Merge tag 'nfsd-4.8' of git://linux-nfs.org/~bfields/linux
[linux-2.6-block.git] / mm / slub.c
... / ...
CommitLineData
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12#include <linux/mm.h>
13#include <linux/swap.h> /* struct reclaim_state */
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
19#include "slab.h"
20#include <linux/proc_fs.h>
21#include <linux/notifier.h>
22#include <linux/seq_file.h>
23#include <linux/kasan.h>
24#include <linux/kmemcheck.h>
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
29#include <linux/debugobjects.h>
30#include <linux/kallsyms.h>
31#include <linux/memory.h>
32#include <linux/math64.h>
33#include <linux/fault-inject.h>
34#include <linux/stacktrace.h>
35#include <linux/prefetch.h>
36#include <linux/memcontrol.h>
37
38#include <trace/events/kmem.h>
39
40#include "internal.h"
41
42/*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
120#ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122#else
123 return 0;
124#endif
125}
126
127inline void *fixup_red_left(struct kmem_cache *s, void *p)
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
144/*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162#define MIN_PARTIAL 5
163
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169#define MAX_PARTIAL 10
170
171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
182/*
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
186 */
187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192
193/* Internal SLUB flags */
194#define __OBJECT_POISON 0x80000000UL /* Poison object */
195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
196
197#ifdef CONFIG_SMP
198static struct notifier_block slab_notifier;
199#endif
200
201/*
202 * Tracking user of a slab.
203 */
204#define TRACK_ADDRS_COUNT 16
205struct track {
206 unsigned long addr; /* Called from address */
207#ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209#endif
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
213};
214
215enum track_item { TRACK_ALLOC, TRACK_FREE };
216
217#ifdef CONFIG_SYSFS
218static int sysfs_slab_add(struct kmem_cache *);
219static int sysfs_slab_alias(struct kmem_cache *, const char *);
220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
221#else
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226#endif
227
228static inline void stat(const struct kmem_cache *s, enum stat_item si)
229{
230#ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236#endif
237}
238
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
243static inline void *get_freepointer(struct kmem_cache *s, void *object)
244{
245 return *(void **)(object + s->offset);
246}
247
248static void prefetch_freepointer(const struct kmem_cache *s, void *object)
249{
250 prefetch(object + s->offset);
251}
252
253static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
254{
255 void *p;
256
257 if (!debug_pagealloc_enabled())
258 return get_freepointer(s, object);
259
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 return p;
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
270#define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = fixup_red_left(__s, __addr); \
272 __p < (__addr) + (__objects) * (__s)->size; \
273 __p += (__s)->size)
274
275#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 __idx <= __objects; \
278 __p += (__s)->size, __idx++)
279
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
286static inline int order_objects(int order, unsigned long size, int reserved)
287{
288 return ((PAGE_SIZE << order) - reserved) / size;
289}
290
291static inline struct kmem_cache_order_objects oo_make(int order,
292 unsigned long size, int reserved)
293{
294 struct kmem_cache_order_objects x = {
295 (order << OO_SHIFT) + order_objects(order, size, reserved)
296 };
297
298 return x;
299}
300
301static inline int oo_order(struct kmem_cache_order_objects x)
302{
303 return x.x >> OO_SHIFT;
304}
305
306static inline int oo_objects(struct kmem_cache_order_objects x)
307{
308 return x.x & OO_MASK;
309}
310
311/*
312 * Per slab locking using the pagelock
313 */
314static __always_inline void slab_lock(struct page *page)
315{
316 VM_BUG_ON_PAGE(PageTail(page), page);
317 bit_spin_lock(PG_locked, &page->flags);
318}
319
320static __always_inline void slab_unlock(struct page *page)
321{
322 VM_BUG_ON_PAGE(PageTail(page), page);
323 __bit_spin_unlock(PG_locked, &page->flags);
324}
325
326static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
327{
328 struct page tmp;
329 tmp.counters = counters_new;
330 /*
331 * page->counters can cover frozen/inuse/objects as well
332 * as page->_refcount. If we assign to ->counters directly
333 * we run the risk of losing updates to page->_refcount, so
334 * be careful and only assign to the fields we need.
335 */
336 page->frozen = tmp.frozen;
337 page->inuse = tmp.inuse;
338 page->objects = tmp.objects;
339}
340
341/* Interrupts must be disabled (for the fallback code to work right) */
342static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
343 void *freelist_old, unsigned long counters_old,
344 void *freelist_new, unsigned long counters_new,
345 const char *n)
346{
347 VM_BUG_ON(!irqs_disabled());
348#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
350 if (s->flags & __CMPXCHG_DOUBLE) {
351 if (cmpxchg_double(&page->freelist, &page->counters,
352 freelist_old, counters_old,
353 freelist_new, counters_new))
354 return true;
355 } else
356#endif
357 {
358 slab_lock(page);
359 if (page->freelist == freelist_old &&
360 page->counters == counters_old) {
361 page->freelist = freelist_new;
362 set_page_slub_counters(page, counters_new);
363 slab_unlock(page);
364 return true;
365 }
366 slab_unlock(page);
367 }
368
369 cpu_relax();
370 stat(s, CMPXCHG_DOUBLE_FAIL);
371
372#ifdef SLUB_DEBUG_CMPXCHG
373 pr_info("%s %s: cmpxchg double redo ", n, s->name);
374#endif
375
376 return false;
377}
378
379static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
380 void *freelist_old, unsigned long counters_old,
381 void *freelist_new, unsigned long counters_new,
382 const char *n)
383{
384#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
386 if (s->flags & __CMPXCHG_DOUBLE) {
387 if (cmpxchg_double(&page->freelist, &page->counters,
388 freelist_old, counters_old,
389 freelist_new, counters_new))
390 return true;
391 } else
392#endif
393 {
394 unsigned long flags;
395
396 local_irq_save(flags);
397 slab_lock(page);
398 if (page->freelist == freelist_old &&
399 page->counters == counters_old) {
400 page->freelist = freelist_new;
401 set_page_slub_counters(page, counters_new);
402 slab_unlock(page);
403 local_irq_restore(flags);
404 return true;
405 }
406 slab_unlock(page);
407 local_irq_restore(flags);
408 }
409
410 cpu_relax();
411 stat(s, CMPXCHG_DOUBLE_FAIL);
412
413#ifdef SLUB_DEBUG_CMPXCHG
414 pr_info("%s %s: cmpxchg double redo ", n, s->name);
415#endif
416
417 return false;
418}
419
420#ifdef CONFIG_SLUB_DEBUG
421/*
422 * Determine a map of object in use on a page.
423 *
424 * Node listlock must be held to guarantee that the page does
425 * not vanish from under us.
426 */
427static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
428{
429 void *p;
430 void *addr = page_address(page);
431
432 for (p = page->freelist; p; p = get_freepointer(s, p))
433 set_bit(slab_index(p, s, addr), map);
434}
435
436static inline int size_from_object(struct kmem_cache *s)
437{
438 if (s->flags & SLAB_RED_ZONE)
439 return s->size - s->red_left_pad;
440
441 return s->size;
442}
443
444static inline void *restore_red_left(struct kmem_cache *s, void *p)
445{
446 if (s->flags & SLAB_RED_ZONE)
447 p -= s->red_left_pad;
448
449 return p;
450}
451
452/*
453 * Debug settings:
454 */
455#if defined(CONFIG_SLUB_DEBUG_ON)
456static int slub_debug = DEBUG_DEFAULT_FLAGS;
457#else
458static int slub_debug;
459#endif
460
461static char *slub_debug_slabs;
462static int disable_higher_order_debug;
463
464/*
465 * slub is about to manipulate internal object metadata. This memory lies
466 * outside the range of the allocated object, so accessing it would normally
467 * be reported by kasan as a bounds error. metadata_access_enable() is used
468 * to tell kasan that these accesses are OK.
469 */
470static inline void metadata_access_enable(void)
471{
472 kasan_disable_current();
473}
474
475static inline void metadata_access_disable(void)
476{
477 kasan_enable_current();
478}
479
480/*
481 * Object debugging
482 */
483
484/* Verify that a pointer has an address that is valid within a slab page */
485static inline int check_valid_pointer(struct kmem_cache *s,
486 struct page *page, void *object)
487{
488 void *base;
489
490 if (!object)
491 return 1;
492
493 base = page_address(page);
494 object = restore_red_left(s, object);
495 if (object < base || object >= base + page->objects * s->size ||
496 (object - base) % s->size) {
497 return 0;
498 }
499
500 return 1;
501}
502
503static void print_section(char *text, u8 *addr, unsigned int length)
504{
505 metadata_access_enable();
506 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
507 length, 1);
508 metadata_access_disable();
509}
510
511static struct track *get_track(struct kmem_cache *s, void *object,
512 enum track_item alloc)
513{
514 struct track *p;
515
516 if (s->offset)
517 p = object + s->offset + sizeof(void *);
518 else
519 p = object + s->inuse;
520
521 return p + alloc;
522}
523
524static void set_track(struct kmem_cache *s, void *object,
525 enum track_item alloc, unsigned long addr)
526{
527 struct track *p = get_track(s, object, alloc);
528
529 if (addr) {
530#ifdef CONFIG_STACKTRACE
531 struct stack_trace trace;
532 int i;
533
534 trace.nr_entries = 0;
535 trace.max_entries = TRACK_ADDRS_COUNT;
536 trace.entries = p->addrs;
537 trace.skip = 3;
538 metadata_access_enable();
539 save_stack_trace(&trace);
540 metadata_access_disable();
541
542 /* See rant in lockdep.c */
543 if (trace.nr_entries != 0 &&
544 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
545 trace.nr_entries--;
546
547 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
548 p->addrs[i] = 0;
549#endif
550 p->addr = addr;
551 p->cpu = smp_processor_id();
552 p->pid = current->pid;
553 p->when = jiffies;
554 } else
555 memset(p, 0, sizeof(struct track));
556}
557
558static void init_tracking(struct kmem_cache *s, void *object)
559{
560 if (!(s->flags & SLAB_STORE_USER))
561 return;
562
563 set_track(s, object, TRACK_FREE, 0UL);
564 set_track(s, object, TRACK_ALLOC, 0UL);
565}
566
567static void print_track(const char *s, struct track *t)
568{
569 if (!t->addr)
570 return;
571
572 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
573 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
574#ifdef CONFIG_STACKTRACE
575 {
576 int i;
577 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
578 if (t->addrs[i])
579 pr_err("\t%pS\n", (void *)t->addrs[i]);
580 else
581 break;
582 }
583#endif
584}
585
586static void print_tracking(struct kmem_cache *s, void *object)
587{
588 if (!(s->flags & SLAB_STORE_USER))
589 return;
590
591 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
592 print_track("Freed", get_track(s, object, TRACK_FREE));
593}
594
595static void print_page_info(struct page *page)
596{
597 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
598 page, page->objects, page->inuse, page->freelist, page->flags);
599
600}
601
602static void slab_bug(struct kmem_cache *s, char *fmt, ...)
603{
604 struct va_format vaf;
605 va_list args;
606
607 va_start(args, fmt);
608 vaf.fmt = fmt;
609 vaf.va = &args;
610 pr_err("=============================================================================\n");
611 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
612 pr_err("-----------------------------------------------------------------------------\n\n");
613
614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 va_end(args);
616}
617
618static void slab_fix(struct kmem_cache *s, char *fmt, ...)
619{
620 struct va_format vaf;
621 va_list args;
622
623 va_start(args, fmt);
624 vaf.fmt = fmt;
625 vaf.va = &args;
626 pr_err("FIX %s: %pV\n", s->name, &vaf);
627 va_end(args);
628}
629
630static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
631{
632 unsigned int off; /* Offset of last byte */
633 u8 *addr = page_address(page);
634
635 print_tracking(s, p);
636
637 print_page_info(page);
638
639 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
640 p, p - addr, get_freepointer(s, p));
641
642 if (s->flags & SLAB_RED_ZONE)
643 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
644 else if (p > addr + 16)
645 print_section("Bytes b4 ", p - 16, 16);
646
647 print_section("Object ", p, min_t(unsigned long, s->object_size,
648 PAGE_SIZE));
649 if (s->flags & SLAB_RED_ZONE)
650 print_section("Redzone ", p + s->object_size,
651 s->inuse - s->object_size);
652
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
658 if (s->flags & SLAB_STORE_USER)
659 off += 2 * sizeof(struct track);
660
661 off += kasan_metadata_size(s);
662
663 if (off != size_from_object(s))
664 /* Beginning of the filler is the free pointer */
665 print_section("Padding ", p + off, size_from_object(s) - off);
666
667 dump_stack();
668}
669
670void object_err(struct kmem_cache *s, struct page *page,
671 u8 *object, char *reason)
672{
673 slab_bug(s, "%s", reason);
674 print_trailer(s, page, object);
675}
676
677static void slab_err(struct kmem_cache *s, struct page *page,
678 const char *fmt, ...)
679{
680 va_list args;
681 char buf[100];
682
683 va_start(args, fmt);
684 vsnprintf(buf, sizeof(buf), fmt, args);
685 va_end(args);
686 slab_bug(s, "%s", buf);
687 print_page_info(page);
688 dump_stack();
689}
690
691static void init_object(struct kmem_cache *s, void *object, u8 val)
692{
693 u8 *p = object;
694
695 if (s->flags & SLAB_RED_ZONE)
696 memset(p - s->red_left_pad, val, s->red_left_pad);
697
698 if (s->flags & __OBJECT_POISON) {
699 memset(p, POISON_FREE, s->object_size - 1);
700 p[s->object_size - 1] = POISON_END;
701 }
702
703 if (s->flags & SLAB_RED_ZONE)
704 memset(p + s->object_size, val, s->inuse - s->object_size);
705}
706
707static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
708 void *from, void *to)
709{
710 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
711 memset(from, data, to - from);
712}
713
714static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
715 u8 *object, char *what,
716 u8 *start, unsigned int value, unsigned int bytes)
717{
718 u8 *fault;
719 u8 *end;
720
721 metadata_access_enable();
722 fault = memchr_inv(start, value, bytes);
723 metadata_access_disable();
724 if (!fault)
725 return 1;
726
727 end = start + bytes;
728 while (end > fault && end[-1] == value)
729 end--;
730
731 slab_bug(s, "%s overwritten", what);
732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
733 fault, end - 1, fault[0], value);
734 print_trailer(s, page, object);
735
736 restore_bytes(s, what, value, fault, end);
737 return 0;
738}
739
740/*
741 * Object layout:
742 *
743 * object address
744 * Bytes of the object to be managed.
745 * If the freepointer may overlay the object then the free
746 * pointer is the first word of the object.
747 *
748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
749 * 0xa5 (POISON_END)
750 *
751 * object + s->object_size
752 * Padding to reach word boundary. This is also used for Redzoning.
753 * Padding is extended by another word if Redzoning is enabled and
754 * object_size == inuse.
755 *
756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757 * 0xcc (RED_ACTIVE) for objects in use.
758 *
759 * object + s->inuse
760 * Meta data starts here.
761 *
762 * A. Free pointer (if we cannot overwrite object on free)
763 * B. Tracking data for SLAB_STORE_USER
764 * C. Padding to reach required alignment boundary or at mininum
765 * one word if debugging is on to be able to detect writes
766 * before the word boundary.
767 *
768 * Padding is done using 0x5a (POISON_INUSE)
769 *
770 * object + s->size
771 * Nothing is used beyond s->size.
772 *
773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
774 * ignored. And therefore no slab options that rely on these boundaries
775 * may be used with merged slabcaches.
776 */
777
778static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779{
780 unsigned long off = s->inuse; /* The end of info */
781
782 if (s->offset)
783 /* Freepointer is placed after the object. */
784 off += sizeof(void *);
785
786 if (s->flags & SLAB_STORE_USER)
787 /* We also have user information there */
788 off += 2 * sizeof(struct track);
789
790 off += kasan_metadata_size(s);
791
792 if (size_from_object(s) == off)
793 return 1;
794
795 return check_bytes_and_report(s, page, p, "Object padding",
796 p + off, POISON_INUSE, size_from_object(s) - off);
797}
798
799/* Check the pad bytes at the end of a slab page */
800static int slab_pad_check(struct kmem_cache *s, struct page *page)
801{
802 u8 *start;
803 u8 *fault;
804 u8 *end;
805 int length;
806 int remainder;
807
808 if (!(s->flags & SLAB_POISON))
809 return 1;
810
811 start = page_address(page);
812 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
813 end = start + length;
814 remainder = length % s->size;
815 if (!remainder)
816 return 1;
817
818 metadata_access_enable();
819 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
820 metadata_access_disable();
821 if (!fault)
822 return 1;
823 while (end > fault && end[-1] == POISON_INUSE)
824 end--;
825
826 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
827 print_section("Padding ", end - remainder, remainder);
828
829 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
830 return 0;
831}
832
833static int check_object(struct kmem_cache *s, struct page *page,
834 void *object, u8 val)
835{
836 u8 *p = object;
837 u8 *endobject = object + s->object_size;
838
839 if (s->flags & SLAB_RED_ZONE) {
840 if (!check_bytes_and_report(s, page, object, "Redzone",
841 object - s->red_left_pad, val, s->red_left_pad))
842 return 0;
843
844 if (!check_bytes_and_report(s, page, object, "Redzone",
845 endobject, val, s->inuse - s->object_size))
846 return 0;
847 } else {
848 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
849 check_bytes_and_report(s, page, p, "Alignment padding",
850 endobject, POISON_INUSE,
851 s->inuse - s->object_size);
852 }
853 }
854
855 if (s->flags & SLAB_POISON) {
856 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
857 (!check_bytes_and_report(s, page, p, "Poison", p,
858 POISON_FREE, s->object_size - 1) ||
859 !check_bytes_and_report(s, page, p, "Poison",
860 p + s->object_size - 1, POISON_END, 1)))
861 return 0;
862 /*
863 * check_pad_bytes cleans up on its own.
864 */
865 check_pad_bytes(s, page, p);
866 }
867
868 if (!s->offset && val == SLUB_RED_ACTIVE)
869 /*
870 * Object and freepointer overlap. Cannot check
871 * freepointer while object is allocated.
872 */
873 return 1;
874
875 /* Check free pointer validity */
876 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
877 object_err(s, page, p, "Freepointer corrupt");
878 /*
879 * No choice but to zap it and thus lose the remainder
880 * of the free objects in this slab. May cause
881 * another error because the object count is now wrong.
882 */
883 set_freepointer(s, p, NULL);
884 return 0;
885 }
886 return 1;
887}
888
889static int check_slab(struct kmem_cache *s, struct page *page)
890{
891 int maxobj;
892
893 VM_BUG_ON(!irqs_disabled());
894
895 if (!PageSlab(page)) {
896 slab_err(s, page, "Not a valid slab page");
897 return 0;
898 }
899
900 maxobj = order_objects(compound_order(page), s->size, s->reserved);
901 if (page->objects > maxobj) {
902 slab_err(s, page, "objects %u > max %u",
903 page->objects, maxobj);
904 return 0;
905 }
906 if (page->inuse > page->objects) {
907 slab_err(s, page, "inuse %u > max %u",
908 page->inuse, page->objects);
909 return 0;
910 }
911 /* Slab_pad_check fixes things up after itself */
912 slab_pad_check(s, page);
913 return 1;
914}
915
916/*
917 * Determine if a certain object on a page is on the freelist. Must hold the
918 * slab lock to guarantee that the chains are in a consistent state.
