mm/rmap: pass rmap flags to hugepage_add_anon_rmap()
[linux-2.6-block.git] / mm / rmap.c
... / ...
CommitLineData
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
53 */
54
55#include <linux/mm.h>
56#include <linux/sched/mm.h>
57#include <linux/sched/task.h>
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
63#include <linux/ksm.h>
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
66#include <linux/export.h>
67#include <linux/memcontrol.h>
68#include <linux/mmu_notifier.h>
69#include <linux/migrate.h>
70#include <linux/hugetlb.h>
71#include <linux/huge_mm.h>
72#include <linux/backing-dev.h>
73#include <linux/page_idle.h>
74#include <linux/memremap.h>
75#include <linux/userfaultfd_k.h>
76
77#include <asm/tlbflush.h>
78
79#define CREATE_TRACE_POINTS
80#include <trace/events/tlb.h>
81#include <trace/events/migrate.h>
82
83#include "internal.h"
84
85static struct kmem_cache *anon_vma_cachep;
86static struct kmem_cache *anon_vma_chain_cachep;
87
88static inline struct anon_vma *anon_vma_alloc(void)
89{
90 struct anon_vma *anon_vma;
91
92 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
93 if (anon_vma) {
94 atomic_set(&anon_vma->refcount, 1);
95 anon_vma->degree = 1; /* Reference for first vma */
96 anon_vma->parent = anon_vma;
97 /*
98 * Initialise the anon_vma root to point to itself. If called
99 * from fork, the root will be reset to the parents anon_vma.
100 */
101 anon_vma->root = anon_vma;
102 }
103
104 return anon_vma;
105}
106
107static inline void anon_vma_free(struct anon_vma *anon_vma)
108{
109 VM_BUG_ON(atomic_read(&anon_vma->refcount));
110
111 /*
112 * Synchronize against folio_lock_anon_vma_read() such that
113 * we can safely hold the lock without the anon_vma getting
114 * freed.
115 *
116 * Relies on the full mb implied by the atomic_dec_and_test() from
117 * put_anon_vma() against the acquire barrier implied by
118 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
119 *
120 * folio_lock_anon_vma_read() VS put_anon_vma()
121 * down_read_trylock() atomic_dec_and_test()
122 * LOCK MB
123 * atomic_read() rwsem_is_locked()
124 *
125 * LOCK should suffice since the actual taking of the lock must
126 * happen _before_ what follows.
127 */
128 might_sleep();
129 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
130 anon_vma_lock_write(anon_vma);
131 anon_vma_unlock_write(anon_vma);
132 }
133
134 kmem_cache_free(anon_vma_cachep, anon_vma);
135}
136
137static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
138{
139 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
140}
141
142static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
143{
144 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
145}
146
147static void anon_vma_chain_link(struct vm_area_struct *vma,
148 struct anon_vma_chain *avc,
149 struct anon_vma *anon_vma)
150{
151 avc->vma = vma;
152 avc->anon_vma = anon_vma;
153 list_add(&avc->same_vma, &vma->anon_vma_chain);
154 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
155}
156
157/**
158 * __anon_vma_prepare - attach an anon_vma to a memory region
159 * @vma: the memory region in question
160 *
161 * This makes sure the memory mapping described by 'vma' has
162 * an 'anon_vma' attached to it, so that we can associate the
163 * anonymous pages mapped into it with that anon_vma.
164 *
165 * The common case will be that we already have one, which
166 * is handled inline by anon_vma_prepare(). But if
167 * not we either need to find an adjacent mapping that we
168 * can re-use the anon_vma from (very common when the only
169 * reason for splitting a vma has been mprotect()), or we
170 * allocate a new one.
171 *
172 * Anon-vma allocations are very subtle, because we may have
173 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
174 * and that may actually touch the rwsem even in the newly
175 * allocated vma (it depends on RCU to make sure that the
176 * anon_vma isn't actually destroyed).
177 *
178 * As a result, we need to do proper anon_vma locking even
179 * for the new allocation. At the same time, we do not want
180 * to do any locking for the common case of already having
181 * an anon_vma.
182 *
183 * This must be called with the mmap_lock held for reading.
184 */
185int __anon_vma_prepare(struct vm_area_struct *vma)
186{
187 struct mm_struct *mm = vma->vm_mm;
188 struct anon_vma *anon_vma, *allocated;
189 struct anon_vma_chain *avc;
190
191 might_sleep();
192
193 avc = anon_vma_chain_alloc(GFP_KERNEL);
194 if (!avc)
195 goto out_enomem;
196
197 anon_vma = find_mergeable_anon_vma(vma);
198 allocated = NULL;
199 if (!anon_vma) {
200 anon_vma = anon_vma_alloc();
201 if (unlikely(!anon_vma))
202 goto out_enomem_free_avc;
203 allocated = anon_vma;
204 }
205
206 anon_vma_lock_write(anon_vma);
207 /* page_table_lock to protect against threads */
208 spin_lock(&mm->page_table_lock);
209 if (likely(!vma->anon_vma)) {
210 vma->anon_vma = anon_vma;
211 anon_vma_chain_link(vma, avc, anon_vma);
212 /* vma reference or self-parent link for new root */
213 anon_vma->degree++;
214 allocated = NULL;
215 avc = NULL;
216 }
217 spin_unlock(&mm->page_table_lock);
218 anon_vma_unlock_write(anon_vma);
219
220 if (unlikely(allocated))
221 put_anon_vma(allocated);
222 if (unlikely(avc))
223 anon_vma_chain_free(avc);
224
225 return 0;
226
227 out_enomem_free_avc:
228 anon_vma_chain_free(avc);
229 out_enomem:
230 return -ENOMEM;
231}
232
233/*
234 * This is a useful helper function for locking the anon_vma root as
235 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
236 * have the same vma.
237 *
238 * Such anon_vma's should have the same root, so you'd expect to see
239 * just a single mutex_lock for the whole traversal.
240 */
241static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
242{
243 struct anon_vma *new_root = anon_vma->root;
244 if (new_root != root) {
245 if (WARN_ON_ONCE(root))
246 up_write(&root->rwsem);
247 root = new_root;
248 down_write(&root->rwsem);
249 }
250 return root;
251}
252
253static inline void unlock_anon_vma_root(struct anon_vma *root)
254{
255 if (root)
256 up_write(&root->rwsem);
257}
258
259/*
260 * Attach the anon_vmas from src to dst.
261 * Returns 0 on success, -ENOMEM on failure.
262 *
263 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
264 * anon_vma_fork(). The first three want an exact copy of src, while the last
265 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
266 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
267 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
268 *
269 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
270 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
271 * This prevents degradation of anon_vma hierarchy to endless linear chain in
272 * case of constantly forking task. On the other hand, an anon_vma with more
273 * than one child isn't reused even if there was no alive vma, thus rmap
274 * walker has a good chance of avoiding scanning the whole hierarchy when it
275 * searches where page is mapped.
276 */
277int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
278{
279 struct anon_vma_chain *avc, *pavc;
280 struct anon_vma *root = NULL;
281
282 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
283 struct anon_vma *anon_vma;
284
285 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
286 if (unlikely(!avc)) {
287 unlock_anon_vma_root(root);
288 root = NULL;
289 avc = anon_vma_chain_alloc(GFP_KERNEL);
290 if (!avc)
291 goto enomem_failure;
292 }
293 anon_vma = pavc->anon_vma;
294 root = lock_anon_vma_root(root, anon_vma);
295 anon_vma_chain_link(dst, avc, anon_vma);
296
297 /*
298 * Reuse existing anon_vma if its degree lower than two,
299 * that means it has no vma and only one anon_vma child.
300 *
301 * Do not chose parent anon_vma, otherwise first child
302 * will always reuse it. Root anon_vma is never reused:
303 * it has self-parent reference and at least one child.
304 */
305 if (!dst->anon_vma && src->anon_vma &&
306 anon_vma != src->anon_vma && anon_vma->degree < 2)
307 dst->anon_vma = anon_vma;
308 }
309 if (dst->anon_vma)
310 dst->anon_vma->degree++;
311 unlock_anon_vma_root(root);
312 return 0;
313
314 enomem_failure:
315 /*
316 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
317 * decremented in unlink_anon_vmas().
318 * We can safely do this because callers of anon_vma_clone() don't care
319 * about dst->anon_vma if anon_vma_clone() failed.
320 */
321 dst->anon_vma = NULL;
322 unlink_anon_vmas(dst);
323 return -ENOMEM;
324}
325
326/*
327 * Attach vma to its own anon_vma, as well as to the anon_vmas that
328 * the corresponding VMA in the parent process is attached to.
329 * Returns 0 on success, non-zero on failure.
330 */
331int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
332{
333 struct anon_vma_chain *avc;
334 struct anon_vma *anon_vma;
335 int error;
336
337 /* Don't bother if the parent process has no anon_vma here. */
338 if (!pvma->anon_vma)
339 return 0;
340
341 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
342 vma->anon_vma = NULL;
343
344 /*
345 * First, attach the new VMA to the parent VMA's anon_vmas,
346 * so rmap can find non-COWed pages in child processes.
