| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Slab allocator functions that are independent of the allocator strategy |
| 4 | * |
| 5 | * (C) 2012 Christoph Lameter <cl@gentwo.org> |
| 6 | */ |
| 7 | #include <linux/slab.h> |
| 8 | |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/poison.h> |
| 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/memory.h> |
| 13 | #include <linux/cache.h> |
| 14 | #include <linux/compiler.h> |
| 15 | #include <linux/kfence.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/cpu.h> |
| 18 | #include <linux/uaccess.h> |
| 19 | #include <linux/seq_file.h> |
| 20 | #include <linux/dma-mapping.h> |
| 21 | #include <linux/swiotlb.h> |
| 22 | #include <linux/proc_fs.h> |
| 23 | #include <linux/debugfs.h> |
| 24 | #include <linux/kmemleak.h> |
| 25 | #include <linux/kasan.h> |
| 26 | #include <asm/cacheflush.h> |
| 27 | #include <asm/tlbflush.h> |
| 28 | #include <asm/page.h> |
| 29 | #include <linux/memcontrol.h> |
| 30 | #include <linux/stackdepot.h> |
| 31 | #include <trace/events/rcu.h> |
| 32 | |
| 33 | #include "../kernel/rcu/rcu.h" |
| 34 | #include "internal.h" |
| 35 | #include "slab.h" |
| 36 | |
| 37 | #define CREATE_TRACE_POINTS |
| 38 | #include <trace/events/kmem.h> |
| 39 | |
| 40 | enum slab_state slab_state; |
| 41 | LIST_HEAD(slab_caches); |
| 42 | DEFINE_MUTEX(slab_mutex); |
| 43 | struct kmem_cache *kmem_cache; |
| 44 | |
| 45 | /* |
| 46 | * Set of flags that will prevent slab merging |
| 47 | */ |
| 48 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
| 49 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
| 50 | SLAB_FAILSLAB | SLAB_NO_MERGE) |
| 51 | |
| 52 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
| 53 | SLAB_CACHE_DMA32 | SLAB_ACCOUNT) |
| 54 | |
| 55 | /* |
| 56 | * Merge control. If this is set then no merging of slab caches will occur. |
| 57 | */ |
| 58 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
| 59 | |
| 60 | static int __init setup_slab_nomerge(char *str) |
| 61 | { |
| 62 | slab_nomerge = true; |
| 63 | return 1; |
| 64 | } |
| 65 | |
| 66 | static int __init setup_slab_merge(char *str) |
| 67 | { |
| 68 | slab_nomerge = false; |
| 69 | return 1; |
| 70 | } |
| 71 | |
| 72 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); |
| 73 | __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); |
| 74 | |
| 75 | __setup("slab_nomerge", setup_slab_nomerge); |
| 76 | __setup("slab_merge", setup_slab_merge); |
| 77 | |
| 78 | /* |
| 79 | * Determine the size of a slab object |
| 80 | */ |
| 81 | unsigned int kmem_cache_size(struct kmem_cache *s) |
| 82 | { |
| 83 | return s->object_size; |
| 84 | } |
| 85 | EXPORT_SYMBOL(kmem_cache_size); |
| 86 | |
| 87 | #ifdef CONFIG_DEBUG_VM |
| 88 | |
| 89 | static bool kmem_cache_is_duplicate_name(const char *name) |
| 90 | { |
| 91 | struct kmem_cache *s; |
| 92 | |
| 93 | list_for_each_entry(s, &slab_caches, list) { |
| 94 | if (!strcmp(s->name, name)) |
| 95 | return true; |
| 96 | } |
| 97 | |
| 98 | return false; |
| 99 | } |
| 100 | |
| 101 | static int kmem_cache_sanity_check(const char *name, unsigned int size) |
| 102 | { |
| 103 | if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { |
| 104 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
| 105 | return -EINVAL; |
| 106 | } |
| 107 | |
| 108 | /* Duplicate names will confuse slabtop, et al */ |
| 109 | WARN(kmem_cache_is_duplicate_name(name), |
| 110 | "kmem_cache of name '%s' already exists\n", name); |
| 111 | |
| 112 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
| 113 | return 0; |
| 114 | } |
| 115 | #else |
| 116 | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) |
| 117 | { |
| 118 | return 0; |
| 119 | } |
| 120 | #endif |
| 121 | |
| 122 | /* |
| 123 | * Figure out what the alignment of the objects will be given a set of |
| 124 | * flags, a user specified alignment and the size of the objects. |
| 125 | */ |
| 126 | static unsigned int calculate_alignment(slab_flags_t flags, |
| 127 | unsigned int align, unsigned int size) |
| 128 | { |
| 129 | /* |
| 130 | * If the user wants hardware cache aligned objects then follow that |
| 131 | * suggestion if the object is sufficiently large. |
| 132 | * |
| 133 | * The hardware cache alignment cannot override the specified |
| 134 | * alignment though. If that is greater then use it. |
| 135 | */ |
| 136 | if (flags & SLAB_HWCACHE_ALIGN) { |
| 137 | unsigned int ralign; |
| 138 | |
| 139 | ralign = cache_line_size(); |
| 140 | while (size <= ralign / 2) |
| 141 | ralign /= 2; |
| 142 | align = max(align, ralign); |
| 143 | } |
| 144 | |
| 145 | align = max(align, arch_slab_minalign()); |
| 146 | |
| 147 | return ALIGN(align, sizeof(void *)); |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * Find a mergeable slab cache |
| 152 | */ |
| 153 | int slab_unmergeable(struct kmem_cache *s) |
| 154 | { |
| 155 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) |
| 156 | return 1; |
| 157 | |
| 158 | if (s->ctor) |
| 159 | return 1; |
| 160 | |
| 161 | #ifdef CONFIG_HARDENED_USERCOPY |
| 162 | if (s->usersize) |
| 163 | return 1; |
| 164 | #endif |
| 165 | |
| 166 | /* |
| 167 | * We may have set a slab to be unmergeable during bootstrap. |
| 168 | */ |
| 169 | if (s->refcount < 0) |
| 170 | return 1; |
| 171 | |
| 172 | return 0; |
| 173 | } |
| 174 | |
| 175 | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, |
| 176 | slab_flags_t flags, const char *name, void (*ctor)(void *)) |
| 177 | { |
| 178 | struct kmem_cache *s; |
| 179 | |
| 180 | if (slab_nomerge) |
| 181 | return NULL; |
| 182 | |
| 183 | if (ctor) |
| 184 | return NULL; |
| 185 | |
| 186 | flags = kmem_cache_flags(flags, name); |
| 187 | |
| 188 | if (flags & SLAB_NEVER_MERGE) |
| 189 | return NULL; |
| 190 | |
| 191 | size = ALIGN(size, sizeof(void *)); |
| 192 | align = calculate_alignment(flags, align, size); |
| 193 | size = ALIGN(size, align); |
| 194 | |
| 195 | list_for_each_entry_reverse(s, &slab_caches, list) { |
| 196 | if (slab_unmergeable(s)) |
| 197 | continue; |
| 198 | |
| 199 | if (size > s->size) |
| 200 | continue; |
| 201 | |
| 202 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) |
| 203 | continue; |
| 204 | /* |
| 205 | * Check if alignment is compatible. |
| 206 | * Courtesy of Adrian Drzewiecki |
| 207 | */ |
| 208 | if ((s->size & ~(align - 1)) != s->size) |
| 209 | continue; |
| 210 | |
| 211 | if (s->size - size >= sizeof(void *)) |
| 212 | continue; |
| 213 | |
| 214 | return s; |
| 215 | } |
| 216 | return NULL; |
| 217 | } |
| 218 | |
| 219 | static struct kmem_cache *create_cache(const char *name, |
| 220 | unsigned int object_size, |
| 221 | struct kmem_cache_args *args, |
| 222 | slab_flags_t flags) |
| 223 | { |
| 224 | struct kmem_cache *s; |
| 225 | int err; |
| 226 | |
| 227 | /* If a custom freelist pointer is requested make sure it's sane. */ |
| 228 | err = -EINVAL; |
| 229 | if (args->use_freeptr_offset && |
| 230 | (args->freeptr_offset >= object_size || |
| 231 | !(flags & SLAB_TYPESAFE_BY_RCU) || |
| 232 | !IS_ALIGNED(args->freeptr_offset, __alignof__(freeptr_t)))) |
| 233 | goto out; |
| 234 | |
| 235 | err = -ENOMEM; |
| 236 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); |
| 237 | if (!s) |
| 238 | goto out; |
| 239 | err = do_kmem_cache_create(s, name, object_size, args, flags); |
| 240 | if (err) |
| 241 | goto out_free_cache; |
| 242 | |
| 243 | s->refcount = 1; |
| 244 | list_add(&s->list, &slab_caches); |
| 245 | return s; |
| 246 | |
| 247 | out_free_cache: |
| 248 | kmem_cache_free(kmem_cache, s); |
| 249 | out: |
| 250 | return ERR_PTR(err); |
| 251 | } |
| 252 | |
| 253 | /** |
| 254 | * __kmem_cache_create_args - Create a kmem cache. |
| 255 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
| 256 | * @object_size: The size of objects to be created in this cache. |
| 257 | * @args: Additional arguments for the cache creation (see |
| 258 | * &struct kmem_cache_args). |
| 259 | * @flags: See the desriptions of individual flags. The common ones are listed |
| 260 | * in the description below. |
| 261 | * |
| 262 | * Not to be called directly, use the kmem_cache_create() wrapper with the same |
| 263 | * parameters. |
| 264 | * |
| 265 | * Commonly used @flags: |
| 266 | * |
| 267 | * &SLAB_ACCOUNT - Account allocations to memcg. |
| 268 | * |
| 269 | * &SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. |
| 270 | * |
| 271 | * &SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. |
| 272 | * |
| 273 | * &SLAB_TYPESAFE_BY_RCU - Slab page (not individual objects) freeing delayed |
| 274 | * by a grace period - see the full description before using. |
| 275 | * |
| 276 | * Context: Cannot be called within a interrupt, but can be interrupted. |
| 277 | * |
| 278 | * Return: a pointer to the cache on success, NULL on failure. |
| 279 | */ |
| 280 | struct kmem_cache *__kmem_cache_create_args(const char *name, |
| 281 | unsigned int object_size, |
| 282 | struct kmem_cache_args *args, |
| 283 | slab_flags_t flags) |
| 284 | { |
| 285 | struct kmem_cache *s = NULL; |
| 286 | const char *cache_name; |
| 287 | int err; |
| 288 | |
| 289 | #ifdef CONFIG_SLUB_DEBUG |
| 290 | /* |
| 291 | * If no slab_debug was enabled globally, the static key is not yet |
| 292 | * enabled by setup_slub_debug(). Enable it if the cache is being |
| 293 | * created with any of the debugging flags passed explicitly. |
| 294 | * It's also possible that this is the first cache created with |
| 295 | * SLAB_STORE_USER and we should init stack_depot for it. |
| 296 | */ |
| 297 | if (flags & SLAB_DEBUG_FLAGS) |
| 298 | static_branch_enable(&slub_debug_enabled); |
| 299 | if (flags & SLAB_STORE_USER) |
| 300 | stack_depot_init(); |
| 301 | #else |
| 302 | flags &= ~SLAB_DEBUG_FLAGS; |
| 303 | #endif |
| 304 | |
| 305 | mutex_lock(&slab_mutex); |
| 306 | |
