| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef MM_SLAB_H |
| 3 | #define MM_SLAB_H |
| 4 | |
| 5 | #include <linux/reciprocal_div.h> |
| 6 | #include <linux/list_lru.h> |
| 7 | #include <linux/local_lock.h> |
| 8 | #include <linux/random.h> |
| 9 | #include <linux/kobject.h> |
| 10 | #include <linux/sched/mm.h> |
| 11 | #include <linux/memcontrol.h> |
| 12 | #include <linux/kfence.h> |
| 13 | #include <linux/kasan.h> |
| 14 | |
| 15 | /* |
| 16 | * Internal slab definitions |
| 17 | */ |
| 18 | |
| 19 | #ifdef CONFIG_64BIT |
| 20 | # ifdef system_has_cmpxchg128 |
| 21 | # define system_has_freelist_aba() system_has_cmpxchg128() |
| 22 | # define try_cmpxchg_freelist try_cmpxchg128 |
| 23 | # endif |
| 24 | #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128 |
| 25 | typedef u128 freelist_full_t; |
| 26 | #else /* CONFIG_64BIT */ |
| 27 | # ifdef system_has_cmpxchg64 |
| 28 | # define system_has_freelist_aba() system_has_cmpxchg64() |
| 29 | # define try_cmpxchg_freelist try_cmpxchg64 |
| 30 | # endif |
| 31 | #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64 |
| 32 | typedef u64 freelist_full_t; |
| 33 | #endif /* CONFIG_64BIT */ |
| 34 | |
| 35 | #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) |
| 36 | #undef system_has_freelist_aba |
| 37 | #endif |
| 38 | |
| 39 | /* |
| 40 | * Freelist pointer and counter to cmpxchg together, avoids the typical ABA |
| 41 | * problems with cmpxchg of just a pointer. |
| 42 | */ |
| 43 | typedef union { |
| 44 | struct { |
| 45 | void *freelist; |
| 46 | unsigned long counter; |
| 47 | }; |
| 48 | freelist_full_t full; |
| 49 | } freelist_aba_t; |
| 50 | |
| 51 | /* Reuses the bits in struct page */ |
| 52 | struct slab { |
| 53 | unsigned long __page_flags; |
| 54 | |
| 55 | struct kmem_cache *slab_cache; |
| 56 | union { |
| 57 | struct { |
| 58 | union { |
| 59 | struct list_head slab_list; |
| 60 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
| 61 | struct { |
| 62 | struct slab *next; |
| 63 | int slabs; /* Nr of slabs left */ |
| 64 | }; |
| 65 | #endif |
| 66 | }; |
| 67 | /* Double-word boundary */ |
| 68 | union { |
| 69 | struct { |
| 70 | void *freelist; /* first free object */ |
| 71 | union { |
| 72 | unsigned long counters; |
| 73 | struct { |
| 74 | unsigned inuse:16; |
| 75 | unsigned objects:15; |
| 76 | /* |
| 77 | * If slab debugging is enabled then the |
| 78 | * frozen bit can be reused to indicate |
| 79 | * that the slab was corrupted |
| 80 | */ |
| 81 | unsigned frozen:1; |
| 82 | }; |
| 83 | }; |
| 84 | }; |
| 85 | #ifdef system_has_freelist_aba |
| 86 | freelist_aba_t freelist_counter; |
| 87 | #endif |
| 88 | }; |
| 89 | }; |
| 90 | struct rcu_head rcu_head; |
| 91 | }; |
| 92 | |
| 93 | unsigned int __page_type; |
| 94 | atomic_t __page_refcount; |
| 95 | #ifdef CONFIG_SLAB_OBJ_EXT |
| 96 | unsigned long obj_exts; |
| 97 | #endif |
| 98 | }; |
| 99 | |
| 100 | #define SLAB_MATCH(pg, sl) \ |
| 101 | static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) |
| 102 | SLAB_MATCH(flags, __page_flags); |
| 103 | SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */ |
| 104 | SLAB_MATCH(_refcount, __page_refcount); |
| 105 | #ifdef CONFIG_MEMCG |
| 106 | SLAB_MATCH(memcg_data, obj_exts); |
| 107 | #elif defined(CONFIG_SLAB_OBJ_EXT) |
| 108 | SLAB_MATCH(_unused_slab_obj_exts, obj_exts); |
| 109 | #endif |
| 110 | #undef SLAB_MATCH |
| 111 | static_assert(sizeof(struct slab) <= sizeof(struct page)); |
| 112 | #if defined(system_has_freelist_aba) |
| 113 | static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t))); |
