mm,thp,rmap: lock_compound_mapcounts() on THP mapcounts
[linux-2.6-block.git] / mm / rmap.c
... / ...
CommitLineData
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * mapping->i_mmap_rwsem
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in block_dirty_folio)
34 * folio_lock_memcg move_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * page->flags PG_locked (lock_page)
53 */
54
55#include <linux/mm.h>
56#include <linux/sched/mm.h>
57#include <linux/sched/task.h>
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
63#include <linux/ksm.h>
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
66#include <linux/export.h>
67#include <linux/memcontrol.h>
68#include <linux/mmu_notifier.h>
69#include <linux/migrate.h>
70#include <linux/hugetlb.h>
71#include <linux/huge_mm.h>
72#include <linux/backing-dev.h>
73#include <linux/page_idle.h>
74#include <linux/memremap.h>
75#include <linux/userfaultfd_k.h>
76#include <linux/mm_inline.h>
77
78#include <asm/tlbflush.h>
79
80#define CREATE_TRACE_POINTS
81#include <trace/events/tlb.h>
82#include <trace/events/migrate.h>
83
84#include "internal.h"
85
86static struct kmem_cache *anon_vma_cachep;
87static struct kmem_cache *anon_vma_chain_cachep;
88
89static inline struct anon_vma *anon_vma_alloc(void)
90{
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
99 /*
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
102 */
103 anon_vma->root = anon_vma;
104 }
105
106 return anon_vma;
107}
108
109static inline void anon_vma_free(struct anon_vma *anon_vma)
110{
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
112
113 /*
114 * Synchronize against folio_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
116 * freed.
117 *
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 *
122 * folio_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
124 * LOCK MB
125 * atomic_read() rwsem_is_locked()
126 *
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
129 */
130 might_sleep();
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
134 }
135
136 kmem_cache_free(anon_vma_cachep, anon_vma);
137}
138
139static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140{
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142}
143
144static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145{
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147}
148
149static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
152{
153 avc->vma = vma;
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157}
158
159/**
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
162 *
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
166 *
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
173 *
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
179 *
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
183 * an anon_vma.
184 *
185 * This must be called with the mmap_lock held for reading.
186 */
187int __anon_vma_prepare(struct vm_area_struct *vma)
188{
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
191 struct anon_vma_chain *avc;
192
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233}
234
235/*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
243static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244{
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253}
254
255static inline void unlock_anon_vma_root(struct anon_vma *root)
256{
257 if (root)
258 up_write(&root->rwsem);
259}
260
261/*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
266 * anon_vma_fork(). The first three want an exact copy of src, while the last
267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270 *
271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273 * This prevents degradation of anon_vma hierarchy to endless linear chain in
274 * case of constantly forking task. On the other hand, an anon_vma with more
275 * than one child isn't reused even if there was no alive vma, thus rmap
276 * walker has a good chance of avoiding scanning the whole hierarchy when it
277 * searches where page is mapped.
278 */
279int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280{
281 struct anon_vma_chain *avc, *pavc;
282 struct anon_vma *root = NULL;
283
284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 struct anon_vma *anon_vma;
286
287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288 if (unlikely(!avc)) {
289 unlock_anon_vma_root(root);
290 root = NULL;
291 avc = anon_vma_chain_alloc(GFP_KERNEL);
292 if (!avc)
293 goto enomem_failure;
294 }
295 anon_vma = pavc->anon_vma;
296 root = lock_anon_vma_root(root, anon_vma);
297 anon_vma_chain_link(dst, avc, anon_vma);
298
299 /*
300 * Reuse existing anon_vma if it has no vma and only one
301 * anon_vma child.
302 *
303 * Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma->num_children < 2 &&
308 anon_vma->num_active_vmas == 0)
309 dst->anon_vma = anon_vma;
310 }
311 if (dst->anon_vma)
312 dst->anon_vma->num_active_vmas++;
313 unlock_anon_vma_root(root);
314 return 0;
315
316 enomem_failure:
317 /*
318 * dst->anon_vma is dropped here otherwise its num_active_vmas can
319 * be incorrectly decremented in unlink_anon_vmas().
320 * We can safely do this because callers of anon_vma_clone() don't care
321 * about dst->anon_vma if anon_vma_clone() failed.
322 */
323 dst->anon_vma = NULL;
324 unlink_anon_vmas(dst);
325 return -ENOMEM;
326}
327
328/*
329 * Attach vma to its own anon_vma, as well as to the anon_vmas that
330 * the corresponding VMA in the parent process is attached to.
331 * Returns 0 on success, non-zero on failure.
332 */
333int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334{
335 struct anon_vma_chain *avc;
336 struct anon_vma *anon_vma;
337 int error;
338
339 /* Don't bother if the parent process has no anon_vma here. */
340 if (!pvma->anon_vma)
341 return 0;
342
343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 vma->anon_vma = NULL;
345
346 /*
347 * First, attach the new VMA to the parent VMA's anon_vmas,
348 * so rmap can find non-COWed pages in child processes.
349 */
350 error = anon_vma_clone(vma, pvma);
351 if (error)
352 return error;
353
354 /* An existing anon_vma has been reused, all done then. */
355 if (vma->anon_vma)
356 return 0;
357
358 /* Then add our own anon_vma. */
359 anon_vma = anon_vma_alloc();
360 if (!anon_vma)
361 goto out_error;
362 anon_vma->num_active_vmas++;
363 avc = anon_vma_chain_alloc(GFP_KERNEL);
364 if (!avc)
365 goto out_error_free_anon_vma;
366
367 /*
368 * The root anon_vma's rwsem is the lock actually used when we
369 * lock any of the anon_vmas in this anon_vma tree.
370 */
371 anon_vma->root = pvma->anon_vma->root;
372 anon_vma->parent = pvma->anon_vma;
373 /*
374 * With refcounts, an anon_vma can stay around longer than the
375 * process it belongs to. The root anon_vma needs to be pinned until
376 * this anon_vma is freed, because the lock lives in the root.
377 */
378 get_anon_vma(anon_vma->root);
379 /* Mark this anon_vma as the one where our new (COWed) pages go. */
380 vma->anon_vma = anon_vma;
381 anon_vma_lock_write(anon_vma);
382 anon_vma_chain_link(vma, avc, anon_vma);
383 anon_vma->parent->num_children++;
384 anon_vma_unlock_write(anon_vma);
385
386 return 0;
387
388 out_error_free_anon_vma:
389 put_anon_vma(anon_vma);
390 out_error:
391 unlink_anon_vmas(vma);
392 return -ENOMEM;
393}
394
395void unlink_anon_vmas(struct vm_area_struct *vma)
396{
397 struct anon_vma_chain *avc, *next;
398 struct anon_vma *root = NULL;
399
400 /*
401 * Unlink each anon_vma chained to the VMA. This list is ordered
402 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 */
404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 struct anon_vma *anon_vma = avc->anon_vma;
406
407 root = lock_anon_vma_root(root, anon_vma);
408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409
410 /*
411 * Leave empty anon_vmas on the list - we'll need
412 * to free them outside the lock.
413 */
414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 anon_vma->parent->num_children--;
416 continue;
417 }
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422 if (vma->anon_vma) {
423 vma->anon_vma->num_active_vmas--;
424
425 /*
426 * vma would still be needed after unlink, and anon_vma will be prepared
427 * when handle fault.
428 */
429 vma->anon_vma = NULL;
430 }
431 unlock_anon_vma_root(root);
432
433 /*
434 * Iterate the list once more, it now only contains empty and unlinked
435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 * needing to write-acquire the anon_vma->root->rwsem.
437 */
438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 struct anon_vma *anon_vma = avc->anon_vma;
440
441 VM_WARN_ON(anon_vma->num_children);
442 VM_WARN_ON(anon_vma->num_active_vmas);
443 put_anon_vma(anon_vma);
444
445 list_del(&avc->same_vma);
446 anon_vma_chain_free(avc);
447 }
448}
449
450static void anon_vma_ctor(void *data)
451{
452 struct anon_vma *anon_vma = data;
453
454 init_rwsem(&anon_vma->rwsem);
455 atomic_set(&anon_vma->refcount, 0);
456 anon_vma->rb_root = RB_ROOT_CACHED;
457}
458
459void __init anon_vma_init(void)
460{
461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463 anon_vma_ctor);
464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 SLAB_PANIC|SLAB_ACCOUNT);
466}
467
468/*
469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470 *
471 * Since there is no serialization what so ever against page_remove_rmap()
472 * the best this function can do is return a refcount increased anon_vma
473 * that might have been relevant to this page.
474 *
475 * The page might have been remapped to a different anon_vma or the anon_vma
476 * returned may already be freed (and even reused).
477 *
478 * In case it was remapped to a different anon_vma, the new anon_vma will be a
479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480 * ensure that any anon_vma obtained from the page will still be valid for as
481 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482 *
483 * All users of this function must be very careful when walking the anon_vma
484 * chain and verify that the page in question is indeed mapped in it
485 * [ something equivalent to page_mapped_in_vma() ].
486 *
487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
489 * if there is a mapcount, we can dereference the anon_vma after observing
490 * those.
491 */
492struct anon_vma *folio_get_anon_vma(struct folio *folio)
493{
494 struct anon_vma *anon_vma = NULL;
495 unsigned long anon_mapping;
496
497 rcu_read_lock();
498 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
499 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
500 goto out;
501 if (!folio_mapped(folio))
502 goto out;
503
504 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
505 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
506 anon_vma = NULL;
507 goto out;
508 }
509
510 /*
511 * If this folio is still mapped, then its anon_vma cannot have been
512 * freed. But if it has been unmapped, we have no security against the
513 * anon_vma structure being freed and reused (for another anon_vma:
514 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
515 * above cannot corrupt).