| 307 | err = kmem_cache_sanity_check(name, object_size); |
| 308 | if (err) { |
| 309 | goto out_unlock; |
| 310 | } |
| 311 | |
| 312 | if (flags & ~SLAB_FLAGS_PERMITTED) { |
| 313 | err = -EINVAL; |
| 314 | goto out_unlock; |
| 315 | } |
| 316 | |
| 317 | /* Fail closed on bad usersize of useroffset values. */ |
| 318 | if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) || |
| 319 | WARN_ON(!args->usersize && args->useroffset) || |
| 320 | WARN_ON(object_size < args->usersize || |
| 321 | object_size - args->usersize < args->useroffset)) |
| 322 | args->usersize = args->useroffset = 0; |
| 323 | |
| 324 | if (!args->usersize) |
| 325 | s = __kmem_cache_alias(name, object_size, args->align, flags, |
| 326 | args->ctor); |
| 327 | if (s) |
| 328 | goto out_unlock; |
| 329 | |
| 330 | cache_name = kstrdup_const(name, GFP_KERNEL); |
| 331 | if (!cache_name) { |
| 332 | err = -ENOMEM; |
| 333 | goto out_unlock; |
| 334 | } |
| 335 | |
| 336 | args->align = calculate_alignment(flags, args->align, object_size); |
| 337 | s = create_cache(cache_name, object_size, args, flags); |
| 338 | if (IS_ERR(s)) { |
| 339 | err = PTR_ERR(s); |
| 340 | kfree_const(cache_name); |
| 341 | } |
| 342 | |
| 343 | out_unlock: |
| 344 | mutex_unlock(&slab_mutex); |
| 345 | |
| 346 | if (err) { |
| 347 | if (flags & SLAB_PANIC) |
| 348 | panic("%s: Failed to create slab '%s'. Error %d\n", |
| 349 | __func__, name, err); |
| 350 | else { |
| 351 | pr_warn("%s(%s) failed with error %d\n", |
| 352 | __func__, name, err); |
| 353 | dump_stack(); |
| 354 | } |
| 355 | return NULL; |
| 356 | } |
| 357 | return s; |
| 358 | } |
| 359 | EXPORT_SYMBOL(__kmem_cache_create_args); |
| 360 | |
| 361 | static struct kmem_cache *kmem_buckets_cache __ro_after_init; |
| 362 | |
| 363 | /** |
| 364 | * kmem_buckets_create - Create a set of caches that handle dynamic sized |
| 365 | * allocations via kmem_buckets_alloc() |
| 366 | * @name: A prefix string which is used in /proc/slabinfo to identify this |
| 367 | * cache. The individual caches with have their sizes as the suffix. |
| 368 | * @flags: SLAB flags (see kmem_cache_create() for details). |
| 369 | * @useroffset: Starting offset within an allocation that may be copied |
| 370 | * to/from userspace. |
| 371 | * @usersize: How many bytes, starting at @useroffset, may be copied |
| 372 | * to/from userspace. |
| 373 | * @ctor: A constructor for the objects, run when new allocations are made. |
| 374 | * |
| 375 | * Cannot be called within an interrupt, but can be interrupted. |
| 376 | * |
| 377 | * Return: a pointer to the cache on success, NULL on failure. When |
| 378 | * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and |
| 379 | * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc(). |
| 380 | * (i.e. callers only need to check for NULL on failure.) |
| 381 | */ |
| 382 | kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, |
| 383 | unsigned int useroffset, |
| 384 | unsigned int usersize, |
| 385 | void (*ctor)(void *)) |
| 386 | { |
| 387 | unsigned long mask = 0; |
| 388 | unsigned int idx; |
| 389 | kmem_buckets *b; |
| 390 | |
| 391 | BUILD_BUG_ON(ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]) > BITS_PER_LONG); |
| 392 | |
| 393 | /* |
| 394 | * When the separate buckets API is not built in, just return |
| 395 | * a non-NULL value for the kmem_buckets pointer, which will be |
| 396 | * unused when performing allocations. |
| 397 | */ |
| 398 | if (!IS_ENABLED(CONFIG_SLAB_BUCKETS)) |
| 399 | return ZERO_SIZE_PTR; |
| 400 | |
| 401 | if (WARN_ON(!kmem_buckets_cache)) |
| 402 | return NULL; |
| 403 | |
| 404 | b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO); |
| 405 | if (WARN_ON(!b)) |
| 406 | return NULL; |
| 407 | |
| 408 | flags |= SLAB_NO_MERGE; |
| 409 | |
| 410 | for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) { |
| 411 | char *short_size, *cache_name; |
| 412 | unsigned int cache_useroffset, cache_usersize; |
| 413 | unsigned int size, aligned_idx; |
| 414 | |
| 415 | if (!kmalloc_caches[KMALLOC_NORMAL][idx]) |
| 416 | continue; |
| 417 | |
| 418 | size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size; |
| 419 | if (!size) |
| 420 | continue; |
| 421 | |
| 422 | short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-'); |
| 423 | if (WARN_ON(!short_size)) |
| 424 | goto fail; |
| 425 | |
| 426 | if (useroffset >= size) { |
| 427 | cache_useroffset = 0; |
| 428 | cache_usersize = 0; |
| 429 | } else { |
| 430 | cache_useroffset = useroffset; |
| 431 | cache_usersize = min(size - cache_useroffset, usersize); |
| 432 | } |
| 433 | |
| 434 | aligned_idx = __kmalloc_index(size, false); |
| 435 | if (!(*b)[aligned_idx]) { |
| 436 | cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1); |
| 437 | if (WARN_ON(!cache_name)) |
| 438 | goto fail; |
| 439 | (*b)[aligned_idx] = kmem_cache_create_usercopy(cache_name, size, |
| 440 | 0, flags, cache_useroffset, |
| 441 | cache_usersize, ctor); |
| 442 | kfree(cache_name); |
| 443 | if (WARN_ON(!(*b)[aligned_idx])) |
| 444 | goto fail; |
| 445 | set_bit(aligned_idx, &mask); |
| 446 | } |
| 447 | if (idx != aligned_idx) |
| 448 | (*b)[idx] = (*b)[aligned_idx]; |
| 449 | } |
| 450 | |
| 451 | return b; |
| 452 | |
| 453 | fail: |
| 454 | for_each_set_bit(idx, &mask, ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL])) |
| 455 | kmem_cache_destroy((*b)[idx]); |
| 456 | kmem_cache_free(kmem_buckets_cache, b); |
| 457 | |
| 458 | return NULL; |
| 459 | } |
| 460 | EXPORT_SYMBOL(kmem_buckets_create); |
| 461 | |
| 462 | /* |
| 463 | * For a given kmem_cache, kmem_cache_destroy() should only be called |
| 464 | * once or there will be a use-after-free problem. The actual deletion |
| 465 | * and release of the kobject does not need slab_mutex or cpu_hotplug_lock |
| 466 | * protection. So they are now done without holding those locks. |
| 467 | */ |
| 468 | static void kmem_cache_release(struct kmem_cache *s) |
| 469 | { |
| 470 | kfence_shutdown_cache(s); |
| 471 | if (__is_defined(SLAB_SUPPORTS_SYSFS) && slab_state >= FULL) |
| 472 | sysfs_slab_release(s); |
| 473 | else |
| 474 | slab_kmem_cache_release(s); |
| 475 | } |
| 476 | |
| 477 | void slab_kmem_cache_release(struct kmem_cache *s) |
| 478 | { |
| 479 | __kmem_cache_release(s); |
| 480 | kfree_const(s->name); |
| 481 | kmem_cache_free(kmem_cache, s); |
| 482 | } |
| 483 | |
| 484 | void kmem_cache_destroy(struct kmem_cache *s) |
| 485 | { |
| 486 | int err; |
| 487 | |
| 488 | if (unlikely(!s) || !kasan_check_byte(s)) |
| 489 | return; |
| 490 | |
| 491 | /* in-flight kfree_rcu()'s may include objects from our cache */ |
| 492 | kvfree_rcu_barrier(); |
| 493 | |
| 494 | if (IS_ENABLED(CONFIG_SLUB_RCU_DEBUG) && |
| 495 | (s->flags & SLAB_TYPESAFE_BY_RCU)) { |
| 496 | /* |
| 497 | * Under CONFIG_SLUB_RCU_DEBUG, when objects in a |
| 498 | * SLAB_TYPESAFE_BY_RCU slab are freed, SLUB will internally |
| 499 | * defer their freeing with call_rcu(). |
| 500 | * Wait for such call_rcu() invocations here before actually |
| 501 | * destroying the cache. |
| 502 | * |
| 503 | * It doesn't matter that we haven't looked at the slab refcount |
| 504 | * yet - slabs with SLAB_TYPESAFE_BY_RCU can't be merged, so |
| 505 | * the refcount should be 1 here. |
| 506 | */ |
| 507 | rcu_barrier(); |
| 508 | } |
| 509 | |
| 510 | cpus_read_lock(); |
| 511 | mutex_lock(&slab_mutex); |
| 512 | |
| 513 | s->refcount--; |
| 514 | if (s->refcount) { |
| 515 | mutex_unlock(&slab_mutex); |
| 516 | cpus_read_unlock(); |
| 517 | return; |
| 518 | } |
| 519 | |
| 520 | /* free asan quarantined objects */ |
| 521 | kasan_cache_shutdown(s); |
| 522 | |
| 523 | err = __kmem_cache_shutdown(s); |
| 524 | if (!slab_in_kunit_test()) |
| 525 | WARN(err, "%s %s: Slab cache still has objects when called from %pS", |
| 526 | __func__, s->name, (void *)_RET_IP_); |
| 527 | |
| 528 | list_del(&s->list); |
| 529 | |
| 530 | mutex_unlock(&slab_mutex); |
| 531 | cpus_read_unlock(); |
| 532 | |
| 533 | if (slab_state >= FULL) |
| 534 | sysfs_slab_unlink(s); |
| 535 | debugfs_slab_release(s); |
| 536 | |
| 537 | if (err) |
| 538 | return; |
| 539 | |
| 540 | if (s->flags & SLAB_TYPESAFE_BY_RCU) |
| 541 | rcu_barrier(); |
| 542 | |
| 543 | kmem_cache_release(s); |
| 544 | } |
| 545 | EXPORT_SYMBOL(kmem_cache_destroy); |
| 546 | |
| 547 | /** |
| 548 | * kmem_cache_shrink - Shrink a cache. |
| 549 | * @cachep: The cache to shrink. |
| 550 | * |
| 551 | * Releases as many slabs as possible for a cache. |
| 552 | * To help debugging, a zero exit status indicates all slabs were released. |
| 553 | * |
| 554 | * Return: %0 if all slabs were released, non-zero otherwise |
| 555 | */ |
| 556 | int kmem_cache_shrink(struct kmem_cache *cachep) |
| 557 | { |
| 558 | kasan_cache_shrink(cachep); |
| 559 | |
| 560 | return __kmem_cache_shrink(cachep); |
| 561 | } |
| 562 | EXPORT_SYMBOL(kmem_cache_shrink); |
| 563 | |
| 564 | bool slab_is_available(void) |
| 565 | { |
| 566 | return slab_state >= UP; |
| 567 | } |
| 568 | |
| 569 | #ifdef CONFIG_PRINTK |
| 570 | static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
| 571 | { |
| 572 | if (__kfence_obj_info(kpp, object, slab)) |
| 573 | return; |
| 574 | __kmem_obj_info(kpp, object, slab); |
| 575 | } |
| 576 | |
| 577 | /** |
| 578 | * kmem_dump_obj - Print available slab provenance information |
| 579 | * @object: slab object for which to find provenance information. |
| 580 | * |
| 581 | * This function uses pr_cont(), so that the caller is expected to have |
| 582 | * printed out whatever preamble is appropriate. The provenance information |
| 583 | * depends on the type of object and on how much debugging is enabled. |
| 584 | * For a slab-cache object, the fact that it is a slab object is printed, |
| 585 | * and, if available, the slab name, return address, and stack trace from |