347 */
348 error = anon_vma_clone(vma, pvma);
349 if (error)
350 return error;
351
352 /* An existing anon_vma has been reused, all done then. */
353 if (vma->anon_vma)
354 return 0;
355
356 /* Then add our own anon_vma. */
357 anon_vma = anon_vma_alloc();
358 if (!anon_vma)
359 goto out_error;
360 avc = anon_vma_chain_alloc(GFP_KERNEL);
361 if (!avc)
362 goto out_error_free_anon_vma;
363
364 /*
365 * The root anon_vma's rwsem is the lock actually used when we
366 * lock any of the anon_vmas in this anon_vma tree.
367 */
368 anon_vma->root = pvma->anon_vma->root;
369 anon_vma->parent = pvma->anon_vma;
370 /*
371 * With refcounts, an anon_vma can stay around longer than the
372 * process it belongs to. The root anon_vma needs to be pinned until
373 * this anon_vma is freed, because the lock lives in the root.
374 */
375 get_anon_vma(anon_vma->root);
376 /* Mark this anon_vma as the one where our new (COWed) pages go. */
377 vma->anon_vma = anon_vma;
378 anon_vma_lock_write(anon_vma);
379 anon_vma_chain_link(vma, avc, anon_vma);
380 anon_vma->parent->degree++;
381 anon_vma_unlock_write(anon_vma);
382
383 return 0;
384
385 out_error_free_anon_vma:
386 put_anon_vma(anon_vma);
387 out_error:
388 unlink_anon_vmas(vma);
389 return -ENOMEM;
390}
391
392void unlink_anon_vmas(struct vm_area_struct *vma)
393{
394 struct anon_vma_chain *avc, *next;
395 struct anon_vma *root = NULL;
396
397 /*
398 * Unlink each anon_vma chained to the VMA. This list is ordered
399 * from newest to oldest, ensuring the root anon_vma gets freed last.
400 */
401 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
402 struct anon_vma *anon_vma = avc->anon_vma;
403
404 root = lock_anon_vma_root(root, anon_vma);
405 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
406
407 /*
408 * Leave empty anon_vmas on the list - we'll need
409 * to free them outside the lock.
410 */
411 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
412 anon_vma->parent->degree--;
413 continue;
414 }
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 if (vma->anon_vma) {
420 vma->anon_vma->degree--;
421
422 /*
423 * vma would still be needed after unlink, and anon_vma will be prepared
424 * when handle fault.
425 */
426 vma->anon_vma = NULL;
427 }
428 unlock_anon_vma_root(root);
429
430 /*
431 * Iterate the list once more, it now only contains empty and unlinked
432 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
433 * needing to write-acquire the anon_vma->root->rwsem.
434 */
435 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
436 struct anon_vma *anon_vma = avc->anon_vma;
437
438 VM_WARN_ON(anon_vma->degree);
439 put_anon_vma(anon_vma);
440
441 list_del(&avc->same_vma);
442 anon_vma_chain_free(avc);
443 }
444}
445
446static void anon_vma_ctor(void *data)
447{
448 struct anon_vma *anon_vma = data;
449
450 init_rwsem(&anon_vma->rwsem);
451 atomic_set(&anon_vma->refcount, 0);
452 anon_vma->rb_root = RB_ROOT_CACHED;
453}
454
455void __init anon_vma_init(void)
456{
457 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
458 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
459 anon_vma_ctor);
460 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
461 SLAB_PANIC|SLAB_ACCOUNT);
462}
463
464/*
465 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
466 *
467 * Since there is no serialization what so ever against page_remove_rmap()
468 * the best this function can do is return a refcount increased anon_vma
469 * that might have been relevant to this page.
470 *
471 * The page might have been remapped to a different anon_vma or the anon_vma
472 * returned may already be freed (and even reused).
473 *
474 * In case it was remapped to a different anon_vma, the new anon_vma will be a
475 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
476 * ensure that any anon_vma obtained from the page will still be valid for as
477 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
478 *
479 * All users of this function must be very careful when walking the anon_vma
480 * chain and verify that the page in question is indeed mapped in it
481 * [ something equivalent to page_mapped_in_vma() ].
482 *
483 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
484 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
485 * if there is a mapcount, we can dereference the anon_vma after observing
486 * those.
487 */
488struct anon_vma *page_get_anon_vma(struct page *page)
489{
490 struct anon_vma *anon_vma = NULL;
491 unsigned long anon_mapping;
492
493 rcu_read_lock();
494 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
495 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
496 goto out;
497 if (!page_mapped(page))
498 goto out;
499
500 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
501 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
502 anon_vma = NULL;
503 goto out;
504 }
505
506 /*
507 * If this page is still mapped, then its anon_vma cannot have been
508 * freed. But if it has been unmapped, we have no security against the
509 * anon_vma structure being freed and reused (for another anon_vma:
510 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
511 * above cannot corrupt).
512 */
513 if (!page_mapped(page)) {
514 rcu_read_unlock();
515 put_anon_vma(anon_vma);
516 return NULL;
517 }
518out:
519 rcu_read_unlock();
520
521 return anon_vma;
522}
523
524/*
525 * Similar to page_get_anon_vma() except it locks the anon_vma.
526 *
527 * Its a little more complex as it tries to keep the fast path to a single
528 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
529 * reference like with page_get_anon_vma() and then block on the mutex.
530 */
531struct anon_vma *folio_lock_anon_vma_read(struct folio *folio)
532{
533 struct anon_vma *anon_vma = NULL;
534 struct anon_vma *root_anon_vma;
535 unsigned long anon_mapping;
536
537 rcu_read_lock();
538 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
539 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
540 goto out;
541 if (!folio_mapped(folio))
542 goto out;
543
544 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
545 root_anon_vma = READ_ONCE(anon_vma->root);
546 if (down_read_trylock(&root_anon_vma->rwsem)) {
547 /*
548 * If the folio is still mapped, then this anon_vma is still
549 * its anon_vma, and holding the mutex ensures that it will
550 * not go away, see anon_vma_free().
551 */
552 if (!folio_mapped(folio)) {
553 up_read(&root_anon_vma->rwsem);
554 anon_vma = NULL;
555 }
556 goto out;
557 }
558
559 /* trylock failed, we got to sleep */
560 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
561 anon_vma = NULL;
562 goto out;
563 }
564
565 if (!folio_mapped(folio)) {
566 rcu_read_unlock();
567 put_anon_vma(anon_vma);
568 return NULL;
569 }
570
571 /* we pinned the anon_vma, its safe to sleep */
572 rcu_read_unlock();
573 anon_vma_lock_read(anon_vma);
574
575 if (atomic_dec_and_test(&anon_vma->refcount)) {
576 /*
577 * Oops, we held the last refcount, release the lock
578 * and bail -- can't simply use put_anon_vma() because
579 * we'll deadlock on the anon_vma_lock_write() recursion.
580 */
581 anon_vma_unlock_read(anon_vma);
582 __put_anon_vma(anon_vma);
583 anon_vma = NULL;
584 }
585
586 return anon_vma;
587
588out:
589 rcu_read_unlock();
590 return anon_vma;
591}
592
593void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
594{
595 anon_vma_unlock_read(anon_vma);
596}
597
598#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
599/*
600 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
601 * important if a PTE was dirty when it was unmapped that it's flushed
602 * before any IO is initiated on the page to prevent lost writes. Similarly,
603 * it must be flushed before freeing to prevent data leakage.
604 */
605void try_to_unmap_flush(void)
606{
607 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
608
609 if (!tlb_ubc->flush_required)
610 return;
611
612 arch_tlbbatch_flush(&tlb_ubc->arch);
613 tlb_ubc->flush_required = false;
614 tlb_ubc->writable = false;
615}
616
617/* Flush iff there are potentially writable TLB entries that can race with IO */
618void try_to_unmap_flush_dirty(void)
619{
620 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
621
622 if (tlb_ubc->writable)
623 try_to_unmap_flush();
624}
625
626/*
627 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
628 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
629 */
630#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
631#define TLB_FLUSH_BATCH_PENDING_MASK \
632 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
633#define TLB_FLUSH_BATCH_PENDING_LARGE \
634 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
635
636static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
637{
638 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
639 int batch, nbatch;
640
641 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
642 tlb_ubc->flush_required = true;
643
644 /*
645 * Ensure compiler does not re-order the setting of tlb_flush_batched
646 * before the PTE is cleared.
647 */
648 barrier();
649 batch = atomic_read(&mm->tlb_flush_batched);
650retry:
651 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
652 /*
653 * Prevent `pending' from catching up with `flushed' because of
654 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
655 * `pending' becomes large.
656 */
657 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
658 if (nbatch != batch) {
659 batch = nbatch;
660 goto retry;
661 }
662 } else {
663 atomic_inc(&mm->tlb_flush_batched);
664 }
665
666 /*
667 * If the PTE was dirty then it's best to assume it's writable. The
668 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
669 * before the page is queued for IO.
