Merge branches 'release', 'bugzilla-12011', 'bugzilla-12632', 'misc' and 'suspend...
[linux-2.6-block.git] / mm / slub.c
... / ...
CommitLineData
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/proc_fs.h>
18#include <linux/seq_file.h>
19#include <linux/cpu.h>
20#include <linux/cpuset.h>
21#include <linux/mempolicy.h>
22#include <linux/ctype.h>
23#include <linux/debugobjects.h>
24#include <linux/kallsyms.h>
25#include <linux/memory.h>
26#include <linux/math64.h>
27#include <linux/fault-inject.h>
28
29/*
30 * Lock order:
31 * 1. slab_lock(page)
32 * 2. slab->list_lock
33 *
34 * The slab_lock protects operations on the object of a particular
35 * slab and its metadata in the page struct. If the slab lock
36 * has been taken then no allocations nor frees can be performed
37 * on the objects in the slab nor can the slab be added or removed
38 * from the partial or full lists since this would mean modifying
39 * the page_struct of the slab.
40 *
41 * The list_lock protects the partial and full list on each node and
42 * the partial slab counter. If taken then no new slabs may be added or
43 * removed from the lists nor make the number of partial slabs be modified.
44 * (Note that the total number of slabs is an atomic value that may be
45 * modified without taking the list lock).
46 *
47 * The list_lock is a centralized lock and thus we avoid taking it as
48 * much as possible. As long as SLUB does not have to handle partial
49 * slabs, operations can continue without any centralized lock. F.e.
50 * allocating a long series of objects that fill up slabs does not require
51 * the list lock.
52 *
53 * The lock order is sometimes inverted when we are trying to get a slab
54 * off a list. We take the list_lock and then look for a page on the list
55 * to use. While we do that objects in the slabs may be freed. We can
56 * only operate on the slab if we have also taken the slab_lock. So we use
57 * a slab_trylock() on the slab. If trylock was successful then no frees
58 * can occur anymore and we can use the slab for allocations etc. If the
59 * slab_trylock() does not succeed then frees are in progress in the slab and
60 * we must stay away from it for a while since we may cause a bouncing
61 * cacheline if we try to acquire the lock. So go onto the next slab.
62 * If all pages are busy then we may allocate a new slab instead of reusing
63 * a partial slab. A new slab has noone operating on it and thus there is
64 * no danger of cacheline contention.
65 *
66 * Interrupts are disabled during allocation and deallocation in order to
67 * make the slab allocator safe to use in the context of an irq. In addition
68 * interrupts are disabled to ensure that the processor does not change
69 * while handling per_cpu slabs, due to kernel preemption.
70 *
71 * SLUB assigns one slab for allocation to each processor.
72 * Allocations only occur from these slabs called cpu slabs.
73 *
74 * Slabs with free elements are kept on a partial list and during regular
75 * operations no list for full slabs is used. If an object in a full slab is
76 * freed then the slab will show up again on the partial lists.
77 * We track full slabs for debugging purposes though because otherwise we
78 * cannot scan all objects.
79 *
80 * Slabs are freed when they become empty. Teardown and setup is
81 * minimal so we rely on the page allocators per cpu caches for
82 * fast frees and allocs.
83 *
84 * Overloading of page flags that are otherwise used for LRU management.
85 *
86 * PageActive The slab is frozen and exempt from list processing.
87 * This means that the slab is dedicated to a purpose
88 * such as satisfying allocations for a specific
89 * processor. Objects may be freed in the slab while
90 * it is frozen but slab_free will then skip the usual
91 * list operations. It is up to the processor holding
92 * the slab to integrate the slab into the slab lists
93 * when the slab is no longer needed.
94 *
95 * One use of this flag is to mark slabs that are
96 * used for allocations. Then such a slab becomes a cpu
97 * slab. The cpu slab may be equipped with an additional
98 * freelist that allows lockless access to
99 * free objects in addition to the regular freelist
100 * that requires the slab lock.
101 *
102 * PageError Slab requires special handling due to debug
103 * options set. This moves slab handling out of
104 * the fast path and disables lockless freelists.
105 */
106
107#ifdef CONFIG_SLUB_DEBUG
108#define SLABDEBUG 1
109#else
110#define SLABDEBUG 0
111#endif
112
113/*
114 * Issues still to be resolved:
115 *
116 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
117 *
118 * - Variable sizing of the per node arrays
119 */
120
121/* Enable to test recovery from slab corruption on boot */
122#undef SLUB_RESILIENCY_TEST
123
124/*
125 * Mininum number of partial slabs. These will be left on the partial
126 * lists even if they are empty. kmem_cache_shrink may reclaim them.
127 */
128#define MIN_PARTIAL 5
129
130/*
131 * Maximum number of desirable partial slabs.
132 * The existence of more partial slabs makes kmem_cache_shrink
133 * sort the partial list by the number of objects in the.
134 */
135#define MAX_PARTIAL 10
136
137#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
138 SLAB_POISON | SLAB_STORE_USER)
139
140/*
141 * Set of flags that will prevent slab merging
142 */
143#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145
146#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_CACHE_DMA)
148
149#ifndef ARCH_KMALLOC_MINALIGN
150#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
154#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155#endif
156
157#define OO_SHIFT 16
158#define OO_MASK ((1 << OO_SHIFT) - 1)
159#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
160
161/* Internal SLUB flags */
162#define __OBJECT_POISON 0x80000000 /* Poison object */
163#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
164
165static int kmem_size = sizeof(struct kmem_cache);
166
167#ifdef CONFIG_SMP
168static struct notifier_block slab_notifier;
169#endif
170
171static enum {
172 DOWN, /* No slab functionality available */
173 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
174 UP, /* Everything works but does not show up in sysfs */
175 SYSFS /* Sysfs up */
176} slab_state = DOWN;
177
178/* A list of all slab caches on the system */
179static DECLARE_RWSEM(slub_lock);
180static LIST_HEAD(slab_caches);
181
182/*
183 * Tracking user of a slab.
184 */
185struct track {
186 unsigned long addr; /* Called from address */
187 int cpu; /* Was running on cpu */
188 int pid; /* Pid context */
189 unsigned long when; /* When did the operation occur */
190};
191
192enum track_item { TRACK_ALLOC, TRACK_FREE };
193
194#ifdef CONFIG_SLUB_DEBUG
195static int sysfs_slab_add(struct kmem_cache *);
196static int sysfs_slab_alias(struct kmem_cache *, const char *);
197static void sysfs_slab_remove(struct kmem_cache *);
198
199#else
200static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
201static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
202 { return 0; }
203static inline void sysfs_slab_remove(struct kmem_cache *s)
204{
205 kfree(s);
206}
207
208#endif
209
210static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
211{
212#ifdef CONFIG_SLUB_STATS
213 c->stat[si]++;
214#endif
215}
216
217/********************************************************************
218 * Core slab cache functions
219 *******************************************************************/
220
221int slab_is_available(void)
222{
223 return slab_state >= UP;
224}
225
226static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
227{
228#ifdef CONFIG_NUMA
229 return s->node[node];
230#else
231 return &s->local_node;
232#endif
233}
234
235static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
236{
237#ifdef CONFIG_SMP
238 return s->cpu_slab[cpu];
239#else
240 return &s->cpu_slab;
241#endif
242}
243
244/* Verify that a pointer has an address that is valid within a slab page */
245static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
247{
248 void *base;
249
250 if (!object)
251 return 1;
252
253 base = page_address(page);
254 if (object < base || object >= base + page->objects * s->size ||
255 (object - base) % s->size) {
256 return 0;
257 }
258
259 return 1;
260}
261
262/*
263 * Slow version of get and set free pointer.
264 *
265 * This version requires touching the cache lines of kmem_cache which
266 * we avoid to do in the fast alloc free paths. There we obtain the offset
267 * from the page struct.
268 */
269static inline void *get_freepointer(struct kmem_cache *s, void *object)
270{
271 return *(void **)(object + s->offset);
272}
273
274static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
275{
276 *(void **)(object + s->offset) = fp;
277}
278
279/* Loop over all objects in a slab */
280#define for_each_object(__p, __s, __addr, __objects) \
281 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
282 __p += (__s)->size)
283
284/* Scan freelist */
285#define for_each_free_object(__p, __s, __free) \
286 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
287
288/* Determine object index from a given position */
289static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
290{
291 return (p - addr) / s->size;
292}
293
294static inline struct kmem_cache_order_objects oo_make(int order,
295 unsigned long size)
296{
297 struct kmem_cache_order_objects x = {
298 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
299 };
300
301 return x;
302}
303
304static inline int oo_order(struct kmem_cache_order_objects x)
305{
306 return x.x >> OO_SHIFT;
307}
308
309static inline int oo_objects(struct kmem_cache_order_objects x)
310{
311 return x.x & OO_MASK;
312}
313
314#ifdef CONFIG_SLUB_DEBUG
315/*
316 * Debug settings:
317 */
318#ifdef CONFIG_SLUB_DEBUG_ON
319static int slub_debug = DEBUG_DEFAULT_FLAGS;
320#else
321static int slub_debug;
322#endif
323
324static char *slub_debug_slabs;
325
326/*
327 * Object debugging
328 */
329static void print_section(char *text, u8 *addr, unsigned int length)
330{
331 int i, offset;
332 int newline = 1;
333 char ascii[17];
334
335 ascii[16] = 0;
336
337 for (i = 0; i < length; i++) {
338 if (newline) {
339 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
340 newline = 0;
341 }
342 printk(KERN_CONT " %02x", addr[i]);
343 offset = i % 16;
344 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
345 if (offset == 15) {
346 printk(KERN_CONT " %s\n", ascii);
347 newline = 1;
348 }
349 }
350 if (!newline) {
351 i %= 16;
352 while (i < 16) {
353 printk(KERN_CONT " ");
354 ascii[i] = ' ';
355 i++;
356 }
357 printk(KERN_CONT " %s\n", ascii);
358 }
359}
360
361static struct track *get_track(struct kmem_cache *s, void *object,
362 enum track_item alloc)
363{
364 struct track *p;
365
366 if (s->offset)
367 p = object + s->offset + sizeof(void *);
368 else
369 p = object + s->inuse;
370
371 return p + alloc;
372}
373
374static void set_track(struct kmem_cache *s, void *object,
375 enum track_item alloc, unsigned long addr)
376{
377 struct track *p;
378
379 if (s->offset)
380 p = object + s->offset + sizeof(void *);
381 else
382 p = object + s->inuse;
383
384 p += alloc;
385 if (addr) {
386 p->addr = addr;
387 p->cpu = smp_processor_id();
388 p->pid = current->pid;
389 p->when = jiffies;
390 } else
391 memset(p, 0, sizeof(struct track));
392}
393
394static void init_tracking(struct kmem_cache *s, void *object)
395{
396 if (!(s->flags & SLAB_STORE_USER))
397 return;
398
399 set_track(s, object, TRACK_FREE, 0UL);
400 set_track(s, object, TRACK_ALLOC, 0UL);
401}
402
403static void print_track(const char *s, struct track *t)
404{
405 if (!t->addr)
406 return;
407
408 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
409 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
410}
411
412static void print_tracking(struct kmem_cache *s, void *object)
413{
414 if (!(s->flags & SLAB_STORE_USER))
415 return;
416
417 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
418 print_track("Freed", get_track(s, object, TRACK_FREE));
419}
420
421static void print_page_info(struct page *page)
422{
423 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
424 page, page->objects, page->inuse, page->freelist, page->flags);
425
426}
427
428static void slab_bug(struct kmem_cache *s, char *fmt, ...)
429{
430 va_list args;
431 char buf[100];
432
433 va_start(args, fmt);
434 vsnprintf(buf, sizeof(buf), fmt, args);
435 va_end(args);
436 printk(KERN_ERR "========================================"
437 "=====================================\n");
438 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
439 printk(KERN_ERR "----------------------------------------"
440 "-------------------------------------\n\n");
441}
442
443static void slab_fix(struct kmem_cache *s, char *fmt, ...)
444{
445 va_list args;
446 char buf[100];
447
448 va_start(args, fmt);
449 vsnprintf(buf, sizeof(buf), fmt, args);
450 va_end(args);
451 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
452}
453
454static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
455{
456 unsigned int off; /* Offset of last byte */
457 u8 *addr = page_address(page);
458
459 print_tracking(s, p);
460
461 print_page_info(page);
462
463 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
464 p, p - addr, get_freepointer(s, p));
465
466 if (p > addr + 16)
467 print_section("Bytes b4", p - 16, 16);
468
469 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
470
471 if (s->flags & SLAB_RED_ZONE)
472 print_section("Redzone", p + s->objsize,
473 s->inuse - s->objsize);
474
475 if (s->offset)
476 off = s->offset + sizeof(void *);
477 else
478 off = s->inuse;
479
480 if (s->flags & SLAB_STORE_USER)
481 off += 2 * sizeof(struct track);
482
483 if (off != s->size)
484 /* Beginning of the filler is the free pointer */
485 print_section("Padding", p + off, s->size - off);
486
487 dump_stack();
488}
489
490static void object_err(struct kmem_cache *s, struct page *page,
491 u8 *object, char *reason)
492{
493 slab_bug(s, "%s", reason);
494 print_trailer(s, page, object);
495}
496
497static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
498{
499 va_list args;
500 char buf[100];
501
502 va_start(args, fmt);
503 vsnprintf(buf, sizeof(buf), fmt, args);
504 va_end(args);
505 slab_bug(s, "%s", buf);
506 print_page_info(page);
507 dump_stack();
508}
509
510static void init_object(struct kmem_cache *s, void *object, int active)
511{
512 u8 *p = object;
513
514 if (s->flags & __OBJECT_POISON) {
515 memset(p, POISON_FREE, s->objsize - 1);
516 p[s->objsize - 1] = POISON_END;
517 }
518
519 if (s->flags & SLAB_RED_ZONE)
520 memset(p + s->objsize,
521 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
522 s->inuse - s->objsize);
523}
524
525static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
526{
527 while (bytes) {
528 if (*start != (u8)value)
529 return start;
530 start++;
531 bytes--;
532 }
533 return NULL;
534}
535
536static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
537 void *from, void *to)
538{
539 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
540 memset(from, data, to - from);
541}
542
543static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
544 u8 *object, char *what,
545 u8 *start, unsigned int value, unsigned int bytes)
546{
547 u8 *fault;
548 u8 *end;
549
550 fault = check_bytes(start, value, bytes);
551 if (!fault)
552 return 1;
553
554 end = start + bytes;
555 while (end > fault && end[-1] == value)
556 end--;
557
558 slab_bug(s, "%s overwritten", what);
559 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
560 fault, end - 1, fault[0], value);
561 print_trailer(s, page, object);
562
563 restore_bytes(s, what, value, fault, end);
564 return 0;
565}
566
567/*
568 * Object layout:
569 *
570 * object address
571 * Bytes of the object to be managed.
572 * If the freepointer may overlay the object then the free
573 * pointer is the first word of the object.
574 *
575 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
576 * 0xa5 (POISON_END)
577 *
578 * object + s->objsize
579 * Padding to reach word boundary. This is also used for Redzoning.
580 * Padding is extended by another word if Redzoning is enabled and
581 * objsize == inuse.
582 *
583 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
584 * 0xcc (RED_ACTIVE) for objects in use.
585 *
586 * object + s->inuse
587 * Meta data starts here.
588 *
589 * A. Free pointer (if we cannot overwrite object on free)
590 * B. Tracking data for SLAB_STORE_USER
591 * C. Padding to reach required alignment boundary or at mininum
592 * one word if debugging is on to be able to detect writes
593 * before the word boundary.
594 *
595 * Padding is done using 0x5a (POISON_INUSE)
596 *
597 * object + s->size
598 * Nothing is used beyond s->size.
599 *
600 * If slabcaches are merged then the objsize and inuse boundaries are mostly
601 * ignored. And therefore no slab options that rely on these boundaries
602 * may be used with merged slabcaches.