| 114 | #endif |
| 115 | |
| 116 | /** |
| 117 | * folio_slab - Converts from folio to slab. |
| 118 | * @folio: The folio. |
| 119 | * |
| 120 | * Currently struct slab is a different representation of a folio where |
| 121 | * folio_test_slab() is true. |
| 122 | * |
| 123 | * Return: The slab which contains this folio. |
| 124 | */ |
| 125 | #define folio_slab(folio) (_Generic((folio), \ |
| 126 | const struct folio *: (const struct slab *)(folio), \ |
| 127 | struct folio *: (struct slab *)(folio))) |
| 128 | |
| 129 | /** |
| 130 | * slab_folio - The folio allocated for a slab |
| 131 | * @s: The slab. |
| 132 | * |
| 133 | * Slabs are allocated as folios that contain the individual objects and are |
| 134 | * using some fields in the first struct page of the folio - those fields are |
| 135 | * now accessed by struct slab. It is occasionally necessary to convert back to |
| 136 | * a folio in order to communicate with the rest of the mm. Please use this |
| 137 | * helper function instead of casting yourself, as the implementation may change |
| 138 | * in the future. |
| 139 | */ |
| 140 | #define slab_folio(s) (_Generic((s), \ |
| 141 | const struct slab *: (const struct folio *)s, \ |
| 142 | struct slab *: (struct folio *)s)) |
| 143 | |
| 144 | /** |
| 145 | * page_slab - Converts from first struct page to slab. |
| 146 | * @p: The first (either head of compound or single) page of slab. |
| 147 | * |
| 148 | * A temporary wrapper to convert struct page to struct slab in situations where |
| 149 | * we know the page is the compound head, or single order-0 page. |
| 150 | * |
| 151 | * Long-term ideally everything would work with struct slab directly or go |
| 152 | * through folio to struct slab. |
| 153 | * |
| 154 | * Return: The slab which contains this page |
| 155 | */ |
| 156 | #define page_slab(p) (_Generic((p), \ |
| 157 | const struct page *: (const struct slab *)(p), \ |
| 158 | struct page *: (struct slab *)(p))) |
| 159 | |
| 160 | /** |
| 161 | * slab_page - The first struct page allocated for a slab |
| 162 | * @s: The slab. |
| 163 | * |
| 164 | * A convenience wrapper for converting slab to the first struct page of the |
| 165 | * underlying folio, to communicate with code not yet converted to folio or |
| 166 | * struct slab. |
| 167 | */ |
| 168 | #define slab_page(s) folio_page(slab_folio(s), 0) |
| 169 | |
| 170 | /* |
| 171 | * If network-based swap is enabled, sl*b must keep track of whether pages |
| 172 | * were allocated from pfmemalloc reserves. |
| 173 | */ |
| 174 | static inline bool slab_test_pfmemalloc(const struct slab *slab) |
| 175 | { |
| 176 | return folio_test_active(slab_folio(slab)); |
| 177 | } |
| 178 | |
| 179 | static inline void slab_set_pfmemalloc(struct slab *slab) |
| 180 | { |
| 181 | folio_set_active(slab_folio(slab)); |
| 182 | } |
| 183 | |
| 184 | static inline void slab_clear_pfmemalloc(struct slab *slab) |
| 185 | { |
| 186 | folio_clear_active(slab_folio(slab)); |
| 187 | } |
| 188 | |
| 189 | static inline void __slab_clear_pfmemalloc(struct slab *slab) |
| 190 | { |
| 191 | __folio_clear_active(slab_folio(slab)); |
| 192 | } |
| 193 | |
| 194 | static inline void *slab_address(const struct slab *slab) |
| 195 | { |
| 196 | return folio_address(slab_folio(slab)); |
| 197 | } |
| 198 | |
| 199 | static inline int slab_nid(const struct slab *slab) |
| 200 | { |
| 201 | return folio_nid(slab_folio(slab)); |
| 202 | } |
| 203 | |
| 204 | static inline pg_data_t *slab_pgdat(const struct slab *slab) |
| 205 | { |