670 */
671 if (writable)
672 tlb_ubc->writable = true;
673}
674
675/*
676 * Returns true if the TLB flush should be deferred to the end of a batch of
677 * unmap operations to reduce IPIs.
678 */
679static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
680{
681 bool should_defer = false;
682
683 if (!(flags & TTU_BATCH_FLUSH))
684 return false;
685
686 /* If remote CPUs need to be flushed then defer batch the flush */
687 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
688 should_defer = true;
689 put_cpu();
690
691 return should_defer;
692}
693
694/*
695 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
696 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
697 * operation such as mprotect or munmap to race between reclaim unmapping
698 * the page and flushing the page. If this race occurs, it potentially allows
699 * access to data via a stale TLB entry. Tracking all mm's that have TLB
700 * batching in flight would be expensive during reclaim so instead track
701 * whether TLB batching occurred in the past and if so then do a flush here
702 * if required. This will cost one additional flush per reclaim cycle paid
703 * by the first operation at risk such as mprotect and mumap.
704 *
705 * This must be called under the PTL so that an access to tlb_flush_batched
706 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
707 * via the PTL.
708 */
709void flush_tlb_batched_pending(struct mm_struct *mm)
710{
711 int batch = atomic_read(&mm->tlb_flush_batched);
712 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
713 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
714
715 if (pending != flushed) {
716 flush_tlb_mm(mm);
717 /*
718 * If the new TLB flushing is pending during flushing, leave
719 * mm->tlb_flush_batched as is, to avoid losing flushing.
720 */
721 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
722 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
723 }
724}
725#else
726static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
727{
728}
729
730static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
731{
732 return false;
733}
734#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
735
736/*
737 * At what user virtual address is page expected in vma?
738 * Caller should check the page is actually part of the vma.
739 */
740unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
741{
742 struct folio *folio = page_folio(page);
743 if (folio_test_anon(folio)) {
744 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
745 /*
746 * Note: swapoff's unuse_vma() is more efficient with this
747 * check, and needs it to match anon_vma when KSM is active.
748 */
749 if (!vma->anon_vma || !page__anon_vma ||
750 vma->anon_vma->root != page__anon_vma->root)
751 return -EFAULT;
752 } else if (!vma->vm_file) {
753 return -EFAULT;
754 } else if (vma->vm_file->f_mapping != folio->mapping) {
755 return -EFAULT;
756 }
757
758 return vma_address(page, vma);
759}
760
761pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
762{
763 pgd_t *pgd;
764 p4d_t *p4d;
765 pud_t *pud;
766 pmd_t *pmd = NULL;
767 pmd_t pmde;
768
769 pgd = pgd_offset(mm, address);
770 if (!pgd_present(*pgd))
771 goto out;
772
773 p4d = p4d_offset(pgd, address);
774 if (!p4d_present(*p4d))
775 goto out;
776
777 pud = pud_offset(p4d, address);
778 if (!pud_present(*pud))
779 goto out;
780
781 pmd = pmd_offset(pud, address);
782 /*
783 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
784 * without holding anon_vma lock for write. So when looking for a
785 * genuine pmde (in which to find pte), test present and !THP together.
786 */
787 pmde = *pmd;
788 barrier();
789 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
790 pmd = NULL;
791out:
792 return pmd;
793}
794
795struct folio_referenced_arg {
796 int mapcount;
797 int referenced;
798 unsigned long vm_flags;
799 struct mem_cgroup *memcg;
800};
801/*
802 * arg: folio_referenced_arg will be passed
803 */
804static bool folio_referenced_one(struct folio *folio,
805 struct vm_area_struct *vma, unsigned long address, void *arg)
806{
807 struct folio_referenced_arg *pra = arg;
808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
809 int referenced = 0;
810
811 while (page_vma_mapped_walk(&pvmw)) {
812 address = pvmw.address;
813
814 if ((vma->vm_flags & VM_LOCKED) &&
815 (!folio_test_large(folio) || !pvmw.pte)) {
816 /* Restore the mlock which got missed */
817 mlock_vma_folio(folio, vma, !pvmw.pte);
818 page_vma_mapped_walk_done(&pvmw);
819 pra->vm_flags |= VM_LOCKED;
820 return false; /* To break the loop */
821 }
822
823 if (pvmw.pte) {
824 if (ptep_clear_flush_young_notify(vma, address,
825 pvmw.pte)) {
826 /*
827 * Don't treat a reference through
828 * a sequentially read mapping as such.
829 * If the folio has been used in another mapping,
830 * we will catch it; if this other mapping is
831 * already gone, the unmap path will have set
832 * the referenced flag or activated the folio.
833 */
834 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
835 referenced++;
836 }
837 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
838 if (pmdp_clear_flush_young_notify(vma, address,
839 pvmw.pmd))
840 referenced++;
841 } else {
842 /* unexpected pmd-mapped folio? */
843 WARN_ON_ONCE(1);
844 }
845
846 pra->mapcount--;
847 }
848
849 if (referenced)
850 folio_clear_idle(folio);
851 if (folio_test_clear_young(folio))
852 referenced++;
853
854 if (referenced) {
855 pra->referenced++;
856 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
857 }
858
859 if (!pra->mapcount)
860 return false; /* To break the loop */
861
862 return true;
863}
864
865static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
866{
867 struct folio_referenced_arg *pra = arg;
868 struct mem_cgroup *memcg = pra->memcg;
869
870 if (!mm_match_cgroup(vma->vm_mm, memcg))
871 return true;
872
873 return false;
874}
875
876/**
877 * folio_referenced() - Test if the folio was referenced.
878 * @folio: The folio to test.
879 * @is_locked: Caller holds lock on the folio.
880 * @memcg: target memory cgroup
881 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
882 *
883 * Quick test_and_clear_referenced for all mappings of a folio,
884 *
885 * Return: The number of mappings which referenced the folio.
886 */
887int folio_referenced(struct folio *folio, int is_locked,
888 struct mem_cgroup *memcg, unsigned long *vm_flags)
889{
890 int we_locked = 0;
891 struct folio_referenced_arg pra = {
892 .mapcount = folio_mapcount(folio),
893 .memcg = memcg,
894 };
895 struct rmap_walk_control rwc = {
896 .rmap_one = folio_referenced_one,
897 .arg = (void *)&pra,
898 .anon_lock = folio_lock_anon_vma_read,
899 };
900
901 *vm_flags = 0;
902 if (!pra.mapcount)
903 return 0;
904
905 if (!folio_raw_mapping(folio))
906 return 0;
907
908 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
909 we_locked = folio_trylock(folio);
910 if (!we_locked)
911 return 1;
912 }
913
914 /*
915 * If we are reclaiming on behalf of a cgroup, skip
916 * counting on behalf of references from different
917 * cgroups
918 */
919 if (memcg) {
920 rwc.invalid_vma = invalid_folio_referenced_vma;
921 }
922
923 rmap_walk(folio, &rwc);
924 *vm_flags = pra.vm_flags;
925
926 if (we_locked)
927 folio_unlock(folio);
928
929 return pra.referenced;
930}
931
932static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
933{
934 int cleaned = 0;
935 struct vm_area_struct *vma = pvmw->vma;
936 struct mmu_notifier_range range;
937 unsigned long address = pvmw->address;
938
939 /*
940 * We have to assume the worse case ie pmd for invalidation. Note that
941 * the folio can not be freed from this function.
942 */
943 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
944 0, vma, vma->vm_mm, address,
945 vma_address_end(pvmw));
946 mmu_notifier_invalidate_range_start(&range);
947
948 while (page_vma_mapped_walk(pvmw)) {
949 int ret = 0;
950
951 address = pvmw->address;
952 if (pvmw->pte) {
953 pte_t entry;
954 pte_t *pte = pvmw->pte;
955
956 if (!pte_dirty(*pte) && !pte_write(*pte))
957 continue;
958
959 flush_cache_page(vma, address, pte_pfn(*pte));
960 entry = ptep_clear_flush(vma, address, pte);
961 entry = pte_wrprotect(entry);
962 entry = pte_mkclean(entry);
963 set_pte_at(vma->vm_mm, address, pte, entry);
964 ret = 1;
965 } else {
966#ifdef CONFIG_TRANSPARENT_HUGEPAGE
967 pmd_t *pmd = pvmw->pmd;
968 pmd_t entry;
969
970 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
971 continue;
972
973 flush_cache_range(vma, address,
974 address + HPAGE_PMD_SIZE);
975 entry = pmdp_invalidate(vma, address, pmd);
976 entry = pmd_wrprotect(entry);
977 entry = pmd_mkclean(entry);
978 set_pmd_at(vma->vm_mm, address, pmd, entry);
979 ret = 1;
980#else
981 /* unexpected pmd-mapped folio? */
982 WARN_ON_ONCE(1);
983#endif
984 }
985
986 /*
987 * No need to call mmu_notifier_invalidate_range() as we are
988 * downgrading page table protection not changing it to point
989 * to a new page.
