| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * mm/percpu.c - percpu memory allocator |
| 4 | * |
| 5 | * Copyright (C) 2009 SUSE Linux Products GmbH |
| 6 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> |
| 7 | * |
| 8 | * Copyright (C) 2017 Facebook Inc. |
| 9 | * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> |
| 10 | * |
| 11 | * The percpu allocator handles both static and dynamic areas. Percpu |
| 12 | * areas are allocated in chunks which are divided into units. There is |
| 13 | * a 1-to-1 mapping for units to possible cpus. These units are grouped |
| 14 | * based on NUMA properties of the machine. |
| 15 | * |
| 16 | * c0 c1 c2 |
| 17 | * ------------------- ------------------- ------------ |
| 18 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u |
| 19 | * ------------------- ...... ------------------- .... ------------ |
| 20 | * |
| 21 | * Allocation is done by offsets into a unit's address space. Ie., an |
| 22 | * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, |
| 23 | * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear |
| 24 | * and even sparse. Access is handled by configuring percpu base |
| 25 | * registers according to the cpu to unit mappings and offsetting the |
| 26 | * base address using pcpu_unit_size. |
| 27 | * |
| 28 | * There is special consideration for the first chunk which must handle |
| 29 | * the static percpu variables in the kernel image as allocation services |
| 30 | * are not online yet. In short, the first chunk is structured like so: |
| 31 | * |
| 32 | * <Static | [Reserved] | Dynamic> |
| 33 | * |
| 34 | * The static data is copied from the original section managed by the |
| 35 | * linker. The reserved section, if non-zero, primarily manages static |
| 36 | * percpu variables from kernel modules. Finally, the dynamic section |
| 37 | * takes care of normal allocations. |
| 38 | * |
| 39 | * The allocator organizes chunks into lists according to free size and |
| 40 | * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT |
| 41 | * flag should be passed. All memcg-aware allocations are sharing one set |
| 42 | * of chunks and all unaccounted allocations and allocations performed |
| 43 | * by processes belonging to the root memory cgroup are using the second set. |
| 44 | * |
| 45 | * The allocator tries to allocate from the fullest chunk first. Each chunk |
| 46 | * is managed by a bitmap with metadata blocks. The allocation map is updated |
| 47 | * on every allocation and free to reflect the current state while the boundary |
| 48 | * map is only updated on allocation. Each metadata block contains |
| 49 | * information to help mitigate the need to iterate over large portions |
| 50 | * of the bitmap. The reverse mapping from page to chunk is stored in |
| 51 | * the page's index. Lastly, units are lazily backed and grow in unison. |
| 52 | * |
| 53 | * There is a unique conversion that goes on here between bytes and bits. |
| 54 | * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk |
| 55 | * tracks the number of pages it is responsible for in nr_pages. Helper |
| 56 | * functions are used to convert from between the bytes, bits, and blocks. |
| 57 | * All hints are managed in bits unless explicitly stated. |
| 58 | * |
| 59 | * To use this allocator, arch code should do the following: |
| 60 | * |
| 61 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
| 62 | * regular address to percpu pointer and back if they need to be |
| 63 | * different from the default |
| 64 | * |
| 65 | * - use pcpu_setup_first_chunk() during percpu area initialization to |
| 66 | * setup the first chunk containing the kernel static percpu area |
| 67 | */ |
| 68 | |
| 69 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 70 | |
| 71 | #include <linux/bitmap.h> |
| 72 | #include <linux/cpumask.h> |
| 73 | #include <linux/memblock.h> |
| 74 | #include <linux/err.h> |
| 75 | #include <linux/list.h> |
| 76 | #include <linux/log2.h> |
| 77 | #include <linux/mm.h> |
| 78 | #include <linux/module.h> |
| 79 | #include <linux/mutex.h> |
| 80 | #include <linux/percpu.h> |
| 81 | #include <linux/pfn.h> |
| 82 | #include <linux/slab.h> |
| 83 | #include <linux/spinlock.h> |
| 84 | #include <linux/vmalloc.h> |
| 85 | #include <linux/workqueue.h> |
| 86 | #include <linux/kmemleak.h> |
| 87 | #include <linux/sched.h> |