| 206 | return folio_pgdat(slab_folio(slab)); |
| 207 | } |
| 208 | |
| 209 | static inline struct slab *virt_to_slab(const void *addr) |
| 210 | { |
| 211 | struct folio *folio = virt_to_folio(addr); |
| 212 | |
| 213 | if (!folio_test_slab(folio)) |
| 214 | return NULL; |
| 215 | |
| 216 | return folio_slab(folio); |
| 217 | } |
| 218 | |
| 219 | static inline int slab_order(const struct slab *slab) |
| 220 | { |
| 221 | return folio_order(slab_folio(slab)); |
| 222 | } |
| 223 | |
| 224 | static inline size_t slab_size(const struct slab *slab) |
| 225 | { |
| 226 | return PAGE_SIZE << slab_order(slab); |
| 227 | } |
| 228 | |
| 229 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
| 230 | #define slub_percpu_partial(c) ((c)->partial) |
| 231 | |
| 232 | #define slub_set_percpu_partial(c, p) \ |
| 233 | ({ \ |
| 234 | slub_percpu_partial(c) = (p)->next; \ |
| 235 | }) |
| 236 | |
| 237 | #define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c)) |
| 238 | #else |
| 239 | #define slub_percpu_partial(c) NULL |
| 240 | |
| 241 | #define slub_set_percpu_partial(c, p) |
| 242 | |
| 243 | #define slub_percpu_partial_read_once(c) NULL |
| 244 | #endif // CONFIG_SLUB_CPU_PARTIAL |
| 245 | |
| 246 | /* |
| 247 | * Word size structure that can be atomically updated or read and that |
| 248 | * contains both the order and the number of objects that a slab of the |
| 249 | * given order would contain. |
| 250 | */ |
| 251 | struct kmem_cache_order_objects { |
| 252 | unsigned int x; |
| 253 | }; |
| 254 | |
| 255 | /* |
| 256 | * Slab cache management. |
| 257 | */ |
| 258 | struct kmem_cache { |
| 259 | #ifndef CONFIG_SLUB_TINY |
| 260 | struct kmem_cache_cpu __percpu *cpu_slab; |
| 261 | #endif |
| 262 | /* Used for retrieving partial slabs, etc. */ |
| 263 | slab_flags_t flags; |
| 264 | unsigned long min_partial; |
| 265 | unsigned int size; /* Object size including metadata */ |
| 266 | unsigned int object_size; /* Object size without metadata */ |
| 267 | struct reciprocal_value reciprocal_size; |
| 268 | unsigned int offset; /* Free pointer offset */ |
| 269 | #ifdef CONFIG_SLUB_CPU_PARTIAL |
| 270 | /* Number of per cpu partial objects to keep around */ |
| 271 | unsigned int cpu_partial; |
| 272 | /* Number of per cpu partial slabs to keep around */ |
| 273 | unsigned int cpu_partial_slabs; |
| 274 | #endif |
| 275 | struct kmem_cache_order_objects oo; |
| 276 | |
| 277 | /* Allocation and freeing of slabs */ |
| 278 | struct kmem_cache_order_objects min; |
| 279 | gfp_t allocflags; /* gfp flags to use on each alloc */ |
| 280 | int refcount; /* Refcount for slab cache destroy */ |
| 281 | void (*ctor)(void *object); /* Object constructor */ |
| 282 | unsigned int inuse; /* Offset to metadata */ |
| 283 | unsigned int align; /* Alignment */ |
| 284 | unsigned int red_left_pad; /* Left redzone padding size */ |
| 285 | const char *name; /* Name (only for display!) */ |
| 286 | struct list_head list; /* List of slab caches */ |
| 287 | #ifdef CONFIG_SYSFS |
| 288 | struct kobject kobj; /* For sysfs */ |
| 289 | #endif |
| 290 | #ifdef CONFIG_SLAB_FREELIST_HARDENED |
| 291 | unsigned long random; |
| 292 | #endif |
| 293 | |
| 294 | #ifdef CONFIG_NUMA |
| 295 | /* |
| 296 | * Defragmentation by allocating from a remote node. |
| 297 | */ |
| 298 | unsigned int remote_node_defrag_ratio; |
| 299 | #endif |
| 300 | |
| 301 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| 302 | unsigned int *random_seq; |
| 303 | #endif |
| 304 | |
| 305 | #ifdef CONFIG_KASAN_GENERIC |