| 586 | * the allocation and last free path of that object. |
| 587 | * |
| 588 | * Return: %true if the pointer is to a not-yet-freed object from |
| 589 | * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer |
| 590 | * is to an already-freed object, and %false otherwise. |
| 591 | */ |
| 592 | bool kmem_dump_obj(void *object) |
| 593 | { |
| 594 | char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; |
| 595 | int i; |
| 596 | struct slab *slab; |
| 597 | unsigned long ptroffset; |
| 598 | struct kmem_obj_info kp = { }; |
| 599 | |
| 600 | /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ |
| 601 | if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) |
| 602 | return false; |
| 603 | slab = virt_to_slab(object); |
| 604 | if (!slab) |
| 605 | return false; |
| 606 | |
| 607 | kmem_obj_info(&kp, object, slab); |
| 608 | if (kp.kp_slab_cache) |
| 609 | pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); |
| 610 | else |
| 611 | pr_cont(" slab%s", cp); |
| 612 | if (is_kfence_address(object)) |
| 613 | pr_cont(" (kfence)"); |
| 614 | if (kp.kp_objp) |
| 615 | pr_cont(" start %px", kp.kp_objp); |
| 616 | if (kp.kp_data_offset) |
| 617 | pr_cont(" data offset %lu", kp.kp_data_offset); |
| 618 | if (kp.kp_objp) { |
| 619 | ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; |
| 620 | pr_cont(" pointer offset %lu", ptroffset); |
| 621 | } |
| 622 | if (kp.kp_slab_cache && kp.kp_slab_cache->object_size) |
| 623 | pr_cont(" size %u", kp.kp_slab_cache->object_size); |
| 624 | if (kp.kp_ret) |
| 625 | pr_cont(" allocated at %pS\n", kp.kp_ret); |
| 626 | else |
| 627 | pr_cont("\n"); |
| 628 | for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { |
| 629 | if (!kp.kp_stack[i]) |
| 630 | break; |
| 631 | pr_info(" %pS\n", kp.kp_stack[i]); |
| 632 | } |
| 633 | |
| 634 | if (kp.kp_free_stack[0]) |
| 635 | pr_cont(" Free path:\n"); |
| 636 | |
| 637 | for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { |
| 638 | if (!kp.kp_free_stack[i]) |
| 639 | break; |
| 640 | pr_info(" %pS\n", kp.kp_free_stack[i]); |
| 641 | } |
| 642 | |
| 643 | return true; |
| 644 | } |
| 645 | EXPORT_SYMBOL_GPL(kmem_dump_obj); |
| 646 | #endif |
| 647 | |
| 648 | /* Create a cache during boot when no slab services are available yet */ |
| 649 | void __init create_boot_cache(struct kmem_cache *s, const char *name, |
| 650 | unsigned int size, slab_flags_t flags, |
| 651 | unsigned int useroffset, unsigned int usersize) |
| 652 | { |
| 653 | int err; |
| 654 | unsigned int align = ARCH_KMALLOC_MINALIGN; |
| 655 | struct kmem_cache_args kmem_args = {}; |
| 656 | |
| 657 | /* |
| 658 | * kmalloc caches guarantee alignment of at least the largest |
| 659 | * power-of-two divisor of the size. For power-of-two sizes, |
| 660 | * it is the size itself. |
| 661 | */ |
| 662 | if (flags & SLAB_KMALLOC) |
| 663 | align = max(align, 1U << (ffs(size) - 1)); |
| 664 | kmem_args.align = calculate_alignment(flags, align, size); |
| 665 | |
| 666 | #ifdef CONFIG_HARDENED_USERCOPY |
| 667 | kmem_args.useroffset = useroffset; |
| 668 | kmem_args.usersize = usersize; |
| 669 | #endif |
| 670 | |
| 671 | err = do_kmem_cache_create(s, name, size, &kmem_args, flags); |
| 672 | |
| 673 | if (err) |
| 674 | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
| 675 | name, size, err); |
| 676 | |
| 677 | s->refcount = -1; /* Exempt from merging for now */ |
| 678 | } |
| 679 | |
| 680 | static struct kmem_cache *__init create_kmalloc_cache(const char *name, |
| 681 | unsigned int size, |
| 682 | slab_flags_t flags) |
| 683 | { |
| 684 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
| 685 | |
| 686 | if (!s) |
| 687 | panic("Out of memory when creating slab %s\n", name); |
| 688 | |
| 689 | create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size); |
| 690 | list_add(&s->list, &slab_caches); |
| 691 | s->refcount = 1; |
| 692 | return s; |
| 693 | } |
| 694 | |
| 695 | kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init = |
| 696 | { /* initialization for https://llvm.org/pr42570 */ }; |
| 697 | EXPORT_SYMBOL(kmalloc_caches); |
| 698 | |
| 699 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| 700 | unsigned long random_kmalloc_seed __ro_after_init; |
| 701 | EXPORT_SYMBOL(random_kmalloc_seed); |
| 702 | #endif |
| 703 | |
| 704 | /* |
| 705 | * Conversion table for small slabs sizes / 8 to the index in the |
| 706 | * kmalloc array. This is necessary for slabs < 192 since we have non power |
| 707 | * of two cache sizes there. The size of larger slabs can be determined using |
| 708 | * fls. |
| 709 | */ |
| 710 | u8 kmalloc_size_index[24] __ro_after_init = { |
| 711 | 3, /* 8 */ |
| 712 | 4, /* 16 */ |
| 713 | 5, /* 24 */ |
| 714 | 5, /* 32 */ |
| 715 | 6, /* 40 */ |
| 716 | 6, /* 48 */ |
| 717 | 6, /* 56 */ |
| 718 | 6, /* 64 */ |
| 719 | 1, /* 72 */ |
| 720 | 1, /* 80 */ |
| 721 | 1, /* 88 */ |
| 722 | 1, /* 96 */ |
| 723 | 7, /* 104 */ |
| 724 | 7, /* 112 */ |
| 725 | 7, /* 120 */ |
| 726 | 7, /* 128 */ |
| 727 | 2, /* 136 */ |
| 728 | 2, /* 144 */ |
| 729 | 2, /* 152 */ |
| 730 | 2, /* 160 */ |
| 731 | 2, /* 168 */ |
| 732 | 2, /* 176 */ |
| 733 | 2, /* 184 */ |
| 734 | 2 /* 192 */ |
| 735 | }; |
| 736 | |
| 737 | size_t kmalloc_size_roundup(size_t size) |
| 738 | { |
| 739 | if (size && size <= KMALLOC_MAX_CACHE_SIZE) { |
| 740 | /* |
| 741 | * The flags don't matter since size_index is common to all. |
| 742 | * Neither does the caller for just getting ->object_size. |
| 743 | */ |
| 744 | return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size; |
| 745 | } |
| 746 | |
| 747 | /* Above the smaller buckets, size is a multiple of page size. */ |
| 748 | if (size && size <= KMALLOC_MAX_SIZE) |
| 749 | return PAGE_SIZE << get_order(size); |
| 750 | |
| 751 | /* |
| 752 | * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR |
| 753 | * and very large size - kmalloc() may fail. |
| 754 | */ |
| 755 | return size; |
| 756 | |
| 757 | } |
| 758 | EXPORT_SYMBOL(kmalloc_size_roundup); |
| 759 | |
| 760 | #ifdef CONFIG_ZONE_DMA |
| 761 | #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, |
| 762 | #else |
| 763 | #define KMALLOC_DMA_NAME(sz) |
| 764 | #endif |
| 765 | |
| 766 | #ifdef CONFIG_MEMCG |
| 767 | #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, |
| 768 | #else |
| 769 | #define KMALLOC_CGROUP_NAME(sz) |
| 770 | #endif |
| 771 | |
| 772 | #ifndef CONFIG_SLUB_TINY |
| 773 | #define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz, |
| 774 | #else |
| 775 | #define KMALLOC_RCL_NAME(sz) |
| 776 | #endif |
| 777 | |
| 778 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| 779 | #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b |
| 780 | #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz) |
| 781 | #define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz, |
| 782 | #define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz, |
| 783 | #define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz, |
| 784 | #define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz, |
| 785 | #define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz, |
| 786 | #define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz, |
| 787 | #define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz, |
| 788 | #define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz, |
| 789 | #define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz, |
| 790 | #define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz, |
| 791 | #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz, |
| 792 | #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz, |
| 793 | #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz, |
| 794 | #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz, |
| 795 | #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz, |
| 796 | #else // CONFIG_RANDOM_KMALLOC_CACHES |
| 797 | #define KMALLOC_RANDOM_NAME(N, sz) |
| 798 | #endif |
| 799 | |
| 800 | #define INIT_KMALLOC_INFO(__size, __short_size) \ |
| 801 | { \ |
| 802 | .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ |
| 803 | KMALLOC_RCL_NAME(__short_size) \ |
| 804 | KMALLOC_CGROUP_NAME(__short_size) \ |
| 805 | KMALLOC_DMA_NAME(__short_size) \ |
| 806 | KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \ |
| 807 | .size = __size, \ |
| 808 | } |
| 809 | |
| 810 | /* |
| 811 | * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time. |
| 812 | * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is |
| 813 | * kmalloc-2M. |
| 814 | */ |
| 815 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
| 816 | INIT_KMALLOC_INFO(0, 0), |
| 817 | INIT_KMALLOC_INFO(96, 96), |
| 818 | INIT_KMALLOC_INFO(192, 192), |
| 819 | INIT_KMALLOC_INFO(8, 8), |
| 820 | INIT_KMALLOC_INFO(16, 16), |
| 821 | INIT_KMALLOC_INFO(32, 32), |
| 822 | INIT_KMALLOC_INFO(64, 64), |
| 823 | INIT_KMALLOC_INFO(128, 128), |
| 824 | INIT_KMALLOC_INFO(256, 256), |
| 825 | INIT_KMALLOC_INFO(512, 512), |
| 826 | INIT_KMALLOC_INFO(1024, 1k), |
| 827 | INIT_KMALLOC_INFO(2048, 2k), |
| 828 | INIT_KMALLOC_INFO(4096, 4k), |
| 829 | INIT_KMALLOC_INFO(8192, 8k), |
| 830 | INIT_KMALLOC_INFO(16384, 16k), |
| 831 | INIT_KMALLOC_INFO(32768, 32k), |
| 832 | INIT_KMALLOC_INFO(65536, 64k), |
| 833 | INIT_KMALLOC_INFO(131072, 128k), |
| 834 | INIT_KMALLOC_INFO(262144, 256k), |
| 835 | INIT_KMALLOC_INFO(524288, 512k), |
| 836 | INIT_KMALLOC_INFO(1048576, 1M), |
| 837 | INIT_KMALLOC_INFO(2097152, 2M) |
| 838 | }; |
| 839 | |
| 840 | /* |
| 841 | * Patch up the size_index table if we have strange large alignment |
| 842 | * requirements for the kmalloc array. This is only the case for |
| 843 | * MIPS it seems. The standard arches will not generate any code here. |
| 844 | * |
| 845 | * Largest permitted alignment is 256 bytes due to the way we |
