mm/thp: add flag to enforce sysfs THP in hugepage_vma_check()
[linux-block.git] / mm / rmap.c
... / ...
CommitLineData
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
53 */
54
55#include <linux/mm.h>
56#include <linux/sched/mm.h>
57#include <linux/sched/task.h>
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
63#include <linux/ksm.h>
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
66#include <linux/export.h>
67#include <linux/memcontrol.h>
68#include <linux/mmu_notifier.h>
69#include <linux/migrate.h>
70#include <linux/hugetlb.h>
71#include <linux/huge_mm.h>
72#include <linux/backing-dev.h>
73#include <linux/page_idle.h>
74#include <linux/memremap.h>
75#include <linux/userfaultfd_k.h>
76#include <linux/mm_inline.h>
77
78#include <asm/tlbflush.h>
79
80#define CREATE_TRACE_POINTS
81#include <trace/events/tlb.h>
82#include <trace/events/migrate.h>
83
84#include "internal.h"
85
86static struct kmem_cache *anon_vma_cachep;
87static struct kmem_cache *anon_vma_chain_cachep;
88
89static inline struct anon_vma *anon_vma_alloc(void)
90{
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->degree = 1; /* Reference for first vma */
97 anon_vma->parent = anon_vma;
98 /*
99 * Initialise the anon_vma root to point to itself. If called
100 * from fork, the root will be reset to the parents anon_vma.
101 */
102 anon_vma->root = anon_vma;
103 }
104
105 return anon_vma;
106}
107
108static inline void anon_vma_free(struct anon_vma *anon_vma)
109{
110 VM_BUG_ON(atomic_read(&anon_vma->refcount));
111
112 /*
113 * Synchronize against folio_lock_anon_vma_read() such that
114 * we can safely hold the lock without the anon_vma getting
115 * freed.
116 *
117 * Relies on the full mb implied by the atomic_dec_and_test() from
118 * put_anon_vma() against the acquire barrier implied by
119 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
120 *
121 * folio_lock_anon_vma_read() VS put_anon_vma()
122 * down_read_trylock() atomic_dec_and_test()
123 * LOCK MB
124 * atomic_read() rwsem_is_locked()
125 *
126 * LOCK should suffice since the actual taking of the lock must
127 * happen _before_ what follows.
128 */
129 might_sleep();
130 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
131 anon_vma_lock_write(anon_vma);
132 anon_vma_unlock_write(anon_vma);
133 }
134
135 kmem_cache_free(anon_vma_cachep, anon_vma);
136}
137
138static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
139{
140 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
141}
142
143static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
144{
145 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
146}
147
148static void anon_vma_chain_link(struct vm_area_struct *vma,
149 struct anon_vma_chain *avc,
150 struct anon_vma *anon_vma)
151{
152 avc->vma = vma;
153 avc->anon_vma = anon_vma;
154 list_add(&avc->same_vma, &vma->anon_vma_chain);
155 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
156}
157
158/**
159 * __anon_vma_prepare - attach an anon_vma to a memory region
160 * @vma: the memory region in question
161 *
162 * This makes sure the memory mapping described by 'vma' has
163 * an 'anon_vma' attached to it, so that we can associate the
164 * anonymous pages mapped into it with that anon_vma.
165 *
166 * The common case will be that we already have one, which
167 * is handled inline by anon_vma_prepare(). But if
168 * not we either need to find an adjacent mapping that we
169 * can re-use the anon_vma from (very common when the only
170 * reason for splitting a vma has been mprotect()), or we
171 * allocate a new one.
172 *
173 * Anon-vma allocations are very subtle, because we may have
174 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
175 * and that may actually touch the rwsem even in the newly
176 * allocated vma (it depends on RCU to make sure that the
177 * anon_vma isn't actually destroyed).
178 *
179 * As a result, we need to do proper anon_vma locking even
180 * for the new allocation. At the same time, we do not want
181 * to do any locking for the common case of already having
182 * an anon_vma.
183 *
184 * This must be called with the mmap_lock held for reading.
185 */
186int __anon_vma_prepare(struct vm_area_struct *vma)
187{
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
190 struct anon_vma_chain *avc;
191
192 might_sleep();
193
194 avc = anon_vma_chain_alloc(GFP_KERNEL);
195 if (!avc)
196 goto out_enomem;
197
198 anon_vma = find_mergeable_anon_vma(vma);
199 allocated = NULL;
200 if (!anon_vma) {
201 anon_vma = anon_vma_alloc();
202 if (unlikely(!anon_vma))
203 goto out_enomem_free_avc;
204 allocated = anon_vma;
205 }
206
207 anon_vma_lock_write(anon_vma);
208 /* page_table_lock to protect against threads */
209 spin_lock(&mm->page_table_lock);
210 if (likely(!vma->anon_vma)) {
211 vma->anon_vma = anon_vma;
212 anon_vma_chain_link(vma, avc, anon_vma);
213 /* vma reference or self-parent link for new root */
214 anon_vma->degree++;
215 allocated = NULL;
216 avc = NULL;
217 }
218 spin_unlock(&mm->page_table_lock);
219 anon_vma_unlock_write(anon_vma);
220
221 if (unlikely(allocated))
222 put_anon_vma(allocated);
223 if (unlikely(avc))
224 anon_vma_chain_free(avc);
225
226 return 0;
227
228 out_enomem_free_avc:
229 anon_vma_chain_free(avc);
230 out_enomem:
231 return -ENOMEM;
232}
233
234/*
235 * This is a useful helper function for locking the anon_vma root as
236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
237 * have the same vma.
238 *
239 * Such anon_vma's should have the same root, so you'd expect to see
240 * just a single mutex_lock for the whole traversal.
241 */
242static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243{
244 struct anon_vma *new_root = anon_vma->root;
245 if (new_root != root) {
246 if (WARN_ON_ONCE(root))
247 up_write(&root->rwsem);
248 root = new_root;
249 down_write(&root->rwsem);
250 }
251 return root;
252}
253
254static inline void unlock_anon_vma_root(struct anon_vma *root)
255{
256 if (root)
257 up_write(&root->rwsem);
258}
259
260/*
261 * Attach the anon_vmas from src to dst.
262 * Returns 0 on success, -ENOMEM on failure.
263 *
264 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
265 * anon_vma_fork(). The first three want an exact copy of src, while the last
266 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
267 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
268 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
269 *
270 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
271 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
272 * This prevents degradation of anon_vma hierarchy to endless linear chain in
273 * case of constantly forking task. On the other hand, an anon_vma with more
274 * than one child isn't reused even if there was no alive vma, thus rmap
275 * walker has a good chance of avoiding scanning the whole hierarchy when it
276 * searches where page is mapped.
277 */
278int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
279{
280 struct anon_vma_chain *avc, *pavc;
281 struct anon_vma *root = NULL;
282
283 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
284 struct anon_vma *anon_vma;
285
286 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
287 if (unlikely(!avc)) {
288 unlock_anon_vma_root(root);
289 root = NULL;
290 avc = anon_vma_chain_alloc(GFP_KERNEL);
291 if (!avc)
292 goto enomem_failure;
293 }
294 anon_vma = pavc->anon_vma;
295 root = lock_anon_vma_root(root, anon_vma);
296 anon_vma_chain_link(dst, avc, anon_vma);
297
298 /*
299 * Reuse existing anon_vma if its degree lower than two,
300 * that means it has no vma and only one anon_vma child.
301 *
302 * Do not choose parent anon_vma, otherwise first child
303 * will always reuse it. Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma != src->anon_vma && anon_vma->degree < 2)
308 dst->anon_vma = anon_vma;
309 }
310 if (dst->anon_vma)
311 dst->anon_vma->degree++;
312 unlock_anon_vma_root(root);
313 return 0;
314
315 enomem_failure:
316 /*
317 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
318 * decremented in unlink_anon_vmas().
319 * We can safely do this because callers of anon_vma_clone() don't care
320 * about dst->anon_vma if anon_vma_clone() failed.
321 */
322 dst->anon_vma = NULL;
323 unlink_anon_vmas(dst);
324 return -ENOMEM;
325}
326
327/*
328 * Attach vma to its own anon_vma, as well as to the anon_vmas that
329 * the corresponding VMA in the parent process is attached to.
330 * Returns 0 on success, non-zero on failure.
331 */
332int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
333{
334 struct anon_vma_chain *avc;
335 struct anon_vma *anon_vma;
336 int error;
337
338 /* Don't bother if the parent process has no anon_vma here. */
339 if (!pvma->anon_vma)
340 return 0;
341
342 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
343 vma->anon_vma = NULL;
344
345 /*
346 * First, attach the new VMA to the parent VMA's anon_vmas,
347 * so rmap can find non-COWed pages in child processes.
348 */
349 error = anon_vma_clone(vma, pvma);
350 if (error)
351 return error;
352
353 /* An existing anon_vma has been reused, all done then. */
354 if (vma->anon_vma)
355 return 0;
356
357 /* Then add our own anon_vma. */
358 anon_vma = anon_vma_alloc();
359 if (!anon_vma)
360 goto out_error;
361 avc = anon_vma_chain_alloc(GFP_KERNEL);
362 if (!avc)
363 goto out_error_free_anon_vma;
364
365 /*
366 * The root anon_vma's rwsem is the lock actually used when we
367 * lock any of the anon_vmas in this anon_vma tree.
