)
2756 memset(object, 0, s->object_size);
2757
2758 slab_post_alloc_hook(s, gfpflags, 1, &object);
2759
2760 return object;
2761}
2762
2763static __always_inline void *slab_alloc(struct kmem_cache *s,
2764 gfp_t gfpflags, unsigned long addr)
2765{
2766 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2767}
2768
2769void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2770{
2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2772
2773 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2774 s->size, gfpflags);
2775
2776 return ret;
2777}
2778EXPORT_SYMBOL(kmem_cache_alloc);
2779
2780#ifdef CONFIG_TRACING
2781void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2782{
2783 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2784 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2785 ret = kasan_kmalloc(s, ret, size, gfpflags);
2786 return ret;
2787}
2788EXPORT_SYMBOL(kmem_cache_alloc_trace);
2789#endif
2790
2791#ifdef CONFIG_NUMA
2792void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2793{
2794 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2795
2796 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2797 s->object_size, s->size, gfpflags, node);
2798
2799 return ret;
2800}
2801EXPORT_SYMBOL(kmem_cache_alloc_node);
2802
2803#ifdef CONFIG_TRACING
2804void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2805 gfp_t gfpflags,
2806 int node, size_t size)
2807{
2808 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2809
2810 trace_kmalloc_node(_RET_IP_, ret,
2811 size, s->size, gfpflags, node);
2812
2813 ret = kasan_kmalloc(s, ret, size, gfpflags);
2814 return ret;
2815}
2816EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2817#endif
2818#endif
2819
2820/*
2821 * Slow path handling. This may still be called frequently since objects
2822 * have a longer lifetime than the cpu slabs in most processing loads.
2823 *
2824 * So we still attempt to reduce cache line usage. Just take the slab
2825 * lock and free the item. If there is no additional partial page
2826 * handling required then we can return immediately.
2827 */
2828static void __slab_free(struct kmem_cache *s, struct page *page,
2829 void *head, void *tail, int cnt,
2830 unsigned long addr)
2831
2832{
2833 void *prior;
2834 int was_frozen;
2835 struct page new;
2836 unsigned long counters;
2837 struct kmem_cache_node *n = NULL;
2838 unsigned long uninitialized_var(flags);
2839
2840 stat(s, FREE_SLOWPATH);
2841
2842 if (kmem_cache_debug(s) &&
2843 !free_debug_processing(s, page, head, tail, cnt, addr))
2844 return;
2845
2846 do {
2847 if (unlikely(n)) {
2848 spin_unlock_irqrestore(&n->list_lock, flags);
2849 n = NULL;
2850 }
2851 prior = page->freelist;
2852 counters = page->counters;
2853 set_freepointer(s, tail, prior);
2854 new.counters = counters;
2855 was_frozen = new.frozen;
2856 new.inuse -= cnt;
2857 if ((!new.inuse || !prior) && !was_frozen) {
2858
2859 if (kmem_cache_has_cpu_partial(s) && !prior) {
2860
2861 /*
2862 * Slab was on no list before and will be
2863 * partially empty
2864 * We can defer the list move and instead
2865 * freeze it.
2866 */
2867 new.frozen = 1;
2868
2869 } else { /* Needs to be taken off a list */
2870
2871 n = get_node(s, page_to_nid(page));
2872 /*
2873 * Speculatively acquire the list_lock.
2874 * If the cmpxchg does not succeed then we may
2875 * drop the list_lock without any processing.
2876 *
2877 * Otherwise the list_lock will synchronize with
2878 * other processors updating the list of slabs.
2879 */
2880 spin_lock_irqsave(&n->list_lock, flags);
2881
2882 }
2883 }
2884
2885 } while (!cmpxchg_double_slab(s, page,
2886 prior, counters,
2887 head, new.counters,
2888 "__slab_free"));
2889
2890 if (likely(!n)) {
2891
2892 /*
2893 * If we just froze the page then put it onto the
2894 * per cpu partial list.
2895 */
2896 if (new.frozen && !was_frozen) {
2897 put_cpu_partial(s, page, 1);
2898 stat(s, CPU_PARTIAL_FREE);
2899 }
2900 /*
2901 * The list lock was not taken therefore no list
2902 * activity can be necessary.
2903 */
2904 if (was_frozen)
2905 stat(s, FREE_FROZEN);
2906 return;
2907 }
2908
2909 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2910 goto slab_empty;
2911
2912 /*
2913 * Objects left in the slab. If it was not on the partial list before
2914 * then add it.
2915 */
2916 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2917 if (kmem_cache_debug(s))
2918 remove_full(s, n, page);
2919 add_partial(n, page, DEACTIVATE_TO_TAIL);
2920 stat(s, FREE_ADD_PARTIAL);
2921 }
2922 spin_unlock_irqrestore(&n->list_lock, flags);
2923 return;
2924
2925slab_empty:
2926 if (prior) {
2927 /*
2928 * Slab on the partial list.
2929 */
2930 remove_partial(n, page);
2931 stat(s, FREE_REMOVE_PARTIAL);
2932 } else {
2933 /* Slab must be on the full list */
2934 remove_full(s, n, page);
2935 }
2936
2937 spin_unlock_irqrestore(&n->list_lock, flags);
2938 stat(s, FREE_SLAB);
2939 discard_slab(s, page);
2940}
2941
2942/*
2943 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2944 * can perform fastpath freeing without additional function calls.
2945 *
2946 * The fastpath is only possible if we are freeing to the current cpu slab
2947 * of this processor. This typically the case if we have just allocated
2948 * the item before.
2949 *
2950 * If fastpath is not possible then fall back to __slab_free where we deal
2951 * with all sorts of special processing.
2952 *
2953 * Bulk free of a freelist with several objects (all pointing to the
2954 * same page) possible by specifying head and tail ptr, plus objects
2955 * count (cnt). Bulk free indicated by tail pointer being set.
2956 */
2957static __always_inline void do_slab_free(struct kmem_cache *s,
2958 struct page *page, void *head, void *tail,
2959 int cnt, unsigned long addr)
2960{
2961 void *tail_obj = tail ? : head;
2962 struct kmem_cache_cpu *c;
2963 unsigned long tid;
2964redo:
2965 /*
2966 * Determine the currently cpus per cpu slab.
2967 * The cpu may change afterward. However that does not matter since
2968 * data is retrieved via this pointer. If we are on the same cpu
2969 * during the cmpxchg then the free will succeed.
2970 */
2971 do {
2972 tid = this_cpu_read(s->cpu_slab->tid);
2973 c = raw_cpu_ptr(s->cpu_slab);
2974 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2975 unlikely(tid != READ_ONCE(c->tid)));
2976
2977 /* Same with comment on barrier() in slab_alloc_node() */
2978 barrier();
2979
2980 if (likely(page == c->page)) {
2981 set_freepointer(s, tail_obj, c->freelist);
2982
2983 if (unlikely(!this_cpu_cmpxchg_double(
2984 s->cpu_slab->freelist, s->cpu_slab->tid,
2985 c->freelist, tid,
2986 head, next_tid(tid)))) {
2987
2988 note_cmpxchg_failure("slab_free", s, tid);
2989 goto redo;
2990 }
2991 stat(s, FREE_FASTPATH);
2992 } else
2993 __slab_free(s, page, head, tail_obj, cnt, addr);
2994
2995}
2996
2997static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2998 void *head, void *tail, int cnt,
2999 unsigned long addr)
3000{
3001 /*
3002 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3003 * to remove objects, whose reuse must be delayed.
3004 */
3005 if (slab_free_freelist_hook(s, &head, &tail))
3006 do_slab_free(s, page, head, tail, cnt, addr);
3007}
3008
3009#ifdef CONFIG_KASAN_GENERIC
3010void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3011{
3012 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3013}
3014#endif
3015
3016void kmem_cache_free(struct kmem_cache *s, void *x)
3017{
3018 s = cache_from_obj(s, x);
3019 if (!s)
3020 return;
3021 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3022 trace_kmem_cache_free(_RET_IP_, x);
3023}
3024EXPORT_SYMBOL(kmem_cache_free);
3025
3026struct detached_freelist {
3027 struct page *page;
3028 void *tail;
3029 void *freelist;
3030 int cnt;
3031 struct kmem_cache *s;
3032};
3033
3034/*
3035 * This function progressively scans the array with free objects (with
3036 * a limited look ahead) and extract objects belonging to the same
3037 * page. It builds a detached freelist directly within the given
3038 * page/objects. This can happen without any need for
3039 * synchronization, because the objects are owned by running process.
3040 * The freelist is build up as a single linked list in the objects.
3041 * The idea is, that this detached freelist can then be bulk
3042 * transferred to the real freelist(s), but only requiring a single
3043 * synchronization primitive. Look ahead in the array is limited due
3044 * to performance reasons.
3045 */
3046static inline
3047int build_detached_freelist(struct kmem_cache *s, size_t size,
3048 void **p, struct detached_freelist *df)
3049{
3050 size_t first_skipped_index = 0;
3051 int lookahead = 3;
3052 void *object;
3053 struct page *page;
3054
3055 /* Always re-init detached_freelist */
3056 df->page = NULL;
3057
3058 do {
3059 object = p[--size];
3060 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3061 } while (!object && size);
3062
3063 if (!object)
3064 return 0;
3065
3066 page = virt_to_head_page(object);
3067 if (!s) {
3068 /* Handle kalloc'ed objects */
3069 if (unlikely(!PageSlab(page))) {
3070 BUG_ON(!PageCompound(page));
3071 kfree_hook(object);
3072 __free_pages(page, compound_order(page));
3073 p[size] = NULL; /* mark object processed */
3074 return size;
3075 }
3076 /* Derive kmem_cache from object */
3077 df->s = page->slab_cache;
3078 } else {
3079 df->s = cache_from_obj(s, object); /* Support for memcg */
3080 }
3081
3082 /* Start new detached freelist */
3083 df->page = page;
3084 set_freepointer(df->s, object, NULL);
3085 df->tail = object;
3086 df->freelist = object;
3087 p[size] = NULL; /* mark object processed */
3088 df->cnt = 1;
3089
3090 while (size) {
3091 object = p[--size];
3092 if (!object)
3093 continue; /* Skip processed objects */
3094
3095 /* df->page is always set at this point */
3096 if (df->page == virt_to_head_page(object)) {
3097 /* Opportunity build freelist */
3098 set_freepointer(df->s, object, df->freelist);
3099 df->freelist = object;
3100 df->cnt++;
3101 p[size] = NULL; /* mark object processed */
3102
3103 continue;
3104 }
3105
3106 /* Limit look ahead search */
3107 if (!--lookahead)
3108 break;
3109
3110 if (!first_skipped_index)
3111 first_skipped_index = size + 1;
3112 }
3113
3114 return first_skipped_index;
3115}
3116
3117/* Note that interrupts must be enabled when calling this function. */
3118void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3119{
3120 if (WARN_ON(!size))
3121 return;
3122
3123 do {
3124 struct detached_freelist df;
3125
3126 size = build_detached_freelist(s, size, p, &df);
3127 if (!df.page)
3128 continue;
3129
3130 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3131 } while (likely(size));
3132}
3133EXPORT_SYMBOL(kmem_cache_free_bulk);
3134
3135/* Note that interrupts must be enabled when calling this function. */
3136int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3137 void **p)
3138{
3139 struct kmem_cache_cpu *c;
3140 int i;
3141
3142 /* memcg and kmem_cache debug support */
3143 s = slab_pre_alloc_hook(s, flags);
3144 if (unlikely(!s))
3145 return false;
3146 /*
3147 * Drain objects in the per cpu slab, while disabling local
3148 * IRQs, which protects against PREEMPT and interrupts
3149 * handlers invoking normal fastpath.
