Merge tag 'nfs-for-6.12-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux-2.6-block.git] / mm / readahead.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11/**
12 * DOC: Readahead Overview
13 *
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read folios that are not yet in the page cache. If a
17 * folio is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->read_folio() will be requested.
19 *
20 * Readahead is triggered when an application read request (whether a
21 * system call or a page fault) finds that the requested folio is not in
22 * the page cache, or that it is in the page cache and has the
23 * readahead flag set. This flag indicates that the folio was read
24 * as part of a previous readahead request and now that it has been
25 * accessed, it is time for the next readahead.
26 *
27 * Each readahead request is partly synchronous read, and partly async
28 * readahead. This is reflected in the struct file_ra_state which
29 * contains ->size being the total number of pages, and ->async_size
30 * which is the number of pages in the async section. The readahead
31 * flag will be set on the first folio in this async section to trigger
32 * a subsequent readahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all readahead request will be fully asynchronous.
35 *
36 * When either of the triggers causes a readahead, three numbers need
37 * to be determined: the start of the region to read, the size of the
38 * region, and the size of the async tail.
39 *
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
43 *
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49 *
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
60 *
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
67 *
68 * In general readahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the readahead size in various special cases and these
71 * are best discovered by reading the code.
72 *
73 * The above calculation, based on the previous readahead size,
74 * determines the size of the readahead, to which any requested read
75 * size may be added.
76 *
77 * Readahead requests are sent to the filesystem using the ->readahead()
78 * address space operation, for which mpage_readahead() is a canonical
79 * implementation. ->readahead() should normally initiate reads on all
80 * folios, but may fail to read any or all folios without causing an I/O
81 * error. The page cache reading code will issue a ->read_folio() request
82 * for any folio which ->readahead() did not read, and only an error
83 * from this will be final.
84 *
85 * ->readahead() will generally call readahead_folio() repeatedly to get
86 * each folio from those prepared for readahead. It may fail to read a
87 * folio by:
88 *
89 * * not calling readahead_folio() sufficiently many times, effectively
90 * ignoring some folios, as might be appropriate if the path to
91 * storage is congested.
92 *
93 * * failing to actually submit a read request for a given folio,
94 * possibly due to insufficient resources, or
95 *
96 * * getting an error during subsequent processing of a request.
97 *
98 * In the last two cases, the folio should be unlocked by the filesystem
99 * to indicate that the read attempt has failed. In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g. memory or indexing information) to
106 * become available. Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio(). This will allow a
111 * subsequent synchronous readahead request to try them again. If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116#include <linux/blkdev.h>
117#include <linux/kernel.h>
118#include <linux/dax.h>
119#include <linux/gfp.h>
120#include <linux/export.h>
121#include <linux/backing-dev.h>
122#include <linux/task_io_accounting_ops.h>
123#include <linux/pagemap.h>
124#include <linux/psi.h>
125#include <linux/syscalls.h>
126#include <linux/file.h>
127#include <linux/mm_inline.h>
128#include <linux/blk-cgroup.h>
129#include <linux/fadvise.h>
130#include <linux/sched/mm.h>
131
132#include "internal.h"
133
134/*
135 * Initialise a struct file's readahead state. Assumes that the caller has
136 * memset *ra to zero.
137 */
138void
139file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
140{
141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142 ra->prev_pos = -1;
143}
144EXPORT_SYMBOL_GPL(file_ra_state_init);
145
146static void read_pages(struct readahead_control *rac)
147{
148 const struct address_space_operations *aops = rac->mapping->a_ops;
149 struct folio *folio;
150 struct blk_plug plug;
151
152 if (!readahead_count(rac))
153 return;
154
155 if (unlikely(rac->_workingset))
156 psi_memstall_enter(&rac->_pflags);
157 blk_start_plug(&plug);
158
159 if (aops->readahead) {
160 aops->readahead(rac);
161 /*
162 * Clean up the remaining folios. The sizes in ->ra
163 * may be used to size the next readahead, so make sure
164 * they accurately reflect what happened.