603 */
604
605static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
606{
607 unsigned long off = s->inuse; /* The end of info */
608
609 if (s->offset)
610 /* Freepointer is placed after the object. */
611 off += sizeof(void *);
612
613 if (s->flags & SLAB_STORE_USER)
614 /* We also have user information there */
615 off += 2 * sizeof(struct track);
616
617 if (s->size == off)
618 return 1;
619
620 return check_bytes_and_report(s, page, p, "Object padding",
621 p + off, POISON_INUSE, s->size - off);
622}
623
624/* Check the pad bytes at the end of a slab page */
625static int slab_pad_check(struct kmem_cache *s, struct page *page)
626{
627 u8 *start;
628 u8 *fault;
629 u8 *end;
630 int length;
631 int remainder;
632
633 if (!(s->flags & SLAB_POISON))
634 return 1;
635
636 start = page_address(page);
637 length = (PAGE_SIZE << compound_order(page));
638 end = start + length;
639 remainder = length % s->size;
640 if (!remainder)
641 return 1;
642
643 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
644 if (!fault)
645 return 1;
646 while (end > fault && end[-1] == POISON_INUSE)
647 end--;
648
649 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
650 print_section("Padding", end - remainder, remainder);
651
652 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
653 return 0;
654}
655
656static int check_object(struct kmem_cache *s, struct page *page,
657 void *object, int active)
658{
659 u8 *p = object;
660 u8 *endobject = object + s->objsize;
661
662 if (s->flags & SLAB_RED_ZONE) {
663 unsigned int red =
664 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
665
666 if (!check_bytes_and_report(s, page, object, "Redzone",
667 endobject, red, s->inuse - s->objsize))
668 return 0;
669 } else {
670 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
671 check_bytes_and_report(s, page, p, "Alignment padding",
672 endobject, POISON_INUSE, s->inuse - s->objsize);
673 }
674 }
675
676 if (s->flags & SLAB_POISON) {
677 if (!active && (s->flags & __OBJECT_POISON) &&
678 (!check_bytes_and_report(s, page, p, "Poison", p,
679 POISON_FREE, s->objsize - 1) ||
680 !check_bytes_and_report(s, page, p, "Poison",
681 p + s->objsize - 1, POISON_END, 1)))
682 return 0;
683 /*
684 * check_pad_bytes cleans up on its own.
685 */
686 check_pad_bytes(s, page, p);
687 }
688
689 if (!s->offset && active)
690 /*
691 * Object and freepointer overlap. Cannot check
692 * freepointer while object is allocated.
693 */
694 return 1;
695
696 /* Check free pointer validity */
697 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
698 object_err(s, page, p, "Freepointer corrupt");
699 /*
700 * No choice but to zap it and thus lose the remainder
701 * of the free objects in this slab. May cause
702 * another error because the object count is now wrong.
703 */
704 set_freepointer(s, p, NULL);
705 return 0;
706 }
707 return 1;
708}
709
710static int check_slab(struct kmem_cache *s, struct page *page)
711{
712 int maxobj;
713
714 VM_BUG_ON(!irqs_disabled());
715
716 if (!PageSlab(page)) {
717 slab_err(s, page, "Not a valid slab page");
718 return 0;
719 }
720
721 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
722 if (page->objects > maxobj) {
723 slab_err(s, page, "objects %u > max %u",
724 s->name, page->objects, maxobj);
725 return 0;
726 }
727 if (page->inuse > page->objects) {
728 slab_err(s, page, "inuse %u > max %u",
729 s->name, page->inuse, page->objects);
730 return 0;
731 }
732 /* Slab_pad_check fixes things up after itself */
733 slab_pad_check(s, page);
734 return 1;
735}
736
737/*
738 * Determine if a certain object on a page is on the freelist. Must hold the
739 * slab lock to guarantee that the chains are in a consistent state.
740 */
741static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
742{
743 int nr = 0;
744 void *fp = page->freelist;
745 void *object = NULL;
746 unsigned long max_objects;
747
748 while (fp && nr <= page->objects) {
749 if (fp == search)
750 return 1;
751 if (!check_valid_pointer(s, page, fp)) {
752 if (object) {
753 object_err(s, page, object,
754 "Freechain corrupt");
755 set_freepointer(s, object, NULL);
756 break;
757 } else {
758 slab_err(s, page, "Freepointer corrupt");
759 page->freelist = NULL;
760 page->inuse = page->objects;
761 slab_fix(s, "Freelist cleared");
762 return 0;
763 }
764 break;
765 }
766 object = fp;
767 fp = get_freepointer(s, object);
768 nr++;
769 }
770
771 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
772 if (max_objects > MAX_OBJS_PER_PAGE)
773 max_objects = MAX_OBJS_PER_PAGE;
774
775 if (page->objects != max_objects) {
776 slab_err(s, page, "Wrong number of objects. Found %d but "
777 "should be %d", page->objects, max_objects);
778 page->objects = max_objects;
779 slab_fix(s, "Number of objects adjusted.");
780 }
781 if (page->inuse != page->objects - nr) {
782 slab_err(s, page, "Wrong object count. Counter is %d but "
783 "counted were %d", page->inuse, page->objects - nr);
784 page->inuse = page->objects - nr;
785 slab_fix(s, "Object count adjusted.");
786 }
787 return search == NULL;
788}
789
790static void trace(struct kmem_cache *s, struct page *page, void *object,
791 int alloc)
792{
793 if (s->flags & SLAB_TRACE) {
794 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
795 s->name,
796 alloc ? "alloc" : "free",
797 object, page->inuse,
798 page->freelist);
799
800 if (!alloc)
801 print_section("Object", (void *)object, s->objsize);
802
803 dump_stack();
804 }
805}
806
807/*
808 * Tracking of fully allocated slabs for debugging purposes.
809 */
810static void add_full(struct kmem_cache_node *n, struct page *page)
811{
812 spin_lock(&n->list_lock);
813 list_add(&page->lru, &n->full);
814 spin_unlock(&n->list_lock);
815}
816
817static void remove_full(struct kmem_cache *s, struct page *page)
818{
819 struct kmem_cache_node *n;
820
821 if (!(s->flags & SLAB_STORE_USER))
822 return;
823
824 n = get_node(s, page_to_nid(page));
825
826 spin_lock(&n->list_lock);
827 list_del(&page->lru);
828 spin_unlock(&n->list_lock);
829}
830
831/* Tracking of the number of slabs for debugging purposes */
832static inline unsigned long slabs_node(struct kmem_cache *s, int node)
833{
834 struct kmem_cache_node *n = get_node(s, node);
835
836 return atomic_long_read(&n->nr_slabs);
837}
838
839static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
840{
841 struct kmem_cache_node *n = get_node(s, node);
842
843 /*
844 * May be called early in order to allocate a slab for the
845 * kmem_cache_node structure. Solve the chicken-egg
846 * dilemma by deferring the increment of the count during
847 * bootstrap (see early_kmem_cache_node_alloc).
848 */
849 if (!NUMA_BUILD || n) {
850 atomic_long_inc(&n->nr_slabs);
851 atomic_long_add(objects, &n->total_objects);
852 }
853}
854static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
855{
856 struct kmem_cache_node *n = get_node(s, node);
857
858 atomic_long_dec(&n->nr_slabs);
859 atomic_long_sub(objects, &n->total_objects);
860}
861
862/* Object debug checks for alloc/free paths */
863static void setup_object_debug(struct kmem_cache *s, struct page *page,
864 void *object)
865{
866 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
867 return;
868
869 init_object(s, object, 0);
870 init_tracking(s, object);
871}
872
873static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
874 void *object, unsigned long addr)
875{
876 if (!check_slab(s, page))
877 goto bad;
878
879 if (!on_freelist(s, page, object)) {
880 object_err(s, page, object, "Object already allocated");
881 goto bad;
882 }
883
884 if (!check_valid_pointer(s, page, object)) {
885 object_err(s, page, object, "Freelist Pointer check fails");
886 goto bad;
887 }
888
889 if (!check_object(s, page, object, 0))
890 goto bad;
891
892 /* Success perform special debug activities for allocs */
893 if (s->flags & SLAB_STORE_USER)
894 set_track(s, object, TRACK_ALLOC, addr);
895 trace(s, page, object, 1);
896 init_object(s, object, 1);
897 return 1;
898
899bad:
900 if (PageSlab(page)) {
901 /*
902 * If this is a slab page then lets do the best we can
903 * to avoid issues in the future. Marking all objects
904 * as used avoids touching the remaining objects.
905 */
906 slab_fix(s, "Marking all objects used");
907 page->inuse = page->objects;
908 page->freelist = NULL;
909 }
910 return 0;
911}
912
913static int free_debug_processing(struct kmem_cache *s, struct page *page,
914 void *object, unsigned long addr)
915{
916 if (!check_slab(s, page))
917 goto fail;
918
919 if (!check_valid_pointer(s, page, object)) {
920 slab_err(s, page, "Invalid object pointer 0x%p", object);
921 goto fail;
922 }
923
924 if (on_freelist(s, page, object)) {
925 object_err(s, page, object, "Object already free");
926 goto fail;
927 }
928
929 if (!check_object(s, page, object, 1))
930 return 0;
931
932 if (unlikely(s != page->slab)) {
933 if (!PageSlab(page)) {
934 slab_err(s, page, "Attempt to free object(0x%p) "
935 "outside of slab", object);
936 } else if (!page->slab) {
937 printk(KERN_ERR
938 "SLUB <none>: no slab for object 0x%p.\n",
939 object);
940 dump_stack();
941 } else
942 object_err(s, page, object,
943 "page slab pointer corrupt.");
944 goto fail;
945 }
946
947 /* Special debug activities for freeing objects */
948 if (!PageSlubFrozen(page) && !page->freelist)
949 remove_full(s, page);
950 if (s->flags & SLAB_STORE_USER)
951 set_track(s, object, TRACK_FREE, addr);
952 trace(s, page, object, 0);
953 init_object(s, object, 0);
954 return 1;
955
956fail:
957 slab_fix(s, "Object at 0x%p not freed", object);
958 return 0;
959}
960
961static int __init setup_slub_debug(char *str)
962{
963 slub_debug = DEBUG_DEFAULT_FLAGS;
964 if (*str++ != '=' || !*str)
965 /*
966 * No options specified. Switch on full debugging.
967 */
968 goto out;
969
970 if (*str == ',')
971 /*
972 * No options but restriction on slabs. This means full
973 * debugging for slabs matching a pattern.
974 */
975 goto check_slabs;
976
977 slub_debug = 0;
978 if (*str == '-')
979 /*
980 * Switch off all debugging measures.
981 */
982 goto out;
983
984 /*
985 * Determine which debug features should be switched on
986 */
987 for (; *str && *str != ','; str++) {
988 switch (tolower(*str)) {
989 case 'f':
990 slub_debug |= SLAB_DEBUG_FREE;
991 break;
992 case 'z':
993 slub_debug |= SLAB_RED_ZONE;
994 break;
995 case 'p':
996 slub_debug |= SLAB_POISON;
997 break;
998 case 'u':
999 slub_debug |= SLAB_STORE_USER;
1000 break;
1001 case 't':
1002 slub_debug |= SLAB_TRACE;
1003 break;
1004 default:
1005 printk(KERN_ERR "slub_debug option '%c' "
1006 "unknown. skipped\n", *str);
1007 }
1008 }
1009
1010check_slabs:
1011 if (*str == ',')
1012 slub_debug_slabs = str + 1;
1013out:
1014 return 1;
1015}
1016
1017__setup("slub_debug", setup_slub_debug);
1018
1019static unsigned long kmem_cache_flags(unsigned long objsize,
1020 unsigned long flags, const char *name,
1021 void (*ctor)(void *))
1022{
1023 /*
1024 * Enable debugging if selected on the kernel commandline.
1025 */
1026 if (slub_debug && (!slub_debug_slabs ||
1027 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1028 flags |= slub_debug;
1029
1030 return flags;
1031}
1032#else
1033static inline void setup_object_debug(struct kmem_cache *s,
1034 struct page *page, void *object) {}
1035
1036static inline int alloc_debug_processing(struct kmem_cache *s,
1037 struct page *page, void *object, unsigned long addr) { return 0; }
1038
1039static inline int free_debug_processing(struct kmem_cache *s,
1040 struct page *page, void *object, unsigned long addr) { return 0; }
1041
1042static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1043 { return 1; }
1044static inline int check_object(struct kmem_cache *s, struct page *page,
1045 void *object, int active) { return 1; }
1046static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1047static inline unsigned long kmem_cache_flags(unsigned long objsize,
1048 unsigned long flags, const char *name,
1049 void (*ctor)(void *))
1050{
1051 return flags;
1052}
1053#define slub_debug 0
1054
1055static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1056 { return 0; }
1057static inline void inc_slabs_node(struct kmem_cache *s, int node,
1058 int objects) {}
1059static inline void dec_slabs_node(struct kmem_cache *s, int node,
1060 int objects) {}
1061#endif
1062
1063/*
1064 * Slab allocation and freeing
1065 */
1066static inline struct page *alloc_slab_page(gfp_t flags, int node,
1067 struct kmem_cache_order_objects oo)
1068{
1069 int order = oo_order(oo);
1070
1071 if (node == -1)
1072 return alloc_pages(flags, order);
1073 else
1074 return alloc_pages_node(node, flags, order);
1075}
1076
1077static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1078{
1079 struct page *page;
1080 struct kmem_cache_order_objects oo = s->oo;
1081
1082 flags |= s->allocflags;
1083
1084 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1085 oo);
1086 if (unlikely(!page)) {
1087 oo = s->min;
1088 /*
1089 * Allocation may have failed due to fragmentation.
1090 * Try a lower order alloc if possible
1091 */
1092 page = alloc_slab_page(flags, node, oo);
1093 if (!page)
1094 return NULL;
1095
1096 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1097 }
1098 page->objects = oo_objects(oo);
1099 mod_zone_page_state(page_zone(page),
1100 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1101 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1102 1 << oo_order(oo));
1103
1104 return page;
1105}
1106
1107static void setup_object(struct kmem_cache *s, struct page *page,
1108 void *object)
1109{
1110 setup_object_debug(s, page, object);
1111 if (unlikely(s->ctor))
1112 s->ctor(object);
1113}
1114
1115static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1116{
1117 struct page *page;
1118 void *start;
1119 void *last;
1120 void *p;
1121
1122 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1123
1124 page = allocate_slab(s,
1125 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1126 if (!page)
1127 goto out;
1128
1129 inc_slabs_node(s, page_to_nid(page), page->objects);
1130 page->slab = s;
1131 page->flags |= 1 << PG_slab;
1132 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1133 SLAB_STORE_USER | SLAB_TRACE))
1134 __SetPageSlubDebug(page);
1135
1136 start = page_address(page);
1137
1138 if (unlikely(s->flags & SLAB_POISON))
1139 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1140
1141 last = start;
1142 for_each_object(p, s, start, page->objects) {
1143 setup_object(s, page, last);
1144 set_freepointer(s, last, p);
1145 last = p;
1146 }
1147 setup_object(s, page, last);
1148 set_freepointer(s, last, NULL);
1149
1150 page->freelist = start;
1151 page->inuse = 0;
1152out:
1153 return page;
1154}
1155
1156static void __free_slab(struct kmem_cache *s, struct page *page)
1157{
1158 int order = compound_order(page);
1159 int pages = 1 << order;
1160
1161 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1162 void *p;
1163
1164 slab_pad_check(s, page);
1165 for_each_object(p, s, page_address(page),
1166 page->objects)
1167 check_object(s, page, p, 0);
1168 __ClearPageSlubDebug(page);
1169 }
1170
1171 mod_zone_page_state(page_zone(page),
1172 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1173 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1174 -pages);
1175
1176 __ClearPageSlab(page);
1177 reset_page_mapcount(page);
1178 __free_pages(page, order);
1179}
1180
1181static void rcu_free_slab(struct rcu_head *h)
1182{
1183 struct page *page;
1184
1185 page = container_of((struct list_head *)h, struct page, lru);
1186 __free_slab(page->slab, page);
1187}
1188
1189static void free_slab(struct kmem_cache *s, struct page *page)
1190{
1191 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1192 /*
1193 * RCU free overloads the RCU head over the LRU
1194 */
1195 struct rcu_head *head = (void *)&page->lru;
1196
1197 call_rcu(head, rcu_free_slab);
1198 } else
1199 __free_slab(s, page);
1200}
1201
1202static void discard_slab(struct kmem_cache *s, struct page *page)
1203{
1204 dec_slabs_node(s, page_to_nid(page), page->objects);
1205 free_slab(s, page);
1206}
1207
1208/*
1209 * Per slab locking using the pagelock
1210 */
1211static __always_inline void slab_lock(struct page *page)
1212{
1213 bit_spin_lock(PG_locked, &page->flags);
1214}
1215
1216static __always_inline void slab_unlock(struct page *page)
1217{
1218 __bit_spin_unlock(PG_locked, &page->flags);
1219}
1220
1221static __always_inline int slab_trylock(struct page *page)
1222{
1223 int rc = 1;
1224
1225 rc = bit_spin_trylock(PG_locked, &page->flags);
1226 return rc;
1227}
1228
1229/*
1230 * Management of partially allocated slabs
1231 */
1232static void add_partial(struct kmem_cache_node *n,
1233 struct page *page, int tail)
1234{
1235 spin_lock(&n->list_lock);
1236 n->nr_partial++;
1237 if (tail)
1238 list_add_tail(&page->lru, &n->partial);
1239 else
1240 list_add(&page->lru, &n->partial);
1241 spin_unlock(&n->list_lock);
1242}
1243
1244static void remove_partial(struct kmem_cache *s, struct page *page)
1245{
1246 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1247
1248 spin_lock(&n->list_lock);
1249 list_del(&page->lru);
1250 n->nr_partial--;
1251 spin_unlock(&n->list_lock);
1252}
1253
1254/*
1255 * Lock slab and remove from the partial list.