3150 */
3151 local_irq_disable();
3152 c = this_cpu_ptr(s->cpu_slab);
3153
3154 for (i = 0; i < size; i++) {
3155 void *object = c->freelist;
3156
3157 if (unlikely(!object)) {
3158 /*
3159 * Invoking slow path likely have side-effect
3160 * of re-populating per CPU c->freelist
3161 */
3162 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3163 _RET_IP_, c);
3164 if (unlikely(!p[i]))
3165 goto error;
3166
3167 c = this_cpu_ptr(s->cpu_slab);
3168 continue; /* goto for-loop */
3169 }
3170 c->freelist = get_freepointer(s, object);
3171 p[i] = object;
3172 }
3173 c->tid = next_tid(c->tid);
3174 local_irq_enable();
3175
3176 /* Clear memory outside IRQ disabled fastpath loop */
3177 if (unlikely(flags & __GFP_ZERO)) {
3178 int j;
3179
3180 for (j = 0; j < i; j++)
3181 memset(p[j], 0, s->object_size);
3182 }
3183
3184 /* memcg and kmem_cache debug support */
3185 slab_post_alloc_hook(s, flags, size, p);
3186 return i;
3187error:
3188 local_irq_enable();
3189 slab_post_alloc_hook(s, flags, i, p);
3190 __kmem_cache_free_bulk(s, i, p);
3191 return 0;
3192}
3193EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3194
3195
3196/*
3197 * Object placement in a slab is made very easy because we always start at
3198 * offset 0. If we tune the size of the object to the alignment then we can
3199 * get the required alignment by putting one properly sized object after
3200 * another.
3201 *
3202 * Notice that the allocation order determines the sizes of the per cpu
3203 * caches. Each processor has always one slab available for allocations.
3204 * Increasing the allocation order reduces the number of times that slabs
3205 * must be moved on and off the partial lists and is therefore a factor in
3206 * locking overhead.
3207 */
3208
3209/*
3210 * Mininum / Maximum order of slab pages. This influences locking overhead
3211 * and slab fragmentation. A higher order reduces the number of partial slabs
3212 * and increases the number of allocations possible without having to
3213 * take the list_lock.
3214 */
3215static unsigned int slub_min_order;
3216static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3217static unsigned int slub_min_objects;
3218
3219/*
3220 * Calculate the order of allocation given an slab object size.
3221 *
3222 * The order of allocation has significant impact on performance and other
3223 * system components. Generally order 0 allocations should be preferred since
3224 * order 0 does not cause fragmentation in the page allocator. Larger objects
3225 * be problematic to put into order 0 slabs because there may be too much
3226 * unused space left. We go to a higher order if more than 1/16th of the slab
3227 * would be wasted.
3228 *
3229 * In order to reach satisfactory performance we must ensure that a minimum
3230 * number of objects is in one slab. Otherwise we may generate too much
3231 * activity on the partial lists which requires taking the list_lock. This is
3232 * less a concern for large slabs though which are rarely used.
3233 *
3234 * slub_max_order specifies the order where we begin to stop considering the
3235 * number of objects in a slab as critical. If we reach slub_max_order then
3236 * we try to keep the page order as low as possible. So we accept more waste
3237 * of space in favor of a small page order.
3238 *
3239 * Higher order allocations also allow the placement of more objects in a
3240 * slab and thereby reduce object handling overhead. If the user has
3241 * requested a higher mininum order then we start with that one instead of
3242 * the smallest order which will fit the object.
3243 */
3244static inline unsigned int slab_order(unsigned int size,
3245 unsigned int min_objects, unsigned int max_order,
3246 unsigned int fract_leftover)
3247{
3248 unsigned int min_order = slub_min_order;
3249 unsigned int order;
3250
3251 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3252 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3253
3254 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3255 order <= max_order; order++) {
3256
3257 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3258 unsigned int rem;
3259
3260 rem = slab_size % size;
3261
3262 if (rem <= slab_size / fract_leftover)
3263 break;
3264 }
3265
3266 return order;
3267}
3268
3269static inline int calculate_order(unsigned int size)
3270{
3271 unsigned int order;
3272 unsigned int min_objects;
3273 unsigned int max_objects;
3274
3275 /*
3276 * Attempt to find best configuration for a slab. This
3277 * works by first attempting to generate a layout with
3278 * the best configuration and backing off gradually.
3279 *
3280 * First we increase the acceptable waste in a slab. Then
3281 * we reduce the minimum objects required in a slab.
3282 */
3283 min_objects = slub_min_objects;
3284 if (!min_objects)
3285 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3286 max_objects = order_objects(slub_max_order, size);
3287 min_objects = min(min_objects, max_objects);
3288
3289 while (min_objects > 1) {
3290 unsigned int fraction;
3291
3292 fraction = 16;
3293 while (fraction >= 4) {
3294 order = slab_order(size, min_objects,
3295 slub_max_order, fraction);
3296 if (order <= slub_max_order)
3297 return order;
3298 fraction /= 2;
3299 }
3300 min_objects--;
3301 }
3302
3303 /*
3304 * We were unable to place multiple objects in a slab. Now
3305 * lets see if we can place a single object there.
3306 */
3307 order = slab_order(size, 1, slub_max_order, 1);
3308 if (order <= slub_max_order)
3309 return order;
3310
3311 /*
3312 * Doh this slab cannot be placed using slub_max_order.
3313 */
3314 order = slab_order(size, 1, MAX_ORDER, 1);
3315 if (order < MAX_ORDER)
3316 return order;
3317 return -ENOSYS;
3318}
3319
3320static void
3321init_kmem_cache_node(struct kmem_cache_node *n)
3322{
3323 n->nr_partial = 0;
3324 spin_lock_init(&n->list_lock);
3325 INIT_LIST_HEAD(&n->partial);
3326#ifdef CONFIG_SLUB_DEBUG
3327 atomic_long_set(&n->nr_slabs, 0);
3328 atomic_long_set(&n->total_objects, 0);
3329 INIT_LIST_HEAD(&n->full);
3330#endif
3331}
3332
3333static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3334{
3335 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3336 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3337
3338 /*
3339 * Must align to double word boundary for the double cmpxchg
3340 * instructions to work; see __pcpu_double_call_return_bool().
3341 */
3342 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3343 2 * sizeof(void *));
3344
3345 if (!s->cpu_slab)
3346 return 0;
3347
3348 init_kmem_cache_cpus(s);
3349
3350 return 1;
3351}
3352
3353static struct kmem_cache *kmem_cache_node;
3354
3355/*
3356 * No kmalloc_node yet so do it by hand. We know that this is the first
3357 * slab on the node for this slabcache. There are no concurrent accesses
3358 * possible.
3359 *
3360 * Note that this function only works on the kmem_cache_node
3361 * when allocating for the kmem_cache_node. This is used for bootstrapping
3362 * memory on a fresh node that has no slab structures yet.
3363 */
3364static void early_kmem_cache_node_alloc(int node)
3365{
3366 struct page *page;
3367 struct kmem_cache_node *n;
3368
3369 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3370
3371 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3372
3373 BUG_ON(!page);
3374 if (page_to_nid(page) != node) {
3375 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3376 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3377 }
3378
3379 n = page->freelist;
3380 BUG_ON(!n);
3381#ifdef CONFIG_SLUB_DEBUG
3382 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3383 init_tracking(kmem_cache_node, n);
3384#endif
3385 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3386 GFP_KERNEL);
3387 page->freelist = get_freepointer(kmem_cache_node, n);
3388 page->inuse = 1;
3389 page->frozen = 0;
3390 kmem_cache_node->node[node] = n;
3391 init_kmem_cache_node(n);
3392 inc_slabs_node(kmem_cache_node, node, page->objects);
3393
3394 /*
3395 * No locks need to be taken here as it has just been
3396 * initialized and there is no concurrent access.
3397 */
3398 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3399}
3400
3401static void free_kmem_cache_nodes(struct kmem_cache *s)
3402{
3403 int node;
3404 struct kmem_cache_node *n;
3405
3406 for_each_kmem_cache_node(s, node, n) {
3407 s->node[node] = NULL;
3408 kmem_cache_free(kmem_cache_node, n);
3409 }
3410}
3411
3412void __kmem_cache_release(struct kmem_cache *s)
3413{
3414 cache_random_seq_destroy(s);
3415 free_percpu(s->cpu_slab);
3416 free_kmem_cache_nodes(s);
3417}
3418
3419static int init_kmem_cache_nodes(struct kmem_cache *s)
3420{
3421 int node;
3422
3423 for_each_node_state(node, N_NORMAL_MEMORY) {
3424 struct kmem_cache_node *n;
3425
3426 if (slab_state == DOWN) {
3427 early_kmem_cache_node_alloc(node);
3428 continue;
3429 }
3430 n = kmem_cache_alloc_node(kmem_cache_node,
3431 GFP_KERNEL, node);
3432
3433 if (!n) {
3434 free_kmem_cache_nodes(s);
3435 return 0;
3436 }
3437
3438 init_kmem_cache_node(n);
3439 s->node[node] = n;
3440 }
3441 return 1;
3442}
3443
3444static void set_min_partial(struct kmem_cache *s, unsigned long min)
3445{
3446 if (min < MIN_PARTIAL)
3447 min = MIN_PARTIAL;
3448 else if (min > MAX_PARTIAL)
3449 min = MAX_PARTIAL;
3450 s->min_partial = min;
3451}
3452
3453static void set_cpu_partial(struct kmem_cache *s)
3454{
3455#ifdef CONFIG_SLUB_CPU_PARTIAL
3456 /*
3457 * cpu_partial determined the maximum number of objects kept in the
3458 * per cpu partial lists of a processor.
3459 *
3460 * Per cpu partial lists mainly contain slabs that just have one
3461 * object freed. If they are used for allocation then they can be
3462 * filled up again with minimal effort. The slab will never hit the
3463 * per node partial lists and therefore no locking will be required.
3464 *
3465 * This setting also determines
3466 *
3467 * A) The number of objects from per cpu partial slabs dumped to the
3468 * per node list when we reach the limit.
3469 * B) The number of objects in cpu partial slabs to extract from the
3470 * per node list when we run out of per cpu objects. We only fetch
3471 * 50% to keep some capacity around for frees.
3472 */
3473 if (!kmem_cache_has_cpu_partial(s))
3474 s->cpu_partial = 0;
3475 else if (s->size >= PAGE_SIZE)
3476 s->cpu_partial = 2;
3477 else if (s->size >= 1024)
3478 s->cpu_partial = 6;
3479 else if (s->size >= 256)
3480 s->cpu_partial = 13;
3481 else
3482 s->cpu_partial = 30;
3483#endif
3484}
3485
3486/*
3487 * calculate_sizes() determines the order and the distribution of data within
3488 * a slab object.
3489 */
3490static int calculate_sizes(struct kmem_cache *s, int forced_order)
3491{
3492 slab_flags_t flags = s->flags;
3493 unsigned int size = s->object_size;
3494 unsigned int order;
3495
3496 /*
3497 * Round up object size to the next word boundary. We can only
3498 * place the free pointer at word boundaries and this determines
3499 * the possible location of the free pointer.
3500 */
3501 size = ALIGN(size, sizeof(void *));
3502
3503#ifdef CONFIG_SLUB_DEBUG
3504 /*
3505 * Determine if we can poison the object itself. If the user of
3506 * the slab may touch the object after free or before allocation
3507 * then we should never poison the object itself.