368 */
369 anon_vma->root = pvma->anon_vma->root;
370 anon_vma->parent = pvma->anon_vma;
371 /*
372 * With refcounts, an anon_vma can stay around longer than the
373 * process it belongs to. The root anon_vma needs to be pinned until
374 * this anon_vma is freed, because the lock lives in the root.
375 */
376 get_anon_vma(anon_vma->root);
377 /* Mark this anon_vma as the one where our new (COWed) pages go. */
378 vma->anon_vma = anon_vma;
379 anon_vma_lock_write(anon_vma);
380 anon_vma_chain_link(vma, avc, anon_vma);
381 anon_vma->parent->degree++;
382 anon_vma_unlock_write(anon_vma);
383
384 return 0;
385
386 out_error_free_anon_vma:
387 put_anon_vma(anon_vma);
388 out_error:
389 unlink_anon_vmas(vma);
390 return -ENOMEM;
391}
392
393void unlink_anon_vmas(struct vm_area_struct *vma)
394{
395 struct anon_vma_chain *avc, *next;
396 struct anon_vma *root = NULL;
397
398 /*
399 * Unlink each anon_vma chained to the VMA. This list is ordered
400 * from newest to oldest, ensuring the root anon_vma gets freed last.
401 */
402 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
403 struct anon_vma *anon_vma = avc->anon_vma;
404
405 root = lock_anon_vma_root(root, anon_vma);
406 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
407
408 /*
409 * Leave empty anon_vmas on the list - we'll need
410 * to free them outside the lock.
411 */
412 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
413 anon_vma->parent->degree--;
414 continue;
415 }
416
417 list_del(&avc->same_vma);
418 anon_vma_chain_free(avc);
419 }
420 if (vma->anon_vma) {
421 vma->anon_vma->degree--;
422
423 /*
424 * vma would still be needed after unlink, and anon_vma will be prepared
425 * when handle fault.
426 */
427 vma->anon_vma = NULL;
428 }
429 unlock_anon_vma_root(root);
430
431 /*
432 * Iterate the list once more, it now only contains empty and unlinked
433 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
434 * needing to write-acquire the anon_vma->root->rwsem.
435 */
436 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
437 struct anon_vma *anon_vma = avc->anon_vma;
438
439 VM_WARN_ON(anon_vma->degree);
440 put_anon_vma(anon_vma);
441
442 list_del(&avc->same_vma);
443 anon_vma_chain_free(avc);
444 }
445}
446
447static void anon_vma_ctor(void *data)
448{
449 struct anon_vma *anon_vma = data;
450
451 init_rwsem(&anon_vma->rwsem);
452 atomic_set(&anon_vma->refcount, 0);
453 anon_vma->rb_root = RB_ROOT_CACHED;
454}
455
456void __init anon_vma_init(void)
457{
458 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
459 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
460 anon_vma_ctor);
461 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
462 SLAB_PANIC|SLAB_ACCOUNT);
463}
464
465/*
466 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
467 *
468 * Since there is no serialization what so ever against page_remove_rmap()
469 * the best this function can do is return a refcount increased anon_vma
470 * that might have been relevant to this page.
471 *
472 * The page might have been remapped to a different anon_vma or the anon_vma
473 * returned may already be freed (and even reused).
474 *
475 * In case it was remapped to a different anon_vma, the new anon_vma will be a
476 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
477 * ensure that any anon_vma obtained from the page will still be valid for as
478 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
479 *
480 * All users of this function must be very careful when walking the anon_vma
481 * chain and verify that the page in question is indeed mapped in it
482 * [ something equivalent to page_mapped_in_vma() ].
483 *
484 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
485 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
486 * if there is a mapcount, we can dereference the anon_vma after observing
487 * those.
488 */
489struct anon_vma *page_get_anon_vma(struct page *page)
490{
491 struct anon_vma *anon_vma = NULL;
492 unsigned long anon_mapping;
493
494 rcu_read_lock();
495 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
496 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
497 goto out;
498 if (!page_mapped(page))
499 goto out;
500
501 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
502 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
503 anon_vma = NULL;
504 goto out;
505 }
506
507 /*
508 * If this page is still mapped, then its anon_vma cannot have been
509 * freed. But if it has been unmapped, we have no security against the
510 * anon_vma structure being freed and reused (for another anon_vma:
511 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
512 * above cannot corrupt).
513 */
514 if (!page_mapped(page)) {
515 rcu_read_unlock();
516 put_anon_vma(anon_vma);
517 return NULL;
518 }
519out:
520 rcu_read_unlock();
521
522 return anon_vma;
523}
524
525/*
526 * Similar to page_get_anon_vma() except it locks the anon_vma.
527 *
528 * Its a little more complex as it tries to keep the fast path to a single
529 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
530 * reference like with page_get_anon_vma() and then block on the mutex
531 * on !rwc->try_lock case.
532 */
533struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
534 struct rmap_walk_control *rwc)
535{
536 struct anon_vma *anon_vma = NULL;
537 struct anon_vma *root_anon_vma;
538 unsigned long anon_mapping;
539
540 rcu_read_lock();
541 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
542 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
543 goto out;
544 if (!folio_mapped(folio))
545 goto out;
546
547 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
548 root_anon_vma = READ_ONCE(anon_vma->root);
549 if (down_read_trylock(&root_anon_vma->rwsem)) {
550 /*
551 * If the folio is still mapped, then this anon_vma is still
552 * its anon_vma, and holding the mutex ensures that it will
553 * not go away, see anon_vma_free().
554 */
555 if (!folio_mapped(folio)) {
556 up_read(&root_anon_vma->rwsem);
557 anon_vma = NULL;
558 }
559 goto out;
560 }
561
562 if (rwc && rwc->try_lock) {
563 anon_vma = NULL;
564 rwc->contended = true;
565 goto out;
566 }
567
568 /* trylock failed, we got to sleep */
569 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
570 anon_vma = NULL;
571 goto out;
572 }
573
574 if (!folio_mapped(folio)) {
575 rcu_read_unlock();
576 put_anon_vma(anon_vma);
577 return NULL;
578 }
579
580 /* we pinned the anon_vma, its safe to sleep */
581 rcu_read_unlock();
582 anon_vma_lock_read(anon_vma);
583
584 if (atomic_dec_and_test(&anon_vma->refcount)) {
585 /*
586 * Oops, we held the last refcount, release the lock
587 * and bail -- can't simply use put_anon_vma() because
588 * we'll deadlock on the anon_vma_lock_write() recursion.
589 */
590 anon_vma_unlock_read(anon_vma);
591 __put_anon_vma(anon_vma);
592 anon_vma = NULL;
593 }
594
595 return anon_vma;
596
597out:
598 rcu_read_unlock();
599 return anon_vma;
600}
601
602void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
603{
604 anon_vma_unlock_read(anon_vma);
605}
606
607#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608/*
609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610 * important if a PTE was dirty when it was unmapped that it's flushed
611 * before any IO is initiated on the page to prevent lost writes. Similarly,
612 * it must be flushed before freeing to prevent data leakage.
613 */
614void try_to_unmap_flush(void)
615{
616 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
617
618 if (!tlb_ubc->flush_required)
619 return;
620
621 arch_tlbbatch_flush(&tlb_ubc->arch);
622 tlb_ubc->flush_required = false;
623 tlb_ubc->writable = false;
624}
625
626/* Flush iff there are potentially writable TLB entries that can race with IO */
627void try_to_unmap_flush_dirty(void)
628{
629 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630
631 if (tlb_ubc->writable)
632 try_to_unmap_flush();
633}
634
635/*
636 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638 */
639#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
640#define TLB_FLUSH_BATCH_PENDING_MASK \
641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642#define TLB_FLUSH_BATCH_PENDING_LARGE \
643 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
644
645static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
646{
647 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
648 int batch, nbatch;
649
650 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
651 tlb_ubc->flush_required = true;
652
653 /*
654 * Ensure compiler does not re-order the setting of tlb_flush_batched
655 * before the PTE is cleared.
656 */
657 barrier();
658 batch = atomic_read(&mm->tlb_flush_batched);
659retry:
660 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
661 /*
662 * Prevent `pending' from catching up with `flushed' because of
663 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
664 * `pending' becomes large.
665 */
666 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
667 if (nbatch != batch) {
668 batch = nbatch;
669 goto retry;
670 }
671 } else {
672 atomic_inc(&mm->tlb_flush_batched);
673 }
674
675 /*
676 * If the PTE was dirty then it's best to assume it's writable. The
677 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
678 * before the page is queued for IO.
679 */
680 if (writable)
681 tlb_ubc->writable = true;
682}
683
684/*
685 * Returns true if the TLB flush should be deferred to the end of a batch of
686 * unmap operations to reduce IPIs.
687 */
688static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
689{
690 bool should_defer = false;
691
692 if (!(flags & TTU_BATCH_FLUSH))
693 return false;
694
695 /* If remote CPUs need to be flushed then defer batch the flush */
696 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
697 should_defer = true;
698 put_cpu();
699
700 return should_defer;
701}
702
703/*
704 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
705 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
706 * operation such as mprotect or munmap to race between reclaim unmapping
707 * the page and flushing the page. If this race occurs, it potentially allows
708 * access to data via a stale TLB entry. Tracking all mm's that have TLB
709 * batching in flight would be expensive during reclaim so instead track
710 * whether TLB batching occurred in the past and if so then do a flush here
711 * if required. This will cost one additional flush per reclaim cycle paid
712 * by the first operation at risk such as mprotect and mumap.
713 *
714 * This must be called under the PTL so that an access to tlb_flush_batched
715 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
716 * via the PTL.