516 */
517 if (!folio_mapped(folio)) {
518 rcu_read_unlock();
519 put_anon_vma(anon_vma);
520 return NULL;
521 }
522out:
523 rcu_read_unlock();
524
525 return anon_vma;
526}
527
528/*
529 * Similar to folio_get_anon_vma() except it locks the anon_vma.
530 *
531 * Its a little more complex as it tries to keep the fast path to a single
532 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
533 * reference like with folio_get_anon_vma() and then block on the mutex
534 * on !rwc->try_lock case.
535 */
536struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
537 struct rmap_walk_control *rwc)
538{
539 struct anon_vma *anon_vma = NULL;
540 struct anon_vma *root_anon_vma;
541 unsigned long anon_mapping;
542
543 rcu_read_lock();
544 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
545 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
546 goto out;
547 if (!folio_mapped(folio))
548 goto out;
549
550 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
551 root_anon_vma = READ_ONCE(anon_vma->root);
552 if (down_read_trylock(&root_anon_vma->rwsem)) {
553 /*
554 * If the folio is still mapped, then this anon_vma is still
555 * its anon_vma, and holding the mutex ensures that it will
556 * not go away, see anon_vma_free().
557 */
558 if (!folio_mapped(folio)) {
559 up_read(&root_anon_vma->rwsem);
560 anon_vma = NULL;
561 }
562 goto out;
563 }
564
565 if (rwc && rwc->try_lock) {
566 anon_vma = NULL;
567 rwc->contended = true;
568 goto out;
569 }
570
571 /* trylock failed, we got to sleep */
572 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
573 anon_vma = NULL;
574 goto out;
575 }
576
577 if (!folio_mapped(folio)) {
578 rcu_read_unlock();
579 put_anon_vma(anon_vma);
580 return NULL;
581 }
582
583 /* we pinned the anon_vma, its safe to sleep */
584 rcu_read_unlock();
585 anon_vma_lock_read(anon_vma);
586
587 if (atomic_dec_and_test(&anon_vma->refcount)) {
588 /*
589 * Oops, we held the last refcount, release the lock
590 * and bail -- can't simply use put_anon_vma() because
591 * we'll deadlock on the anon_vma_lock_write() recursion.
592 */
593 anon_vma_unlock_read(anon_vma);
594 __put_anon_vma(anon_vma);
595 anon_vma = NULL;
596 }
597
598 return anon_vma;
599
600out:
601 rcu_read_unlock();
602 return anon_vma;
603}
604
605#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
606/*
607 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
608 * important if a PTE was dirty when it was unmapped that it's flushed
609 * before any IO is initiated on the page to prevent lost writes. Similarly,
610 * it must be flushed before freeing to prevent data leakage.
611 */
612void try_to_unmap_flush(void)
613{
614 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615
616 if (!tlb_ubc->flush_required)
617 return;
618
619 arch_tlbbatch_flush(&tlb_ubc->arch);
620 tlb_ubc->flush_required = false;
621 tlb_ubc->writable = false;
622}
623
624/* Flush iff there are potentially writable TLB entries that can race with IO */
625void try_to_unmap_flush_dirty(void)
626{
627 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
628
629 if (tlb_ubc->writable)
630 try_to_unmap_flush();
631}
632
633/*
634 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
635 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
636 */
637#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
638#define TLB_FLUSH_BATCH_PENDING_MASK \
639 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
640#define TLB_FLUSH_BATCH_PENDING_LARGE \
641 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
642
643static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
644{
645 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 int batch, nbatch;
647
648 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
649 tlb_ubc->flush_required = true;
650
651 /*
652 * Ensure compiler does not re-order the setting of tlb_flush_batched
653 * before the PTE is cleared.
654 */
655 barrier();
656 batch = atomic_read(&mm->tlb_flush_batched);
657retry:
658 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
659 /*
660 * Prevent `pending' from catching up with `flushed' because of
661 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
662 * `pending' becomes large.
663 */
664 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
665 if (nbatch != batch) {
666 batch = nbatch;
667 goto retry;
668 }
669 } else {
670 atomic_inc(&mm->tlb_flush_batched);
671 }
672
673 /*
674 * If the PTE was dirty then it's best to assume it's writable. The
675 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
676 * before the page is queued for IO.
677 */
678 if (writable)
679 tlb_ubc->writable = true;
680}
681
682/*
683 * Returns true if the TLB flush should be deferred to the end of a batch of
684 * unmap operations to reduce IPIs.
685 */
686static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
687{
688 bool should_defer = false;
689
690 if (!(flags & TTU_BATCH_FLUSH))
691 return false;
692
693 /* If remote CPUs need to be flushed then defer batch the flush */
694 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
695 should_defer = true;
696 put_cpu();
697
698 return should_defer;
699}
700
701/*
702 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
703 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
704 * operation such as mprotect or munmap to race between reclaim unmapping
705 * the page and flushing the page. If this race occurs, it potentially allows
706 * access to data via a stale TLB entry. Tracking all mm's that have TLB
707 * batching in flight would be expensive during reclaim so instead track
708 * whether TLB batching occurred in the past and if so then do a flush here
709 * if required. This will cost one additional flush per reclaim cycle paid
710 * by the first operation at risk such as mprotect and mumap.
711 *
712 * This must be called under the PTL so that an access to tlb_flush_batched
713 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
714 * via the PTL.
715 */
716void flush_tlb_batched_pending(struct mm_struct *mm)
717{
718 int batch = atomic_read(&mm->tlb_flush_batched);
719 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
720 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
721
722 if (pending != flushed) {
723 flush_tlb_mm(mm);
724 /*
725 * If the new TLB flushing is pending during flushing, leave
726 * mm->tlb_flush_batched as is, to avoid losing flushing.
727 */
728 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
729 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
730 }
731}
732#else
733static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
734{
735}
736
737static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
738{
739 return false;
740}
741#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
742
743/*
744 * At what user virtual address is page expected in vma?
745 * Caller should check the page is actually part of the vma.
746 */
747unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
748{
749 struct folio *folio = page_folio(page);
750 if (folio_test_anon(folio)) {
751 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
752 /*
753 * Note: swapoff's unuse_vma() is more efficient with this
754 * check, and needs it to match anon_vma when KSM is active.
755 */
756 if (!vma->anon_vma || !page__anon_vma ||
757 vma->anon_vma->root != page__anon_vma->root)
758 return -EFAULT;
759 } else if (!vma->vm_file) {
760 return -EFAULT;
761 } else if (vma->vm_file->f_mapping != folio->mapping) {
762 return -EFAULT;
763 }
764
765 return vma_address(page, vma);
766}
767
768/*
769 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
770 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
771 * represents.
772 */
773pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
774{
775 pgd_t *pgd;
776 p4d_t *p4d;
777 pud_t *pud;
778 pmd_t *pmd = NULL;
779
780 pgd = pgd_offset(mm, address);
781 if (!pgd_present(*pgd))
782 goto out;
783
784 p4d = p4d_offset(pgd, address);
785 if (!p4d_present(*p4d))
786 goto out;
787
788 pud = pud_offset(p4d, address);
789 if (!pud_present(*pud))
790 goto out;
791
792 pmd = pmd_offset(pud, address);
793out:
794 return pmd;
795}
796
797struct folio_referenced_arg {
798 int mapcount;
799 int referenced;
800 unsigned long vm_flags;
801 struct mem_cgroup *memcg;
802};
803/*
804 * arg: folio_referenced_arg will be passed
805 */
806static bool folio_referenced_one(struct folio *folio,
807 struct vm_area_struct *vma, unsigned long address, void *arg)
808{
809 struct folio_referenced_arg *pra = arg;
810 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
811 int referenced = 0;
812
813 while (page_vma_mapped_walk(&pvmw)) {
814 address = pvmw.address;
815
816 if ((vma->vm_flags & VM_LOCKED) &&
817 (!folio_test_large(folio) || !pvmw.pte)) {
818 /* Restore the mlock which got missed */
819 mlock_vma_folio(folio, vma, !pvmw.pte);
820 page_vma_mapped_walk_done(&pvmw);
821 pra->vm_flags |= VM_LOCKED;
822 return false; /* To break the loop */
823 }
824
825 if (pvmw.pte) {
826 if (lru_gen_enabled() && pte_young(*pvmw.pte) &&
827 !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) {
828 lru_gen_look_around(&pvmw);
829 referenced++;
830 }
831
832 if (ptep_clear_flush_young_notify(vma, address,
833 pvmw.pte)) {
834 /*
835 * Don't treat a reference through
836 * a sequentially read mapping as such.
837 * If the folio has been used in another mapping,
838 * we will catch it; if this other mapping is
839 * already gone, the unmap path will have set
840 * the referenced flag or activated the folio.
841 */
842 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
843 referenced++;
844 }
845 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
846 if (pmdp_clear_flush_young_notify(vma, address,
847 pvmw.pmd))
848 referenced++;
849 } else {
850 /* unexpected pmd-mapped folio? */
851 WARN_ON_ONCE(1);
852 }
853
854 pra->mapcount--;
855 }
856
857 if (referenced)
858 folio_clear_idle(folio);
859 if (folio_test_clear_young(folio))
860 referenced++;
861
862 if (referenced) {
863 pra->referenced++;
864 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
865 }
866
867 if (!pra->mapcount)
868 return false; /* To break the loop */
869
870 return true;
871}
872
873static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
874{
875 struct folio_referenced_arg *pra = arg;
876 struct mem_cgroup *memcg = pra->memcg;
877
878 if (!mm_match_cgroup(vma->vm_mm, memcg))
879 return true;
880
881 return false;
882}
883
884/**
885 * folio_referenced() - Test if the folio was referenced.