990 *
991 * See Documentation/vm/mmu_notifier.rst
992 */
993 if (ret)
994 cleaned++;
995 }
996
997 mmu_notifier_invalidate_range_end(&range);
998
999 return cleaned;
1000}
1001
1002static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1003 unsigned long address, void *arg)
1004{
1005 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1006 int *cleaned = arg;
1007
1008 *cleaned += page_vma_mkclean_one(&pvmw);
1009
1010 return true;
1011}
1012
1013static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1014{
1015 if (vma->vm_flags & VM_SHARED)
1016 return false;
1017
1018 return true;
1019}
1020
1021int folio_mkclean(struct folio *folio)
1022{
1023 int cleaned = 0;
1024 struct address_space *mapping;
1025 struct rmap_walk_control rwc = {
1026 .arg = (void *)&cleaned,
1027 .rmap_one = page_mkclean_one,
1028 .invalid_vma = invalid_mkclean_vma,
1029 };
1030
1031 BUG_ON(!folio_test_locked(folio));
1032
1033 if (!folio_mapped(folio))
1034 return 0;
1035
1036 mapping = folio_mapping(folio);
1037 if (!mapping)
1038 return 0;
1039
1040 rmap_walk(folio, &rwc);
1041
1042 return cleaned;
1043}
1044EXPORT_SYMBOL_GPL(folio_mkclean);
1045
1046/**
1047 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1048 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1049 * within the @vma of shared mappings. And since clean PTEs
1050 * should also be readonly, write protects them too.
1051 * @pfn: start pfn.
1052 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1053 * @pgoff: page offset that the @pfn mapped with.
1054 * @vma: vma that @pfn mapped within.
1055 *
1056 * Returns the number of cleaned PTEs (including PMDs).
1057 */
1058int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1059 struct vm_area_struct *vma)
1060{
1061 struct page_vma_mapped_walk pvmw = {
1062 .pfn = pfn,
1063 .nr_pages = nr_pages,
1064 .pgoff = pgoff,
1065 .vma = vma,
1066 .flags = PVMW_SYNC,
1067 };
1068
1069 if (invalid_mkclean_vma(vma, NULL))
1070 return 0;
1071
1072 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1073 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1074
1075 return page_vma_mkclean_one(&pvmw);
1076}
1077
1078/**
1079 * page_move_anon_rmap - move a page to our anon_vma
1080 * @page: the page to move to our anon_vma
1081 * @vma: the vma the page belongs to
1082 *
1083 * When a page belongs exclusively to one process after a COW event,
1084 * that page can be moved into the anon_vma that belongs to just that
1085 * process, so the rmap code will not search the parent or sibling
1086 * processes.
1087 */
1088void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1089{
1090 struct anon_vma *anon_vma = vma->anon_vma;
1091
1092 page = compound_head(page);
1093
1094 VM_BUG_ON_PAGE(!PageLocked(page), page);
1095 VM_BUG_ON_VMA(!anon_vma, vma);
1096
1097 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1098 /*
1099 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1100 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1101 * folio_test_anon()) will not see one without the other.
1102 */
1103 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1104}
1105
1106/**
1107 * __page_set_anon_rmap - set up new anonymous rmap
1108 * @page: Page or Hugepage to add to rmap
1109 * @vma: VM area to add page to.
1110 * @address: User virtual address of the mapping
1111 * @exclusive: the page is exclusively owned by the current process
1112 */
1113static void __page_set_anon_rmap(struct page *page,
1114 struct vm_area_struct *vma, unsigned long address, int exclusive)
1115{
1116 struct anon_vma *anon_vma = vma->anon_vma;
1117
1118 BUG_ON(!anon_vma);
1119
1120 if (PageAnon(page))
1121 return;
1122
1123 /*
1124 * If the page isn't exclusively mapped into this vma,
1125 * we must use the _oldest_ possible anon_vma for the
1126 * page mapping!
1127 */
1128 if (!exclusive)
1129 anon_vma = anon_vma->root;
1130
1131 /*
1132 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1133 * Make sure the compiler doesn't split the stores of anon_vma and
1134 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1135 * could mistake the mapping for a struct address_space and crash.
1136 */
1137 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1138 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1139 page->index = linear_page_index(vma, address);
1140}
1141
1142/**
1143 * __page_check_anon_rmap - sanity check anonymous rmap addition
1144 * @page: the page to add the mapping to
1145 * @vma: the vm area in which the mapping is added
1146 * @address: the user virtual address mapped
1147 */
1148static void __page_check_anon_rmap(struct page *page,
1149 struct vm_area_struct *vma, unsigned long address)
1150{
1151 struct folio *folio = page_folio(page);
1152 /*
1153 * The page's anon-rmap details (mapping and index) are guaranteed to
1154 * be set up correctly at this point.
1155 *
1156 * We have exclusion against page_add_anon_rmap because the caller
1157 * always holds the page locked.
1158 *
1159 * We have exclusion against page_add_new_anon_rmap because those pages
1160 * are initially only visible via the pagetables, and the pte is locked
1161 * over the call to page_add_new_anon_rmap.
1162 */
1163 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1164 folio);
1165 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1166 page);
1167}
1168
1169/**
1170 * page_add_anon_rmap - add pte mapping to an anonymous page
1171 * @page: the page to add the mapping to
1172 * @vma: the vm area in which the mapping is added
1173 * @address: the user virtual address mapped
1174 * @flags: the rmap flags
1175 *
1176 * The caller needs to hold the pte lock, and the page must be locked in
1177 * the anon_vma case: to serialize mapping,index checking after setting,
1178 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1179 * (but PageKsm is never downgraded to PageAnon).
1180 */
1181void page_add_anon_rmap(struct page *page,
1182 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1183{
1184 bool compound = flags & RMAP_COMPOUND;
1185 bool first;
1186
1187 if (unlikely(PageKsm(page)))
1188 lock_page_memcg(page);
1189 else
1190 VM_BUG_ON_PAGE(!PageLocked(page), page);
1191
1192 if (compound) {
1193 atomic_t *mapcount;
1194 VM_BUG_ON_PAGE(!PageLocked(page), page);
1195 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1196 mapcount = compound_mapcount_ptr(page);
1197 first = atomic_inc_and_test(mapcount);
1198 } else {
1199 first = atomic_inc_and_test(&page->_mapcount);
1200 }
1201
1202 if (first) {
1203 int nr = compound ? thp_nr_pages(page) : 1;
1204 /*
1205 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1206 * these counters are not modified in interrupt context, and
1207 * pte lock(a spinlock) is held, which implies preemption
1208 * disabled.
1209 */
1210 if (compound)
1211 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1212 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1213 }
1214
1215 if (unlikely(PageKsm(page)))
1216 unlock_page_memcg(page);
1217
1218 /* address might be in next vma when migration races vma_adjust */
1219 else if (first)
1220 __page_set_anon_rmap(page, vma, address,
1221 !!(flags & RMAP_EXCLUSIVE));
1222 else
1223 __page_check_anon_rmap(page, vma, address);
1224
1225 mlock_vma_page(page, vma, compound);
1226}
1227
1228/**
1229 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1230 * @page: the page to add the mapping to
1231 * @vma: the vm area in which the mapping is added
1232 * @address: the user virtual address mapped
1233 * @compound: charge the page as compound or small page
1234 *
1235 * Same as page_add_anon_rmap but must only be called on *new* pages.
1236 * This means the inc-and-test can be bypassed.
1237 * Page does not have to be locked.
1238 */
1239void page_add_new_anon_rmap(struct page *page,
1240 struct vm_area_struct *vma, unsigned long address, bool compound)
1241{
1242 int nr = compound ? thp_nr_pages(page) : 1;
1243
1244 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1245 __SetPageSwapBacked(page);
1246 if (compound) {
1247 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1248 /* increment count (starts at -1) */
1249 atomic_set(compound_mapcount_ptr(page), 0);
1250 atomic_set(compound_pincount_ptr(page), 0);
1251
1252 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1253 } else {
1254 /* Anon THP always mapped first with PMD */
1255 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1256 /* increment count (starts at -1) */
1257 atomic_set(&page->_mapcount, 0);
1258 }
1259 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1260 __page_set_anon_rmap(page, vma, address, 1);
1261}
1262
1263/**
1264 * page_add_file_rmap - add pte mapping to a file page
1265 * @page: the page to add the mapping to
1266 * @vma: the vm area in which the mapping is added
1267 * @compound: charge the page as compound or small page
1268 *
1269 * The caller needs to hold the pte lock.
1270 */
1271void page_add_file_rmap(struct page *page,
1272 struct vm_area_struct *vma, bool compound)
1273{
1274 int i, nr = 0;
1275
1276 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1277 lock_page_memcg(page);
1278 if (compound && PageTransHuge(page)) {
1279 int nr_pages = thp_nr_pages(page);
1280
1281 for (i = 0; i < nr_pages; i++) {
1282 if (atomic_inc_and_test(&page[i]._mapcount))
1283 nr++;
1284 }
1285 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1286 goto out;
1287
1288 /*
1289 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1290 * but page lock is held by all page_add_file_rmap() compound
1291 * callers, and SetPageDoubleMap below warns if !PageLocked:
1292 * so here is a place that DoubleMap can be safely cleared.