| 88 | #include <linux/sched/mm.h> |
| 89 | #include <linux/memcontrol.h> |
| 90 | |
| 91 | #include <asm/cacheflush.h> |
| 92 | #include <asm/sections.h> |
| 93 | #include <asm/tlbflush.h> |
| 94 | #include <asm/io.h> |
| 95 | |
| 96 | #define CREATE_TRACE_POINTS |
| 97 | #include <trace/events/percpu.h> |
| 98 | |
| 99 | #include "percpu-internal.h" |
| 100 | |
| 101 | /* |
| 102 | * The slots are sorted by the size of the biggest continuous free area. |
| 103 | * 1-31 bytes share the same slot. |
| 104 | */ |
| 105 | #define PCPU_SLOT_BASE_SHIFT 5 |
| 106 | /* chunks in slots below this are subject to being sidelined on failed alloc */ |
| 107 | #define PCPU_SLOT_FAIL_THRESHOLD 3 |
| 108 | |
| 109 | #define PCPU_EMPTY_POP_PAGES_LOW 2 |
| 110 | #define PCPU_EMPTY_POP_PAGES_HIGH 4 |
| 111 | |
| 112 | #ifdef CONFIG_SMP |
| 113 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ |
| 114 | #ifndef __addr_to_pcpu_ptr |
| 115 | #define __addr_to_pcpu_ptr(addr) \ |
| 116 | (void __percpu *)((unsigned long)(addr) - \ |
| 117 | (unsigned long)pcpu_base_addr + \ |
| 118 | (unsigned long)__per_cpu_start) |
| 119 | #endif |
| 120 | #ifndef __pcpu_ptr_to_addr |
| 121 | #define __pcpu_ptr_to_addr(ptr) \ |
| 122 | (void __force *)((unsigned long)(ptr) + \ |
| 123 | (unsigned long)pcpu_base_addr - \ |
| 124 | (unsigned long)__per_cpu_start) |
| 125 | #endif |
| 126 | #else /* CONFIG_SMP */ |
| 127 | /* on UP, it's always identity mapped */ |
| 128 | #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) |
| 129 | #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) |
| 130 | #endif /* CONFIG_SMP */ |
| 131 | |
| 132 | static int pcpu_unit_pages __ro_after_init; |
| 133 | static int pcpu_unit_size __ro_after_init; |
| 134 | static int pcpu_nr_units __ro_after_init; |
| 135 | static int pcpu_atom_size __ro_after_init; |
| 136 | int pcpu_nr_slots __ro_after_init; |
| 137 | static int pcpu_free_slot __ro_after_init; |
| 138 | int pcpu_sidelined_slot __ro_after_init; |
| 139 | int pcpu_to_depopulate_slot __ro_after_init; |
| 140 | static size_t pcpu_chunk_struct_size __ro_after_init; |
| 141 | |
| 142 | /* cpus with the lowest and highest unit addresses */ |
| 143 | static unsigned int pcpu_low_unit_cpu __ro_after_init; |
| 144 | static unsigned int pcpu_high_unit_cpu __ro_after_init; |
| 145 | |
| 146 | /* the address of the first chunk which starts with the kernel static area */ |
| 147 | void *pcpu_base_addr __ro_after_init; |
| 148 | |
| 149 | static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ |
| 150 | const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ |
| 151 | |
| 152 | /* group information, used for vm allocation */ |
| 153 | static int pcpu_nr_groups __ro_after_init; |
| 154 | static const unsigned long *pcpu_group_offsets __ro_after_init; |
| 155 | static const size_t *pcpu_group_sizes __ro_after_init; |
| 156 | |
| 157 | /* |
| 158 | * The first chunk which always exists. Note that unlike other |
| 159 | * chunks, this one can be allocated and mapped in several different |
| 160 | * ways and thus often doesn't live in the vmalloc area. |
| 161 | */ |
| 162 | struct pcpu_chunk *pcpu_first_chunk __ro_after_init; |
| 163 | |
| 164 | /* |
| 165 | * Optional reserved chunk. This chunk reserves part of the first |
| 166 | * chunk and serves it for reserved allocations. When the reserved |
| 167 | * region doesn't exist, the following variable is NULL. |
| 168 | */ |
| 169 | struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; |
| 170 | |
| 171 | DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ |
| 172 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ |
| 173 | |
| 174 | struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ |
| 175 | |
| 176 | /* |
| 177 | * The number of empty populated pages, protected by pcpu_lock. |
| 178 | * The reserved chunk doesn't contribute to the count. |
| 179 | */ |
| 180 | int pcpu_nr_empty_pop_pages; |
| 181 | |
| 182 | /* |
| 183 | * The number of populated pages in use by the allocator, protected by |
| 184 | * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets |
| 185 | * allocated/deallocated, it is allocated/deallocated in all units of a chunk |
| 186 | * and increments/decrements this count by 1). |
| 187 | */ |
| 188 | static unsigned long pcpu_nr_populated; |
| 189 | |
| 190 | /* |
| 191 | * Balance work is used to populate or destroy chunks asynchronously. We |