919 */
920static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
921{
922 int nr = 0;
923 void *fp;
924 void *object = NULL;
925 int max_objects;
926
927 fp = page->freelist;
928 while (fp && nr <= page->objects) {
929 if (fp == search)
930 return 1;
931 if (!check_valid_pointer(s, page, fp)) {
932 if (object) {
933 object_err(s, page, object,
934 "Freechain corrupt");
935 set_freepointer(s, object, NULL);
936 } else {
937 slab_err(s, page, "Freepointer corrupt");
938 page->freelist = NULL;
939 page->inuse = page->objects;
940 slab_fix(s, "Freelist cleared");
941 return 0;
942 }
943 break;
944 }
945 object = fp;
946 fp = get_freepointer(s, object);
947 nr++;
948 }
949
950 max_objects = order_objects(compound_order(page), s->size, s->reserved);
951 if (max_objects > MAX_OBJS_PER_PAGE)
952 max_objects = MAX_OBJS_PER_PAGE;
953
954 if (page->objects != max_objects) {
955 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
956 page->objects, max_objects);
957 page->objects = max_objects;
958 slab_fix(s, "Number of objects adjusted.");
959 }
960 if (page->inuse != page->objects - nr) {
961 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
962 page->inuse, page->objects - nr);
963 page->inuse = page->objects - nr;
964 slab_fix(s, "Object count adjusted.");
965 }
966 return search == NULL;
967}
968
969static void trace(struct kmem_cache *s, struct page *page, void *object,
970 int alloc)
971{
972 if (s->flags & SLAB_TRACE) {
973 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
974 s->name,
975 alloc ? "alloc" : "free",
976 object, page->inuse,
977 page->freelist);
978
979 if (!alloc)
980 print_section("Object ", (void *)object,
981 s->object_size);
982
983 dump_stack();
984 }
985}
986
987/*
988 * Tracking of fully allocated slabs for debugging purposes.
989 */
990static void add_full(struct kmem_cache *s,
991 struct kmem_cache_node *n, struct page *page)
992{
993 if (!(s->flags & SLAB_STORE_USER))
994 return;
995
996 lockdep_assert_held(&n->list_lock);
997 list_add(&page->lru, &n->full);
998}
999
1000static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1001{
1002 if (!(s->flags & SLAB_STORE_USER))
1003 return;
1004
1005 lockdep_assert_held(&n->list_lock);
1006 list_del(&page->lru);
1007}
1008
1009/* Tracking of the number of slabs for debugging purposes */
1010static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1011{
1012 struct kmem_cache_node *n = get_node(s, node);
1013
1014 return atomic_long_read(&n->nr_slabs);
1015}
1016
1017static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1018{
1019 return atomic_long_read(&n->nr_slabs);
1020}
1021
1022static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1023{
1024 struct kmem_cache_node *n = get_node(s, node);
1025
1026 /*
1027 * May be called early in order to allocate a slab for the
1028 * kmem_cache_node structure. Solve the chicken-egg
1029 * dilemma by deferring the increment of the count during
1030 * bootstrap (see early_kmem_cache_node_alloc).
1031 */
1032 if (likely(n)) {
1033 atomic_long_inc(&n->nr_slabs);
1034 atomic_long_add(objects, &n->total_objects);
1035 }
1036}
1037static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1038{
1039 struct kmem_cache_node *n = get_node(s, node);
1040
1041 atomic_long_dec(&n->nr_slabs);
1042 atomic_long_sub(objects, &n->total_objects);
1043}
1044
1045/* Object debug checks for alloc/free paths */
1046static void setup_object_debug(struct kmem_cache *s, struct page *page,
1047 void *object)
1048{
1049 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1050 return;
1051
1052 init_object(s, object, SLUB_RED_INACTIVE);
1053 init_tracking(s, object);
1054}
1055
1056static inline int alloc_consistency_checks(struct kmem_cache *s,
1057 struct page *page,
1058 void *object, unsigned long addr)
1059{
1060 if (!check_slab(s, page))
1061 return 0;
1062
1063 if (!check_valid_pointer(s, page, object)) {
1064 object_err(s, page, object, "Freelist Pointer check fails");
1065 return 0;
1066 }
1067
1068 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1069 return 0;
1070
1071 return 1;
1072}
1073
1074static noinline int alloc_debug_processing(struct kmem_cache *s,
1075 struct page *page,
1076 void *object, unsigned long addr)
1077{
1078 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1079 if (!alloc_consistency_checks(s, page, object, addr))
1080 goto bad;
1081 }
1082
1083 /* Success perform special debug activities for allocs */
1084 if (s->flags & SLAB_STORE_USER)
1085 set_track(s, object, TRACK_ALLOC, addr);
1086 trace(s, page, object, 1);
1087 init_object(s, object, SLUB_RED_ACTIVE);
1088 return 1;
1089
1090bad:
1091 if (PageSlab(page)) {
1092 /*
1093 * If this is a slab page then lets do the best we can
1094 * to avoid issues in the future. Marking all objects
1095 * as used avoids touching the remaining objects.
1096 */
1097 slab_fix(s, "Marking all objects used");
1098 page->inuse = page->objects;
1099 page->freelist = NULL;
1100 }
1101 return 0;
1102}
1103
1104static inline int free_consistency_checks(struct kmem_cache *s,
1105 struct page *page, void *object, unsigned long addr)
1106{
1107 if (!check_valid_pointer(s, page, object)) {
1108 slab_err(s, page, "Invalid object pointer 0x%p", object);
1109 return 0;
1110 }
1111
1112 if (on_freelist(s, page, object)) {
1113 object_err(s, page, object, "Object already free");
1114 return 0;
1115 }
1116
1117 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1118 return 0;
1119
1120 if (unlikely(s != page->slab_cache)) {
1121 if (!PageSlab(page)) {
1122 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1123 object);
1124 } else if (!page->slab_cache) {
1125 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1126 object);
1127 dump_stack();
1128 } else
1129 object_err(s, page, object,
1130 "page slab pointer corrupt.");
1131 return 0;
1132 }
1133 return 1;
1134}
1135
1136/* Supports checking bulk free of a constructed freelist */
1137static noinline int free_debug_processing(
1138 struct kmem_cache *s, struct page *page,
1139 void *head, void *tail, int bulk_cnt,
1140 unsigned long addr)
1141{
1142 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1143 void *object = head;
1144 int cnt = 0;
1145 unsigned long uninitialized_var(flags);
1146 int ret = 0;
1147
1148 spin_lock_irqsave(&n->list_lock, flags);
1149 slab_lock(page);
1150
1151 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1152 if (!check_slab(s, page))
1153 goto out;
1154 }
1155
1156next_object:
1157 cnt++;
1158
1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1160 if (!free_consistency_checks(s, page, object, addr))
1161 goto out;
1162 }
1163
1164 if (s->flags & SLAB_STORE_USER)
1165 set_track(s, object, TRACK_FREE, addr);
1166 trace(s, page, object, 0);
1167 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1168 init_object(s, object, SLUB_RED_INACTIVE);
1169
1170 /* Reached end of constructed freelist yet? */
1171 if (object != tail) {
1172 object = get_freepointer(s, object);
1173 goto next_object;
1174 }
1175 ret = 1;
1176
1177out:
1178 if (cnt != bulk_cnt)
1179 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1180 bulk_cnt, cnt);
1181
1182 slab_unlock(page);
1183 spin_unlock_irqrestore(&n->list_lock, flags);
1184 if (!ret)
1185 slab_fix(s, "Object at 0x%p not freed", object);
1186 return ret;
1187}
1188
1189static int __init setup_slub_debug(char *str)
1190{
1191 slub_debug = DEBUG_DEFAULT_FLAGS;
1192 if (*str++ != '=' || !*str)
1193 /*
1194 * No options specified. Switch on full debugging.
1195 */
1196 goto out;
1197
1198 if (*str == ',')
1199 /*
1200 * No options but restriction on slabs. This means full
1201 * debugging for slabs matching a pattern.
1202 */
1203 goto check_slabs;
1204
1205 slub_debug = 0;
1206 if (*str == '-')
1207 /*
1208 * Switch off all debugging measures.
1209 */
1210 goto out;
1211
1212 /*
1213 * Determine which debug features should be switched on
1214 */
1215 for (; *str && *str != ','; str++) {
1216 switch (tolower(*str)) {
1217 case 'f':
1218 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1219 break;
1220 case 'z':
1221 slub_debug |= SLAB_RED_ZONE;
1222 break;
1223 case 'p':
1224 slub_debug |= SLAB_POISON;
1225 break;
1226 case 'u':
1227 slub_debug |= SLAB_STORE_USER;
1228 break;
1229 case 't':
1230 slub_debug |= SLAB_TRACE;
1231 break;
1232 case 'a':
1233 slub_debug |= SLAB_FAILSLAB;
1234 break;
1235 case 'o':
1236 /*
1237 * Avoid enabling debugging on caches if its minimum
1238 * order would increase as a result.
1239 */
1240 disable_higher_order_debug = 1;
1241 break;
1242 default:
1243 pr_err("slub_debug option '%c' unknown. skipped\n",
1244 *str);
1245 }
1246 }
1247
1248check_slabs:
1249 if (*str == ',')
1250 slub_debug_slabs = str + 1;
1251out:
1252 return 1;
1253}
1254
1255__setup("slub_debug", setup_slub_debug);
1256
1257unsigned long kmem_cache_flags(unsigned long object_size,
1258 unsigned long flags, const char *name,
1259 void (*ctor)(void *))
1260{
1261 /*
1262 * Enable debugging if selected on the kernel commandline.
1263 */
1264 if (slub_debug && (!slub_debug_slabs || (name &&
1265 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1266 flags |= slub_debug;
1267
1268 return flags;
1269}
1270#else /* !CONFIG_SLUB_DEBUG */
1271static inline void setup_object_debug(struct kmem_cache *s,
1272 struct page *page, void *object) {}
1273
1274static inline int alloc_debug_processing(struct kmem_cache *s,
1275 struct page *page, void *object, unsigned long addr) { return 0; }
1276
1277static inline int free_debug_processing(
1278 struct kmem_cache *s, struct page *page,
1279 void *head, void *tail, int bulk_cnt,
1280 unsigned long addr) { return 0; }
1281
1282static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1283 { return 1; }
1284static inline int check_object(struct kmem_cache *s, struct page *page,
1285 void *object, u8 val) { return 1; }
1286static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287 struct page *page) {}
1288static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1289 struct page *page) {}
1290unsigned long kmem_cache_flags(unsigned long object_size,
1291 unsigned long flags, const char *name,
1292 void (*ctor)(void *))
1293{
1294 return flags;
1295}
1296#define slub_debug 0
1297
1298#define disable_higher_order_debug 0
1299
1300static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1301 { return 0; }
1302static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1303 { return 0; }
1304static inline void inc_slabs_node(struct kmem_cache *s, int node,
1305 int objects) {}
1306static inline void dec_slabs_node(struct kmem_cache *s, int node,
1307 int objects) {}
1308
1309#endif /* CONFIG_SLUB_DEBUG */
1310
1311/*
1312 * Hooks for other subsystems that check memory allocations. In a typical
1313 * production configuration these hooks all should produce no code at all.
1314 */
1315static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1316{
1317 kmemleak_alloc(ptr, size, 1, flags);
1318 kasan_kmalloc_large(ptr, size, flags);
1319}
1320
1321static inline void kfree_hook(const void *x)
1322{
1323 kmemleak_free(x);
1324 kasan_kfree_large(x);
1325}
1326
1327static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1328{
1329 void *freeptr;
1330
1331 kmemleak_free_recursive(x, s->flags);
1332
1333 /*
1334 * Trouble is that we may no longer disable interrupts in the fast path
1335 * So in order to make the debug calls that expect irqs to be
1336 * disabled we need to disable interrupts temporarily.
1337 */
1338#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 {
1340 unsigned long flags;
1341
1342 local_irq_save(flags);
1343 kmemcheck_slab_free(s, x, s->object_size);
1344 debug_check_no_locks_freed(x, s->object_size);
1345 local_irq_restore(flags);
1346 }
1347#endif
1348 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1349 debug_check_no_obj_freed(x, s->object_size);
1350
1351 freeptr = get_freepointer(s, x);
1352 /*
1353 * kasan_slab_free() may put x into memory quarantine, delaying its
1354 * reuse. In this case the object's freelist pointer is changed.
1355 */
1356 kasan_slab_free(s, x);
1357 return freeptr;
1358}
1359
1360static inline void slab_free_freelist_hook(struct kmem_cache *s,
1361 void *head, void *tail)
1362{
1363/*
1364 * Compiler cannot detect this function can be removed if slab_free_hook()
1365 * evaluates to nothing. Thus, catch all relevant config debug options here.
1366 */
1367#if defined(CONFIG_KMEMCHECK) || \
1368 defined(CONFIG_LOCKDEP) || \
1369 defined(CONFIG_DEBUG_KMEMLEAK) || \
1370 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1371 defined(CONFIG_KASAN)
1372
1373 void *object = head;
1374 void *tail_obj = tail ? : head;
1375 void *freeptr;
1376
1377 do {
1378 freeptr = slab_free_hook(s, object);
1379 } while ((object != tail_obj) && (object = freeptr));
1380#endif
1381}
1382
1383static void setup_object(struct kmem_cache *s, struct page *page,
1384 void *object)
1385{
1386 setup_object_debug(s, page, object);
1387 kasan_init_slab_obj(s, object);
1388 if (unlikely(s->ctor)) {
1389 kasan_unpoison_object_data(s, object);
1390 s->ctor(object);
1391 kasan_poison_object_data(s, object);
1392 }
1393}
1394
1395/*
1396 * Slab allocation and freeing
1397 */
1398static inline struct page *alloc_slab_page(struct kmem_cache *s,
1399 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1400{
1401 struct page *page;
1402 int order = oo_order(oo);
1403
1404 flags |= __GFP_NOTRACK;
1405
1406 if (node == NUMA_NO_NODE)
1407 page = alloc_pages(flags, order);
1408 else
1409 page = __alloc_pages_node(node, flags, order);
1410
1411 if (page && memcg_charge_slab(page, flags, order, s)) {
1412 __free_pages(page, order);
1413 page = NULL;
1414 }
1415
1416 return page;
1417}
1418
1419#ifdef CONFIG_SLAB_FREELIST_RANDOM
1420/* Pre-initialize the random sequence cache */
1421static int init_cache_random_seq(struct kmem_cache *s)
1422{
1423 int err;
1424 unsigned long i, count = oo_objects(s->oo);
1425
1426 err = cache_random_seq_create(s, count, GFP_KERNEL);
1427 if (err) {
1428 pr_err("SLUB: Unable to initialize free list for %s\n",
1429 s->name);
1430 return err;
1431 }
1432
1433 /* Transform to an offset on the set of pages */
1434 if (s->random_seq) {
1435 for (i = 0; i < count; i++)
1436 s->random_seq[i] *= s->size;
1437 }
1438 return 0;
1439}
1440
1441/* Initialize each random sequence freelist per cache */
1442static void __init init_freelist_randomization(void)
1443{
1444 struct kmem_cache *s;
1445
1446 mutex_lock(&slab_mutex);
1447
1448 list_for_each_entry(s, &slab_caches, list)
1449 init_cache_random_seq(s);
1450
1451 mutex_unlock(&slab_mutex);
1452}
1453
1454/* Get the next entry on the pre-computed freelist randomized */
1455static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1456 unsigned long *pos, void *start,
1457 unsigned long page_limit,
1458 unsigned long freelist_count)
1459{
1460 unsigned int idx;
1461
1462 /*
1463 * If the target page allocation failed, the number of objects on the
1464 * page might be smaller than the usual size defined by the cache.
1465 */
1466 do {
1467 idx = s->random_seq[*pos];
1468 *pos += 1;
1469 if (*pos >= freelist_count)
1470 *pos = 0;
1471 } while (unlikely(idx >= page_limit));
1472
1473 return (char *)start + idx;
1474}
1475
1476/* Shuffle the single linked freelist based on a random pre-computed sequence */
1477static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1478{
1479 void *start;
1480 void *cur;
1481 void *next;
1482 unsigned long idx, pos, page_limit, freelist_count;
1483
1484 if (page->objects < 2 || !s->random_seq)
1485 return false;
1486
1487 freelist_count = oo_objects(s->oo);
1488 pos = get_random_int() % freelist_count;
1489
1490 page_limit = page->objects * s->size;
1491 start = fixup_red_left(s, page_address(page));
1492
1493 /* First entry is used as the base of the freelist */
1494 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1495 freelist_count);
1496 page->freelist = cur;
1497
1498 for (idx = 1; idx < page->objects; idx++) {
1499 setup_object(s, page, cur);
1500 next = next_freelist_entry(s, page, &pos, start, page_limit,
1501 freelist_count);
1502 set_freepointer(s, cur, next);
1503 cur = next;
1504 }
1505 setup_object(s, page, cur);
1506 set_freepointer(s, cur, NULL);
1507
1508 return true;
1509}
1510#else
1511static inline int init_cache_random_seq(struct kmem_cache *s)
1512{
1513 return 0;
1514}
1515static inline void init_freelist_randomization(void) { }
1516static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517{
1518 return false;
1519}
1520#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1521
1522static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1523{
1524 struct page *page;
1525 struct kmem_cache_order_objects oo = s->oo;
1526 gfp_t alloc_gfp;
1527 void *start, *p;
1528 int idx, order;
1529 bool shuffle;
1530
1531 flags &= gfp_allowed_mask;
1532
1533 if (gfpflags_allow_blocking(flags))
1534 local_irq_enable();
1535
1536 flags |= s->allocflags;
1537
1538 /*
1539 * Let the initial higher-order allocation fail under memory pressure
1540 * so we fall-back to the minimum order allocation.
1541 */
1542 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1543 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1544 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1545
1546 page = alloc_slab_page(s, alloc_gfp, node, oo);
1547 if (unlikely(!page)) {
1548 oo = s->min;
1549 alloc_gfp = flags;
1550 /*
1551 * Allocation may have failed due to fragmentation.
1552 * Try a lower order alloc if possible
1553 */
1554 page = alloc_slab_page(s, alloc_gfp, node, oo);
1555 if (unlikely(!page))
1556 goto out;
1557 stat(s, ORDER_FALLBACK);
1558 }
1559
1560 if (kmemcheck_enabled &&
1561 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1562 int pages = 1 << oo_order(oo);
1563
1564 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1565
1566 /*
1567 * Objects from caches that have a constructor don't get
1568 * cleared when they're allocated, so we need to do it here.