717 */
718void flush_tlb_batched_pending(struct mm_struct *mm)
719{
720 int batch = atomic_read(&mm->tlb_flush_batched);
721 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
722 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
723
724 if (pending != flushed) {
725 flush_tlb_mm(mm);
726 /*
727 * If the new TLB flushing is pending during flushing, leave
728 * mm->tlb_flush_batched as is, to avoid losing flushing.
729 */
730 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
731 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
732 }
733}
734#else
735static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
736{
737}
738
739static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
740{
741 return false;
742}
743#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
744
745/*
746 * At what user virtual address is page expected in vma?
747 * Caller should check the page is actually part of the vma.
748 */
749unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
750{
751 struct folio *folio = page_folio(page);
752 if (folio_test_anon(folio)) {
753 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
754 /*
755 * Note: swapoff's unuse_vma() is more efficient with this
756 * check, and needs it to match anon_vma when KSM is active.
757 */
758 if (!vma->anon_vma || !page__anon_vma ||
759 vma->anon_vma->root != page__anon_vma->root)
760 return -EFAULT;
761 } else if (!vma->vm_file) {
762 return -EFAULT;
763 } else if (vma->vm_file->f_mapping != folio->mapping) {
764 return -EFAULT;
765 }
766
767 return vma_address(page, vma);
768}
769
770pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
771{
772 pgd_t *pgd;
773 p4d_t *p4d;
774 pud_t *pud;
775 pmd_t *pmd = NULL;
776 pmd_t pmde;
777
778 pgd = pgd_offset(mm, address);
779 if (!pgd_present(*pgd))
780 goto out;
781
782 p4d = p4d_offset(pgd, address);
783 if (!p4d_present(*p4d))
784 goto out;
785
786 pud = pud_offset(p4d, address);
787 if (!pud_present(*pud))
788 goto out;
789
790 pmd = pmd_offset(pud, address);
791 /*
792 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
793 * without holding anon_vma lock for write. So when looking for a
794 * genuine pmde (in which to find pte), test present and !THP together.
795 */
796 pmde = *pmd;
797 barrier();
798 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
799 pmd = NULL;
800out:
801 return pmd;
802}
803
804struct folio_referenced_arg {
805 int mapcount;
806 int referenced;
807 unsigned long vm_flags;
808 struct mem_cgroup *memcg;
809};
810/*
811 * arg: folio_referenced_arg will be passed
812 */
813static bool folio_referenced_one(struct folio *folio,
814 struct vm_area_struct *vma, unsigned long address, void *arg)
815{
816 struct folio_referenced_arg *pra = arg;
817 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
818 int referenced = 0;
819
820 while (page_vma_mapped_walk(&pvmw)) {
821 address = pvmw.address;
822
823 if ((vma->vm_flags & VM_LOCKED) &&
824 (!folio_test_large(folio) || !pvmw.pte)) {
825 /* Restore the mlock which got missed */
826 mlock_vma_folio(folio, vma, !pvmw.pte);
827 page_vma_mapped_walk_done(&pvmw);
828 pra->vm_flags |= VM_LOCKED;
829 return false; /* To break the loop */
830 }
831
832 if (pvmw.pte) {
833 if (ptep_clear_flush_young_notify(vma, address,
834 pvmw.pte)) {
835 /*
836 * Don't treat a reference through
837 * a sequentially read mapping as such.
838 * If the folio has been used in another mapping,
839 * we will catch it; if this other mapping is
840 * already gone, the unmap path will have set
841 * the referenced flag or activated the folio.
842 */
843 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
844 referenced++;
845 }
846 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
847 if (pmdp_clear_flush_young_notify(vma, address,
848 pvmw.pmd))
849 referenced++;
850 } else {
851 /* unexpected pmd-mapped folio? */
852 WARN_ON_ONCE(1);
853 }
854
855 pra->mapcount--;
856 }
857
858 if (referenced)
859 folio_clear_idle(folio);
860 if (folio_test_clear_young(folio))
861 referenced++;
862
863 if (referenced) {
864 pra->referenced++;
865 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
866 }
867
868 if (!pra->mapcount)
869 return false; /* To break the loop */
870
871 return true;
872}
873
874static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
875{
876 struct folio_referenced_arg *pra = arg;
877 struct mem_cgroup *memcg = pra->memcg;
878
879 if (!mm_match_cgroup(vma->vm_mm, memcg))
880 return true;
881
882 return false;
883}
884
885/**
886 * folio_referenced() - Test if the folio was referenced.
887 * @folio: The folio to test.
888 * @is_locked: Caller holds lock on the folio.
889 * @memcg: target memory cgroup
890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
891 *
892 * Quick test_and_clear_referenced for all mappings of a folio,
893 *
894 * Return: The number of mappings which referenced the folio. Return -1 if
895 * the function bailed out due to rmap lock contention.
896 */
897int folio_referenced(struct folio *folio, int is_locked,
898 struct mem_cgroup *memcg, unsigned long *vm_flags)
899{
900 int we_locked = 0;
901 struct folio_referenced_arg pra = {
902 .mapcount = folio_mapcount(folio),
903 .memcg = memcg,
904 };
905 struct rmap_walk_control rwc = {
906 .rmap_one = folio_referenced_one,
907 .arg = (void *)&pra,
908 .anon_lock = folio_lock_anon_vma_read,
909 .try_lock = true,
910 };
911
912 *vm_flags = 0;
913 if (!pra.mapcount)
914 return 0;
915
916 if (!folio_raw_mapping(folio))
917 return 0;
918
919 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
920 we_locked = folio_trylock(folio);
921 if (!we_locked)
922 return 1;
923 }
924
925 /*
926 * If we are reclaiming on behalf of a cgroup, skip
927 * counting on behalf of references from different
928 * cgroups
929 */
930 if (memcg) {
931 rwc.invalid_vma = invalid_folio_referenced_vma;
932 }
933
934 rmap_walk(folio, &rwc);
935 *vm_flags = pra.vm_flags;
936
937 if (we_locked)
938 folio_unlock(folio);
939
940 return rwc.contended ? -1 : pra.referenced;
941}
942
943static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
944{
945 int cleaned = 0;
946 struct vm_area_struct *vma = pvmw->vma;
947 struct mmu_notifier_range range;
948 unsigned long address = pvmw->address;
949
950 /*
951 * We have to assume the worse case ie pmd for invalidation. Note that
952 * the folio can not be freed from this function.
953 */
954 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
955 0, vma, vma->vm_mm, address,
956 vma_address_end(pvmw));
957 mmu_notifier_invalidate_range_start(&range);
958
959 while (page_vma_mapped_walk(pvmw)) {
960 int ret = 0;
961
962 address = pvmw->address;
963 if (pvmw->pte) {
964 pte_t entry;
965 pte_t *pte = pvmw->pte;
966
967 if (!pte_dirty(*pte) && !pte_write(*pte))
968 continue;
969
970 flush_cache_page(vma, address, pte_pfn(*pte));
971 entry = ptep_clear_flush(vma, address, pte);
972 entry = pte_wrprotect(entry);
973 entry = pte_mkclean(entry);
974 set_pte_at(vma->vm_mm, address, pte, entry);
975 ret = 1;
976 } else {
977#ifdef CONFIG_TRANSPARENT_HUGEPAGE
978 pmd_t *pmd = pvmw->pmd;
979 pmd_t entry;
980
981 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
982 continue;
983
984 flush_cache_range(vma, address,
985 address + HPAGE_PMD_SIZE);
986 entry = pmdp_invalidate(vma, address, pmd);
987 entry = pmd_wrprotect(entry);
988 entry = pmd_mkclean(entry);
989 set_pmd_at(vma->vm_mm, address, pmd, entry);
990 ret = 1;
991#else
992 /* unexpected pmd-mapped folio? */
993 WARN_ON_ONCE(1);
994#endif
995 }
996
997 /*
998 * No need to call mmu_notifier_invalidate_range() as we are
999 * downgrading page table protection not changing it to point
1000 * to a new page.
1001 *
1002 * See Documentation/mm/mmu_notifier.rst
1003 */
1004 if (ret)
1005 cleaned++;
1006 }
1007
1008 mmu_notifier_invalidate_range_end(&range);
1009
1010 return cleaned;
1011}
1012
1013static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1014 unsigned long address, void *arg)
1015{
1016 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1017 int *cleaned = arg;
1018
1019 *cleaned += page_vma_mkclean_one(&pvmw);
1020
1021 return true;
1022}
1023
1024static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1025{
1026 if (vma->vm_flags & VM_SHARED)
1027 return false;
1028
1029 return true;
1030}
1031
1032int folio_mkclean(struct folio *folio)
1033{
1034 int cleaned = 0;
1035 struct address_space *mapping;
1036 struct rmap_walk_control rwc = {
1037 .arg = (void *)&cleaned,
1038 .rmap_one = page_mkclean_one,
1039 .invalid_vma = invalid_mkclean_vma,
1040 };
1041
1042 BUG_ON(!folio_test_locked(folio));
1043
1044 if (!folio_mapped(folio))
1045 return 0;
1046
1047 mapping = folio_mapping(folio);
1048 if (!mapping)
1049 return 0;
1050
1051 rmap_walk(folio, &rwc);
1052
1053 return cleaned;
1054}
1055EXPORT_SYMBOL_GPL(folio_mkclean);
1056
1057/**
1058 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1059 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1060 * within the @vma of shared mappings. And since clean PTEs
1061 * should also be readonly, write protects them too.