| 192 | * try to keep the number of populated free pages between |
| 193 | * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one |
| 194 | * empty chunk. |
| 195 | */ |
| 196 | static void pcpu_balance_workfn(struct work_struct *work); |
| 197 | static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); |
| 198 | static bool pcpu_async_enabled __read_mostly; |
| 199 | static bool pcpu_atomic_alloc_failed; |
| 200 | |
| 201 | static void pcpu_schedule_balance_work(void) |
| 202 | { |
| 203 | if (pcpu_async_enabled) |
| 204 | schedule_work(&pcpu_balance_work); |
| 205 | } |
| 206 | |
| 207 | /** |
| 208 | * pcpu_addr_in_chunk - check if the address is served from this chunk |
| 209 | * @chunk: chunk of interest |
| 210 | * @addr: percpu address |
| 211 | * |
| 212 | * RETURNS: |
| 213 | * True if the address is served from this chunk. |
| 214 | */ |
| 215 | static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) |
| 216 | { |
| 217 | void *start_addr, *end_addr; |
| 218 | |
| 219 | if (!chunk) |
| 220 | return false; |
| 221 | |
| 222 | start_addr = chunk->base_addr + chunk->start_offset; |
| 223 | end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - |
| 224 | chunk->end_offset; |
| 225 | |
| 226 | return addr >= start_addr && addr < end_addr; |
| 227 | } |
| 228 | |
| 229 | static int __pcpu_size_to_slot(int size) |
| 230 | { |
| 231 | int highbit = fls(size); /* size is in bytes */ |
| 232 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); |
| 233 | } |
| 234 | |
| 235 | static int pcpu_size_to_slot(int size) |
| 236 | { |
| 237 | if (size == pcpu_unit_size) |
| 238 | return pcpu_free_slot; |
| 239 | return __pcpu_size_to_slot(size); |
| 240 | } |
| 241 | |
| 242 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) |
| 243 | { |
| 244 | const struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
| 245 | |
| 246 | if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || |
| 247 | chunk_md->contig_hint == 0) |
| 248 | return 0; |
| 249 | |
| 250 | return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); |
| 251 | } |
| 252 | |
| 253 | /* set the pointer to a chunk in a page struct */ |
| 254 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) |
| 255 | { |
| 256 | page->private = (unsigned long)pcpu; |
| 257 | } |
| 258 | |
| 259 | /* obtain pointer to a chunk from a page struct */ |
| 260 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) |
| 261 | { |
| 262 | return (struct pcpu_chunk *)page->private; |
| 263 | } |
| 264 | |
| 265 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) |
| 266 | { |
| 267 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
| 268 | } |
| 269 | |
| 270 | static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) |
| 271 | { |
| 272 | return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); |
| 273 | } |
| 274 | |
| 275 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
| 276 | unsigned int cpu, int page_idx) |
| 277 | { |
| 278 | return (unsigned long)chunk->base_addr + |
| 279 | pcpu_unit_page_offset(cpu, page_idx); |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * The following are helper functions to help access bitmaps and convert |
| 284 | * between bitmap offsets to address offsets. |
| 285 | */ |
| 286 | static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) |
| 287 | { |
| 288 | return chunk->alloc_map + |
| 289 | (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); |
| 290 | } |
| 291 | |
| 292 | static unsigned long pcpu_off_to_block_index(int off) |
| 293 | { |
| 294 | return off / PCPU_BITMAP_BLOCK_BITS; |
| 295 | } |
| 296 | |
| 297 | static unsigned long pcpu_off_to_block_off(int off) |
| 298 | { |
| 299 | return off & (PCPU_BITMAP_BLOCK_BITS - 1); |
| 300 | } |
| 301 | |
| 302 | static unsigned long pcpu_block_off_to_off(int index, int off) |
| 303 | { |
| 304 | return index * PCPU_BITMAP_BLOCK_BITS + off; |
| 305 | } |
| 306 | |
| 307 | /** |
| 308 | * pcpu_check_block_hint - check against the contig hint |
| 309 | * @block: block of interest |
| 310 | * @bits: size of allocation |
| 311 | * @align: alignment of area (max PAGE_SIZE) |
| 312 | * |
| 313 | * Check to see if the allocation can fit in the block's contig hint. |
| 314 | * Note, a chunk uses the same hints as a block so this can also check against |
| 315 | * the chunk's contig hint. |