165 */
166 while ((folio = readahead_folio(rac)) != NULL) {
167 unsigned long nr = folio_nr_pages(folio);
168
169 folio_get(folio);
170 rac->ra->size -= nr;
171 if (rac->ra->async_size >= nr) {
172 rac->ra->async_size -= nr;
173 filemap_remove_folio(folio);
174 }
175 folio_unlock(folio);
176 folio_put(folio);
177 }
178 } else {
179 while ((folio = readahead_folio(rac)) != NULL)
180 aops->read_folio(rac->file, folio);
181 }
182
183 blk_finish_plug(&plug);
184 if (unlikely(rac->_workingset))
185 psi_memstall_leave(&rac->_pflags);
186 rac->_workingset = false;
187
188 BUG_ON(readahead_count(rac));
189}
190
191/**
192 * page_cache_ra_unbounded - Start unchecked readahead.
193 * @ractl: Readahead control.
194 * @nr_to_read: The number of pages to read.
195 * @lookahead_size: Where to start the next readahead.
196 *
197 * This function is for filesystems to call when they want to start
198 * readahead beyond a file's stated i_size. This is almost certainly
199 * not the function you want to call. Use page_cache_async_readahead()
200 * or page_cache_sync_readahead() instead.
201 *
202 * Context: File is referenced by caller. Mutexes may be held by caller.
203 * May sleep, but will not reenter filesystem to reclaim memory.
204 */
205void page_cache_ra_unbounded(struct readahead_control *ractl,
206 unsigned long nr_to_read, unsigned long lookahead_size)
207{
208 struct address_space *mapping = ractl->mapping;
209 unsigned long ra_folio_index, index = readahead_index(ractl);
210 gfp_t gfp_mask = readahead_gfp_mask(mapping);
211 unsigned long mark, i = 0;
212 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping);
213
214 /*
215 * Partway through the readahead operation, we will have added
216 * locked pages to the page cache, but will not yet have submitted
217 * them for I/O. Adding another page may need to allocate memory,
218 * which can trigger memory reclaim. Telling the VM we're in
219 * the middle of a filesystem operation will cause it to not
220 * touch file-backed pages, preventing a deadlock. Most (all?)
221 * filesystems already specify __GFP_NOFS in their mapping's
222 * gfp_mask, but let's be explicit here.
223 */
224 unsigned int nofs = memalloc_nofs_save();
225
226 filemap_invalidate_lock_shared(mapping);
227 index = mapping_align_index(mapping, index);
228
229 /*
230 * As iterator `i` is aligned to min_nrpages, round_up the
231 * difference between nr_to_read and lookahead_size to mark the
232 * index that only has lookahead or "async_region" to set the
233 * readahead flag.
234 */
235 ra_folio_index = round_up(readahead_index(ractl) + nr_to_read - lookahead_size,
236 min_nrpages);
237 mark = ra_folio_index - index;
238 nr_to_read += readahead_index(ractl) - index;
239 ractl->_index = index;
240
241 /*
242 * Preallocate as many pages as we will need.
243 */
244 while (i < nr_to_read) {
245 struct folio *folio = xa_load(&mapping->i_pages, index + i);
246 int ret;
247
248 if (folio && !xa_is_value(folio)) {
249 /*
250 * Page already present? Kick off the current batch
251 * of contiguous pages before continuing with the
252 * next batch. This page may be the one we would
253 * have intended to mark as Readahead, but we don't
254 * have a stable reference to this page, and it's
255 * not worth getting one just for that.
256 */
257 read_pages(ractl);
258 ractl->_index += min_nrpages;
259 i = ractl->_index + ractl->_nr_pages - index;
260 continue;
261 }
262
263 folio = filemap_alloc_folio(gfp_mask,
264 mapping_min_folio_order(mapping));
265 if (!folio)
266 break;
267
268 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
269 if (ret < 0) {
270 folio_put(folio);
271 if (ret == -ENOMEM)
272 break;
273 read_pages(ractl);
274 ractl->_index += min_nrpages;
275 i = ractl->_index + ractl->_nr_pages - index;
276 continue;
277 }
278 if (i == mark)
279 folio_set_readahead(folio);
280 ractl->_workingset |= folio_test_workingset(folio);
281 ractl->_nr_pages += min_nrpages;
282 i += min_nrpages;
283 }
284
285 /*
286 * Now start the IO. We ignore I/O errors - if the folio is not
287 * uptodate then the caller will launch read_folio again, and
288 * will then handle the error.