1256 *
1257 * Must hold list_lock.
1258 */
1259static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1260 struct page *page)
1261{
1262 if (slab_trylock(page)) {
1263 list_del(&page->lru);
1264 n->nr_partial--;
1265 __SetPageSlubFrozen(page);
1266 return 1;
1267 }
1268 return 0;
1269}
1270
1271/*
1272 * Try to allocate a partial slab from a specific node.
1273 */
1274static struct page *get_partial_node(struct kmem_cache_node *n)
1275{
1276 struct page *page;
1277
1278 /*
1279 * Racy check. If we mistakenly see no partial slabs then we
1280 * just allocate an empty slab. If we mistakenly try to get a
1281 * partial slab and there is none available then get_partials()
1282 * will return NULL.
1283 */
1284 if (!n || !n->nr_partial)
1285 return NULL;
1286
1287 spin_lock(&n->list_lock);
1288 list_for_each_entry(page, &n->partial, lru)
1289 if (lock_and_freeze_slab(n, page))
1290 goto out;
1291 page = NULL;
1292out:
1293 spin_unlock(&n->list_lock);
1294 return page;
1295}
1296
1297/*
1298 * Get a page from somewhere. Search in increasing NUMA distances.
1299 */
1300static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1301{
1302#ifdef CONFIG_NUMA
1303 struct zonelist *zonelist;
1304 struct zoneref *z;
1305 struct zone *zone;
1306 enum zone_type high_zoneidx = gfp_zone(flags);
1307 struct page *page;
1308
1309 /*
1310 * The defrag ratio allows a configuration of the tradeoffs between
1311 * inter node defragmentation and node local allocations. A lower
1312 * defrag_ratio increases the tendency to do local allocations
1313 * instead of attempting to obtain partial slabs from other nodes.
1314 *
1315 * If the defrag_ratio is set to 0 then kmalloc() always
1316 * returns node local objects. If the ratio is higher then kmalloc()
1317 * may return off node objects because partial slabs are obtained
1318 * from other nodes and filled up.
1319 *
1320 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1321 * defrag_ratio = 1000) then every (well almost) allocation will
1322 * first attempt to defrag slab caches on other nodes. This means
1323 * scanning over all nodes to look for partial slabs which may be
1324 * expensive if we do it every time we are trying to find a slab
1325 * with available objects.
1326 */
1327 if (!s->remote_node_defrag_ratio ||
1328 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1329 return NULL;
1330
1331 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1333 struct kmem_cache_node *n;
1334
1335 n = get_node(s, zone_to_nid(zone));
1336
1337 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1338 n->nr_partial > n->min_partial) {
1339 page = get_partial_node(n);
1340 if (page)
1341 return page;
1342 }
1343 }
1344#endif
1345 return NULL;
1346}
1347
1348/*
1349 * Get a partial page, lock it and return it.
1350 */
1351static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1352{
1353 struct page *page;
1354 int searchnode = (node == -1) ? numa_node_id() : node;
1355
1356 page = get_partial_node(get_node(s, searchnode));
1357 if (page || (flags & __GFP_THISNODE))
1358 return page;
1359
1360 return get_any_partial(s, flags);
1361}
1362
1363/*
1364 * Move a page back to the lists.
1365 *
1366 * Must be called with the slab lock held.
1367 *
1368 * On exit the slab lock will have been dropped.
1369 */
1370static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1371{
1372 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1373 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1374
1375 __ClearPageSlubFrozen(page);
1376 if (page->inuse) {
1377
1378 if (page->freelist) {
1379 add_partial(n, page, tail);
1380 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1381 } else {
1382 stat(c, DEACTIVATE_FULL);
1383 if (SLABDEBUG && PageSlubDebug(page) &&
1384 (s->flags & SLAB_STORE_USER))
1385 add_full(n, page);
1386 }
1387 slab_unlock(page);
1388 } else {
1389 stat(c, DEACTIVATE_EMPTY);
1390 if (n->nr_partial < n->min_partial) {
1391 /*
1392 * Adding an empty slab to the partial slabs in order
1393 * to avoid page allocator overhead. This slab needs
1394 * to come after the other slabs with objects in
1395 * so that the others get filled first. That way the
1396 * size of the partial list stays small.
1397 *
1398 * kmem_cache_shrink can reclaim any empty slabs from
1399 * the partial list.
1400 */
1401 add_partial(n, page, 1);
1402 slab_unlock(page);
1403 } else {
1404 slab_unlock(page);
1405 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1406 discard_slab(s, page);
1407 }
1408 }
1409}
1410
1411/*
1412 * Remove the cpu slab
1413 */
1414static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415{
1416 struct page *page = c->page;
1417 int tail = 1;
1418
1419 if (page->freelist)
1420 stat(c, DEACTIVATE_REMOTE_FREES);
1421 /*
1422 * Merge cpu freelist into slab freelist. Typically we get here
1423 * because both freelists are empty. So this is unlikely
1424 * to occur.
1425 */
1426 while (unlikely(c->freelist)) {
1427 void **object;
1428
1429 tail = 0; /* Hot objects. Put the slab first */
1430
1431 /* Retrieve object from cpu_freelist */
1432 object = c->freelist;
1433 c->freelist = c->freelist[c->offset];
1434
1435 /* And put onto the regular freelist */
1436 object[c->offset] = page->freelist;
1437 page->freelist = object;
1438 page->inuse--;
1439 }
1440 c->page = NULL;
1441 unfreeze_slab(s, page, tail);
1442}
1443
1444static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1445{
1446 stat(c, CPUSLAB_FLUSH);
1447 slab_lock(c->page);
1448 deactivate_slab(s, c);
1449}
1450
1451/*
1452 * Flush cpu slab.
1453 *
1454 * Called from IPI handler with interrupts disabled.
1455 */
1456static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1457{
1458 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1459
1460 if (likely(c && c->page))
1461 flush_slab(s, c);
1462}
1463
1464static void flush_cpu_slab(void *d)
1465{
1466 struct kmem_cache *s = d;
1467
1468 __flush_cpu_slab(s, smp_processor_id());
1469}
1470
1471static void flush_all(struct kmem_cache *s)
1472{
1473 on_each_cpu(flush_cpu_slab, s, 1);
1474}
1475
1476/*
1477 * Check if the objects in a per cpu structure fit numa
1478 * locality expectations.
1479 */
1480static inline int node_match(struct kmem_cache_cpu *c, int node)
1481{
1482#ifdef CONFIG_NUMA
1483 if (node != -1 && c->node != node)
1484 return 0;
1485#endif
1486 return 1;
1487}
1488
1489/*
1490 * Slow path. The lockless freelist is empty or we need to perform
1491 * debugging duties.
1492 *
1493 * Interrupts are disabled.
1494 *
1495 * Processing is still very fast if new objects have been freed to the
1496 * regular freelist. In that case we simply take over the regular freelist
1497 * as the lockless freelist and zap the regular freelist.
1498 *
1499 * If that is not working then we fall back to the partial lists. We take the
1500 * first element of the freelist as the object to allocate now and move the
1501 * rest of the freelist to the lockless freelist.
1502 *
1503 * And if we were unable to get a new slab from the partial slab lists then
1504 * we need to allocate a new slab. This is the slowest path since it involves
1505 * a call to the page allocator and the setup of a new slab.
1506 */
1507static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1508 unsigned long addr, struct kmem_cache_cpu *c)
1509{
1510 void **object;
1511 struct page *new;
1512
1513 /* We handle __GFP_ZERO in the caller */
1514 gfpflags &= ~__GFP_ZERO;
1515
1516 if (!c->page)
1517 goto new_slab;
1518
1519 slab_lock(c->page);
1520 if (unlikely(!node_match(c, node)))
1521 goto another_slab;
1522
1523 stat(c, ALLOC_REFILL);
1524
1525load_freelist:
1526 object = c->page->freelist;
1527 if (unlikely(!object))
1528 goto another_slab;
1529 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1530 goto debug;
1531
1532 c->freelist = object[c->offset];
1533 c->page->inuse = c->page->objects;
1534 c->page->freelist = NULL;
1535 c->node = page_to_nid(c->page);
1536unlock_out:
1537 slab_unlock(c->page);
1538 stat(c, ALLOC_SLOWPATH);
1539 return object;
1540
1541another_slab:
1542 deactivate_slab(s, c);
1543
1544new_slab:
1545 new = get_partial(s, gfpflags, node);
1546 if (new) {
1547 c->page = new;
1548 stat(c, ALLOC_FROM_PARTIAL);
1549 goto load_freelist;
1550 }
1551
1552 if (gfpflags & __GFP_WAIT)
1553 local_irq_enable();
1554
1555 new = new_slab(s, gfpflags, node);
1556
1557 if (gfpflags & __GFP_WAIT)
1558 local_irq_disable();
1559
1560 if (new) {
1561 c = get_cpu_slab(s, smp_processor_id());
1562 stat(c, ALLOC_SLAB);
1563 if (c->page)
1564 flush_slab(s, c);
1565 slab_lock(new);
1566 __SetPageSlubFrozen(new);
1567 c->page = new;
1568 goto load_freelist;
1569 }
1570 return NULL;
1571debug:
1572 if (!alloc_debug_processing(s, c->page, object, addr))
1573 goto another_slab;
1574
1575 c->page->inuse++;
1576 c->page->freelist = object[c->offset];
1577 c->node = -1;
1578 goto unlock_out;
1579}
1580
1581/*
1582 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1583 * have the fastpath folded into their functions. So no function call
1584 * overhead for requests that can be satisfied on the fastpath.
1585 *
1586 * The fastpath works by first checking if the lockless freelist can be used.
1587 * If not then __slab_alloc is called for slow processing.
1588 *
1589 * Otherwise we can simply pick the next object from the lockless free list.
1590 */
1591static __always_inline void *slab_alloc(struct kmem_cache *s,
1592 gfp_t gfpflags, int node, unsigned long addr)
1593{
1594 void **object;
1595 struct kmem_cache_cpu *c;
1596 unsigned long flags;
1597 unsigned int objsize;
1598
1599 might_sleep_if(gfpflags & __GFP_WAIT);
1600
1601 if (should_failslab(s->objsize, gfpflags))
1602 return NULL;
1603
1604 local_irq_save(flags);
1605 c = get_cpu_slab(s, smp_processor_id());
1606 objsize = c->objsize;
1607 if (unlikely(!c->freelist || !node_match(c, node)))
1608
1609 object = __slab_alloc(s, gfpflags, node, addr, c);
1610
1611 else {
1612 object = c->freelist;
1613 c->freelist = object[c->offset];
1614 stat(c, ALLOC_FASTPATH);
1615 }
1616 local_irq_restore(flags);
1617
1618 if (unlikely((gfpflags & __GFP_ZERO) && object))
1619 memset(object, 0, objsize);
1620
1621 return object;
1622}
1623
1624void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1625{
1626 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1627}
1628EXPORT_SYMBOL(kmem_cache_alloc);
1629
1630#ifdef CONFIG_NUMA
1631void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1632{
1633 return slab_alloc(s, gfpflags, node, _RET_IP_);
1634}
1635EXPORT_SYMBOL(kmem_cache_alloc_node);
1636#endif
1637
1638/*
1639 * Slow patch handling. This may still be called frequently since objects
1640 * have a longer lifetime than the cpu slabs in most processing loads.
1641 *
1642 * So we still attempt to reduce cache line usage. Just take the slab
1643 * lock and free the item. If there is no additional partial page
1644 * handling required then we can return immediately.
1645 */
1646static void __slab_free(struct kmem_cache *s, struct page *page,
1647 void *x, unsigned long addr, unsigned int offset)
1648{
1649 void *prior;
1650 void **object = (void *)x;
1651 struct kmem_cache_cpu *c;
1652
1653 c = get_cpu_slab(s, raw_smp_processor_id());
1654 stat(c, FREE_SLOWPATH);
1655 slab_lock(page);
1656
1657 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1658 goto debug;
1659
1660checks_ok:
1661 prior = object[offset] = page->freelist;
1662 page->freelist = object;
1663 page->inuse--;
1664
1665 if (unlikely(PageSlubFrozen(page))) {
1666 stat(c, FREE_FROZEN);
1667 goto out_unlock;
1668 }
1669
1670 if (unlikely(!page->inuse))
1671 goto slab_empty;
1672
1673 /*
1674 * Objects left in the slab. If it was not on the partial list before
1675 * then add it.
1676 */
1677 if (unlikely(!prior)) {
1678 add_partial(get_node(s, page_to_nid(page)), page, 1);
1679 stat(c, FREE_ADD_PARTIAL);
1680 }
1681
1682out_unlock:
1683 slab_unlock(page);
1684 return;
1685
1686slab_empty:
1687 if (prior) {
1688 /*
1689 * Slab still on the partial list.
1690 */
1691 remove_partial(s, page);
1692 stat(c, FREE_REMOVE_PARTIAL);
1693 }
1694 slab_unlock(page);
1695 stat(c, FREE_SLAB);
1696 discard_slab(s, page);
1697 return;
1698
1699debug:
1700 if (!free_debug_processing(s, page, x, addr))
1701 goto out_unlock;
1702 goto checks_ok;
1703}
1704
1705/*
1706 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1707 * can perform fastpath freeing without additional function calls.
1708 *
1709 * The fastpath is only possible if we are freeing to the current cpu slab
1710 * of this processor. This typically the case if we have just allocated
1711 * the item before.
1712 *
1713 * If fastpath is not possible then fall back to __slab_free where we deal
1714 * with all sorts of special processing.