| 316 | */ |
| 317 | static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits, |
| 318 | size_t align) |
| 319 | { |
| 320 | int bit_off = ALIGN(block->contig_hint_start, align) - |
| 321 | block->contig_hint_start; |
| 322 | |
| 323 | return bit_off + bits <= block->contig_hint; |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * pcpu_next_hint - determine which hint to use |
| 328 | * @block: block of interest |
| 329 | * @alloc_bits: size of allocation |
| 330 | * |
| 331 | * This determines if we should scan based on the scan_hint or first_free. |
| 332 | * In general, we want to scan from first_free to fulfill allocations by |
| 333 | * first fit. However, if we know a scan_hint at position scan_hint_start |
| 334 | * cannot fulfill an allocation, we can begin scanning from there knowing |
| 335 | * the contig_hint will be our fallback. |
| 336 | */ |
| 337 | static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) |
| 338 | { |
| 339 | /* |
| 340 | * The three conditions below determine if we can skip past the |
| 341 | * scan_hint. First, does the scan hint exist. Second, is the |
| 342 | * contig_hint after the scan_hint (possibly not true iff |
| 343 | * contig_hint == scan_hint). Third, is the allocation request |
| 344 | * larger than the scan_hint. |
| 345 | */ |
| 346 | if (block->scan_hint && |
| 347 | block->contig_hint_start > block->scan_hint_start && |
| 348 | alloc_bits > block->scan_hint) |
| 349 | return block->scan_hint_start + block->scan_hint; |
| 350 | |
| 351 | return block->first_free; |
| 352 | } |
| 353 | |
| 354 | /** |
| 355 | * pcpu_next_md_free_region - finds the next hint free area |
| 356 | * @chunk: chunk of interest |
| 357 | * @bit_off: chunk offset |
| 358 | * @bits: size of free area |
| 359 | * |
| 360 | * Helper function for pcpu_for_each_md_free_region. It checks |
| 361 | * block->contig_hint and performs aggregation across blocks to find the |
| 362 | * next hint. It modifies bit_off and bits in-place to be consumed in the |
| 363 | * loop. |
| 364 | */ |
| 365 | static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, |
| 366 | int *bits) |
| 367 | { |
| 368 | int i = pcpu_off_to_block_index(*bit_off); |
| 369 | int block_off = pcpu_off_to_block_off(*bit_off); |
| 370 | struct pcpu_block_md *block; |
| 371 | |
| 372 | *bits = 0; |
| 373 | for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); |
| 374 | block++, i++) { |
| 375 | /* handles contig area across blocks */ |
| 376 | if (*bits) { |
| 377 | *bits += block->left_free; |
| 378 | if (block->left_free == PCPU_BITMAP_BLOCK_BITS) |
| 379 | continue; |
| 380 | return; |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * This checks three things. First is there a contig_hint to |
| 385 | * check. Second, have we checked this hint before by |
| 386 | * comparing the block_off. Third, is this the same as the |
| 387 | * right contig hint. In the last case, it spills over into |
| 388 | * the next block and should be handled by the contig area |
| 389 | * across blocks code. |
| 390 | */ |
| 391 | *bits = block->contig_hint; |
| 392 | if (*bits && block->contig_hint_start >= block_off && |
| 393 | *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { |
| 394 | *bit_off = pcpu_block_off_to_off(i, |
| 395 | block->contig_hint_start); |
| 396 | return; |
| 397 | } |
| 398 | /* reset to satisfy the second predicate above */ |
| 399 | block_off = 0; |
| 400 | |
| 401 | *bits = block->right_free; |
| 402 | *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | /** |
| 407 | * pcpu_next_fit_region - finds fit areas for a given allocation request |
| 408 | * @chunk: chunk of interest |
| 409 | * @alloc_bits: size of allocation |
| 410 | * @align: alignment of area (max PAGE_SIZE) |
| 411 | * @bit_off: chunk offset |
| 412 | * @bits: size of free area |
| 413 | * |
| 414 | * Finds the next free region that is viable for use with a given size and |
| 415 | * alignment. This only returns if there is a valid area to be used for this |
| 416 | * allocation. block->first_free is returned if the allocation request fits |
| 417 | * within the block to see if the request can be fulfilled prior to the contig |
| 418 | * hint. |
| 419 | */ |
| 420 | static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, |
| 421 | int align, int *bit_off, int *bits) |
| 422 | { |