3508 */
3509 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3510 !s->ctor)
3511 s->flags |= __OBJECT_POISON;
3512 else
3513 s->flags &= ~__OBJECT_POISON;
3514
3515
3516 /*
3517 * If we are Redzoning then check if there is some space between the
3518 * end of the object and the free pointer. If not then add an
3519 * additional word to have some bytes to store Redzone information.
3520 */
3521 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3522 size += sizeof(void *);
3523#endif
3524
3525 /*
3526 * With that we have determined the number of bytes in actual use
3527 * by the object. This is the potential offset to the free pointer.
3528 */
3529 s->inuse = size;
3530
3531 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3532 s->ctor)) {
3533 /*
3534 * Relocate free pointer after the object if it is not
3535 * permitted to overwrite the first word of the object on
3536 * kmem_cache_free.
3537 *
3538 * This is the case if we do RCU, have a constructor or
3539 * destructor or are poisoning the objects.
3540 */
3541 s->offset = size;
3542 size += sizeof(void *);
3543 }
3544
3545#ifdef CONFIG_SLUB_DEBUG
3546 if (flags & SLAB_STORE_USER)
3547 /*
3548 * Need to store information about allocs and frees after
3549 * the object.
3550 */
3551 size += 2 * sizeof(struct track);
3552#endif
3553
3554 kasan_cache_create(s, &size, &s->flags);
3555#ifdef CONFIG_SLUB_DEBUG
3556 if (flags & SLAB_RED_ZONE) {
3557 /*
3558 * Add some empty padding so that we can catch
3559 * overwrites from earlier objects rather than let
3560 * tracking information or the free pointer be
3561 * corrupted if a user writes before the start
3562 * of the object.
3563 */
3564 size += sizeof(void *);
3565
3566 s->red_left_pad = sizeof(void *);
3567 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3568 size += s->red_left_pad;
3569 }
3570#endif
3571
3572 /*
3573 * SLUB stores one object immediately after another beginning from
3574 * offset 0. In order to align the objects we have to simply size
3575 * each object to conform to the alignment.
3576 */
3577 size = ALIGN(size, s->align);
3578 s->size = size;
3579 if (forced_order >= 0)
3580 order = forced_order;
3581 else
3582 order = calculate_order(size);
3583
3584 if ((int)order < 0)
3585 return 0;
3586
3587 s->allocflags = 0;
3588 if (order)
3589 s->allocflags |= __GFP_COMP;
3590
3591 if (s->flags & SLAB_CACHE_DMA)
3592 s->allocflags |= GFP_DMA;
3593
3594 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3595 s->allocflags |= __GFP_RECLAIMABLE;
3596
3597 /*
3598 * Determine the number of objects per slab
3599 */
3600 s->oo = oo_make(order, size);
3601 s->min = oo_make(get_order(size), size);
3602 if (oo_objects(s->oo) > oo_objects(s->max))
3603 s->max = s->oo;
3604
3605 return !!oo_objects(s->oo);
3606}
3607
3608static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3609{
3610 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3611#ifdef CONFIG_SLAB_FREELIST_HARDENED
3612 s->random = get_random_long();
3613#endif
3614
3615 if (!calculate_sizes(s, -1))
3616 goto error;
3617 if (disable_higher_order_debug) {
3618 /*
3619 * Disable debugging flags that store metadata if the min slab
3620 * order increased.
3621 */
3622 if (get_order(s->size) > get_order(s->object_size)) {
3623 s->flags &= ~DEBUG_METADATA_FLAGS;
3624 s->offset = 0;
3625 if (!calculate_sizes(s, -1))
3626 goto error;
3627 }
3628 }
3629
3630#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3631 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3632 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3633 /* Enable fast mode */
3634 s->flags |= __CMPXCHG_DOUBLE;
3635#endif
3636
3637 /*
3638 * The larger the object size is, the more pages we want on the partial
3639 * list to avoid pounding the page allocator excessively.
3640 */
3641 set_min_partial(s, ilog2(s->size) / 2);
3642
3643 set_cpu_partial(s);
3644
3645#ifdef CONFIG_NUMA
3646 s->remote_node_defrag_ratio = 1000;
3647#endif
3648
3649 /* Initialize the pre-computed randomized freelist if slab is up */
3650 if (slab_state >= UP) {
3651 if (init_cache_random_seq(s))
3652 goto error;
3653 }
3654
3655 if (!init_kmem_cache_nodes(s))
3656 goto error;
3657
3658 if (alloc_kmem_cache_cpus(s))
3659 return 0;
3660
3661 free_kmem_cache_nodes(s);
3662error:
3663 if (flags & SLAB_PANIC)
3664 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3665 s->name, s->size, s->size,
3666 oo_order(s->oo), s->offset, (unsigned long)flags);
3667 return -EINVAL;
3668}
3669
3670static void list_slab_objects(struct kmem_cache *s, struct page *page,
3671 const char *text)
3672{
3673#ifdef CONFIG_SLUB_DEBUG
3674 void *addr = page_address(page);
3675 void *p;
3676 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3677 if (!map)
3678 return;
3679 slab_err(s, page, text, s->name);
3680 slab_lock(page);
3681
3682 get_map(s, page, map);
3683 for_each_object(p, s, addr, page->objects) {
3684
3685 if (!test_bit(slab_index(p, s, addr), map)) {
3686 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3687 print_tracking(s, p);
3688 }
3689 }
3690 slab_unlock(page);
3691 bitmap_free(map);
3692#endif
3693}
3694
3695/*
3696 * Attempt to free all partial slabs on a node.
3697 * This is called from __kmem_cache_shutdown(). We must take list_lock
3698 * because sysfs file might still access partial list after the shutdowning.
3699 */
3700static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3701{
3702 LIST_HEAD(discard);
3703 struct page *page, *h;
3704
3705 BUG_ON(irqs_disabled());
3706 spin_lock_irq(&n->list_lock);
3707 list_for_each_entry_safe(page, h, &n->partial, lru) {
3708 if (!page->inuse) {
3709 remove_partial(n, page);
3710 list_add(&page->lru, &discard);
3711 } else {
3712 list_slab_objects(s, page,
3713 "Objects remaining in %s on __kmem_cache_shutdown()");
3714 }
3715 }
3716 spin_unlock_irq(&n->list_lock);
3717
3718 list_for_each_entry_safe(page, h, &discard, lru)
3719 discard_slab(s, page);
3720}
3721
3722bool __kmem_cache_empty(struct kmem_cache *s)
3723{
3724 int node;
3725 struct kmem_cache_node *n;
3726
3727 for_each_kmem_cache_node(s, node, n)
3728 if (n->nr_partial || slabs_node(s, node))
3729 return false;
3730 return true;
3731}
3732
3733/*
3734 * Release all resources used by a slab cache.
3735 */
3736int __kmem_cache_shutdown(struct kmem_cache *s)
3737{
3738 int node;
3739 struct kmem_cache_node *n;
3740
3741 flush_all(s);
3742 /* Attempt to free all objects */
3743 for_each_kmem_cache_node(s, node, n) {
3744 free_partial(s, n);
3745 if (n->nr_partial || slabs_node(s, node))
3746 return 1;
3747 }
3748 sysfs_slab_remove(s);
3749 return 0;
3750}
3751
3752/********************************************************************
3753 * Kmalloc subsystem
3754 *******************************************************************/
3755
3756static int __init setup_slub_min_order(char *str)
3757{
3758 get_option(&str, (int *)&slub_min_order);
3759
3760 return 1;
3761}
3762
3763__setup("slub_min_order=", setup_slub_min_order);
3764
3765static int __init setup_slub_max_order(char *str)
3766{
3767 get_option(&str, (int *)&slub_max_order);
3768 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3769
3770 return 1;
3771}
3772
3773__setup("slub_max_order=", setup_slub_max_order);
3774
3775static int __init setup_slub_min_objects(char *str)
3776{
3777 get_option(&str, (int *)&slub_min_objects);
3778
3779 return 1;
3780}
3781
3782__setup("slub_min_objects=", setup_slub_min_objects);
3783
3784void *__kmalloc(size_t size, gfp_t flags)
3785{
3786 struct kmem_cache *s;
3787 void *ret;
3788
3789 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3790 return kmalloc_large(size, flags);
3791
3792 s = kmalloc_slab(size, flags);
3793
3794 if (unlikely(ZERO_OR_NULL_PTR(s)))
3795 return s;
3796
3797 ret = slab_alloc(s, flags, _RET_IP_);
3798
3799 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3800
3801 ret = kasan_kmalloc(s, ret, size, flags);
3802
3803 return ret;
3804}
3805EXPORT_SYMBOL(__kmalloc);
3806
3807#ifdef CONFIG_NUMA
3808static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3809{
3810 struct page *page;
3811 void *ptr = NULL;
3812
3813 flags |= __GFP_COMP;
3814 page = alloc_pages_node(node, flags, get_order(size));
3815 if (page)
3816 ptr = page_address(page);
3817
3818 return kmalloc_large_node_hook(ptr, size, flags);
3819}
3820
3821void *__kmalloc_node(size_t size, gfp_t flags, int node)
3822{
3823 struct kmem_cache *s;
3824 void *ret;
3825
3826 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3827 ret = kmalloc_large_node(size, flags, node);
3828
3829 trace_kmalloc_node(_RET_IP_, ret,
3830 size, PAGE_SIZE << get_order(size),
3831 flags, node);
3832
3833 return ret;
3834 }
3835
3836 s = kmalloc_slab(size, flags);
3837
3838 if (unlikely(ZERO_OR_NULL_PTR(s)))
3839 return s;
3840
3841 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3842
3843 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3844
3845 ret = kasan_kmalloc(s, ret, size, flags);
3846
3847 return ret;
3848}
3849EXPORT_SYMBOL(__kmalloc_node);
3850#endif
3851
3852#ifdef CONFIG_HARDENED_USERCOPY
3853/*
3854 * Rejects incorrectly sized objects and objects that are to be copied
3855 * to/from userspace but do not fall entirely within the containing slab
3856 * cache's usercopy region.
3857 *
3858 * Returns NULL if check passes, otherwise const char * to name of cache
3859 * to indicate an error.
3860 */
3861void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3862 bool to_user)
3863{
3864 struct kmem_cache *s;
3865 unsigned int offset;
3866 size_t object_size;
3867
3868 ptr = kasan_reset_tag(ptr);
3869
3870 /* Find object and usable object size. */
3871 s = page->slab_cache;
3872
3873 /* Reject impossible pointers. */
3874 if (ptr < page_address(page))
3875 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3876 to_user, 0, n);
3877
3878 /* Find offset within object. */
3879 offset = (ptr - page_address(page)) % s->size;
3880
3881 /* Adjust for redzone and reject if within the redzone. */
3882 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3883 if (offset < s->red_left_pad)
3884 usercopy_abort("SLUB object in left red zone",
3885 s->name, to_user, offset, n);
3886 offset -= s->red_left_pad;
3887 }
3888
3889 /* Allow address range falling entirely within usercopy region. */
3890 if (offset >= s->useroffset &&
3891 offset - s->useroffset <= s->usersize &&
3892 n <= s->useroffset - offset + s->usersize)
3893 return;
3894
3895 /*
3896 * If the copy is still within the allocated object, produce
3897 * a warning instead of rejecting the copy. This is intended
3898 * to be a temporary method to find any missing usercopy
3899 * whitelists.