1569 */
1570 if (s->ctor)
1571 kmemcheck_mark_uninitialized_pages(page, pages);
1572 else
1573 kmemcheck_mark_unallocated_pages(page, pages);
1574 }
1575
1576 page->objects = oo_objects(oo);
1577
1578 order = compound_order(page);
1579 page->slab_cache = s;
1580 __SetPageSlab(page);
1581 if (page_is_pfmemalloc(page))
1582 SetPageSlabPfmemalloc(page);
1583
1584 start = page_address(page);
1585
1586 if (unlikely(s->flags & SLAB_POISON))
1587 memset(start, POISON_INUSE, PAGE_SIZE << order);
1588
1589 kasan_poison_slab(page);
1590
1591 shuffle = shuffle_freelist(s, page);
1592
1593 if (!shuffle) {
1594 for_each_object_idx(p, idx, s, start, page->objects) {
1595 setup_object(s, page, p);
1596 if (likely(idx < page->objects))
1597 set_freepointer(s, p, p + s->size);
1598 else
1599 set_freepointer(s, p, NULL);
1600 }
1601 page->freelist = fixup_red_left(s, start);
1602 }
1603
1604 page->inuse = page->objects;
1605 page->frozen = 1;
1606
1607out:
1608 if (gfpflags_allow_blocking(flags))
1609 local_irq_disable();
1610 if (!page)
1611 return NULL;
1612
1613 mod_zone_page_state(page_zone(page),
1614 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1615 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1616 1 << oo_order(oo));
1617
1618 inc_slabs_node(s, page_to_nid(page), page->objects);
1619
1620 return page;
1621}
1622
1623static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1624{
1625 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1626 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1627 flags &= ~GFP_SLAB_BUG_MASK;
1628 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1629 invalid_mask, &invalid_mask, flags, &flags);
1630 }
1631
1632 return allocate_slab(s,
1633 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1634}
1635
1636static void __free_slab(struct kmem_cache *s, struct page *page)
1637{
1638 int order = compound_order(page);
1639 int pages = 1 << order;
1640
1641 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1642 void *p;
1643
1644 slab_pad_check(s, page);
1645 for_each_object(p, s, page_address(page),
1646 page->objects)
1647 check_object(s, page, p, SLUB_RED_INACTIVE);
1648 }
1649
1650 kmemcheck_free_shadow(page, compound_order(page));
1651
1652 mod_zone_page_state(page_zone(page),
1653 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1654 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1655 -pages);
1656
1657 __ClearPageSlabPfmemalloc(page);
1658 __ClearPageSlab(page);
1659
1660 page_mapcount_reset(page);
1661 if (current->reclaim_state)
1662 current->reclaim_state->reclaimed_slab += pages;
1663 memcg_uncharge_slab(page, order, s);
1664 __free_pages(page, order);
1665}
1666
1667#define need_reserve_slab_rcu \
1668 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1669
1670static void rcu_free_slab(struct rcu_head *h)
1671{
1672 struct page *page;
1673
1674 if (need_reserve_slab_rcu)
1675 page = virt_to_head_page(h);
1676 else
1677 page = container_of((struct list_head *)h, struct page, lru);
1678
1679 __free_slab(page->slab_cache, page);
1680}
1681
1682static void free_slab(struct kmem_cache *s, struct page *page)
1683{
1684 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1685 struct rcu_head *head;
1686
1687 if (need_reserve_slab_rcu) {
1688 int order = compound_order(page);
1689 int offset = (PAGE_SIZE << order) - s->reserved;
1690
1691 VM_BUG_ON(s->reserved != sizeof(*head));
1692 head = page_address(page) + offset;
1693 } else {
1694 head = &page->rcu_head;
1695 }
1696
1697 call_rcu(head, rcu_free_slab);
1698 } else
1699 __free_slab(s, page);
1700}
1701
1702static void discard_slab(struct kmem_cache *s, struct page *page)
1703{
1704 dec_slabs_node(s, page_to_nid(page), page->objects);
1705 free_slab(s, page);
1706}
1707
1708/*
1709 * Management of partially allocated slabs.
1710 */
1711static inline void
1712__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1713{
1714 n->nr_partial++;
1715 if (tail == DEACTIVATE_TO_TAIL)
1716 list_add_tail(&page->lru, &n->partial);
1717 else
1718 list_add(&page->lru, &n->partial);
1719}
1720
1721static inline void add_partial(struct kmem_cache_node *n,
1722 struct page *page, int tail)
1723{
1724 lockdep_assert_held(&n->list_lock);
1725 __add_partial(n, page, tail);
1726}
1727
1728static inline void remove_partial(struct kmem_cache_node *n,
1729 struct page *page)
1730{
1731 lockdep_assert_held(&n->list_lock);
1732 list_del(&page->lru);
1733 n->nr_partial--;
1734}
1735
1736/*
1737 * Remove slab from the partial list, freeze it and
1738 * return the pointer to the freelist.
1739 *
1740 * Returns a list of objects or NULL if it fails.
1741 */
1742static inline void *acquire_slab(struct kmem_cache *s,
1743 struct kmem_cache_node *n, struct page *page,
1744 int mode, int *objects)
1745{
1746 void *freelist;
1747 unsigned long counters;
1748 struct page new;
1749
1750 lockdep_assert_held(&n->list_lock);
1751
1752 /*
1753 * Zap the freelist and set the frozen bit.
1754 * The old freelist is the list of objects for the
1755 * per cpu allocation list.
1756 */
1757 freelist = page->freelist;
1758 counters = page->counters;
1759 new.counters = counters;
1760 *objects = new.objects - new.inuse;
1761 if (mode) {
1762 new.inuse = page->objects;
1763 new.freelist = NULL;
1764 } else {
1765 new.freelist = freelist;
1766 }
1767
1768 VM_BUG_ON(new.frozen);
1769 new.frozen = 1;
1770
1771 if (!__cmpxchg_double_slab(s, page,
1772 freelist, counters,
1773 new.freelist, new.counters,
1774 "acquire_slab"))
1775 return NULL;
1776
1777 remove_partial(n, page);
1778 WARN_ON(!freelist);
1779 return freelist;
1780}
1781
1782static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1783static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1784
1785/*
1786 * Try to allocate a partial slab from a specific node.
1787 */
1788static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1789 struct kmem_cache_cpu *c, gfp_t flags)
1790{
1791 struct page *page, *page2;
1792 void *object = NULL;
1793 int available = 0;
1794 int objects;
1795
1796 /*
1797 * Racy check. If we mistakenly see no partial slabs then we
1798 * just allocate an empty slab. If we mistakenly try to get a
1799 * partial slab and there is none available then get_partials()
1800 * will return NULL.
1801 */
1802 if (!n || !n->nr_partial)
1803 return NULL;
1804
1805 spin_lock(&n->list_lock);
1806 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1807 void *t;
1808
1809 if (!pfmemalloc_match(page, flags))
1810 continue;
1811
1812 t = acquire_slab(s, n, page, object == NULL, &objects);
1813 if (!t)
1814 break;
1815
1816 available += objects;
1817 if (!object) {
1818 c->page = page;
1819 stat(s, ALLOC_FROM_PARTIAL);
1820 object = t;
1821 } else {
1822 put_cpu_partial(s, page, 0);
1823 stat(s, CPU_PARTIAL_NODE);
1824 }
1825 if (!kmem_cache_has_cpu_partial(s)
1826 || available > s->cpu_partial / 2)
1827 break;
1828
1829 }
1830 spin_unlock(&n->list_lock);
1831 return object;
1832}
1833
1834/*
1835 * Get a page from somewhere. Search in increasing NUMA distances.
1836 */
1837static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1838 struct kmem_cache_cpu *c)
1839{
1840#ifdef CONFIG_NUMA
1841 struct zonelist *zonelist;
1842 struct zoneref *z;
1843 struct zone *zone;
1844 enum zone_type high_zoneidx = gfp_zone(flags);
1845 void *object;
1846 unsigned int cpuset_mems_cookie;
1847
1848 /*
1849 * The defrag ratio allows a configuration of the tradeoffs between
1850 * inter node defragmentation and node local allocations. A lower
1851 * defrag_ratio increases the tendency to do local allocations
1852 * instead of attempting to obtain partial slabs from other nodes.
1853 *
1854 * If the defrag_ratio is set to 0 then kmalloc() always
1855 * returns node local objects. If the ratio is higher then kmalloc()
1856 * may return off node objects because partial slabs are obtained
1857 * from other nodes and filled up.
1858 *
1859 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1860 * (which makes defrag_ratio = 1000) then every (well almost)
1861 * allocation will first attempt to defrag slab caches on other nodes.
1862 * This means scanning over all nodes to look for partial slabs which
1863 * may be expensive if we do it every time we are trying to find a slab
1864 * with available objects.
1865 */
1866 if (!s->remote_node_defrag_ratio ||
1867 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1868 return NULL;
1869
1870 do {
1871 cpuset_mems_cookie = read_mems_allowed_begin();
1872 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1873 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1874 struct kmem_cache_node *n;
1875
1876 n = get_node(s, zone_to_nid(zone));
1877
1878 if (n && cpuset_zone_allowed(zone, flags) &&
1879 n->nr_partial > s->min_partial) {
1880 object = get_partial_node(s, n, c, flags);
1881 if (object) {
1882 /*
1883 * Don't check read_mems_allowed_retry()
1884 * here - if mems_allowed was updated in
1885 * parallel, that was a harmless race
1886 * between allocation and the cpuset
1887 * update
1888 */
1889 return object;
1890 }
1891 }
1892 }
1893 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1894#endif
1895 return NULL;
1896}
1897
1898/*
1899 * Get a partial page, lock it and return it.
1900 */
1901static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1902 struct kmem_cache_cpu *c)
1903{
1904 void *object;
1905 int searchnode = node;
1906
1907 if (node == NUMA_NO_NODE)
1908 searchnode = numa_mem_id();
1909 else if (!node_present_pages(node))
1910 searchnode = node_to_mem_node(node);
1911
1912 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1913 if (object || node != NUMA_NO_NODE)
1914 return object;
1915
1916 return get_any_partial(s, flags, c);
1917}
1918
1919#ifdef CONFIG_PREEMPT
1920/*
1921 * Calculate the next globally unique transaction for disambiguiation
1922 * during cmpxchg. The transactions start with the cpu number and are then
1923 * incremented by CONFIG_NR_CPUS.
1924 */
1925#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1926#else
1927/*
1928 * No preemption supported therefore also no need to check for
1929 * different cpus.
1930 */
1931#define TID_STEP 1
1932#endif
1933
1934static inline unsigned long next_tid(unsigned long tid)
1935{
1936 return tid + TID_STEP;
1937}
1938
1939static inline unsigned int tid_to_cpu(unsigned long tid)
1940{
1941 return tid % TID_STEP;
1942}
1943
1944static inline unsigned long tid_to_event(unsigned long tid)
1945{
1946 return tid / TID_STEP;
1947}
1948
1949static inline unsigned int init_tid(int cpu)
1950{
1951 return cpu;
1952}
1953
1954static inline void note_cmpxchg_failure(const char *n,
1955 const struct kmem_cache *s, unsigned long tid)
1956{
1957#ifdef SLUB_DEBUG_CMPXCHG
1958 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1959
1960 pr_info("%s %s: cmpxchg redo ", n, s->name);
1961
1962#ifdef CONFIG_PREEMPT
1963 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1964 pr_warn("due to cpu change %d -> %d\n",
1965 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1966 else
1967#endif
1968 if (tid_to_event(tid) != tid_to_event(actual_tid))
1969 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1970 tid_to_event(tid), tid_to_event(actual_tid));
1971 else
1972 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1973 actual_tid, tid, next_tid(tid));
1974#endif
1975 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1976}
1977
1978static void init_kmem_cache_cpus(struct kmem_cache *s)
1979{
1980 int cpu;
1981
1982 for_each_possible_cpu(cpu)
1983 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1984}
1985
1986/*
1987 * Remove the cpu slab
1988 */
1989static void deactivate_slab(struct kmem_cache *s, struct page *page,
1990 void *freelist)
1991{
1992 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1993 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1994 int lock = 0;
1995 enum slab_modes l = M_NONE, m = M_NONE;
1996 void *nextfree;
1997 int tail = DEACTIVATE_TO_HEAD;
1998 struct page new;
1999 struct page old;
2000
2001 if (page->freelist) {
2002 stat(s, DEACTIVATE_REMOTE_FREES);
2003 tail = DEACTIVATE_TO_TAIL;
2004 }
2005
2006 /*
2007 * Stage one: Free all available per cpu objects back
2008 * to the page freelist while it is still frozen. Leave the
2009 * last one.
2010 *
2011 * There is no need to take the list->lock because the page
2012 * is still frozen.
2013 */
2014 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2015 void *prior;
2016 unsigned long counters;
2017
2018 do {
2019 prior = page->freelist;
2020 counters = page->counters;
2021 set_freepointer(s, freelist, prior);
2022 new.counters = counters;
2023 new.inuse--;
2024 VM_BUG_ON(!new.frozen);
2025
2026 } while (!__cmpxchg_double_slab(s, page,
2027 prior, counters,
2028 freelist, new.counters,
2029 "drain percpu freelist"));
2030
2031 freelist = nextfree;
2032 }
2033
2034 /*
2035 * Stage two: Ensure that the page is unfrozen while the
2036 * list presence reflects the actual number of objects
2037 * during unfreeze.
2038 *
2039 * We setup the list membership and then perform a cmpxchg
2040 * with the count. If there is a mismatch then the page
2041 * is not unfrozen but the page is on the wrong list.
2042 *
2043 * Then we restart the process which may have to remove
2044 * the page from the list that we just put it on again
2045 * because the number of objects in the slab may have
2046 * changed.
2047 */
2048redo:
2049
2050 old.freelist = page->freelist;
2051 old.counters = page->counters;
2052 VM_BUG_ON(!old.frozen);
2053
2054 /* Determine target state of the slab */
2055 new.counters = old.counters;
2056 if (freelist) {
2057 new.inuse--;
2058 set_freepointer(s, freelist, old.freelist);
2059 new.freelist = freelist;
2060 } else
2061 new.freelist = old.freelist;
2062
2063 new.frozen = 0;
2064
2065 if (!new.inuse && n->nr_partial >= s->min_partial)
2066 m = M_FREE;
2067 else if (new.freelist) {
2068 m = M_PARTIAL;
2069 if (!lock) {
2070 lock = 1;
2071 /*
2072 * Taking the spinlock removes the possiblity
2073 * that acquire_slab() will see a slab page that
2074 * is frozen
2075 */
2076 spin_lock(&n->list_lock);
2077 }
2078 } else {
2079 m = M_FULL;
2080 if (kmem_cache_debug(s) && !lock) {
2081 lock = 1;
2082 /*
2083 * This also ensures that the scanning of full
2084 * slabs from diagnostic functions will not see
2085 * any frozen slabs.
2086 */
2087 spin_lock(&n->list_lock);
2088 }
2089 }
2090
2091 if (l != m) {
2092
2093 if (l == M_PARTIAL)
2094
2095 remove_partial(n, page);
2096
2097 else if (l == M_FULL)
2098
2099 remove_full(s, n, page);
2100
2101 if (m == M_PARTIAL) {
2102
2103 add_partial(n, page, tail);
2104 stat(s, tail);
2105
2106 } else if (m == M_FULL) {
2107
2108 stat(s, DEACTIVATE_FULL);
2109 add_full(s, n, page);
2110
2111 }
2112 }
2113
2114 l = m;
2115 if (!__cmpxchg_double_slab(s, page,
2116 old.freelist, old.counters,
2117 new.freelist, new.counters,
2118 "unfreezing slab"))
2119 goto redo;
2120
2121 if (lock)
2122 spin_unlock(&n->list_lock);
2123
2124 if (m == M_FREE) {
2125 stat(s, DEACTIVATE_EMPTY);
2126 discard_slab(s, page);
2127 stat(s, FREE_SLAB);
2128 }
2129}
2130
2131/*
2132 * Unfreeze all the cpu partial slabs.
2133 *
2134 * This function must be called with interrupts disabled
2135 * for the cpu using c (or some other guarantee must be there
2136 * to guarantee no concurrent accesses).
2137 */
2138static void unfreeze_partials(struct kmem_cache *s,
2139 struct kmem_cache_cpu *c)
2140{
2141#ifdef CONFIG_SLUB_CPU_PARTIAL
2142 struct kmem_cache_node *n = NULL, *n2 = NULL;
2143 struct page *page, *discard_page = NULL;
2144
2145 while ((page = c->partial)) {
2146 struct page new;
2147 struct page old;
2148
2149 c->partial = page->next;
2150
2151 n2 = get_node(s, page_to_nid(page));
2152 if (n != n2) {
2153 if (n)
2154 spin_unlock(&n->list_lock);
2155
2156 n = n2;
2157 spin_lock(&n->list_lock);
2158 }
2159
2160 do {
2161
2162 old.freelist = page->freelist;
2163 old.counters = page->counters;
2164 VM_BUG_ON(!old.frozen);
2165
2166 new.counters = old.counters;
2167 new.freelist = old.freelist;
2168
2169 new.frozen = 0;
2170
2171 } while (!__cmpxchg_double_slab(s, page,
2172 old.freelist, old.counters,
2173 new.freelist, new.counters,
2174 "unfreezing slab"));
2175
2176 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2177 page->next = discard_page;
2178 discard_page = page;
2179 } else {
2180 add_partial(n, page, DEACTIVATE_TO_TAIL);
2181 stat(s, FREE_ADD_PARTIAL);
2182 }
2183 }
2184
2185 if (n)
2186 spin_unlock(&n->list_lock);
2187
2188 while (discard_page) {
2189 page = discard_page;
2190 discard_page = discard_page->next;
2191
2192 stat(s, DEACTIVATE_EMPTY);
2193 discard_slab(s, page);
2194 stat(s, FREE_SLAB);
2195 }
2196#endif
2197}
2198
2199/*
2200 * Put a page that was just frozen (in __slab_free) into a partial page
2201 * slot if available. This is done without interrupts disabled and without
2202 * preemption disabled. The cmpxchg is racy and may put the partial page
2203 * onto a random cpus partial slot.
2204 *
2205 * If we did not find a slot then simply move all the partials to the
2206 * per node partial list.
2207 */
2208static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2209{
2210#ifdef CONFIG_SLUB_CPU_PARTIAL
2211 struct page *oldpage;
2212 int pages;
2213 int pobjects;
2214
2215 preempt_disable();
2216 do {
2217 pages = 0;
2218 pobjects = 0;
2219 oldpage = this_cpu_read(s->cpu_slab->partial);
2220
2221 if (oldpage) {
2222 pobjects = oldpage->pobjects;
2223 pages = oldpage->pages;
2224 if (drain && pobjects > s->cpu_partial) {
2225 unsigned long flags;
2226 /*
2227 * partial array is full. Move the existing
2228 * set to the per node partial list.
2229 */
2230 local_irq_save(flags);
2231 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2232 local_irq_restore(flags);
2233 oldpage = NULL;
2234 pobjects = 0;
2235 pages = 0;
2236 stat(s, CPU_PARTIAL_DRAIN);
2237 }
2238 }
2239
2240 pages++;
2241 pobjects += page->objects - page->inuse;
2242
2243 page->pages = pages;
2244 page->pobjects = pobjects;
2245 page->next = oldpage;
2246
2247 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2248 != oldpage);
2249 if (unlikely(!s->cpu_partial)) {
2250 unsigned long flags;
2251
2252 local_irq_save(flags);
2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254 local_irq_restore(flags);
2255 }
2256 preempt_enable();
2257#endif
2258}
2259
2260static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2261{
2262 stat(s, CPUSLAB_FLUSH);
2263 deactivate_slab(s, c->page, c->freelist);
2264
2265 c->tid = next_tid(c->tid);
2266 c->page = NULL;
2267 c->freelist = NULL;
2268}
2269
2270/*
2271 * Flush cpu slab.
2272 *
2273 * Called from IPI handler with interrupts disabled.
2274 */
2275static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2276{
2277 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2278
2279 if (likely(c)) {
2280 if (c->page)
2281 flush_slab(s, c);
2282
2283 unfreeze_partials(s, c);
2284 }
2285}
2286
2287static void flush_cpu_slab(void *d)
2288{
2289 struct kmem_cache *s = d;
2290
2291 __flush_cpu_slab(s, smp_processor_id());
2292}
2293
2294static bool has_cpu_slab(int cpu, void *info)
2295{
2296 struct kmem_cache *s = info;
2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2298
2299 return c->page || c->partial;
2300}
2301
2302static void flush_all(struct kmem_cache *s)
2303{
2304 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2305}
2306
2307/*
2308 * Check if the objects in a per cpu structure fit numa
2309 * locality expectations.