1062 * @pfn: start pfn.
1063 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1064 * @pgoff: page offset that the @pfn mapped with.
1065 * @vma: vma that @pfn mapped within.
1066 *
1067 * Returns the number of cleaned PTEs (including PMDs).
1068 */
1069int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1070 struct vm_area_struct *vma)
1071{
1072 struct page_vma_mapped_walk pvmw = {
1073 .pfn = pfn,
1074 .nr_pages = nr_pages,
1075 .pgoff = pgoff,
1076 .vma = vma,
1077 .flags = PVMW_SYNC,
1078 };
1079
1080 if (invalid_mkclean_vma(vma, NULL))
1081 return 0;
1082
1083 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1084 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1085
1086 return page_vma_mkclean_one(&pvmw);
1087}
1088
1089/**
1090 * page_move_anon_rmap - move a page to our anon_vma
1091 * @page: the page to move to our anon_vma
1092 * @vma: the vma the page belongs to
1093 *
1094 * When a page belongs exclusively to one process after a COW event,
1095 * that page can be moved into the anon_vma that belongs to just that
1096 * process, so the rmap code will not search the parent or sibling
1097 * processes.
1098 */
1099void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1100{
1101 struct anon_vma *anon_vma = vma->anon_vma;
1102 struct page *subpage = page;
1103
1104 page = compound_head(page);
1105
1106 VM_BUG_ON_PAGE(!PageLocked(page), page);
1107 VM_BUG_ON_VMA(!anon_vma, vma);
1108
1109 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1110 /*
1111 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1112 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1113 * folio_test_anon()) will not see one without the other.
1114 */
1115 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1116 SetPageAnonExclusive(subpage);
1117}
1118
1119/**
1120 * __page_set_anon_rmap - set up new anonymous rmap
1121 * @page: Page or Hugepage to add to rmap
1122 * @vma: VM area to add page to.
1123 * @address: User virtual address of the mapping
1124 * @exclusive: the page is exclusively owned by the current process
1125 */
1126static void __page_set_anon_rmap(struct page *page,
1127 struct vm_area_struct *vma, unsigned long address, int exclusive)
1128{
1129 struct anon_vma *anon_vma = vma->anon_vma;
1130
1131 BUG_ON(!anon_vma);
1132
1133 if (PageAnon(page))
1134 goto out;
1135
1136 /*
1137 * If the page isn't exclusively mapped into this vma,
1138 * we must use the _oldest_ possible anon_vma for the
1139 * page mapping!
1140 */
1141 if (!exclusive)
1142 anon_vma = anon_vma->root;
1143
1144 /*
1145 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1146 * Make sure the compiler doesn't split the stores of anon_vma and
1147 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1148 * could mistake the mapping for a struct address_space and crash.
1149 */
1150 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1151 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1152 page->index = linear_page_index(vma, address);
1153out:
1154 if (exclusive)
1155 SetPageAnonExclusive(page);
1156}
1157
1158/**
1159 * __page_check_anon_rmap - sanity check anonymous rmap addition
1160 * @page: the page to add the mapping to
1161 * @vma: the vm area in which the mapping is added
1162 * @address: the user virtual address mapped
1163 */
1164static void __page_check_anon_rmap(struct page *page,
1165 struct vm_area_struct *vma, unsigned long address)
1166{
1167 struct folio *folio = page_folio(page);
1168 /*
1169 * The page's anon-rmap details (mapping and index) are guaranteed to
1170 * be set up correctly at this point.
1171 *
1172 * We have exclusion against page_add_anon_rmap because the caller
1173 * always holds the page locked.
1174 *
1175 * We have exclusion against page_add_new_anon_rmap because those pages
1176 * are initially only visible via the pagetables, and the pte is locked
1177 * over the call to page_add_new_anon_rmap.
1178 */
1179 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1180 folio);
1181 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1182 page);
1183}
1184
1185/**
1186 * page_add_anon_rmap - add pte mapping to an anonymous page
1187 * @page: the page to add the mapping to
1188 * @vma: the vm area in which the mapping is added
1189 * @address: the user virtual address mapped
1190 * @flags: the rmap flags
1191 *
1192 * The caller needs to hold the pte lock, and the page must be locked in
1193 * the anon_vma case: to serialize mapping,index checking after setting,
1194 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1195 * (but PageKsm is never downgraded to PageAnon).
1196 */
1197void page_add_anon_rmap(struct page *page,
1198 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1199{
1200 bool compound = flags & RMAP_COMPOUND;
1201 bool first;
1202
1203 if (unlikely(PageKsm(page)))
1204 lock_page_memcg(page);
1205 else
1206 VM_BUG_ON_PAGE(!PageLocked(page), page);
1207
1208 if (compound) {
1209 atomic_t *mapcount;
1210 VM_BUG_ON_PAGE(!PageLocked(page), page);
1211 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1212 mapcount = compound_mapcount_ptr(page);
1213 first = atomic_inc_and_test(mapcount);
1214 } else {
1215 first = atomic_inc_and_test(&page->_mapcount);
1216 }
1217 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1218 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1219
1220 if (first) {
1221 int nr = compound ? thp_nr_pages(page) : 1;
1222 /*
1223 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1224 * these counters are not modified in interrupt context, and
1225 * pte lock(a spinlock) is held, which implies preemption
1226 * disabled.
1227 */
1228 if (compound)
1229 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1230 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1231 }
1232
1233 if (unlikely(PageKsm(page)))
1234 unlock_page_memcg(page);
1235
1236 /* address might be in next vma when migration races vma_adjust */
1237 else if (first)
1238 __page_set_anon_rmap(page, vma, address,
1239 !!(flags & RMAP_EXCLUSIVE));
1240 else
1241 __page_check_anon_rmap(page, vma, address);
1242
1243 mlock_vma_page(page, vma, compound);
1244}
1245
1246/**
1247 * page_add_new_anon_rmap - add mapping to a new anonymous page
1248 * @page: the page to add the mapping to
1249 * @vma: the vm area in which the mapping is added
1250 * @address: the user virtual address mapped
1251 *
1252 * If it's a compound page, it is accounted as a compound page. As the page
1253 * is new, it's assume to get mapped exclusively by a single process.
1254 *
1255 * Same as page_add_anon_rmap but must only be called on *new* pages.
1256 * This means the inc-and-test can be bypassed.
1257 * Page does not have to be locked.
1258 */
1259void page_add_new_anon_rmap(struct page *page,
1260 struct vm_area_struct *vma, unsigned long address)
1261{
1262 const bool compound = PageCompound(page);
1263 int nr = compound ? thp_nr_pages(page) : 1;
1264
1265 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1266 __SetPageSwapBacked(page);
1267 if (compound) {
1268 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1269 /* increment count (starts at -1) */
1270 atomic_set(compound_mapcount_ptr(page), 0);
1271 atomic_set(compound_pincount_ptr(page), 0);
1272
1273 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1274 } else {
1275 /* increment count (starts at -1) */
1276 atomic_set(&page->_mapcount, 0);
1277 }
1278 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1279 __page_set_anon_rmap(page, vma, address, 1);
1280}
1281
1282/**
1283 * page_add_file_rmap - add pte mapping to a file page
1284 * @page: the page to add the mapping to
1285 * @vma: the vm area in which the mapping is added
1286 * @compound: charge the page as compound or small page
1287 *
1288 * The caller needs to hold the pte lock.
1289 */
1290void page_add_file_rmap(struct page *page,
1291 struct vm_area_struct *vma, bool compound)
1292{
1293 int i, nr = 0;
1294
1295 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1296 lock_page_memcg(page);
1297 if (compound && PageTransHuge(page)) {
1298 int nr_pages = thp_nr_pages(page);
1299
1300 for (i = 0; i < nr_pages; i++) {
1301 if (atomic_inc_and_test(&page[i]._mapcount))
1302 nr++;
1303 }
1304 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1305 goto out;
1306
1307 /*
1308 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1309 * but page lock is held by all page_add_file_rmap() compound
1310 * callers, and SetPageDoubleMap below warns if !PageLocked:
1311 * so here is a place that DoubleMap can be safely cleared.
1312 */
1313 VM_WARN_ON_ONCE(!PageLocked(page));
1314 if (nr == nr_pages && PageDoubleMap(page))
1315 ClearPageDoubleMap(page);
1316
1317 if (PageSwapBacked(page))
1318 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1319 nr_pages);
1320 else
1321 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1322 nr_pages);
1323 } else {
1324 if (PageTransCompound(page) && page_mapping(page)) {
1325 VM_WARN_ON_ONCE(!PageLocked(page));
1326 SetPageDoubleMap(compound_head(page));
1327 }
1328 if (atomic_inc_and_test(&page->_mapcount))
1329 nr++;
1330 }
1331out:
1332 if (nr)
1333 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1334 unlock_page_memcg(page);
1335
1336 mlock_vma_page(page, vma, compound);
1337}
1338
1339static void page_remove_file_rmap(struct page *page, bool compound)
1340{
1341 int i, nr = 0;
1342
1343 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1344
1345 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1346 if (unlikely(PageHuge(page))) {
1347 /* hugetlb pages are always mapped with pmds */
1348 atomic_dec(compound_mapcount_ptr(page));
1349 return;
1350 }
1351
1352 /* page still mapped by someone else? */
1353 if (compound && PageTransHuge(page)) {
1354 int nr_pages = thp_nr_pages(page);
1355
1356 for (i = 0; i < nr_pages; i++) {
1357 if (atomic_add_negative(-1, &page[i]._mapcount))
1358 nr++;
1359 }
1360 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1361 goto out;
1362 if (PageSwapBacked(page))
1363 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1364 -nr_pages);
1365 else
1366 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1367 -nr_pages);
1368 } else {
1369 if (atomic_add_negative(-1, &page->_mapcount))
1370 nr++;
1371 }
1372out:
1373 if (nr)
1374 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1375}
1376
1377static void page_remove_anon_compound_rmap(struct page *page)
1378{
1379 int i, nr;
1380
1381 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1382 return;
1383
1384 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1385 if (unlikely(PageHuge(page)))
1386 return;
1387
1388 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1389 return;
1390
1391 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1392
1393 if (TestClearPageDoubleMap(page)) {
1394 /*
1395 * Subpages can be mapped with PTEs too. Check how many of
1396 * them are still mapped.