886 * @folio: The folio to test.
887 * @is_locked: Caller holds lock on the folio.
888 * @memcg: target memory cgroup
889 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
890 *
891 * Quick test_and_clear_referenced for all mappings of a folio,
892 *
893 * Return: The number of mappings which referenced the folio. Return -1 if
894 * the function bailed out due to rmap lock contention.
895 */
896int folio_referenced(struct folio *folio, int is_locked,
897 struct mem_cgroup *memcg, unsigned long *vm_flags)
898{
899 int we_locked = 0;
900 struct folio_referenced_arg pra = {
901 .mapcount = folio_mapcount(folio),
902 .memcg = memcg,
903 };
904 struct rmap_walk_control rwc = {
905 .rmap_one = folio_referenced_one,
906 .arg = (void *)&pra,
907 .anon_lock = folio_lock_anon_vma_read,
908 .try_lock = true,
909 };
910
911 *vm_flags = 0;
912 if (!pra.mapcount)
913 return 0;
914
915 if (!folio_raw_mapping(folio))
916 return 0;
917
918 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
919 we_locked = folio_trylock(folio);
920 if (!we_locked)
921 return 1;
922 }
923
924 /*
925 * If we are reclaiming on behalf of a cgroup, skip
926 * counting on behalf of references from different
927 * cgroups
928 */
929 if (memcg) {
930 rwc.invalid_vma = invalid_folio_referenced_vma;
931 }
932
933 rmap_walk(folio, &rwc);
934 *vm_flags = pra.vm_flags;
935
936 if (we_locked)
937 folio_unlock(folio);
938
939 return rwc.contended ? -1 : pra.referenced;
940}
941
942static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
943{
944 int cleaned = 0;
945 struct vm_area_struct *vma = pvmw->vma;
946 struct mmu_notifier_range range;
947 unsigned long address = pvmw->address;
948
949 /*
950 * We have to assume the worse case ie pmd for invalidation. Note that
951 * the folio can not be freed from this function.
952 */
953 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
954 0, vma, vma->vm_mm, address,
955 vma_address_end(pvmw));
956 mmu_notifier_invalidate_range_start(&range);
957
958 while (page_vma_mapped_walk(pvmw)) {
959 int ret = 0;
960
961 address = pvmw->address;
962 if (pvmw->pte) {
963 pte_t entry;
964 pte_t *pte = pvmw->pte;
965
966 if (!pte_dirty(*pte) && !pte_write(*pte))
967 continue;
968
969 flush_cache_page(vma, address, pte_pfn(*pte));
970 entry = ptep_clear_flush(vma, address, pte);
971 entry = pte_wrprotect(entry);
972 entry = pte_mkclean(entry);
973 set_pte_at(vma->vm_mm, address, pte, entry);
974 ret = 1;
975 } else {
976#ifdef CONFIG_TRANSPARENT_HUGEPAGE
977 pmd_t *pmd = pvmw->pmd;
978 pmd_t entry;
979
980 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
981 continue;
982
983 flush_cache_range(vma, address,
984 address + HPAGE_PMD_SIZE);
985 entry = pmdp_invalidate(vma, address, pmd);
986 entry = pmd_wrprotect(entry);
987 entry = pmd_mkclean(entry);
988 set_pmd_at(vma->vm_mm, address, pmd, entry);
989 ret = 1;
990#else
991 /* unexpected pmd-mapped folio? */
992 WARN_ON_ONCE(1);
993#endif
994 }
995
996 /*
997 * No need to call mmu_notifier_invalidate_range() as we are
998 * downgrading page table protection not changing it to point
999 * to a new page.
1000 *
1001 * See Documentation/mm/mmu_notifier.rst
1002 */
1003 if (ret)
1004 cleaned++;
1005 }
1006
1007 mmu_notifier_invalidate_range_end(&range);
1008
1009 return cleaned;
1010}
1011
1012static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1013 unsigned long address, void *arg)
1014{
1015 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1016 int *cleaned = arg;
1017
1018 *cleaned += page_vma_mkclean_one(&pvmw);
1019
1020 return true;
1021}
1022
1023static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1024{
1025 if (vma->vm_flags & VM_SHARED)
1026 return false;
1027
1028 return true;
1029}
1030
1031int folio_mkclean(struct folio *folio)
1032{
1033 int cleaned = 0;
1034 struct address_space *mapping;
1035 struct rmap_walk_control rwc = {
1036 .arg = (void *)&cleaned,
1037 .rmap_one = page_mkclean_one,
1038 .invalid_vma = invalid_mkclean_vma,
1039 };
1040
1041 BUG_ON(!folio_test_locked(folio));
1042
1043 if (!folio_mapped(folio))
1044 return 0;
1045
1046 mapping = folio_mapping(folio);
1047 if (!mapping)
1048 return 0;
1049
1050 rmap_walk(folio, &rwc);
1051
1052 return cleaned;
1053}
1054EXPORT_SYMBOL_GPL(folio_mkclean);
1055
1056/**
1057 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1058 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1059 * within the @vma of shared mappings. And since clean PTEs
1060 * should also be readonly, write protects them too.
1061 * @pfn: start pfn.
1062 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1063 * @pgoff: page offset that the @pfn mapped with.
1064 * @vma: vma that @pfn mapped within.
1065 *
1066 * Returns the number of cleaned PTEs (including PMDs).
1067 */
1068int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1069 struct vm_area_struct *vma)
1070{
1071 struct page_vma_mapped_walk pvmw = {
1072 .pfn = pfn,
1073 .nr_pages = nr_pages,
1074 .pgoff = pgoff,
1075 .vma = vma,
1076 .flags = PVMW_SYNC,
1077 };
1078
1079 if (invalid_mkclean_vma(vma, NULL))
1080 return 0;
1081
1082 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1083 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1084
1085 return page_vma_mkclean_one(&pvmw);
1086}
1087
1088struct compound_mapcounts {
1089 unsigned int compound_mapcount;
1090 unsigned int subpages_mapcount;
1091};
1092
1093/*
1094 * lock_compound_mapcounts() first locks, then copies subpages_mapcount and
1095 * compound_mapcount from head[1].compound_mapcount and subpages_mapcount,
1096 * converting from struct page's internal representation to logical count
1097 * (that is, adding 1 to compound_mapcount to hide its offset by -1).
1098 */
1099static void lock_compound_mapcounts(struct page *head,
1100 struct compound_mapcounts *local)
1101{
1102 bit_spin_lock(PG_locked, &head[1].flags);
1103 local->compound_mapcount = atomic_read(compound_mapcount_ptr(head)) + 1;
1104 local->subpages_mapcount = atomic_read(subpages_mapcount_ptr(head));
1105}
1106
1107/*
1108 * After caller has updated subpage._mapcount, local subpages_mapcount and
1109 * local compound_mapcount, as necessary, unlock_compound_mapcounts() converts
1110 * and copies them back to the compound head[1] fields, and then unlocks.
1111 */
1112static void unlock_compound_mapcounts(struct page *head,
1113 struct compound_mapcounts *local)
1114{
1115 atomic_set(compound_mapcount_ptr(head), local->compound_mapcount - 1);
1116 atomic_set(subpages_mapcount_ptr(head), local->subpages_mapcount);
1117 bit_spin_unlock(PG_locked, &head[1].flags);
1118}
1119
1120/*
1121 * When acting on a compound page under lock_compound_mapcounts(), avoid the
1122 * unnecessary overhead of an actual atomic operation on its subpage mapcount.
1123 * Return true if this is the first increment or the last decrement
1124 * (remembering that page->_mapcount -1 represents logical mapcount 0).
1125 */
1126static bool subpage_mapcount_inc(struct page *page)
1127{
1128 int orig_mapcount = atomic_read(&page->_mapcount);
1129
1130 atomic_set(&page->_mapcount, orig_mapcount + 1);
1131 return orig_mapcount < 0;
1132}
1133
1134static bool subpage_mapcount_dec(struct page *page)
1135{
1136 int orig_mapcount = atomic_read(&page->_mapcount);
1137
1138 atomic_set(&page->_mapcount, orig_mapcount - 1);
1139 return orig_mapcount == 0;
1140}
1141
1142/*
1143 * When mapping a THP's first pmd, or unmapping its last pmd, if that THP
1144 * also has pte mappings, then those must be discounted: in order to maintain
1145 * NR_ANON_MAPPED and NR_FILE_MAPPED statistics exactly, without any drift,
1146 * and to decide when an anon THP should be put on the deferred split queue.
1147 * This function must be called between lock_ and unlock_compound_mapcounts().
1148 */
1149static int nr_subpages_unmapped(struct page *head, int nr_subpages)
1150{
1151 int nr = nr_subpages;
1152 int i;
1153
1154 /* Discount those subpages mapped by pte */
1155 for (i = 0; i < nr_subpages; i++)
1156 if (atomic_read(&head[i]._mapcount) >= 0)
1157 nr--;
1158 return nr;
1159}
1160
1161/*
1162 * page_dup_compound_rmap(), used when copying mm, or when splitting pmd,
1163 * provides a simple example of using lock_ and unlock_compound_mapcounts().
1164 */
1165void page_dup_compound_rmap(struct page *page, bool compound)
1166{
1167 struct compound_mapcounts mapcounts;
1168 struct page *head;
1169
1170 /*
1171 * Hugetlb pages could use lock_compound_mapcounts(), like THPs do;
1172 * but at present they are still being managed by atomic operations:
1173 * which are likely to be somewhat faster, so don't rush to convert
1174 * them over without evaluating the effect.
1175 *
1176 * Note that hugetlb does not call page_add_file_rmap():
1177 * here is where hugetlb shared page mapcount is raised.