2310 */
2311static inline int node_match(struct page *page, int node)
2312{
2313#ifdef CONFIG_NUMA
2314 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2315 return 0;
2316#endif
2317 return 1;
2318}
2319
2320#ifdef CONFIG_SLUB_DEBUG
2321static int count_free(struct page *page)
2322{
2323 return page->objects - page->inuse;
2324}
2325
2326static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2327{
2328 return atomic_long_read(&n->total_objects);
2329}
2330#endif /* CONFIG_SLUB_DEBUG */
2331
2332#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2333static unsigned long count_partial(struct kmem_cache_node *n,
2334 int (*get_count)(struct page *))
2335{
2336 unsigned long flags;
2337 unsigned long x = 0;
2338 struct page *page;
2339
2340 spin_lock_irqsave(&n->list_lock, flags);
2341 list_for_each_entry(page, &n->partial, lru)
2342 x += get_count(page);
2343 spin_unlock_irqrestore(&n->list_lock, flags);
2344 return x;
2345}
2346#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2347
2348static noinline void
2349slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2350{
2351#ifdef CONFIG_SLUB_DEBUG
2352 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2353 DEFAULT_RATELIMIT_BURST);
2354 int node;
2355 struct kmem_cache_node *n;
2356
2357 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2358 return;
2359
2360 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2361 nid, gfpflags, &gfpflags);
2362 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2363 s->name, s->object_size, s->size, oo_order(s->oo),
2364 oo_order(s->min));
2365
2366 if (oo_order(s->min) > get_order(s->object_size))
2367 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2368 s->name);
2369
2370 for_each_kmem_cache_node(s, node, n) {
2371 unsigned long nr_slabs;
2372 unsigned long nr_objs;
2373 unsigned long nr_free;
2374
2375 nr_free = count_partial(n, count_free);
2376 nr_slabs = node_nr_slabs(n);
2377 nr_objs = node_nr_objs(n);
2378
2379 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2380 node, nr_slabs, nr_objs, nr_free);
2381 }
2382#endif
2383}
2384
2385static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2386 int node, struct kmem_cache_cpu **pc)
2387{
2388 void *freelist;
2389 struct kmem_cache_cpu *c = *pc;
2390 struct page *page;
2391
2392 freelist = get_partial(s, flags, node, c);
2393
2394 if (freelist)
2395 return freelist;
2396
2397 page = new_slab(s, flags, node);
2398 if (page) {
2399 c = raw_cpu_ptr(s->cpu_slab);
2400 if (c->page)
2401 flush_slab(s, c);
2402
2403 /*
2404 * No other reference to the page yet so we can
2405 * muck around with it freely without cmpxchg
2406 */
2407 freelist = page->freelist;
2408 page->freelist = NULL;
2409
2410 stat(s, ALLOC_SLAB);
2411 c->page = page;
2412 *pc = c;
2413 } else
2414 freelist = NULL;
2415
2416 return freelist;
2417}
2418
2419static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2420{
2421 if (unlikely(PageSlabPfmemalloc(page)))
2422 return gfp_pfmemalloc_allowed(gfpflags);
2423
2424 return true;
2425}
2426
2427/*
2428 * Check the page->freelist of a page and either transfer the freelist to the
2429 * per cpu freelist or deactivate the page.
2430 *
2431 * The page is still frozen if the return value is not NULL.
2432 *
2433 * If this function returns NULL then the page has been unfrozen.
2434 *
2435 * This function must be called with interrupt disabled.
2436 */
2437static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2438{
2439 struct page new;
2440 unsigned long counters;
2441 void *freelist;
2442
2443 do {
2444 freelist = page->freelist;
2445 counters = page->counters;
2446
2447 new.counters = counters;
2448 VM_BUG_ON(!new.frozen);
2449
2450 new.inuse = page->objects;
2451 new.frozen = freelist != NULL;
2452
2453 } while (!__cmpxchg_double_slab(s, page,
2454 freelist, counters,
2455 NULL, new.counters,
2456 "get_freelist"));
2457
2458 return freelist;
2459}
2460
2461/*
2462 * Slow path. The lockless freelist is empty or we need to perform
2463 * debugging duties.
2464 *
2465 * Processing is still very fast if new objects have been freed to the
2466 * regular freelist. In that case we simply take over the regular freelist
2467 * as the lockless freelist and zap the regular freelist.
2468 *
2469 * If that is not working then we fall back to the partial lists. We take the
2470 * first element of the freelist as the object to allocate now and move the
2471 * rest of the freelist to the lockless freelist.
2472 *
2473 * And if we were unable to get a new slab from the partial slab lists then
2474 * we need to allocate a new slab. This is the slowest path since it involves
2475 * a call to the page allocator and the setup of a new slab.
2476 *
2477 * Version of __slab_alloc to use when we know that interrupts are
2478 * already disabled (which is the case for bulk allocation).
2479 */
2480static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2481 unsigned long addr, struct kmem_cache_cpu *c)
2482{
2483 void *freelist;
2484 struct page *page;
2485
2486 page = c->page;
2487 if (!page)
2488 goto new_slab;
2489redo:
2490
2491 if (unlikely(!node_match(page, node))) {
2492 int searchnode = node;
2493
2494 if (node != NUMA_NO_NODE && !node_present_pages(node))
2495 searchnode = node_to_mem_node(node);
2496
2497 if (unlikely(!node_match(page, searchnode))) {
2498 stat(s, ALLOC_NODE_MISMATCH);
2499 deactivate_slab(s, page, c->freelist);
2500 c->page = NULL;
2501 c->freelist = NULL;
2502 goto new_slab;
2503 }
2504 }
2505
2506 /*
2507 * By rights, we should be searching for a slab page that was
2508 * PFMEMALLOC but right now, we are losing the pfmemalloc
2509 * information when the page leaves the per-cpu allocator
2510 */
2511 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2512 deactivate_slab(s, page, c->freelist);
2513 c->page = NULL;
2514 c->freelist = NULL;
2515 goto new_slab;
2516 }
2517
2518 /* must check again c->freelist in case of cpu migration or IRQ */
2519 freelist = c->freelist;
2520 if (freelist)
2521 goto load_freelist;
2522
2523 freelist = get_freelist(s, page);
2524
2525 if (!freelist) {
2526 c->page = NULL;
2527 stat(s, DEACTIVATE_BYPASS);
2528 goto new_slab;
2529 }
2530
2531 stat(s, ALLOC_REFILL);
2532
2533load_freelist:
2534 /*
2535 * freelist is pointing to the list of objects to be used.
2536 * page is pointing to the page from which the objects are obtained.
2537 * That page must be frozen for per cpu allocations to work.
2538 */
2539 VM_BUG_ON(!c->page->frozen);
2540 c->freelist = get_freepointer(s, freelist);
2541 c->tid = next_tid(c->tid);
2542 return freelist;
2543
2544new_slab:
2545
2546 if (c->partial) {
2547 page = c->page = c->partial;
2548 c->partial = page->next;
2549 stat(s, CPU_PARTIAL_ALLOC);
2550 c->freelist = NULL;
2551 goto redo;
2552 }
2553
2554 freelist = new_slab_objects(s, gfpflags, node, &c);
2555
2556 if (unlikely(!freelist)) {
2557 slab_out_of_memory(s, gfpflags, node);
2558 return NULL;
2559 }
2560
2561 page = c->page;
2562 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2563 goto load_freelist;
2564
2565 /* Only entered in the debug case */
2566 if (kmem_cache_debug(s) &&
2567 !alloc_debug_processing(s, page, freelist, addr))
2568 goto new_slab; /* Slab failed checks. Next slab needed */
2569
2570 deactivate_slab(s, page, get_freepointer(s, freelist));
2571 c->page = NULL;
2572 c->freelist = NULL;
2573 return freelist;
2574}
2575
2576/*
2577 * Another one that disabled interrupt and compensates for possible
2578 * cpu changes by refetching the per cpu area pointer.
2579 */
2580static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2581 unsigned long addr, struct kmem_cache_cpu *c)
2582{
2583 void *p;
2584 unsigned long flags;
2585
2586 local_irq_save(flags);
2587#ifdef CONFIG_PREEMPT
2588 /*
2589 * We may have been preempted and rescheduled on a different
2590 * cpu before disabling interrupts. Need to reload cpu area
2591 * pointer.
2592 */
2593 c = this_cpu_ptr(s->cpu_slab);
2594#endif
2595
2596 p = ___slab_alloc(s, gfpflags, node, addr, c);
2597 local_irq_restore(flags);
2598 return p;
2599}
2600
2601/*
2602 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2603 * have the fastpath folded into their functions. So no function call
2604 * overhead for requests that can be satisfied on the fastpath.
2605 *
2606 * The fastpath works by first checking if the lockless freelist can be used.
2607 * If not then __slab_alloc is called for slow processing.
2608 *
2609 * Otherwise we can simply pick the next object from the lockless free list.
2610 */
2611static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2612 gfp_t gfpflags, int node, unsigned long addr)
2613{
2614 void *object;
2615 struct kmem_cache_cpu *c;
2616 struct page *page;
2617 unsigned long tid;
2618
2619 s = slab_pre_alloc_hook(s, gfpflags);
2620 if (!s)
2621 return NULL;
2622redo:
2623 /*
2624 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2625 * enabled. We may switch back and forth between cpus while
2626 * reading from one cpu area. That does not matter as long
2627 * as we end up on the original cpu again when doing the cmpxchg.
2628 *
2629 * We should guarantee that tid and kmem_cache are retrieved on
2630 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2631 * to check if it is matched or not.
2632 */
2633 do {
2634 tid = this_cpu_read(s->cpu_slab->tid);
2635 c = raw_cpu_ptr(s->cpu_slab);
2636 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2637 unlikely(tid != READ_ONCE(c->tid)));
2638
2639 /*
2640 * Irqless object alloc/free algorithm used here depends on sequence
2641 * of fetching cpu_slab's data. tid should be fetched before anything
2642 * on c to guarantee that object and page associated with previous tid
2643 * won't be used with current tid. If we fetch tid first, object and
2644 * page could be one associated with next tid and our alloc/free
2645 * request will be failed. In this case, we will retry. So, no problem.
2646 */
2647 barrier();
2648
2649 /*
2650 * The transaction ids are globally unique per cpu and per operation on
2651 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2652 * occurs on the right processor and that there was no operation on the
2653 * linked list in between.
2654 */
2655
2656 object = c->freelist;
2657 page = c->page;
2658 if (unlikely(!object || !node_match(page, node))) {
2659 object = __slab_alloc(s, gfpflags, node, addr, c);
2660 stat(s, ALLOC_SLOWPATH);
2661 } else {
2662 void *next_object = get_freepointer_safe(s, object);
2663
2664 /*
2665 * The cmpxchg will only match if there was no additional
2666 * operation and if we are on the right processor.
2667 *
2668 * The cmpxchg does the following atomically (without lock
2669 * semantics!)
2670 * 1. Relocate first pointer to the current per cpu area.
2671 * 2. Verify that tid and freelist have not been changed
2672 * 3. If they were not changed replace tid and freelist
2673 *
2674 * Since this is without lock semantics the protection is only
2675 * against code executing on this cpu *not* from access by
2676 * other cpus.
2677 */
2678 if (unlikely(!this_cpu_cmpxchg_double(
2679 s->cpu_slab->freelist, s->cpu_slab->tid,
2680 object, tid,
2681 next_object, next_tid(tid)))) {
2682
2683 note_cmpxchg_failure("slab_alloc", s, tid);
2684 goto redo;
2685 }
2686 prefetch_freepointer(s, next_object);
2687 stat(s, ALLOC_FASTPATH);
2688 }
2689
2690 if (unlikely(gfpflags & __GFP_ZERO) && object)
2691 memset(object, 0, s->object_size);
2692
2693 slab_post_alloc_hook(s, gfpflags, 1, &object);
2694
2695 return object;
2696}
2697
2698static __always_inline void *slab_alloc(struct kmem_cache *s,
2699 gfp_t gfpflags, unsigned long addr)
2700{
2701 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2702}
2703
2704void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2705{
2706 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2707
2708 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2709 s->size, gfpflags);
2710
2711 return ret;
2712}
2713EXPORT_SYMBOL(kmem_cache_alloc);
2714
2715#ifdef CONFIG_TRACING
2716void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2717{
2718 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2719 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2720 kasan_kmalloc(s, ret, size, gfpflags);
2721 return ret;
2722}
2723EXPORT_SYMBOL(kmem_cache_alloc_trace);
2724#endif
2725
2726#ifdef CONFIG_NUMA
2727void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2728{
2729 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2730
2731 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2732 s->object_size, s->size, gfpflags, node);
2733
2734 return ret;
2735}
2736EXPORT_SYMBOL(kmem_cache_alloc_node);
2737
2738#ifdef CONFIG_TRACING
2739void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2740 gfp_t gfpflags,
2741 int node, size_t size)
2742{
2743 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2744
2745 trace_kmalloc_node(_RET_IP_, ret,
2746 size, s->size, gfpflags, node);
2747
2748 kasan_kmalloc(s, ret, size, gfpflags);
2749 return ret;
2750}
2751EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2752#endif
2753#endif
2754
2755/*
2756 * Slow path handling. This may still be called frequently since objects
2757 * have a longer lifetime than the cpu slabs in most processing loads.
2758 *
2759 * So we still attempt to reduce cache line usage. Just take the slab
2760 * lock and free the item. If there is no additional partial page
2761 * handling required then we can return immediately.
2762 */
2763static void __slab_free(struct kmem_cache *s, struct page *page,
2764 void *head, void *tail, int cnt,
2765 unsigned long addr)
2766
2767{
2768 void *prior;
2769 int was_frozen;
2770 struct page new;
2771 unsigned long counters;
2772 struct kmem_cache_node *n = NULL;
2773 unsigned long uninitialized_var(flags);
2774
2775 stat(s, FREE_SLOWPATH);
2776
2777 if (kmem_cache_debug(s) &&
2778 !free_debug_processing(s, page, head, tail, cnt, addr))
2779 return;
2780
2781 do {
2782 if (unlikely(n)) {
2783 spin_unlock_irqrestore(&n->list_lock, flags);
2784 n = NULL;
2785 }
2786 prior = page->freelist;
2787 counters = page->counters;
2788 set_freepointer(s, tail, prior);
2789 new.counters = counters;
2790 was_frozen = new.frozen;
2791 new.inuse -= cnt;
2792 if ((!new.inuse || !prior) && !was_frozen) {
2793
2794 if (kmem_cache_has_cpu_partial(s) && !prior) {
2795
2796 /*
2797 * Slab was on no list before and will be
2798 * partially empty
2799 * We can defer the list move and instead
2800 * freeze it.
2801 */
2802 new.frozen = 1;
2803
2804 } else { /* Needs to be taken off a list */
2805
2806 n = get_node(s, page_to_nid(page));
2807 /*
2808 * Speculatively acquire the list_lock.
2809 * If the cmpxchg does not succeed then we may
2810 * drop the list_lock without any processing.
2811 *
2812 * Otherwise the list_lock will synchronize with
2813 * other processors updating the list of slabs.
2814 */
2815 spin_lock_irqsave(&n->list_lock, flags);
2816
2817 }
2818 }
2819
2820 } while (!cmpxchg_double_slab(s, page,
2821 prior, counters,
2822 head, new.counters,
2823 "__slab_free"));
2824
2825 if (likely(!n)) {
2826
2827 /*
2828 * If we just froze the page then put it onto the
2829 * per cpu partial list.
2830 */
2831 if (new.frozen && !was_frozen) {
2832 put_cpu_partial(s, page, 1);
2833 stat(s, CPU_PARTIAL_FREE);
2834 }
2835 /*
2836 * The list lock was not taken therefore no list
2837 * activity can be necessary.
2838 */
2839 if (was_frozen)
2840 stat(s, FREE_FROZEN);
2841 return;
2842 }
2843
2844 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2845 goto slab_empty;
2846
2847 /*
2848 * Objects left in the slab. If it was not on the partial list before
2849 * then add it.
2850 */
2851 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2852 if (kmem_cache_debug(s))
2853 remove_full(s, n, page);
2854 add_partial(n, page, DEACTIVATE_TO_TAIL);
2855 stat(s, FREE_ADD_PARTIAL);
2856 }
2857 spin_unlock_irqrestore(&n->list_lock, flags);
2858 return;
2859
2860slab_empty:
2861 if (prior) {
2862 /*
2863 * Slab on the partial list.
2864 */
2865 remove_partial(n, page);
2866 stat(s, FREE_REMOVE_PARTIAL);
2867 } else {
2868 /* Slab must be on the full list */
2869 remove_full(s, n, page);
2870 }
2871
2872 spin_unlock_irqrestore(&n->list_lock, flags);
2873 stat(s, FREE_SLAB);
2874 discard_slab(s, page);
2875}
2876
2877/*
2878 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2879 * can perform fastpath freeing without additional function calls.
2880 *
2881 * The fastpath is only possible if we are freeing to the current cpu slab
2882 * of this processor. This typically the case if we have just allocated
2883 * the item before.
2884 *
2885 * If fastpath is not possible then fall back to __slab_free where we deal
2886 * with all sorts of special processing.
2887 *
2888 * Bulk free of a freelist with several objects (all pointing to the
2889 * same page) possible by specifying head and tail ptr, plus objects
2890 * count (cnt). Bulk free indicated by tail pointer being set.
2891 */
2892static __always_inline void do_slab_free(struct kmem_cache *s,
2893 struct page *page, void *head, void *tail,
2894 int cnt, unsigned long addr)
2895{
2896 void *tail_obj = tail ? : head;
2897 struct kmem_cache_cpu *c;
2898 unsigned long tid;
2899redo:
2900 /*
2901 * Determine the currently cpus per cpu slab.
2902 * The cpu may change afterward. However that does not matter since
2903 * data is retrieved via this pointer. If we are on the same cpu
2904 * during the cmpxchg then the free will succeed.
2905 */
2906 do {
2907 tid = this_cpu_read(s->cpu_slab->tid);
2908 c = raw_cpu_ptr(s->cpu_slab);
2909 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2910 unlikely(tid != READ_ONCE(c->tid)));
2911
2912 /* Same with comment on barrier() in slab_alloc_node() */
2913 barrier();
2914
2915 if (likely(page == c->page)) {
2916 set_freepointer(s, tail_obj, c->freelist);
2917
2918 if (unlikely(!this_cpu_cmpxchg_double(
2919 s->cpu_slab->freelist, s->cpu_slab->tid,
2920 c->freelist, tid,
2921 head, next_tid(tid)))) {
2922
2923 note_cmpxchg_failure("slab_free", s, tid);
2924 goto redo;
2925 }
2926 stat(s, FREE_FASTPATH);
2927 } else
2928 __slab_free(s, page, head, tail_obj, cnt, addr);
2929
2930}
2931
2932static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2933 void *head, void *tail, int cnt,
2934 unsigned long addr)
2935{
2936 slab_free_freelist_hook(s, head, tail);
2937 /*
2938 * slab_free_freelist_hook() could have put the items into quarantine.
2939 * If so, no need to free them.
2940 */
2941 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2942 return;
2943 do_slab_free(s, page, head, tail, cnt, addr);
2944}
2945
2946#ifdef CONFIG_KASAN
2947void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2948{
2949 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2950}
2951#endif
2952
2953void kmem_cache_free(struct kmem_cache *s, void *x)
2954{
2955 s = cache_from_obj(s, x);
2956 if (!s)
2957 return;
2958 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2959 trace_kmem_cache_free(_RET_IP_, x);
2960}
2961EXPORT_SYMBOL(kmem_cache_free);
2962
2963struct detached_freelist {
2964 struct page *page;
2965 void *tail;
2966 void *freelist;
2967 int cnt;
2968 struct kmem_cache *s;
2969};
2970
2971/*
2972 * This function progressively scans the array with free objects (with
2973 * a limited look ahead) and extract objects belonging to the same
2974 * page. It builds a detached freelist directly within the given
2975 * page/objects. This can happen without any need for
2976 * synchronization, because the objects are owned by running process.
2977 * The freelist is build up as a single linked list in the objects.
2978 * The idea is, that this detached freelist can then be bulk
2979 * transferred to the real freelist(s), but only requiring a single
2980 * synchronization primitive. Look ahead in the array is limited due
2981 * to performance reasons.