1293 */
1294 VM_WARN_ON_ONCE(!PageLocked(page));
1295 if (nr == nr_pages && PageDoubleMap(page))
1296 ClearPageDoubleMap(page);
1297
1298 if (PageSwapBacked(page))
1299 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1300 nr_pages);
1301 else
1302 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1303 nr_pages);
1304 } else {
1305 if (PageTransCompound(page) && page_mapping(page)) {
1306 VM_WARN_ON_ONCE(!PageLocked(page));
1307 SetPageDoubleMap(compound_head(page));
1308 }
1309 if (atomic_inc_and_test(&page->_mapcount))
1310 nr++;
1311 }
1312out:
1313 if (nr)
1314 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1315 unlock_page_memcg(page);
1316
1317 mlock_vma_page(page, vma, compound);
1318}
1319
1320static void page_remove_file_rmap(struct page *page, bool compound)
1321{
1322 int i, nr = 0;
1323
1324 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1325
1326 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1327 if (unlikely(PageHuge(page))) {
1328 /* hugetlb pages are always mapped with pmds */
1329 atomic_dec(compound_mapcount_ptr(page));
1330 return;
1331 }
1332
1333 /* page still mapped by someone else? */
1334 if (compound && PageTransHuge(page)) {
1335 int nr_pages = thp_nr_pages(page);
1336
1337 for (i = 0; i < nr_pages; i++) {
1338 if (atomic_add_negative(-1, &page[i]._mapcount))
1339 nr++;
1340 }
1341 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1342 goto out;
1343 if (PageSwapBacked(page))
1344 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1345 -nr_pages);
1346 else
1347 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1348 -nr_pages);
1349 } else {
1350 if (atomic_add_negative(-1, &page->_mapcount))
1351 nr++;
1352 }
1353out:
1354 if (nr)
1355 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1356}
1357
1358static void page_remove_anon_compound_rmap(struct page *page)
1359{
1360 int i, nr;
1361
1362 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1363 return;
1364
1365 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1366 if (unlikely(PageHuge(page)))
1367 return;
1368
1369 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1370 return;
1371
1372 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1373
1374 if (TestClearPageDoubleMap(page)) {
1375 /*
1376 * Subpages can be mapped with PTEs too. Check how many of
1377 * them are still mapped.
1378 */
1379 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1380 if (atomic_add_negative(-1, &page[i]._mapcount))
1381 nr++;
1382 }
1383
1384 /*
1385 * Queue the page for deferred split if at least one small
1386 * page of the compound page is unmapped, but at least one
1387 * small page is still mapped.
1388 */
1389 if (nr && nr < thp_nr_pages(page))
1390 deferred_split_huge_page(page);
1391 } else {
1392 nr = thp_nr_pages(page);
1393 }
1394
1395 if (nr)
1396 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1397}
1398
1399/**
1400 * page_remove_rmap - take down pte mapping from a page
1401 * @page: page to remove mapping from
1402 * @vma: the vm area from which the mapping is removed
1403 * @compound: uncharge the page as compound or small page
1404 *
1405 * The caller needs to hold the pte lock.
1406 */
1407void page_remove_rmap(struct page *page,
1408 struct vm_area_struct *vma, bool compound)
1409{
1410 lock_page_memcg(page);
1411
1412 if (!PageAnon(page)) {
1413 page_remove_file_rmap(page, compound);
1414 goto out;
1415 }
1416
1417 if (compound) {
1418 page_remove_anon_compound_rmap(page);
1419 goto out;
1420 }
1421
1422 /* page still mapped by someone else? */
1423 if (!atomic_add_negative(-1, &page->_mapcount))
1424 goto out;
1425
1426 /*
1427 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1428 * these counters are not modified in interrupt context, and
1429 * pte lock(a spinlock) is held, which implies preemption disabled.
1430 */
1431 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1432
1433 if (PageTransCompound(page))
1434 deferred_split_huge_page(compound_head(page));
1435
1436 /*
1437 * It would be tidy to reset the PageAnon mapping here,
1438 * but that might overwrite a racing page_add_anon_rmap
1439 * which increments mapcount after us but sets mapping
1440 * before us: so leave the reset to free_unref_page,
1441 * and remember that it's only reliable while mapped.
1442 * Leaving it set also helps swapoff to reinstate ptes
1443 * faster for those pages still in swapcache.
1444 */
1445out:
1446 unlock_page_memcg(page);
1447
1448 munlock_vma_page(page, vma, compound);
1449}
1450
1451/*
1452 * @arg: enum ttu_flags will be passed to this argument
1453 */
1454static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1455 unsigned long address, void *arg)
1456{
1457 struct mm_struct *mm = vma->vm_mm;
1458 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1459 pte_t pteval;
1460 struct page *subpage;
1461 bool ret = true;
1462 struct mmu_notifier_range range;
1463 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1464
1465 /*
1466 * When racing against e.g. zap_pte_range() on another cpu,
1467 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1468 * try_to_unmap() may return before page_mapped() has become false,
1469 * if page table locking is skipped: use TTU_SYNC to wait for that.
1470 */
1471 if (flags & TTU_SYNC)
1472 pvmw.flags = PVMW_SYNC;
1473
1474 if (flags & TTU_SPLIT_HUGE_PMD)
1475 split_huge_pmd_address(vma, address, false, folio);
1476
1477 /*
1478 * For THP, we have to assume the worse case ie pmd for invalidation.
1479 * For hugetlb, it could be much worse if we need to do pud
1480 * invalidation in the case of pmd sharing.
1481 *
1482 * Note that the folio can not be freed in this function as call of
1483 * try_to_unmap() must hold a reference on the folio.
1484 */
1485 range.end = vma_address_end(&pvmw);
1486 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1487 address, range.end);
1488 if (folio_test_hugetlb(folio)) {
1489 /*
1490 * If sharing is possible, start and end will be adjusted
1491 * accordingly.
1492 */
1493 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1494 &range.end);
1495 }
1496 mmu_notifier_invalidate_range_start(&range);
1497
1498 while (page_vma_mapped_walk(&pvmw)) {
1499 /* Unexpected PMD-mapped THP? */
1500 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1501
1502 /*
1503 * If the folio is in an mlock()d vma, we must not swap it out.
1504 */
1505 if (!(flags & TTU_IGNORE_MLOCK) &&
1506 (vma->vm_flags & VM_LOCKED)) {
1507 /* Restore the mlock which got missed */
1508 mlock_vma_folio(folio, vma, false);
1509 page_vma_mapped_walk_done(&pvmw);
1510 ret = false;
1511 break;
1512 }
1513
1514 subpage = folio_page(folio,
1515 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1516 address = pvmw.address;
1517
1518 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1519 /*
1520 * To call huge_pmd_unshare, i_mmap_rwsem must be
1521 * held in write mode. Caller needs to explicitly
1522 * do this outside rmap routines.
1523 */
1524 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1525 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1526 /*
1527 * huge_pmd_unshare unmapped an entire PMD
1528 * page. There is no way of knowing exactly
1529 * which PMDs may be cached for this mm, so
1530 * we must flush them all. start/end were
1531 * already adjusted above to cover this range.
1532 */
1533 flush_cache_range(vma, range.start, range.end);
1534 flush_tlb_range(vma, range.start, range.end);
1535 mmu_notifier_invalidate_range(mm, range.start,
1536 range.end);
1537
1538 /*
1539 * The ref count of the PMD page was dropped
1540 * which is part of the way map counting
1541 * is done for shared PMDs. Return 'true'
1542 * here. When there is no other sharing,
1543 * huge_pmd_unshare returns false and we will
1544 * unmap the actual page and drop map count
1545 * to zero.
1546 */
1547 page_vma_mapped_walk_done(&pvmw);
1548 break;
1549 }
1550 }
1551
1552 /* Nuke the page table entry. */
1553 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1554 if (should_defer_flush(mm, flags)) {
1555 /*
1556 * We clear the PTE but do not flush so potentially
1557 * a remote CPU could still be writing to the folio.
1558 * If the entry was previously clean then the
1559 * architecture must guarantee that a clear->dirty
1560 * transition on a cached TLB entry is written through
1561 * and traps if the PTE is unmapped.
1562 */
1563 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1564
1565 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1566 } else {
1567 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1568 }
1569
1570 /* Set the dirty flag on the folio now the pte is gone. */
1571 if (pte_dirty(pteval))
1572 folio_mark_dirty(folio);
1573
1574 /* Update high watermark before we lower rss */
1575 update_hiwater_rss(mm);
1576
1577 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1578 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1579 if (folio_test_hugetlb(folio)) {
1580 hugetlb_count_sub(folio_nr_pages(folio), mm);
1581 set_huge_swap_pte_at(mm, address,
1582 pvmw.pte, pteval,
1583 vma_mmu_pagesize(vma));
1584 } else {
1585 dec_mm_counter(mm, mm_counter(&folio->page));
1586 set_pte_at(mm, address, pvmw.pte, pteval);
1587 }
1588
1589 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1590 /*
1591 * The guest indicated that the page content is of no
1592 * interest anymore. Simply discard the pte, vmscan
1593 * will take care of the rest.