1715 */
1716static __always_inline void slab_free(struct kmem_cache *s,
1717 struct page *page, void *x, unsigned long addr)
1718{
1719 void **object = (void *)x;
1720 struct kmem_cache_cpu *c;
1721 unsigned long flags;
1722
1723 local_irq_save(flags);
1724 c = get_cpu_slab(s, smp_processor_id());
1725 debug_check_no_locks_freed(object, c->objsize);
1726 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1727 debug_check_no_obj_freed(object, s->objsize);
1728 if (likely(page == c->page && c->node >= 0)) {
1729 object[c->offset] = c->freelist;
1730 c->freelist = object;
1731 stat(c, FREE_FASTPATH);
1732 } else
1733 __slab_free(s, page, x, addr, c->offset);
1734
1735 local_irq_restore(flags);
1736}
1737
1738void kmem_cache_free(struct kmem_cache *s, void *x)
1739{
1740 struct page *page;
1741
1742 page = virt_to_head_page(x);
1743
1744 slab_free(s, page, x, _RET_IP_);
1745}
1746EXPORT_SYMBOL(kmem_cache_free);
1747
1748/* Figure out on which slab page the object resides */
1749static struct page *get_object_page(const void *x)
1750{
1751 struct page *page = virt_to_head_page(x);
1752
1753 if (!PageSlab(page))
1754 return NULL;
1755
1756 return page;
1757}
1758
1759/*
1760 * Object placement in a slab is made very easy because we always start at
1761 * offset 0. If we tune the size of the object to the alignment then we can
1762 * get the required alignment by putting one properly sized object after
1763 * another.
1764 *
1765 * Notice that the allocation order determines the sizes of the per cpu
1766 * caches. Each processor has always one slab available for allocations.
1767 * Increasing the allocation order reduces the number of times that slabs
1768 * must be moved on and off the partial lists and is therefore a factor in
1769 * locking overhead.
1770 */
1771
1772/*
1773 * Mininum / Maximum order of slab pages. This influences locking overhead
1774 * and slab fragmentation. A higher order reduces the number of partial slabs
1775 * and increases the number of allocations possible without having to
1776 * take the list_lock.
1777 */
1778static int slub_min_order;
1779static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1780static int slub_min_objects;
1781
1782/*
1783 * Merge control. If this is set then no merging of slab caches will occur.
1784 * (Could be removed. This was introduced to pacify the merge skeptics.)
1785 */
1786static int slub_nomerge;
1787
1788/*
1789 * Calculate the order of allocation given an slab object size.
1790 *
1791 * The order of allocation has significant impact on performance and other
1792 * system components. Generally order 0 allocations should be preferred since
1793 * order 0 does not cause fragmentation in the page allocator. Larger objects
1794 * be problematic to put into order 0 slabs because there may be too much
1795 * unused space left. We go to a higher order if more than 1/16th of the slab
1796 * would be wasted.
1797 *
1798 * In order to reach satisfactory performance we must ensure that a minimum
1799 * number of objects is in one slab. Otherwise we may generate too much
1800 * activity on the partial lists which requires taking the list_lock. This is
1801 * less a concern for large slabs though which are rarely used.
1802 *
1803 * slub_max_order specifies the order where we begin to stop considering the
1804 * number of objects in a slab as critical. If we reach slub_max_order then
1805 * we try to keep the page order as low as possible. So we accept more waste
1806 * of space in favor of a small page order.
1807 *
1808 * Higher order allocations also allow the placement of more objects in a
1809 * slab and thereby reduce object handling overhead. If the user has
1810 * requested a higher mininum order then we start with that one instead of
1811 * the smallest order which will fit the object.
1812 */
1813static inline int slab_order(int size, int min_objects,
1814 int max_order, int fract_leftover)
1815{
1816 int order;
1817 int rem;
1818 int min_order = slub_min_order;
1819
1820 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1821 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1822
1823 for (order = max(min_order,
1824 fls(min_objects * size - 1) - PAGE_SHIFT);
1825 order <= max_order; order++) {
1826
1827 unsigned long slab_size = PAGE_SIZE << order;
1828
1829 if (slab_size < min_objects * size)
1830 continue;
1831
1832 rem = slab_size % size;
1833
1834 if (rem <= slab_size / fract_leftover)
1835 break;
1836
1837 }
1838
1839 return order;
1840}
1841
1842static inline int calculate_order(int size)
1843{
1844 int order;
1845 int min_objects;
1846 int fraction;
1847
1848 /*
1849 * Attempt to find best configuration for a slab. This
1850 * works by first attempting to generate a layout with
1851 * the best configuration and backing off gradually.
1852 *
1853 * First we reduce the acceptable waste in a slab. Then
1854 * we reduce the minimum objects required in a slab.
1855 */
1856 min_objects = slub_min_objects;
1857 if (!min_objects)
1858 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1859 while (min_objects > 1) {
1860 fraction = 16;
1861 while (fraction >= 4) {
1862 order = slab_order(size, min_objects,
1863 slub_max_order, fraction);
1864 if (order <= slub_max_order)
1865 return order;
1866 fraction /= 2;
1867 }
1868 min_objects /= 2;
1869 }
1870
1871 /*
1872 * We were unable to place multiple objects in a slab. Now
1873 * lets see if we can place a single object there.
1874 */
1875 order = slab_order(size, 1, slub_max_order, 1);
1876 if (order <= slub_max_order)
1877 return order;
1878
1879 /*
1880 * Doh this slab cannot be placed using slub_max_order.
1881 */
1882 order = slab_order(size, 1, MAX_ORDER, 1);
1883 if (order <= MAX_ORDER)
1884 return order;
1885 return -ENOSYS;
1886}
1887
1888/*
1889 * Figure out what the alignment of the objects will be.
1890 */
1891static unsigned long calculate_alignment(unsigned long flags,
1892 unsigned long align, unsigned long size)
1893{
1894 /*
1895 * If the user wants hardware cache aligned objects then follow that
1896 * suggestion if the object is sufficiently large.
1897 *
1898 * The hardware cache alignment cannot override the specified
1899 * alignment though. If that is greater then use it.
1900 */
1901 if (flags & SLAB_HWCACHE_ALIGN) {
1902 unsigned long ralign = cache_line_size();
1903 while (size <= ralign / 2)
1904 ralign /= 2;
1905 align = max(align, ralign);
1906 }
1907
1908 if (align < ARCH_SLAB_MINALIGN)
1909 align = ARCH_SLAB_MINALIGN;
1910
1911 return ALIGN(align, sizeof(void *));
1912}
1913
1914static void init_kmem_cache_cpu(struct kmem_cache *s,
1915 struct kmem_cache_cpu *c)
1916{
1917 c->page = NULL;
1918 c->freelist = NULL;
1919 c->node = 0;
1920 c->offset = s->offset / sizeof(void *);
1921 c->objsize = s->objsize;
1922#ifdef CONFIG_SLUB_STATS
1923 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1924#endif
1925}
1926
1927static void
1928init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1929{
1930 n->nr_partial = 0;
1931
1932 /*
1933 * The larger the object size is, the more pages we want on the partial
1934 * list to avoid pounding the page allocator excessively.
1935 */
1936 n->min_partial = ilog2(s->size);
1937 if (n->min_partial < MIN_PARTIAL)
1938 n->min_partial = MIN_PARTIAL;
1939 else if (n->min_partial > MAX_PARTIAL)
1940 n->min_partial = MAX_PARTIAL;
1941
1942 spin_lock_init(&n->list_lock);
1943 INIT_LIST_HEAD(&n->partial);
1944#ifdef CONFIG_SLUB_DEBUG
1945 atomic_long_set(&n->nr_slabs, 0);
1946 atomic_long_set(&n->total_objects, 0);
1947 INIT_LIST_HEAD(&n->full);
1948#endif
1949}
1950
1951#ifdef CONFIG_SMP
1952/*
1953 * Per cpu array for per cpu structures.
1954 *
1955 * The per cpu array places all kmem_cache_cpu structures from one processor
1956 * close together meaning that it becomes possible that multiple per cpu
1957 * structures are contained in one cacheline. This may be particularly
1958 * beneficial for the kmalloc caches.
1959 *
1960 * A desktop system typically has around 60-80 slabs. With 100 here we are
1961 * likely able to get per cpu structures for all caches from the array defined
1962 * here. We must be able to cover all kmalloc caches during bootstrap.
1963 *
1964 * If the per cpu array is exhausted then fall back to kmalloc
1965 * of individual cachelines. No sharing is possible then.
1966 */
1967#define NR_KMEM_CACHE_CPU 100
1968
1969static DEFINE_PER_CPU(struct kmem_cache_cpu,
1970 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1971
1972static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1973static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1974
1975static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1976 int cpu, gfp_t flags)
1977{
1978 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1979
1980 if (c)
1981 per_cpu(kmem_cache_cpu_free, cpu) =
1982 (void *)c->freelist;
1983 else {
1984 /* Table overflow: So allocate ourselves */
1985 c = kmalloc_node(
1986 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1987 flags, cpu_to_node(cpu));
1988 if (!c)
1989 return NULL;
1990 }
1991
1992 init_kmem_cache_cpu(s, c);
1993 return c;
1994}
1995
1996static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1997{
1998 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1999 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2000 kfree(c);
2001 return;
2002 }
2003 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2004 per_cpu(kmem_cache_cpu_free, cpu) = c;
2005}
2006
2007static void free_kmem_cache_cpus(struct kmem_cache *s)
2008{
2009 int cpu;
2010
2011 for_each_online_cpu(cpu) {
2012 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2013
2014 if (c) {
2015 s->cpu_slab[cpu] = NULL;
2016 free_kmem_cache_cpu(c, cpu);
2017 }
2018 }
2019}
2020
2021static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2022{
2023 int cpu;
2024
2025 for_each_online_cpu(cpu) {
2026 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2027
2028 if (c)
2029 continue;
2030
2031 c = alloc_kmem_cache_cpu(s, cpu, flags);
2032 if (!c) {
2033 free_kmem_cache_cpus(s);
2034 return 0;
2035 }
2036 s->cpu_slab[cpu] = c;
2037 }
2038 return 1;
2039}
2040
2041/*
2042 * Initialize the per cpu array.
2043 */
2044static void init_alloc_cpu_cpu(int cpu)
2045{
2046 int i;
2047
2048 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2049 return;
2050
2051 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2052 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2053
2054 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2055}
2056
2057static void __init init_alloc_cpu(void)
2058{
2059 int cpu;
2060
2061 for_each_online_cpu(cpu)
2062 init_alloc_cpu_cpu(cpu);
2063 }
2064
2065#else
2066static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2067static inline void init_alloc_cpu(void) {}
2068
2069static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2070{
2071 init_kmem_cache_cpu(s, &s->cpu_slab);
2072 return 1;
2073}
2074#endif
2075
2076#ifdef CONFIG_NUMA
2077/*
2078 * No kmalloc_node yet so do it by hand. We know that this is the first
2079 * slab on the node for this slabcache. There are no concurrent accesses
2080 * possible.
2081 *
2082 * Note that this function only works on the kmalloc_node_cache
2083 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2084 * memory on a fresh node that has no slab structures yet.
2085 */
2086static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2087{
2088 struct page *page;
2089 struct kmem_cache_node *n;
2090 unsigned long flags;
2091
2092 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2093
2094 page = new_slab(kmalloc_caches, gfpflags, node);
2095
2096 BUG_ON(!page);
2097 if (page_to_nid(page) != node) {
2098 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2099 "node %d\n", node);
2100 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2101 "in order to be able to continue\n");
2102 }
2103
2104 n = page->freelist;
2105 BUG_ON(!n);
2106 page->freelist = get_freepointer(kmalloc_caches, n);
2107 page->inuse++;
2108 kmalloc_caches->node[node] = n;
2109#ifdef CONFIG_SLUB_DEBUG
2110 init_object(kmalloc_caches, n, 1);
2111 init_tracking(kmalloc_caches, n);
2112#endif
2113 init_kmem_cache_node(n, kmalloc_caches);
2114 inc_slabs_node(kmalloc_caches, node, page->objects);
2115
2116 /*
2117 * lockdep requires consistent irq usage for each lock
2118 * so even though there cannot be a race this early in
2119 * the boot sequence, we still disable irqs.
2120 */
2121 local_irq_save(flags);
2122 add_partial(n, page, 0);
2123 local_irq_restore(flags);
2124}
2125
2126static void free_kmem_cache_nodes(struct kmem_cache *s)
2127{
2128 int node;
2129
2130 for_each_node_state(node, N_NORMAL_MEMORY) {
2131 struct kmem_cache_node *n = s->node[node];
2132 if (n && n != &s->local_node)
2133 kmem_cache_free(kmalloc_caches, n);
2134 s->node[node] = NULL;
2135 }
2136}
2137
2138static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2139{
2140 int node;
2141 int local_node;
2142
2143 if (slab_state >= UP)
2144 local_node = page_to_nid(virt_to_page(s));
2145 else
2146 local_node = 0;
2147
2148 for_each_node_state(node, N_NORMAL_MEMORY) {
2149 struct kmem_cache_node *n;
2150
2151 if (local_node == node)
2152 n = &s->local_node;
2153 else {
2154 if (slab_state == DOWN) {
2155 early_kmem_cache_node_alloc(gfpflags, node);
2156 continue;
2157 }
2158 n = kmem_cache_alloc_node(kmalloc_caches,
2159 gfpflags, node);
2160
2161 if (!n) {
2162 free_kmem_cache_nodes(s);
2163 return 0;
2164 }
2165
2166 }
2167 s->node[node] = n;
2168 init_kmem_cache_node(n, s);
2169 }
2170 return 1;
2171}
2172#else
2173static void free_kmem_cache_nodes(struct kmem_cache *s)
2174{
2175}
2176
2177static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2178{
2179 init_kmem_cache_node(&s->local_node, s);
2180 return 1;
2181}
2182#endif
2183
2184/*
2185 * calculate_sizes() determines the order and the distribution of data within
2186 * a slab object.
2187 */
2188static int calculate_sizes(struct kmem_cache *s, int forced_order)
2189{
2190 unsigned long flags = s->flags;
2191 unsigned long size = s->objsize;
2192 unsigned long align = s->align;
2193 int order;
2194
2195 /*
2196 * Round up object size to the next word boundary. We can only
2197 * place the free pointer at word boundaries and this determines
2198 * the possible location of the free pointer.
2199 */
2200 size = ALIGN(size, sizeof(void *));
2201
2202#ifdef CONFIG_SLUB_DEBUG
2203 /*
2204 * Determine if we can poison the object itself. If the user of
2205 * the slab may touch the object after free or before allocation
2206 * then we should never poison the object itself.
2207 */
2208 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2209 !s->ctor)
2210 s->flags |= __OBJECT_POISON;
2211 else
2212 s->flags &= ~__OBJECT_POISON;
2213
2214
2215 /*
2216 * If we are Redzoning then check if there is some space between the
2217 * end of the object and the free pointer. If not then add an
2218 * additional word to have some bytes to store Redzone information.
2219 */
2220 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2221 size += sizeof(void *);
2222#endif
2223
2224 /*
2225 * With that we have determined the number of bytes in actual use
2226 * by the object. This is the potential offset to the free pointer.
2227 */
2228 s->inuse = size;
2229
2230 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2231 s->ctor)) {
2232 /*
2233 * Relocate free pointer after the object if it is not
2234 * permitted to overwrite the first word of the object on
2235 * kmem_cache_free.
2236 *
2237 * This is the case if we do RCU, have a constructor or
2238 * destructor or are poisoning the objects.
2239 */
2240 s->offset = size;
2241 size += sizeof(void *);
2242 }
2243
2244#ifdef CONFIG_SLUB_DEBUG
2245 if (flags & SLAB_STORE_USER)
2246 /*
2247 * Need to store information about allocs and frees after
2248 * the object.
2249 */
2250 size += 2 * sizeof(struct track);
2251
2252 if (flags & SLAB_RED_ZONE)
2253 /*
2254 * Add some empty padding so that we can catch
2255 * overwrites from earlier objects rather than let
2256 * tracking information or the free pointer be
2257 * corrupted if a user writes before the start
2258 * of the object.
2259 */
2260 size += sizeof(void *);
2261#endif
2262
2263 /*
2264 * Determine the alignment based on various parameters that the
2265 * user specified and the dynamic determination of cache line size
2266 * on bootup.
2267 */
2268 align = calculate_alignment(flags, align, s->objsize);
2269
2270 /*
2271 * SLUB stores one object immediately after another beginning from
2272 * offset 0. In order to align the objects we have to simply size
2273 * each object to conform to the alignment.