1178 */
1179 if (PageHuge(page)) {
1180 atomic_inc(compound_mapcount_ptr(page));
1181 return;
1182 }
1183
1184 head = compound_head(page);
1185 lock_compound_mapcounts(head, &mapcounts);
1186 if (compound) {
1187 mapcounts.compound_mapcount++;
1188 } else {
1189 mapcounts.subpages_mapcount++;
1190 subpage_mapcount_inc(page);
1191 }
1192 unlock_compound_mapcounts(head, &mapcounts);
1193}
1194
1195/**
1196 * page_move_anon_rmap - move a page to our anon_vma
1197 * @page: the page to move to our anon_vma
1198 * @vma: the vma the page belongs to
1199 *
1200 * When a page belongs exclusively to one process after a COW event,
1201 * that page can be moved into the anon_vma that belongs to just that
1202 * process, so the rmap code will not search the parent or sibling
1203 * processes.
1204 */
1205void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1206{
1207 void *anon_vma = vma->anon_vma;
1208 struct folio *folio = page_folio(page);
1209
1210 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1211 VM_BUG_ON_VMA(!anon_vma, vma);
1212
1213 anon_vma += PAGE_MAPPING_ANON;
1214 /*
1215 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1216 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1217 * folio_test_anon()) will not see one without the other.
1218 */
1219 WRITE_ONCE(folio->mapping, anon_vma);
1220 SetPageAnonExclusive(page);
1221}
1222
1223/**
1224 * __page_set_anon_rmap - set up new anonymous rmap
1225 * @page: Page or Hugepage to add to rmap
1226 * @vma: VM area to add page to.
1227 * @address: User virtual address of the mapping
1228 * @exclusive: the page is exclusively owned by the current process
1229 */
1230static void __page_set_anon_rmap(struct page *page,
1231 struct vm_area_struct *vma, unsigned long address, int exclusive)
1232{
1233 struct anon_vma *anon_vma = vma->anon_vma;
1234
1235 BUG_ON(!anon_vma);
1236
1237 if (PageAnon(page))
1238 goto out;
1239
1240 /*
1241 * If the page isn't exclusively mapped into this vma,
1242 * we must use the _oldest_ possible anon_vma for the
1243 * page mapping!
1244 */
1245 if (!exclusive)
1246 anon_vma = anon_vma->root;
1247
1248 /*
1249 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1250 * Make sure the compiler doesn't split the stores of anon_vma and
1251 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1252 * could mistake the mapping for a struct address_space and crash.
1253 */
1254 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1255 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1256 page->index = linear_page_index(vma, address);
1257out:
1258 if (exclusive)
1259 SetPageAnonExclusive(page);
1260}
1261
1262/**
1263 * __page_check_anon_rmap - sanity check anonymous rmap addition
1264 * @page: the page to add the mapping to
1265 * @vma: the vm area in which the mapping is added
1266 * @address: the user virtual address mapped
1267 */
1268static void __page_check_anon_rmap(struct page *page,
1269 struct vm_area_struct *vma, unsigned long address)
1270{
1271 struct folio *folio = page_folio(page);
1272 /*
1273 * The page's anon-rmap details (mapping and index) are guaranteed to
1274 * be set up correctly at this point.
1275 *
1276 * We have exclusion against page_add_anon_rmap because the caller
1277 * always holds the page locked.
1278 *
1279 * We have exclusion against page_add_new_anon_rmap because those pages
1280 * are initially only visible via the pagetables, and the pte is locked
1281 * over the call to page_add_new_anon_rmap.
1282 */
1283 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1284 folio);
1285 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1286 page);
1287}
1288
1289/**
1290 * page_add_anon_rmap - add pte mapping to an anonymous page
1291 * @page: the page to add the mapping to
1292 * @vma: the vm area in which the mapping is added
1293 * @address: the user virtual address mapped
1294 * @flags: the rmap flags
1295 *
1296 * The caller needs to hold the pte lock, and the page must be locked in
1297 * the anon_vma case: to serialize mapping,index checking after setting,
1298 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1299 * (but PageKsm is never downgraded to PageAnon).
1300 */
1301void page_add_anon_rmap(struct page *page,
1302 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1303{
1304 struct compound_mapcounts mapcounts;
1305 int nr = 0, nr_pmdmapped = 0;
1306 bool compound = flags & RMAP_COMPOUND;
1307 bool first;
1308
1309 if (unlikely(PageKsm(page)))
1310 lock_page_memcg(page);
1311 else
1312 VM_BUG_ON_PAGE(!PageLocked(page), page);
1313
1314 if (compound && PageTransHuge(page)) {
1315 lock_compound_mapcounts(page, &mapcounts);
1316 first = !mapcounts.compound_mapcount;
1317 mapcounts.compound_mapcount++;
1318 if (first) {
1319 nr = nr_pmdmapped = thp_nr_pages(page);
1320 if (mapcounts.subpages_mapcount)
1321 nr = nr_subpages_unmapped(page, nr_pmdmapped);
1322 }
1323 unlock_compound_mapcounts(page, &mapcounts);
1324
1325 } else if (PageCompound(page)) {
1326 struct page *head = compound_head(page);
1327
1328 lock_compound_mapcounts(head, &mapcounts);
1329 mapcounts.subpages_mapcount++;
1330 first = subpage_mapcount_inc(page);
1331 nr = first && !mapcounts.compound_mapcount;
1332 unlock_compound_mapcounts(head, &mapcounts);
1333
1334 } else {
1335 first = atomic_inc_and_test(&page->_mapcount);
1336 nr = first;
1337 }
1338
1339 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1340 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1341
1342 if (nr_pmdmapped)
1343 __mod_lruvec_page_state(page, NR_ANON_THPS, nr_pmdmapped);
1344 if (nr)
1345 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1346
1347 if (unlikely(PageKsm(page)))
1348 unlock_page_memcg(page);
1349
1350 /* address might be in next vma when migration races vma_adjust */
1351 else if (first)
1352 __page_set_anon_rmap(page, vma, address,
1353 !!(flags & RMAP_EXCLUSIVE));
1354 else
1355 __page_check_anon_rmap(page, vma, address);
1356
1357 mlock_vma_page(page, vma, compound);
1358}
1359
1360/**
1361 * page_add_new_anon_rmap - add mapping to a new anonymous page
1362 * @page: the page to add the mapping to
1363 * @vma: the vm area in which the mapping is added
1364 * @address: the user virtual address mapped
1365 *
1366 * If it's a compound page, it is accounted as a compound page. As the page
1367 * is new, it's assume to get mapped exclusively by a single process.
1368 *
1369 * Same as page_add_anon_rmap but must only be called on *new* pages.
1370 * This means the inc-and-test can be bypassed.
1371 * Page does not have to be locked.
1372 */
1373void page_add_new_anon_rmap(struct page *page,
1374 struct vm_area_struct *vma, unsigned long address)
1375{
1376 const bool compound = PageCompound(page);
1377 int nr = compound ? thp_nr_pages(page) : 1;
1378
1379 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1380 __SetPageSwapBacked(page);
1381 if (compound) {
1382 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1383 /* increment count (starts at -1) */
1384 atomic_set(compound_mapcount_ptr(page), 0);
1385 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1386 } else {
1387 /* increment count (starts at -1) */
1388 atomic_set(&page->_mapcount, 0);
1389 }
1390 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1391 __page_set_anon_rmap(page, vma, address, 1);
1392}
1393
1394/**
1395 * page_add_file_rmap - add pte mapping to a file page
1396 * @page: the page to add the mapping to
1397 * @vma: the vm area in which the mapping is added
1398 * @compound: charge the page as compound or small page
1399 *
1400 * The caller needs to hold the pte lock.
1401 */
1402void page_add_file_rmap(struct page *page,
1403 struct vm_area_struct *vma, bool compound)
1404{
1405 struct compound_mapcounts mapcounts;
1406 int nr = 0, nr_pmdmapped = 0;
1407 bool first;
1408
1409 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1410 lock_page_memcg(page);
1411
1412 if (compound && PageTransHuge(page)) {
1413 lock_compound_mapcounts(page, &mapcounts);
1414 first = !mapcounts.compound_mapcount;
1415 mapcounts.compound_mapcount++;
1416 if (first) {
1417 nr = nr_pmdmapped = thp_nr_pages(page);
1418 if (mapcounts.subpages_mapcount)
1419 nr = nr_subpages_unmapped(page, nr_pmdmapped);
1420 }
1421 unlock_compound_mapcounts(page, &mapcounts);
1422
1423 } else if (PageCompound(page)) {
1424 struct page *head = compound_head(page);
1425
1426 lock_compound_mapcounts(head, &mapcounts);
1427 mapcounts.subpages_mapcount++;
1428 first = subpage_mapcount_inc(page);
1429 nr = first && !mapcounts.compound_mapcount;
1430 unlock_compound_mapcounts(head, &mapcounts);
1431
1432 } else {
1433 first = atomic_inc_and_test(&page->_mapcount);
1434 nr = first;
1435 }
1436
1437 if (nr_pmdmapped)
1438 __mod_lruvec_page_state(page, PageSwapBacked(page) ?
1439 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1440 if (nr)
1441 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1442 unlock_page_memcg(page);
1443
1444 mlock_vma_page(page, vma, compound);
1445}
1446
1447/**
1448 * page_remove_rmap - take down pte mapping from a page
1449 * @page: page to remove mapping from
1450 * @vma: the vm area from which the mapping is removed
1451 * @compound: uncharge the page as compound or small page
1452 *
1453 * The caller needs to hold the pte lock.