3900 */
3901 object_size = slab_ksize(s);
3902 if (usercopy_fallback &&
3903 offset <= object_size && n <= object_size - offset) {
3904 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3905 return;
3906 }
3907
3908 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3909}
3910#endif /* CONFIG_HARDENED_USERCOPY */
3911
3912static size_t __ksize(const void *object)
3913{
3914 struct page *page;
3915
3916 if (unlikely(object == ZERO_SIZE_PTR))
3917 return 0;
3918
3919 page = virt_to_head_page(object);
3920
3921 if (unlikely(!PageSlab(page))) {
3922 WARN_ON(!PageCompound(page));
3923 return PAGE_SIZE << compound_order(page);
3924 }
3925
3926 return slab_ksize(page->slab_cache);
3927}
3928
3929size_t ksize(const void *object)
3930{
3931 size_t size = __ksize(object);
3932 /* We assume that ksize callers could use whole allocated area,
3933 * so we need to unpoison this area.
3934 */
3935 kasan_unpoison_shadow(object, size);
3936 return size;
3937}
3938EXPORT_SYMBOL(ksize);
3939
3940void kfree(const void *x)
3941{
3942 struct page *page;
3943 void *object = (void *)x;
3944
3945 trace_kfree(_RET_IP_, x);
3946
3947 if (unlikely(ZERO_OR_NULL_PTR(x)))
3948 return;
3949
3950 page = virt_to_head_page(x);
3951 if (unlikely(!PageSlab(page))) {
3952 BUG_ON(!PageCompound(page));
3953 kfree_hook(object);
3954 __free_pages(page, compound_order(page));
3955 return;
3956 }
3957 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3958}
3959EXPORT_SYMBOL(kfree);
3960
3961#define SHRINK_PROMOTE_MAX 32
3962
3963/*
3964 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3965 * up most to the head of the partial lists. New allocations will then
3966 * fill those up and thus they can be removed from the partial lists.
3967 *
3968 * The slabs with the least items are placed last. This results in them
3969 * being allocated from last increasing the chance that the last objects
3970 * are freed in them.
3971 */
3972int __kmem_cache_shrink(struct kmem_cache *s)
3973{
3974 int node;
3975 int i;
3976 struct kmem_cache_node *n;
3977 struct page *page;
3978 struct page *t;
3979 struct list_head discard;
3980 struct list_head promote[SHRINK_PROMOTE_MAX];
3981 unsigned long flags;
3982 int ret = 0;
3983
3984 flush_all(s);
3985 for_each_kmem_cache_node(s, node, n) {
3986 INIT_LIST_HEAD(&discard);
3987 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3988 INIT_LIST_HEAD(promote + i);
3989
3990 spin_lock_irqsave(&n->list_lock, flags);
3991
3992 /*
3993 * Build lists of slabs to discard or promote.
3994 *
3995 * Note that concurrent frees may occur while we hold the
3996 * list_lock. page->inuse here is the upper limit.
3997 */
3998 list_for_each_entry_safe(page, t, &n->partial, lru) {
3999 int free = page->objects - page->inuse;
4000
4001 /* Do not reread page->inuse */
4002 barrier();
4003
4004 /* We do not keep full slabs on the list */
4005 BUG_ON(free <= 0);
4006
4007 if (free == page->objects) {
4008 list_move(&page->lru, &discard);
4009 n->nr_partial--;
4010 } else if (free <= SHRINK_PROMOTE_MAX)
4011 list_move(&page->lru, promote + free - 1);
4012 }
4013
4014 /*
4015 * Promote the slabs filled up most to the head of the
4016 * partial list.
4017 */
4018 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4019 list_splice(promote + i, &n->partial);
4020
4021 spin_unlock_irqrestore(&n->list_lock, flags);
4022
4023 /* Release empty slabs */
4024 list_for_each_entry_safe(page, t, &discard, lru)
4025 discard_slab(s, page);
4026
4027 if (slabs_node(s, node))
4028 ret = 1;
4029 }
4030
4031 return ret;
4032}
4033
4034#ifdef CONFIG_MEMCG
4035static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4036{
4037 /*
4038 * Called with all the locks held after a sched RCU grace period.
4039 * Even if @s becomes empty after shrinking, we can't know that @s
4040 * doesn't have allocations already in-flight and thus can't
4041 * destroy @s until the associated memcg is released.
4042 *
4043 * However, let's remove the sysfs files for empty caches here.
4044 * Each cache has a lot of interface files which aren't
4045 * particularly useful for empty draining caches; otherwise, we can
4046 * easily end up with millions of unnecessary sysfs files on
4047 * systems which have a lot of memory and transient cgroups.
4048 */
4049 if (!__kmem_cache_shrink(s))
4050 sysfs_slab_remove(s);
4051}
4052
4053void __kmemcg_cache_deactivate(struct kmem_cache *s)
4054{
4055 /*
4056 * Disable empty slabs caching. Used to avoid pinning offline
4057 * memory cgroups by kmem pages that can be freed.
4058 */
4059 slub_set_cpu_partial(s, 0);
4060 s->min_partial = 0;
4061
4062 /*
4063 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4064 * we have to make sure the change is visible before shrinking.
4065 */
4066 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4067}
4068#endif
4069
4070static int slab_mem_going_offline_callback(void *arg)
4071{
4072 struct kmem_cache *s;
4073
4074 mutex_lock(&slab_mutex);
4075 list_for_each_entry(s, &slab_caches, list)
4076 __kmem_cache_shrink(s);
4077 mutex_unlock(&slab_mutex);
4078
4079 return 0;
4080}
4081
4082static void slab_mem_offline_callback(void *arg)
4083{
4084 struct kmem_cache_node *n;
4085 struct kmem_cache *s;
4086 struct memory_notify *marg = arg;
4087 int offline_node;
4088
4089 offline_node = marg->status_change_nid_normal;
4090
4091 /*
4092 * If the node still has available memory. we need kmem_cache_node
4093 * for it yet.
4094 */
4095 if (offline_node < 0)
4096 return;
4097
4098 mutex_lock(&slab_mutex);
4099 list_for_each_entry(s, &slab_caches, list) {
4100 n = get_node(s, offline_node);
4101 if (n) {
4102 /*
4103 * if n->nr_slabs > 0, slabs still exist on the node
4104 * that is going down. We were unable to free them,
4105 * and offline_pages() function shouldn't call this
4106 * callback. So, we must fail.
4107 */
4108 BUG_ON(slabs_node(s, offline_node));
4109
4110 s->node[offline_node] = NULL;
4111 kmem_cache_free(kmem_cache_node, n);
4112 }
4113 }
4114 mutex_unlock(&slab_mutex);
4115}
4116
4117static int slab_mem_going_online_callback(void *arg)
4118{
4119 struct kmem_cache_node *n;
4120 struct kmem_cache *s;
4121 struct memory_notify *marg = arg;
4122 int nid = marg->status_change_nid_normal;
4123 int ret = 0;
4124
4125 /*
4126 * If the node's memory is already available, then kmem_cache_node is
4127 * already created. Nothing to do.
4128 */
4129 if (nid < 0)
4130 return 0;
4131
4132 /*
4133 * We are bringing a node online. No memory is available yet. We must
4134 * allocate a kmem_cache_node structure in order to bring the node
4135 * online.
4136 */
4137 mutex_lock(&slab_mutex);
4138 list_for_each_entry(s, &slab_caches, list) {
4139 /*
4140 * XXX: kmem_cache_alloc_node will fallback to other nodes
4141 * since memory is not yet available from the node that
4142 * is brought up.
4143 */
4144 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4145 if (!n) {
4146 ret = -ENOMEM;
4147 goto out;
4148 }
4149 init_kmem_cache_node(n);
4150 s->node[nid] = n;
4151 }
4152out:
4153 mutex_unlock(&slab_mutex);
4154 return ret;
4155}
4156
4157static int slab_memory_callback(struct notifier_block *self,
4158 unsigned long action, void *arg)
4159{
4160 int ret = 0;
4161
4162 switch (action) {
4163 case MEM_GOING_ONLINE:
4164 ret = slab_mem_going_online_callback(arg);
4165 break;
4166 case MEM_GOING_OFFLINE:
4167 ret = slab_mem_going_offline_callback(arg);
4168 break;
4169 case MEM_OFFLINE:
4170 case MEM_CANCEL_ONLINE:
4171 slab_mem_offline_callback(arg);
4172 break;
4173 case MEM_ONLINE:
4174 case MEM_CANCEL_OFFLINE:
4175 break;
4176 }
4177 if (ret)
4178 ret = notifier_from_errno(ret);
4179 else
4180 ret = NOTIFY_OK;
4181 return ret;
4182}
4183
4184static struct notifier_block slab_memory_callback_nb = {
4185 .notifier_call = slab_memory_callback,
4186 .priority = SLAB_CALLBACK_PRI,
4187};
4188
4189/********************************************************************
4190 * Basic setup of slabs
4191 *******************************************************************/
4192
4193/*
4194 * Used for early kmem_cache structures that were allocated using
4195 * the page allocator. Allocate them properly then fix up the pointers
4196 * that may be pointing to the wrong kmem_cache structure.
4197 */
4198
4199static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4200{
4201 int node;
4202 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4203 struct kmem_cache_node *n;
4204
4205 memcpy(s, static_cache, kmem_cache->object_size);
4206
4207 /*
4208 * This runs very early, and only the boot processor is supposed to be
4209 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4210 * IPIs around.
4211 */
4212 __flush_cpu_slab(s, smp_processor_id());
4213 for_each_kmem_cache_node(s, node, n) {
4214 struct page *p;
4215
4216 list_for_each_entry(p, &n->partial, lru)
4217 p->slab_cache = s;
4218
4219#ifdef CONFIG_SLUB_DEBUG
4220 list_for_each_entry(p, &n->full, lru)
4221 p->slab_cache = s;
4222#endif
4223 }
4224 slab_init_memcg_params(s);
4225 list_add(&s->list, &slab_caches);
4226 memcg_link_cache(s);
4227 return s;
4228}
4229
4230void __init kmem_cache_init(void)
4231{
4232 static __initdata struct kmem_cache boot_kmem_cache,
4233 boot_kmem_cache_node;
4234
4235 if (debug_guardpage_minorder())
4236 slub_max_order = 0;
4237
4238 kmem_cache_node = &boot_kmem_cache_node;
4239 kmem_cache = &boot_kmem_cache;
4240
4241 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4242 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4243
4244 register_hotmemory_notifier(&slab_memory_callback_nb);
4245
4246 /* Able to allocate the per node structures */
4247 slab_state = PARTIAL;
4248
4249 create_boot_cache(kmem_cache, "kmem_cache",
4250 offsetof(struct kmem_cache, node) +
4251 nr_node_ids * sizeof(struct kmem_cache_node *),
4252 SLAB_HWCACHE_ALIGN, 0, 0);
4253
4254 kmem_cache = bootstrap(&boot_kmem_cache);
4255 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4256
4257 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4258 setup_kmalloc_cache_index_table();
4259 create_kmalloc_caches(0);
4260
4261 /* Setup random freelists for each cache */
4262 init_freelist_randomization();
4263
4264 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4265 slub_cpu_dead);
4266
4267 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4268 cache_line_size(),
4269 slub_min_order, slub_max_order, slub_min_objects,
4270 nr_cpu_ids, nr_node_ids);
4271}
4272
4273void __init kmem_cache_init_late(void)
4274{
4275}
4276
4277struct kmem_cache *
4278__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4279 slab_flags_t flags, void (*ctor)(void *))
4280{
4281 struct kmem_cache *s, *c;
4282
4283 s = find_mergeable(size, align, flags, name, ctor);
4284 if (s) {
4285 s->refcount++;
4286
4287 /*
4288 * Adjust the object sizes so that we clear
4289 * the complete object on kzalloc.