2274 */
2275 size = ALIGN(size, align);
2276 s->size = size;
2277 if (forced_order >= 0)
2278 order = forced_order;
2279 else
2280 order = calculate_order(size);
2281
2282 if (order < 0)
2283 return 0;
2284
2285 s->allocflags = 0;
2286 if (order)
2287 s->allocflags |= __GFP_COMP;
2288
2289 if (s->flags & SLAB_CACHE_DMA)
2290 s->allocflags |= SLUB_DMA;
2291
2292 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2293 s->allocflags |= __GFP_RECLAIMABLE;
2294
2295 /*
2296 * Determine the number of objects per slab
2297 */
2298 s->oo = oo_make(order, size);
2299 s->min = oo_make(get_order(size), size);
2300 if (oo_objects(s->oo) > oo_objects(s->max))
2301 s->max = s->oo;
2302
2303 return !!oo_objects(s->oo);
2304
2305}
2306
2307static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2308 const char *name, size_t size,
2309 size_t align, unsigned long flags,
2310 void (*ctor)(void *))
2311{
2312 memset(s, 0, kmem_size);
2313 s->name = name;
2314 s->ctor = ctor;
2315 s->objsize = size;
2316 s->align = align;
2317 s->flags = kmem_cache_flags(size, flags, name, ctor);
2318
2319 if (!calculate_sizes(s, -1))
2320 goto error;
2321
2322 s->refcount = 1;
2323#ifdef CONFIG_NUMA
2324 s->remote_node_defrag_ratio = 1000;
2325#endif
2326 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2327 goto error;
2328
2329 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2330 return 1;
2331 free_kmem_cache_nodes(s);
2332error:
2333 if (flags & SLAB_PANIC)
2334 panic("Cannot create slab %s size=%lu realsize=%u "
2335 "order=%u offset=%u flags=%lx\n",
2336 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2337 s->offset, flags);
2338 return 0;
2339}
2340
2341/*
2342 * Check if a given pointer is valid
2343 */
2344int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2345{
2346 struct page *page;
2347
2348 page = get_object_page(object);
2349
2350 if (!page || s != page->slab)
2351 /* No slab or wrong slab */
2352 return 0;
2353
2354 if (!check_valid_pointer(s, page, object))
2355 return 0;
2356
2357 /*
2358 * We could also check if the object is on the slabs freelist.
2359 * But this would be too expensive and it seems that the main
2360 * purpose of kmem_ptr_valid() is to check if the object belongs
2361 * to a certain slab.
2362 */
2363 return 1;
2364}
2365EXPORT_SYMBOL(kmem_ptr_validate);
2366
2367/*
2368 * Determine the size of a slab object
2369 */
2370unsigned int kmem_cache_size(struct kmem_cache *s)
2371{
2372 return s->objsize;
2373}
2374EXPORT_SYMBOL(kmem_cache_size);
2375
2376const char *kmem_cache_name(struct kmem_cache *s)
2377{
2378 return s->name;
2379}
2380EXPORT_SYMBOL(kmem_cache_name);
2381
2382static void list_slab_objects(struct kmem_cache *s, struct page *page,
2383 const char *text)
2384{
2385#ifdef CONFIG_SLUB_DEBUG
2386 void *addr = page_address(page);
2387 void *p;
2388 DECLARE_BITMAP(map, page->objects);
2389
2390 bitmap_zero(map, page->objects);
2391 slab_err(s, page, "%s", text);
2392 slab_lock(page);
2393 for_each_free_object(p, s, page->freelist)
2394 set_bit(slab_index(p, s, addr), map);
2395
2396 for_each_object(p, s, addr, page->objects) {
2397
2398 if (!test_bit(slab_index(p, s, addr), map)) {
2399 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2400 p, p - addr);
2401 print_tracking(s, p);
2402 }
2403 }
2404 slab_unlock(page);
2405#endif
2406}
2407
2408/*
2409 * Attempt to free all partial slabs on a node.
2410 */
2411static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2412{
2413 unsigned long flags;
2414 struct page *page, *h;
2415
2416 spin_lock_irqsave(&n->list_lock, flags);
2417 list_for_each_entry_safe(page, h, &n->partial, lru) {
2418 if (!page->inuse) {
2419 list_del(&page->lru);
2420 discard_slab(s, page);
2421 n->nr_partial--;
2422 } else {
2423 list_slab_objects(s, page,
2424 "Objects remaining on kmem_cache_close()");
2425 }
2426 }
2427 spin_unlock_irqrestore(&n->list_lock, flags);
2428}
2429
2430/*
2431 * Release all resources used by a slab cache.
2432 */
2433static inline int kmem_cache_close(struct kmem_cache *s)
2434{
2435 int node;
2436
2437 flush_all(s);
2438
2439 /* Attempt to free all objects */
2440 free_kmem_cache_cpus(s);
2441 for_each_node_state(node, N_NORMAL_MEMORY) {
2442 struct kmem_cache_node *n = get_node(s, node);
2443
2444 free_partial(s, n);
2445 if (n->nr_partial || slabs_node(s, node))
2446 return 1;
2447 }
2448 free_kmem_cache_nodes(s);
2449 return 0;
2450}
2451
2452/*
2453 * Close a cache and release the kmem_cache structure
2454 * (must be used for caches created using kmem_cache_create)
2455 */
2456void kmem_cache_destroy(struct kmem_cache *s)
2457{
2458 down_write(&slub_lock);
2459 s->refcount--;
2460 if (!s->refcount) {
2461 list_del(&s->list);
2462 up_write(&slub_lock);
2463 if (kmem_cache_close(s)) {
2464 printk(KERN_ERR "SLUB %s: %s called for cache that "
2465 "still has objects.\n", s->name, __func__);
2466 dump_stack();
2467 }
2468 sysfs_slab_remove(s);
2469 } else
2470 up_write(&slub_lock);
2471}
2472EXPORT_SYMBOL(kmem_cache_destroy);
2473
2474/********************************************************************
2475 * Kmalloc subsystem
2476 *******************************************************************/
2477
2478struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2479EXPORT_SYMBOL(kmalloc_caches);
2480
2481static int __init setup_slub_min_order(char *str)
2482{
2483 get_option(&str, &slub_min_order);
2484
2485 return 1;
2486}
2487
2488__setup("slub_min_order=", setup_slub_min_order);
2489
2490static int __init setup_slub_max_order(char *str)
2491{
2492 get_option(&str, &slub_max_order);
2493
2494 return 1;
2495}
2496
2497__setup("slub_max_order=", setup_slub_max_order);
2498
2499static int __init setup_slub_min_objects(char *str)
2500{
2501 get_option(&str, &slub_min_objects);
2502
2503 return 1;
2504}
2505
2506__setup("slub_min_objects=", setup_slub_min_objects);
2507
2508static int __init setup_slub_nomerge(char *str)
2509{
2510 slub_nomerge = 1;
2511 return 1;
2512}
2513
2514__setup("slub_nomerge", setup_slub_nomerge);
2515
2516static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2517 const char *name, int size, gfp_t gfp_flags)
2518{
2519 unsigned int flags = 0;
2520
2521 if (gfp_flags & SLUB_DMA)
2522 flags = SLAB_CACHE_DMA;
2523
2524 down_write(&slub_lock);
2525 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2526 flags, NULL))
2527 goto panic;
2528
2529 list_add(&s->list, &slab_caches);
2530 up_write(&slub_lock);
2531 if (sysfs_slab_add(s))
2532 goto panic;
2533 return s;
2534
2535panic:
2536 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2537}
2538
2539#ifdef CONFIG_ZONE_DMA
2540static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2541
2542static void sysfs_add_func(struct work_struct *w)
2543{
2544 struct kmem_cache *s;
2545
2546 down_write(&slub_lock);
2547 list_for_each_entry(s, &slab_caches, list) {
2548 if (s->flags & __SYSFS_ADD_DEFERRED) {
2549 s->flags &= ~__SYSFS_ADD_DEFERRED;
2550 sysfs_slab_add(s);
2551 }
2552 }
2553 up_write(&slub_lock);
2554}
2555
2556static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2557
2558static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2559{
2560 struct kmem_cache *s;
2561 char *text;
2562 size_t realsize;
2563
2564 s = kmalloc_caches_dma[index];
2565 if (s)
2566 return s;
2567
2568 /* Dynamically create dma cache */
2569 if (flags & __GFP_WAIT)
2570 down_write(&slub_lock);
2571 else {
2572 if (!down_write_trylock(&slub_lock))
2573 goto out;
2574 }
2575
2576 if (kmalloc_caches_dma[index])
2577 goto unlock_out;
2578
2579 realsize = kmalloc_caches[index].objsize;
2580 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2581 (unsigned int)realsize);
2582 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2583
2584 if (!s || !text || !kmem_cache_open(s, flags, text,
2585 realsize, ARCH_KMALLOC_MINALIGN,
2586 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2587 kfree(s);
2588 kfree(text);
2589 goto unlock_out;
2590 }
2591
2592 list_add(&s->list, &slab_caches);
2593 kmalloc_caches_dma[index] = s;
2594
2595 schedule_work(&sysfs_add_work);
2596
2597unlock_out:
2598 up_write(&slub_lock);
2599out:
2600 return kmalloc_caches_dma[index];
2601}
2602#endif
2603
2604/*
2605 * Conversion table for small slabs sizes / 8 to the index in the
2606 * kmalloc array. This is necessary for slabs < 192 since we have non power
2607 * of two cache sizes there. The size of larger slabs can be determined using
2608 * fls.
2609 */
2610static s8 size_index[24] = {
2611 3, /* 8 */
2612 4, /* 16 */
2613 5, /* 24 */
2614 5, /* 32 */
2615 6, /* 40 */
2616 6, /* 48 */
2617 6, /* 56 */
2618 6, /* 64 */
2619 1, /* 72 */
2620 1, /* 80 */
2621 1, /* 88 */
2622 1, /* 96 */
2623 7, /* 104 */
2624 7, /* 112 */
2625 7, /* 120 */
2626 7, /* 128 */
2627 2, /* 136 */
2628 2, /* 144 */
2629 2, /* 152 */
2630 2, /* 160 */
2631 2, /* 168 */
2632 2, /* 176 */
2633 2, /* 184 */
2634 2 /* 192 */
2635};
2636
2637static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2638{
2639 int index;
2640
2641 if (size <= 192) {
2642 if (!size)
2643 return ZERO_SIZE_PTR;
2644
2645 index = size_index[(size - 1) / 8];
2646 } else
2647 index = fls(size - 1);
2648
2649#ifdef CONFIG_ZONE_DMA
2650 if (unlikely((flags & SLUB_DMA)))
2651 return dma_kmalloc_cache(index, flags);
2652
2653#endif
2654 return &kmalloc_caches[index];
2655}
2656
2657void *__kmalloc(size_t size, gfp_t flags)
2658{
2659 struct kmem_cache *s;
2660
2661 if (unlikely(size > PAGE_SIZE))
2662 return kmalloc_large(size, flags);
2663
2664 s = get_slab(size, flags);
2665
2666 if (unlikely(ZERO_OR_NULL_PTR(s)))
2667 return s;
2668
2669 return slab_alloc(s, flags, -1, _RET_IP_);
2670}
2671EXPORT_SYMBOL(__kmalloc);
2672
2673static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2674{
2675 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2676 get_order(size));
2677
2678 if (page)
2679 return page_address(page);
2680 else
2681 return NULL;
2682}
2683
2684#ifdef CONFIG_NUMA
2685void *__kmalloc_node(size_t size, gfp_t flags, int node)
2686{
2687 struct kmem_cache *s;
2688
2689 if (unlikely(size > PAGE_SIZE))
2690 return kmalloc_large_node(size, flags, node);
2691
2692 s = get_slab(size, flags);
2693
2694 if (unlikely(ZERO_OR_NULL_PTR(s)))
2695 return s;
2696
2697 return slab_alloc(s, flags, node, _RET_IP_);
2698}
2699EXPORT_SYMBOL(__kmalloc_node);
2700#endif
2701
2702size_t ksize(const void *object)
2703{
2704 struct page *page;
2705 struct kmem_cache *s;
2706
2707 if (unlikely(object == ZERO_SIZE_PTR))
2708 return 0;
2709
2710 page = virt_to_head_page(object);
2711
2712 if (unlikely(!PageSlab(page))) {
2713 WARN_ON(!PageCompound(page));
2714 return PAGE_SIZE << compound_order(page);
2715 }
2716 s = page->slab;
2717
2718#ifdef CONFIG_SLUB_DEBUG
2719 /*
2720 * Debugging requires use of the padding between object
2721 * and whatever may come after it.
2722 */
2723 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2724 return s->objsize;
2725
2726#endif
2727 /*
2728 * If we have the need to store the freelist pointer
2729 * back there or track user information then we can
2730 * only use the space before that information.
2731 */
2732 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2733 return s->inuse;
2734 /*
2735 * Else we can use all the padding etc for the allocation
2736 */
2737 return s->size;
2738}
2739EXPORT_SYMBOL(ksize);
2740
2741void kfree(const void *x)
2742{
2743 struct page *page;
2744 void *object = (void *)x;
2745
2746 if (unlikely(ZERO_OR_NULL_PTR(x)))
2747 return;
2748
2749 page = virt_to_head_page(x);
2750 if (unlikely(!PageSlab(page))) {
2751 BUG_ON(!PageCompound(page));
2752 put_page(page);
2753 return;
2754 }
2755 slab_free(page->slab, page, object, _RET_IP_);
2756}
2757EXPORT_SYMBOL(kfree);
2758
2759/*
2760 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2761 * the remaining slabs by the number of items in use. The slabs with the
2762 * most items in use come first. New allocations will then fill those up
2763 * and thus they can be removed from the partial lists.
2764 *
2765 * The slabs with the least items are placed last. This results in them
2766 * being allocated from last increasing the chance that the last objects
2767 * are freed in them.
2768 */
2769int kmem_cache_shrink(struct kmem_cache *s)
2770{
2771 int node;
2772 int i;
2773 struct kmem_cache_node *n;
2774 struct page *page;
2775 struct page *t;
2776 int objects = oo_objects(s->max);
2777 struct list_head *slabs_by_inuse =
2778 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2779 unsigned long flags;
2780
2781 if (!slabs_by_inuse)
2782 return -ENOMEM;
2783
2784 flush_all(s);
2785 for_each_node_state(node, N_NORMAL_MEMORY) {
2786 n = get_node(s, node);
2787
2788 if (!n->nr_partial)
2789 continue;
2790
2791 for (i = 0; i < objects; i++)
2792 INIT_LIST_HEAD(slabs_by_inuse + i);
2793
2794 spin_lock_irqsave(&n->list_lock, flags);
2795
2796 /*
2797 * Build lists indexed by the items in use in each slab.
2798 *
2799 * Note that concurrent frees may occur while we hold the
2800 * list_lock. page->inuse here is the upper limit.
2801 */
2802 list_for_each_entry_safe(page, t, &n->partial, lru) {
2803 if (!page->inuse && slab_trylock(page)) {
2804 /*
2805 * Must hold slab lock here because slab_free
2806 * may have freed the last object and be
2807 * waiting to release the slab.
2808 */
2809 list_del(&page->lru);
2810 n->nr_partial--;
2811 slab_unlock(page);
2812 discard_slab(s, page);
2813 } else {
2814 list_move(&page->lru,
2815 slabs_by_inuse + page->inuse);
2816 }
2817 }
2818
2819 /*
2820 * Rebuild the partial list with the slabs filled up most
2821 * first and the least used slabs at the end.
2822 */
2823 for (i = objects - 1; i >= 0; i--)
2824 list_splice(slabs_by_inuse + i, n->partial.prev);
2825
2826 spin_unlock_irqrestore(&n->list_lock, flags);
2827 }
2828
2829 kfree(slabs_by_inuse);
2830 return 0;
2831}
2832EXPORT_SYMBOL(kmem_cache_shrink);
2833
2834#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2835static int slab_mem_going_offline_callback(void *arg)
2836{
2837 struct kmem_cache *s;
2838
2839 down_read(&slub_lock);
2840 list_for_each_entry(s, &slab_caches, list)
2841 kmem_cache_shrink(s);
2842 up_read(&slub_lock);
2843
2844 return 0;
2845}
2846
2847static void slab_mem_offline_callback(void *arg)
2848{
2849 struct kmem_cache_node *n;
2850 struct kmem_cache *s;
2851 struct memory_notify *marg = arg;
2852 int offline_node;
2853
2854 offline_node = marg->status_change_nid;
2855
2856 /*
2857 * If the node still has available memory. we need kmem_cache_node
2858 * for it yet.