289 */
290 read_pages(ractl);
291 filemap_invalidate_unlock_shared(mapping);
292 memalloc_nofs_restore(nofs);
293}
294EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
295
296/*
297 * do_page_cache_ra() actually reads a chunk of disk. It allocates
298 * the pages first, then submits them for I/O. This avoids the very bad
299 * behaviour which would occur if page allocations are causing VM writeback.
300 * We really don't want to intermingle reads and writes like that.
301 */
302static void do_page_cache_ra(struct readahead_control *ractl,
303 unsigned long nr_to_read, unsigned long lookahead_size)
304{
305 struct inode *inode = ractl->mapping->host;
306 unsigned long index = readahead_index(ractl);
307 loff_t isize = i_size_read(inode);
308 pgoff_t end_index; /* The last page we want to read */
309
310 if (isize == 0)
311 return;
312
313 end_index = (isize - 1) >> PAGE_SHIFT;
314 if (index > end_index)
315 return;
316 /* Don't read past the page containing the last byte of the file */
317 if (nr_to_read > end_index - index)
318 nr_to_read = end_index - index + 1;
319
320 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
321}
322
323/*
324 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
325 * memory at once.
326 */
327void force_page_cache_ra(struct readahead_control *ractl,
328 unsigned long nr_to_read)
329{
330 struct address_space *mapping = ractl->mapping;
331 struct file_ra_state *ra = ractl->ra;
332 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
333 unsigned long max_pages;
334
335 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
336 return;
337
338 /*
339 * If the request exceeds the readahead window, allow the read to
340 * be up to the optimal hardware IO size
341 */
342 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
343 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
344 while (nr_to_read) {
345 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
346
347 if (this_chunk > nr_to_read)
348 this_chunk = nr_to_read;
349 do_page_cache_ra(ractl, this_chunk, 0);
350
351 nr_to_read -= this_chunk;
352 }
353}
354
355/*
356 * Set the initial window size, round to next power of 2 and square
357 * for small size, x 4 for medium, and x 2 for large
358 * for 128k (32 page) max ra
359 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
360 */
361static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
362{
363 unsigned long newsize = roundup_pow_of_two(size);
364
365 if (newsize <= max / 32)
366 newsize = newsize * 4;
367 else if (newsize <= max / 4)
368 newsize = newsize * 2;
369 else
370 newsize = max;
371
372 return newsize;
373}
374
375/*
376 * Get the previous window size, ramp it up, and
377 * return it as the new window size.
378 */
379static unsigned long get_next_ra_size(struct file_ra_state *ra,
380 unsigned long max)
381{
382 unsigned long cur = ra->size;
383
384 if (cur < max / 16)
385 return 4 * cur;
386 if (cur <= max / 2)
387 return 2 * cur;
388 return max;
389}
390
391/*
392 * On-demand readahead design.
393 *
394 * The fields in struct file_ra_state represent the most-recently-executed
395 * readahead attempt:
396 *
397 * |<----- async_size ---------|
398 * |------------------- size -------------------->|
399 * |==================#===========================|
400 * ^start ^page marked with PG_readahead
401 *
402 * To overlap application thinking time and disk I/O time, we do
403 * `readahead pipelining': Do not wait until the application consumed all
404 * readahead pages and stalled on the missing page at readahead_index;
405 * Instead, submit an asynchronous readahead I/O as soon as there are
406 * only async_size pages left in the readahead window. Normally async_size
407 * will be equal to size, for maximum pipelining.
408 *
409 * In interleaved sequential reads, concurrent streams on the same fd can
410 * be invalidating each other's readahead state. So we flag the new readahead
411 * page at (start+size-async_size) with PG_readahead, and use it as readahead
412 * indicator. The flag won't be set on already cached pages, to avoid the
413 * readahead-for-nothing fuss, saving pointless page cache lookups.
414 *
415 * prev_pos tracks the last visited byte in the _previous_ read request.