4290 */
4291 s->object_size = max(s->object_size, size);
4292 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4293
4294 for_each_memcg_cache(c, s) {
4295 c->object_size = s->object_size;
4296 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4297 }
4298
4299 if (sysfs_slab_alias(s, name)) {
4300 s->refcount--;
4301 s = NULL;
4302 }
4303 }
4304
4305 return s;
4306}
4307
4308int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4309{
4310 int err;
4311
4312 err = kmem_cache_open(s, flags);
4313 if (err)
4314 return err;
4315
4316 /* Mutex is not taken during early boot */
4317 if (slab_state <= UP)
4318 return 0;
4319
4320 memcg_propagate_slab_attrs(s);
4321 err = sysfs_slab_add(s);
4322 if (err)
4323 __kmem_cache_release(s);
4324
4325 return err;
4326}
4327
4328void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4329{
4330 struct kmem_cache *s;
4331 void *ret;
4332
4333 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4334 return kmalloc_large(size, gfpflags);
4335
4336 s = kmalloc_slab(size, gfpflags);
4337
4338 if (unlikely(ZERO_OR_NULL_PTR(s)))
4339 return s;
4340
4341 ret = slab_alloc(s, gfpflags, caller);
4342
4343 /* Honor the call site pointer we received. */
4344 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4345
4346 return ret;
4347}
4348
4349#ifdef CONFIG_NUMA
4350void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4351 int node, unsigned long caller)
4352{
4353 struct kmem_cache *s;
4354 void *ret;
4355
4356 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4357 ret = kmalloc_large_node(size, gfpflags, node);
4358
4359 trace_kmalloc_node(caller, ret,
4360 size, PAGE_SIZE << get_order(size),
4361 gfpflags, node);
4362
4363 return ret;
4364 }
4365
4366 s = kmalloc_slab(size, gfpflags);
4367
4368 if (unlikely(ZERO_OR_NULL_PTR(s)))
4369 return s;
4370
4371 ret = slab_alloc_node(s, gfpflags, node, caller);
4372
4373 /* Honor the call site pointer we received. */
4374 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4375
4376 return ret;
4377}
4378#endif
4379
4380#ifdef CONFIG_SYSFS
4381static int count_inuse(struct page *page)
4382{
4383 return page->inuse;
4384}
4385
4386static int count_total(struct page *page)
4387{
4388 return page->objects;
4389}
4390#endif
4391
4392#ifdef CONFIG_SLUB_DEBUG
4393static int validate_slab(struct kmem_cache *s, struct page *page,
4394 unsigned long *map)
4395{
4396 void *p;
4397 void *addr = page_address(page);
4398
4399 if (!check_slab(s, page) ||
4400 !on_freelist(s, page, NULL))
4401 return 0;
4402
4403 /* Now we know that a valid freelist exists */
4404 bitmap_zero(map, page->objects);
4405
4406 get_map(s, page, map);
4407 for_each_object(p, s, addr, page->objects) {
4408 if (test_bit(slab_index(p, s, addr), map))
4409 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4410 return 0;
4411 }
4412
4413 for_each_object(p, s, addr, page->objects)
4414 if (!test_bit(slab_index(p, s, addr), map))
4415 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4416 return 0;
4417 return 1;
4418}
4419
4420static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4421 unsigned long *map)
4422{
4423 slab_lock(page);
4424 validate_slab(s, page, map);
4425 slab_unlock(page);
4426}
4427
4428static int validate_slab_node(struct kmem_cache *s,
4429 struct kmem_cache_node *n, unsigned long *map)
4430{
4431 unsigned long count = 0;
4432 struct page *page;
4433 unsigned long flags;
4434
4435 spin_lock_irqsave(&n->list_lock, flags);
4436
4437 list_for_each_entry(page, &n->partial, lru) {
4438 validate_slab_slab(s, page, map);
4439 count++;
4440 }
4441 if (count != n->nr_partial)
4442 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4443 s->name, count, n->nr_partial);
4444
4445 if (!(s->flags & SLAB_STORE_USER))
4446 goto out;
4447
4448 list_for_each_entry(page, &n->full, lru) {
4449 validate_slab_slab(s, page, map);
4450 count++;
4451 }
4452 if (count != atomic_long_read(&n->nr_slabs))
4453 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4454 s->name, count, atomic_long_read(&n->nr_slabs));
4455
4456out:
4457 spin_unlock_irqrestore(&n->list_lock, flags);
4458 return count;
4459}
4460
4461static long validate_slab_cache(struct kmem_cache *s)
4462{
4463 int node;
4464 unsigned long count = 0;
4465 struct kmem_cache_node *n;
4466 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4467
4468 if (!map)
4469 return -ENOMEM;
4470
4471 flush_all(s);
4472 for_each_kmem_cache_node(s, node, n)
4473 count += validate_slab_node(s, n, map);
4474 bitmap_free(map);
4475 return count;
4476}
4477/*
4478 * Generate lists of code addresses where slabcache objects are allocated
4479 * and freed.
4480 */
4481
4482struct location {
4483 unsigned long count;
4484 unsigned long addr;
4485 long long sum_time;
4486 long min_time;
4487 long max_time;
4488 long min_pid;
4489 long max_pid;
4490 DECLARE_BITMAP(cpus, NR_CPUS);
4491 nodemask_t nodes;
4492};
4493
4494struct loc_track {
4495 unsigned long max;
4496 unsigned long count;
4497 struct location *loc;
4498};
4499
4500static void free_loc_track(struct loc_track *t)
4501{
4502 if (t->max)
4503 free_pages((unsigned long)t->loc,
4504 get_order(sizeof(struct location) * t->max));
4505}
4506
4507static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4508{
4509 struct location *l;
4510 int order;
4511
4512 order = get_order(sizeof(struct location) * max);
4513
4514 l = (void *)__get_free_pages(flags, order);
4515 if (!l)
4516 return 0;
4517
4518 if (t->count) {
4519 memcpy(l, t->loc, sizeof(struct location) * t->count);
4520 free_loc_track(t);
4521 }
4522 t->max = max;
4523 t->loc = l;
4524 return 1;
4525}
4526
4527static int add_location(struct loc_track *t, struct kmem_cache *s,
4528 const struct track *track)
4529{
4530 long start, end, pos;
4531 struct location *l;
4532 unsigned long caddr;
4533 unsigned long age = jiffies - track->when;
4534
4535 start = -1;
4536 end = t->count;
4537
4538 for ( ; ; ) {
4539 pos = start + (end - start + 1) / 2;
4540
4541 /*
4542 * There is nothing at "end". If we end up there
4543 * we need to add something to before end.
4544 */
4545 if (pos == end)
4546 break;
4547
4548 caddr = t->loc[pos].addr;
4549 if (track->addr == caddr) {
4550
4551 l = &t->loc[pos];
4552 l->count++;
4553 if (track->when) {
4554 l->sum_time += age;
4555 if (age < l->min_time)
4556 l->min_time = age;
4557 if (age > l->max_time)
4558 l->max_time = age;
4559
4560 if (track->pid < l->min_pid)
4561 l->min_pid = track->pid;
4562 if (track->pid > l->max_pid)
4563 l->max_pid = track->pid;
4564
4565 cpumask_set_cpu(track->cpu,
4566 to_cpumask(l->cpus));
4567 }
4568 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4569 return 1;
4570 }
4571
4572 if (track->addr < caddr)
4573 end = pos;
4574 else
4575 start = pos;
4576 }
4577
4578 /*
4579 * Not found. Insert new tracking element.
4580 */
4581 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4582 return 0;
4583
4584 l = t->loc + pos;
4585 if (pos < t->count)
4586 memmove(l + 1, l,
4587 (t->count - pos) * sizeof(struct location));
4588 t->count++;
4589 l->count = 1;
4590 l->addr = track->addr;
4591 l->sum_time = age;
4592 l->min_time = age;
4593 l->max_time = age;
4594 l->min_pid = track->pid;
4595 l->max_pid = track->pid;
4596 cpumask_clear(to_cpumask(l->cpus));
4597 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4598 nodes_clear(l->nodes);
4599 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4600 return 1;
4601}
4602
4603static void process_slab(struct loc_track *t, struct kmem_cache *s,
4604 struct page *page, enum track_item alloc,
4605 unsigned long *map)
4606{
4607 void *addr = page_address(page);
4608 void *p;
4609
4610 bitmap_zero(map, page->objects);
4611 get_map(s, page, map);
4612
4613 for_each_object(p, s, addr, page->objects)
4614 if (!test_bit(slab_index(p, s, addr), map))
4615 add_location(t, s, get_track(s, p, alloc));
4616}
4617
4618static int list_locations(struct kmem_cache *s, char *buf,
4619 enum track_item alloc)
4620{
4621 int len = 0;
4622 unsigned long i;
4623 struct loc_track t = { 0, 0, NULL };
4624 int node;
4625 struct kmem_cache_node *n;
4626 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4627
4628 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4629 GFP_KERNEL)) {
4630 bitmap_free(map);
4631 return sprintf(buf, "Out of memory\n");
4632 }
4633 /* Push back cpu slabs */
4634 flush_all(s);
4635
4636 for_each_kmem_cache_node(s, node, n) {
4637 unsigned long flags;
4638 struct page *page;
4639
4640 if (!atomic_long_read(&n->nr_slabs))
4641 continue;
4642
4643 spin_lock_irqsave(&n->list_lock, flags);
4644 list_for_each_entry(page, &n->partial, lru)
4645 process_slab(&t, s, page, alloc, map);
4646 list_for_each_entry(page, &n->full, lru)
4647 process_slab(&t, s, page, alloc, map);
4648 spin_unlock_irqrestore(&n->list_lock, flags);
4649 }
4650
4651 for (i = 0; i < t.count; i++) {
4652 struct location *l = &t.loc[i];
4653
4654 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4655 break;
4656 len += sprintf(buf + len, "%7ld ", l->count);
4657
4658 if (l->addr)
4659 len += sprintf(buf + len, "%pS", (void *)l->addr);
4660 else
4661 len += sprintf(buf + len, "<not-available>");
4662
4663 if (l->sum_time != l->min_time) {
4664 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4665 l->min_time,
4666 (long)div_u64(l->sum_time, l->count),
4667 l->max_time);
4668 } else
4669 len += sprintf(buf + len, " age=%ld",
4670 l->min_time);
4671
4672 if (l->min_pid != l->max_pid)
4673 len += sprintf(buf + len, " pid=%ld-%ld",
4674 l->min_pid, l->max_pid);
4675 else
4676 len += sprintf(buf + len, " pid=%ld",
4677 l->min_pid);
4678
4679 if (num_online_cpus() > 1 &&
4680 !cpumask_empty(to_cpumask(l->cpus)) &&
4681 len < PAGE_SIZE - 60)
4682 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4683 " cpus=%*pbl",
4684 cpumask_pr_args(to_cpumask(l->cpus)));
4685
4686 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4687 len < PAGE_SIZE - 60)
4688 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4689 " nodes=%*pbl",
4690 nodemask_pr_args(&l->nodes));
4691
4692 len += sprintf(buf + len, "\n");
4693 }
4694
4695 free_loc_track(&t);
4696 bitmap_free(map);
4697 if (!t.count)
4698 len += sprintf(buf, "No data\n");
4699 return len;
4700}
4701#endif
4702
4703#ifdef SLUB_RESILIENCY_TEST
4704static void __init resiliency_test(void)
4705{
4706 u8 *p;
4707 int type = KMALLOC_NORMAL;
4708
4709 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4710
4711 pr_err("SLUB resiliency testing\n");
4712 pr_err("-----------------------\n");
4713 pr_err("A. Corruption after allocation\n");
4714
4715 p = kzalloc(16, GFP_KERNEL);
4716 p[16] = 0x12;
4717 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4718 p + 16);
4719
4720 validate_slab_cache(kmalloc_caches[type][4]);
4721
4722 /* Hmmm... The next two are dangerous */
4723 p = kzalloc(32, GFP_KERNEL);
4724 p[32 + sizeof(void *)] = 0x34;
4725 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4726 p);
4727 pr_err("If allocated object is overwritten then not detectable\n\n");
4728
4729 validate_slab_cache(kmalloc_caches[type][5]);
4730 p = kzalloc(64, GFP_KERNEL);