| 306 | struct kasan_cache kasan_info; |
| 307 | #endif |
| 308 | |
| 309 | #ifdef CONFIG_HARDENED_USERCOPY |
| 310 | unsigned int useroffset; /* Usercopy region offset */ |
| 311 | unsigned int usersize; /* Usercopy region size */ |
| 312 | #endif |
| 313 | |
| 314 | struct kmem_cache_node *node[MAX_NUMNODES]; |
| 315 | }; |
| 316 | |
| 317 | #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY) |
| 318 | #define SLAB_SUPPORTS_SYSFS 1 |
| 319 | void sysfs_slab_unlink(struct kmem_cache *s); |
| 320 | void sysfs_slab_release(struct kmem_cache *s); |
| 321 | #else |
| 322 | static inline void sysfs_slab_unlink(struct kmem_cache *s) { } |
| 323 | static inline void sysfs_slab_release(struct kmem_cache *s) { } |
| 324 | #endif |
| 325 | |
| 326 | void *fixup_red_left(struct kmem_cache *s, void *p); |
| 327 | |
| 328 | static inline void *nearest_obj(struct kmem_cache *cache, |
| 329 | const struct slab *slab, void *x) |
| 330 | { |
| 331 | void *object = x - (x - slab_address(slab)) % cache->size; |
| 332 | void *last_object = slab_address(slab) + |
| 333 | (slab->objects - 1) * cache->size; |
| 334 | void *result = (unlikely(object > last_object)) ? last_object : object; |
| 335 | |
| 336 | result = fixup_red_left(cache, result); |
| 337 | return result; |
| 338 | } |
| 339 | |
| 340 | /* Determine object index from a given position */ |
| 341 | static inline unsigned int __obj_to_index(const struct kmem_cache *cache, |
| 342 | void *addr, void *obj) |
| 343 | { |
| 344 | return reciprocal_divide(kasan_reset_tag(obj) - addr, |
| 345 | cache->reciprocal_size); |
| 346 | } |
| 347 | |
| 348 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, |
| 349 | const struct slab *slab, void *obj) |
| 350 | { |
| 351 | if (is_kfence_address(obj)) |
| 352 | return 0; |
| 353 | return __obj_to_index(cache, slab_address(slab), obj); |
| 354 | } |
| 355 | |
| 356 | static inline int objs_per_slab(const struct kmem_cache *cache, |
| 357 | const struct slab *slab) |
| 358 | { |
| 359 | return slab->objects; |
| 360 | } |
| 361 | |
| 362 | /* |
| 363 | * State of the slab allocator. |
| 364 | * |
| 365 | * This is used to describe the states of the allocator during bootup. |
| 366 | * Allocators use this to gradually bootstrap themselves. Most allocators |
| 367 | * have the problem that the structures used for managing slab caches are |
| 368 | * allocated from slab caches themselves. |
| 369 | */ |
| 370 | enum slab_state { |
| 371 | DOWN, /* No slab functionality yet */ |
| 372 | PARTIAL, /* SLUB: kmem_cache_node available */ |
| 373 | UP, /* Slab caches usable but not all extras yet */ |
| 374 | FULL /* Everything is working */ |
| 375 | }; |
| 376 | |
| 377 | extern enum slab_state slab_state; |
| 378 | |
| 379 | /* The slab cache mutex protects the management structures during changes */ |
| 380 | extern struct mutex slab_mutex; |
| 381 | |
| 382 | /* The list of all slab caches on the system */ |
| 383 | extern struct list_head slab_caches; |
| 384 | |
| 385 | /* The slab cache that manages slab cache information */ |
| 386 | extern struct kmem_cache *kmem_cache; |
| 387 | |
| 388 | /* A table of kmalloc cache names and sizes */ |
| 389 | extern const struct kmalloc_info_struct { |
| 390 | const char *name[NR_KMALLOC_TYPES]; |
| 391 | unsigned int size; |
| 392 | } kmalloc_info[]; |
| 393 | |
| 394 | /* Kmalloc array related functions */ |
| 395 | void setup_kmalloc_cache_index_table(void); |
| 396 | void create_kmalloc_caches(void); |
| 397 | |
| 398 | extern u8 kmalloc_size_index[24]; |
| 399 | |