416 * It should be maintained by the caller, and will be used for detecting
417 * small random reads. Note that the readahead algorithm checks loosely
418 * for sequential patterns. Hence interleaved reads might be served as
419 * sequential ones.
420 *
421 * There is a special-case: if the first page which the application tries to
422 * read happens to be the first page of the file, it is assumed that a linear
423 * read is about to happen and the window is immediately set to the initial size
424 * based on I/O request size and the max_readahead.
425 *
426 * The code ramps up the readahead size aggressively at first, but slow down as
427 * it approaches max_readhead.
428 */
429
430static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
431 pgoff_t mark, unsigned int order, gfp_t gfp)
432{
433 int err;
434 struct folio *folio = filemap_alloc_folio(gfp, order);
435
436 if (!folio)
437 return -ENOMEM;
438 mark = round_down(mark, 1UL << order);
439 if (index == mark)
440 folio_set_readahead(folio);
441 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
442 if (err) {
443 folio_put(folio);
444 return err;
445 }
446
447 ractl->_nr_pages += 1UL << order;
448 ractl->_workingset |= folio_test_workingset(folio);
449 return 0;
450}
451
452void page_cache_ra_order(struct readahead_control *ractl,
453 struct file_ra_state *ra, unsigned int new_order)
454{
455 struct address_space *mapping = ractl->mapping;
456 pgoff_t start = readahead_index(ractl);
457 pgoff_t index = start;
458 unsigned int min_order = mapping_min_folio_order(mapping);
459 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
460 pgoff_t mark = index + ra->size - ra->async_size;
461 unsigned int nofs;
462 int err = 0;
463 gfp_t gfp = readahead_gfp_mask(mapping);
464 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping));
465
466 /*
467 * Fallback when size < min_nrpages as each folio should be
468 * at least min_nrpages anyway.
469 */
470 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size)
471 goto fallback;
472
473 limit = min(limit, index + ra->size - 1);
474
475 if (new_order < mapping_max_folio_order(mapping))
476 new_order += 2;
477
478 new_order = min(mapping_max_folio_order(mapping), new_order);
479 new_order = min_t(unsigned int, new_order, ilog2(ra->size));
480 new_order = max(new_order, min_order);
481
482 /* See comment in page_cache_ra_unbounded() */
483 nofs = memalloc_nofs_save();
484 filemap_invalidate_lock_shared(mapping);
485 /*
486 * If the new_order is greater than min_order and index is
487 * already aligned to new_order, then this will be noop as index
488 * aligned to new_order should also be aligned to min_order.
489 */
490 ractl->_index = mapping_align_index(mapping, index);
491 index = readahead_index(ractl);
492
493 while (index <= limit) {
494 unsigned int order = new_order;
495
496 /* Align with smaller pages if needed */
497 if (index & ((1UL << order) - 1))
498 order = __ffs(index);
499 /* Don't allocate pages past EOF */
500 while (order > min_order && index + (1UL << order) - 1 > limit)
501 order--;
502 err = ra_alloc_folio(ractl, index, mark, order, gfp);
503 if (err)
504 break;
505 index += 1UL << order;
506 }
507
508 read_pages(ractl);
509 filemap_invalidate_unlock_shared(mapping);
510 memalloc_nofs_restore(nofs);
511
512 /*
513 * If there were already pages in the page cache, then we may have
514 * left some gaps. Let the regular readahead code take care of this
515 * situation.
516 */
517 if (!err)
518 return;
519fallback:
520 do_page_cache_ra(ractl, ra->size - (index - start), ra->async_size);
521}
522
523static unsigned long ractl_max_pages(struct readahead_control *ractl,
524 unsigned long req_size)
525{
526 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
527 unsigned long max_pages = ractl->ra->ra_pages;
528
529 /*
530 * If the request exceeds the readahead window, allow the read to
531 * be up to the optimal hardware IO size
532 */
533 if (req_size > max_pages && bdi->io_pages > max_pages)
534 max_pages = min(req_size, bdi->io_pages);
535 return max_pages;
536}
537
538void page_cache_sync_ra(struct readahead_control *ractl,
539 unsigned long req_count)
540{
541 pgoff_t index = readahead_index(ractl);
542 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
543 struct file_ra_state *ra = ractl->ra;
544 unsigned long max_pages, contig_count;
545 pgoff_t prev_index, miss;
546
547 /*
548 * Even if readahead is disabled, issue this request as readahead
549 * as we'll need it to satisfy the requested range. The forced
550 * readahead will do the right thing and limit the read to just the
551 * requested range, which we'll set to 1 page for this case.