1397 */
1398 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1399 if (atomic_add_negative(-1, &page[i]._mapcount))
1400 nr++;
1401 }
1402
1403 /*
1404 * Queue the page for deferred split if at least one small
1405 * page of the compound page is unmapped, but at least one
1406 * small page is still mapped.
1407 */
1408 if (nr && nr < thp_nr_pages(page))
1409 deferred_split_huge_page(page);
1410 } else {
1411 nr = thp_nr_pages(page);
1412 }
1413
1414 if (nr)
1415 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1416}
1417
1418/**
1419 * page_remove_rmap - take down pte mapping from a page
1420 * @page: page to remove mapping from
1421 * @vma: the vm area from which the mapping is removed
1422 * @compound: uncharge the page as compound or small page
1423 *
1424 * The caller needs to hold the pte lock.
1425 */
1426void page_remove_rmap(struct page *page,
1427 struct vm_area_struct *vma, bool compound)
1428{
1429 lock_page_memcg(page);
1430
1431 if (!PageAnon(page)) {
1432 page_remove_file_rmap(page, compound);
1433 goto out;
1434 }
1435
1436 if (compound) {
1437 page_remove_anon_compound_rmap(page);
1438 goto out;
1439 }
1440
1441 /* page still mapped by someone else? */
1442 if (!atomic_add_negative(-1, &page->_mapcount))
1443 goto out;
1444
1445 /*
1446 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1447 * these counters are not modified in interrupt context, and
1448 * pte lock(a spinlock) is held, which implies preemption disabled.
1449 */
1450 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1451
1452 if (PageTransCompound(page))
1453 deferred_split_huge_page(compound_head(page));
1454
1455 /*
1456 * It would be tidy to reset the PageAnon mapping here,
1457 * but that might overwrite a racing page_add_anon_rmap
1458 * which increments mapcount after us but sets mapping
1459 * before us: so leave the reset to free_unref_page,
1460 * and remember that it's only reliable while mapped.
1461 * Leaving it set also helps swapoff to reinstate ptes
1462 * faster for those pages still in swapcache.
1463 */
1464out:
1465 unlock_page_memcg(page);
1466
1467 munlock_vma_page(page, vma, compound);
1468}
1469
1470/*
1471 * @arg: enum ttu_flags will be passed to this argument
1472 */
1473static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1474 unsigned long address, void *arg)
1475{
1476 struct mm_struct *mm = vma->vm_mm;
1477 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1478 pte_t pteval;
1479 struct page *subpage;
1480 bool anon_exclusive, ret = true;
1481 struct mmu_notifier_range range;
1482 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1483
1484 /*
1485 * When racing against e.g. zap_pte_range() on another cpu,
1486 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1487 * try_to_unmap() may return before page_mapped() has become false,
1488 * if page table locking is skipped: use TTU_SYNC to wait for that.
1489 */
1490 if (flags & TTU_SYNC)
1491 pvmw.flags = PVMW_SYNC;
1492
1493 if (flags & TTU_SPLIT_HUGE_PMD)
1494 split_huge_pmd_address(vma, address, false, folio);
1495
1496 /*
1497 * For THP, we have to assume the worse case ie pmd for invalidation.
1498 * For hugetlb, it could be much worse if we need to do pud
1499 * invalidation in the case of pmd sharing.
1500 *
1501 * Note that the folio can not be freed in this function as call of
1502 * try_to_unmap() must hold a reference on the folio.
1503 */
1504 range.end = vma_address_end(&pvmw);
1505 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1506 address, range.end);
1507 if (folio_test_hugetlb(folio)) {
1508 /*
1509 * If sharing is possible, start and end will be adjusted
1510 * accordingly.
1511 */
1512 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1513 &range.end);
1514 }
1515 mmu_notifier_invalidate_range_start(&range);
1516
1517 while (page_vma_mapped_walk(&pvmw)) {
1518 /* Unexpected PMD-mapped THP? */
1519 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1520
1521 /*
1522 * If the folio is in an mlock()d vma, we must not swap it out.
1523 */
1524 if (!(flags & TTU_IGNORE_MLOCK) &&
1525 (vma->vm_flags & VM_LOCKED)) {
1526 /* Restore the mlock which got missed */
1527 mlock_vma_folio(folio, vma, false);
1528 page_vma_mapped_walk_done(&pvmw);
1529 ret = false;
1530 break;
1531 }
1532
1533 subpage = folio_page(folio,
1534 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1535 address = pvmw.address;
1536 anon_exclusive = folio_test_anon(folio) &&
1537 PageAnonExclusive(subpage);
1538
1539 if (folio_test_hugetlb(folio)) {
1540 bool anon = folio_test_anon(folio);
1541
1542 /*
1543 * The try_to_unmap() is only passed a hugetlb page
1544 * in the case where the hugetlb page is poisoned.
1545 */
1546 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1547 /*
1548 * huge_pmd_unshare may unmap an entire PMD page.
1549 * There is no way of knowing exactly which PMDs may
1550 * be cached for this mm, so we must flush them all.
1551 * start/end were already adjusted above to cover this
1552 * range.
1553 */
1554 flush_cache_range(vma, range.start, range.end);
1555
1556 /*
1557 * To call huge_pmd_unshare, i_mmap_rwsem must be
1558 * held in write mode. Caller needs to explicitly
1559 * do this outside rmap routines.
1560 */
1561 VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
1562 if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1563 flush_tlb_range(vma, range.start, range.end);
1564 mmu_notifier_invalidate_range(mm, range.start,
1565 range.end);
1566
1567 /*
1568 * The ref count of the PMD page was dropped
1569 * which is part of the way map counting
1570 * is done for shared PMDs. Return 'true'
1571 * here. When there is no other sharing,
1572 * huge_pmd_unshare returns false and we will
1573 * unmap the actual page and drop map count
1574 * to zero.
1575 */
1576 page_vma_mapped_walk_done(&pvmw);
1577 break;
1578 }
1579 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1580 } else {
1581 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1582 /*
1583 * Nuke the page table entry. When having to clear
1584 * PageAnonExclusive(), we always have to flush.
1585 */
1586 if (should_defer_flush(mm, flags) && !anon_exclusive) {
1587 /*
1588 * We clear the PTE but do not flush so potentially
1589 * a remote CPU could still be writing to the folio.
1590 * If the entry was previously clean then the
1591 * architecture must guarantee that a clear->dirty
1592 * transition on a cached TLB entry is written through
1593 * and traps if the PTE is unmapped.
1594 */
1595 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1596
1597 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1598 } else {
1599 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1600 }
1601 }
1602
1603 /*
1604 * Now the pte is cleared. If this pte was uffd-wp armed,
1605 * we may want to replace a none pte with a marker pte if
1606 * it's file-backed, so we don't lose the tracking info.
1607 */
1608 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1609
1610 /* Set the dirty flag on the folio now the pte is gone. */
1611 if (pte_dirty(pteval))
1612 folio_mark_dirty(folio);
1613
1614 /* Update high watermark before we lower rss */
1615 update_hiwater_rss(mm);
1616
1617 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1618 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1619 if (folio_test_hugetlb(folio)) {
1620 hugetlb_count_sub(folio_nr_pages(folio), mm);
1621 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1622 } else {
1623 dec_mm_counter(mm, mm_counter(&folio->page));
1624 set_pte_at(mm, address, pvmw.pte, pteval);
1625 }
1626
1627 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1628 /*
1629 * The guest indicated that the page content is of no
1630 * interest anymore. Simply discard the pte, vmscan
1631 * will take care of the rest.
1632 * A future reference will then fault in a new zero
1633 * page. When userfaultfd is active, we must not drop
1634 * this page though, as its main user (postcopy
1635 * migration) will not expect userfaults on already
1636 * copied pages.
1637 */
1638 dec_mm_counter(mm, mm_counter(&folio->page));
1639 /* We have to invalidate as we cleared the pte */
1640 mmu_notifier_invalidate_range(mm, address,
1641 address + PAGE_SIZE);
1642 } else if (folio_test_anon(folio)) {
1643 swp_entry_t entry = { .val = page_private(subpage) };
1644 pte_t swp_pte;
1645 /*
1646 * Store the swap location in the pte.
1647 * See handle_pte_fault() ...