| 400 | static inline unsigned int size_index_elem(unsigned int bytes) |
| 401 | { |
| 402 | return (bytes - 1) / 8; |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Find the kmem_cache structure that serves a given size of |
| 407 | * allocation |
| 408 | * |
| 409 | * This assumes size is larger than zero and not larger than |
| 410 | * KMALLOC_MAX_CACHE_SIZE and the caller must check that. |
| 411 | */ |
| 412 | static inline struct kmem_cache * |
| 413 | kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller) |
| 414 | { |
| 415 | unsigned int index; |
| 416 | |
| 417 | if (!b) |
| 418 | b = &kmalloc_caches[kmalloc_type(flags, caller)]; |
| 419 | if (size <= 192) |
| 420 | index = kmalloc_size_index[size_index_elem(size)]; |
| 421 | else |
| 422 | index = fls(size - 1); |
| 423 | |
| 424 | return (*b)[index]; |
| 425 | } |
| 426 | |
| 427 | gfp_t kmalloc_fix_flags(gfp_t flags); |
| 428 | |
| 429 | /* Functions provided by the slab allocators */ |
| 430 | int do_kmem_cache_create(struct kmem_cache *s, const char *name, |
| 431 | unsigned int size, struct kmem_cache_args *args, |
| 432 | slab_flags_t flags); |
| 433 | |
| 434 | void __init kmem_cache_init(void); |
| 435 | extern void create_boot_cache(struct kmem_cache *, const char *name, |
| 436 | unsigned int size, slab_flags_t flags, |
| 437 | unsigned int useroffset, unsigned int usersize); |
| 438 | |
| 439 | int slab_unmergeable(struct kmem_cache *s); |
| 440 | struct kmem_cache *find_mergeable(unsigned size, unsigned align, |
| 441 | slab_flags_t flags, const char *name, void (*ctor)(void *)); |
| 442 | struct kmem_cache * |
| 443 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
| 444 | slab_flags_t flags, void (*ctor)(void *)); |
| 445 | |
| 446 | slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name); |
| 447 | |
| 448 | static inline bool is_kmalloc_cache(struct kmem_cache *s) |
| 449 | { |
| 450 | return (s->flags & SLAB_KMALLOC); |
| 451 | } |
| 452 | |
| 453 | static inline bool is_kmalloc_normal(struct kmem_cache *s) |
| 454 | { |
| 455 | if (!is_kmalloc_cache(s)) |
| 456 | return false; |
| 457 | return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT)); |
| 458 | } |
| 459 | |
| 460 | #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ |
| 461 | SLAB_CACHE_DMA32 | SLAB_PANIC | \ |
| 462 | SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \ |
| 463 | SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ |
| 464 | SLAB_TEMPORARY | SLAB_ACCOUNT | \ |
| 465 | SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE) |
| 466 | |
| 467 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
| 468 | SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) |
| 469 | |
| 470 | #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS) |
| 471 | |
| 472 | bool __kmem_cache_empty(struct kmem_cache *); |
| 473 | int __kmem_cache_shutdown(struct kmem_cache *); |
| 474 | void __kmem_cache_release(struct kmem_cache *); |
| 475 | int __kmem_cache_shrink(struct kmem_cache *); |
| 476 | void slab_kmem_cache_release(struct kmem_cache *); |
| 477 | |
| 478 | struct seq_file; |
| 479 | struct file; |
| 480 | |
| 481 | struct slabinfo { |
| 482 | unsigned long active_objs; |
| 483 | unsigned long num_objs; |
| 484 | unsigned long active_slabs; |
| 485 | unsigned long num_slabs; |
| 486 | unsigned long shared_avail; |
| 487 | unsigned int limit; |
| 488 | unsigned int batchcount; |
| 489 | unsigned int shared; |
| 490 | unsigned int objects_per_slab; |
| 491 | unsigned int cache_order; |
| 492 | }; |
| 493 | |