552 */
553 if (!ra->ra_pages || blk_cgroup_congested()) {
554 if (!ractl->file)
555 return;
556 req_count = 1;
557 do_forced_ra = true;
558 }
559
560 /* be dumb */
561 if (do_forced_ra) {
562 force_page_cache_ra(ractl, req_count);
563 return;
564 }
565
566 max_pages = ractl_max_pages(ractl, req_count);
567 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
568 /*
569 * A start of file, oversized read, or sequential cache miss:
570 * trivial case: (index - prev_index) == 1
571 * unaligned reads: (index - prev_index) == 0
572 */
573 if (!index || req_count > max_pages || index - prev_index <= 1UL) {
574 ra->start = index;
575 ra->size = get_init_ra_size(req_count, max_pages);
576 ra->async_size = ra->size > req_count ? ra->size - req_count :
577 ra->size >> 1;
578 goto readit;
579 }
580
581 /*
582 * Query the page cache and look for the traces(cached history pages)
583 * that a sequential stream would leave behind.
584 */
585 rcu_read_lock();
586 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
587 rcu_read_unlock();
588 contig_count = index - miss - 1;
589 /*
590 * Standalone, small random read. Read as is, and do not pollute the
591 * readahead state.
592 */
593 if (contig_count <= req_count) {
594 do_page_cache_ra(ractl, req_count, 0);
595 return;
596 }
597 /*
598 * File cached from the beginning:
599 * it is a strong indication of long-run stream (or whole-file-read)
600 */
601 if (miss == ULONG_MAX)
602 contig_count *= 2;
603 ra->start = index;
604 ra->size = min(contig_count + req_count, max_pages);
605 ra->async_size = 1;
606readit:
607 ractl->_index = ra->start;
608 page_cache_ra_order(ractl, ra, 0);
609}
610EXPORT_SYMBOL_GPL(page_cache_sync_ra);
611
612void page_cache_async_ra(struct readahead_control *ractl,
613 struct folio *folio, unsigned long req_count)
614{
615 unsigned long max_pages;
616 struct file_ra_state *ra = ractl->ra;
617 pgoff_t index = readahead_index(ractl);
618 pgoff_t expected, start;
619 unsigned int order = folio_order(folio);
620
621 /* no readahead */
622 if (!ra->ra_pages)
623 return;
624
625 /*
626 * Same bit is used for PG_readahead and PG_reclaim.
627 */
628 if (folio_test_writeback(folio))
629 return;
630
631 folio_clear_readahead(folio);
632
633 if (blk_cgroup_congested())
634 return;
635
636 max_pages = ractl_max_pages(ractl, req_count);
637 /*
638 * It's the expected callback index, assume sequential access.
639 * Ramp up sizes, and push forward the readahead window.
640 */
641 expected = round_down(ra->start + ra->size - ra->async_size,
642 1UL << order);
643 if (index == expected) {
644 ra->start += ra->size;
645 ra->size = get_next_ra_size(ra, max_pages);
646 ra->async_size = ra->size;
647 goto readit;
648 }
649
650 /*
651 * Hit a marked folio without valid readahead state.
652 * E.g. interleaved reads.
653 * Query the pagecache for async_size, which normally equals to
654 * readahead size. Ramp it up and use it as the new readahead size.
655 */
656 rcu_read_lock();
657 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
658 rcu_read_unlock();
659
660 if (!start || start - index > max_pages)
661 return;
662
663 ra->start = start;
664 ra->size = start - index; /* old async_size */
665 ra->size += req_count;
666 ra->size = get_next_ra_size(ra, max_pages);
667 ra->async_size = ra->size;
668readit:
669 ractl->_index = ra->start;
670 page_cache_ra_order(ractl, ra, order);
671}
672EXPORT_SYMBOL_GPL(page_cache_async_ra);
673
674ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
675{
676 ssize_t ret;
677 struct fd f;
678
679 ret = -EBADF;
680 f = fdget(fd);
681 if (!fd_file(f) || !(fd_file(f)->f_mode & FMODE_READ))
682 goto out;
683
684 /*
685 * The readahead() syscall is intended to run only on files
686 * that can execute readahead. If readahead is not possible
687 * on this file, then we must return -EINVAL.