| 846 | * handle the index determination for the smaller caches. |
| 847 | * |
| 848 | * Make sure that nothing crazy happens if someone starts tinkering |
| 849 | * around with ARCH_KMALLOC_MINALIGN |
| 850 | */ |
| 851 | void __init setup_kmalloc_cache_index_table(void) |
| 852 | { |
| 853 | unsigned int i; |
| 854 | |
| 855 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
| 856 | !is_power_of_2(KMALLOC_MIN_SIZE)); |
| 857 | |
| 858 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { |
| 859 | unsigned int elem = size_index_elem(i); |
| 860 | |
| 861 | if (elem >= ARRAY_SIZE(kmalloc_size_index)) |
| 862 | break; |
| 863 | kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW; |
| 864 | } |
| 865 | |
| 866 | if (KMALLOC_MIN_SIZE >= 64) { |
| 867 | /* |
| 868 | * The 96 byte sized cache is not used if the alignment |
| 869 | * is 64 byte. |
| 870 | */ |
| 871 | for (i = 64 + 8; i <= 96; i += 8) |
| 872 | kmalloc_size_index[size_index_elem(i)] = 7; |
| 873 | |
| 874 | } |
| 875 | |
| 876 | if (KMALLOC_MIN_SIZE >= 128) { |
| 877 | /* |
| 878 | * The 192 byte sized cache is not used if the alignment |
| 879 | * is 128 byte. Redirect kmalloc to use the 256 byte cache |
| 880 | * instead. |
| 881 | */ |
| 882 | for (i = 128 + 8; i <= 192; i += 8) |
| 883 | kmalloc_size_index[size_index_elem(i)] = 8; |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | static unsigned int __kmalloc_minalign(void) |
| 888 | { |
| 889 | unsigned int minalign = dma_get_cache_alignment(); |
| 890 | |
| 891 | if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && |
| 892 | is_swiotlb_allocated()) |
| 893 | minalign = ARCH_KMALLOC_MINALIGN; |
| 894 | |
| 895 | return max(minalign, arch_slab_minalign()); |
| 896 | } |
| 897 | |
| 898 | static void __init |
| 899 | new_kmalloc_cache(int idx, enum kmalloc_cache_type type) |
| 900 | { |
| 901 | slab_flags_t flags = 0; |
| 902 | unsigned int minalign = __kmalloc_minalign(); |
| 903 | unsigned int aligned_size = kmalloc_info[idx].size; |
| 904 | int aligned_idx = idx; |
| 905 | |
| 906 | if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) { |
| 907 | flags |= SLAB_RECLAIM_ACCOUNT; |
| 908 | } else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) { |
| 909 | if (mem_cgroup_kmem_disabled()) { |
| 910 | kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; |
| 911 | return; |
| 912 | } |
| 913 | flags |= SLAB_ACCOUNT; |
| 914 | } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { |
| 915 | flags |= SLAB_CACHE_DMA; |
| 916 | } |
| 917 | |
| 918 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| 919 | if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END) |
| 920 | flags |= SLAB_NO_MERGE; |
| 921 | #endif |
| 922 | |
| 923 | /* |
| 924 | * If CONFIG_MEMCG is enabled, disable cache merging for |
| 925 | * KMALLOC_NORMAL caches. |
| 926 | */ |
| 927 | if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL)) |
| 928 | flags |= SLAB_NO_MERGE; |
| 929 | |
| 930 | if (minalign > ARCH_KMALLOC_MINALIGN) { |
| 931 | aligned_size = ALIGN(aligned_size, minalign); |
| 932 | aligned_idx = __kmalloc_index(aligned_size, false); |
| 933 | } |
| 934 | |
| 935 | if (!kmalloc_caches[type][aligned_idx]) |
| 936 | kmalloc_caches[type][aligned_idx] = create_kmalloc_cache( |
| 937 | kmalloc_info[aligned_idx].name[type], |
| 938 | aligned_size, flags); |
| 939 | if (idx != aligned_idx) |
| 940 | kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx]; |
| 941 | } |
| 942 | |
| 943 | /* |
| 944 | * Create the kmalloc array. Some of the regular kmalloc arrays |
| 945 | * may already have been created because they were needed to |
| 946 | * enable allocations for slab creation. |
| 947 | */ |
| 948 | void __init create_kmalloc_caches(void) |
| 949 | { |
| 950 | int i; |
| 951 | enum kmalloc_cache_type type; |
| 952 | |
| 953 | /* |
| 954 | * Including KMALLOC_CGROUP if CONFIG_MEMCG defined |
| 955 | */ |
| 956 | for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { |
| 957 | /* Caches that are NOT of the two-to-the-power-of size. */ |
| 958 | if (KMALLOC_MIN_SIZE <= 32) |
| 959 | new_kmalloc_cache(1, type); |
| 960 | if (KMALLOC_MIN_SIZE <= 64) |
| 961 | new_kmalloc_cache(2, type); |
| 962 | |
| 963 | /* Caches that are of the two-to-the-power-of size. */ |
| 964 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) |
| 965 | new_kmalloc_cache(i, type); |
| 966 | } |
| 967 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| 968 | random_kmalloc_seed = get_random_u64(); |
| 969 | #endif |
| 970 | |
| 971 | /* Kmalloc array is now usable */ |
| 972 | slab_state = UP; |
| 973 | |
| 974 | if (IS_ENABLED(CONFIG_SLAB_BUCKETS)) |
| 975 | kmem_buckets_cache = kmem_cache_create("kmalloc_buckets", |
| 976 | sizeof(kmem_buckets), |
| 977 | 0, SLAB_NO_MERGE, NULL); |
| 978 | } |
| 979 | |
| 980 | /** |
| 981 | * __ksize -- Report full size of underlying allocation |
| 982 | * @object: pointer to the object |
| 983 | * |
| 984 | * This should only be used internally to query the true size of allocations. |
| 985 | * It is not meant to be a way to discover the usable size of an allocation |
| 986 | * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond |
| 987 | * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, |
| 988 | * and/or FORTIFY_SOURCE. |
| 989 | * |
| 990 | * Return: size of the actual memory used by @object in bytes |
| 991 | */ |
| 992 | size_t __ksize(const void *object) |
| 993 | { |
| 994 | struct folio *folio; |
| 995 | |
| 996 | if (unlikely(object == ZERO_SIZE_PTR)) |
| 997 | return 0; |
| 998 | |
| 999 | folio = virt_to_folio(object); |
| 1000 | |
| 1001 | if (unlikely(!folio_test_slab(folio))) { |
| 1002 | if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE)) |
| 1003 | return 0; |
| 1004 | if (WARN_ON(object != folio_address(folio))) |
| 1005 | return 0; |
| 1006 | return folio_size(folio); |
| 1007 | } |
| 1008 | |
| 1009 | #ifdef CONFIG_SLUB_DEBUG |
| 1010 | skip_orig_size_check(folio_slab(folio)->slab_cache, object); |
| 1011 | #endif |
| 1012 | |
| 1013 | return slab_ksize(folio_slab(folio)->slab_cache); |
| 1014 | } |
| 1015 | |
| 1016 | gfp_t kmalloc_fix_flags(gfp_t flags) |
| 1017 | { |
| 1018 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
| 1019 | |
| 1020 | flags &= ~GFP_SLAB_BUG_MASK; |
| 1021 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", |
| 1022 | invalid_mask, &invalid_mask, flags, &flags); |
| 1023 | dump_stack(); |
| 1024 | |
| 1025 | return flags; |
| 1026 | } |
| 1027 | |
| 1028 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| 1029 | /* Randomize a generic freelist */ |
| 1030 | static void freelist_randomize(unsigned int *list, |
| 1031 | unsigned int count) |
| 1032 | { |
| 1033 | unsigned int rand; |
| 1034 | unsigned int i; |
| 1035 | |
| 1036 | for (i = 0; i < count; i++) |
| 1037 | list[i] = i; |
| 1038 | |
| 1039 | /* Fisher-Yates shuffle */ |
| 1040 | for (i = count - 1; i > 0; i--) { |
| 1041 | rand = get_random_u32_below(i + 1); |
| 1042 | swap(list[i], list[rand]); |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | /* Create a random sequence per cache */ |
| 1047 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, |
| 1048 | gfp_t gfp) |
| 1049 | { |
| 1050 | |
| 1051 | if (count < 2 || cachep->random_seq) |
| 1052 | return 0; |
| 1053 | |
| 1054 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); |
| 1055 | if (!cachep->random_seq) |
| 1056 | return -ENOMEM; |
| 1057 | |
| 1058 | freelist_randomize(cachep->random_seq, count); |
| 1059 | return 0; |
| 1060 | } |
| 1061 | |
| 1062 | /* Destroy the per-cache random freelist sequence */ |
| 1063 | void cache_random_seq_destroy(struct kmem_cache *cachep) |
| 1064 | { |
| 1065 | kfree(cachep->random_seq); |
| 1066 | cachep->random_seq = NULL; |
| 1067 | } |
| 1068 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| 1069 | |
| 1070 | #ifdef CONFIG_SLUB_DEBUG |
| 1071 | #define SLABINFO_RIGHTS (0400) |
| 1072 | |
| 1073 | static void print_slabinfo_header(struct seq_file *m) |
| 1074 | { |
| 1075 | /* |
| 1076 | * Output format version, so at least we can change it |
| 1077 | * without _too_ many complaints. |
| 1078 | */ |
| 1079 | seq_puts(m, "slabinfo - version: 2.1\n"); |
| 1080 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
| 1081 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
| 1082 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); |
| 1083 | seq_putc(m, '\n'); |
| 1084 | } |
| 1085 | |
| 1086 | static void *slab_start(struct seq_file *m, loff_t *pos) |
| 1087 | { |
| 1088 | mutex_lock(&slab_mutex); |
| 1089 | return seq_list_start(&slab_caches, *pos); |
| 1090 | } |
| 1091 | |
| 1092 | static void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
| 1093 | { |
| 1094 | return seq_list_next(p, &slab_caches, pos); |
| 1095 | } |
| 1096 | |
| 1097 | static void slab_stop(struct seq_file *m, void *p) |
| 1098 | { |
| 1099 | mutex_unlock(&slab_mutex); |
| 1100 | } |
| 1101 | |
| 1102 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
| 1103 | { |
| 1104 | struct slabinfo sinfo; |
| 1105 | |
| 1106 | memset(&sinfo, 0, sizeof(sinfo)); |
| 1107 | get_slabinfo(s, &sinfo); |
| 1108 | |
| 1109 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
| 1110 | s->name, sinfo.active_objs, sinfo.num_objs, s->size, |
| 1111 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
| 1112 | |
| 1113 | seq_printf(m, " : tunables %4u %4u %4u", |
| 1114 | sinfo.limit, sinfo.batchcount, sinfo.shared); |
| 1115 | seq_printf(m, " : slabdata %6lu %6lu %6lu", |
| 1116 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); |
| 1117 | seq_putc(m, '\n'); |
| 1118 | } |
| 1119 | |
| 1120 | static int slab_show(struct seq_file *m, void *p) |
| 1121 | { |
| 1122 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); |
| 1123 | |
| 1124 | if (p == slab_caches.next) |
| 1125 | print_slabinfo_header(m); |