1454 */
1455void page_remove_rmap(struct page *page,
1456 struct vm_area_struct *vma, bool compound)
1457{
1458 struct compound_mapcounts mapcounts;
1459 int nr = 0, nr_pmdmapped = 0;
1460 bool last;
1461
1462 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1463
1464 /* Hugetlb pages are not counted in NR_*MAPPED */
1465 if (unlikely(PageHuge(page))) {
1466 /* hugetlb pages are always mapped with pmds */
1467 atomic_dec(compound_mapcount_ptr(page));
1468 return;
1469 }
1470
1471 lock_page_memcg(page);
1472
1473 /* page still mapped by someone else? */
1474 if (compound && PageTransHuge(page)) {
1475 lock_compound_mapcounts(page, &mapcounts);
1476 mapcounts.compound_mapcount--;
1477 last = !mapcounts.compound_mapcount;
1478 if (last) {
1479 nr = nr_pmdmapped = thp_nr_pages(page);
1480 if (mapcounts.subpages_mapcount)
1481 nr = nr_subpages_unmapped(page, nr_pmdmapped);
1482 }
1483 unlock_compound_mapcounts(page, &mapcounts);
1484
1485 } else if (PageCompound(page)) {
1486 struct page *head = compound_head(page);
1487
1488 lock_compound_mapcounts(head, &mapcounts);
1489 mapcounts.subpages_mapcount--;
1490 last = subpage_mapcount_dec(page);
1491 nr = last && !mapcounts.compound_mapcount;
1492 unlock_compound_mapcounts(head, &mapcounts);
1493
1494 } else {
1495 last = atomic_add_negative(-1, &page->_mapcount);
1496 nr = last;
1497 }
1498
1499 if (nr_pmdmapped) {
1500 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_THPS :
1501 (PageSwapBacked(page) ? NR_SHMEM_PMDMAPPED :
1502 NR_FILE_PMDMAPPED), -nr_pmdmapped);
1503 }
1504 if (nr) {
1505 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_MAPPED :
1506 NR_FILE_MAPPED, -nr);
1507 /*
1508 * Queue anon THP for deferred split if at least one small
1509 * page of the compound page is unmapped, but at least one
1510 * small page is still mapped.
1511 */
1512 if (PageTransCompound(page) && PageAnon(page))
1513 if (!compound || nr < nr_pmdmapped)
1514 deferred_split_huge_page(compound_head(page));
1515 }
1516
1517 /*
1518 * It would be tidy to reset PageAnon mapping when fully unmapped,
1519 * but that might overwrite a racing page_add_anon_rmap
1520 * which increments mapcount after us but sets mapping
1521 * before us: so leave the reset to free_pages_prepare,
1522 * and remember that it's only reliable while mapped.
1523 */
1524
1525 unlock_page_memcg(page);
1526
1527 munlock_vma_page(page, vma, compound);
1528}
1529
1530/*
1531 * @arg: enum ttu_flags will be passed to this argument
1532 */
1533static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1534 unsigned long address, void *arg)
1535{
1536 struct mm_struct *mm = vma->vm_mm;
1537 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1538 pte_t pteval;
1539 struct page *subpage;
1540 bool anon_exclusive, ret = true;
1541 struct mmu_notifier_range range;
1542 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1543
1544 /*
1545 * When racing against e.g. zap_pte_range() on another cpu,
1546 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1547 * try_to_unmap() may return before page_mapped() has become false,
1548 * if page table locking is skipped: use TTU_SYNC to wait for that.
1549 */
1550 if (flags & TTU_SYNC)
1551 pvmw.flags = PVMW_SYNC;
1552
1553 if (flags & TTU_SPLIT_HUGE_PMD)
1554 split_huge_pmd_address(vma, address, false, folio);
1555
1556 /*
1557 * For THP, we have to assume the worse case ie pmd for invalidation.
1558 * For hugetlb, it could be much worse if we need to do pud
1559 * invalidation in the case of pmd sharing.
1560 *
1561 * Note that the folio can not be freed in this function as call of
1562 * try_to_unmap() must hold a reference on the folio.
1563 */
1564 range.end = vma_address_end(&pvmw);
1565 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1566 address, range.end);
1567 if (folio_test_hugetlb(folio)) {
1568 /*
1569 * If sharing is possible, start and end will be adjusted
1570 * accordingly.
1571 */
1572 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1573 &range.end);
1574 }
1575 mmu_notifier_invalidate_range_start(&range);
1576
1577 while (page_vma_mapped_walk(&pvmw)) {
1578 /* Unexpected PMD-mapped THP? */
1579 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1580
1581 /*
1582 * If the folio is in an mlock()d vma, we must not swap it out.
1583 */
1584 if (!(flags & TTU_IGNORE_MLOCK) &&
1585 (vma->vm_flags & VM_LOCKED)) {
1586 /* Restore the mlock which got missed */
1587 mlock_vma_folio(folio, vma, false);
1588 page_vma_mapped_walk_done(&pvmw);
1589 ret = false;
1590 break;
1591 }
1592
1593 subpage = folio_page(folio,
1594 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1595 address = pvmw.address;
1596 anon_exclusive = folio_test_anon(folio) &&
1597 PageAnonExclusive(subpage);
1598
1599 if (folio_test_hugetlb(folio)) {
1600 bool anon = folio_test_anon(folio);
1601
1602 /*
1603 * The try_to_unmap() is only passed a hugetlb page
1604 * in the case where the hugetlb page is poisoned.
1605 */
1606 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1607 /*
1608 * huge_pmd_unshare may unmap an entire PMD page.
1609 * There is no way of knowing exactly which PMDs may
1610 * be cached for this mm, so we must flush them all.
1611 * start/end were already adjusted above to cover this
1612 * range.
1613 */
1614 flush_cache_range(vma, range.start, range.end);
1615
1616 /*
1617 * To call huge_pmd_unshare, i_mmap_rwsem must be
1618 * held in write mode. Caller needs to explicitly
1619 * do this outside rmap routines.
1620 *
1621 * We also must hold hugetlb vma_lock in write mode.
1622 * Lock order dictates acquiring vma_lock BEFORE
1623 * i_mmap_rwsem. We can only try lock here and fail
1624 * if unsuccessful.
1625 */
1626 if (!anon) {
1627 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1628 if (!hugetlb_vma_trylock_write(vma)) {
1629 page_vma_mapped_walk_done(&pvmw);
1630 ret = false;
1631 break;
1632 }
1633 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1634 hugetlb_vma_unlock_write(vma);
1635 flush_tlb_range(vma,
1636 range.start, range.end);
1637 mmu_notifier_invalidate_range(mm,
1638 range.start, range.end);
1639 /*
1640 * The ref count of the PMD page was
1641 * dropped which is part of the way map
1642 * counting is done for shared PMDs.
1643 * Return 'true' here. When there is
1644 * no other sharing, huge_pmd_unshare
1645 * returns false and we will unmap the
1646 * actual page and drop map count
1647 * to zero.
1648 */
1649 page_vma_mapped_walk_done(&pvmw);
1650 break;
1651 }
1652 hugetlb_vma_unlock_write(vma);
1653 }
1654 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1655 } else {
1656 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1657 /* Nuke the page table entry. */
1658 if (should_defer_flush(mm, flags)) {
1659 /*
1660 * We clear the PTE but do not flush so potentially
1661 * a remote CPU could still be writing to the folio.
1662 * If the entry was previously clean then the
1663 * architecture must guarantee that a clear->dirty
1664 * transition on a cached TLB entry is written through
1665 * and traps if the PTE is unmapped.
1666 */
1667 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1668
1669 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1670 } else {
1671 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1672 }
1673 }
1674
1675 /*
1676 * Now the pte is cleared. If this pte was uffd-wp armed,
1677 * we may want to replace a none pte with a marker pte if
1678 * it's file-backed, so we don't lose the tracking info.
1679 */
1680 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1681
1682 /* Set the dirty flag on the folio now the pte is gone. */
1683 if (pte_dirty(pteval))
1684 folio_mark_dirty(folio);
1685
1686 /* Update high watermark before we lower rss */
1687 update_hiwater_rss(mm);
1688
1689 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1690 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1691 if (folio_test_hugetlb(folio)) {
1692 hugetlb_count_sub(folio_nr_pages(folio), mm);
1693 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1694 } else {
1695 dec_mm_counter(mm, mm_counter(&folio->page));
1696 set_pte_at(mm, address, pvmw.pte, pteval);
1697 }
1698
1699 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1700 /*
1701 * The guest indicated that the page content is of no
1702 * interest anymore. Simply discard the pte, vmscan
1703 * will take care of the rest.
1704 * A future reference will then fault in a new zero
1705 * page. When userfaultfd is active, we must not drop
1706 * this page though, as its main user (postcopy
1707 * migration) will not expect userfaults on already
1708 * copied pages.
1709 */
1710 dec_mm_counter(mm, mm_counter(&folio->page));
1711 /* We have to invalidate as we cleared the pte */
1712 mmu_notifier_invalidate_range(mm, address,
1713 address + PAGE_SIZE);
1714 } else if (folio_test_anon(folio)) {
1715 swp_entry_t entry = { .val = page_private(subpage) };
1716 pte_t swp_pte;
1717 /*
1718 * Store the swap location in the pte.
1719 * See handle_pte_fault() ...
1720 */
1721 if (unlikely(folio_test_swapbacked(folio) !=
1722 folio_test_swapcache(folio))) {
1723 WARN_ON_ONCE(1);
1724 ret = false;
1725 /* We have to invalidate as we cleared the pte */
1726 mmu_notifier_invalidate_range(mm, address,
1727 address + PAGE_SIZE);
1728 page_vma_mapped_walk_done(&pvmw);
1729 break;
1730 }
1731
1732 /* MADV_FREE page check */
1733 if (!folio_test_swapbacked(folio)) {
1734 int ref_count, map_count;
1735
1736 /*
1737 * Synchronize with gup_pte_range():
1738 * - clear PTE; barrier; read refcount
1739 * - inc refcount; barrier; read PTE
1740 */
1741 smp_mb();
1742
1743 ref_count = folio_ref_count(folio);
1744 map_count = folio_mapcount(folio);
1745
1746 /*
1747 * Order reads for page refcount and dirty flag
1748 * (see comments in __remove_mapping()).