688 */
689 ret = -EINVAL;
690 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops ||
691 (!S_ISREG(file_inode(fd_file(f))->i_mode) &&
692 !S_ISBLK(file_inode(fd_file(f))->i_mode)))
693 goto out;
694
695 ret = vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED);
696out:
697 fdput(f);
698 return ret;
699}
700
701SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
702{
703 return ksys_readahead(fd, offset, count);
704}
705
706#if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
707COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
708{
709 return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
710}
711#endif
712
713/**
714 * readahead_expand - Expand a readahead request
715 * @ractl: The request to be expanded
716 * @new_start: The revised start
717 * @new_len: The revised size of the request
718 *
719 * Attempt to expand a readahead request outwards from the current size to the
720 * specified size by inserting locked pages before and after the current window
721 * to increase the size to the new window. This may involve the insertion of
722 * THPs, in which case the window may get expanded even beyond what was
723 * requested.
724 *
725 * The algorithm will stop if it encounters a conflicting page already in the
726 * pagecache and leave a smaller expansion than requested.
727 *
728 * The caller must check for this by examining the revised @ractl object for a
729 * different expansion than was requested.
730 */
731void readahead_expand(struct readahead_control *ractl,
732 loff_t new_start, size_t new_len)
733{
734 struct address_space *mapping = ractl->mapping;
735 struct file_ra_state *ra = ractl->ra;
736 pgoff_t new_index, new_nr_pages;
737 gfp_t gfp_mask = readahead_gfp_mask(mapping);
738 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping);
739 unsigned int min_order = mapping_min_folio_order(mapping);
740
741 new_index = new_start / PAGE_SIZE;
742 /*
743 * Readahead code should have aligned the ractl->_index to
744 * min_nrpages before calling readahead aops.
745 */
746 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages));
747
748 /* Expand the leading edge downwards */
749 while (ractl->_index > new_index) {
750 unsigned long index = ractl->_index - 1;
751 struct folio *folio = xa_load(&mapping->i_pages, index);
752
753 if (folio && !xa_is_value(folio))
754 return; /* Folio apparently present */
755
756 folio = filemap_alloc_folio(gfp_mask, min_order);
757 if (!folio)
758 return;
759
760 index = mapping_align_index(mapping, index);
761 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
762 folio_put(folio);
763 return;
764 }
765 if (unlikely(folio_test_workingset(folio)) &&
766 !ractl->_workingset) {
767 ractl->_workingset = true;
768 psi_memstall_enter(&ractl->_pflags);
769 }
770 ractl->_nr_pages += min_nrpages;
771 ractl->_index = folio->index;
772 }
773
774 new_len += new_start - readahead_pos(ractl);
775 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
776
777 /* Expand the trailing edge upwards */
778 while (ractl->_nr_pages < new_nr_pages) {
779 unsigned long index = ractl->_index + ractl->_nr_pages;
780 struct folio *folio = xa_load(&mapping->i_pages, index);
781
782 if (folio && !xa_is_value(folio))
783 return; /* Folio apparently present */
784
785 folio = filemap_alloc_folio(gfp_mask, min_order);
786 if (!folio)
787 return;
788
789 index = mapping_align_index(mapping, index);
790 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
791 folio_put(folio);
792 return;
793 }
794 if (unlikely(folio_test_workingset(folio)) &&
795 !ractl->_workingset) {
796 ractl->_workingset = true;
797 psi_memstall_enter(&ractl->_pflags);
798 }
799 ractl->_nr_pages += min_nrpages;
800 if (ra) {
801 ra->size += min_nrpages;
802 ra->async_size += min_nrpages;
803 }
804 }
805}
806EXPORT_SYMBOL(readahead_expand);