| 1126 | cache_show(s, m); |
| 1127 | return 0; |
| 1128 | } |
| 1129 | |
| 1130 | void dump_unreclaimable_slab(void) |
| 1131 | { |
| 1132 | struct kmem_cache *s; |
| 1133 | struct slabinfo sinfo; |
| 1134 | |
| 1135 | /* |
| 1136 | * Here acquiring slab_mutex is risky since we don't prefer to get |
| 1137 | * sleep in oom path. But, without mutex hold, it may introduce a |
| 1138 | * risk of crash. |
| 1139 | * Use mutex_trylock to protect the list traverse, dump nothing |
| 1140 | * without acquiring the mutex. |
| 1141 | */ |
| 1142 | if (!mutex_trylock(&slab_mutex)) { |
| 1143 | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); |
| 1144 | return; |
| 1145 | } |
| 1146 | |
| 1147 | pr_info("Unreclaimable slab info:\n"); |
| 1148 | pr_info("Name Used Total\n"); |
| 1149 | |
| 1150 | list_for_each_entry(s, &slab_caches, list) { |
| 1151 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
| 1152 | continue; |
| 1153 | |
| 1154 | get_slabinfo(s, &sinfo); |
| 1155 | |
| 1156 | if (sinfo.num_objs > 0) |
| 1157 | pr_info("%-17s %10luKB %10luKB\n", s->name, |
| 1158 | (sinfo.active_objs * s->size) / 1024, |
| 1159 | (sinfo.num_objs * s->size) / 1024); |
| 1160 | } |
| 1161 | mutex_unlock(&slab_mutex); |
| 1162 | } |
| 1163 | |
| 1164 | /* |
| 1165 | * slabinfo_op - iterator that generates /proc/slabinfo |
| 1166 | * |
| 1167 | * Output layout: |
| 1168 | * cache-name |
| 1169 | * num-active-objs |
| 1170 | * total-objs |
| 1171 | * object size |
| 1172 | * num-active-slabs |
| 1173 | * total-slabs |
| 1174 | * num-pages-per-slab |
| 1175 | * + further values on SMP and with statistics enabled |
| 1176 | */ |
| 1177 | static const struct seq_operations slabinfo_op = { |
| 1178 | .start = slab_start, |
| 1179 | .next = slab_next, |
| 1180 | .stop = slab_stop, |
| 1181 | .show = slab_show, |
| 1182 | }; |
| 1183 | |
| 1184 | static int slabinfo_open(struct inode *inode, struct file *file) |
| 1185 | { |
| 1186 | return seq_open(file, &slabinfo_op); |
| 1187 | } |
| 1188 | |
| 1189 | static const struct proc_ops slabinfo_proc_ops = { |
| 1190 | .proc_flags = PROC_ENTRY_PERMANENT, |
| 1191 | .proc_open = slabinfo_open, |
| 1192 | .proc_read = seq_read, |
| 1193 | .proc_lseek = seq_lseek, |
| 1194 | .proc_release = seq_release, |
| 1195 | }; |
| 1196 | |
| 1197 | static int __init slab_proc_init(void) |
| 1198 | { |
| 1199 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); |
| 1200 | return 0; |
| 1201 | } |
| 1202 | module_init(slab_proc_init); |
| 1203 | |
| 1204 | #endif /* CONFIG_SLUB_DEBUG */ |
| 1205 | |
| 1206 | /** |
| 1207 | * kfree_sensitive - Clear sensitive information in memory before freeing |
| 1208 | * @p: object to free memory of |
| 1209 | * |
| 1210 | * The memory of the object @p points to is zeroed before freed. |
| 1211 | * If @p is %NULL, kfree_sensitive() does nothing. |
| 1212 | * |
| 1213 | * Note: this function zeroes the whole allocated buffer which can be a good |
| 1214 | * deal bigger than the requested buffer size passed to kmalloc(). So be |
| 1215 | * careful when using this function in performance sensitive code. |
| 1216 | */ |
| 1217 | void kfree_sensitive(const void *p) |
| 1218 | { |
| 1219 | size_t ks; |
| 1220 | void *mem = (void *)p; |
| 1221 | |
| 1222 | ks = ksize(mem); |
| 1223 | if (ks) { |
| 1224 | kasan_unpoison_range(mem, ks); |
| 1225 | memzero_explicit(mem, ks); |
| 1226 | } |
| 1227 | kfree(mem); |
| 1228 | } |
| 1229 | EXPORT_SYMBOL(kfree_sensitive); |
| 1230 | |
| 1231 | size_t ksize(const void *objp) |
| 1232 | { |
| 1233 | /* |
| 1234 | * We need to first check that the pointer to the object is valid. |
| 1235 | * The KASAN report printed from ksize() is more useful, then when |
| 1236 | * it's printed later when the behaviour could be undefined due to |
| 1237 | * a potential use-after-free or double-free. |
| 1238 | * |
| 1239 | * We use kasan_check_byte(), which is supported for the hardware |
| 1240 | * tag-based KASAN mode, unlike kasan_check_read/write(). |
| 1241 | * |
| 1242 | * If the pointed to memory is invalid, we return 0 to avoid users of |
| 1243 | * ksize() writing to and potentially corrupting the memory region. |
| 1244 | * |
| 1245 | * We want to perform the check before __ksize(), to avoid potentially |
| 1246 | * crashing in __ksize() due to accessing invalid metadata. |
| 1247 | */ |
| 1248 | if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) |
| 1249 | return 0; |
| 1250 | |
| 1251 | return kfence_ksize(objp) ?: __ksize(objp); |
| 1252 | } |
| 1253 | EXPORT_SYMBOL(ksize); |
| 1254 | |
| 1255 | #ifdef CONFIG_BPF_SYSCALL |
| 1256 | #include <linux/btf.h> |
| 1257 | |
| 1258 | __bpf_kfunc_start_defs(); |
| 1259 | |
| 1260 | __bpf_kfunc struct kmem_cache *bpf_get_kmem_cache(u64 addr) |
| 1261 | { |
| 1262 | struct slab *slab; |
| 1263 | |
| 1264 | if (!virt_addr_valid((void *)(long)addr)) |
| 1265 | return NULL; |
| 1266 | |
| 1267 | slab = virt_to_slab((void *)(long)addr); |
| 1268 | return slab ? slab->slab_cache : NULL; |
| 1269 | } |
| 1270 | |
| 1271 | __bpf_kfunc_end_defs(); |
| 1272 | #endif /* CONFIG_BPF_SYSCALL */ |
| 1273 | |
| 1274 | /* Tracepoints definitions. */ |
| 1275 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); |
| 1276 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); |
| 1277 | EXPORT_TRACEPOINT_SYMBOL(kfree); |
| 1278 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |
| 1279 | |
| 1280 | #ifndef CONFIG_KVFREE_RCU_BATCHED |
| 1281 | |
| 1282 | void kvfree_call_rcu(struct rcu_head *head, void *ptr) |
| 1283 | { |
| 1284 | if (head) { |
| 1285 | kasan_record_aux_stack(ptr); |
| 1286 | call_rcu(head, kvfree_rcu_cb); |
| 1287 | return; |
| 1288 | } |
| 1289 | |
| 1290 | // kvfree_rcu(one_arg) call. |
| 1291 | might_sleep(); |
| 1292 | synchronize_rcu(); |
| 1293 | kvfree(ptr); |
| 1294 | } |
| 1295 | EXPORT_SYMBOL_GPL(kvfree_call_rcu); |
| 1296 | |
| 1297 | void __init kvfree_rcu_init(void) |
| 1298 | { |
| 1299 | } |
| 1300 | |
| 1301 | #else /* CONFIG_KVFREE_RCU_BATCHED */ |
| 1302 | |
| 1303 | /* |
| 1304 | * This rcu parameter is runtime-read-only. It reflects |
| 1305 | * a minimum allowed number of objects which can be cached |
| 1306 | * per-CPU. Object size is equal to one page. This value |
| 1307 | * can be changed at boot time. |
| 1308 | */ |
| 1309 | static int rcu_min_cached_objs = 5; |
| 1310 | module_param(rcu_min_cached_objs, int, 0444); |
| 1311 | |
| 1312 | // A page shrinker can ask for pages to be freed to make them |
| 1313 | // available for other parts of the system. This usually happens |
| 1314 | // under low memory conditions, and in that case we should also |
| 1315 | // defer page-cache filling for a short time period. |
| 1316 | // |
| 1317 | // The default value is 5 seconds, which is long enough to reduce |
| 1318 | // interference with the shrinker while it asks other systems to |
| 1319 | // drain their caches. |
| 1320 | static int rcu_delay_page_cache_fill_msec = 5000; |
| 1321 | module_param(rcu_delay_page_cache_fill_msec, int, 0444); |
| 1322 | |
| 1323 | static struct workqueue_struct *rcu_reclaim_wq; |
| 1324 | |
| 1325 | /* Maximum number of jiffies to wait before draining a batch. */ |
| 1326 | #define KFREE_DRAIN_JIFFIES (5 * HZ) |
| 1327 | #define KFREE_N_BATCHES 2 |
| 1328 | #define FREE_N_CHANNELS 2 |
| 1329 | |
| 1330 | /** |
| 1331 | * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers |
| 1332 | * @list: List node. All blocks are linked between each other |
| 1333 | * @gp_snap: Snapshot of RCU state for objects placed to this bulk |
| 1334 | * @nr_records: Number of active pointers in the array |
| 1335 | * @records: Array of the kvfree_rcu() pointers |
| 1336 | */ |
| 1337 | struct kvfree_rcu_bulk_data { |
| 1338 | struct list_head list; |
| 1339 | struct rcu_gp_oldstate gp_snap; |
| 1340 | unsigned long nr_records; |
| 1341 | void *records[] __counted_by(nr_records); |
| 1342 | }; |
| 1343 | |
| 1344 | /* |
| 1345 | * This macro defines how many entries the "records" array |
| 1346 | * will contain. It is based on the fact that the size of |
| 1347 | * kvfree_rcu_bulk_data structure becomes exactly one page. |
| 1348 | */ |
| 1349 | #define KVFREE_BULK_MAX_ENTR \ |
| 1350 | ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) |
| 1351 | |
| 1352 | /** |
| 1353 | * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests |
| 1354 | * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period |
| 1355 | * @head_free: List of kfree_rcu() objects waiting for a grace period |
| 1356 | * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. |
| 1357 | * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period |
| 1358 | * @krcp: Pointer to @kfree_rcu_cpu structure |
| 1359 | */ |
| 1360 | |
| 1361 | struct kfree_rcu_cpu_work { |
| 1362 | struct rcu_work rcu_work; |
| 1363 | struct rcu_head *head_free; |
| 1364 | struct rcu_gp_oldstate head_free_gp_snap; |
| 1365 | struct list_head bulk_head_free[FREE_N_CHANNELS]; |
| 1366 | struct kfree_rcu_cpu *krcp; |
| 1367 | }; |
| 1368 | |
| 1369 | /** |
| 1370 | * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period |
| 1371 | * @head: List of kfree_rcu() objects not yet waiting for a grace period |
| 1372 | * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" |
| 1373 | * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period |
| 1374 | * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period |
| 1375 | * @lock: Synchronize access to this structure |
| 1376 | * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES |
| 1377 | * @initialized: The @rcu_work fields have been initialized |
| 1378 | * @head_count: Number of objects in rcu_head singular list |
| 1379 | * @bulk_count: Number of objects in bulk-list |
| 1380 | * @bkvcache: |
| 1381 | * A simple cache list that contains objects for reuse purpose. |