2982 */
2983static inline
2984int build_detached_freelist(struct kmem_cache *s, size_t size,
2985 void **p, struct detached_freelist *df)
2986{
2987 size_t first_skipped_index = 0;
2988 int lookahead = 3;
2989 void *object;
2990 struct page *page;
2991
2992 /* Always re-init detached_freelist */
2993 df->page = NULL;
2994
2995 do {
2996 object = p[--size];
2997 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2998 } while (!object && size);
2999
3000 if (!object)
3001 return 0;
3002
3003 page = virt_to_head_page(object);
3004 if (!s) {
3005 /* Handle kalloc'ed objects */
3006 if (unlikely(!PageSlab(page))) {
3007 BUG_ON(!PageCompound(page));
3008 kfree_hook(object);
3009 __free_pages(page, compound_order(page));
3010 p[size] = NULL; /* mark object processed */
3011 return size;
3012 }
3013 /* Derive kmem_cache from object */
3014 df->s = page->slab_cache;
3015 } else {
3016 df->s = cache_from_obj(s, object); /* Support for memcg */
3017 }
3018
3019 /* Start new detached freelist */
3020 df->page = page;
3021 set_freepointer(df->s, object, NULL);
3022 df->tail = object;
3023 df->freelist = object;
3024 p[size] = NULL; /* mark object processed */
3025 df->cnt = 1;
3026
3027 while (size) {
3028 object = p[--size];
3029 if (!object)
3030 continue; /* Skip processed objects */
3031
3032 /* df->page is always set at this point */
3033 if (df->page == virt_to_head_page(object)) {
3034 /* Opportunity build freelist */
3035 set_freepointer(df->s, object, df->freelist);
3036 df->freelist = object;
3037 df->cnt++;
3038 p[size] = NULL; /* mark object processed */
3039
3040 continue;
3041 }
3042
3043 /* Limit look ahead search */
3044 if (!--lookahead)
3045 break;
3046
3047 if (!first_skipped_index)
3048 first_skipped_index = size + 1;
3049 }
3050
3051 return first_skipped_index;
3052}
3053
3054/* Note that interrupts must be enabled when calling this function. */
3055void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3056{
3057 if (WARN_ON(!size))
3058 return;
3059
3060 do {
3061 struct detached_freelist df;
3062
3063 size = build_detached_freelist(s, size, p, &df);
3064 if (unlikely(!df.page))
3065 continue;
3066
3067 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3068 } while (likely(size));
3069}
3070EXPORT_SYMBOL(kmem_cache_free_bulk);
3071
3072/* Note that interrupts must be enabled when calling this function. */
3073int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3074 void **p)
3075{
3076 struct kmem_cache_cpu *c;
3077 int i;
3078
3079 /* memcg and kmem_cache debug support */
3080 s = slab_pre_alloc_hook(s, flags);
3081 if (unlikely(!s))
3082 return false;
3083 /*
3084 * Drain objects in the per cpu slab, while disabling local
3085 * IRQs, which protects against PREEMPT and interrupts
3086 * handlers invoking normal fastpath.
3087 */
3088 local_irq_disable();
3089 c = this_cpu_ptr(s->cpu_slab);
3090
3091 for (i = 0; i < size; i++) {
3092 void *object = c->freelist;
3093
3094 if (unlikely(!object)) {
3095 /*
3096 * Invoking slow path likely have side-effect
3097 * of re-populating per CPU c->freelist
3098 */
3099 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3100 _RET_IP_, c);
3101 if (unlikely(!p[i]))
3102 goto error;
3103
3104 c = this_cpu_ptr(s->cpu_slab);
3105 continue; /* goto for-loop */
3106 }
3107 c->freelist = get_freepointer(s, object);
3108 p[i] = object;
3109 }
3110 c->tid = next_tid(c->tid);
3111 local_irq_enable();
3112
3113 /* Clear memory outside IRQ disabled fastpath loop */
3114 if (unlikely(flags & __GFP_ZERO)) {
3115 int j;
3116
3117 for (j = 0; j < i; j++)
3118 memset(p[j], 0, s->object_size);
3119 }
3120
3121 /* memcg and kmem_cache debug support */
3122 slab_post_alloc_hook(s, flags, size, p);
3123 return i;
3124error:
3125 local_irq_enable();
3126 slab_post_alloc_hook(s, flags, i, p);
3127 __kmem_cache_free_bulk(s, i, p);
3128 return 0;
3129}
3130EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3131
3132
3133/*
3134 * Object placement in a slab is made very easy because we always start at
3135 * offset 0. If we tune the size of the object to the alignment then we can
3136 * get the required alignment by putting one properly sized object after
3137 * another.
3138 *
3139 * Notice that the allocation order determines the sizes of the per cpu
3140 * caches. Each processor has always one slab available for allocations.
3141 * Increasing the allocation order reduces the number of times that slabs
3142 * must be moved on and off the partial lists and is therefore a factor in
3143 * locking overhead.
3144 */
3145
3146/*
3147 * Mininum / Maximum order of slab pages. This influences locking overhead
3148 * and slab fragmentation. A higher order reduces the number of partial slabs
3149 * and increases the number of allocations possible without having to
3150 * take the list_lock.
3151 */
3152static int slub_min_order;
3153static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3154static int slub_min_objects;
3155
3156/*
3157 * Calculate the order of allocation given an slab object size.
3158 *
3159 * The order of allocation has significant impact on performance and other
3160 * system components. Generally order 0 allocations should be preferred since
3161 * order 0 does not cause fragmentation in the page allocator. Larger objects
3162 * be problematic to put into order 0 slabs because there may be too much
3163 * unused space left. We go to a higher order if more than 1/16th of the slab
3164 * would be wasted.
3165 *
3166 * In order to reach satisfactory performance we must ensure that a minimum
3167 * number of objects is in one slab. Otherwise we may generate too much
3168 * activity on the partial lists which requires taking the list_lock. This is
3169 * less a concern for large slabs though which are rarely used.
3170 *
3171 * slub_max_order specifies the order where we begin to stop considering the
3172 * number of objects in a slab as critical. If we reach slub_max_order then
3173 * we try to keep the page order as low as possible. So we accept more waste
3174 * of space in favor of a small page order.
3175 *
3176 * Higher order allocations also allow the placement of more objects in a
3177 * slab and thereby reduce object handling overhead. If the user has
3178 * requested a higher mininum order then we start with that one instead of
3179 * the smallest order which will fit the object.
3180 */
3181static inline int slab_order(int size, int min_objects,
3182 int max_order, int fract_leftover, int reserved)
3183{
3184 int order;
3185 int rem;
3186 int min_order = slub_min_order;
3187
3188 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3189 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3190
3191 for (order = max(min_order, get_order(min_objects * size + reserved));
3192 order <= max_order; order++) {
3193
3194 unsigned long slab_size = PAGE_SIZE << order;
3195
3196 rem = (slab_size - reserved) % size;
3197
3198 if (rem <= slab_size / fract_leftover)
3199 break;
3200 }
3201
3202 return order;
3203}
3204
3205static inline int calculate_order(int size, int reserved)
3206{
3207 int order;
3208 int min_objects;
3209 int fraction;
3210 int max_objects;
3211
3212 /*
3213 * Attempt to find best configuration for a slab. This
3214 * works by first attempting to generate a layout with
3215 * the best configuration and backing off gradually.
3216 *
3217 * First we increase the acceptable waste in a slab. Then
3218 * we reduce the minimum objects required in a slab.
3219 */
3220 min_objects = slub_min_objects;
3221 if (!min_objects)
3222 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3223 max_objects = order_objects(slub_max_order, size, reserved);
3224 min_objects = min(min_objects, max_objects);
3225
3226 while (min_objects > 1) {
3227 fraction = 16;
3228 while (fraction >= 4) {
3229 order = slab_order(size, min_objects,
3230 slub_max_order, fraction, reserved);
3231 if (order <= slub_max_order)
3232 return order;
3233 fraction /= 2;
3234 }
3235 min_objects--;
3236 }
3237
3238 /*
3239 * We were unable to place multiple objects in a slab. Now
3240 * lets see if we can place a single object there.
3241 */
3242 order = slab_order(size, 1, slub_max_order, 1, reserved);
3243 if (order <= slub_max_order)
3244 return order;
3245
3246 /*
3247 * Doh this slab cannot be placed using slub_max_order.
3248 */
3249 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3250 if (order < MAX_ORDER)
3251 return order;
3252 return -ENOSYS;
3253}
3254
3255static void
3256init_kmem_cache_node(struct kmem_cache_node *n)
3257{
3258 n->nr_partial = 0;
3259 spin_lock_init(&n->list_lock);
3260 INIT_LIST_HEAD(&n->partial);
3261#ifdef CONFIG_SLUB_DEBUG
3262 atomic_long_set(&n->nr_slabs, 0);
3263 atomic_long_set(&n->total_objects, 0);
3264 INIT_LIST_HEAD(&n->full);
3265#endif
3266}
3267
3268static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3269{
3270 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3271 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3272
3273 /*
3274 * Must align to double word boundary for the double cmpxchg
3275 * instructions to work; see __pcpu_double_call_return_bool().
3276 */
3277 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3278 2 * sizeof(void *));
3279
3280 if (!s->cpu_slab)
3281 return 0;
3282
3283 init_kmem_cache_cpus(s);
3284
3285 return 1;
3286}
3287
3288static struct kmem_cache *kmem_cache_node;
3289
3290/*
3291 * No kmalloc_node yet so do it by hand. We know that this is the first
3292 * slab on the node for this slabcache. There are no concurrent accesses
3293 * possible.
3294 *
3295 * Note that this function only works on the kmem_cache_node
3296 * when allocating for the kmem_cache_node. This is used for bootstrapping
3297 * memory on a fresh node that has no slab structures yet.
3298 */
3299static void early_kmem_cache_node_alloc(int node)
3300{
3301 struct page *page;
3302 struct kmem_cache_node *n;
3303
3304 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3305
3306 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3307
3308 BUG_ON(!page);
3309 if (page_to_nid(page) != node) {
3310 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3311 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3312 }
3313
3314 n = page->freelist;
3315 BUG_ON(!n);
3316 page->freelist = get_freepointer(kmem_cache_node, n);
3317 page->inuse = 1;
3318 page->frozen = 0;
3319 kmem_cache_node->node[node] = n;
3320#ifdef CONFIG_SLUB_DEBUG
3321 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3322 init_tracking(kmem_cache_node, n);
3323#endif
3324 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3325 GFP_KERNEL);
3326 init_kmem_cache_node(n);
3327 inc_slabs_node(kmem_cache_node, node, page->objects);
3328
3329 /*
3330 * No locks need to be taken here as it has just been
3331 * initialized and there is no concurrent access.
3332 */
3333 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3334}
3335
3336static void free_kmem_cache_nodes(struct kmem_cache *s)
3337{
3338 int node;
3339 struct kmem_cache_node *n;
3340
3341 for_each_kmem_cache_node(s, node, n) {
3342 kmem_cache_free(kmem_cache_node, n);
3343 s->node[node] = NULL;
3344 }
3345}
3346
3347void __kmem_cache_release(struct kmem_cache *s)
3348{
3349 cache_random_seq_destroy(s);
3350 free_percpu(s->cpu_slab);
3351 free_kmem_cache_nodes(s);
3352}
3353
3354static int init_kmem_cache_nodes(struct kmem_cache *s)
3355{
3356 int node;
3357
3358 for_each_node_state(node, N_NORMAL_MEMORY) {
3359 struct kmem_cache_node *n;
3360
3361 if (slab_state == DOWN) {
3362 early_kmem_cache_node_alloc(node);
3363 continue;
3364 }
3365 n = kmem_cache_alloc_node(kmem_cache_node,
3366 GFP_KERNEL, node);
3367
3368 if (!n) {
3369 free_kmem_cache_nodes(s);
3370 return 0;
3371 }
3372
3373 s->node[node] = n;
3374 init_kmem_cache_node(n);
3375 }
3376 return 1;
3377}
3378
3379static void set_min_partial(struct kmem_cache *s, unsigned long min)
3380{
3381 if (min < MIN_PARTIAL)
3382 min = MIN_PARTIAL;
3383 else if (min > MAX_PARTIAL)
3384 min = MAX_PARTIAL;
3385 s->min_partial = min;
3386}
3387
3388/*
3389 * calculate_sizes() determines the order and the distribution of data within
3390 * a slab object.
3391 */
3392static int calculate_sizes(struct kmem_cache *s, int forced_order)
3393{
3394 unsigned long flags = s->flags;
3395 size_t size = s->object_size;
3396 int order;
3397
3398 /*
3399 * Round up object size to the next word boundary. We can only
3400 * place the free pointer at word boundaries and this determines
3401 * the possible location of the free pointer.
3402 */
3403 size = ALIGN(size, sizeof(void *));
3404
3405#ifdef CONFIG_SLUB_DEBUG
3406 /*
3407 * Determine if we can poison the object itself. If the user of
3408 * the slab may touch the object after free or before allocation
3409 * then we should never poison the object itself.
3410 */
3411 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3412 !s->ctor)
3413 s->flags |= __OBJECT_POISON;
3414 else
3415 s->flags &= ~__OBJECT_POISON;
3416
3417
3418 /*
3419 * If we are Redzoning then check if there is some space between the
3420 * end of the object and the free pointer. If not then add an
3421 * additional word to have some bytes to store Redzone information.
3422 */
3423 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3424 size += sizeof(void *);
3425#endif
3426
3427 /*
3428 * With that we have determined the number of bytes in actual use
3429 * by the object. This is the potential offset to the free pointer.
3430 */
3431 s->inuse = size;
3432
3433 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3434 s->ctor)) {
3435 /*
3436 * Relocate free pointer after the object if it is not
3437 * permitted to overwrite the first word of the object on
3438 * kmem_cache_free.
3439 *
3440 * This is the case if we do RCU, have a constructor or
3441 * destructor or are poisoning the objects.
3442 */
3443 s->offset = size;
3444 size += sizeof(void *);
3445 }
3446
3447#ifdef CONFIG_SLUB_DEBUG
3448 if (flags & SLAB_STORE_USER)
3449 /*
3450 * Need to store information about allocs and frees after
3451 * the object.
3452 */
3453 size += 2 * sizeof(struct track);
3454#endif
3455
3456 kasan_cache_create(s, &size, &s->flags);
3457#ifdef CONFIG_SLUB_DEBUG
3458 if (flags & SLAB_RED_ZONE) {
3459 /*
3460 * Add some empty padding so that we can catch
3461 * overwrites from earlier objects rather than let
3462 * tracking information or the free pointer be
3463 * corrupted if a user writes before the start
3464 * of the object.
3465 */
3466 size += sizeof(void *);
3467
3468 s->red_left_pad = sizeof(void *);
3469 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3470 size += s->red_left_pad;
3471 }
3472#endif
3473
3474 /*
3475 * SLUB stores one object immediately after another beginning from
3476 * offset 0. In order to align the objects we have to simply size
3477 * each object to conform to the alignment.
3478 */
3479 size = ALIGN(size, s->align);
3480 s->size = size;
3481 if (forced_order >= 0)
3482 order = forced_order;
3483 else
3484 order = calculate_order(size, s->reserved);
3485
3486 if (order < 0)
3487 return 0;
3488
3489 s->allocflags = 0;
3490 if (order)
3491 s->allocflags |= __GFP_COMP;
3492
3493 if (s->flags & SLAB_CACHE_DMA)
3494 s->allocflags |= GFP_DMA;
3495
3496 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3497 s->allocflags |= __GFP_RECLAIMABLE;
3498
3499 /*
3500 * Determine the number of objects per slab
3501 */
3502 s->oo = oo_make(order, size, s->reserved);
3503 s->min = oo_make(get_order(size), size, s->reserved);
3504 if (oo_objects(s->oo) > oo_objects(s->max))
3505 s->max = s->oo;
3506
3507 return !!oo_objects(s->oo);
3508}
3509
3510static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3511{
3512 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3513 s->reserved = 0;
3514
3515 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3516 s->reserved = sizeof(struct rcu_head);
3517
3518 if (!calculate_sizes(s, -1))
3519 goto error;
3520 if (disable_higher_order_debug) {
3521 /*
3522 * Disable debugging flags that store metadata if the min slab
3523 * order increased.
3524 */
3525 if (get_order(s->size) > get_order(s->object_size)) {
3526 s->flags &= ~DEBUG_METADATA_FLAGS;
3527 s->offset = 0;
3528 if (!calculate_sizes(s, -1))
3529 goto error;
3530 }
3531 }
3532
3533#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3534 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3535 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3536 /* Enable fast mode */
3537 s->flags |= __CMPXCHG_DOUBLE;
3538#endif
3539
3540 /*
3541 * The larger the object size is, the more pages we want on the partial
3542 * list to avoid pounding the page allocator excessively.
3543 */
3544 set_min_partial(s, ilog2(s->size) / 2);
3545
3546 /*
3547 * cpu_partial determined the maximum number of objects kept in the
3548 * per cpu partial lists of a processor.
3549 *
3550 * Per cpu partial lists mainly contain slabs that just have one
3551 * object freed. If they are used for allocation then they can be
3552 * filled up again with minimal effort. The slab will never hit the
3553 * per node partial lists and therefore no locking will be required.
3554 *
3555 * This setting also determines
3556 *
3557 * A) The number of objects from per cpu partial slabs dumped to the
3558 * per node list when we reach the limit.
3559 * B) The number of objects in cpu partial slabs to extract from the
3560 * per node list when we run out of per cpu objects. We only fetch
3561 * 50% to keep some capacity around for frees.
3562 */
3563 if (!kmem_cache_has_cpu_partial(s))
3564 s->cpu_partial = 0;
3565 else if (s->size >= PAGE_SIZE)
3566 s->cpu_partial = 2;
3567 else if (s->size >= 1024)
3568 s->cpu_partial = 6;
3569 else if (s->size >= 256)
3570 s->cpu_partial = 13;
3571 else
3572 s->cpu_partial = 30;
3573
3574#ifdef CONFIG_NUMA
3575 s->remote_node_defrag_ratio = 1000;
3576#endif
3577
3578 /* Initialize the pre-computed randomized freelist if slab is up */
3579 if (slab_state >= UP) {
3580 if (init_cache_random_seq(s))
3581 goto error;
3582 }
3583
3584 if (!init_kmem_cache_nodes(s))
3585 goto error;
3586
3587 if (alloc_kmem_cache_cpus(s))
3588 return 0;
3589
3590 free_kmem_cache_nodes(s);
3591error:
3592 if (flags & SLAB_PANIC)
3593 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3594 s->name, (unsigned long)s->size, s->size,
3595 oo_order(s->oo), s->offset, flags);
3596 return -EINVAL;
3597}
3598
3599static void list_slab_objects(struct kmem_cache *s, struct page *page,
3600 const char *text)
3601{
3602#ifdef CONFIG_SLUB_DEBUG
3603 void *addr = page_address(page);
3604 void *p;
3605 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3606 sizeof(long), GFP_ATOMIC);
3607 if (!map)
3608 return;
3609 slab_err(s, page, text, s->name);
3610 slab_lock(page);
3611
3612 get_map(s, page, map);
3613 for_each_object(p, s, addr, page->objects) {
3614
3615 if (!test_bit(slab_index(p, s, addr), map)) {
3616 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3617 print_tracking(s, p);
3618 }
3619 }
3620 slab_unlock(page);
3621 kfree(map);
3622#endif
3623}
3624
3625/*
3626 * Attempt to free all partial slabs on a node.
3627 * This is called from __kmem_cache_shutdown(). We must take list_lock
3628 * because sysfs file might still access partial list after the shutdowning.