1749 */
1750 smp_rmb();
1751
1752 /*
1753 * The only page refs must be one from isolation
1754 * plus the rmap(s) (dropped by discard:).
1755 */
1756 if (ref_count == 1 + map_count &&
1757 !folio_test_dirty(folio)) {
1758 /* Invalidate as we cleared the pte */
1759 mmu_notifier_invalidate_range(mm,
1760 address, address + PAGE_SIZE);
1761 dec_mm_counter(mm, MM_ANONPAGES);
1762 goto discard;
1763 }
1764
1765 /*
1766 * If the folio was redirtied, it cannot be
1767 * discarded. Remap the page to page table.
1768 */
1769 set_pte_at(mm, address, pvmw.pte, pteval);
1770 folio_set_swapbacked(folio);
1771 ret = false;
1772 page_vma_mapped_walk_done(&pvmw);
1773 break;
1774 }
1775
1776 if (swap_duplicate(entry) < 0) {
1777 set_pte_at(mm, address, pvmw.pte, pteval);
1778 ret = false;
1779 page_vma_mapped_walk_done(&pvmw);
1780 break;
1781 }
1782 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1783 swap_free(entry);
1784 set_pte_at(mm, address, pvmw.pte, pteval);
1785 ret = false;
1786 page_vma_mapped_walk_done(&pvmw);
1787 break;
1788 }
1789
1790 /* See page_try_share_anon_rmap(): clear PTE first. */
1791 if (anon_exclusive &&
1792 page_try_share_anon_rmap(subpage)) {
1793 swap_free(entry);
1794 set_pte_at(mm, address, pvmw.pte, pteval);
1795 ret = false;
1796 page_vma_mapped_walk_done(&pvmw);
1797 break;
1798 }
1799 /*
1800 * Note: We *don't* remember if the page was mapped
1801 * exclusively in the swap pte if the architecture
1802 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1803 * that case, swapin code has to re-determine that
1804 * manually and might detect the page as possibly
1805 * shared, for example, if there are other references on
1806 * the page or if the page is under writeback. We made
1807 * sure that there are no GUP pins on the page that
1808 * would rely on it, so for GUP pins this is fine.
1809 */
1810 if (list_empty(&mm->mmlist)) {
1811 spin_lock(&mmlist_lock);
1812 if (list_empty(&mm->mmlist))
1813 list_add(&mm->mmlist, &init_mm.mmlist);
1814 spin_unlock(&mmlist_lock);
1815 }
1816 dec_mm_counter(mm, MM_ANONPAGES);
1817 inc_mm_counter(mm, MM_SWAPENTS);
1818 swp_pte = swp_entry_to_pte(entry);
1819 if (anon_exclusive)
1820 swp_pte = pte_swp_mkexclusive(swp_pte);
1821 if (pte_soft_dirty(pteval))
1822 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1823 if (pte_uffd_wp(pteval))
1824 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1825 set_pte_at(mm, address, pvmw.pte, swp_pte);
1826 /* Invalidate as we cleared the pte */
1827 mmu_notifier_invalidate_range(mm, address,
1828 address + PAGE_SIZE);
1829 } else {
1830 /*
1831 * This is a locked file-backed folio,
1832 * so it cannot be removed from the page
1833 * cache and replaced by a new folio before
1834 * mmu_notifier_invalidate_range_end, so no
1835 * concurrent thread might update its page table
1836 * to point at a new folio while a device is
1837 * still using this folio.
1838 *
1839 * See Documentation/mm/mmu_notifier.rst
1840 */
1841 dec_mm_counter(mm, mm_counter_file(&folio->page));
1842 }
1843discard:
1844 /*
1845 * No need to call mmu_notifier_invalidate_range() it has be
1846 * done above for all cases requiring it to happen under page
1847 * table lock before mmu_notifier_invalidate_range_end()
1848 *
1849 * See Documentation/mm/mmu_notifier.rst
1850 */
1851 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1852 if (vma->vm_flags & VM_LOCKED)
1853 mlock_page_drain_local();
1854 folio_put(folio);
1855 }
1856
1857 mmu_notifier_invalidate_range_end(&range);
1858
1859 return ret;
1860}
1861
1862static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1863{
1864 return vma_is_temporary_stack(vma);
1865}
1866
1867static int folio_not_mapped(struct folio *folio)
1868{
1869 return !folio_mapped(folio);
1870}
1871
1872/**
1873 * try_to_unmap - Try to remove all page table mappings to a folio.
1874 * @folio: The folio to unmap.
1875 * @flags: action and flags
1876 *
1877 * Tries to remove all the page table entries which are mapping this
1878 * folio. It is the caller's responsibility to check if the folio is
1879 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1880 *
1881 * Context: Caller must hold the folio lock.
1882 */
1883void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1884{
1885 struct rmap_walk_control rwc = {
1886 .rmap_one = try_to_unmap_one,
1887 .arg = (void *)flags,
1888 .done = folio_not_mapped,
1889 .anon_lock = folio_lock_anon_vma_read,
1890 };
1891
1892 if (flags & TTU_RMAP_LOCKED)
1893 rmap_walk_locked(folio, &rwc);
1894 else
1895 rmap_walk(folio, &rwc);
1896}
1897
1898/*
1899 * @arg: enum ttu_flags will be passed to this argument.
1900 *
1901 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1902 * containing migration entries.
1903 */
1904static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1905 unsigned long address, void *arg)
1906{
1907 struct mm_struct *mm = vma->vm_mm;
1908 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1909 pte_t pteval;
1910 struct page *subpage;
1911 bool anon_exclusive, ret = true;
1912 struct mmu_notifier_range range;
1913 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1914
1915 /*
1916 * When racing against e.g. zap_pte_range() on another cpu,
1917 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1918 * try_to_migrate() may return before page_mapped() has become false,
1919 * if page table locking is skipped: use TTU_SYNC to wait for that.
1920 */
1921 if (flags & TTU_SYNC)
1922 pvmw.flags = PVMW_SYNC;
1923
1924 /*
1925 * unmap_page() in mm/huge_memory.c is the only user of migration with
1926 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1927 */
1928 if (flags & TTU_SPLIT_HUGE_PMD)
1929 split_huge_pmd_address(vma, address, true, folio);
1930
1931 /*
1932 * For THP, we have to assume the worse case ie pmd for invalidation.
1933 * For hugetlb, it could be much worse if we need to do pud
1934 * invalidation in the case of pmd sharing.
1935 *
1936 * Note that the page can not be free in this function as call of
1937 * try_to_unmap() must hold a reference on the page.
1938 */
1939 range.end = vma_address_end(&pvmw);
1940 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1941 address, range.end);
1942 if (folio_test_hugetlb(folio)) {
1943 /*
1944 * If sharing is possible, start and end will be adjusted
1945 * accordingly.
1946 */
1947 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1948 &range.end);
1949 }
1950 mmu_notifier_invalidate_range_start(&range);
1951
1952 while (page_vma_mapped_walk(&pvmw)) {
1953#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1954 /* PMD-mapped THP migration entry */
1955 if (!pvmw.pte) {
1956 subpage = folio_page(folio,
1957 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1958 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1959 !folio_test_pmd_mappable(folio), folio);
1960
1961 if (set_pmd_migration_entry(&pvmw, subpage)) {
1962 ret = false;
1963 page_vma_mapped_walk_done(&pvmw);
1964 break;
1965 }
1966 continue;
1967 }
1968#endif
1969
1970 /* Unexpected PMD-mapped THP? */
1971 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1972
1973 if (folio_is_zone_device(folio)) {
1974 /*
1975 * Our PTE is a non-present device exclusive entry and
1976 * calculating the subpage as for the common case would
1977 * result in an invalid pointer.
1978 *
1979 * Since only PAGE_SIZE pages can currently be
1980 * migrated, just set it to page. This will need to be
1981 * changed when hugepage migrations to device private
1982 * memory are supported.
1983 */
1984 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1985 subpage = &folio->page;
1986 } else {
1987 subpage = folio_page(folio,
1988 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1989 }
1990 address = pvmw.address;
1991 anon_exclusive = folio_test_anon(folio) &&
1992 PageAnonExclusive(subpage);
1993
1994 if (folio_test_hugetlb(folio)) {
1995 bool anon = folio_test_anon(folio);
1996
1997 /*
1998 * huge_pmd_unshare may unmap an entire PMD page.
1999 * There is no way of knowing exactly which PMDs may
2000 * be cached for this mm, so we must flush them all.
2001 * start/end were already adjusted above to cover this
2002 * range.
2003 */
2004 flush_cache_range(vma, range.start, range.end);
2005
2006 /*
2007 * To call huge_pmd_unshare, i_mmap_rwsem must be
2008 * held in write mode. Caller needs to explicitly
2009 * do this outside rmap routines.
2010 *
2011 * We also must hold hugetlb vma_lock in write mode.
2012 * Lock order dictates acquiring vma_lock BEFORE
2013 * i_mmap_rwsem. We can only try lock here and
2014 * fail if unsuccessful.
2015 */
2016 if (!anon) {
2017 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2018 if (!hugetlb_vma_trylock_write(vma)) {
2019 page_vma_mapped_walk_done(&pvmw);
2020 ret = false;
2021 break;
2022 }
2023 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2024 hugetlb_vma_unlock_write(vma);
2025 flush_tlb_range(vma,
2026 range.start, range.end);
2027 mmu_notifier_invalidate_range(mm,
2028 range.start, range.end);
2029
2030 /*
2031 * The ref count of the PMD page was
2032 * dropped which is part of the way map
2033 * counting is done for shared PMDs.