2859 */
2860 if (offline_node < 0)
2861 return;
2862
2863 down_read(&slub_lock);
2864 list_for_each_entry(s, &slab_caches, list) {
2865 n = get_node(s, offline_node);
2866 if (n) {
2867 /*
2868 * if n->nr_slabs > 0, slabs still exist on the node
2869 * that is going down. We were unable to free them,
2870 * and offline_pages() function shoudn't call this
2871 * callback. So, we must fail.
2872 */
2873 BUG_ON(slabs_node(s, offline_node));
2874
2875 s->node[offline_node] = NULL;
2876 kmem_cache_free(kmalloc_caches, n);
2877 }
2878 }
2879 up_read(&slub_lock);
2880}
2881
2882static int slab_mem_going_online_callback(void *arg)
2883{
2884 struct kmem_cache_node *n;
2885 struct kmem_cache *s;
2886 struct memory_notify *marg = arg;
2887 int nid = marg->status_change_nid;
2888 int ret = 0;
2889
2890 /*
2891 * If the node's memory is already available, then kmem_cache_node is
2892 * already created. Nothing to do.
2893 */
2894 if (nid < 0)
2895 return 0;
2896
2897 /*
2898 * We are bringing a node online. No memory is available yet. We must
2899 * allocate a kmem_cache_node structure in order to bring the node
2900 * online.
2901 */
2902 down_read(&slub_lock);
2903 list_for_each_entry(s, &slab_caches, list) {
2904 /*
2905 * XXX: kmem_cache_alloc_node will fallback to other nodes
2906 * since memory is not yet available from the node that
2907 * is brought up.
2908 */
2909 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2910 if (!n) {
2911 ret = -ENOMEM;
2912 goto out;
2913 }
2914 init_kmem_cache_node(n, s);
2915 s->node[nid] = n;
2916 }
2917out:
2918 up_read(&slub_lock);
2919 return ret;
2920}
2921
2922static int slab_memory_callback(struct notifier_block *self,
2923 unsigned long action, void *arg)
2924{
2925 int ret = 0;
2926
2927 switch (action) {
2928 case MEM_GOING_ONLINE:
2929 ret = slab_mem_going_online_callback(arg);
2930 break;
2931 case MEM_GOING_OFFLINE:
2932 ret = slab_mem_going_offline_callback(arg);
2933 break;
2934 case MEM_OFFLINE:
2935 case MEM_CANCEL_ONLINE:
2936 slab_mem_offline_callback(arg);
2937 break;
2938 case MEM_ONLINE:
2939 case MEM_CANCEL_OFFLINE:
2940 break;
2941 }
2942 if (ret)
2943 ret = notifier_from_errno(ret);
2944 else
2945 ret = NOTIFY_OK;
2946 return ret;
2947}
2948
2949#endif /* CONFIG_MEMORY_HOTPLUG */
2950
2951/********************************************************************
2952 * Basic setup of slabs
2953 *******************************************************************/
2954
2955void __init kmem_cache_init(void)
2956{
2957 int i;
2958 int caches = 0;
2959
2960 init_alloc_cpu();
2961
2962#ifdef CONFIG_NUMA
2963 /*
2964 * Must first have the slab cache available for the allocations of the
2965 * struct kmem_cache_node's. There is special bootstrap code in
2966 * kmem_cache_open for slab_state == DOWN.
2967 */
2968 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2969 sizeof(struct kmem_cache_node), GFP_KERNEL);
2970 kmalloc_caches[0].refcount = -1;
2971 caches++;
2972
2973 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2974#endif
2975
2976 /* Able to allocate the per node structures */
2977 slab_state = PARTIAL;
2978
2979 /* Caches that are not of the two-to-the-power-of size */
2980 if (KMALLOC_MIN_SIZE <= 64) {
2981 create_kmalloc_cache(&kmalloc_caches[1],
2982 "kmalloc-96", 96, GFP_KERNEL);
2983 caches++;
2984 create_kmalloc_cache(&kmalloc_caches[2],
2985 "kmalloc-192", 192, GFP_KERNEL);
2986 caches++;
2987 }
2988
2989 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2990 create_kmalloc_cache(&kmalloc_caches[i],
2991 "kmalloc", 1 << i, GFP_KERNEL);
2992 caches++;
2993 }
2994
2995
2996 /*
2997 * Patch up the size_index table if we have strange large alignment
2998 * requirements for the kmalloc array. This is only the case for
2999 * MIPS it seems. The standard arches will not generate any code here.
3000 *
3001 * Largest permitted alignment is 256 bytes due to the way we
3002 * handle the index determination for the smaller caches.
3003 *
3004 * Make sure that nothing crazy happens if someone starts tinkering
3005 * around with ARCH_KMALLOC_MINALIGN
3006 */
3007 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3008 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3009
3010 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3011 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3012
3013 if (KMALLOC_MIN_SIZE == 128) {
3014 /*
3015 * The 192 byte sized cache is not used if the alignment
3016 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3017 * instead.
3018 */
3019 for (i = 128 + 8; i <= 192; i += 8)
3020 size_index[(i - 1) / 8] = 8;
3021 }
3022
3023 slab_state = UP;
3024
3025 /* Provide the correct kmalloc names now that the caches are up */
3026 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3027 kmalloc_caches[i]. name =
3028 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3029
3030#ifdef CONFIG_SMP
3031 register_cpu_notifier(&slab_notifier);
3032 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3033 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3034#else
3035 kmem_size = sizeof(struct kmem_cache);
3036#endif
3037
3038 printk(KERN_INFO
3039 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3040 " CPUs=%d, Nodes=%d\n",
3041 caches, cache_line_size(),
3042 slub_min_order, slub_max_order, slub_min_objects,
3043 nr_cpu_ids, nr_node_ids);
3044}
3045
3046/*
3047 * Find a mergeable slab cache
3048 */
3049static int slab_unmergeable(struct kmem_cache *s)
3050{
3051 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3052 return 1;
3053
3054 if (s->ctor)
3055 return 1;
3056
3057 /*
3058 * We may have set a slab to be unmergeable during bootstrap.
3059 */
3060 if (s->refcount < 0)
3061 return 1;
3062
3063 return 0;
3064}
3065
3066static struct kmem_cache *find_mergeable(size_t size,
3067 size_t align, unsigned long flags, const char *name,
3068 void (*ctor)(void *))
3069{
3070 struct kmem_cache *s;
3071
3072 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3073 return NULL;
3074
3075 if (ctor)
3076 return NULL;
3077
3078 size = ALIGN(size, sizeof(void *));
3079 align = calculate_alignment(flags, align, size);
3080 size = ALIGN(size, align);
3081 flags = kmem_cache_flags(size, flags, name, NULL);
3082
3083 list_for_each_entry(s, &slab_caches, list) {
3084 if (slab_unmergeable(s))
3085 continue;
3086
3087 if (size > s->size)
3088 continue;
3089
3090 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3091 continue;
3092 /*
3093 * Check if alignment is compatible.
3094 * Courtesy of Adrian Drzewiecki
3095 */
3096 if ((s->size & ~(align - 1)) != s->size)
3097 continue;
3098
3099 if (s->size - size >= sizeof(void *))
3100 continue;
3101
3102 return s;
3103 }
3104 return NULL;
3105}
3106
3107struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3108 size_t align, unsigned long flags, void (*ctor)(void *))
3109{
3110 struct kmem_cache *s;
3111
3112 down_write(&slub_lock);
3113 s = find_mergeable(size, align, flags, name, ctor);
3114 if (s) {
3115 int cpu;
3116
3117 s->refcount++;
3118 /*
3119 * Adjust the object sizes so that we clear
3120 * the complete object on kzalloc.
3121 */
3122 s->objsize = max(s->objsize, (int)size);
3123
3124 /*
3125 * And then we need to update the object size in the
3126 * per cpu structures
3127 */
3128 for_each_online_cpu(cpu)
3129 get_cpu_slab(s, cpu)->objsize = s->objsize;
3130
3131 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3132 up_write(&slub_lock);
3133
3134 if (sysfs_slab_alias(s, name)) {
3135 down_write(&slub_lock);
3136 s->refcount--;
3137 up_write(&slub_lock);
3138 goto err;
3139 }
3140 return s;
3141 }
3142
3143 s = kmalloc(kmem_size, GFP_KERNEL);
3144 if (s) {
3145 if (kmem_cache_open(s, GFP_KERNEL, name,
3146 size, align, flags, ctor)) {
3147 list_add(&s->list, &slab_caches);
3148 up_write(&slub_lock);
3149 if (sysfs_slab_add(s)) {
3150 down_write(&slub_lock);
3151 list_del(&s->list);
3152 up_write(&slub_lock);
3153 kfree(s);
3154 goto err;
3155 }
3156 return s;
3157 }
3158 kfree(s);
3159 }
3160 up_write(&slub_lock);
3161
3162err:
3163 if (flags & SLAB_PANIC)
3164 panic("Cannot create slabcache %s\n", name);
3165 else
3166 s = NULL;
3167 return s;
3168}
3169EXPORT_SYMBOL(kmem_cache_create);
3170
3171#ifdef CONFIG_SMP
3172/*
3173 * Use the cpu notifier to insure that the cpu slabs are flushed when
3174 * necessary.
3175 */
3176static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3177 unsigned long action, void *hcpu)
3178{
3179 long cpu = (long)hcpu;
3180 struct kmem_cache *s;
3181 unsigned long flags;
3182
3183 switch (action) {
3184 case CPU_UP_PREPARE:
3185 case CPU_UP_PREPARE_FROZEN:
3186 init_alloc_cpu_cpu(cpu);
3187 down_read(&slub_lock);
3188 list_for_each_entry(s, &slab_caches, list)
3189 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3190 GFP_KERNEL);
3191 up_read(&slub_lock);
3192 break;
3193
3194 case CPU_UP_CANCELED:
3195 case CPU_UP_CANCELED_FROZEN:
3196 case CPU_DEAD:
3197 case CPU_DEAD_FROZEN:
3198 down_read(&slub_lock);
3199 list_for_each_entry(s, &slab_caches, list) {
3200 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3201
3202 local_irq_save(flags);
3203 __flush_cpu_slab(s, cpu);
3204 local_irq_restore(flags);
3205 free_kmem_cache_cpu(c, cpu);
3206 s->cpu_slab[cpu] = NULL;
3207 }
3208 up_read(&slub_lock);
3209 break;
3210 default:
3211 break;
3212 }
3213 return NOTIFY_OK;
3214}
3215
3216static struct notifier_block __cpuinitdata slab_notifier = {
3217 .notifier_call = slab_cpuup_callback
3218};
3219
3220#endif
3221
3222void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3223{
3224 struct kmem_cache *s;
3225
3226 if (unlikely(size > PAGE_SIZE))
3227 return kmalloc_large(size, gfpflags);
3228
3229 s = get_slab(size, gfpflags);
3230
3231 if (unlikely(ZERO_OR_NULL_PTR(s)))
3232 return s;
3233
3234 return slab_alloc(s, gfpflags, -1, caller);
3235}
3236
3237void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3238 int node, unsigned long caller)
3239{
3240 struct kmem_cache *s;
3241
3242 if (unlikely(size > PAGE_SIZE))
3243 return kmalloc_large_node(size, gfpflags, node);
3244
3245 s = get_slab(size, gfpflags);
3246
3247 if (unlikely(ZERO_OR_NULL_PTR(s)))
3248 return s;
3249
3250 return slab_alloc(s, gfpflags, node, caller);
3251}
3252
3253#ifdef CONFIG_SLUB_DEBUG
3254static unsigned long count_partial(struct kmem_cache_node *n,
3255 int (*get_count)(struct page *))
3256{
3257 unsigned long flags;
3258 unsigned long x = 0;
3259 struct page *page;
3260
3261 spin_lock_irqsave(&n->list_lock, flags);
3262 list_for_each_entry(page, &n->partial, lru)
3263 x += get_count(page);
3264 spin_unlock_irqrestore(&n->list_lock, flags);
3265 return x;
3266}
3267
3268static int count_inuse(struct page *page)
3269{
3270 return page->inuse;
3271}
3272
3273static int count_total(struct page *page)
3274{
3275 return page->objects;
3276}
3277
3278static int count_free(struct page *page)
3279{
3280 return page->objects - page->inuse;
3281}
3282
3283static int validate_slab(struct kmem_cache *s, struct page *page,
3284 unsigned long *map)
3285{
3286 void *p;
3287 void *addr = page_address(page);
3288
3289 if (!check_slab(s, page) ||
3290 !on_freelist(s, page, NULL))
3291 return 0;
3292
3293 /* Now we know that a valid freelist exists */
3294 bitmap_zero(map, page->objects);
3295
3296 for_each_free_object(p, s, page->freelist) {
3297 set_bit(slab_index(p, s, addr), map);
3298 if (!check_object(s, page, p, 0))
3299 return 0;
3300 }
3301
3302 for_each_object(p, s, addr, page->objects)
3303 if (!test_bit(slab_index(p, s, addr), map))
3304 if (!check_object(s, page, p, 1))
3305 return 0;
3306 return 1;
3307}
3308
3309static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3310 unsigned long *map)
3311{
3312 if (slab_trylock(page)) {
3313 validate_slab(s, page, map);
3314 slab_unlock(page);
3315 } else
3316 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3317 s->name, page);
3318
3319 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3320 if (!PageSlubDebug(page))
3321 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3322 "on slab 0x%p\n", s->name, page);
3323 } else {
3324 if (PageSlubDebug(page))
3325 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3326 "slab 0x%p\n", s->name, page);
3327 }
3328}
3329
3330static int validate_slab_node(struct kmem_cache *s,
3331 struct kmem_cache_node *n, unsigned long *map)
3332{
3333 unsigned long count = 0;
3334 struct page *page;
3335 unsigned long flags;
3336
3337 spin_lock_irqsave(&n->list_lock, flags);
3338
3339 list_for_each_entry(page, &n->partial, lru) {
3340 validate_slab_slab(s, page, map);
3341 count++;
3342 }
3343 if (count != n->nr_partial)
3344 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3345 "counter=%ld\n", s->name, count, n->nr_partial);
3346
3347 if (!(s->flags & SLAB_STORE_USER))
3348 goto out;
3349
3350 list_for_each_entry(page, &n->full, lru) {
3351 validate_slab_slab(s, page, map);
3352 count++;
3353 }
3354 if (count != atomic_long_read(&n->nr_slabs))
3355 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3356 "counter=%ld\n", s->name, count,
3357 atomic_long_read(&n->nr_slabs));
3358
3359out:
3360 spin_unlock_irqrestore(&n->list_lock, flags);
3361 return count;
3362}
3363
3364static long validate_slab_cache(struct kmem_cache *s)
3365{
3366 int node;
3367 unsigned long count = 0;
3368 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3369 sizeof(unsigned long), GFP_KERNEL);
3370
3371 if (!map)
3372 return -ENOMEM;
3373
3374 flush_all(s);
3375 for_each_node_state(node, N_NORMAL_MEMORY) {
3376 struct kmem_cache_node *n = get_node(s, node);
3377
3378 count += validate_slab_node(s, n, map);
3379 }
3380 kfree(map);
3381 return count;
3382}
3383
3384#ifdef SLUB_RESILIENCY_TEST
3385static void resiliency_test(void)
3386{
3387 u8 *p;
3388
3389 printk(KERN_ERR "SLUB resiliency testing\n");
3390 printk(KERN_ERR "-----------------------\n");
3391 printk(KERN_ERR "A. Corruption after allocation\n");
3392
3393 p = kzalloc(16, GFP_KERNEL);
3394 p[16] = 0x12;
3395 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3396 " 0x12->0x%p\n\n", p + 16);
3397
3398 validate_slab_cache(kmalloc_caches + 4);
3399
3400 /* Hmmm... The next two are dangerous */
3401 p = kzalloc(32, GFP_KERNEL);
3402 p[32 + sizeof(void *)] = 0x34;
3403 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3404 " 0x34 -> -0x%p\n", p);
3405 printk(KERN_ERR
3406 "If allocated object is overwritten then not detectable\n\n");
3407
3408 validate_slab_cache(kmalloc_caches + 5);
3409 p = kzalloc(64, GFP_KERNEL);
3410 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3411 *p = 0x56;
3412 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3413 p);
3414 printk(KERN_ERR
3415 "If allocated object is overwritten then not detectable\n\n");
3416 validate_slab_cache(kmalloc_caches + 6);
3417
3418 printk(KERN_ERR "\nB. Corruption after free\n");
3419 p = kzalloc(128, GFP_KERNEL);
3420 kfree(p);
3421 *p = 0x78;
3422 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3423 validate_slab_cache(kmalloc_caches + 7);
3424
3425 p = kzalloc(256, GFP_KERNEL);
3426 kfree(p);
3427 p[50] = 0x9a;
3428 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3429 p);
3430 validate_slab_cache(kmalloc_caches + 8);
3431
3432 p = kzalloc(512, GFP_KERNEL);
3433 kfree(p);
3434 p[512] = 0xab;
3435 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3436 validate_slab_cache(kmalloc_caches + 9);
3437}
3438#else
3439static void resiliency_test(void) {};
3440#endif
3441
3442/*
3443 * Generate lists of code addresses where slabcache objects are allocated
3444 * and freed.