| 1382 | * In order to save some per-cpu space the list is singular. |
| 1383 | * Even though it is lockless an access has to be protected by the |
| 1384 | * per-cpu lock. |
| 1385 | * @page_cache_work: A work to refill the cache when it is empty |
| 1386 | * @backoff_page_cache_fill: Delay cache refills |
| 1387 | * @work_in_progress: Indicates that page_cache_work is running |
| 1388 | * @hrtimer: A hrtimer for scheduling a page_cache_work |
| 1389 | * @nr_bkv_objs: number of allocated objects at @bkvcache. |
| 1390 | * |
| 1391 | * This is a per-CPU structure. The reason that it is not included in |
| 1392 | * the rcu_data structure is to permit this code to be extracted from |
| 1393 | * the RCU files. Such extraction could allow further optimization of |
| 1394 | * the interactions with the slab allocators. |
| 1395 | */ |
| 1396 | struct kfree_rcu_cpu { |
| 1397 | // Objects queued on a linked list |
| 1398 | // through their rcu_head structures. |
| 1399 | struct rcu_head *head; |
| 1400 | unsigned long head_gp_snap; |
| 1401 | atomic_t head_count; |
| 1402 | |
| 1403 | // Objects queued on a bulk-list. |
| 1404 | struct list_head bulk_head[FREE_N_CHANNELS]; |
| 1405 | atomic_t bulk_count[FREE_N_CHANNELS]; |
| 1406 | |
| 1407 | struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; |
| 1408 | raw_spinlock_t lock; |
| 1409 | struct delayed_work monitor_work; |
| 1410 | bool initialized; |
| 1411 | |
| 1412 | struct delayed_work page_cache_work; |
| 1413 | atomic_t backoff_page_cache_fill; |
| 1414 | atomic_t work_in_progress; |
| 1415 | struct hrtimer hrtimer; |
| 1416 | |
| 1417 | struct llist_head bkvcache; |
| 1418 | int nr_bkv_objs; |
| 1419 | }; |
| 1420 | |
| 1421 | static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { |
| 1422 | .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), |
| 1423 | }; |
| 1424 | |
| 1425 | static __always_inline void |
| 1426 | debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) |
| 1427 | { |
| 1428 | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD |
| 1429 | int i; |
| 1430 | |
| 1431 | for (i = 0; i < bhead->nr_records; i++) |
| 1432 | debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); |
| 1433 | #endif |
| 1434 | } |
| 1435 | |
| 1436 | static inline struct kfree_rcu_cpu * |
| 1437 | krc_this_cpu_lock(unsigned long *flags) |
| 1438 | { |
| 1439 | struct kfree_rcu_cpu *krcp; |
| 1440 | |
| 1441 | local_irq_save(*flags); // For safely calling this_cpu_ptr(). |
| 1442 | krcp = this_cpu_ptr(&krc); |
| 1443 | raw_spin_lock(&krcp->lock); |
| 1444 | |
| 1445 | return krcp; |
| 1446 | } |
| 1447 | |
| 1448 | static inline void |
| 1449 | krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) |
| 1450 | { |
| 1451 | raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| 1452 | } |
| 1453 | |
| 1454 | static inline struct kvfree_rcu_bulk_data * |
| 1455 | get_cached_bnode(struct kfree_rcu_cpu *krcp) |
| 1456 | { |
| 1457 | if (!krcp->nr_bkv_objs) |
| 1458 | return NULL; |
| 1459 | |
| 1460 | WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); |
| 1461 | return (struct kvfree_rcu_bulk_data *) |
| 1462 | llist_del_first(&krcp->bkvcache); |
| 1463 | } |
| 1464 | |
| 1465 | static inline bool |
| 1466 | put_cached_bnode(struct kfree_rcu_cpu *krcp, |
| 1467 | struct kvfree_rcu_bulk_data *bnode) |
| 1468 | { |
| 1469 | // Check the limit. |
| 1470 | if (krcp->nr_bkv_objs >= rcu_min_cached_objs) |
| 1471 | return false; |
| 1472 | |
| 1473 | llist_add((struct llist_node *) bnode, &krcp->bkvcache); |
| 1474 | WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); |
| 1475 | return true; |
| 1476 | } |
| 1477 | |
| 1478 | static int |
| 1479 | drain_page_cache(struct kfree_rcu_cpu *krcp) |
| 1480 | { |
| 1481 | unsigned long flags; |
| 1482 | struct llist_node *page_list, *pos, *n; |
| 1483 | int freed = 0; |
| 1484 | |
| 1485 | if (!rcu_min_cached_objs) |
| 1486 | return 0; |
| 1487 | |
| 1488 | raw_spin_lock_irqsave(&krcp->lock, flags); |
| 1489 | page_list = llist_del_all(&krcp->bkvcache); |
| 1490 | WRITE_ONCE(krcp->nr_bkv_objs, 0); |
| 1491 | raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| 1492 | |
| 1493 | llist_for_each_safe(pos, n, page_list) { |
| 1494 | free_page((unsigned long)pos); |
| 1495 | freed++; |
| 1496 | } |
| 1497 | |
| 1498 | return freed; |
| 1499 | } |
| 1500 | |
| 1501 | static void |
| 1502 | kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, |
| 1503 | struct kvfree_rcu_bulk_data *bnode, int idx) |
| 1504 | { |
| 1505 | unsigned long flags; |
| 1506 | int i; |
| 1507 | |
| 1508 | if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { |
| 1509 | debug_rcu_bhead_unqueue(bnode); |
| 1510 | rcu_lock_acquire(&rcu_callback_map); |
| 1511 | if (idx == 0) { // kmalloc() / kfree(). |
| 1512 | trace_rcu_invoke_kfree_bulk_callback( |
| 1513 | "slab", bnode->nr_records, |
| 1514 | bnode->records); |
| 1515 | |
| 1516 | kfree_bulk(bnode->nr_records, bnode->records); |
| 1517 | } else { // vmalloc() / vfree(). |
| 1518 | for (i = 0; i < bnode->nr_records; i++) { |
| 1519 | trace_rcu_invoke_kvfree_callback( |
| 1520 | "slab", bnode->records[i], 0); |
| 1521 | |
| 1522 | vfree(bnode->records[i]); |
| 1523 | } |
| 1524 | } |
| 1525 | rcu_lock_release(&rcu_callback_map); |
| 1526 | } |
| 1527 | |
| 1528 | raw_spin_lock_irqsave(&krcp->lock, flags); |
| 1529 | if (put_cached_bnode(krcp, bnode)) |
| 1530 | bnode = NULL; |
| 1531 | raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| 1532 | |
| 1533 | if (bnode) |
| 1534 | free_page((unsigned long) bnode); |
| 1535 | |
| 1536 | cond_resched_tasks_rcu_qs(); |
| 1537 | } |
| 1538 | |
| 1539 | static void |
| 1540 | kvfree_rcu_list(struct rcu_head *head) |
| 1541 | { |
| 1542 | struct rcu_head *next; |
| 1543 | |
| 1544 | for (; head; head = next) { |
| 1545 | void *ptr = (void *) head->func; |
| 1546 | unsigned long offset = (void *) head - ptr; |
| 1547 | |
| 1548 | next = head->next; |
| 1549 | debug_rcu_head_unqueue((struct rcu_head *)ptr); |
| 1550 | rcu_lock_acquire(&rcu_callback_map); |
| 1551 | trace_rcu_invoke_kvfree_callback("slab", head, offset); |
| 1552 | |
| 1553 | kvfree(ptr); |
| 1554 | |
| 1555 | rcu_lock_release(&rcu_callback_map); |
| 1556 | cond_resched_tasks_rcu_qs(); |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | * This function is invoked in workqueue context after a grace period. |
| 1562 | * It frees all the objects queued on ->bulk_head_free or ->head_free. |
| 1563 | */ |
| 1564 | static void kfree_rcu_work(struct work_struct *work) |
| 1565 | { |
| 1566 | unsigned long flags; |
| 1567 | struct kvfree_rcu_bulk_data *bnode, *n; |
| 1568 | struct list_head bulk_head[FREE_N_CHANNELS]; |
| 1569 | struct rcu_head *head; |
| 1570 | struct kfree_rcu_cpu *krcp; |
| 1571 | struct kfree_rcu_cpu_work *krwp; |
| 1572 | struct rcu_gp_oldstate head_gp_snap; |
| 1573 | int i; |
| 1574 | |
| 1575 | krwp = container_of(to_rcu_work(work), |
| 1576 | struct kfree_rcu_cpu_work, rcu_work); |
| 1577 | krcp = krwp->krcp; |
| 1578 | |
| 1579 | raw_spin_lock_irqsave(&krcp->lock, flags); |
| 1580 | // Channels 1 and 2. |
| 1581 | for (i = 0; i < FREE_N_CHANNELS; i++) |
| 1582 | list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); |
| 1583 | |
| 1584 | // Channel 3. |
| 1585 | head = krwp->head_free; |
| 1586 | krwp->head_free = NULL; |
| 1587 | head_gp_snap = krwp->head_free_gp_snap; |
| 1588 | raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| 1589 | |
| 1590 | // Handle the first two channels. |
| 1591 | for (i = 0; i < FREE_N_CHANNELS; i++) { |
| 1592 | // Start from the tail page, so a GP is likely passed for it. |
| 1593 | list_for_each_entry_safe(bnode, n, &bulk_head[i], list) |
| 1594 | kvfree_rcu_bulk(krcp, bnode, i); |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * This is used when the "bulk" path can not be used for the |
| 1599 | * double-argument of kvfree_rcu(). This happens when the |
| 1600 | * page-cache is empty, which means that objects are instead |
| 1601 | * queued on a linked list through their rcu_head structures. |
| 1602 | * This list is named "Channel 3". |
| 1603 | */ |
| 1604 | if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) |
| 1605 | kvfree_rcu_list(head); |
| 1606 | } |
| 1607 | |
| 1608 | static bool |
| 1609 | need_offload_krc(struct kfree_rcu_cpu *krcp) |
| 1610 | { |
| 1611 | int i; |
| 1612 | |
| 1613 | for (i = 0; i < FREE_N_CHANNELS; i++) |
| 1614 | if (!list_empty(&krcp->bulk_head[i])) |
| 1615 | return true; |
| 1616 | |
| 1617 | return !!READ_ONCE(krcp->head); |
| 1618 | } |
| 1619 | |
| 1620 | static bool |
| 1621 | need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) |
| 1622 | { |
| 1623 | int i; |
| 1624 | |
| 1625 | for (i = 0; i < FREE_N_CHANNELS; i++) |
| 1626 | if (!list_empty(&krwp->bulk_head_free[i])) |
| 1627 | return true; |
| 1628 | |
| 1629 | return !!krwp->head_free; |
| 1630 | } |
| 1631 | |
| 1632 | static int krc_count(struct kfree_rcu_cpu *krcp) |
| 1633 | { |
| 1634 | int sum = atomic_read(&krcp->head_count); |
| 1635 | int i; |
| 1636 | |
| 1637 | for (i = 0; i < FREE_N_CHANNELS; i++) |
| 1638 | sum += atomic_read(&krcp->bulk_count[i]); |
| 1639 | |
| 1640 | return sum; |
| 1641 | } |
| 1642 | |
| 1643 | static void |
| 1644 | __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) |
| 1645 | { |
| 1646 | long delay, delay_left; |
| 1647 | |
| 1648 | delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; |
| 1649 | if (delayed_work_pending(&krcp->monitor_work)) { |
| 1650 | delay_left = krcp->monitor_work.timer.expires - jiffies; |
| 1651 | if (delay < delay_left) |
| 1652 | mod_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); |
| 1653 | return; |
| 1654 | } |
| 1655 | queue_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); |
| 1656 | } |
| 1657 | |
| 1658 | static void |