2034 * Return 'true' here. When there is
2035 * no other sharing, huge_pmd_unshare
2036 * returns false and we will unmap the
2037 * actual page and drop map count
2038 * to zero.
2039 */
2040 page_vma_mapped_walk_done(&pvmw);
2041 break;
2042 }
2043 hugetlb_vma_unlock_write(vma);
2044 }
2045 /* Nuke the hugetlb page table entry */
2046 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2047 } else {
2048 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2049 /* Nuke the page table entry. */
2050 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2051 }
2052
2053 /* Set the dirty flag on the folio now the pte is gone. */
2054 if (pte_dirty(pteval))
2055 folio_mark_dirty(folio);
2056
2057 /* Update high watermark before we lower rss */
2058 update_hiwater_rss(mm);
2059
2060 if (folio_is_device_private(folio)) {
2061 unsigned long pfn = folio_pfn(folio);
2062 swp_entry_t entry;
2063 pte_t swp_pte;
2064
2065 if (anon_exclusive)
2066 BUG_ON(page_try_share_anon_rmap(subpage));
2067
2068 /*
2069 * Store the pfn of the page in a special migration
2070 * pte. do_swap_page() will wait until the migration
2071 * pte is removed and then restart fault handling.
2072 */
2073 entry = pte_to_swp_entry(pteval);
2074 if (is_writable_device_private_entry(entry))
2075 entry = make_writable_migration_entry(pfn);
2076 else if (anon_exclusive)
2077 entry = make_readable_exclusive_migration_entry(pfn);
2078 else
2079 entry = make_readable_migration_entry(pfn);
2080 swp_pte = swp_entry_to_pte(entry);
2081
2082 /*
2083 * pteval maps a zone device page and is therefore
2084 * a swap pte.
2085 */
2086 if (pte_swp_soft_dirty(pteval))
2087 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2088 if (pte_swp_uffd_wp(pteval))
2089 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2090 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2091 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2092 compound_order(&folio->page));
2093 /*
2094 * No need to invalidate here it will synchronize on
2095 * against the special swap migration pte.
2096 */
2097 } else if (PageHWPoison(subpage)) {
2098 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2099 if (folio_test_hugetlb(folio)) {
2100 hugetlb_count_sub(folio_nr_pages(folio), mm);
2101 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2102 } else {
2103 dec_mm_counter(mm, mm_counter(&folio->page));
2104 set_pte_at(mm, address, pvmw.pte, pteval);
2105 }
2106
2107 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2108 /*
2109 * The guest indicated that the page content is of no
2110 * interest anymore. Simply discard the pte, vmscan
2111 * will take care of the rest.
2112 * A future reference will then fault in a new zero
2113 * page. When userfaultfd is active, we must not drop
2114 * this page though, as its main user (postcopy
2115 * migration) will not expect userfaults on already
2116 * copied pages.
2117 */
2118 dec_mm_counter(mm, mm_counter(&folio->page));
2119 /* We have to invalidate as we cleared the pte */
2120 mmu_notifier_invalidate_range(mm, address,
2121 address + PAGE_SIZE);
2122 } else {
2123 swp_entry_t entry;
2124 pte_t swp_pte;
2125
2126 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2127 if (folio_test_hugetlb(folio))
2128 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2129 else
2130 set_pte_at(mm, address, pvmw.pte, pteval);
2131 ret = false;
2132 page_vma_mapped_walk_done(&pvmw);
2133 break;
2134 }
2135 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2136 !anon_exclusive, subpage);
2137
2138 /* See page_try_share_anon_rmap(): clear PTE first. */
2139 if (anon_exclusive &&
2140 page_try_share_anon_rmap(subpage)) {
2141 if (folio_test_hugetlb(folio))
2142 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2143 else
2144 set_pte_at(mm, address, pvmw.pte, pteval);
2145 ret = false;
2146 page_vma_mapped_walk_done(&pvmw);
2147 break;
2148 }
2149
2150 /*
2151 * Store the pfn of the page in a special migration
2152 * pte. do_swap_page() will wait until the migration
2153 * pte is removed and then restart fault handling.
2154 */
2155 if (pte_write(pteval))
2156 entry = make_writable_migration_entry(
2157 page_to_pfn(subpage));
2158 else if (anon_exclusive)
2159 entry = make_readable_exclusive_migration_entry(
2160 page_to_pfn(subpage));
2161 else
2162 entry = make_readable_migration_entry(
2163 page_to_pfn(subpage));
2164 if (pte_young(pteval))
2165 entry = make_migration_entry_young(entry);
2166 if (pte_dirty(pteval))
2167 entry = make_migration_entry_dirty(entry);
2168 swp_pte = swp_entry_to_pte(entry);
2169 if (pte_soft_dirty(pteval))
2170 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2171 if (pte_uffd_wp(pteval))
2172 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2173 if (folio_test_hugetlb(folio))
2174 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2175 else
2176 set_pte_at(mm, address, pvmw.pte, swp_pte);
2177 trace_set_migration_pte(address, pte_val(swp_pte),
2178 compound_order(&folio->page));
2179 /*
2180 * No need to invalidate here it will synchronize on
2181 * against the special swap migration pte.
2182 */
2183 }
2184
2185 /*
2186 * No need to call mmu_notifier_invalidate_range() it has be
2187 * done above for all cases requiring it to happen under page
2188 * table lock before mmu_notifier_invalidate_range_end()
2189 *
2190 * See Documentation/mm/mmu_notifier.rst
2191 */
2192 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2193 if (vma->vm_flags & VM_LOCKED)
2194 mlock_page_drain_local();
2195 folio_put(folio);
2196 }
2197
2198 mmu_notifier_invalidate_range_end(&range);
2199
2200 return ret;
2201}
2202
2203/**
2204 * try_to_migrate - try to replace all page table mappings with swap entries
2205 * @folio: the folio to replace page table entries for
2206 * @flags: action and flags
2207 *
2208 * Tries to remove all the page table entries which are mapping this folio and
2209 * replace them with special swap entries. Caller must hold the folio lock.
2210 */
2211void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2212{
2213 struct rmap_walk_control rwc = {
2214 .rmap_one = try_to_migrate_one,
2215 .arg = (void *)flags,
2216 .done = folio_not_mapped,
2217 .anon_lock = folio_lock_anon_vma_read,
2218 };
2219
2220 /*
2221 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2222 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2223 */
2224 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2225 TTU_SYNC)))
2226 return;
2227
2228 if (folio_is_zone_device(folio) &&
2229 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2230 return;
2231
2232 /*
2233 * During exec, a temporary VMA is setup and later moved.
2234 * The VMA is moved under the anon_vma lock but not the
2235 * page tables leading to a race where migration cannot
2236 * find the migration ptes. Rather than increasing the
2237 * locking requirements of exec(), migration skips
2238 * temporary VMAs until after exec() completes.
2239 */
2240 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2241 rwc.invalid_vma = invalid_migration_vma;
2242
2243 if (flags & TTU_RMAP_LOCKED)
2244 rmap_walk_locked(folio, &rwc);
2245 else
2246 rmap_walk(folio, &rwc);
2247}
2248
2249#ifdef CONFIG_DEVICE_PRIVATE
2250struct make_exclusive_args {
2251 struct mm_struct *mm;
2252 unsigned long address;
2253 void *owner;
2254 bool valid;
2255};
2256
2257static bool page_make_device_exclusive_one(struct folio *folio,
2258 struct vm_area_struct *vma, unsigned long address, void *priv)
2259{
2260 struct mm_struct *mm = vma->vm_mm;
2261 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2262 struct make_exclusive_args *args = priv;
2263 pte_t pteval;
2264 struct page *subpage;
2265 bool ret = true;
2266 struct mmu_notifier_range range;
2267 swp_entry_t entry;
2268 pte_t swp_pte;
2269
2270 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2271 vma->vm_mm, address, min(vma->vm_end,
2272 address + folio_size(folio)),
2273 args->owner);
2274 mmu_notifier_invalidate_range_start(&range);
2275
2276 while (page_vma_mapped_walk(&pvmw)) {
2277 /* Unexpected PMD-mapped THP? */
2278 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2279
2280 if (!pte_present(*pvmw.pte)) {
2281 ret = false;
2282 page_vma_mapped_walk_done(&pvmw);
2283 break;
2284 }
2285
2286 subpage = folio_page(folio,
2287 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2288 address = pvmw.address;
2289
2290 /* Nuke the page table entry. */
2291 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2292 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2293
2294 /* Set the dirty flag on the folio now the pte is gone. */
2295 if (pte_dirty(pteval))
2296 folio_mark_dirty(folio);
2297
2298 /*
2299 * Check that our target page is still mapped at the expected
2300 * address.
2301 */
2302 if (args->mm == mm && args->address == address &&
2303 pte_write(pteval))
2304 args->valid = true;
2305
2306 /*
2307 * Store the pfn of the page in a special migration
2308 * pte. do_swap_page() will wait until the migration
2309 * pte is removed and then restart fault handling.
2310 */
2311 if (pte_write(pteval))
2312 entry = make_writable_device_exclusive_entry(
2313 page_to_pfn(subpage));
2314 else
2315 entry = make_readable_device_exclusive_entry(
2316 page_to_pfn(subpage));
2317 swp_pte = swp_entry_to_pte(entry);
2318 if (pte_soft_dirty(pteval))
2319 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2320 if (pte_uffd_wp(pteval))
2321 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2322
2323 set_pte_at(mm, address, pvmw.pte, swp_pte);
2324
2325 /*
2326 * There is a reference on the page for the swap entry which has
2327 * been removed, so shouldn't take another.