| 494 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); |
| 495 | |
| 496 | #ifdef CONFIG_SLUB_DEBUG |
| 497 | #ifdef CONFIG_SLUB_DEBUG_ON |
| 498 | DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); |
| 499 | #else |
| 500 | DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); |
| 501 | #endif |
| 502 | extern void print_tracking(struct kmem_cache *s, void *object); |
| 503 | long validate_slab_cache(struct kmem_cache *s); |
| 504 | static inline bool __slub_debug_enabled(void) |
| 505 | { |
| 506 | return static_branch_unlikely(&slub_debug_enabled); |
| 507 | } |
| 508 | #else |
| 509 | static inline void print_tracking(struct kmem_cache *s, void *object) |
| 510 | { |
| 511 | } |
| 512 | static inline bool __slub_debug_enabled(void) |
| 513 | { |
| 514 | return false; |
| 515 | } |
| 516 | #endif |
| 517 | |
| 518 | /* |
| 519 | * Returns true if any of the specified slab_debug flags is enabled for the |
| 520 | * cache. Use only for flags parsed by setup_slub_debug() as it also enables |
| 521 | * the static key. |
| 522 | */ |
| 523 | static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) |
| 524 | { |
| 525 | if (IS_ENABLED(CONFIG_SLUB_DEBUG)) |
| 526 | VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); |
| 527 | if (__slub_debug_enabled()) |
| 528 | return s->flags & flags; |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | #if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT) |
| 533 | bool slab_in_kunit_test(void); |
| 534 | #else |
| 535 | static inline bool slab_in_kunit_test(void) { return false; } |
| 536 | #endif |
| 537 | |
| 538 | #ifdef CONFIG_SLAB_OBJ_EXT |
| 539 | |
| 540 | /* |
| 541 | * slab_obj_exts - get the pointer to the slab object extension vector |
| 542 | * associated with a slab. |
| 543 | * @slab: a pointer to the slab struct |
| 544 | * |
| 545 | * Returns a pointer to the object extension vector associated with the slab, |
| 546 | * or NULL if no such vector has been associated yet. |
| 547 | */ |
| 548 | static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) |
| 549 | { |
| 550 | unsigned long obj_exts = READ_ONCE(slab->obj_exts); |
| 551 | |
| 552 | #ifdef CONFIG_MEMCG |
| 553 | VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS), |
| 554 | slab_page(slab)); |
| 555 | VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab)); |
| 556 | #endif |
| 557 | return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK); |
| 558 | } |
| 559 | |
| 560 | int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, |
| 561 | gfp_t gfp, bool new_slab); |
| 562 | |
| 563 | #else /* CONFIG_SLAB_OBJ_EXT */ |
| 564 | |
| 565 | static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) |
| 566 | { |
| 567 | return NULL; |
| 568 | } |
| 569 | |
| 570 | #endif /* CONFIG_SLAB_OBJ_EXT */ |
| 571 | |
| 572 | static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) |
| 573 | { |
| 574 | return (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
| 575 | NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; |
| 576 | } |
| 577 | |
| 578 | #ifdef CONFIG_MEMCG |
| 579 | bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, |
| 580 | gfp_t flags, size_t size, void **p); |
| 581 | void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, |
| 582 | void **p, int objects, struct slabobj_ext *obj_exts); |
| 583 | #endif |
| 584 | |
| 585 | void kvfree_rcu_cb(struct rcu_head *head); |
| 586 | |
| 587 | size_t __ksize(const void *objp); |
| 588 | |
| 589 | static inline size_t slab_ksize(const struct kmem_cache *s) |
| 590 | { |
| 591 | #ifdef CONFIG_SLUB_DEBUG |