| 1659 | schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) |
| 1660 | { |
| 1661 | unsigned long flags; |
| 1662 | |
| 1663 | raw_spin_lock_irqsave(&krcp->lock, flags); |
| 1664 | __schedule_delayed_monitor_work(krcp); |
| 1665 | raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| 1666 | } |
| 1667 | |
| 1668 | static void |
| 1669 | kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) |
| 1670 | { |
| 1671 | struct list_head bulk_ready[FREE_N_CHANNELS]; |
| 1672 | struct kvfree_rcu_bulk_data *bnode, *n; |
| 1673 | struct rcu_head *head_ready = NULL; |
| 1674 | unsigned long flags; |
| 1675 | int i; |
| 1676 | |
| 1677 | raw_spin_lock_irqsave(&krcp->lock, flags); |
| 1678 | for (i = 0; i < FREE_N_CHANNELS; i++) { |
| 1679 | INIT_LIST_HEAD(&bulk_ready[i]); |
| 1680 | |
| 1681 | list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { |
| 1682 | if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) |
| 1683 | break; |
| 1684 | |
| 1685 | atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); |
| 1686 | list_move(&bnode->list, &bulk_ready[i]); |
| 1687 | } |
| 1688 | } |
| 1689 | |
| 1690 | if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { |
| 1691 | head_ready = krcp->head; |
| 1692 | atomic_set(&krcp->head_count, 0); |
| 1693 | WRITE_ONCE(krcp->head, NULL); |
| 1694 | } |
| 1695 | raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| 1696 | |
| 1697 | for (i = 0; i < FREE_N_CHANNELS; i++) { |
| 1698 | list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) |
| 1699 | kvfree_rcu_bulk(krcp, bnode, i); |
| 1700 | } |
| 1701 | |
| 1702 | if (head_ready) |
| 1703 | kvfree_rcu_list(head_ready); |
| 1704 | } |
| 1705 | |
| 1706 | /* |
| 1707 | * Return: %true if a work is queued, %false otherwise. |
| 1708 | */ |
| 1709 | static bool |
| 1710 | kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp) |
| 1711 | { |
| 1712 | unsigned long flags; |
| 1713 | bool queued = false; |
| 1714 | int i, j; |
| 1715 | |
| 1716 | raw_spin_lock_irqsave(&krcp->lock, flags); |
| 1717 | |
| 1718 | // Attempt to start a new batch. |
| 1719 | for (i = 0; i < KFREE_N_BATCHES; i++) { |
| 1720 | struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); |
| 1721 | |
| 1722 | // Try to detach bulk_head or head and attach it, only when |
| 1723 | // all channels are free. Any channel is not free means at krwp |
| 1724 | // there is on-going rcu work to handle krwp's free business. |
| 1725 | if (need_wait_for_krwp_work(krwp)) |
| 1726 | continue; |
| 1727 | |
| 1728 | // kvfree_rcu_drain_ready() might handle this krcp, if so give up. |
| 1729 | if (need_offload_krc(krcp)) { |
| 1730 | // Channel 1 corresponds to the SLAB-pointer bulk path. |
| 1731 | // Channel 2 corresponds to vmalloc-pointer bulk path. |
| 1732 | for (j = 0; j < FREE_N_CHANNELS; j++) { |
| 1733 | if (list_empty(&krwp->bulk_head_free[j])) { |
| 1734 | atomic_set(&krcp->bulk_count[j], 0); |
| 1735 | list_replace_init(&krcp->bulk_head[j], |
| 1736 | &krwp->bulk_head_free[j]); |
| 1737 | } |
| 1738 | } |
| 1739 | |
| 1740 | // Channel 3 corresponds to both SLAB and vmalloc |
| 1741 | // objects queued on the linked list. |
| 1742 | if (!krwp->head_free) { |
| 1743 | krwp->head_free = krcp->head; |
| 1744 | get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); |
| 1745 | atomic_set(&krcp->head_count, 0); |
| 1746 | WRITE_ONCE(krcp->head, NULL); |
| 1747 | } |
| 1748 | |
| 1749 | // One work is per one batch, so there are three |
| 1750 | // "free channels", the batch can handle. Break |
| 1751 | // the loop since it is done with this CPU thus |
| 1752 | // queuing an RCU work is _always_ success here. |
| 1753 | queued = queue_rcu_work(rcu_reclaim_wq, &krwp->rcu_work); |
| 1754 | WARN_ON_ONCE(!queued); |
| 1755 | break; |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| 1760 | return queued; |
| 1761 | } |
| 1762 | |
| 1763 | /* |
| 1764 | * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. |
| 1765 | */ |
| 1766 | static void kfree_rcu_monitor(struct work_struct *work) |
| 1767 | { |
| 1768 | struct kfree_rcu_cpu *krcp = container_of(work, |
| 1769 | struct kfree_rcu_cpu, monitor_work.work); |
| 1770 | |
| 1771 | // Drain ready for reclaim. |
| 1772 | kvfree_rcu_drain_ready(krcp); |
| 1773 | |
| 1774 | // Queue a batch for a rest. |
| 1775 | kvfree_rcu_queue_batch(krcp); |
| 1776 | |
| 1777 | // If there is nothing to detach, it means that our job is |
| 1778 | // successfully done here. In case of having at least one |
| 1779 | // of the channels that is still busy we should rearm the |
| 1780 | // work to repeat an attempt. Because previous batches are |
| 1781 | // still in progress. |
| 1782 | if (need_offload_krc(krcp)) |
| 1783 | schedule_delayed_monitor_work(krcp); |
| 1784 | } |
| 1785 | |
| 1786 | static void fill_page_cache_func(struct work_struct *work) |
| 1787 | { |
| 1788 | struct kvfree_rcu_bulk_data *bnode; |
| 1789 | struct kfree_rcu_cpu *krcp = |
| 1790 | container_of(work, struct kfree_rcu_cpu, |
| 1791 | page_cache_work.work); |
| 1792 | unsigned long flags; |
| 1793 | int nr_pages; |
| 1794 | bool pushed; |
| 1795 | int i; |
| 1796 | |
| 1797 | nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? |
| 1798 | 1 : rcu_min_cached_objs; |
| 1799 | |
| 1800 | for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { |
| 1801 | bnode = (struct kvfree_rcu_bulk_data *) |
| 1802 | __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| 1803 | |
| 1804 | if (!bnode) |
| 1805 | break; |
| 1806 | |
| 1807 | raw_spin_lock_irqsave(&krcp->lock, flags); |
| 1808 | pushed = put_cached_bnode(krcp, bnode); |
| 1809 | raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| 1810 | |
| 1811 | if (!pushed) { |
| 1812 | free_page((unsigned long) bnode); |
| 1813 | break; |
| 1814 | } |
| 1815 | } |
| 1816 | |
| 1817 | atomic_set(&krcp->work_in_progress, 0); |
| 1818 | atomic_set(&krcp->backoff_page_cache_fill, 0); |
| 1819 | } |
| 1820 | |
| 1821 | // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() |
| 1822 | // state specified by flags. If can_alloc is true, the caller must |
| 1823 | // be schedulable and not be holding any locks or mutexes that might be |
| 1824 | // acquired by the memory allocator or anything that it might invoke. |
| 1825 | // Returns true if ptr was successfully recorded, else the caller must |
| 1826 | // use a fallback. |
| 1827 | static inline bool |
| 1828 | add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, |
| 1829 | unsigned long *flags, void *ptr, bool can_alloc) |
| 1830 | { |
| 1831 | struct kvfree_rcu_bulk_data *bnode; |
| 1832 | int idx; |
| 1833 | |
| 1834 | *krcp = krc_this_cpu_lock(flags); |
| 1835 | if (unlikely(!(*krcp)->initialized)) |
| 1836 | return false; |
| 1837 | |
| 1838 | idx = !!is_vmalloc_addr(ptr); |
| 1839 | bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], |
| 1840 | struct kvfree_rcu_bulk_data, list); |
| 1841 | |
| 1842 | /* Check if a new block is required. */ |
| 1843 | if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { |
| 1844 | bnode = get_cached_bnode(*krcp); |
| 1845 | if (!bnode && can_alloc) { |
| 1846 | krc_this_cpu_unlock(*krcp, *flags); |
| 1847 | |
| 1848 | // __GFP_NORETRY - allows a light-weight direct reclaim |
| 1849 | // what is OK from minimizing of fallback hitting point of |
| 1850 | // view. Apart of that it forbids any OOM invoking what is |
| 1851 | // also beneficial since we are about to release memory soon. |
| 1852 | // |
| 1853 | // __GFP_NOMEMALLOC - prevents from consuming of all the |
| 1854 | // memory reserves. Please note we have a fallback path. |
| 1855 | // |
| 1856 | // __GFP_NOWARN - it is supposed that an allocation can |
| 1857 | // be failed under low memory or high memory pressure |
| 1858 | // scenarios. |
| 1859 | bnode = (struct kvfree_rcu_bulk_data *) |
| 1860 | __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| 1861 | raw_spin_lock_irqsave(&(*krcp)->lock, *flags); |
| 1862 | } |
| 1863 | |
| 1864 | if (!bnode) |
| 1865 | return false; |
| 1866 | |
| 1867 | // Initialize the new block and attach it. |
| 1868 | bnode->nr_records = 0; |
| 1869 | list_add(&bnode->list, &(*krcp)->bulk_head[idx]); |
| 1870 | } |
| 1871 | |
| 1872 | // Finally insert and update the GP for this page. |
| 1873 | bnode->nr_records++; |
| 1874 | bnode->records[bnode->nr_records - 1] = ptr; |
| 1875 | get_state_synchronize_rcu_full(&bnode->gp_snap); |
| 1876 | atomic_inc(&(*krcp)->bulk_count[idx]); |
| 1877 | |
| 1878 | return true; |
| 1879 | } |
| 1880 | |
| 1881 | static enum hrtimer_restart |
| 1882 | schedule_page_work_fn(struct hrtimer *t) |
| 1883 | { |
| 1884 | struct kfree_rcu_cpu *krcp = |
| 1885 | container_of(t, struct kfree_rcu_cpu, hrtimer); |
| 1886 | |
| 1887 | queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); |
| 1888 | return HRTIMER_NORESTART; |
| 1889 | } |
| 1890 | |
| 1891 | static void |
| 1892 | run_page_cache_worker(struct kfree_rcu_cpu *krcp) |
| 1893 | { |
| 1894 | // If cache disabled, bail out. |
| 1895 | if (!rcu_min_cached_objs) |
| 1896 | return; |
| 1897 | |
| 1898 | if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && |
| 1899 | !atomic_xchg(&krcp->work_in_progress, 1)) { |
| 1900 | if (atomic_read(&krcp->backoff_page_cache_fill)) { |
| 1901 | queue_delayed_work(rcu_reclaim_wq, |
| 1902 | &krcp->page_cache_work, |
| 1903 | msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); |
| 1904 | } else { |
| 1905 | hrtimer_setup(&krcp->hrtimer, schedule_page_work_fn, CLOCK_MONOTONIC, |
| 1906 | HRTIMER_MODE_REL); |
| 1907 | hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); |
| 1908 | } |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | void __init kfree_rcu_scheduler_running(void) |
| 1913 | { |
| 1914 | int cpu; |
| 1915 | |
| 1916 | for_each_possible_cpu(cpu) { |
| 1917 | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); |