3629 */
3630static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3631{
3632 struct page *page, *h;
3633
3634 BUG_ON(irqs_disabled());
3635 spin_lock_irq(&n->list_lock);
3636 list_for_each_entry_safe(page, h, &n->partial, lru) {
3637 if (!page->inuse) {
3638 remove_partial(n, page);
3639 discard_slab(s, page);
3640 } else {
3641 list_slab_objects(s, page,
3642 "Objects remaining in %s on __kmem_cache_shutdown()");
3643 }
3644 }
3645 spin_unlock_irq(&n->list_lock);
3646}
3647
3648/*
3649 * Release all resources used by a slab cache.
3650 */
3651int __kmem_cache_shutdown(struct kmem_cache *s)
3652{
3653 int node;
3654 struct kmem_cache_node *n;
3655
3656 flush_all(s);
3657 /* Attempt to free all objects */
3658 for_each_kmem_cache_node(s, node, n) {
3659 free_partial(s, n);
3660 if (n->nr_partial || slabs_node(s, node))
3661 return 1;
3662 }
3663 return 0;
3664}
3665
3666/********************************************************************
3667 * Kmalloc subsystem
3668 *******************************************************************/
3669
3670static int __init setup_slub_min_order(char *str)
3671{
3672 get_option(&str, &slub_min_order);
3673
3674 return 1;
3675}
3676
3677__setup("slub_min_order=", setup_slub_min_order);
3678
3679static int __init setup_slub_max_order(char *str)
3680{
3681 get_option(&str, &slub_max_order);
3682 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3683
3684 return 1;
3685}
3686
3687__setup("slub_max_order=", setup_slub_max_order);
3688
3689static int __init setup_slub_min_objects(char *str)
3690{
3691 get_option(&str, &slub_min_objects);
3692
3693 return 1;
3694}
3695
3696__setup("slub_min_objects=", setup_slub_min_objects);
3697
3698void *__kmalloc(size_t size, gfp_t flags)
3699{
3700 struct kmem_cache *s;
3701 void *ret;
3702
3703 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3704 return kmalloc_large(size, flags);
3705
3706 s = kmalloc_slab(size, flags);
3707
3708 if (unlikely(ZERO_OR_NULL_PTR(s)))
3709 return s;
3710
3711 ret = slab_alloc(s, flags, _RET_IP_);
3712
3713 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3714
3715 kasan_kmalloc(s, ret, size, flags);
3716
3717 return ret;
3718}
3719EXPORT_SYMBOL(__kmalloc);
3720
3721#ifdef CONFIG_NUMA
3722static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3723{
3724 struct page *page;
3725 void *ptr = NULL;
3726
3727 flags |= __GFP_COMP | __GFP_NOTRACK;
3728 page = alloc_pages_node(node, flags, get_order(size));
3729 if (page)
3730 ptr = page_address(page);
3731
3732 kmalloc_large_node_hook(ptr, size, flags);
3733 return ptr;
3734}
3735
3736void *__kmalloc_node(size_t size, gfp_t flags, int node)
3737{
3738 struct kmem_cache *s;
3739 void *ret;
3740
3741 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3742 ret = kmalloc_large_node(size, flags, node);
3743
3744 trace_kmalloc_node(_RET_IP_, ret,
3745 size, PAGE_SIZE << get_order(size),
3746 flags, node);
3747
3748 return ret;
3749 }
3750
3751 s = kmalloc_slab(size, flags);
3752
3753 if (unlikely(ZERO_OR_NULL_PTR(s)))
3754 return s;
3755
3756 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3757
3758 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3759
3760 kasan_kmalloc(s, ret, size, flags);
3761
3762 return ret;
3763}
3764EXPORT_SYMBOL(__kmalloc_node);
3765#endif
3766
3767static size_t __ksize(const void *object)
3768{
3769 struct page *page;
3770
3771 if (unlikely(object == ZERO_SIZE_PTR))
3772 return 0;
3773
3774 page = virt_to_head_page(object);
3775
3776 if (unlikely(!PageSlab(page))) {
3777 WARN_ON(!PageCompound(page));
3778 return PAGE_SIZE << compound_order(page);
3779 }
3780
3781 return slab_ksize(page->slab_cache);
3782}
3783
3784size_t ksize(const void *object)
3785{
3786 size_t size = __ksize(object);
3787 /* We assume that ksize callers could use whole allocated area,
3788 * so we need to unpoison this area.
3789 */
3790 kasan_unpoison_shadow(object, size);
3791 return size;
3792}
3793EXPORT_SYMBOL(ksize);
3794
3795void kfree(const void *x)
3796{
3797 struct page *page;
3798 void *object = (void *)x;
3799
3800 trace_kfree(_RET_IP_, x);
3801
3802 if (unlikely(ZERO_OR_NULL_PTR(x)))
3803 return;
3804
3805 page = virt_to_head_page(x);
3806 if (unlikely(!PageSlab(page))) {
3807 BUG_ON(!PageCompound(page));
3808 kfree_hook(x);
3809 __free_pages(page, compound_order(page));
3810 return;
3811 }
3812 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3813}
3814EXPORT_SYMBOL(kfree);
3815
3816#define SHRINK_PROMOTE_MAX 32
3817
3818/*
3819 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3820 * up most to the head of the partial lists. New allocations will then
3821 * fill those up and thus they can be removed from the partial lists.
3822 *
3823 * The slabs with the least items are placed last. This results in them
3824 * being allocated from last increasing the chance that the last objects
3825 * are freed in them.
3826 */
3827int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3828{
3829 int node;
3830 int i;
3831 struct kmem_cache_node *n;
3832 struct page *page;
3833 struct page *t;
3834 struct list_head discard;
3835 struct list_head promote[SHRINK_PROMOTE_MAX];
3836 unsigned long flags;
3837 int ret = 0;
3838
3839 if (deactivate) {
3840 /*
3841 * Disable empty slabs caching. Used to avoid pinning offline
3842 * memory cgroups by kmem pages that can be freed.
3843 */
3844 s->cpu_partial = 0;
3845 s->min_partial = 0;
3846
3847 /*
3848 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3849 * so we have to make sure the change is visible.
3850 */
3851 synchronize_sched();
3852 }
3853
3854 flush_all(s);
3855 for_each_kmem_cache_node(s, node, n) {
3856 INIT_LIST_HEAD(&discard);
3857 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3858 INIT_LIST_HEAD(promote + i);
3859
3860 spin_lock_irqsave(&n->list_lock, flags);
3861
3862 /*
3863 * Build lists of slabs to discard or promote.
3864 *
3865 * Note that concurrent frees may occur while we hold the
3866 * list_lock. page->inuse here is the upper limit.
3867 */
3868 list_for_each_entry_safe(page, t, &n->partial, lru) {
3869 int free = page->objects - page->inuse;
3870
3871 /* Do not reread page->inuse */
3872 barrier();
3873
3874 /* We do not keep full slabs on the list */
3875 BUG_ON(free <= 0);
3876
3877 if (free == page->objects) {
3878 list_move(&page->lru, &discard);
3879 n->nr_partial--;
3880 } else if (free <= SHRINK_PROMOTE_MAX)
3881 list_move(&page->lru, promote + free - 1);
3882 }
3883
3884 /*
3885 * Promote the slabs filled up most to the head of the
3886 * partial list.
3887 */
3888 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3889 list_splice(promote + i, &n->partial);
3890
3891 spin_unlock_irqrestore(&n->list_lock, flags);
3892
3893 /* Release empty slabs */
3894 list_for_each_entry_safe(page, t, &discard, lru)
3895 discard_slab(s, page);
3896
3897 if (slabs_node(s, node))
3898 ret = 1;
3899 }
3900
3901 return ret;
3902}
3903
3904static int slab_mem_going_offline_callback(void *arg)
3905{
3906 struct kmem_cache *s;
3907
3908 mutex_lock(&slab_mutex);
3909 list_for_each_entry(s, &slab_caches, list)
3910 __kmem_cache_shrink(s, false);
3911 mutex_unlock(&slab_mutex);
3912
3913 return 0;
3914}
3915
3916static void slab_mem_offline_callback(void *arg)
3917{
3918 struct kmem_cache_node *n;
3919 struct kmem_cache *s;
3920 struct memory_notify *marg = arg;
3921 int offline_node;
3922
3923 offline_node = marg->status_change_nid_normal;
3924
3925 /*
3926 * If the node still has available memory. we need kmem_cache_node
3927 * for it yet.
3928 */
3929 if (offline_node < 0)
3930 return;
3931
3932 mutex_lock(&slab_mutex);
3933 list_for_each_entry(s, &slab_caches, list) {
3934 n = get_node(s, offline_node);
3935 if (n) {
3936 /*
3937 * if n->nr_slabs > 0, slabs still exist on the node
3938 * that is going down. We were unable to free them,
3939 * and offline_pages() function shouldn't call this
3940 * callback. So, we must fail.
3941 */
3942 BUG_ON(slabs_node(s, offline_node));
3943
3944 s->node[offline_node] = NULL;
3945 kmem_cache_free(kmem_cache_node, n);
3946 }
3947 }
3948 mutex_unlock(&slab_mutex);
3949}
3950
3951static int slab_mem_going_online_callback(void *arg)
3952{
3953 struct kmem_cache_node *n;
3954 struct kmem_cache *s;
3955 struct memory_notify *marg = arg;
3956 int nid = marg->status_change_nid_normal;
3957 int ret = 0;
3958
3959 /*
3960 * If the node's memory is already available, then kmem_cache_node is
3961 * already created. Nothing to do.
3962 */
3963 if (nid < 0)
3964 return 0;
3965
3966 /*
3967 * We are bringing a node online. No memory is available yet. We must
3968 * allocate a kmem_cache_node structure in order to bring the node
3969 * online.
3970 */
3971 mutex_lock(&slab_mutex);
3972 list_for_each_entry(s, &slab_caches, list) {
3973 /*
3974 * XXX: kmem_cache_alloc_node will fallback to other nodes
3975 * since memory is not yet available from the node that
3976 * is brought up.
3977 */
3978 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3979 if (!n) {
3980 ret = -ENOMEM;
3981 goto out;
3982 }
3983 init_kmem_cache_node(n);
3984 s->node[nid] = n;
3985 }
3986out:
3987 mutex_unlock(&slab_mutex);
3988 return ret;
3989}
3990
3991static int slab_memory_callback(struct notifier_block *self,
3992 unsigned long action, void *arg)
3993{
3994 int ret = 0;
3995
3996 switch (action) {
3997 case MEM_GOING_ONLINE:
3998 ret = slab_mem_going_online_callback(arg);
3999 break;
4000 case MEM_GOING_OFFLINE:
4001 ret = slab_mem_going_offline_callback(arg);
4002 break;
4003 case MEM_OFFLINE:
4004 case MEM_CANCEL_ONLINE:
4005 slab_mem_offline_callback(arg);
4006 break;
4007 case MEM_ONLINE:
4008 case MEM_CANCEL_OFFLINE:
4009 break;
4010 }
4011 if (ret)
4012 ret = notifier_from_errno(ret);
4013 else
4014 ret = NOTIFY_OK;
4015 return ret;
4016}
4017
4018static struct notifier_block slab_memory_callback_nb = {
4019 .notifier_call = slab_memory_callback,
4020 .priority = SLAB_CALLBACK_PRI,
4021};
4022
4023/********************************************************************
4024 * Basic setup of slabs
4025 *******************************************************************/
4026
4027/*
4028 * Used for early kmem_cache structures that were allocated using
4029 * the page allocator. Allocate them properly then fix up the pointers
4030 * that may be pointing to the wrong kmem_cache structure.
4031 */
4032
4033static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4034{
4035 int node;
4036 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4037 struct kmem_cache_node *n;
4038
4039 memcpy(s, static_cache, kmem_cache->object_size);
4040
4041 /*
4042 * This runs very early, and only the boot processor is supposed to be
4043 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4044 * IPIs around.
4045 */
4046 __flush_cpu_slab(s, smp_processor_id());
4047 for_each_kmem_cache_node(s, node, n) {
4048 struct page *p;
4049
4050 list_for_each_entry(p, &n->partial, lru)
4051 p->slab_cache = s;
4052
4053#ifdef CONFIG_SLUB_DEBUG
4054 list_for_each_entry(p, &n->full, lru)
4055 p->slab_cache = s;
4056#endif
4057 }
4058 slab_init_memcg_params(s);
4059 list_add(&s->list, &slab_caches);
4060 return s;
4061}
4062
4063void __init kmem_cache_init(void)
4064{
4065 static __initdata struct kmem_cache boot_kmem_cache,
4066 boot_kmem_cache_node;
4067
4068 if (debug_guardpage_minorder())
4069 slub_max_order = 0;
4070
4071 kmem_cache_node = &boot_kmem_cache_node;
4072 kmem_cache = &boot_kmem_cache;
4073
4074 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4075 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4076
4077 register_hotmemory_notifier(&slab_memory_callback_nb);
4078
4079 /* Able to allocate the per node structures */
4080 slab_state = PARTIAL;
4081
4082 create_boot_cache(kmem_cache, "kmem_cache",
4083 offsetof(struct kmem_cache, node) +
4084 nr_node_ids * sizeof(struct kmem_cache_node *),
4085 SLAB_HWCACHE_ALIGN);
4086
4087 kmem_cache = bootstrap(&boot_kmem_cache);
4088
4089 /*
4090 * Allocate kmem_cache_node properly from the kmem_cache slab.
4091 * kmem_cache_node is separately allocated so no need to
4092 * update any list pointers.
4093 */
4094 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4095
4096 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4097 setup_kmalloc_cache_index_table();
4098 create_kmalloc_caches(0);
4099
4100 /* Setup random freelists for each cache */
4101 init_freelist_randomization();
4102
4103#ifdef CONFIG_SMP
4104 register_cpu_notifier(&slab_notifier);
4105#endif
4106
4107 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4108 cache_line_size(),
4109 slub_min_order, slub_max_order, slub_min_objects,
4110 nr_cpu_ids, nr_node_ids);
4111}
4112
4113void __init kmem_cache_init_late(void)
4114{
4115}
4116
4117struct kmem_cache *
4118__kmem_cache_alias(const char *name, size_t size, size_t align,
4119 unsigned long flags, void (*ctor)(void *))
4120{
4121 struct kmem_cache *s, *c;
4122
4123 s = find_mergeable(size, align, flags, name, ctor);
4124 if (s) {
4125 s->refcount++;
4126
4127 /*
4128 * Adjust the object sizes so that we clear
4129 * the complete object on kzalloc.
4130 */
4131 s->object_size = max(s->object_size, (int)size);
4132 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4133
4134 for_each_memcg_cache(c, s) {
4135 c->object_size = s->object_size;
4136 c->inuse = max_t(int, c->inuse,
4137 ALIGN(size, sizeof(void *)));
4138 }
4139
4140 if (sysfs_slab_alias(s, name)) {
4141 s->refcount--;
4142 s = NULL;
4143 }
4144 }
4145
4146 return s;
4147}
4148
4149int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4150{
4151 int err;
4152
4153 err = kmem_cache_open(s, flags);
4154 if (err)
4155 return err;
4156
4157 /* Mutex is not taken during early boot */
4158 if (slab_state <= UP)
4159 return 0;
4160
4161 memcg_propagate_slab_attrs(s);
4162 err = sysfs_slab_add(s);
4163 if (err)
4164 __kmem_cache_release(s);
4165
4166 return err;
4167}
4168
4169#ifdef CONFIG_SMP
4170/*
4171 * Use the cpu notifier to insure that the cpu slabs are flushed when
4172 * necessary.
4173 */
4174static int slab_cpuup_callback(struct notifier_block *nfb,
4175 unsigned long action, void *hcpu)
4176{
4177 long cpu = (long)hcpu;
4178 struct kmem_cache *s;
4179 unsigned long flags;
4180
4181 switch (action) {
4182 case CPU_UP_CANCELED:
4183 case CPU_UP_CANCELED_FROZEN:
4184 case CPU_DEAD:
4185 case CPU_DEAD_FROZEN:
4186 mutex_lock(&slab_mutex);
4187 list_for_each_entry(s, &slab_caches, list) {
4188 local_irq_save(flags);
4189 __flush_cpu_slab(s, cpu);
4190 local_irq_restore(flags);
4191 }
4192 mutex_unlock(&slab_mutex);
4193 break;
4194 default:
4195 break;
4196 }
4197 return NOTIFY_OK;
4198}
4199
4200static struct notifier_block slab_notifier = {
4201 .notifier_call = slab_cpuup_callback
4202};
4203
4204#endif
4205
4206void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4207{
4208 struct kmem_cache *s;
4209 void *ret;
4210
4211 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4212 return kmalloc_large(size, gfpflags);
4213
4214 s = kmalloc_slab(size, gfpflags);
4215
4216 if (unlikely(ZERO_OR_NULL_PTR(s)))
4217 return s;
4218
4219 ret = slab_alloc(s, gfpflags, caller);
4220
4221 /* Honor the call site pointer we received. */
4222 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4223
4224 return ret;
4225}
4226
4227#ifdef CONFIG_NUMA
4228void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4229 int node, unsigned long caller)
4230{
4231 struct kmem_cache *s;
4232 void *ret;
4233
4234 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4235 ret = kmalloc_large_node(size, gfpflags, node);
4236
4237 trace_kmalloc_node(caller, ret,
4238 size, PAGE_SIZE << get_order(size),
4239 gfpflags, node);
4240
4241 return ret;
4242 }
4243
4244 s = kmalloc_slab(size, gfpflags);
4245
4246 if (unlikely(ZERO_OR_NULL_PTR(s)))
4247 return s;
4248
4249 ret = slab_alloc_node(s, gfpflags, node, caller);
4250
4251 /* Honor the call site pointer we received. */
4252 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4253
4254 return ret;
4255}
4256#endif
4257
4258#ifdef CONFIG_SYSFS
4259static int count_inuse(struct page *page)
4260{
4261 return page->inuse;
4262}
4263
4264static int count_total(struct page *page)
4265{
4266 return page->objects;
4267}
4268#endif
4269
4270#ifdef CONFIG_SLUB_DEBUG
4271static int validate_slab(struct kmem_cache *s, struct page *page,
4272 unsigned long *map)
4273{
4274 void *p;
4275 void *addr = page_address(page);
4276
4277 if (!check_slab(s, page) ||
4278 !on_freelist(s, page, NULL))
4279 return 0;
4280
4281 /* Now we know that a valid freelist exists */
4282 bitmap_zero(map, page->objects);
4283
4284 get_map(s, page, map);
4285 for_each_object(p, s, addr, page->objects) {
4286 if (test_bit(slab_index(p, s, addr), map))
4287 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4288 return 0;
4289 }
4290
4291 for_each_object(p, s, addr, page->objects)
4292 if (!test_bit(slab_index(p, s, addr), map))
4293 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4294 return 0;
4295 return 1;
4296}
4297
4298static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4299 unsigned long *map)
4300{
4301 slab_lock(page);
4302 validate_slab(s, page, map);
4303 slab_unlock(page);
4304}
4305
4306static int validate_slab_node(struct kmem_cache *s,
4307 struct kmem_cache_node *n, unsigned long *map)
4308{
4309 unsigned long count = 0;
4310 struct page *page;
4311 unsigned long flags;
4312
4313 spin_lock_irqsave(&n->list_lock, flags);
4314
4315 list_for_each_entry(page, &n->partial, lru) {
4316 validate_slab_slab(s, page, map);
4317 count++;
4318 }
4319 if (count != n->nr_partial)
4320 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4321 s->name, count, n->nr_partial);
4322
4323 if (!(s->flags & SLAB_STORE_USER))
4324 goto out;
4325
4326 list_for_each_entry(page, &n->full, lru) {
4327 validate_slab_slab(s, page, map);
4328 count++;
4329 }
4330 if (count != atomic_long_read(&n->nr_slabs))
4331 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4332 s->name, count, atomic_long_read(&n->nr_slabs));
4333
4334out:
4335 spin_unlock_irqrestore(&n->list_lock, flags);
4336 return count;
4337}
4338
4339static long validate_slab_cache(struct kmem_cache *s)
4340{
4341 int node;
4342 unsigned long count = 0;
4343 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4344 sizeof(unsigned long), GFP_KERNEL);
4345 struct kmem_cache_node *n;
4346
4347 if (!map)
4348 return -ENOMEM;
4349
4350 flush_all(s);
4351 for_each_kmem_cache_node(s, node, n)
4352 count += validate_slab_node(s, n, map);
4353 kfree(map);
4354 return count;
4355}
4356/*
4357 * Generate lists of code addresses where slabcache objects are allocated
4358 * and freed.