4731 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4732 *p = 0x56;
4733 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4734 p);
4735 pr_err("If allocated object is overwritten then not detectable\n\n");
4736 validate_slab_cache(kmalloc_caches[type][6]);
4737
4738 pr_err("\nB. Corruption after free\n");
4739 p = kzalloc(128, GFP_KERNEL);
4740 kfree(p);
4741 *p = 0x78;
4742 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4743 validate_slab_cache(kmalloc_caches[type][7]);
4744
4745 p = kzalloc(256, GFP_KERNEL);
4746 kfree(p);
4747 p[50] = 0x9a;
4748 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4749 validate_slab_cache(kmalloc_caches[type][8]);
4750
4751 p = kzalloc(512, GFP_KERNEL);
4752 kfree(p);
4753 p[512] = 0xab;
4754 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4755 validate_slab_cache(kmalloc_caches[type][9]);
4756}
4757#else
4758#ifdef CONFIG_SYSFS
4759static void resiliency_test(void) {};
4760#endif
4761#endif
4762
4763#ifdef CONFIG_SYSFS
4764enum slab_stat_type {
4765 SL_ALL, /* All slabs */
4766 SL_PARTIAL, /* Only partially allocated slabs */
4767 SL_CPU, /* Only slabs used for cpu caches */
4768 SL_OBJECTS, /* Determine allocated objects not slabs */
4769 SL_TOTAL /* Determine object capacity not slabs */
4770};
4771
4772#define SO_ALL (1 << SL_ALL)
4773#define SO_PARTIAL (1 << SL_PARTIAL)
4774#define SO_CPU (1 << SL_CPU)
4775#define SO_OBJECTS (1 << SL_OBJECTS)
4776#define SO_TOTAL (1 << SL_TOTAL)
4777
4778#ifdef CONFIG_MEMCG
4779static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4780
4781static int __init setup_slub_memcg_sysfs(char *str)
4782{
4783 int v;
4784
4785 if (get_option(&str, &v) > 0)
4786 memcg_sysfs_enabled = v;
4787
4788 return 1;
4789}
4790
4791__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4792#endif
4793
4794static ssize_t show_slab_objects(struct kmem_cache *s,
4795 char *buf, unsigned long flags)
4796{
4797 unsigned long total = 0;
4798 int node;
4799 int x;
4800 unsigned long *nodes;
4801
4802 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4803 if (!nodes)
4804 return -ENOMEM;
4805
4806 if (flags & SO_CPU) {
4807 int cpu;
4808
4809 for_each_possible_cpu(cpu) {
4810 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4811 cpu);
4812 int node;
4813 struct page *page;
4814
4815 page = READ_ONCE(c->page);
4816 if (!page)
4817 continue;
4818
4819 node = page_to_nid(page);
4820 if (flags & SO_TOTAL)
4821 x = page->objects;
4822 else if (flags & SO_OBJECTS)
4823 x = page->inuse;
4824 else
4825 x = 1;
4826
4827 total += x;
4828 nodes[node] += x;
4829
4830 page = slub_percpu_partial_read_once(c);
4831 if (page) {
4832 node = page_to_nid(page);
4833 if (flags & SO_TOTAL)
4834 WARN_ON_ONCE(1);
4835 else if (flags & SO_OBJECTS)
4836 WARN_ON_ONCE(1);
4837 else
4838 x = page->pages;
4839 total += x;
4840 nodes[node] += x;
4841 }
4842 }
4843 }
4844
4845 get_online_mems();
4846#ifdef CONFIG_SLUB_DEBUG
4847 if (flags & SO_ALL) {
4848 struct kmem_cache_node *n;
4849
4850 for_each_kmem_cache_node(s, node, n) {
4851
4852 if (flags & SO_TOTAL)
4853 x = atomic_long_read(&n->total_objects);
4854 else if (flags & SO_OBJECTS)
4855 x = atomic_long_read(&n->total_objects) -
4856 count_partial(n, count_free);
4857 else
4858 x = atomic_long_read(&n->nr_slabs);
4859 total += x;
4860 nodes[node] += x;
4861 }
4862
4863 } else
4864#endif
4865 if (flags & SO_PARTIAL) {
4866 struct kmem_cache_node *n;
4867
4868 for_each_kmem_cache_node(s, node, n) {
4869 if (flags & SO_TOTAL)
4870 x = count_partial(n, count_total);
4871 else if (flags & SO_OBJECTS)
4872 x = count_partial(n, count_inuse);
4873 else
4874 x = n->nr_partial;
4875 total += x;
4876 nodes[node] += x;
4877 }
4878 }
4879 x = sprintf(buf, "%lu", total);
4880#ifdef CONFIG_NUMA
4881 for (node = 0; node < nr_node_ids; node++)
4882 if (nodes[node])
4883 x += sprintf(buf + x, " N%d=%lu",
4884 node, nodes[node]);
4885#endif
4886 put_online_mems();
4887 kfree(nodes);
4888 return x + sprintf(buf + x, "\n");
4889}
4890
4891#ifdef CONFIG_SLUB_DEBUG
4892static int any_slab_objects(struct kmem_cache *s)
4893{
4894 int node;
4895 struct kmem_cache_node *n;
4896
4897 for_each_kmem_cache_node(s, node, n)
4898 if (atomic_long_read(&n->total_objects))
4899 return 1;
4900
4901 return 0;
4902}
4903#endif
4904
4905#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4906#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4907
4908struct slab_attribute {
4909 struct attribute attr;
4910 ssize_t (*show)(struct kmem_cache *s, char *buf);
4911 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4912};
4913
4914#define SLAB_ATTR_RO(_name) \
4915 static struct slab_attribute _name##_attr = \
4916 __ATTR(_name, 0400, _name##_show, NULL)
4917
4918#define SLAB_ATTR(_name) \
4919 static struct slab_attribute _name##_attr = \
4920 __ATTR(_name, 0600, _name##_show, _name##_store)
4921
4922static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4923{
4924 return sprintf(buf, "%u\n", s->size);
4925}
4926SLAB_ATTR_RO(slab_size);
4927
4928static ssize_t align_show(struct kmem_cache *s, char *buf)
4929{
4930 return sprintf(buf, "%u\n", s->align);
4931}
4932SLAB_ATTR_RO(align);
4933
4934static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4935{
4936 return sprintf(buf, "%u\n", s->object_size);
4937}
4938SLAB_ATTR_RO(object_size);
4939
4940static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4941{
4942 return sprintf(buf, "%u\n", oo_objects(s->oo));
4943}
4944SLAB_ATTR_RO(objs_per_slab);
4945
4946static ssize_t order_store(struct kmem_cache *s,
4947 const char *buf, size_t length)
4948{
4949 unsigned int order;
4950 int err;
4951
4952 err = kstrtouint(buf, 10, &order);
4953 if (err)
4954 return err;
4955
4956 if (order > slub_max_order || order < slub_min_order)
4957 return -EINVAL;
4958
4959 calculate_sizes(s, order);
4960 return length;
4961}
4962
4963static ssize_t order_show(struct kmem_cache *s, char *buf)
4964{
4965 return sprintf(buf, "%u\n", oo_order(s->oo));
4966}
4967SLAB_ATTR(order);
4968
4969static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4970{
4971 return sprintf(buf, "%lu\n", s->min_partial);
4972}
4973
4974static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4975 size_t length)
4976{
4977 unsigned long min;
4978 int err;
4979
4980 err = kstrtoul(buf, 10, &min);
4981 if (err)
4982 return err;
4983
4984 set_min_partial(s, min);
4985 return length;
4986}
4987SLAB_ATTR(min_partial);
4988
4989static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4990{
4991 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4992}
4993
4994static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4995 size_t length)
4996{
4997 unsigned int objects;
4998 int err;
4999
5000 err = kstrtouint(buf, 10, &objects);
5001 if (err)
5002 return err;
5003 if (objects && !kmem_cache_has_cpu_partial(s))
5004 return -EINVAL;
5005
5006 slub_set_cpu_partial(s, objects);
5007 flush_all(s);
5008 return length;
5009}
5010SLAB_ATTR(cpu_partial);
5011
5012static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5013{
5014 if (!s->ctor)
5015 return 0;
5016 return sprintf(buf, "%pS\n", s->ctor);
5017}
5018SLAB_ATTR_RO(ctor);
5019
5020static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5021{
5022 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5023}
5024SLAB_ATTR_RO(aliases);
5025
5026static ssize_t partial_show(struct kmem_cache *s, char *buf)
5027{
5028 return show_slab_objects(s, buf, SO_PARTIAL);
5029}
5030SLAB_ATTR_RO(partial);
5031
5032static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5033{
5034 return show_slab_objects(s, buf, SO_CPU);
5035}
5036SLAB_ATTR_RO(cpu_slabs);
5037
5038static ssize_t objects_show(struct kmem_cache *s, char *buf)
5039{
5040 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5041}
5042SLAB_ATTR_RO(objects);
5043
5044static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5045{
5046 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5047}
5048SLAB_ATTR_RO(objects_partial);
5049
5050static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5051{
5052 int objects = 0;
5053 int pages = 0;
5054 int cpu;
5055 int len;
5056
5057 for_each_online_cpu(cpu) {
5058 struct page *page;
5059
5060 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5061
5062 if (page) {
5063 pages += page->pages;
5064 objects += page->pobjects;
5065 }
5066 }
5067
5068 len = sprintf(buf, "%d(%d)", objects, pages);
5069
5070#ifdef CONFIG_SMP
5071 for_each_online_cpu(cpu) {
5072 struct page *page;
5073
5074 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5075
5076 if (page && len < PAGE_SIZE - 20)
5077 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5078 page->pobjects, page->pages);
5079 }
5080#endif
5081 return len + sprintf(buf + len, "\n");
5082}
5083SLAB_ATTR_RO(slabs_cpu_partial);
5084
5085static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5086{
5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5088}
5089
5090static ssize_t reclaim_account_store(struct kmem_cache *s,
5091 const char *buf, size_t length)
5092{
5093 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5094 if (buf[0] == '1')
5095 s->flags |= SLAB_RECLAIM_ACCOUNT;
5096 return length;
5097}
5098SLAB_ATTR(reclaim_account);
5099
5100static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5101{
5102 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5103}
5104SLAB_ATTR_RO(hwcache_align);
5105
5106#ifdef CONFIG_ZONE_DMA
5107static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5108{
5109 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5110}
5111SLAB_ATTR_RO(cache_dma);
5112#endif
5113
5114static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5115{
5116 return sprintf(buf, "%u\n", s->usersize);
5117}
5118SLAB_ATTR_RO(usersize);
5119
5120static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5121{
5122 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5123}
5124SLAB_ATTR_RO(destroy_by_rcu);
5125
5126#ifdef CONFIG_SLUB_DEBUG
5127static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5128{
5129 return show_slab_objects(s, buf, SO_ALL);
5130}
5131SLAB_ATTR_RO(slabs);
5132
5133static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5134{
5135 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5136}
5137SLAB_ATTR_RO(total_objects);
5138
5139static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5140{
5141 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5142}
5143
5144static ssize_t sanity_checks_store(struct kmem_cache *s,
5145 const char *buf, size_t length)
5146{
5147 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5148 if (buf[0] == '1') {
5149 s->flags &= ~__CMPXCHG_DOUBLE;
5150 s->flags |= SLAB_CONSISTENCY_CHECKS;
5151 }
5152 return length;
5153}
5154SLAB_ATTR(sanity_checks);
5155
5156static ssize_t trace_show(struct kmem_cache *s, char *buf)
5157{
5158 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5159}
5160
5161static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5162 size_t length)
5163{
5164 /*
5165 * Tracing a merged cache is going to give confusing results
5166 * as well as cause other issues like converting a mergeable
5167 * cache into an umergeable one.