| 592 | /* |
| 593 | * Debugging requires use of the padding between object |
| 594 | * and whatever may come after it. |
| 595 | */ |
| 596 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) |
| 597 | return s->object_size; |
| 598 | #endif |
| 599 | if (s->flags & SLAB_KASAN) |
| 600 | return s->object_size; |
| 601 | /* |
| 602 | * If we have the need to store the freelist pointer |
| 603 | * back there or track user information then we can |
| 604 | * only use the space before that information. |
| 605 | */ |
| 606 | if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) |
| 607 | return s->inuse; |
| 608 | /* |
| 609 | * Else we can use all the padding etc for the allocation |
| 610 | */ |
| 611 | return s->size; |
| 612 | } |
| 613 | |
| 614 | #ifdef CONFIG_SLUB_DEBUG |
| 615 | void dump_unreclaimable_slab(void); |
| 616 | #else |
| 617 | static inline void dump_unreclaimable_slab(void) |
| 618 | { |
| 619 | } |
| 620 | #endif |
| 621 | |
| 622 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); |
| 623 | |
| 624 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| 625 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, |
| 626 | gfp_t gfp); |
| 627 | void cache_random_seq_destroy(struct kmem_cache *cachep); |
| 628 | #else |
| 629 | static inline int cache_random_seq_create(struct kmem_cache *cachep, |
| 630 | unsigned int count, gfp_t gfp) |
| 631 | { |
| 632 | return 0; |
| 633 | } |
| 634 | static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } |
| 635 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| 636 | |
| 637 | static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) |
| 638 | { |
| 639 | if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, |
| 640 | &init_on_alloc)) { |
| 641 | if (c->ctor) |
| 642 | return false; |
| 643 | if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) |
| 644 | return flags & __GFP_ZERO; |
| 645 | return true; |
| 646 | } |
| 647 | return flags & __GFP_ZERO; |
| 648 | } |
| 649 | |
| 650 | static inline bool slab_want_init_on_free(struct kmem_cache *c) |
| 651 | { |
| 652 | if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, |
| 653 | &init_on_free)) |
| 654 | return !(c->ctor || |
| 655 | (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); |
| 656 | return false; |
| 657 | } |
| 658 | |
| 659 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) |
| 660 | void debugfs_slab_release(struct kmem_cache *); |
| 661 | #else |
| 662 | static inline void debugfs_slab_release(struct kmem_cache *s) { } |
| 663 | #endif |
| 664 | |
| 665 | #ifdef CONFIG_PRINTK |
| 666 | #define KS_ADDRS_COUNT 16 |
| 667 | struct kmem_obj_info { |
| 668 | void *kp_ptr; |
| 669 | struct slab *kp_slab; |
| 670 | void *kp_objp; |
| 671 | unsigned long kp_data_offset; |
| 672 | struct kmem_cache *kp_slab_cache; |
| 673 | void *kp_ret; |
| 674 | void *kp_stack[KS_ADDRS_COUNT]; |
| 675 | void *kp_free_stack[KS_ADDRS_COUNT]; |
| 676 | }; |
| 677 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); |
| 678 | #endif |
| 679 | |
| 680 | void __check_heap_object(const void *ptr, unsigned long n, |
| 681 | const struct slab *slab, bool to_user); |
| 682 | |
| 683 | static inline bool slub_debug_orig_size(struct kmem_cache *s) |
| 684 | { |
| 685 | return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && |
| 686 | (s->flags & SLAB_KMALLOC)); |
| 687 | } |
| 688 | |
| 689 | #ifdef CONFIG_SLUB_DEBUG |
| 690 | void skip_orig_size_check(struct kmem_cache *s, const void *object); |
| 691 | #endif |
| 692 | |
| 693 | #endif /* MM_SLAB_H */ |