4359 */
4360
4361struct location {
4362 unsigned long count;
4363 unsigned long addr;
4364 long long sum_time;
4365 long min_time;
4366 long max_time;
4367 long min_pid;
4368 long max_pid;
4369 DECLARE_BITMAP(cpus, NR_CPUS);
4370 nodemask_t nodes;
4371};
4372
4373struct loc_track {
4374 unsigned long max;
4375 unsigned long count;
4376 struct location *loc;
4377};
4378
4379static void free_loc_track(struct loc_track *t)
4380{
4381 if (t->max)
4382 free_pages((unsigned long)t->loc,
4383 get_order(sizeof(struct location) * t->max));
4384}
4385
4386static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4387{
4388 struct location *l;
4389 int order;
4390
4391 order = get_order(sizeof(struct location) * max);
4392
4393 l = (void *)__get_free_pages(flags, order);
4394 if (!l)
4395 return 0;
4396
4397 if (t->count) {
4398 memcpy(l, t->loc, sizeof(struct location) * t->count);
4399 free_loc_track(t);
4400 }
4401 t->max = max;
4402 t->loc = l;
4403 return 1;
4404}
4405
4406static int add_location(struct loc_track *t, struct kmem_cache *s,
4407 const struct track *track)
4408{
4409 long start, end, pos;
4410 struct location *l;
4411 unsigned long caddr;
4412 unsigned long age = jiffies - track->when;
4413
4414 start = -1;
4415 end = t->count;
4416
4417 for ( ; ; ) {
4418 pos = start + (end - start + 1) / 2;
4419
4420 /*
4421 * There is nothing at "end". If we end up there
4422 * we need to add something to before end.
4423 */
4424 if (pos == end)
4425 break;
4426
4427 caddr = t->loc[pos].addr;
4428 if (track->addr == caddr) {
4429
4430 l = &t->loc[pos];
4431 l->count++;
4432 if (track->when) {
4433 l->sum_time += age;
4434 if (age < l->min_time)
4435 l->min_time = age;
4436 if (age > l->max_time)
4437 l->max_time = age;
4438
4439 if (track->pid < l->min_pid)
4440 l->min_pid = track->pid;
4441 if (track->pid > l->max_pid)
4442 l->max_pid = track->pid;
4443
4444 cpumask_set_cpu(track->cpu,
4445 to_cpumask(l->cpus));
4446 }
4447 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4448 return 1;
4449 }
4450
4451 if (track->addr < caddr)
4452 end = pos;
4453 else
4454 start = pos;
4455 }
4456
4457 /*
4458 * Not found. Insert new tracking element.
4459 */
4460 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4461 return 0;
4462
4463 l = t->loc + pos;
4464 if (pos < t->count)
4465 memmove(l + 1, l,
4466 (t->count - pos) * sizeof(struct location));
4467 t->count++;
4468 l->count = 1;
4469 l->addr = track->addr;
4470 l->sum_time = age;
4471 l->min_time = age;
4472 l->max_time = age;
4473 l->min_pid = track->pid;
4474 l->max_pid = track->pid;
4475 cpumask_clear(to_cpumask(l->cpus));
4476 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4477 nodes_clear(l->nodes);
4478 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4479 return 1;
4480}
4481
4482static void process_slab(struct loc_track *t, struct kmem_cache *s,
4483 struct page *page, enum track_item alloc,
4484 unsigned long *map)
4485{
4486 void *addr = page_address(page);
4487 void *p;
4488
4489 bitmap_zero(map, page->objects);
4490 get_map(s, page, map);
4491
4492 for_each_object(p, s, addr, page->objects)
4493 if (!test_bit(slab_index(p, s, addr), map))
4494 add_location(t, s, get_track(s, p, alloc));
4495}
4496
4497static int list_locations(struct kmem_cache *s, char *buf,
4498 enum track_item alloc)
4499{
4500 int len = 0;
4501 unsigned long i;
4502 struct loc_track t = { 0, 0, NULL };
4503 int node;
4504 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4505 sizeof(unsigned long), GFP_KERNEL);
4506 struct kmem_cache_node *n;
4507
4508 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4509 GFP_TEMPORARY)) {
4510 kfree(map);
4511 return sprintf(buf, "Out of memory\n");
4512 }
4513 /* Push back cpu slabs */
4514 flush_all(s);
4515
4516 for_each_kmem_cache_node(s, node, n) {
4517 unsigned long flags;
4518 struct page *page;
4519
4520 if (!atomic_long_read(&n->nr_slabs))
4521 continue;
4522
4523 spin_lock_irqsave(&n->list_lock, flags);
4524 list_for_each_entry(page, &n->partial, lru)
4525 process_slab(&t, s, page, alloc, map);
4526 list_for_each_entry(page, &n->full, lru)
4527 process_slab(&t, s, page, alloc, map);
4528 spin_unlock_irqrestore(&n->list_lock, flags);
4529 }
4530
4531 for (i = 0; i < t.count; i++) {
4532 struct location *l = &t.loc[i];
4533
4534 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4535 break;
4536 len += sprintf(buf + len, "%7ld ", l->count);
4537
4538 if (l->addr)
4539 len += sprintf(buf + len, "%pS", (void *)l->addr);
4540 else
4541 len += sprintf(buf + len, "<not-available>");
4542
4543 if (l->sum_time != l->min_time) {
4544 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4545 l->min_time,
4546 (long)div_u64(l->sum_time, l->count),
4547 l->max_time);
4548 } else
4549 len += sprintf(buf + len, " age=%ld",
4550 l->min_time);
4551
4552 if (l->min_pid != l->max_pid)
4553 len += sprintf(buf + len, " pid=%ld-%ld",
4554 l->min_pid, l->max_pid);
4555 else
4556 len += sprintf(buf + len, " pid=%ld",
4557 l->min_pid);
4558
4559 if (num_online_cpus() > 1 &&
4560 !cpumask_empty(to_cpumask(l->cpus)) &&
4561 len < PAGE_SIZE - 60)
4562 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4563 " cpus=%*pbl",
4564 cpumask_pr_args(to_cpumask(l->cpus)));
4565
4566 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4567 len < PAGE_SIZE - 60)
4568 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4569 " nodes=%*pbl",
4570 nodemask_pr_args(&l->nodes));
4571
4572 len += sprintf(buf + len, "\n");
4573 }
4574
4575 free_loc_track(&t);
4576 kfree(map);
4577 if (!t.count)
4578 len += sprintf(buf, "No data\n");
4579 return len;
4580}
4581#endif
4582
4583#ifdef SLUB_RESILIENCY_TEST
4584static void __init resiliency_test(void)
4585{
4586 u8 *p;
4587
4588 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4589
4590 pr_err("SLUB resiliency testing\n");
4591 pr_err("-----------------------\n");
4592 pr_err("A. Corruption after allocation\n");
4593
4594 p = kzalloc(16, GFP_KERNEL);
4595 p[16] = 0x12;
4596 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4597 p + 16);
4598
4599 validate_slab_cache(kmalloc_caches[4]);
4600
4601 /* Hmmm... The next two are dangerous */
4602 p = kzalloc(32, GFP_KERNEL);
4603 p[32 + sizeof(void *)] = 0x34;
4604 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4605 p);
4606 pr_err("If allocated object is overwritten then not detectable\n\n");
4607
4608 validate_slab_cache(kmalloc_caches[5]);
4609 p = kzalloc(64, GFP_KERNEL);
4610 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4611 *p = 0x56;
4612 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4613 p);
4614 pr_err("If allocated object is overwritten then not detectable\n\n");
4615 validate_slab_cache(kmalloc_caches[6]);
4616
4617 pr_err("\nB. Corruption after free\n");
4618 p = kzalloc(128, GFP_KERNEL);
4619 kfree(p);
4620 *p = 0x78;
4621 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4622 validate_slab_cache(kmalloc_caches[7]);
4623
4624 p = kzalloc(256, GFP_KERNEL);
4625 kfree(p);
4626 p[50] = 0x9a;
4627 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4628 validate_slab_cache(kmalloc_caches[8]);
4629
4630 p = kzalloc(512, GFP_KERNEL);
4631 kfree(p);
4632 p[512] = 0xab;
4633 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4634 validate_slab_cache(kmalloc_caches[9]);
4635}
4636#else
4637#ifdef CONFIG_SYSFS
4638static void resiliency_test(void) {};
4639#endif
4640#endif
4641
4642#ifdef CONFIG_SYSFS
4643enum slab_stat_type {
4644 SL_ALL, /* All slabs */
4645 SL_PARTIAL, /* Only partially allocated slabs */
4646 SL_CPU, /* Only slabs used for cpu caches */
4647 SL_OBJECTS, /* Determine allocated objects not slabs */
4648 SL_TOTAL /* Determine object capacity not slabs */
4649};
4650
4651#define SO_ALL (1 << SL_ALL)
4652#define SO_PARTIAL (1 << SL_PARTIAL)
4653#define SO_CPU (1 << SL_CPU)
4654#define SO_OBJECTS (1 << SL_OBJECTS)
4655#define SO_TOTAL (1 << SL_TOTAL)
4656
4657static ssize_t show_slab_objects(struct kmem_cache *s,
4658 char *buf, unsigned long flags)
4659{
4660 unsigned long total = 0;
4661 int node;
4662 int x;
4663 unsigned long *nodes;
4664
4665 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4666 if (!nodes)
4667 return -ENOMEM;
4668
4669 if (flags & SO_CPU) {
4670 int cpu;
4671
4672 for_each_possible_cpu(cpu) {
4673 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4674 cpu);
4675 int node;
4676 struct page *page;
4677
4678 page = READ_ONCE(c->page);
4679 if (!page)
4680 continue;
4681
4682 node = page_to_nid(page);
4683 if (flags & SO_TOTAL)
4684 x = page->objects;
4685 else if (flags & SO_OBJECTS)
4686 x = page->inuse;
4687 else
4688 x = 1;
4689
4690 total += x;
4691 nodes[node] += x;
4692
4693 page = READ_ONCE(c->partial);
4694 if (page) {
4695 node = page_to_nid(page);
4696 if (flags & SO_TOTAL)
4697 WARN_ON_ONCE(1);
4698 else if (flags & SO_OBJECTS)
4699 WARN_ON_ONCE(1);
4700 else
4701 x = page->pages;
4702 total += x;
4703 nodes[node] += x;
4704 }
4705 }
4706 }
4707
4708 get_online_mems();
4709#ifdef CONFIG_SLUB_DEBUG
4710 if (flags & SO_ALL) {
4711 struct kmem_cache_node *n;
4712
4713 for_each_kmem_cache_node(s, node, n) {
4714
4715 if (flags & SO_TOTAL)
4716 x = atomic_long_read(&n->total_objects);
4717 else if (flags & SO_OBJECTS)
4718 x = atomic_long_read(&n->total_objects) -
4719 count_partial(n, count_free);
4720 else
4721 x = atomic_long_read(&n->nr_slabs);
4722 total += x;
4723 nodes[node] += x;
4724 }
4725
4726 } else
4727#endif
4728 if (flags & SO_PARTIAL) {
4729 struct kmem_cache_node *n;
4730
4731 for_each_kmem_cache_node(s, node, n) {
4732 if (flags & SO_TOTAL)
4733 x = count_partial(n, count_total);
4734 else if (flags & SO_OBJECTS)
4735 x = count_partial(n, count_inuse);
4736 else
4737 x = n->nr_partial;
4738 total += x;
4739 nodes[node] += x;
4740 }
4741 }
4742 x = sprintf(buf, "%lu", total);
4743#ifdef CONFIG_NUMA
4744 for (node = 0; node < nr_node_ids; node++)
4745 if (nodes[node])
4746 x += sprintf(buf + x, " N%d=%lu",
4747 node, nodes[node]);
4748#endif
4749 put_online_mems();
4750 kfree(nodes);
4751 return x + sprintf(buf + x, "\n");
4752}
4753
4754#ifdef CONFIG_SLUB_DEBUG
4755static int any_slab_objects(struct kmem_cache *s)
4756{
4757 int node;
4758 struct kmem_cache_node *n;
4759
4760 for_each_kmem_cache_node(s, node, n)
4761 if (atomic_long_read(&n->total_objects))
4762 return 1;
4763
4764 return 0;
4765}
4766#endif
4767
4768#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4769#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4770
4771struct slab_attribute {
4772 struct attribute attr;
4773 ssize_t (*show)(struct kmem_cache *s, char *buf);
4774 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4775};
4776
4777#define SLAB_ATTR_RO(_name) \
4778 static struct slab_attribute _name##_attr = \
4779 __ATTR(_name, 0400, _name##_show, NULL)
4780
4781#define SLAB_ATTR(_name) \
4782 static struct slab_attribute _name##_attr = \
4783 __ATTR(_name, 0600, _name##_show, _name##_store)
4784
4785static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4786{
4787 return sprintf(buf, "%d\n", s->size);
4788}
4789SLAB_ATTR_RO(slab_size);
4790
4791static ssize_t align_show(struct kmem_cache *s, char *buf)
4792{
4793 return sprintf(buf, "%d\n", s->align);
4794}
4795SLAB_ATTR_RO(align);
4796
4797static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4798{
4799 return sprintf(buf, "%d\n", s->object_size);
4800}
4801SLAB_ATTR_RO(object_size);
4802
4803static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4804{
4805 return sprintf(buf, "%d\n", oo_objects(s->oo));
4806}
4807SLAB_ATTR_RO(objs_per_slab);
4808
4809static ssize_t order_store(struct kmem_cache *s,
4810 const char *buf, size_t length)
4811{
4812 unsigned long order;
4813 int err;
4814
4815 err = kstrtoul(buf, 10, &order);
4816 if (err)
4817 return err;
4818
4819 if (order > slub_max_order || order < slub_min_order)
4820 return -EINVAL;
4821
4822 calculate_sizes(s, order);
4823 return length;
4824}
4825
4826static ssize_t order_show(struct kmem_cache *s, char *buf)
4827{
4828 return sprintf(buf, "%d\n", oo_order(s->oo));
4829}
4830SLAB_ATTR(order);
4831
4832static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4833{
4834 return sprintf(buf, "%lu\n", s->min_partial);
4835}
4836
4837static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4838 size_t length)
4839{
4840 unsigned long min;
4841 int err;
4842
4843 err = kstrtoul(buf, 10, &min);
4844 if (err)
4845 return err;
4846
4847 set_min_partial(s, min);
4848 return length;
4849}
4850SLAB_ATTR(min_partial);
4851
4852static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4853{
4854 return sprintf(buf, "%u\n", s->cpu_partial);
4855}
4856
4857static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4858 size_t length)
4859{
4860 unsigned long objects;
4861 int err;
4862
4863 err = kstrtoul(buf, 10, &objects);
4864 if (err)
4865 return err;
4866 if (objects && !kmem_cache_has_cpu_partial(s))
4867 return -EINVAL;
4868
4869 s->cpu_partial = objects;
4870 flush_all(s);
4871 return length;
4872}
4873SLAB_ATTR(cpu_partial);
4874
4875static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4876{
4877 if (!s->ctor)
4878 return 0;
4879 return sprintf(buf, "%pS\n", s->ctor);
4880}
4881SLAB_ATTR_RO(ctor);
4882
4883static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4884{
4885 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4886}
4887SLAB_ATTR_RO(aliases);
4888
4889static ssize_t partial_show(struct kmem_cache *s, char *buf)
4890{
4891 return show_slab_objects(s, buf, SO_PARTIAL);
4892}
4893SLAB_ATTR_RO(partial);
4894
4895static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4896{
4897 return show_slab_objects(s, buf, SO_CPU);
4898}
4899SLAB_ATTR_RO(cpu_slabs);
4900
4901static ssize_t objects_show(struct kmem_cache *s, char *buf)
4902{
4903 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4904}
4905SLAB_ATTR_RO(objects);
4906
4907static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4908{
4909 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4910}
4911SLAB_ATTR_RO(objects_partial);
4912
4913static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4914{
4915 int objects = 0;
4916 int pages = 0;
4917 int cpu;
4918 int len;
4919
4920 for_each_online_cpu(cpu) {
4921 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4922
4923 if (page) {
4924 pages += page->pages;
4925 objects += page->pobjects;
4926 }
4927 }
4928
4929 len = sprintf(buf, "%d(%d)", objects, pages);
4930
4931#ifdef CONFIG_SMP
4932 for_each_online_cpu(cpu) {
4933 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4934
4935 if (page && len < PAGE_SIZE - 20)
4936 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4937 page->pobjects, page->pages);
4938 }
4939#endif
4940 return len + sprintf(buf + len, "\n");
4941}
4942SLAB_ATTR_RO(slabs_cpu_partial);
4943
4944static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4945{
4946 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4947}
4948
4949static ssize_t reclaim_account_store(struct kmem_cache *s,
4950 const char *buf, size_t length)
4951{
4952 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4953 if (buf[0] == '1')
4954 s->flags |= SLAB_RECLAIM_ACCOUNT;
4955 return length;
4956}
4957SLAB_ATTR(reclaim_account);
4958
4959static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4960{
4961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4962}
4963SLAB_ATTR_RO(hwcache_align);
4964
4965#ifdef CONFIG_ZONE_DMA
4966static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4967{
4968 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4969}
4970SLAB_ATTR_RO(cache_dma);
4971#endif
4972
4973static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4974{
4975 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4976}
4977SLAB_ATTR_RO(destroy_by_rcu);
4978
4979static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4980{
4981 return sprintf(buf, "%d\n", s->reserved);
4982}
4983SLAB_ATTR_RO(reserved);
4984
4985#ifdef CONFIG_SLUB_DEBUG
4986static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4987{
4988 return show_slab_objects(s, buf, SO_ALL);
4989}
4990SLAB_ATTR_RO(slabs);
4991
4992static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4993{
4994 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4995}
4996SLAB_ATTR_RO(total_objects);
4997
4998static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4999{
5000 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5001}
5002
5003static ssize_t sanity_checks_store(struct kmem_cache *s,
5004 const char *buf, size_t length)
5005{
5006 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5007 if (buf[0] == '1') {
5008 s->flags &= ~__CMPXCHG_DOUBLE;
5009 s->flags |= SLAB_CONSISTENCY_CHECKS;
5010 }
5011 return length;
5012}
5013SLAB_ATTR(sanity_checks);
5014
5015static ssize_t trace_show(struct kmem_cache *s, char *buf)
5016{
5017 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5018}
5019
5020static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5021 size_t length)
5022{
5023 /*
5024 * Tracing a merged cache is going to give confusing results
5025 * as well as cause other issues like converting a mergeable
5026 * cache into an umergeable one.