5168 */
5169 if (s->refcount > 1)
5170 return -EINVAL;
5171
5172 s->flags &= ~SLAB_TRACE;
5173 if (buf[0] == '1') {
5174 s->flags &= ~__CMPXCHG_DOUBLE;
5175 s->flags |= SLAB_TRACE;
5176 }
5177 return length;
5178}
5179SLAB_ATTR(trace);
5180
5181static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5182{
5183 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5184}
5185
5186static ssize_t red_zone_store(struct kmem_cache *s,
5187 const char *buf, size_t length)
5188{
5189 if (any_slab_objects(s))
5190 return -EBUSY;
5191
5192 s->flags &= ~SLAB_RED_ZONE;
5193 if (buf[0] == '1') {
5194 s->flags |= SLAB_RED_ZONE;
5195 }
5196 calculate_sizes(s, -1);
5197 return length;
5198}
5199SLAB_ATTR(red_zone);
5200
5201static ssize_t poison_show(struct kmem_cache *s, char *buf)
5202{
5203 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5204}
5205
5206static ssize_t poison_store(struct kmem_cache *s,
5207 const char *buf, size_t length)
5208{
5209 if (any_slab_objects(s))
5210 return -EBUSY;
5211
5212 s->flags &= ~SLAB_POISON;
5213 if (buf[0] == '1') {
5214 s->flags |= SLAB_POISON;
5215 }
5216 calculate_sizes(s, -1);
5217 return length;
5218}
5219SLAB_ATTR(poison);
5220
5221static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5222{
5223 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5224}
5225
5226static ssize_t store_user_store(struct kmem_cache *s,
5227 const char *buf, size_t length)
5228{
5229 if (any_slab_objects(s))
5230 return -EBUSY;
5231
5232 s->flags &= ~SLAB_STORE_USER;
5233 if (buf[0] == '1') {
5234 s->flags &= ~__CMPXCHG_DOUBLE;
5235 s->flags |= SLAB_STORE_USER;
5236 }
5237 calculate_sizes(s, -1);
5238 return length;
5239}
5240SLAB_ATTR(store_user);
5241
5242static ssize_t validate_show(struct kmem_cache *s, char *buf)
5243{
5244 return 0;
5245}
5246
5247static ssize_t validate_store(struct kmem_cache *s,
5248 const char *buf, size_t length)
5249{
5250 int ret = -EINVAL;
5251
5252 if (buf[0] == '1') {
5253 ret = validate_slab_cache(s);
5254 if (ret >= 0)
5255 ret = length;
5256 }
5257 return ret;
5258}
5259SLAB_ATTR(validate);
5260
5261static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5262{
5263 if (!(s->flags & SLAB_STORE_USER))
5264 return -ENOSYS;
5265 return list_locations(s, buf, TRACK_ALLOC);
5266}
5267SLAB_ATTR_RO(alloc_calls);
5268
5269static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5270{
5271 if (!(s->flags & SLAB_STORE_USER))
5272 return -ENOSYS;
5273 return list_locations(s, buf, TRACK_FREE);
5274}
5275SLAB_ATTR_RO(free_calls);
5276#endif /* CONFIG_SLUB_DEBUG */
5277
5278#ifdef CONFIG_FAILSLAB
5279static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5280{
5281 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5282}
5283
5284static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5285 size_t length)
5286{
5287 if (s->refcount > 1)
5288 return -EINVAL;
5289
5290 s->flags &= ~SLAB_FAILSLAB;
5291 if (buf[0] == '1')
5292 s->flags |= SLAB_FAILSLAB;
5293 return length;
5294}
5295SLAB_ATTR(failslab);
5296#endif
5297
5298static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5299{
5300 return 0;
5301}
5302
5303static ssize_t shrink_store(struct kmem_cache *s,
5304 const char *buf, size_t length)
5305{
5306 if (buf[0] == '1')
5307 kmem_cache_shrink(s);
5308 else
5309 return -EINVAL;
5310 return length;
5311}
5312SLAB_ATTR(shrink);
5313
5314#ifdef CONFIG_NUMA
5315static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5316{
5317 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5318}
5319
5320static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5321 const char *buf, size_t length)
5322{
5323 unsigned int ratio;
5324 int err;
5325
5326 err = kstrtouint(buf, 10, &ratio);
5327 if (err)
5328 return err;
5329 if (ratio > 100)
5330 return -ERANGE;
5331
5332 s->remote_node_defrag_ratio = ratio * 10;
5333
5334 return length;
5335}
5336SLAB_ATTR(remote_node_defrag_ratio);
5337#endif
5338
5339#ifdef CONFIG_SLUB_STATS
5340static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5341{
5342 unsigned long sum = 0;
5343 int cpu;
5344 int len;
5345 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5346
5347 if (!data)
5348 return -ENOMEM;
5349
5350 for_each_online_cpu(cpu) {
5351 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5352
5353 data[cpu] = x;
5354 sum += x;
5355 }
5356
5357 len = sprintf(buf, "%lu", sum);
5358
5359#ifdef CONFIG_SMP
5360 for_each_online_cpu(cpu) {
5361 if (data[cpu] && len < PAGE_SIZE - 20)
5362 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5363 }
5364#endif
5365 kfree(data);
5366 return len + sprintf(buf + len, "\n");
5367}
5368
5369static void clear_stat(struct kmem_cache *s, enum stat_item si)
5370{
5371 int cpu;
5372
5373 for_each_online_cpu(cpu)
5374 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5375}
5376
5377#define STAT_ATTR(si, text) \
5378static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5379{ \
5380 return show_stat(s, buf, si); \
5381} \
5382static ssize_t text##_store(struct kmem_cache *s, \
5383 const char *buf, size_t length) \
5384{ \
5385 if (buf[0] != '0') \
5386 return -EINVAL; \
5387 clear_stat(s, si); \
5388 return length; \
5389} \
5390SLAB_ATTR(text); \
5391
5392STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5393STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5394STAT_ATTR(FREE_FASTPATH, free_fastpath);
5395STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5396STAT_ATTR(FREE_FROZEN, free_frozen);
5397STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5398STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5399STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5400STAT_ATTR(ALLOC_SLAB, alloc_slab);
5401STAT_ATTR(ALLOC_REFILL, alloc_refill);
5402STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5403STAT_ATTR(FREE_SLAB, free_slab);
5404STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5405STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5406STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5407STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5408STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5409STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5410STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5411STAT_ATTR(ORDER_FALLBACK, order_fallback);
5412STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5413STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5414STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5415STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5416STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5417STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5418#endif
5419
5420static struct attribute *slab_attrs[] = {
5421 &slab_size_attr.attr,
5422 &object_size_attr.attr,
5423 &objs_per_slab_attr.attr,
5424 &order_attr.attr,
5425 &min_partial_attr.attr,
5426 &cpu_partial_attr.attr,
5427 &objects_attr.attr,
5428 &objects_partial_attr.attr,
5429 &partial_attr.attr,
5430 &cpu_slabs_attr.attr,
5431 &ctor_attr.attr,
5432 &aliases_attr.attr,
5433 &align_attr.attr,
5434 &hwcache_align_attr.attr,
5435 &reclaim_account_attr.attr,
5436 &destroy_by_rcu_attr.attr,
5437 &shrink_attr.attr,
5438 &slabs_cpu_partial_attr.attr,
5439#ifdef CONFIG_SLUB_DEBUG
5440 &total_objects_attr.attr,
5441 &slabs_attr.attr,
5442 &sanity_checks_attr.attr,
5443 &trace_attr.attr,
5444 &red_zone_attr.attr,
5445 &poison_attr.attr,
5446 &store_user_attr.attr,
5447 &validate_attr.attr,
5448 &alloc_calls_attr.attr,
5449 &free_calls_attr.attr,
5450#endif
5451#ifdef CONFIG_ZONE_DMA
5452 &cache_dma_attr.attr,
5453#endif
5454#ifdef CONFIG_NUMA
5455 &remote_node_defrag_ratio_attr.attr,
5456#endif
5457#ifdef CONFIG_SLUB_STATS
5458 &alloc_fastpath_attr.attr,
5459 &alloc_slowpath_attr.attr,
5460 &free_fastpath_attr.attr,
5461 &free_slowpath_attr.attr,
5462 &free_frozen_attr.attr,
5463 &free_add_partial_attr.attr,
5464 &free_remove_partial_attr.attr,
5465 &alloc_from_partial_attr.attr,
5466 &alloc_slab_attr.attr,
5467 &alloc_refill_attr.attr,
5468 &alloc_node_mismatch_attr.attr,
5469 &free_slab_attr.attr,
5470 &cpuslab_flush_attr.attr,
5471 &deactivate_full_attr.attr,
5472 &deactivate_empty_attr.attr,
5473 &deactivate_to_head_attr.attr,
5474 &deactivate_to_tail_attr.attr,
5475 &deactivate_remote_frees_attr.attr,
5476 &deactivate_bypass_attr.attr,
5477 &order_fallback_attr.attr,
5478 &cmpxchg_double_fail_attr.attr,
5479 &cmpxchg_double_cpu_fail_attr.attr,
5480 &cpu_partial_alloc_attr.attr,
5481 &cpu_partial_free_attr.attr,
5482 &cpu_partial_node_attr.attr,
5483 &cpu_partial_drain_attr.attr,
5484#endif
5485#ifdef CONFIG_FAILSLAB
5486 &failslab_attr.attr,
5487#endif
5488 &usersize_attr.attr,
5489
5490 NULL
5491};
5492
5493static const struct attribute_group slab_attr_group = {
5494 .attrs = slab_attrs,
5495};
5496
5497static ssize_t slab_attr_show(struct kobject *kobj,
5498 struct attribute *attr,
5499 char *buf)
5500{
5501 struct slab_attribute *attribute;
5502 struct kmem_cache *s;
5503 int err;
5504
5505 attribute = to_slab_attr(attr);
5506 s = to_slab(kobj);
5507
5508 if (!attribute->show)
5509 return -EIO;
5510
5511 err = attribute->show(s, buf);
5512
5513 return err;
5514}
5515
5516static ssize_t slab_attr_store(struct kobject *kobj,
5517 struct attribute *attr,
5518 const char *buf, size_t len)
5519{
5520 struct slab_attribute *attribute;
5521 struct kmem_cache *s;
5522 int err;
5523
5524 attribute = to_slab_attr(attr);
5525 s = to_slab(kobj);
5526
5527 if (!attribute->store)
5528 return -EIO;
5529
5530 err = attribute->store(s, buf, len);
5531#ifdef CONFIG_MEMCG
5532 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5533 struct kmem_cache *c;
5534
5535 mutex_lock(&slab_mutex);
5536 if (s->max_attr_size < len)
5537 s->max_attr_size = len;
5538
5539 /*
5540 * This is a best effort propagation, so this function's return
5541 * value will be determined by the parent cache only. This is
5542 * basically because not all attributes will have a well
5543 * defined semantics for rollbacks - most of the actions will
5544 * have permanent effects.