1594 * A future reference will then fault in a new zero
1595 * page. When userfaultfd is active, we must not drop
1596 * this page though, as its main user (postcopy
1597 * migration) will not expect userfaults on already
1598 * copied pages.
1599 */
1600 dec_mm_counter(mm, mm_counter(&folio->page));
1601 /* We have to invalidate as we cleared the pte */
1602 mmu_notifier_invalidate_range(mm, address,
1603 address + PAGE_SIZE);
1604 } else if (folio_test_anon(folio)) {
1605 swp_entry_t entry = { .val = page_private(subpage) };
1606 pte_t swp_pte;
1607 /*
1608 * Store the swap location in the pte.
1609 * See handle_pte_fault() ...
1610 */
1611 if (unlikely(folio_test_swapbacked(folio) !=
1612 folio_test_swapcache(folio))) {
1613 WARN_ON_ONCE(1);
1614 ret = false;
1615 /* We have to invalidate as we cleared the pte */
1616 mmu_notifier_invalidate_range(mm, address,
1617 address + PAGE_SIZE);
1618 page_vma_mapped_walk_done(&pvmw);
1619 break;
1620 }
1621
1622 /* MADV_FREE page check */
1623 if (!folio_test_swapbacked(folio)) {
1624 int ref_count, map_count;
1625
1626 /*
1627 * Synchronize with gup_pte_range():
1628 * - clear PTE; barrier; read refcount
1629 * - inc refcount; barrier; read PTE
1630 */
1631 smp_mb();
1632
1633 ref_count = folio_ref_count(folio);
1634 map_count = folio_mapcount(folio);
1635
1636 /*
1637 * Order reads for page refcount and dirty flag
1638 * (see comments in __remove_mapping()).
1639 */
1640 smp_rmb();
1641
1642 /*
1643 * The only page refs must be one from isolation
1644 * plus the rmap(s) (dropped by discard:).
1645 */
1646 if (ref_count == 1 + map_count &&
1647 !folio_test_dirty(folio)) {
1648 /* Invalidate as we cleared the pte */
1649 mmu_notifier_invalidate_range(mm,
1650 address, address + PAGE_SIZE);
1651 dec_mm_counter(mm, MM_ANONPAGES);
1652 goto discard;
1653 }
1654
1655 /*
1656 * If the folio was redirtied, it cannot be
1657 * discarded. Remap the page to page table.
1658 */
1659 set_pte_at(mm, address, pvmw.pte, pteval);
1660 folio_set_swapbacked(folio);
1661 ret = false;
1662 page_vma_mapped_walk_done(&pvmw);
1663 break;
1664 }
1665
1666 if (swap_duplicate(entry) < 0) {
1667 set_pte_at(mm, address, pvmw.pte, pteval);
1668 ret = false;
1669 page_vma_mapped_walk_done(&pvmw);
1670 break;
1671 }
1672 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1673 swap_free(entry);
1674 set_pte_at(mm, address, pvmw.pte, pteval);
1675 ret = false;
1676 page_vma_mapped_walk_done(&pvmw);
1677 break;
1678 }
1679 if (list_empty(&mm->mmlist)) {
1680 spin_lock(&mmlist_lock);
1681 if (list_empty(&mm->mmlist))
1682 list_add(&mm->mmlist, &init_mm.mmlist);
1683 spin_unlock(&mmlist_lock);
1684 }
1685 dec_mm_counter(mm, MM_ANONPAGES);
1686 inc_mm_counter(mm, MM_SWAPENTS);
1687 swp_pte = swp_entry_to_pte(entry);
1688 if (pte_soft_dirty(pteval))
1689 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1690 if (pte_uffd_wp(pteval))
1691 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1692 set_pte_at(mm, address, pvmw.pte, swp_pte);
1693 /* Invalidate as we cleared the pte */
1694 mmu_notifier_invalidate_range(mm, address,
1695 address + PAGE_SIZE);
1696 } else {
1697 /*
1698 * This is a locked file-backed folio,
1699 * so it cannot be removed from the page
1700 * cache and replaced by a new folio before
1701 * mmu_notifier_invalidate_range_end, so no
1702 * concurrent thread might update its page table
1703 * to point at a new folio while a device is
1704 * still using this folio.
1705 *
1706 * See Documentation/vm/mmu_notifier.rst
1707 */
1708 dec_mm_counter(mm, mm_counter_file(&folio->page));
1709 }
1710discard:
1711 /*
1712 * No need to call mmu_notifier_invalidate_range() it has be
1713 * done above for all cases requiring it to happen under page
1714 * table lock before mmu_notifier_invalidate_range_end()
1715 *
1716 * See Documentation/vm/mmu_notifier.rst
1717 */
1718 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1719 if (vma->vm_flags & VM_LOCKED)
1720 mlock_page_drain_local();
1721 folio_put(folio);
1722 }
1723
1724 mmu_notifier_invalidate_range_end(&range);
1725
1726 return ret;
1727}
1728
1729static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1730{
1731 return vma_is_temporary_stack(vma);
1732}
1733
1734static int page_not_mapped(struct folio *folio)
1735{
1736 return !folio_mapped(folio);
1737}
1738
1739/**
1740 * try_to_unmap - Try to remove all page table mappings to a folio.
1741 * @folio: The folio to unmap.
1742 * @flags: action and flags
1743 *
1744 * Tries to remove all the page table entries which are mapping this
1745 * folio. It is the caller's responsibility to check if the folio is
1746 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1747 *
1748 * Context: Caller must hold the folio lock.
1749 */
1750void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1751{
1752 struct rmap_walk_control rwc = {
1753 .rmap_one = try_to_unmap_one,
1754 .arg = (void *)flags,
1755 .done = page_not_mapped,
1756 .anon_lock = folio_lock_anon_vma_read,
1757 };
1758
1759 if (flags & TTU_RMAP_LOCKED)
1760 rmap_walk_locked(folio, &rwc);
1761 else
1762 rmap_walk(folio, &rwc);
1763}
1764
1765/*
1766 * @arg: enum ttu_flags will be passed to this argument.
1767 *
1768 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1769 * containing migration entries.
1770 */
1771static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1772 unsigned long address, void *arg)
1773{
1774 struct mm_struct *mm = vma->vm_mm;
1775 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1776 pte_t pteval;
1777 struct page *subpage;
1778 bool ret = true;
1779 struct mmu_notifier_range range;
1780 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1781
1782 /*
1783 * When racing against e.g. zap_pte_range() on another cpu,
1784 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1785 * try_to_migrate() may return before page_mapped() has become false,
1786 * if page table locking is skipped: use TTU_SYNC to wait for that.
1787 */
1788 if (flags & TTU_SYNC)
1789 pvmw.flags = PVMW_SYNC;
1790
1791 /*
1792 * unmap_page() in mm/huge_memory.c is the only user of migration with
1793 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1794 */
1795 if (flags & TTU_SPLIT_HUGE_PMD)
1796 split_huge_pmd_address(vma, address, true, folio);
1797
1798 /*
1799 * For THP, we have to assume the worse case ie pmd for invalidation.
1800 * For hugetlb, it could be much worse if we need to do pud
1801 * invalidation in the case of pmd sharing.
1802 *
1803 * Note that the page can not be free in this function as call of
1804 * try_to_unmap() must hold a reference on the page.
1805 */
1806 range.end = vma_address_end(&pvmw);
1807 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1808 address, range.end);
1809 if (folio_test_hugetlb(folio)) {
1810 /*
1811 * If sharing is possible, start and end will be adjusted
1812 * accordingly.
1813 */
1814 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1815 &range.end);
1816 }
1817 mmu_notifier_invalidate_range_start(&range);
1818
1819 while (page_vma_mapped_walk(&pvmw)) {
1820#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1821 /* PMD-mapped THP migration entry */
1822 if (!pvmw.pte) {
1823 subpage = folio_page(folio,
1824 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1825 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1826 !folio_test_pmd_mappable(folio), folio);
1827
1828 set_pmd_migration_entry(&pvmw, subpage);
1829 continue;
1830 }
1831#endif
1832
1833 /* Unexpected PMD-mapped THP? */
1834 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1835
1836 subpage = folio_page(folio,
1837 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1838 address = pvmw.address;
1839
1840 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1841 /*
1842 * To call huge_pmd_unshare, i_mmap_rwsem must be
1843 * held in write mode. Caller needs to explicitly
1844 * do this outside rmap routines.
1845 */
1846 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1847 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1848 /*
1849 * huge_pmd_unshare unmapped an entire PMD
1850 * page. There is no way of knowing exactly
1851 * which PMDs may be cached for this mm, so
1852 * we must flush them all. start/end were
1853 * already adjusted above to cover this range.