5027 */
5028 if (s->refcount > 1)
5029 return -EINVAL;
5030
5031 s->flags &= ~SLAB_TRACE;
5032 if (buf[0] == '1') {
5033 s->flags &= ~__CMPXCHG_DOUBLE;
5034 s->flags |= SLAB_TRACE;
5035 }
5036 return length;
5037}
5038SLAB_ATTR(trace);
5039
5040static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5041{
5042 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5043}
5044
5045static ssize_t red_zone_store(struct kmem_cache *s,
5046 const char *buf, size_t length)
5047{
5048 if (any_slab_objects(s))
5049 return -EBUSY;
5050
5051 s->flags &= ~SLAB_RED_ZONE;
5052 if (buf[0] == '1') {
5053 s->flags |= SLAB_RED_ZONE;
5054 }
5055 calculate_sizes(s, -1);
5056 return length;
5057}
5058SLAB_ATTR(red_zone);
5059
5060static ssize_t poison_show(struct kmem_cache *s, char *buf)
5061{
5062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5063}
5064
5065static ssize_t poison_store(struct kmem_cache *s,
5066 const char *buf, size_t length)
5067{
5068 if (any_slab_objects(s))
5069 return -EBUSY;
5070
5071 s->flags &= ~SLAB_POISON;
5072 if (buf[0] == '1') {
5073 s->flags |= SLAB_POISON;
5074 }
5075 calculate_sizes(s, -1);
5076 return length;
5077}
5078SLAB_ATTR(poison);
5079
5080static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5081{
5082 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5083}
5084
5085static ssize_t store_user_store(struct kmem_cache *s,
5086 const char *buf, size_t length)
5087{
5088 if (any_slab_objects(s))
5089 return -EBUSY;
5090
5091 s->flags &= ~SLAB_STORE_USER;
5092 if (buf[0] == '1') {
5093 s->flags &= ~__CMPXCHG_DOUBLE;
5094 s->flags |= SLAB_STORE_USER;
5095 }
5096 calculate_sizes(s, -1);
5097 return length;
5098}
5099SLAB_ATTR(store_user);
5100
5101static ssize_t validate_show(struct kmem_cache *s, char *buf)
5102{
5103 return 0;
5104}
5105
5106static ssize_t validate_store(struct kmem_cache *s,
5107 const char *buf, size_t length)
5108{
5109 int ret = -EINVAL;
5110
5111 if (buf[0] == '1') {
5112 ret = validate_slab_cache(s);
5113 if (ret >= 0)
5114 ret = length;
5115 }
5116 return ret;
5117}
5118SLAB_ATTR(validate);
5119
5120static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5121{
5122 if (!(s->flags & SLAB_STORE_USER))
5123 return -ENOSYS;
5124 return list_locations(s, buf, TRACK_ALLOC);
5125}
5126SLAB_ATTR_RO(alloc_calls);
5127
5128static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5129{
5130 if (!(s->flags & SLAB_STORE_USER))
5131 return -ENOSYS;
5132 return list_locations(s, buf, TRACK_FREE);
5133}
5134SLAB_ATTR_RO(free_calls);
5135#endif /* CONFIG_SLUB_DEBUG */
5136
5137#ifdef CONFIG_FAILSLAB
5138static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5139{
5140 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5141}
5142
5143static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5144 size_t length)
5145{
5146 if (s->refcount > 1)
5147 return -EINVAL;
5148
5149 s->flags &= ~SLAB_FAILSLAB;
5150 if (buf[0] == '1')
5151 s->flags |= SLAB_FAILSLAB;
5152 return length;
5153}
5154SLAB_ATTR(failslab);
5155#endif
5156
5157static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5158{
5159 return 0;
5160}
5161
5162static ssize_t shrink_store(struct kmem_cache *s,
5163 const char *buf, size_t length)
5164{
5165 if (buf[0] == '1')
5166 kmem_cache_shrink(s);
5167 else
5168 return -EINVAL;
5169 return length;
5170}
5171SLAB_ATTR(shrink);
5172
5173#ifdef CONFIG_NUMA
5174static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5175{
5176 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5177}
5178
5179static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5180 const char *buf, size_t length)
5181{
5182 unsigned long ratio;
5183 int err;
5184
5185 err = kstrtoul(buf, 10, &ratio);
5186 if (err)
5187 return err;
5188
5189 if (ratio <= 100)
5190 s->remote_node_defrag_ratio = ratio * 10;
5191
5192 return length;
5193}
5194SLAB_ATTR(remote_node_defrag_ratio);
5195#endif
5196
5197#ifdef CONFIG_SLUB_STATS
5198static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5199{
5200 unsigned long sum = 0;
5201 int cpu;
5202 int len;
5203 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5204
5205 if (!data)
5206 return -ENOMEM;
5207
5208 for_each_online_cpu(cpu) {
5209 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5210
5211 data[cpu] = x;
5212 sum += x;
5213 }
5214
5215 len = sprintf(buf, "%lu", sum);
5216
5217#ifdef CONFIG_SMP
5218 for_each_online_cpu(cpu) {
5219 if (data[cpu] && len < PAGE_SIZE - 20)
5220 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5221 }
5222#endif
5223 kfree(data);
5224 return len + sprintf(buf + len, "\n");
5225}
5226
5227static void clear_stat(struct kmem_cache *s, enum stat_item si)
5228{
5229 int cpu;
5230
5231 for_each_online_cpu(cpu)
5232 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5233}
5234
5235#define STAT_ATTR(si, text) \
5236static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5237{ \
5238 return show_stat(s, buf, si); \
5239} \
5240static ssize_t text##_store(struct kmem_cache *s, \
5241 const char *buf, size_t length) \
5242{ \
5243 if (buf[0] != '0') \
5244 return -EINVAL; \
5245 clear_stat(s, si); \
5246 return length; \
5247} \
5248SLAB_ATTR(text); \
5249
5250STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5251STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5252STAT_ATTR(FREE_FASTPATH, free_fastpath);
5253STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5254STAT_ATTR(FREE_FROZEN, free_frozen);
5255STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5256STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5257STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5258STAT_ATTR(ALLOC_SLAB, alloc_slab);
5259STAT_ATTR(ALLOC_REFILL, alloc_refill);
5260STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5261STAT_ATTR(FREE_SLAB, free_slab);
5262STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5263STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5264STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5265STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5266STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5267STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5268STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5269STAT_ATTR(ORDER_FALLBACK, order_fallback);
5270STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5271STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5272STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5273STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5274STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5275STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5276#endif
5277
5278static struct attribute *slab_attrs[] = {
5279 &slab_size_attr.attr,
5280 &object_size_attr.attr,
5281 &objs_per_slab_attr.attr,
5282 &order_attr.attr,
5283 &min_partial_attr.attr,
5284 &cpu_partial_attr.attr,
5285 &objects_attr.attr,
5286 &objects_partial_attr.attr,
5287 &partial_attr.attr,
5288 &cpu_slabs_attr.attr,
5289 &ctor_attr.attr,
5290 &aliases_attr.attr,
5291 &align_attr.attr,
5292 &hwcache_align_attr.attr,
5293 &reclaim_account_attr.attr,
5294 &destroy_by_rcu_attr.attr,
5295 &shrink_attr.attr,
5296 &reserved_attr.attr,
5297 &slabs_cpu_partial_attr.attr,
5298#ifdef CONFIG_SLUB_DEBUG
5299 &total_objects_attr.attr,
5300 &slabs_attr.attr,
5301 &sanity_checks_attr.attr,
5302 &trace_attr.attr,
5303 &red_zone_attr.attr,
5304 &poison_attr.attr,
5305 &store_user_attr.attr,
5306 &validate_attr.attr,
5307 &alloc_calls_attr.attr,
5308 &free_calls_attr.attr,
5309#endif
5310#ifdef CONFIG_ZONE_DMA
5311 &cache_dma_attr.attr,
5312#endif
5313#ifdef CONFIG_NUMA
5314 &remote_node_defrag_ratio_attr.attr,
5315#endif
5316#ifdef CONFIG_SLUB_STATS
5317 &alloc_fastpath_attr.attr,
5318 &alloc_slowpath_attr.attr,
5319 &free_fastpath_attr.attr,
5320 &free_slowpath_attr.attr,
5321 &free_frozen_attr.attr,
5322 &free_add_partial_attr.attr,
5323 &free_remove_partial_attr.attr,
5324 &alloc_from_partial_attr.attr,
5325 &alloc_slab_attr.attr,
5326 &alloc_refill_attr.attr,
5327 &alloc_node_mismatch_attr.attr,
5328 &free_slab_attr.attr,
5329 &cpuslab_flush_attr.attr,
5330 &deactivate_full_attr.attr,
5331 &deactivate_empty_attr.attr,
5332 &deactivate_to_head_attr.attr,
5333 &deactivate_to_tail_attr.attr,
5334 &deactivate_remote_frees_attr.attr,
5335 &deactivate_bypass_attr.attr,
5336 &order_fallback_attr.attr,
5337 &cmpxchg_double_fail_attr.attr,
5338 &cmpxchg_double_cpu_fail_attr.attr,
5339 &cpu_partial_alloc_attr.attr,
5340 &cpu_partial_free_attr.attr,
5341 &cpu_partial_node_attr.attr,
5342 &cpu_partial_drain_attr.attr,
5343#endif
5344#ifdef CONFIG_FAILSLAB
5345 &failslab_attr.attr,
5346#endif
5347
5348 NULL
5349};
5350
5351static struct attribute_group slab_attr_group = {
5352 .attrs = slab_attrs,
5353};
5354
5355static ssize_t slab_attr_show(struct kobject *kobj,
5356 struct attribute *attr,
5357 char *buf)
5358{
5359 struct slab_attribute *attribute;
5360 struct kmem_cache *s;
5361 int err;
5362
5363 attribute = to_slab_attr(attr);
5364 s = to_slab(kobj);
5365
5366 if (!attribute->show)
5367 return -EIO;
5368
5369 err = attribute->show(s, buf);
5370
5371 return err;
5372}
5373
5374static ssize_t slab_attr_store(struct kobject *kobj,
5375 struct attribute *attr,
5376 const char *buf, size_t len)
5377{
5378 struct slab_attribute *attribute;
5379 struct kmem_cache *s;
5380 int err;
5381
5382 attribute = to_slab_attr(attr);
5383 s = to_slab(kobj);
5384
5385 if (!attribute->store)
5386 return -EIO;
5387
5388 err = attribute->store(s, buf, len);
5389#ifdef CONFIG_MEMCG
5390 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5391 struct kmem_cache *c;
5392
5393 mutex_lock(&slab_mutex);
5394 if (s->max_attr_size < len)
5395 s->max_attr_size = len;
5396
5397 /*
5398 * This is a best effort propagation, so this function's return
5399 * value will be determined by the parent cache only. This is
5400 * basically because not all attributes will have a well
5401 * defined semantics for rollbacks - most of the actions will
5402 * have permanent effects.
5403 *
5404 * Returning the error value of any of the children that fail
5405 * is not 100 % defined, in the sense that users seeing the
5406 * error code won't be able to know anything about the state of
5407 * the cache.
5408 *
5409 * Only returning the error code for the parent cache at least
5410 * has well defined semantics. The cache being written to
5411 * directly either failed or succeeded, in which case we loop
5412 * through the descendants with best-effort propagation.
5413 */
5414 for_each_memcg_cache(c, s)
5415 attribute->store(c, buf, len);
5416 mutex_unlock(&slab_mutex);
5417 }
5418#endif
5419 return err;
5420}
5421
5422static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5423{
5424#ifdef CONFIG_MEMCG
5425 int i;
5426 char *buffer = NULL;
5427 struct kmem_cache *root_cache;
5428
5429 if (is_root_cache(s))
5430 return;
5431
5432 root_cache = s->memcg_params.root_cache;
5433
5434 /*
5435 * This mean this cache had no attribute written. Therefore, no point
5436 * in copying default values around
5437 */
5438 if (!root_cache->max_attr_size)
5439 return;
5440
5441 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5442 char mbuf[64];
5443 char *buf;
5444 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5445
5446 if (!attr || !attr->store || !attr->show)
5447 continue;
5448
5449 /*
5450 * It is really bad that we have to allocate here, so we will
5451 * do it only as a fallback. If we actually allocate, though,
5452 * we can just use the allocated buffer until the end.
5453 *
5454 * Most of the slub attributes will tend to be very small in
5455 * size, but sysfs allows buffers up to a page, so they can
5456 * theoretically happen.
5457 */
5458 if (buffer)
5459 buf = buffer;
5460 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5461 buf = mbuf;
5462 else {
5463 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5464 if (WARN_ON(!buffer))
5465 continue;
5466 buf = buffer;
5467 }
5468
5469 attr->show(root_cache, buf);
5470 attr->store(s, buf, strlen(buf));
5471 }
5472
5473 if (buffer)
5474 free_page((unsigned long)buffer);
5475#endif
5476}
5477
5478static void kmem_cache_release(struct kobject *k)
5479{
5480 slab_kmem_cache_release(to_slab(k));
5481}
5482
5483static const struct sysfs_ops slab_sysfs_ops = {
5484 .show = slab_attr_show,
5485 .store = slab_attr_store,
5486};
5487
5488static struct kobj_type slab_ktype = {
5489 .sysfs_ops = &slab_sysfs_ops,
5490 .release = kmem_cache_release,
5491};
5492
5493static int uevent_filter(struct kset *kset, struct kobject *kobj)
5494{
5495 struct kobj_type *ktype = get_ktype(kobj);
5496
5497 if (ktype == &slab_ktype)
5498 return 1;
5499 return 0;
5500}
5501
5502static const struct kset_uevent_ops slab_uevent_ops = {
5503 .filter = uevent_filter,
5504};
5505
5506static struct kset *slab_kset;
5507
5508static inline struct kset *cache_kset(struct kmem_cache *s)
5509{
5510#ifdef CONFIG_MEMCG
5511 if (!is_root_cache(s))
5512 return s->memcg_params.root_cache->memcg_kset;
5513#endif
5514 return slab_kset;
5515}
5516
5517#define ID_STR_LENGTH 64
5518
5519/* Create a unique string id for a slab cache:
5520 *
5521 * Format :[flags-]size
5522 */
5523static char *create_unique_id(struct kmem_cache *s)
5524{
5525 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5526 char *p = name;
5527
5528 BUG_ON(!name);
5529
5530 *p++ = ':';
5531 /*
5532 * First flags affecting slabcache operations. We will only
5533 * get here for aliasable slabs so we do not need to support
5534 * too many flags. The flags here must cover all flags that
5535 * are matched during merging to guarantee that the id is
5536 * unique.
5537 */
5538 if (s->flags & SLAB_CACHE_DMA)
5539 *p++ = 'd';
5540 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5541 *p++ = 'a';
5542 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5543 *p++ = 'F';
5544 if (!(s->flags & SLAB_NOTRACK))
5545 *p++ = 't';
5546 if (s->flags & SLAB_ACCOUNT)
5547 *p++ = 'A';
5548 if (p != name + 1)
5549 *p++ = '-';
5550 p += sprintf(p, "%07d", s->size);
5551
5552 BUG_ON(p > name + ID_STR_LENGTH - 1);
5553 return name;
5554}
5555
5556static int sysfs_slab_add(struct kmem_cache *s)
5557{
5558 int err;
5559 const char *name;
5560 int unmergeable = slab_unmergeable(s);
5561
5562 if (unmergeable) {
5563 /*
5564 * Slabcache can never be merged so we can use the name proper.
5565 * This is typically the case for debug situations. In that
5566 * case we can catch duplicate names easily.
5567 */
5568 sysfs_remove_link(&slab_kset->kobj, s->name);
5569 name = s->name;
5570 } else {
5571 /*
5572 * Create a unique name for the slab as a target
5573 * for the symlinks.
5574 */
5575 name = create_unique_id(s);
5576 }
5577
5578 s->kobj.kset = cache_kset(s);
5579 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5580 if (err)
5581 goto out;
5582
5583 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5584 if (err)
5585 goto out_del_kobj;
5586
5587#ifdef CONFIG_MEMCG
5588 if (is_root_cache(s)) {
5589 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5590 if (!s->memcg_kset) {
5591 err = -ENOMEM;
5592 goto out_del_kobj;
5593 }
5594 }
5595#endif
5596
5597 kobject_uevent(&s->kobj, KOBJ_ADD);
5598 if (!unmergeable) {
5599 /* Setup first alias */
5600 sysfs_slab_alias(s, s->name);
5601 }
5602out:
5603 if (!unmergeable)
5604 kfree(name);
5605 return err;
5606out_del_kobj:
5607 kobject_del(&s->kobj);
5608 goto out;
5609}
5610
5611void sysfs_slab_remove(struct kmem_cache *s)
5612{
5613 if (slab_state < FULL)
5614 /*
5615 * Sysfs has not been setup yet so no need to remove the
5616 * cache from sysfs.
5617 */
5618 return;
5619
5620#ifdef CONFIG_MEMCG
5621 kset_unregister(s->memcg_kset);
5622#endif
5623 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5624 kobject_del(&s->kobj);
5625 kobject_put(&s->kobj);
5626}
5627
5628/*
5629 * Need to buffer aliases during bootup until sysfs becomes
5630 * available lest we lose that information.
5631 */
5632struct saved_alias {
5633 struct kmem_cache *s;
5634 const char *name;
5635 struct saved_alias *next;
5636};
5637
5638static struct saved_alias *alias_list;
5639
5640static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5641{
5642 struct saved_alias *al;
5643
5644 if (slab_state == FULL) {
5645 /*
5646 * If we have a leftover link then remove it.
5647 */
5648 sysfs_remove_link(&slab_kset->kobj, name);
5649 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5650 }
5651
5652 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5653 if (!al)
5654 return -ENOMEM;
5655
5656 al->s = s;
5657 al->name = name;
5658 al->next = alias_list;
5659 alias_list = al;
5660 return 0;
5661}
5662
5663static int __init slab_sysfs_init(void)
5664{
5665 struct kmem_cache *s;
5666 int err;
5667
5668 mutex_lock(&slab_mutex);
5669
5670 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5671 if (!slab_kset) {
5672 mutex_unlock(&slab_mutex);
5673 pr_err("Cannot register slab subsystem.\n");
5674 return -ENOSYS;
5675 }
5676
5677 slab_state = FULL;
5678
5679 list_for_each_entry(s, &slab_caches, list) {
5680 err = sysfs_slab_add(s);
5681 if (err)
5682 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5683 s->name);
5684 }
5685
5686 while (alias_list) {
5687 struct saved_alias *al = alias_list;
5688
5689 alias_list = alias_list->next;
5690 err = sysfs_slab_alias(al->s, al->name);
5691 if (err)
5692 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5693 al->name);
5694 kfree(al);
5695 }
5696
5697 mutex_unlock(&slab_mutex);
5698 resiliency_test();
5699 return 0;
5700}
5701
5702__initcall(slab_sysfs_init);
5703#endif /* CONFIG_SYSFS */
5704
5705/*
5706 * The /proc/slabinfo ABI
5707 */
5708#ifdef CONFIG_SLABINFO
5709void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5710{
5711 unsigned long nr_slabs = 0;
5712 unsigned long nr_objs = 0;
5713 unsigned long nr_free = 0;
5714 int node;
5715 struct kmem_cache_node *n;
5716
5717 for_each_kmem_cache_node(s, node, n) {
5718 nr_slabs += node_nr_slabs(n);
5719 nr_objs += node_nr_objs(n);
5720 nr_free += count_partial(n, count_free);
5721 }
5722
5723 sinfo->active_objs = nr_objs - nr_free;
5724 sinfo->num_objs = nr_objs;
5725 sinfo->active_slabs = nr_slabs;
5726 sinfo->num_slabs = nr_slabs;
5727 sinfo->objects_per_slab = oo_objects(s->oo);
5728 sinfo->cache_order = oo_order(s->oo);
5729}
5730
5731void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5732{
5733}
5734
5735ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5736 size_t count, loff_t *ppos)
5737{
5738 return -EIO;
5739}
5740#endif /* CONFIG_SLABINFO */