1648 */
1649 if (unlikely(folio_test_swapbacked(folio) !=
1650 folio_test_swapcache(folio))) {
1651 WARN_ON_ONCE(1);
1652 ret = false;
1653 /* We have to invalidate as we cleared the pte */
1654 mmu_notifier_invalidate_range(mm, address,
1655 address + PAGE_SIZE);
1656 page_vma_mapped_walk_done(&pvmw);
1657 break;
1658 }
1659
1660 /* MADV_FREE page check */
1661 if (!folio_test_swapbacked(folio)) {
1662 int ref_count, map_count;
1663
1664 /*
1665 * Synchronize with gup_pte_range():
1666 * - clear PTE; barrier; read refcount
1667 * - inc refcount; barrier; read PTE
1668 */
1669 smp_mb();
1670
1671 ref_count = folio_ref_count(folio);
1672 map_count = folio_mapcount(folio);
1673
1674 /*
1675 * Order reads for page refcount and dirty flag
1676 * (see comments in __remove_mapping()).
1677 */
1678 smp_rmb();
1679
1680 /*
1681 * The only page refs must be one from isolation
1682 * plus the rmap(s) (dropped by discard:).
1683 */
1684 if (ref_count == 1 + map_count &&
1685 !folio_test_dirty(folio)) {
1686 /* Invalidate as we cleared the pte */
1687 mmu_notifier_invalidate_range(mm,
1688 address, address + PAGE_SIZE);
1689 dec_mm_counter(mm, MM_ANONPAGES);
1690 goto discard;
1691 }
1692
1693 /*
1694 * If the folio was redirtied, it cannot be
1695 * discarded. Remap the page to page table.
1696 */
1697 set_pte_at(mm, address, pvmw.pte, pteval);
1698 folio_set_swapbacked(folio);
1699 ret = false;
1700 page_vma_mapped_walk_done(&pvmw);
1701 break;
1702 }
1703
1704 if (swap_duplicate(entry) < 0) {
1705 set_pte_at(mm, address, pvmw.pte, pteval);
1706 ret = false;
1707 page_vma_mapped_walk_done(&pvmw);
1708 break;
1709 }
1710 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1711 swap_free(entry);
1712 set_pte_at(mm, address, pvmw.pte, pteval);
1713 ret = false;
1714 page_vma_mapped_walk_done(&pvmw);
1715 break;
1716 }
1717 if (anon_exclusive &&
1718 page_try_share_anon_rmap(subpage)) {
1719 swap_free(entry);
1720 set_pte_at(mm, address, pvmw.pte, pteval);
1721 ret = false;
1722 page_vma_mapped_walk_done(&pvmw);
1723 break;
1724 }
1725 /*
1726 * Note: We *don't* remember if the page was mapped
1727 * exclusively in the swap pte if the architecture
1728 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1729 * that case, swapin code has to re-determine that
1730 * manually and might detect the page as possibly
1731 * shared, for example, if there are other references on
1732 * the page or if the page is under writeback. We made
1733 * sure that there are no GUP pins on the page that
1734 * would rely on it, so for GUP pins this is fine.
1735 */
1736 if (list_empty(&mm->mmlist)) {
1737 spin_lock(&mmlist_lock);
1738 if (list_empty(&mm->mmlist))
1739 list_add(&mm->mmlist, &init_mm.mmlist);
1740 spin_unlock(&mmlist_lock);
1741 }
1742 dec_mm_counter(mm, MM_ANONPAGES);
1743 inc_mm_counter(mm, MM_SWAPENTS);
1744 swp_pte = swp_entry_to_pte(entry);
1745 if (anon_exclusive)
1746 swp_pte = pte_swp_mkexclusive(swp_pte);
1747 if (pte_soft_dirty(pteval))
1748 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1749 if (pte_uffd_wp(pteval))
1750 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1751 set_pte_at(mm, address, pvmw.pte, swp_pte);
1752 /* Invalidate as we cleared the pte */
1753 mmu_notifier_invalidate_range(mm, address,
1754 address + PAGE_SIZE);
1755 } else {
1756 /*
1757 * This is a locked file-backed folio,
1758 * so it cannot be removed from the page
1759 * cache and replaced by a new folio before
1760 * mmu_notifier_invalidate_range_end, so no
1761 * concurrent thread might update its page table
1762 * to point at a new folio while a device is
1763 * still using this folio.
1764 *
1765 * See Documentation/mm/mmu_notifier.rst
1766 */
1767 dec_mm_counter(mm, mm_counter_file(&folio->page));
1768 }
1769discard:
1770 /*
1771 * No need to call mmu_notifier_invalidate_range() it has be
1772 * done above for all cases requiring it to happen under page
1773 * table lock before mmu_notifier_invalidate_range_end()
1774 *
1775 * See Documentation/mm/mmu_notifier.rst
1776 */
1777 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1778 if (vma->vm_flags & VM_LOCKED)
1779 mlock_page_drain_local();
1780 folio_put(folio);
1781 }
1782
1783 mmu_notifier_invalidate_range_end(&range);
1784
1785 return ret;
1786}
1787
1788static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1789{
1790 return vma_is_temporary_stack(vma);
1791}
1792
1793static int page_not_mapped(struct folio *folio)
1794{
1795 return !folio_mapped(folio);
1796}
1797
1798/**
1799 * try_to_unmap - Try to remove all page table mappings to a folio.
1800 * @folio: The folio to unmap.
1801 * @flags: action and flags
1802 *
1803 * Tries to remove all the page table entries which are mapping this
1804 * folio. It is the caller's responsibility to check if the folio is
1805 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1806 *
1807 * Context: Caller must hold the folio lock.
1808 */
1809void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1810{
1811 struct rmap_walk_control rwc = {
1812 .rmap_one = try_to_unmap_one,
1813 .arg = (void *)flags,
1814 .done = page_not_mapped,
1815 .anon_lock = folio_lock_anon_vma_read,
1816 };
1817
1818 if (flags & TTU_RMAP_LOCKED)
1819 rmap_walk_locked(folio, &rwc);
1820 else
1821 rmap_walk(folio, &rwc);
1822}
1823
1824/*
1825 * @arg: enum ttu_flags will be passed to this argument.
1826 *
1827 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1828 * containing migration entries.
1829 */
1830static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1831 unsigned long address, void *arg)
1832{
1833 struct mm_struct *mm = vma->vm_mm;
1834 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1835 pte_t pteval;
1836 struct page *subpage;
1837 bool anon_exclusive, ret = true;
1838 struct mmu_notifier_range range;
1839 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1840
1841 /*
1842 * When racing against e.g. zap_pte_range() on another cpu,
1843 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1844 * try_to_migrate() may return before page_mapped() has become false,
1845 * if page table locking is skipped: use TTU_SYNC to wait for that.
1846 */
1847 if (flags & TTU_SYNC)
1848 pvmw.flags = PVMW_SYNC;
1849
1850 /*
1851 * unmap_page() in mm/huge_memory.c is the only user of migration with
1852 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1853 */
1854 if (flags & TTU_SPLIT_HUGE_PMD)
1855 split_huge_pmd_address(vma, address, true, folio);
1856
1857 /*
1858 * For THP, we have to assume the worse case ie pmd for invalidation.
1859 * For hugetlb, it could be much worse if we need to do pud
1860 * invalidation in the case of pmd sharing.
1861 *
1862 * Note that the page can not be free in this function as call of
1863 * try_to_unmap() must hold a reference on the page.
1864 */
1865 range.end = vma_address_end(&pvmw);
1866 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1867 address, range.end);
1868 if (folio_test_hugetlb(folio)) {
1869 /*
1870 * If sharing is possible, start and end will be adjusted
1871 * accordingly.
1872 */
1873 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1874 &range.end);
1875 }
1876 mmu_notifier_invalidate_range_start(&range);
1877
1878 while (page_vma_mapped_walk(&pvmw)) {
1879#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1880 /* PMD-mapped THP migration entry */
1881 if (!pvmw.pte) {
1882 subpage = folio_page(folio,
1883 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1884 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1885 !folio_test_pmd_mappable(folio), folio);
1886
1887 if (set_pmd_migration_entry(&pvmw, subpage)) {
1888 ret = false;
1889 page_vma_mapped_walk_done(&pvmw);
1890 break;
1891 }
1892 continue;
1893 }
1894#endif
1895
1896 /* Unexpected PMD-mapped THP? */
1897 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1898
1899 if (folio_is_zone_device(folio)) {
1900 /*
1901 * Our PTE is a non-present device exclusive entry and
1902 * calculating the subpage as for the common case would
1903 * result in an invalid pointer.
1904 *
1905 * Since only PAGE_SIZE pages can currently be
1906 * migrated, just set it to page. This will need to be
1907 * changed when hugepage migrations to device private
1908 * memory are supported.
1909 */
1910 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1911 subpage = &folio->page;
1912 } else {
1913 subpage = folio_page(folio,
1914 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1915 }
1916 address = pvmw.address;
1917 anon_exclusive = folio_test_anon(folio) &&
1918 PageAnonExclusive(subpage);
1919
1920 if (folio_test_hugetlb(folio)) {
1921 bool anon = folio_test_anon(folio);
1922
1923 /*
1924 * huge_pmd_unshare may unmap an entire PMD page.
1925 * There is no way of knowing exactly which PMDs may
1926 * be cached for this mm, so we must flush them all.
1927 * start/end were already adjusted above to cover this
1928 * range.
1929 */
1930 flush_cache_range(vma, range.start, range.end);
1931
1932 /*
1933 * To call huge_pmd_unshare, i_mmap_rwsem must be
1934 * held in write mode. Caller needs to explicitly
1935 * do this outside rmap routines.