1854 */
1855 flush_cache_range(vma, range.start, range.end);
1856 flush_tlb_range(vma, range.start, range.end);
1857 mmu_notifier_invalidate_range(mm, range.start,
1858 range.end);
1859
1860 /*
1861 * The ref count of the PMD page was dropped
1862 * which is part of the way map counting
1863 * is done for shared PMDs. Return 'true'
1864 * here. When there is no other sharing,
1865 * huge_pmd_unshare returns false and we will
1866 * unmap the actual page and drop map count
1867 * to zero.
1868 */
1869 page_vma_mapped_walk_done(&pvmw);
1870 break;
1871 }
1872 }
1873
1874 /* Nuke the page table entry. */
1875 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1876 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1877
1878 /* Set the dirty flag on the folio now the pte is gone. */
1879 if (pte_dirty(pteval))
1880 folio_mark_dirty(folio);
1881
1882 /* Update high watermark before we lower rss */
1883 update_hiwater_rss(mm);
1884
1885 if (folio_is_zone_device(folio)) {
1886 unsigned long pfn = folio_pfn(folio);
1887 swp_entry_t entry;
1888 pte_t swp_pte;
1889
1890 /*
1891 * Store the pfn of the page in a special migration
1892 * pte. do_swap_page() will wait until the migration
1893 * pte is removed and then restart fault handling.
1894 */
1895 entry = pte_to_swp_entry(pteval);
1896 if (is_writable_device_private_entry(entry))
1897 entry = make_writable_migration_entry(pfn);
1898 else
1899 entry = make_readable_migration_entry(pfn);
1900 swp_pte = swp_entry_to_pte(entry);
1901
1902 /*
1903 * pteval maps a zone device page and is therefore
1904 * a swap pte.
1905 */
1906 if (pte_swp_soft_dirty(pteval))
1907 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1908 if (pte_swp_uffd_wp(pteval))
1909 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1910 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1911 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
1912 compound_order(&folio->page));
1913 /*
1914 * No need to invalidate here it will synchronize on
1915 * against the special swap migration pte.
1916 *
1917 * The assignment to subpage above was computed from a
1918 * swap PTE which results in an invalid pointer.
1919 * Since only PAGE_SIZE pages can currently be
1920 * migrated, just set it to page. This will need to be
1921 * changed when hugepage migrations to device private
1922 * memory are supported.
1923 */
1924 subpage = &folio->page;
1925 } else if (PageHWPoison(subpage)) {
1926 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1927 if (folio_test_hugetlb(folio)) {
1928 hugetlb_count_sub(folio_nr_pages(folio), mm);
1929 set_huge_swap_pte_at(mm, address,
1930 pvmw.pte, pteval,
1931 vma_mmu_pagesize(vma));
1932 } else {
1933 dec_mm_counter(mm, mm_counter(&folio->page));
1934 set_pte_at(mm, address, pvmw.pte, pteval);
1935 }
1936
1937 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1938 /*
1939 * The guest indicated that the page content is of no
1940 * interest anymore. Simply discard the pte, vmscan
1941 * will take care of the rest.
1942 * A future reference will then fault in a new zero
1943 * page. When userfaultfd is active, we must not drop
1944 * this page though, as its main user (postcopy
1945 * migration) will not expect userfaults on already
1946 * copied pages.
1947 */
1948 dec_mm_counter(mm, mm_counter(&folio->page));
1949 /* We have to invalidate as we cleared the pte */
1950 mmu_notifier_invalidate_range(mm, address,
1951 address + PAGE_SIZE);
1952 } else {
1953 swp_entry_t entry;
1954 pte_t swp_pte;
1955
1956 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1957 set_pte_at(mm, address, pvmw.pte, pteval);
1958 ret = false;
1959 page_vma_mapped_walk_done(&pvmw);
1960 break;
1961 }
1962
1963 /*
1964 * Store the pfn of the page in a special migration
1965 * pte. do_swap_page() will wait until the migration
1966 * pte is removed and then restart fault handling.
1967 */
1968 if (pte_write(pteval))
1969 entry = make_writable_migration_entry(
1970 page_to_pfn(subpage));
1971 else
1972 entry = make_readable_migration_entry(
1973 page_to_pfn(subpage));
1974
1975 swp_pte = swp_entry_to_pte(entry);
1976 if (pte_soft_dirty(pteval))
1977 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1978 if (pte_uffd_wp(pteval))
1979 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1980 set_pte_at(mm, address, pvmw.pte, swp_pte);
1981 trace_set_migration_pte(address, pte_val(swp_pte),
1982 compound_order(&folio->page));
1983 /*
1984 * No need to invalidate here it will synchronize on
1985 * against the special swap migration pte.
1986 */
1987 }
1988
1989 /*
1990 * No need to call mmu_notifier_invalidate_range() it has be
1991 * done above for all cases requiring it to happen under page
1992 * table lock before mmu_notifier_invalidate_range_end()
1993 *
1994 * See Documentation/vm/mmu_notifier.rst
1995 */
1996 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1997 if (vma->vm_flags & VM_LOCKED)
1998 mlock_page_drain_local();
1999 folio_put(folio);
2000 }
2001
2002 mmu_notifier_invalidate_range_end(&range);
2003
2004 return ret;
2005}
2006
2007/**
2008 * try_to_migrate - try to replace all page table mappings with swap entries
2009 * @folio: the folio to replace page table entries for
2010 * @flags: action and flags
2011 *
2012 * Tries to remove all the page table entries which are mapping this folio and
2013 * replace them with special swap entries. Caller must hold the folio lock.
2014 */
2015void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2016{
2017 struct rmap_walk_control rwc = {
2018 .rmap_one = try_to_migrate_one,
2019 .arg = (void *)flags,
2020 .done = page_not_mapped,
2021 .anon_lock = folio_lock_anon_vma_read,
2022 };
2023
2024 /*
2025 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2026 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2027 */
2028 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2029 TTU_SYNC)))
2030 return;
2031
2032 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
2033 return;
2034
2035 /*
2036 * During exec, a temporary VMA is setup and later moved.
2037 * The VMA is moved under the anon_vma lock but not the
2038 * page tables leading to a race where migration cannot
2039 * find the migration ptes. Rather than increasing the
2040 * locking requirements of exec(), migration skips
2041 * temporary VMAs until after exec() completes.
2042 */
2043 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2044 rwc.invalid_vma = invalid_migration_vma;
2045
2046 if (flags & TTU_RMAP_LOCKED)
2047 rmap_walk_locked(folio, &rwc);
2048 else
2049 rmap_walk(folio, &rwc);
2050}
2051
2052#ifdef CONFIG_DEVICE_PRIVATE
2053struct make_exclusive_args {
2054 struct mm_struct *mm;
2055 unsigned long address;
2056 void *owner;
2057 bool valid;
2058};
2059
2060static bool page_make_device_exclusive_one(struct folio *folio,
2061 struct vm_area_struct *vma, unsigned long address, void *priv)
2062{
2063 struct mm_struct *mm = vma->vm_mm;
2064 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2065 struct make_exclusive_args *args = priv;
2066 pte_t pteval;
2067 struct page *subpage;
2068 bool ret = true;
2069 struct mmu_notifier_range range;
2070 swp_entry_t entry;
2071 pte_t swp_pte;
2072
2073 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2074 vma->vm_mm, address, min(vma->vm_end,
2075 address + folio_size(folio)),
2076 args->owner);
2077 mmu_notifier_invalidate_range_start(&range);
2078
2079 while (page_vma_mapped_walk(&pvmw)) {
2080 /* Unexpected PMD-mapped THP? */
2081 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2082
2083 if (!pte_present(*pvmw.pte)) {
2084 ret = false;
2085 page_vma_mapped_walk_done(&pvmw);
2086 break;
2087 }
2088
2089 subpage = folio_page(folio,
2090 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2091 address = pvmw.address;
2092
2093 /* Nuke the page table entry. */
2094 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2095 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2096
2097 /* Set the dirty flag on the folio now the pte is gone. */
2098 if (pte_dirty(pteval))
2099 folio_mark_dirty(folio);
2100
2101 /*
2102 * Check that our target page is still mapped at the expected
2103 * address.
2104 */
2105 if (args->mm == mm && args->address == address &&
2106 pte_write(pteval))
2107 args->valid = true;
2108
2109 /*
2110 * Store the pfn of the page in a special migration
2111 * pte. do_swap_page() will wait until the migration
2112 * pte is removed and then restart fault handling.
2113 */
2114 if (pte_write(pteval))
2115 entry = make_writable_device_exclusive_entry(
2116 page_to_pfn(subpage));
2117 else
2118 entry = make_readable_device_exclusive_entry(
2119 page_to_pfn(subpage));
2120 swp_pte = swp_entry_to_pte(entry);
2121 if (pte_soft_dirty(pteval))
2122 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2123 if (pte_uffd_wp(pteval))
2124 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2125
2126 set_pte_at(mm, address, pvmw.pte, swp_pte);
2127
2128 /*
2129 * There is a reference on the page for the swap entry which has
2130 * been removed, so shouldn't take another.