2328 */
2329 page_remove_rmap(subpage, vma, false);
2330 }
2331
2332 mmu_notifier_invalidate_range_end(&range);
2333
2334 return ret;
2335}
2336
2337/**
2338 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2339 * @folio: The folio to replace page table entries for.
2340 * @mm: The mm_struct where the folio is expected to be mapped.
2341 * @address: Address where the folio is expected to be mapped.
2342 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2343 *
2344 * Tries to remove all the page table entries which are mapping this
2345 * folio and replace them with special device exclusive swap entries to
2346 * grant a device exclusive access to the folio.
2347 *
2348 * Context: Caller must hold the folio lock.
2349 * Return: false if the page is still mapped, or if it could not be unmapped
2350 * from the expected address. Otherwise returns true (success).
2351 */
2352static bool folio_make_device_exclusive(struct folio *folio,
2353 struct mm_struct *mm, unsigned long address, void *owner)
2354{
2355 struct make_exclusive_args args = {
2356 .mm = mm,
2357 .address = address,
2358 .owner = owner,
2359 .valid = false,
2360 };
2361 struct rmap_walk_control rwc = {
2362 .rmap_one = page_make_device_exclusive_one,
2363 .done = folio_not_mapped,
2364 .anon_lock = folio_lock_anon_vma_read,
2365 .arg = &args,
2366 };
2367
2368 /*
2369 * Restrict to anonymous folios for now to avoid potential writeback
2370 * issues.
2371 */
2372 if (!folio_test_anon(folio))
2373 return false;
2374
2375 rmap_walk(folio, &rwc);
2376
2377 return args.valid && !folio_mapcount(folio);
2378}
2379
2380/**
2381 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2382 * @mm: mm_struct of associated target process
2383 * @start: start of the region to mark for exclusive device access
2384 * @end: end address of region
2385 * @pages: returns the pages which were successfully marked for exclusive access
2386 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2387 *
2388 * Returns: number of pages found in the range by GUP. A page is marked for
2389 * exclusive access only if the page pointer is non-NULL.
2390 *
2391 * This function finds ptes mapping page(s) to the given address range, locks
2392 * them and replaces mappings with special swap entries preventing userspace CPU
2393 * access. On fault these entries are replaced with the original mapping after
2394 * calling MMU notifiers.
2395 *
2396 * A driver using this to program access from a device must use a mmu notifier
2397 * critical section to hold a device specific lock during programming. Once
2398 * programming is complete it should drop the page lock and reference after
2399 * which point CPU access to the page will revoke the exclusive access.
2400 */
2401int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2402 unsigned long end, struct page **pages,
2403 void *owner)
2404{
2405 long npages = (end - start) >> PAGE_SHIFT;
2406 long i;
2407
2408 npages = get_user_pages_remote(mm, start, npages,
2409 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2410 pages, NULL, NULL);
2411 if (npages < 0)
2412 return npages;
2413
2414 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2415 struct folio *folio = page_folio(pages[i]);
2416 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2417 folio_put(folio);
2418 pages[i] = NULL;
2419 continue;
2420 }
2421
2422 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2423 folio_unlock(folio);
2424 folio_put(folio);
2425 pages[i] = NULL;
2426 }
2427 }
2428
2429 return npages;
2430}
2431EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2432#endif
2433
2434void __put_anon_vma(struct anon_vma *anon_vma)
2435{
2436 struct anon_vma *root = anon_vma->root;
2437
2438 anon_vma_free(anon_vma);
2439 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2440 anon_vma_free(root);
2441}
2442
2443static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2444 struct rmap_walk_control *rwc)
2445{
2446 struct anon_vma *anon_vma;
2447
2448 if (rwc->anon_lock)
2449 return rwc->anon_lock(folio, rwc);
2450
2451 /*
2452 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2453 * because that depends on page_mapped(); but not all its usages
2454 * are holding mmap_lock. Users without mmap_lock are required to
2455 * take a reference count to prevent the anon_vma disappearing
2456 */
2457 anon_vma = folio_anon_vma(folio);
2458 if (!anon_vma)
2459 return NULL;
2460
2461 if (anon_vma_trylock_read(anon_vma))
2462 goto out;
2463
2464 if (rwc->try_lock) {
2465 anon_vma = NULL;
2466 rwc->contended = true;
2467 goto out;
2468 }
2469
2470 anon_vma_lock_read(anon_vma);
2471out:
2472 return anon_vma;
2473}
2474
2475/*
2476 * rmap_walk_anon - do something to anonymous page using the object-based
2477 * rmap method
2478 * @page: the page to be handled
2479 * @rwc: control variable according to each walk type
2480 *
2481 * Find all the mappings of a page using the mapping pointer and the vma chains
2482 * contained in the anon_vma struct it points to.
2483 */
2484static void rmap_walk_anon(struct folio *folio,
2485 struct rmap_walk_control *rwc, bool locked)
2486{
2487 struct anon_vma *anon_vma;
2488 pgoff_t pgoff_start, pgoff_end;
2489 struct anon_vma_chain *avc;
2490
2491 if (locked) {
2492 anon_vma = folio_anon_vma(folio);
2493 /* anon_vma disappear under us? */
2494 VM_BUG_ON_FOLIO(!anon_vma, folio);
2495 } else {
2496 anon_vma = rmap_walk_anon_lock(folio, rwc);
2497 }
2498 if (!anon_vma)
2499 return;
2500
2501 pgoff_start = folio_pgoff(folio);
2502 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2503 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2504 pgoff_start, pgoff_end) {
2505 struct vm_area_struct *vma = avc->vma;
2506 unsigned long address = vma_address(&folio->page, vma);
2507
2508 VM_BUG_ON_VMA(address == -EFAULT, vma);
2509 cond_resched();
2510
2511 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2512 continue;
2513
2514 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2515 break;
2516 if (rwc->done && rwc->done(folio))
2517 break;
2518 }
2519
2520 if (!locked)
2521 anon_vma_unlock_read(anon_vma);
2522}
2523
2524/*
2525 * rmap_walk_file - do something to file page using the object-based rmap method
2526 * @page: the page to be handled
2527 * @rwc: control variable according to each walk type
2528 *
2529 * Find all the mappings of a page using the mapping pointer and the vma chains
2530 * contained in the address_space struct it points to.
2531 */
2532static void rmap_walk_file(struct folio *folio,
2533 struct rmap_walk_control *rwc, bool locked)
2534{
2535 struct address_space *mapping = folio_mapping(folio);
2536 pgoff_t pgoff_start, pgoff_end;
2537 struct vm_area_struct *vma;
2538
2539 /*
2540 * The page lock not only makes sure that page->mapping cannot
2541 * suddenly be NULLified by truncation, it makes sure that the
2542 * structure at mapping cannot be freed and reused yet,
2543 * so we can safely take mapping->i_mmap_rwsem.
2544 */
2545 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2546
2547 if (!mapping)
2548 return;
2549
2550 pgoff_start = folio_pgoff(folio);
2551 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2552 if (!locked) {
2553 if (i_mmap_trylock_read(mapping))
2554 goto lookup;
2555
2556 if (rwc->try_lock) {
2557 rwc->contended = true;
2558 return;
2559 }
2560
2561 i_mmap_lock_read(mapping);
2562 }
2563lookup:
2564 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2565 pgoff_start, pgoff_end) {
2566 unsigned long address = vma_address(&folio->page, vma);
2567
2568 VM_BUG_ON_VMA(address == -EFAULT, vma);
2569 cond_resched();
2570
2571 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2572 continue;
2573
2574 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2575 goto done;
2576 if (rwc->done && rwc->done(folio))
2577 goto done;
2578 }
2579
2580done:
2581 if (!locked)
2582 i_mmap_unlock_read(mapping);
2583}
2584
2585void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2586{
2587 if (unlikely(folio_test_ksm(folio)))
2588 rmap_walk_ksm(folio, rwc);
2589 else if (folio_test_anon(folio))
2590 rmap_walk_anon(folio, rwc, false);
2591 else
2592 rmap_walk_file(folio, rwc, false);
2593}
2594
2595/* Like rmap_walk, but caller holds relevant rmap lock */
2596void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2597{
2598 /* no ksm support for now */
2599 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2600 if (folio_test_anon(folio))
2601 rmap_walk_anon(folio, rwc, true);
2602 else
2603 rmap_walk_file(folio, rwc, true);
2604}
2605
2606#ifdef CONFIG_HUGETLB_PAGE
2607/*
2608 * The following two functions are for anonymous (private mapped) hugepages.
2609 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2610 * and no lru code, because we handle hugepages differently from common pages.
2611 *
2612 * RMAP_COMPOUND is ignored.
2613 */
2614void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2615 unsigned long address, rmap_t flags)
2616{
2617 struct anon_vma *anon_vma = vma->anon_vma;
2618 int first;
2619
2620 BUG_ON(!PageLocked(page));
2621 BUG_ON(!anon_vma);
2622 /* address might be in next vma when migration races vma_adjust */
2623 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2624 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2625 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2626 if (first)
2627 __page_set_anon_rmap(page, vma, address,
2628 !!(flags & RMAP_EXCLUSIVE));
2629}
2630
2631void hugepage_add_new_anon_rmap(struct page *page,
2632 struct vm_area_struct *vma, unsigned long address)
2633{
2634 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2635 /* increment count (starts at -1) */
2636 atomic_set(compound_mapcount_ptr(page), 0);
2637 ClearHPageRestoreReserve(page);
2638 __page_set_anon_rmap(page, vma, address, 1);
2639}
2640#endif /* CONFIG_HUGETLB_PAGE */