5545 *
5546 * Returning the error value of any of the children that fail
5547 * is not 100 % defined, in the sense that users seeing the
5548 * error code won't be able to know anything about the state of
5549 * the cache.
5550 *
5551 * Only returning the error code for the parent cache at least
5552 * has well defined semantics. The cache being written to
5553 * directly either failed or succeeded, in which case we loop
5554 * through the descendants with best-effort propagation.
5555 */
5556 for_each_memcg_cache(c, s)
5557 attribute->store(c, buf, len);
5558 mutex_unlock(&slab_mutex);
5559 }
5560#endif
5561 return err;
5562}
5563
5564static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5565{
5566#ifdef CONFIG_MEMCG
5567 int i;
5568 char *buffer = NULL;
5569 struct kmem_cache *root_cache;
5570
5571 if (is_root_cache(s))
5572 return;
5573
5574 root_cache = s->memcg_params.root_cache;
5575
5576 /*
5577 * This mean this cache had no attribute written. Therefore, no point
5578 * in copying default values around
5579 */
5580 if (!root_cache->max_attr_size)
5581 return;
5582
5583 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5584 char mbuf[64];
5585 char *buf;
5586 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5587 ssize_t len;
5588
5589 if (!attr || !attr->store || !attr->show)
5590 continue;
5591
5592 /*
5593 * It is really bad that we have to allocate here, so we will
5594 * do it only as a fallback. If we actually allocate, though,
5595 * we can just use the allocated buffer until the end.
5596 *
5597 * Most of the slub attributes will tend to be very small in
5598 * size, but sysfs allows buffers up to a page, so they can
5599 * theoretically happen.
5600 */
5601 if (buffer)
5602 buf = buffer;
5603 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5604 buf = mbuf;
5605 else {
5606 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5607 if (WARN_ON(!buffer))
5608 continue;
5609 buf = buffer;
5610 }
5611
5612 len = attr->show(root_cache, buf);
5613 if (len > 0)
5614 attr->store(s, buf, len);
5615 }
5616
5617 if (buffer)
5618 free_page((unsigned long)buffer);
5619#endif
5620}
5621
5622static void kmem_cache_release(struct kobject *k)
5623{
5624 slab_kmem_cache_release(to_slab(k));
5625}
5626
5627static const struct sysfs_ops slab_sysfs_ops = {
5628 .show = slab_attr_show,
5629 .store = slab_attr_store,
5630};
5631
5632static struct kobj_type slab_ktype = {
5633 .sysfs_ops = &slab_sysfs_ops,
5634 .release = kmem_cache_release,
5635};
5636
5637static int uevent_filter(struct kset *kset, struct kobject *kobj)
5638{
5639 struct kobj_type *ktype = get_ktype(kobj);
5640
5641 if (ktype == &slab_ktype)
5642 return 1;
5643 return 0;
5644}
5645
5646static const struct kset_uevent_ops slab_uevent_ops = {
5647 .filter = uevent_filter,
5648};
5649
5650static struct kset *slab_kset;
5651
5652static inline struct kset *cache_kset(struct kmem_cache *s)
5653{
5654#ifdef CONFIG_MEMCG
5655 if (!is_root_cache(s))
5656 return s->memcg_params.root_cache->memcg_kset;
5657#endif
5658 return slab_kset;
5659}
5660
5661#define ID_STR_LENGTH 64
5662
5663/* Create a unique string id for a slab cache:
5664 *
5665 * Format :[flags-]size
5666 */
5667static char *create_unique_id(struct kmem_cache *s)
5668{
5669 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5670 char *p = name;
5671
5672 BUG_ON(!name);
5673
5674 *p++ = ':';
5675 /*
5676 * First flags affecting slabcache operations. We will only
5677 * get here for aliasable slabs so we do not need to support
5678 * too many flags. The flags here must cover all flags that
5679 * are matched during merging to guarantee that the id is
5680 * unique.
5681 */
5682 if (s->flags & SLAB_CACHE_DMA)
5683 *p++ = 'd';
5684 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5685 *p++ = 'a';
5686 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5687 *p++ = 'F';
5688 if (s->flags & SLAB_ACCOUNT)
5689 *p++ = 'A';
5690 if (p != name + 1)
5691 *p++ = '-';
5692 p += sprintf(p, "%07u", s->size);
5693
5694 BUG_ON(p > name + ID_STR_LENGTH - 1);
5695 return name;
5696}
5697
5698static void sysfs_slab_remove_workfn(struct work_struct *work)
5699{
5700 struct kmem_cache *s =
5701 container_of(work, struct kmem_cache, kobj_remove_work);
5702
5703 if (!s->kobj.state_in_sysfs)
5704 /*
5705 * For a memcg cache, this may be called during
5706 * deactivation and again on shutdown. Remove only once.
5707 * A cache is never shut down before deactivation is
5708 * complete, so no need to worry about synchronization.
5709 */
5710 goto out;
5711
5712#ifdef CONFIG_MEMCG
5713 kset_unregister(s->memcg_kset);
5714#endif
5715 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5716out:
5717 kobject_put(&s->kobj);
5718}
5719
5720static int sysfs_slab_add(struct kmem_cache *s)
5721{
5722 int err;
5723 const char *name;
5724 struct kset *kset = cache_kset(s);
5725 int unmergeable = slab_unmergeable(s);
5726
5727 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5728
5729 if (!kset) {
5730 kobject_init(&s->kobj, &slab_ktype);
5731 return 0;
5732 }
5733
5734 if (!unmergeable && disable_higher_order_debug &&
5735 (slub_debug & DEBUG_METADATA_FLAGS))
5736 unmergeable = 1;
5737
5738 if (unmergeable) {
5739 /*
5740 * Slabcache can never be merged so we can use the name proper.
5741 * This is typically the case for debug situations. In that
5742 * case we can catch duplicate names easily.
5743 */
5744 sysfs_remove_link(&slab_kset->kobj, s->name);
5745 name = s->name;
5746 } else {
5747 /*
5748 * Create a unique name for the slab as a target
5749 * for the symlinks.
5750 */
5751 name = create_unique_id(s);
5752 }
5753
5754 s->kobj.kset = kset;
5755 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5756 if (err)
5757 goto out;
5758
5759 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5760 if (err)
5761 goto out_del_kobj;
5762
5763#ifdef CONFIG_MEMCG
5764 if (is_root_cache(s) && memcg_sysfs_enabled) {
5765 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5766 if (!s->memcg_kset) {
5767 err = -ENOMEM;
5768 goto out_del_kobj;
5769 }
5770 }
5771#endif
5772
5773 kobject_uevent(&s->kobj, KOBJ_ADD);
5774 if (!unmergeable) {
5775 /* Setup first alias */
5776 sysfs_slab_alias(s, s->name);
5777 }
5778out:
5779 if (!unmergeable)
5780 kfree(name);
5781 return err;
5782out_del_kobj:
5783 kobject_del(&s->kobj);
5784 goto out;
5785}
5786
5787static void sysfs_slab_remove(struct kmem_cache *s)
5788{
5789 if (slab_state < FULL)
5790 /*
5791 * Sysfs has not been setup yet so no need to remove the
5792 * cache from sysfs.
5793 */
5794 return;
5795
5796 kobject_get(&s->kobj);
5797 schedule_work(&s->kobj_remove_work);
5798}
5799
5800void sysfs_slab_unlink(struct kmem_cache *s)
5801{
5802 if (slab_state >= FULL)
5803 kobject_del(&s->kobj);
5804}
5805
5806void sysfs_slab_release(struct kmem_cache *s)
5807{
5808 if (slab_state >= FULL)
5809 kobject_put(&s->kobj);
5810}
5811
5812/*
5813 * Need to buffer aliases during bootup until sysfs becomes
5814 * available lest we lose that information.
5815 */
5816struct saved_alias {
5817 struct kmem_cache *s;
5818 const char *name;
5819 struct saved_alias *next;
5820};
5821
5822static struct saved_alias *alias_list;
5823
5824static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5825{
5826 struct saved_alias *al;
5827
5828 if (slab_state == FULL) {
5829 /*
5830 * If we have a leftover link then remove it.
5831 */
5832 sysfs_remove_link(&slab_kset->kobj, name);
5833 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5834 }
5835
5836 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5837 if (!al)
5838 return -ENOMEM;
5839
5840 al->s = s;
5841 al->name = name;
5842 al->next = alias_list;
5843 alias_list = al;
5844 return 0;
5845}
5846
5847static int __init slab_sysfs_init(void)
5848{
5849 struct kmem_cache *s;
5850 int err;
5851
5852 mutex_lock(&slab_mutex);
5853
5854 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5855 if (!slab_kset) {
5856 mutex_unlock(&slab_mutex);
5857 pr_err("Cannot register slab subsystem.\n");
5858 return -ENOSYS;
5859 }
5860
5861 slab_state = FULL;
5862
5863 list_for_each_entry(s, &slab_caches, list) {
5864 err = sysfs_slab_add(s);
5865 if (err)
5866 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5867 s->name);
5868 }
5869
5870 while (alias_list) {
5871 struct saved_alias *al = alias_list;
5872
5873 alias_list = alias_list->next;
5874 err = sysfs_slab_alias(al->s, al->name);
5875 if (err)
5876 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5877 al->name);
5878 kfree(al);
5879 }
5880
5881 mutex_unlock(&slab_mutex);
5882 resiliency_test();
5883 return 0;
5884}
5885
5886__initcall(slab_sysfs_init);
5887#endif /* CONFIG_SYSFS */
5888
5889/*
5890 * The /proc/slabinfo ABI
5891 */
5892#ifdef CONFIG_SLUB_DEBUG
5893void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5894{
5895 unsigned long nr_slabs = 0;
5896 unsigned long nr_objs = 0;
5897 unsigned long nr_free = 0;
5898 int node;
5899 struct kmem_cache_node *n;
5900
5901 for_each_kmem_cache_node(s, node, n) {
5902 nr_slabs += node_nr_slabs(n);
5903 nr_objs += node_nr_objs(n);
5904 nr_free += count_partial(n, count_free);
5905 }
5906
5907 sinfo->active_objs = nr_objs - nr_free;
5908 sinfo->num_objs = nr_objs;
5909 sinfo->active_slabs = nr_slabs;
5910 sinfo->num_slabs = nr_slabs;
5911 sinfo->objects_per_slab = oo_objects(s->oo);
5912 sinfo->cache_order = oo_order(s->oo);
5913}
5914
5915void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5916{
5917}
5918
5919ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5920 size_t count, loff_t *ppos)
5921{
5922 return -EIO;
5923}
5924#endif /* CONFIG_SLUB_DEBUG */