2131 */
2132 page_remove_rmap(subpage, vma, false);
2133 }
2134
2135 mmu_notifier_invalidate_range_end(&range);
2136
2137 return ret;
2138}
2139
2140/**
2141 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2142 * @folio: The folio to replace page table entries for.
2143 * @mm: The mm_struct where the folio is expected to be mapped.
2144 * @address: Address where the folio is expected to be mapped.
2145 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2146 *
2147 * Tries to remove all the page table entries which are mapping this
2148 * folio and replace them with special device exclusive swap entries to
2149 * grant a device exclusive access to the folio.
2150 *
2151 * Context: Caller must hold the folio lock.
2152 * Return: false if the page is still mapped, or if it could not be unmapped
2153 * from the expected address. Otherwise returns true (success).
2154 */
2155static bool folio_make_device_exclusive(struct folio *folio,
2156 struct mm_struct *mm, unsigned long address, void *owner)
2157{
2158 struct make_exclusive_args args = {
2159 .mm = mm,
2160 .address = address,
2161 .owner = owner,
2162 .valid = false,
2163 };
2164 struct rmap_walk_control rwc = {
2165 .rmap_one = page_make_device_exclusive_one,
2166 .done = page_not_mapped,
2167 .anon_lock = folio_lock_anon_vma_read,
2168 .arg = &args,
2169 };
2170
2171 /*
2172 * Restrict to anonymous folios for now to avoid potential writeback
2173 * issues.
2174 */
2175 if (!folio_test_anon(folio))
2176 return false;
2177
2178 rmap_walk(folio, &rwc);
2179
2180 return args.valid && !folio_mapcount(folio);
2181}
2182
2183/**
2184 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2185 * @mm: mm_struct of assoicated target process
2186 * @start: start of the region to mark for exclusive device access
2187 * @end: end address of region
2188 * @pages: returns the pages which were successfully marked for exclusive access
2189 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2190 *
2191 * Returns: number of pages found in the range by GUP. A page is marked for
2192 * exclusive access only if the page pointer is non-NULL.
2193 *
2194 * This function finds ptes mapping page(s) to the given address range, locks
2195 * them and replaces mappings with special swap entries preventing userspace CPU
2196 * access. On fault these entries are replaced with the original mapping after
2197 * calling MMU notifiers.
2198 *
2199 * A driver using this to program access from a device must use a mmu notifier
2200 * critical section to hold a device specific lock during programming. Once
2201 * programming is complete it should drop the page lock and reference after
2202 * which point CPU access to the page will revoke the exclusive access.
2203 */
2204int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2205 unsigned long end, struct page **pages,
2206 void *owner)
2207{
2208 long npages = (end - start) >> PAGE_SHIFT;
2209 long i;
2210
2211 npages = get_user_pages_remote(mm, start, npages,
2212 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2213 pages, NULL, NULL);
2214 if (npages < 0)
2215 return npages;
2216
2217 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2218 struct folio *folio = page_folio(pages[i]);
2219 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2220 folio_put(folio);
2221 pages[i] = NULL;
2222 continue;
2223 }
2224
2225 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2226 folio_unlock(folio);
2227 folio_put(folio);
2228 pages[i] = NULL;
2229 }
2230 }
2231
2232 return npages;
2233}
2234EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2235#endif
2236
2237void __put_anon_vma(struct anon_vma *anon_vma)
2238{
2239 struct anon_vma *root = anon_vma->root;
2240
2241 anon_vma_free(anon_vma);
2242 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2243 anon_vma_free(root);
2244}
2245
2246static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2247 const struct rmap_walk_control *rwc)
2248{
2249 struct anon_vma *anon_vma;
2250
2251 if (rwc->anon_lock)
2252 return rwc->anon_lock(folio);
2253
2254 /*
2255 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2256 * because that depends on page_mapped(); but not all its usages
2257 * are holding mmap_lock. Users without mmap_lock are required to
2258 * take a reference count to prevent the anon_vma disappearing
2259 */
2260 anon_vma = folio_anon_vma(folio);
2261 if (!anon_vma)
2262 return NULL;
2263
2264 anon_vma_lock_read(anon_vma);
2265 return anon_vma;
2266}
2267
2268/*
2269 * rmap_walk_anon - do something to anonymous page using the object-based
2270 * rmap method
2271 * @page: the page to be handled
2272 * @rwc: control variable according to each walk type
2273 *
2274 * Find all the mappings of a page using the mapping pointer and the vma chains
2275 * contained in the anon_vma struct it points to.
2276 */
2277static void rmap_walk_anon(struct folio *folio,
2278 const struct rmap_walk_control *rwc, bool locked)
2279{
2280 struct anon_vma *anon_vma;
2281 pgoff_t pgoff_start, pgoff_end;
2282 struct anon_vma_chain *avc;
2283
2284 if (locked) {
2285 anon_vma = folio_anon_vma(folio);
2286 /* anon_vma disappear under us? */
2287 VM_BUG_ON_FOLIO(!anon_vma, folio);
2288 } else {
2289 anon_vma = rmap_walk_anon_lock(folio, rwc);
2290 }
2291 if (!anon_vma)
2292 return;
2293
2294 pgoff_start = folio_pgoff(folio);
2295 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2296 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2297 pgoff_start, pgoff_end) {
2298 struct vm_area_struct *vma = avc->vma;
2299 unsigned long address = vma_address(&folio->page, vma);
2300
2301 VM_BUG_ON_VMA(address == -EFAULT, vma);
2302 cond_resched();
2303
2304 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2305 continue;
2306
2307 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2308 break;
2309 if (rwc->done && rwc->done(folio))
2310 break;
2311 }
2312
2313 if (!locked)
2314 anon_vma_unlock_read(anon_vma);
2315}
2316
2317/*
2318 * rmap_walk_file - do something to file page using the object-based rmap method
2319 * @page: the page to be handled
2320 * @rwc: control variable according to each walk type
2321 *
2322 * Find all the mappings of a page using the mapping pointer and the vma chains
2323 * contained in the address_space struct it points to.
2324 */
2325static void rmap_walk_file(struct folio *folio,
2326 const struct rmap_walk_control *rwc, bool locked)
2327{
2328 struct address_space *mapping = folio_mapping(folio);
2329 pgoff_t pgoff_start, pgoff_end;
2330 struct vm_area_struct *vma;
2331
2332 /*
2333 * The page lock not only makes sure that page->mapping cannot
2334 * suddenly be NULLified by truncation, it makes sure that the
2335 * structure at mapping cannot be freed and reused yet,
2336 * so we can safely take mapping->i_mmap_rwsem.
2337 */
2338 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2339
2340 if (!mapping)
2341 return;
2342
2343 pgoff_start = folio_pgoff(folio);
2344 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2345 if (!locked)
2346 i_mmap_lock_read(mapping);
2347 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2348 pgoff_start, pgoff_end) {
2349 unsigned long address = vma_address(&folio->page, vma);
2350
2351 VM_BUG_ON_VMA(address == -EFAULT, vma);
2352 cond_resched();
2353
2354 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2355 continue;
2356
2357 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2358 goto done;
2359 if (rwc->done && rwc->done(folio))
2360 goto done;
2361 }
2362
2363done:
2364 if (!locked)
2365 i_mmap_unlock_read(mapping);
2366}
2367
2368void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc)
2369{
2370 if (unlikely(folio_test_ksm(folio)))
2371 rmap_walk_ksm(folio, rwc);
2372 else if (folio_test_anon(folio))
2373 rmap_walk_anon(folio, rwc, false);
2374 else
2375 rmap_walk_file(folio, rwc, false);
2376}
2377
2378/* Like rmap_walk, but caller holds relevant rmap lock */
2379void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc)
2380{
2381 /* no ksm support for now */
2382 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2383 if (folio_test_anon(folio))
2384 rmap_walk_anon(folio, rwc, true);
2385 else
2386 rmap_walk_file(folio, rwc, true);
2387}
2388
2389#ifdef CONFIG_HUGETLB_PAGE
2390/*
2391 * The following two functions are for anonymous (private mapped) hugepages.
2392 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2393 * and no lru code, because we handle hugepages differently from common pages.
2394 *
2395 * RMAP_COMPOUND is ignored.
2396 */
2397void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2398 unsigned long address, rmap_t flags)
2399{
2400 struct anon_vma *anon_vma = vma->anon_vma;
2401 int first;
2402
2403 BUG_ON(!PageLocked(page));
2404 BUG_ON(!anon_vma);
2405 /* address might be in next vma when migration races vma_adjust */
2406 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2407 if (first)
2408 __page_set_anon_rmap(page, vma, address,
2409 !!(flags & RMAP_EXCLUSIVE));
2410}
2411
2412void hugepage_add_new_anon_rmap(struct page *page,
2413 struct vm_area_struct *vma, unsigned long address)
2414{
2415 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2416 atomic_set(compound_mapcount_ptr(page), 0);
2417 atomic_set(compound_pincount_ptr(page), 0);
2418
2419 __page_set_anon_rmap(page, vma, address, 1);
2420}
2421#endif /* CONFIG_HUGETLB_PAGE */