1936 */
1937 VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
1938 if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1939 flush_tlb_range(vma, range.start, range.end);
1940 mmu_notifier_invalidate_range(mm, range.start,
1941 range.end);
1942
1943 /*
1944 * The ref count of the PMD page was dropped
1945 * which is part of the way map counting
1946 * is done for shared PMDs. Return 'true'
1947 * here. When there is no other sharing,
1948 * huge_pmd_unshare returns false and we will
1949 * unmap the actual page and drop map count
1950 * to zero.
1951 */
1952 page_vma_mapped_walk_done(&pvmw);
1953 break;
1954 }
1955
1956 /* Nuke the hugetlb page table entry */
1957 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1958 } else {
1959 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1960 /* Nuke the page table entry. */
1961 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1962 }
1963
1964 /* Set the dirty flag on the folio now the pte is gone. */
1965 if (pte_dirty(pteval))
1966 folio_mark_dirty(folio);
1967
1968 /* Update high watermark before we lower rss */
1969 update_hiwater_rss(mm);
1970
1971 if (folio_is_device_private(folio)) {
1972 unsigned long pfn = folio_pfn(folio);
1973 swp_entry_t entry;
1974 pte_t swp_pte;
1975
1976 if (anon_exclusive)
1977 BUG_ON(page_try_share_anon_rmap(subpage));
1978
1979 /*
1980 * Store the pfn of the page in a special migration
1981 * pte. do_swap_page() will wait until the migration
1982 * pte is removed and then restart fault handling.
1983 */
1984 entry = pte_to_swp_entry(pteval);
1985 if (is_writable_device_private_entry(entry))
1986 entry = make_writable_migration_entry(pfn);
1987 else if (anon_exclusive)
1988 entry = make_readable_exclusive_migration_entry(pfn);
1989 else
1990 entry = make_readable_migration_entry(pfn);
1991 swp_pte = swp_entry_to_pte(entry);
1992
1993 /*
1994 * pteval maps a zone device page and is therefore
1995 * a swap pte.
1996 */
1997 if (pte_swp_soft_dirty(pteval))
1998 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1999 if (pte_swp_uffd_wp(pteval))
2000 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2001 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2002 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2003 compound_order(&folio->page));
2004 /*
2005 * No need to invalidate here it will synchronize on
2006 * against the special swap migration pte.
2007 */
2008 } else if (PageHWPoison(subpage)) {
2009 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2010 if (folio_test_hugetlb(folio)) {
2011 hugetlb_count_sub(folio_nr_pages(folio), mm);
2012 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2013 } else {
2014 dec_mm_counter(mm, mm_counter(&folio->page));
2015 set_pte_at(mm, address, pvmw.pte, pteval);
2016 }
2017
2018 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2019 /*
2020 * The guest indicated that the page content is of no
2021 * interest anymore. Simply discard the pte, vmscan
2022 * will take care of the rest.
2023 * A future reference will then fault in a new zero
2024 * page. When userfaultfd is active, we must not drop
2025 * this page though, as its main user (postcopy
2026 * migration) will not expect userfaults on already
2027 * copied pages.
2028 */
2029 dec_mm_counter(mm, mm_counter(&folio->page));
2030 /* We have to invalidate as we cleared the pte */
2031 mmu_notifier_invalidate_range(mm, address,
2032 address + PAGE_SIZE);
2033 } else {
2034 swp_entry_t entry;
2035 pte_t swp_pte;
2036
2037 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2038 if (folio_test_hugetlb(folio))
2039 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2040 else
2041 set_pte_at(mm, address, pvmw.pte, pteval);
2042 ret = false;
2043 page_vma_mapped_walk_done(&pvmw);
2044 break;
2045 }
2046 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2047 !anon_exclusive, subpage);
2048 if (anon_exclusive &&
2049 page_try_share_anon_rmap(subpage)) {
2050 if (folio_test_hugetlb(folio))
2051 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2052 else
2053 set_pte_at(mm, address, pvmw.pte, pteval);
2054 ret = false;
2055 page_vma_mapped_walk_done(&pvmw);
2056 break;
2057 }
2058
2059 /*
2060 * Store the pfn of the page in a special migration
2061 * pte. do_swap_page() will wait until the migration
2062 * pte is removed and then restart fault handling.
2063 */
2064 if (pte_write(pteval))
2065 entry = make_writable_migration_entry(
2066 page_to_pfn(subpage));
2067 else if (anon_exclusive)
2068 entry = make_readable_exclusive_migration_entry(
2069 page_to_pfn(subpage));
2070 else
2071 entry = make_readable_migration_entry(
2072 page_to_pfn(subpage));
2073
2074 swp_pte = swp_entry_to_pte(entry);
2075 if (pte_soft_dirty(pteval))
2076 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2077 if (pte_uffd_wp(pteval))
2078 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2079 if (folio_test_hugetlb(folio))
2080 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2081 else
2082 set_pte_at(mm, address, pvmw.pte, swp_pte);
2083 trace_set_migration_pte(address, pte_val(swp_pte),
2084 compound_order(&folio->page));
2085 /*
2086 * No need to invalidate here it will synchronize on
2087 * against the special swap migration pte.
2088 */
2089 }
2090
2091 /*
2092 * No need to call mmu_notifier_invalidate_range() it has be
2093 * done above for all cases requiring it to happen under page
2094 * table lock before mmu_notifier_invalidate_range_end()
2095 *
2096 * See Documentation/mm/mmu_notifier.rst
2097 */
2098 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2099 if (vma->vm_flags & VM_LOCKED)
2100 mlock_page_drain_local();
2101 folio_put(folio);
2102 }
2103
2104 mmu_notifier_invalidate_range_end(&range);
2105
2106 return ret;
2107}
2108
2109/**
2110 * try_to_migrate - try to replace all page table mappings with swap entries
2111 * @folio: the folio to replace page table entries for
2112 * @flags: action and flags
2113 *
2114 * Tries to remove all the page table entries which are mapping this folio and
2115 * replace them with special swap entries. Caller must hold the folio lock.
2116 */
2117void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2118{
2119 struct rmap_walk_control rwc = {
2120 .rmap_one = try_to_migrate_one,
2121 .arg = (void *)flags,
2122 .done = page_not_mapped,
2123 .anon_lock = folio_lock_anon_vma_read,
2124 };
2125
2126 /*
2127 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2128 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2129 */
2130 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2131 TTU_SYNC)))
2132 return;
2133
2134 if (folio_is_zone_device(folio) &&
2135 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2136 return;
2137
2138 /*
2139 * During exec, a temporary VMA is setup and later moved.
2140 * The VMA is moved under the anon_vma lock but not the
2141 * page tables leading to a race where migration cannot
2142 * find the migration ptes. Rather than increasing the
2143 * locking requirements of exec(), migration skips
2144 * temporary VMAs until after exec() completes.
2145 */
2146 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2147 rwc.invalid_vma = invalid_migration_vma;
2148
2149 if (flags & TTU_RMAP_LOCKED)
2150 rmap_walk_locked(folio, &rwc);
2151 else
2152 rmap_walk(folio, &rwc);
2153}
2154
2155#ifdef CONFIG_DEVICE_PRIVATE
2156struct make_exclusive_args {
2157 struct mm_struct *mm;
2158 unsigned long address;
2159 void *owner;
2160 bool valid;
2161};
2162
2163static bool page_make_device_exclusive_one(struct folio *folio,
2164 struct vm_area_struct *vma, unsigned long address, void *priv)
2165{
2166 struct mm_struct *mm = vma->vm_mm;
2167 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2168 struct make_exclusive_args *args = priv;
2169 pte_t pteval;
2170 struct page *subpage;
2171 bool ret = true;
2172 struct mmu_notifier_range range;
2173 swp_entry_t entry;
2174 pte_t swp_pte;
2175
2176 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2177 vma->vm_mm, address, min(vma->vm_end,
2178 address + folio_size(folio)),
2179 args->owner);
2180 mmu_notifier_invalidate_range_start(&range);
2181
2182 while (page_vma_mapped_walk(&pvmw)) {
2183 /* Unexpected PMD-mapped THP? */
2184 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2185
2186 if (!pte_present(*pvmw.pte)) {
2187 ret = false;
2188 page_vma_mapped_walk_done(&pvmw);
2189 break;
2190 }
2191
2192 subpage = folio_page(folio,
2193 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2194 address = pvmw.address;
2195
2196 /* Nuke the page table entry. */
2197 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2198 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2199
2200 /* Set the dirty flag on the folio now the pte is gone. */
2201 if (pte_dirty(pteval))
2202 folio_mark_dirty(folio);
2203
2204 /*
2205 * Check that our target page is still mapped at the expected
2206 * address.
2207 */
2208 if (args->mm == mm && args->address == address &&
2209 pte_write(pteval))
2210 args->valid = true;
2211
2212 /*
2213 * Store the pfn of the page in a special migration
2214 * pte. do_swap_page() will wait until the migration
2215 * pte is removed and then restart fault handling.
2216 */
2217 if (pte_write(pteval))
2218 entry = make_writable_device_exclusive_entry(
2219 page_to_pfn(subpage));
2220 else
2221 entry = make_readable_device_exclusive_entry(
2222 page_to_pfn(subpage));
2223 swp_pte = swp_entry_to_pte(entry);
2224 if (pte_soft_dirty(pteval))
2225 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2226 if (pte_uffd_wp(pteval))
2227 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2228
2229 set_pte_at(mm, address, pvmw.pte, swp_pte);
2230
2231 /*
2232 * There is a reference on the page for the swap entry which has
2233 * been removed, so shouldn't take another.