3445 */
3446
3447struct location {
3448 unsigned long count;
3449 unsigned long addr;
3450 long long sum_time;
3451 long min_time;
3452 long max_time;
3453 long min_pid;
3454 long max_pid;
3455 DECLARE_BITMAP(cpus, NR_CPUS);
3456 nodemask_t nodes;
3457};
3458
3459struct loc_track {
3460 unsigned long max;
3461 unsigned long count;
3462 struct location *loc;
3463};
3464
3465static void free_loc_track(struct loc_track *t)
3466{
3467 if (t->max)
3468 free_pages((unsigned long)t->loc,
3469 get_order(sizeof(struct location) * t->max));
3470}
3471
3472static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3473{
3474 struct location *l;
3475 int order;
3476
3477 order = get_order(sizeof(struct location) * max);
3478
3479 l = (void *)__get_free_pages(flags, order);
3480 if (!l)
3481 return 0;
3482
3483 if (t->count) {
3484 memcpy(l, t->loc, sizeof(struct location) * t->count);
3485 free_loc_track(t);
3486 }
3487 t->max = max;
3488 t->loc = l;
3489 return 1;
3490}
3491
3492static int add_location(struct loc_track *t, struct kmem_cache *s,
3493 const struct track *track)
3494{
3495 long start, end, pos;
3496 struct location *l;
3497 unsigned long caddr;
3498 unsigned long age = jiffies - track->when;
3499
3500 start = -1;
3501 end = t->count;
3502
3503 for ( ; ; ) {
3504 pos = start + (end - start + 1) / 2;
3505
3506 /*
3507 * There is nothing at "end". If we end up there
3508 * we need to add something to before end.
3509 */
3510 if (pos == end)
3511 break;
3512
3513 caddr = t->loc[pos].addr;
3514 if (track->addr == caddr) {
3515
3516 l = &t->loc[pos];
3517 l->count++;
3518 if (track->when) {
3519 l->sum_time += age;
3520 if (age < l->min_time)
3521 l->min_time = age;
3522 if (age > l->max_time)
3523 l->max_time = age;
3524
3525 if (track->pid < l->min_pid)
3526 l->min_pid = track->pid;
3527 if (track->pid > l->max_pid)
3528 l->max_pid = track->pid;
3529
3530 cpumask_set_cpu(track->cpu,
3531 to_cpumask(l->cpus));
3532 }
3533 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3534 return 1;
3535 }
3536
3537 if (track->addr < caddr)
3538 end = pos;
3539 else
3540 start = pos;
3541 }
3542
3543 /*
3544 * Not found. Insert new tracking element.
3545 */
3546 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3547 return 0;
3548
3549 l = t->loc + pos;
3550 if (pos < t->count)
3551 memmove(l + 1, l,
3552 (t->count - pos) * sizeof(struct location));
3553 t->count++;
3554 l->count = 1;
3555 l->addr = track->addr;
3556 l->sum_time = age;
3557 l->min_time = age;
3558 l->max_time = age;
3559 l->min_pid = track->pid;
3560 l->max_pid = track->pid;
3561 cpumask_clear(to_cpumask(l->cpus));
3562 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3563 nodes_clear(l->nodes);
3564 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3565 return 1;
3566}
3567
3568static void process_slab(struct loc_track *t, struct kmem_cache *s,
3569 struct page *page, enum track_item alloc)
3570{
3571 void *addr = page_address(page);
3572 DECLARE_BITMAP(map, page->objects);
3573 void *p;
3574
3575 bitmap_zero(map, page->objects);
3576 for_each_free_object(p, s, page->freelist)
3577 set_bit(slab_index(p, s, addr), map);
3578
3579 for_each_object(p, s, addr, page->objects)
3580 if (!test_bit(slab_index(p, s, addr), map))
3581 add_location(t, s, get_track(s, p, alloc));
3582}
3583
3584static int list_locations(struct kmem_cache *s, char *buf,
3585 enum track_item alloc)
3586{
3587 int len = 0;
3588 unsigned long i;
3589 struct loc_track t = { 0, 0, NULL };
3590 int node;
3591
3592 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3593 GFP_TEMPORARY))
3594 return sprintf(buf, "Out of memory\n");
3595
3596 /* Push back cpu slabs */
3597 flush_all(s);
3598
3599 for_each_node_state(node, N_NORMAL_MEMORY) {
3600 struct kmem_cache_node *n = get_node(s, node);
3601 unsigned long flags;
3602 struct page *page;
3603
3604 if (!atomic_long_read(&n->nr_slabs))
3605 continue;
3606
3607 spin_lock_irqsave(&n->list_lock, flags);
3608 list_for_each_entry(page, &n->partial, lru)
3609 process_slab(&t, s, page, alloc);
3610 list_for_each_entry(page, &n->full, lru)
3611 process_slab(&t, s, page, alloc);
3612 spin_unlock_irqrestore(&n->list_lock, flags);
3613 }
3614
3615 for (i = 0; i < t.count; i++) {
3616 struct location *l = &t.loc[i];
3617
3618 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3619 break;
3620 len += sprintf(buf + len, "%7ld ", l->count);
3621
3622 if (l->addr)
3623 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3624 else
3625 len += sprintf(buf + len, "<not-available>");
3626
3627 if (l->sum_time != l->min_time) {
3628 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3629 l->min_time,
3630 (long)div_u64(l->sum_time, l->count),
3631 l->max_time);
3632 } else
3633 len += sprintf(buf + len, " age=%ld",
3634 l->min_time);
3635
3636 if (l->min_pid != l->max_pid)
3637 len += sprintf(buf + len, " pid=%ld-%ld",
3638 l->min_pid, l->max_pid);
3639 else
3640 len += sprintf(buf + len, " pid=%ld",
3641 l->min_pid);
3642
3643 if (num_online_cpus() > 1 &&
3644 !cpumask_empty(to_cpumask(l->cpus)) &&
3645 len < PAGE_SIZE - 60) {
3646 len += sprintf(buf + len, " cpus=");
3647 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3648 to_cpumask(l->cpus));
3649 }
3650
3651 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3652 len < PAGE_SIZE - 60) {
3653 len += sprintf(buf + len, " nodes=");
3654 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3655 l->nodes);
3656 }
3657
3658 len += sprintf(buf + len, "\n");
3659 }
3660
3661 free_loc_track(&t);
3662 if (!t.count)
3663 len += sprintf(buf, "No data\n");
3664 return len;
3665}
3666
3667enum slab_stat_type {
3668 SL_ALL, /* All slabs */
3669 SL_PARTIAL, /* Only partially allocated slabs */
3670 SL_CPU, /* Only slabs used for cpu caches */
3671 SL_OBJECTS, /* Determine allocated objects not slabs */
3672 SL_TOTAL /* Determine object capacity not slabs */
3673};
3674
3675#define SO_ALL (1 << SL_ALL)
3676#define SO_PARTIAL (1 << SL_PARTIAL)
3677#define SO_CPU (1 << SL_CPU)
3678#define SO_OBJECTS (1 << SL_OBJECTS)
3679#define SO_TOTAL (1 << SL_TOTAL)
3680
3681static ssize_t show_slab_objects(struct kmem_cache *s,
3682 char *buf, unsigned long flags)
3683{
3684 unsigned long total = 0;
3685 int node;
3686 int x;
3687 unsigned long *nodes;
3688 unsigned long *per_cpu;
3689
3690 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3691 if (!nodes)
3692 return -ENOMEM;
3693 per_cpu = nodes + nr_node_ids;
3694
3695 if (flags & SO_CPU) {
3696 int cpu;
3697
3698 for_each_possible_cpu(cpu) {
3699 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3700
3701 if (!c || c->node < 0)
3702 continue;
3703
3704 if (c->page) {
3705 if (flags & SO_TOTAL)
3706 x = c->page->objects;
3707 else if (flags & SO_OBJECTS)
3708 x = c->page->inuse;
3709 else
3710 x = 1;
3711
3712 total += x;
3713 nodes[c->node] += x;
3714 }
3715 per_cpu[c->node]++;
3716 }
3717 }
3718
3719 if (flags & SO_ALL) {
3720 for_each_node_state(node, N_NORMAL_MEMORY) {
3721 struct kmem_cache_node *n = get_node(s, node);
3722
3723 if (flags & SO_TOTAL)
3724 x = atomic_long_read(&n->total_objects);
3725 else if (flags & SO_OBJECTS)
3726 x = atomic_long_read(&n->total_objects) -
3727 count_partial(n, count_free);
3728
3729 else
3730 x = atomic_long_read(&n->nr_slabs);
3731 total += x;
3732 nodes[node] += x;
3733 }
3734
3735 } else if (flags & SO_PARTIAL) {
3736 for_each_node_state(node, N_NORMAL_MEMORY) {
3737 struct kmem_cache_node *n = get_node(s, node);
3738
3739 if (flags & SO_TOTAL)
3740 x = count_partial(n, count_total);
3741 else if (flags & SO_OBJECTS)
3742 x = count_partial(n, count_inuse);
3743 else
3744 x = n->nr_partial;
3745 total += x;
3746 nodes[node] += x;
3747 }
3748 }
3749 x = sprintf(buf, "%lu", total);
3750#ifdef CONFIG_NUMA
3751 for_each_node_state(node, N_NORMAL_MEMORY)
3752 if (nodes[node])
3753 x += sprintf(buf + x, " N%d=%lu",
3754 node, nodes[node]);
3755#endif
3756 kfree(nodes);
3757 return x + sprintf(buf + x, "\n");
3758}
3759
3760static int any_slab_objects(struct kmem_cache *s)
3761{
3762 int node;
3763
3764 for_each_online_node(node) {
3765 struct kmem_cache_node *n = get_node(s, node);
3766
3767 if (!n)
3768 continue;
3769
3770 if (atomic_long_read(&n->total_objects))
3771 return 1;
3772 }
3773 return 0;
3774}
3775
3776#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3777#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3778
3779struct slab_attribute {
3780 struct attribute attr;
3781 ssize_t (*show)(struct kmem_cache *s, char *buf);
3782 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3783};
3784
3785#define SLAB_ATTR_RO(_name) \
3786 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3787
3788#define SLAB_ATTR(_name) \
3789 static struct slab_attribute _name##_attr = \
3790 __ATTR(_name, 0644, _name##_show, _name##_store)
3791
3792static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3793{
3794 return sprintf(buf, "%d\n", s->size);
3795}
3796SLAB_ATTR_RO(slab_size);
3797
3798static ssize_t align_show(struct kmem_cache *s, char *buf)
3799{
3800 return sprintf(buf, "%d\n", s->align);
3801}
3802SLAB_ATTR_RO(align);
3803
3804static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3805{
3806 return sprintf(buf, "%d\n", s->objsize);
3807}
3808SLAB_ATTR_RO(object_size);
3809
3810static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3811{
3812 return sprintf(buf, "%d\n", oo_objects(s->oo));
3813}
3814SLAB_ATTR_RO(objs_per_slab);
3815
3816static ssize_t order_store(struct kmem_cache *s,
3817 const char *buf, size_t length)
3818{
3819 unsigned long order;
3820 int err;
3821
3822 err = strict_strtoul(buf, 10, &order);
3823 if (err)
3824 return err;
3825
3826 if (order > slub_max_order || order < slub_min_order)
3827 return -EINVAL;
3828
3829 calculate_sizes(s, order);
3830 return length;
3831}
3832
3833static ssize_t order_show(struct kmem_cache *s, char *buf)
3834{
3835 return sprintf(buf, "%d\n", oo_order(s->oo));
3836}
3837SLAB_ATTR(order);
3838
3839static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3840{
3841 if (s->ctor) {
3842 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3843
3844 return n + sprintf(buf + n, "\n");
3845 }
3846 return 0;
3847}
3848SLAB_ATTR_RO(ctor);
3849
3850static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3851{
3852 return sprintf(buf, "%d\n", s->refcount - 1);
3853}
3854SLAB_ATTR_RO(aliases);
3855
3856static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3857{
3858 return show_slab_objects(s, buf, SO_ALL);
3859}
3860SLAB_ATTR_RO(slabs);
3861
3862static ssize_t partial_show(struct kmem_cache *s, char *buf)
3863{
3864 return show_slab_objects(s, buf, SO_PARTIAL);
3865}
3866SLAB_ATTR_RO(partial);
3867
3868static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3869{
3870 return show_slab_objects(s, buf, SO_CPU);
3871}
3872SLAB_ATTR_RO(cpu_slabs);
3873
3874static ssize_t objects_show(struct kmem_cache *s, char *buf)
3875{
3876 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3877}
3878SLAB_ATTR_RO(objects);
3879
3880static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3881{
3882 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3883}
3884SLAB_ATTR_RO(objects_partial);
3885
3886static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3887{
3888 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3889}
3890SLAB_ATTR_RO(total_objects);
3891
3892static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3893{
3894 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3895}
3896
3897static ssize_t sanity_checks_store(struct kmem_cache *s,
3898 const char *buf, size_t length)
3899{
3900 s->flags &= ~SLAB_DEBUG_FREE;
3901 if (buf[0] == '1')
3902 s->flags |= SLAB_DEBUG_FREE;
3903 return length;
3904}
3905SLAB_ATTR(sanity_checks);
3906
3907static ssize_t trace_show(struct kmem_cache *s, char *buf)
3908{
3909 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3910}
3911
3912static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3913 size_t length)
3914{
3915 s->flags &= ~SLAB_TRACE;
3916 if (buf[0] == '1')
3917 s->flags |= SLAB_TRACE;
3918 return length;
3919}
3920SLAB_ATTR(trace);
3921
3922static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3923{
3924 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3925}
3926
3927static ssize_t reclaim_account_store(struct kmem_cache *s,
3928 const char *buf, size_t length)
3929{
3930 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3931 if (buf[0] == '1')
3932 s->flags |= SLAB_RECLAIM_ACCOUNT;
3933 return length;
3934}
3935SLAB_ATTR(reclaim_account);
3936
3937static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3938{
3939 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3940}
3941SLAB_ATTR_RO(hwcache_align);
3942
3943#ifdef CONFIG_ZONE_DMA
3944static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3945{
3946 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3947}
3948SLAB_ATTR_RO(cache_dma);
3949#endif
3950
3951static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3952{
3953 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3954}
3955SLAB_ATTR_RO(destroy_by_rcu);
3956
3957static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3958{
3959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3960}
3961
3962static ssize_t red_zone_store(struct kmem_cache *s,
3963 const char *buf, size_t length)
3964{
3965 if (any_slab_objects(s))
3966 return -EBUSY;
3967
3968 s->flags &= ~SLAB_RED_ZONE;
3969 if (buf[0] == '1')
3970 s->flags |= SLAB_RED_ZONE;
3971 calculate_sizes(s, -1);
3972 return length;
3973}
3974SLAB_ATTR(red_zone);
3975
3976static ssize_t poison_show(struct kmem_cache *s, char *buf)
3977{
3978 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3979}
3980
3981static ssize_t poison_store(struct kmem_cache *s,
3982 const char *buf, size_t length)
3983{
3984 if (any_slab_objects(s))
3985 return -EBUSY;
3986