| 1918 | |
| 1919 | if (need_offload_krc(krcp)) |
| 1920 | schedule_delayed_monitor_work(krcp); |
| 1921 | } |
| 1922 | } |
| 1923 | |
| 1924 | /* |
| 1925 | * Queue a request for lazy invocation of the appropriate free routine |
| 1926 | * after a grace period. Please note that three paths are maintained, |
| 1927 | * two for the common case using arrays of pointers and a third one that |
| 1928 | * is used only when the main paths cannot be used, for example, due to |
| 1929 | * memory pressure. |
| 1930 | * |
| 1931 | * Each kvfree_call_rcu() request is added to a batch. The batch will be drained |
| 1932 | * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will |
| 1933 | * be free'd in workqueue context. This allows us to: batch requests together to |
| 1934 | * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. |
| 1935 | */ |
| 1936 | void kvfree_call_rcu(struct rcu_head *head, void *ptr) |
| 1937 | { |
| 1938 | unsigned long flags; |
| 1939 | struct kfree_rcu_cpu *krcp; |
| 1940 | bool success; |
| 1941 | |
| 1942 | /* |
| 1943 | * Please note there is a limitation for the head-less |
| 1944 | * variant, that is why there is a clear rule for such |
| 1945 | * objects: it can be used from might_sleep() context |
| 1946 | * only. For other places please embed an rcu_head to |
| 1947 | * your data. |
| 1948 | */ |
| 1949 | if (!head) |
| 1950 | might_sleep(); |
| 1951 | |
| 1952 | // Queue the object but don't yet schedule the batch. |
| 1953 | if (debug_rcu_head_queue(ptr)) { |
| 1954 | // Probable double kfree_rcu(), just leak. |
| 1955 | WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", |
| 1956 | __func__, head); |
| 1957 | |
| 1958 | // Mark as success and leave. |
| 1959 | return; |
| 1960 | } |
| 1961 | |
| 1962 | kasan_record_aux_stack(ptr); |
| 1963 | success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); |
| 1964 | if (!success) { |
| 1965 | run_page_cache_worker(krcp); |
| 1966 | |
| 1967 | if (head == NULL) |
| 1968 | // Inline if kvfree_rcu(one_arg) call. |
| 1969 | goto unlock_return; |
| 1970 | |
| 1971 | head->func = ptr; |
| 1972 | head->next = krcp->head; |
| 1973 | WRITE_ONCE(krcp->head, head); |
| 1974 | atomic_inc(&krcp->head_count); |
| 1975 | |
| 1976 | // Take a snapshot for this krcp. |
| 1977 | krcp->head_gp_snap = get_state_synchronize_rcu(); |
| 1978 | success = true; |
| 1979 | } |
| 1980 | |
| 1981 | /* |
| 1982 | * The kvfree_rcu() caller considers the pointer freed at this point |
| 1983 | * and likely removes any references to it. Since the actual slab |
| 1984 | * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore |
| 1985 | * this object (no scanning or false positives reporting). |
| 1986 | */ |
| 1987 | kmemleak_ignore(ptr); |
| 1988 | |
| 1989 | // Set timer to drain after KFREE_DRAIN_JIFFIES. |
| 1990 | if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) |
| 1991 | __schedule_delayed_monitor_work(krcp); |
| 1992 | |
| 1993 | unlock_return: |
| 1994 | krc_this_cpu_unlock(krcp, flags); |
| 1995 | |
| 1996 | /* |
| 1997 | * Inline kvfree() after synchronize_rcu(). We can do |
| 1998 | * it from might_sleep() context only, so the current |
| 1999 | * CPU can pass the QS state. |
| 2000 | */ |
| 2001 | if (!success) { |
| 2002 | debug_rcu_head_unqueue((struct rcu_head *) ptr); |
| 2003 | synchronize_rcu(); |
| 2004 | kvfree(ptr); |
| 2005 | } |
| 2006 | } |
| 2007 | EXPORT_SYMBOL_GPL(kvfree_call_rcu); |
| 2008 | |
| 2009 | /** |
| 2010 | * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete. |
| 2011 | * |
| 2012 | * Note that a single argument of kvfree_rcu() call has a slow path that |
| 2013 | * triggers synchronize_rcu() following by freeing a pointer. It is done |
| 2014 | * before the return from the function. Therefore for any single-argument |
| 2015 | * call that will result in a kfree() to a cache that is to be destroyed |
| 2016 | * during module exit, it is developer's responsibility to ensure that all |
| 2017 | * such calls have returned before the call to kmem_cache_destroy(). |
| 2018 | */ |
| 2019 | void kvfree_rcu_barrier(void) |
| 2020 | { |
| 2021 | struct kfree_rcu_cpu_work *krwp; |
| 2022 | struct kfree_rcu_cpu *krcp; |
| 2023 | bool queued; |
| 2024 | int i, cpu; |
| 2025 | |
| 2026 | /* |
| 2027 | * Firstly we detach objects and queue them over an RCU-batch |
| 2028 | * for all CPUs. Finally queued works are flushed for each CPU. |
| 2029 | * |
| 2030 | * Please note. If there are outstanding batches for a particular |
| 2031 | * CPU, those have to be finished first following by queuing a new. |
| 2032 | */ |
| 2033 | for_each_possible_cpu(cpu) { |
| 2034 | krcp = per_cpu_ptr(&krc, cpu); |
| 2035 | |
| 2036 | /* |
| 2037 | * Check if this CPU has any objects which have been queued for a |
| 2038 | * new GP completion. If not(means nothing to detach), we are done |
| 2039 | * with it. If any batch is pending/running for this "krcp", below |
| 2040 | * per-cpu flush_rcu_work() waits its completion(see last step). |
| 2041 | */ |
| 2042 | if (!need_offload_krc(krcp)) |
| 2043 | continue; |
| 2044 | |
| 2045 | while (1) { |
| 2046 | /* |
| 2047 | * If we are not able to queue a new RCU work it means: |
| 2048 | * - batches for this CPU are still in flight which should |
| 2049 | * be flushed first and then repeat; |
| 2050 | * - no objects to detach, because of concurrency. |
| 2051 | */ |
| 2052 | queued = kvfree_rcu_queue_batch(krcp); |
| 2053 | |
| 2054 | /* |
| 2055 | * Bail out, if there is no need to offload this "krcp" |
| 2056 | * anymore. As noted earlier it can run concurrently. |
| 2057 | */ |
| 2058 | if (queued || !need_offload_krc(krcp)) |
| 2059 | break; |
| 2060 | |
| 2061 | /* There are ongoing batches. */ |
| 2062 | for (i = 0; i < KFREE_N_BATCHES; i++) { |
| 2063 | krwp = &(krcp->krw_arr[i]); |
| 2064 | flush_rcu_work(&krwp->rcu_work); |
| 2065 | } |
| 2066 | } |
| 2067 | } |
| 2068 | |
| 2069 | /* |
| 2070 | * Now we guarantee that all objects are flushed. |
| 2071 | */ |
| 2072 | for_each_possible_cpu(cpu) { |
| 2073 | krcp = per_cpu_ptr(&krc, cpu); |
| 2074 | |
| 2075 | /* |
| 2076 | * A monitor work can drain ready to reclaim objects |
| 2077 | * directly. Wait its completion if running or pending. |
| 2078 | */ |
| 2079 | cancel_delayed_work_sync(&krcp->monitor_work); |
| 2080 | |
| 2081 | for (i = 0; i < KFREE_N_BATCHES; i++) { |
| 2082 | krwp = &(krcp->krw_arr[i]); |
| 2083 | flush_rcu_work(&krwp->rcu_work); |
| 2084 | } |
| 2085 | } |
| 2086 | } |
| 2087 | EXPORT_SYMBOL_GPL(kvfree_rcu_barrier); |
| 2088 | |
| 2089 | static unsigned long |
| 2090 | kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) |
| 2091 | { |
| 2092 | int cpu; |
| 2093 | unsigned long count = 0; |
| 2094 | |
| 2095 | /* Snapshot count of all CPUs */ |
| 2096 | for_each_possible_cpu(cpu) { |
| 2097 | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); |
| 2098 | |
| 2099 | count += krc_count(krcp); |
| 2100 | count += READ_ONCE(krcp->nr_bkv_objs); |
| 2101 | atomic_set(&krcp->backoff_page_cache_fill, 1); |
| 2102 | } |
| 2103 | |
| 2104 | return count == 0 ? SHRINK_EMPTY : count; |
| 2105 | } |
| 2106 | |
| 2107 | static unsigned long |
| 2108 | kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) |
| 2109 | { |
| 2110 | int cpu, freed = 0; |
| 2111 | |
| 2112 | for_each_possible_cpu(cpu) { |
| 2113 | int count; |
| 2114 | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); |
| 2115 | |
| 2116 | count = krc_count(krcp); |
| 2117 | count += drain_page_cache(krcp); |
| 2118 | kfree_rcu_monitor(&krcp->monitor_work.work); |
| 2119 | |
| 2120 | sc->nr_to_scan -= count; |
| 2121 | freed += count; |
| 2122 | |
| 2123 | if (sc->nr_to_scan <= 0) |
| 2124 | break; |
| 2125 | } |
| 2126 | |
| 2127 | return freed == 0 ? SHRINK_STOP : freed; |
| 2128 | } |
| 2129 | |
| 2130 | void __init kvfree_rcu_init(void) |
| 2131 | { |
| 2132 | int cpu; |
| 2133 | int i, j; |
| 2134 | struct shrinker *kfree_rcu_shrinker; |
| 2135 | |
| 2136 | rcu_reclaim_wq = alloc_workqueue("kvfree_rcu_reclaim", |
| 2137 | WQ_UNBOUND | WQ_MEM_RECLAIM, 0); |
| 2138 | WARN_ON(!rcu_reclaim_wq); |
| 2139 | |
| 2140 | /* Clamp it to [0:100] seconds interval. */ |
| 2141 | if (rcu_delay_page_cache_fill_msec < 0 || |
| 2142 | rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { |
| 2143 | |
| 2144 | rcu_delay_page_cache_fill_msec = |
| 2145 | clamp(rcu_delay_page_cache_fill_msec, 0, |
| 2146 | (int) (100 * MSEC_PER_SEC)); |
| 2147 | |
| 2148 | pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", |
| 2149 | rcu_delay_page_cache_fill_msec); |
| 2150 | } |
| 2151 | |
| 2152 | for_each_possible_cpu(cpu) { |
| 2153 | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); |
| 2154 | |
| 2155 | for (i = 0; i < KFREE_N_BATCHES; i++) { |
| 2156 | INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); |
| 2157 | krcp->krw_arr[i].krcp = krcp; |
| 2158 | |
| 2159 | for (j = 0; j < FREE_N_CHANNELS; j++) |
| 2160 | INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); |
| 2161 | } |
| 2162 | |
| 2163 | for (i = 0; i < FREE_N_CHANNELS; i++) |
| 2164 | INIT_LIST_HEAD(&krcp->bulk_head[i]); |
| 2165 | |
| 2166 | INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); |
| 2167 | INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); |
| 2168 | krcp->initialized = true; |
| 2169 | } |
| 2170 | |
| 2171 | kfree_rcu_shrinker = shrinker_alloc(0, "slab-kvfree-rcu"); |
| 2172 | if (!kfree_rcu_shrinker) { |
| 2173 | pr_err("Failed to allocate kfree_rcu() shrinker!\n"); |
| 2174 | return; |
| 2175 | } |
| 2176 | |
| 2177 | kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; |
| 2178 | kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; |
| 2179 | |
| 2180 | shrinker_register(kfree_rcu_shrinker); |
| 2181 | } |
| 2182 | |
| 2183 | #endif /* CONFIG_KVFREE_RCU_BATCHED */ |
| 2184 | |