2234 */
2235 page_remove_rmap(subpage, vma, false);
2236 }
2237
2238 mmu_notifier_invalidate_range_end(&range);
2239
2240 return ret;
2241}
2242
2243/**
2244 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2245 * @folio: The folio to replace page table entries for.
2246 * @mm: The mm_struct where the folio is expected to be mapped.
2247 * @address: Address where the folio is expected to be mapped.
2248 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2249 *
2250 * Tries to remove all the page table entries which are mapping this
2251 * folio and replace them with special device exclusive swap entries to
2252 * grant a device exclusive access to the folio.
2253 *
2254 * Context: Caller must hold the folio lock.
2255 * Return: false if the page is still mapped, or if it could not be unmapped
2256 * from the expected address. Otherwise returns true (success).
2257 */
2258static bool folio_make_device_exclusive(struct folio *folio,
2259 struct mm_struct *mm, unsigned long address, void *owner)
2260{
2261 struct make_exclusive_args args = {
2262 .mm = mm,
2263 .address = address,
2264 .owner = owner,
2265 .valid = false,
2266 };
2267 struct rmap_walk_control rwc = {
2268 .rmap_one = page_make_device_exclusive_one,
2269 .done = page_not_mapped,
2270 .anon_lock = folio_lock_anon_vma_read,
2271 .arg = &args,
2272 };
2273
2274 /*
2275 * Restrict to anonymous folios for now to avoid potential writeback
2276 * issues.
2277 */
2278 if (!folio_test_anon(folio))
2279 return false;
2280
2281 rmap_walk(folio, &rwc);
2282
2283 return args.valid && !folio_mapcount(folio);
2284}
2285
2286/**
2287 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2288 * @mm: mm_struct of associated target process
2289 * @start: start of the region to mark for exclusive device access
2290 * @end: end address of region
2291 * @pages: returns the pages which were successfully marked for exclusive access
2292 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2293 *
2294 * Returns: number of pages found in the range by GUP. A page is marked for
2295 * exclusive access only if the page pointer is non-NULL.
2296 *
2297 * This function finds ptes mapping page(s) to the given address range, locks
2298 * them and replaces mappings with special swap entries preventing userspace CPU
2299 * access. On fault these entries are replaced with the original mapping after
2300 * calling MMU notifiers.
2301 *
2302 * A driver using this to program access from a device must use a mmu notifier
2303 * critical section to hold a device specific lock during programming. Once
2304 * programming is complete it should drop the page lock and reference after
2305 * which point CPU access to the page will revoke the exclusive access.
2306 */
2307int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2308 unsigned long end, struct page **pages,
2309 void *owner)
2310{
2311 long npages = (end - start) >> PAGE_SHIFT;
2312 long i;
2313
2314 npages = get_user_pages_remote(mm, start, npages,
2315 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2316 pages, NULL, NULL);
2317 if (npages < 0)
2318 return npages;
2319
2320 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2321 struct folio *folio = page_folio(pages[i]);
2322 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2323 folio_put(folio);
2324 pages[i] = NULL;
2325 continue;
2326 }
2327
2328 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2329 folio_unlock(folio);
2330 folio_put(folio);
2331 pages[i] = NULL;
2332 }
2333 }
2334
2335 return npages;
2336}
2337EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2338#endif
2339
2340void __put_anon_vma(struct anon_vma *anon_vma)
2341{
2342 struct anon_vma *root = anon_vma->root;
2343
2344 anon_vma_free(anon_vma);
2345 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2346 anon_vma_free(root);
2347}
2348
2349static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2350 struct rmap_walk_control *rwc)
2351{
2352 struct anon_vma *anon_vma;
2353
2354 if (rwc->anon_lock)
2355 return rwc->anon_lock(folio, rwc);
2356
2357 /*
2358 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2359 * because that depends on page_mapped(); but not all its usages
2360 * are holding mmap_lock. Users without mmap_lock are required to
2361 * take a reference count to prevent the anon_vma disappearing
2362 */
2363 anon_vma = folio_anon_vma(folio);
2364 if (!anon_vma)
2365 return NULL;
2366
2367 if (anon_vma_trylock_read(anon_vma))
2368 goto out;
2369
2370 if (rwc->try_lock) {
2371 anon_vma = NULL;
2372 rwc->contended = true;
2373 goto out;
2374 }
2375
2376 anon_vma_lock_read(anon_vma);
2377out:
2378 return anon_vma;
2379}
2380
2381/*
2382 * rmap_walk_anon - do something to anonymous page using the object-based
2383 * rmap method
2384 * @page: the page to be handled
2385 * @rwc: control variable according to each walk type
2386 *
2387 * Find all the mappings of a page using the mapping pointer and the vma chains
2388 * contained in the anon_vma struct it points to.
2389 */
2390static void rmap_walk_anon(struct folio *folio,
2391 struct rmap_walk_control *rwc, bool locked)
2392{
2393 struct anon_vma *anon_vma;
2394 pgoff_t pgoff_start, pgoff_end;
2395 struct anon_vma_chain *avc;
2396
2397 if (locked) {
2398 anon_vma = folio_anon_vma(folio);
2399 /* anon_vma disappear under us? */
2400 VM_BUG_ON_FOLIO(!anon_vma, folio);
2401 } else {
2402 anon_vma = rmap_walk_anon_lock(folio, rwc);
2403 }
2404 if (!anon_vma)
2405 return;
2406
2407 pgoff_start = folio_pgoff(folio);
2408 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2409 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2410 pgoff_start, pgoff_end) {
2411 struct vm_area_struct *vma = avc->vma;
2412 unsigned long address = vma_address(&folio->page, vma);
2413
2414 VM_BUG_ON_VMA(address == -EFAULT, vma);
2415 cond_resched();
2416
2417 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2418 continue;
2419
2420 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2421 break;
2422 if (rwc->done && rwc->done(folio))
2423 break;
2424 }
2425
2426 if (!locked)
2427 anon_vma_unlock_read(anon_vma);
2428}
2429
2430/*
2431 * rmap_walk_file - do something to file page using the object-based rmap method
2432 * @page: the page to be handled
2433 * @rwc: control variable according to each walk type
2434 *
2435 * Find all the mappings of a page using the mapping pointer and the vma chains
2436 * contained in the address_space struct it points to.
2437 */
2438static void rmap_walk_file(struct folio *folio,
2439 struct rmap_walk_control *rwc, bool locked)
2440{
2441 struct address_space *mapping = folio_mapping(folio);
2442 pgoff_t pgoff_start, pgoff_end;
2443 struct vm_area_struct *vma;
2444
2445 /*
2446 * The page lock not only makes sure that page->mapping cannot
2447 * suddenly be NULLified by truncation, it makes sure that the
2448 * structure at mapping cannot be freed and reused yet,
2449 * so we can safely take mapping->i_mmap_rwsem.
2450 */
2451 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2452
2453 if (!mapping)
2454 return;
2455
2456 pgoff_start = folio_pgoff(folio);
2457 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2458 if (!locked) {
2459 if (i_mmap_trylock_read(mapping))
2460 goto lookup;
2461
2462 if (rwc->try_lock) {
2463 rwc->contended = true;
2464 return;
2465 }
2466
2467 i_mmap_lock_read(mapping);
2468 }
2469lookup:
2470 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2471 pgoff_start, pgoff_end) {
2472 unsigned long address = vma_address(&folio->page, vma);
2473
2474 VM_BUG_ON_VMA(address == -EFAULT, vma);
2475 cond_resched();
2476
2477 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2478 continue;
2479
2480 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2481 goto done;
2482 if (rwc->done && rwc->done(folio))
2483 goto done;
2484 }
2485
2486done:
2487 if (!locked)
2488 i_mmap_unlock_read(mapping);
2489}
2490
2491void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2492{
2493 if (unlikely(folio_test_ksm(folio)))
2494 rmap_walk_ksm(folio, rwc);
2495 else if (folio_test_anon(folio))
2496 rmap_walk_anon(folio, rwc, false);
2497 else
2498 rmap_walk_file(folio, rwc, false);
2499}
2500
2501/* Like rmap_walk, but caller holds relevant rmap lock */
2502void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2503{
2504 /* no ksm support for now */
2505 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2506 if (folio_test_anon(folio))
2507 rmap_walk_anon(folio, rwc, true);
2508 else
2509 rmap_walk_file(folio, rwc, true);
2510}
2511
2512#ifdef CONFIG_HUGETLB_PAGE
2513/*
2514 * The following two functions are for anonymous (private mapped) hugepages.
2515 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2516 * and no lru code, because we handle hugepages differently from common pages.
2517 *
2518 * RMAP_COMPOUND is ignored.
2519 */
2520void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2521 unsigned long address, rmap_t flags)
2522{
2523 struct anon_vma *anon_vma = vma->anon_vma;
2524 int first;
2525
2526 BUG_ON(!PageLocked(page));
2527 BUG_ON(!anon_vma);
2528 /* address might be in next vma when migration races vma_adjust */
2529 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2530 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2531 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2532 if (first)
2533 __page_set_anon_rmap(page, vma, address,
2534 !!(flags & RMAP_EXCLUSIVE));
2535}
2536
2537void hugepage_add_new_anon_rmap(struct page *page,
2538 struct vm_area_struct *vma, unsigned long address)
2539{
2540 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2541 atomic_set(compound_mapcount_ptr(page), 0);
2542 atomic_set(compound_pincount_ptr(page), 0);
2543
2544 __page_set_anon_rmap(page, vma, address, 1);
2545}
2546#endif /* CONFIG_HUGETLB_PAGE */