3987 s->flags &= ~SLAB_POISON;
3988 if (buf[0] == '1')
3989 s->flags |= SLAB_POISON;
3990 calculate_sizes(s, -1);
3991 return length;
3992}
3993SLAB_ATTR(poison);
3994
3995static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3996{
3997 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3998}
3999
4000static ssize_t store_user_store(struct kmem_cache *s,
4001 const char *buf, size_t length)
4002{
4003 if (any_slab_objects(s))
4004 return -EBUSY;
4005
4006 s->flags &= ~SLAB_STORE_USER;
4007 if (buf[0] == '1')
4008 s->flags |= SLAB_STORE_USER;
4009 calculate_sizes(s, -1);
4010 return length;
4011}
4012SLAB_ATTR(store_user);
4013
4014static ssize_t validate_show(struct kmem_cache *s, char *buf)
4015{
4016 return 0;
4017}
4018
4019static ssize_t validate_store(struct kmem_cache *s,
4020 const char *buf, size_t length)
4021{
4022 int ret = -EINVAL;
4023
4024 if (buf[0] == '1') {
4025 ret = validate_slab_cache(s);
4026 if (ret >= 0)
4027 ret = length;
4028 }
4029 return ret;
4030}
4031SLAB_ATTR(validate);
4032
4033static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4034{
4035 return 0;
4036}
4037
4038static ssize_t shrink_store(struct kmem_cache *s,
4039 const char *buf, size_t length)
4040{
4041 if (buf[0] == '1') {
4042 int rc = kmem_cache_shrink(s);
4043
4044 if (rc)
4045 return rc;
4046 } else
4047 return -EINVAL;
4048 return length;
4049}
4050SLAB_ATTR(shrink);
4051
4052static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4053{
4054 if (!(s->flags & SLAB_STORE_USER))
4055 return -ENOSYS;
4056 return list_locations(s, buf, TRACK_ALLOC);
4057}
4058SLAB_ATTR_RO(alloc_calls);
4059
4060static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4061{
4062 if (!(s->flags & SLAB_STORE_USER))
4063 return -ENOSYS;
4064 return list_locations(s, buf, TRACK_FREE);
4065}
4066SLAB_ATTR_RO(free_calls);
4067
4068#ifdef CONFIG_NUMA
4069static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4070{
4071 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4072}
4073
4074static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4075 const char *buf, size_t length)
4076{
4077 unsigned long ratio;
4078 int err;
4079
4080 err = strict_strtoul(buf, 10, &ratio);
4081 if (err)
4082 return err;
4083
4084 if (ratio <= 100)
4085 s->remote_node_defrag_ratio = ratio * 10;
4086
4087 return length;
4088}
4089SLAB_ATTR(remote_node_defrag_ratio);
4090#endif
4091
4092#ifdef CONFIG_SLUB_STATS
4093static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4094{
4095 unsigned long sum = 0;
4096 int cpu;
4097 int len;
4098 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4099
4100 if (!data)
4101 return -ENOMEM;
4102
4103 for_each_online_cpu(cpu) {
4104 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4105
4106 data[cpu] = x;
4107 sum += x;
4108 }
4109
4110 len = sprintf(buf, "%lu", sum);
4111
4112#ifdef CONFIG_SMP
4113 for_each_online_cpu(cpu) {
4114 if (data[cpu] && len < PAGE_SIZE - 20)
4115 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4116 }
4117#endif
4118 kfree(data);
4119 return len + sprintf(buf + len, "\n");
4120}
4121
4122#define STAT_ATTR(si, text) \
4123static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4124{ \
4125 return show_stat(s, buf, si); \
4126} \
4127SLAB_ATTR_RO(text); \
4128
4129STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4130STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4131STAT_ATTR(FREE_FASTPATH, free_fastpath);
4132STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4133STAT_ATTR(FREE_FROZEN, free_frozen);
4134STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4135STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4136STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4137STAT_ATTR(ALLOC_SLAB, alloc_slab);
4138STAT_ATTR(ALLOC_REFILL, alloc_refill);
4139STAT_ATTR(FREE_SLAB, free_slab);
4140STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4141STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4142STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4143STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4144STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4145STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4146STAT_ATTR(ORDER_FALLBACK, order_fallback);
4147#endif
4148
4149static struct attribute *slab_attrs[] = {
4150 &slab_size_attr.attr,
4151 &object_size_attr.attr,
4152 &objs_per_slab_attr.attr,
4153 &order_attr.attr,
4154 &objects_attr.attr,
4155 &objects_partial_attr.attr,
4156 &total_objects_attr.attr,
4157 &slabs_attr.attr,
4158 &partial_attr.attr,
4159 &cpu_slabs_attr.attr,
4160 &ctor_attr.attr,
4161 &aliases_attr.attr,
4162 &align_attr.attr,
4163 &sanity_checks_attr.attr,
4164 &trace_attr.attr,
4165 &hwcache_align_attr.attr,
4166 &reclaim_account_attr.attr,
4167 &destroy_by_rcu_attr.attr,
4168 &red_zone_attr.attr,
4169 &poison_attr.attr,
4170 &store_user_attr.attr,
4171 &validate_attr.attr,
4172 &shrink_attr.attr,
4173 &alloc_calls_attr.attr,
4174 &free_calls_attr.attr,
4175#ifdef CONFIG_ZONE_DMA
4176 &cache_dma_attr.attr,
4177#endif
4178#ifdef CONFIG_NUMA
4179 &remote_node_defrag_ratio_attr.attr,
4180#endif
4181#ifdef CONFIG_SLUB_STATS
4182 &alloc_fastpath_attr.attr,
4183 &alloc_slowpath_attr.attr,
4184 &free_fastpath_attr.attr,
4185 &free_slowpath_attr.attr,
4186 &free_frozen_attr.attr,
4187 &free_add_partial_attr.attr,
4188 &free_remove_partial_attr.attr,
4189 &alloc_from_partial_attr.attr,
4190 &alloc_slab_attr.attr,
4191 &alloc_refill_attr.attr,
4192 &free_slab_attr.attr,
4193 &cpuslab_flush_attr.attr,
4194 &deactivate_full_attr.attr,
4195 &deactivate_empty_attr.attr,
4196 &deactivate_to_head_attr.attr,
4197 &deactivate_to_tail_attr.attr,
4198 &deactivate_remote_frees_attr.attr,
4199 &order_fallback_attr.attr,
4200#endif
4201 NULL
4202};
4203
4204static struct attribute_group slab_attr_group = {
4205 .attrs = slab_attrs,
4206};
4207
4208static ssize_t slab_attr_show(struct kobject *kobj,
4209 struct attribute *attr,
4210 char *buf)
4211{
4212 struct slab_attribute *attribute;
4213 struct kmem_cache *s;
4214 int err;
4215
4216 attribute = to_slab_attr(attr);
4217 s = to_slab(kobj);
4218
4219 if (!attribute->show)
4220 return -EIO;
4221
4222 err = attribute->show(s, buf);
4223
4224 return err;
4225}
4226
4227static ssize_t slab_attr_store(struct kobject *kobj,
4228 struct attribute *attr,
4229 const char *buf, size_t len)
4230{
4231 struct slab_attribute *attribute;
4232 struct kmem_cache *s;
4233 int err;
4234
4235 attribute = to_slab_attr(attr);
4236 s = to_slab(kobj);
4237
4238 if (!attribute->store)
4239 return -EIO;
4240
4241 err = attribute->store(s, buf, len);
4242
4243 return err;
4244}
4245
4246static void kmem_cache_release(struct kobject *kobj)
4247{
4248 struct kmem_cache *s = to_slab(kobj);
4249
4250 kfree(s);
4251}
4252
4253static struct sysfs_ops slab_sysfs_ops = {
4254 .show = slab_attr_show,
4255 .store = slab_attr_store,
4256};
4257
4258static struct kobj_type slab_ktype = {
4259 .sysfs_ops = &slab_sysfs_ops,
4260 .release = kmem_cache_release
4261};
4262
4263static int uevent_filter(struct kset *kset, struct kobject *kobj)
4264{
4265 struct kobj_type *ktype = get_ktype(kobj);
4266
4267 if (ktype == &slab_ktype)
4268 return 1;
4269 return 0;
4270}
4271
4272static struct kset_uevent_ops slab_uevent_ops = {
4273 .filter = uevent_filter,
4274};
4275
4276static struct kset *slab_kset;
4277
4278#define ID_STR_LENGTH 64
4279
4280/* Create a unique string id for a slab cache:
4281 *
4282 * Format :[flags-]size
4283 */
4284static char *create_unique_id(struct kmem_cache *s)
4285{
4286 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4287 char *p = name;
4288
4289 BUG_ON(!name);
4290
4291 *p++ = ':';
4292 /*
4293 * First flags affecting slabcache operations. We will only
4294 * get here for aliasable slabs so we do not need to support
4295 * too many flags. The flags here must cover all flags that
4296 * are matched during merging to guarantee that the id is
4297 * unique.
4298 */
4299 if (s->flags & SLAB_CACHE_DMA)
4300 *p++ = 'd';
4301 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4302 *p++ = 'a';
4303 if (s->flags & SLAB_DEBUG_FREE)
4304 *p++ = 'F';
4305 if (p != name + 1)
4306 *p++ = '-';
4307 p += sprintf(p, "%07d", s->size);
4308 BUG_ON(p > name + ID_STR_LENGTH - 1);
4309 return name;
4310}
4311
4312static int sysfs_slab_add(struct kmem_cache *s)
4313{
4314 int err;
4315 const char *name;
4316 int unmergeable;
4317
4318 if (slab_state < SYSFS)
4319 /* Defer until later */
4320 return 0;
4321
4322 unmergeable = slab_unmergeable(s);
4323 if (unmergeable) {
4324 /*
4325 * Slabcache can never be merged so we can use the name proper.
4326 * This is typically the case for debug situations. In that
4327 * case we can catch duplicate names easily.
4328 */
4329 sysfs_remove_link(&slab_kset->kobj, s->name);
4330 name = s->name;
4331 } else {
4332 /*
4333 * Create a unique name for the slab as a target
4334 * for the symlinks.
4335 */
4336 name = create_unique_id(s);
4337 }
4338
4339 s->kobj.kset = slab_kset;
4340 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4341 if (err) {
4342 kobject_put(&s->kobj);
4343 return err;
4344 }
4345
4346 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4347 if (err)
4348 return err;
4349 kobject_uevent(&s->kobj, KOBJ_ADD);
4350 if (!unmergeable) {
4351 /* Setup first alias */
4352 sysfs_slab_alias(s, s->name);
4353 kfree(name);
4354 }
4355 return 0;
4356}
4357
4358static void sysfs_slab_remove(struct kmem_cache *s)
4359{
4360 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4361 kobject_del(&s->kobj);
4362 kobject_put(&s->kobj);
4363}
4364
4365/*
4366 * Need to buffer aliases during bootup until sysfs becomes
4367 * available lest we lose that information.
4368 */
4369struct saved_alias {
4370 struct kmem_cache *s;
4371 const char *name;
4372 struct saved_alias *next;
4373};
4374
4375static struct saved_alias *alias_list;
4376
4377static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4378{
4379 struct saved_alias *al;
4380
4381 if (slab_state == SYSFS) {
4382 /*
4383 * If we have a leftover link then remove it.
4384 */
4385 sysfs_remove_link(&slab_kset->kobj, name);
4386 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4387 }
4388
4389 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4390 if (!al)
4391 return -ENOMEM;
4392
4393 al->s = s;
4394 al->name = name;
4395 al->next = alias_list;
4396 alias_list = al;
4397 return 0;
4398}
4399
4400static int __init slab_sysfs_init(void)
4401{
4402 struct kmem_cache *s;
4403 int err;
4404
4405 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4406 if (!slab_kset) {
4407 printk(KERN_ERR "Cannot register slab subsystem.\n");
4408 return -ENOSYS;
4409 }
4410
4411 slab_state = SYSFS;
4412
4413 list_for_each_entry(s, &slab_caches, list) {
4414 err = sysfs_slab_add(s);
4415 if (err)
4416 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4417 " to sysfs\n", s->name);
4418 }
4419
4420 while (alias_list) {
4421 struct saved_alias *al = alias_list;
4422
4423 alias_list = alias_list->next;
4424 err = sysfs_slab_alias(al->s, al->name);
4425 if (err)
4426 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4427 " %s to sysfs\n", s->name);
4428 kfree(al);
4429 }
4430
4431 resiliency_test();
4432 return 0;
4433}
4434
4435__initcall(slab_sysfs_init);
4436#endif
4437
4438/*
4439 * The /proc/slabinfo ABI
4440 */
4441#ifdef CONFIG_SLABINFO
4442static void print_slabinfo_header(struct seq_file *m)
4443{
4444 seq_puts(m, "slabinfo - version: 2.1\n");
4445 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4446 "<objperslab> <pagesperslab>");
4447 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4448 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4449 seq_putc(m, '\n');
4450}
4451
4452static void *s_start(struct seq_file *m, loff_t *pos)
4453{
4454 loff_t n = *pos;
4455
4456 down_read(&slub_lock);
4457 if (!n)
4458 print_slabinfo_header(m);
4459
4460 return seq_list_start(&slab_caches, *pos);
4461}
4462
4463static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4464{
4465 return seq_list_next(p, &slab_caches, pos);
4466}
4467
4468static void s_stop(struct seq_file *m, void *p)
4469{
4470 up_read(&slub_lock);
4471}
4472
4473static int s_show(struct seq_file *m, void *p)
4474{
4475 unsigned long nr_partials = 0;
4476 unsigned long nr_slabs = 0;
4477 unsigned long nr_inuse = 0;
4478 unsigned long nr_objs = 0;
4479 unsigned long nr_free = 0;
4480 struct kmem_cache *s;
4481 int node;
4482
4483 s = list_entry(p, struct kmem_cache, list);
4484
4485 for_each_online_node(node) {
4486 struct kmem_cache_node *n = get_node(s, node);
4487
4488 if (!n)
4489 continue;
4490
4491 nr_partials += n->nr_partial;
4492 nr_slabs += atomic_long_read(&n->nr_slabs);
4493 nr_objs += atomic_long_read(&n->total_objects);
4494 nr_free += count_partial(n, count_free);
4495 }
4496
4497 nr_inuse = nr_objs - nr_free;
4498
4499 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4500 nr_objs, s->size, oo_objects(s->oo),
4501 (1 << oo_order(s->oo)));
4502 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4503 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4504 0UL);
4505 seq_putc(m, '\n');
4506 return 0;
4507}
4508
4509static const struct seq_operations slabinfo_op = {
4510 .start = s_start,
4511 .next = s_next,
4512 .stop = s_stop,
4513 .show = s_show,
4514};
4515
4516static int slabinfo_open(struct inode *inode, struct file *file)
4517{
4518 return seq_open(file, &slabinfo_op);
4519}
4520
4521static const struct file_operations proc_slabinfo_operations = {
4522 .open = slabinfo_open,
4523 .read = seq_read,
4524 .llseek = seq_lseek,
4525 .release = seq_release,
4526};
4527
4528static int __init slab_proc_init(void)
4529{
4530 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4531 return 0;
4532}
4533module_init(slab_proc_init);
4534#endif /* CONFIG_SLABINFO */