| 423 | int i = pcpu_off_to_block_index(*bit_off); |
| 424 | int block_off = pcpu_off_to_block_off(*bit_off); |
| 425 | struct pcpu_block_md *block; |
| 426 | |
| 427 | *bits = 0; |
| 428 | for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); |
| 429 | block++, i++) { |
| 430 | /* handles contig area across blocks */ |
| 431 | if (*bits) { |
| 432 | *bits += block->left_free; |
| 433 | if (*bits >= alloc_bits) |
| 434 | return; |
| 435 | if (block->left_free == PCPU_BITMAP_BLOCK_BITS) |
| 436 | continue; |
| 437 | } |
| 438 | |
| 439 | /* check block->contig_hint */ |
| 440 | *bits = ALIGN(block->contig_hint_start, align) - |
| 441 | block->contig_hint_start; |
| 442 | /* |
| 443 | * This uses the block offset to determine if this has been |
| 444 | * checked in the prior iteration. |
| 445 | */ |
| 446 | if (block->contig_hint && |
| 447 | block->contig_hint_start >= block_off && |
| 448 | block->contig_hint >= *bits + alloc_bits) { |
| 449 | int start = pcpu_next_hint(block, alloc_bits); |
| 450 | |
| 451 | *bits += alloc_bits + block->contig_hint_start - |
| 452 | start; |
| 453 | *bit_off = pcpu_block_off_to_off(i, start); |
| 454 | return; |
| 455 | } |
| 456 | /* reset to satisfy the second predicate above */ |
| 457 | block_off = 0; |
| 458 | |
| 459 | *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, |
| 460 | align); |
| 461 | *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; |
| 462 | *bit_off = pcpu_block_off_to_off(i, *bit_off); |
| 463 | if (*bits >= alloc_bits) |
| 464 | return; |
| 465 | } |
| 466 | |
| 467 | /* no valid offsets were found - fail condition */ |
| 468 | *bit_off = pcpu_chunk_map_bits(chunk); |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * Metadata free area iterators. These perform aggregation of free areas |
| 473 | * based on the metadata blocks and return the offset @bit_off and size in |
| 474 | * bits of the free area @bits. pcpu_for_each_fit_region only returns when |
| 475 | * a fit is found for the allocation request. |
| 476 | */ |
| 477 | #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ |
| 478 | for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ |
| 479 | (bit_off) < pcpu_chunk_map_bits((chunk)); \ |
| 480 | (bit_off) += (bits) + 1, \ |
| 481 | pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) |
| 482 | |
| 483 | #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ |
| 484 | for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ |
| 485 | &(bits)); \ |
| 486 | (bit_off) < pcpu_chunk_map_bits((chunk)); \ |
| 487 | (bit_off) += (bits), \ |
| 488 | pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ |
| 489 | &(bits))) |
| 490 | |
| 491 | /** |
| 492 | * pcpu_mem_zalloc - allocate memory |
| 493 | * @size: bytes to allocate |
| 494 | * @gfp: allocation flags |
| 495 | * |
| 496 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, |
| 497 | * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. |
| 498 | * This is to facilitate passing through whitelisted flags. The |
| 499 | * returned memory is always zeroed. |
| 500 | * |
| 501 | * RETURNS: |
| 502 | * Pointer to the allocated area on success, NULL on failure. |
| 503 | */ |
| 504 | static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) |
| 505 | { |
| 506 | if (WARN_ON_ONCE(!slab_is_available())) |
| 507 | return NULL; |
| 508 | |
| 509 | if (size <= PAGE_SIZE) |
| 510 | return kzalloc(size, gfp); |
| 511 | else |
| 512 | return __vmalloc(size, gfp | __GFP_ZERO); |
| 513 | } |
| 514 | |
| 515 | /** |
| 516 | * pcpu_mem_free - free memory |
| 517 | * @ptr: memory to free |
| 518 | * |
| 519 | * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). |
| 520 | */ |
| 521 | static void pcpu_mem_free(void *ptr) |
| 522 | { |
| 523 | kvfree(ptr); |
| 524 | } |
| 525 | |
| 526 | static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, |
| 527 | bool move_front) |
| 528 | { |
| 529 | if (chunk != pcpu_reserved_chunk) { |
| 530 | if (move_front) |
| 531 | list_move(&chunk->list, &pcpu_chunk_lists[slot]); |
| 532 | else |
| 533 | list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) |
| 538 | { |
| 539 | __pcpu_chunk_move(chunk, slot, true); |
| 540 | } |
| 541 | |
| 542 | /** |
| 543 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot |
| 544 | * @chunk: chunk of interest |
| 545 | * @oslot: the previous slot it was on |
| 546 | * |
| 547 | * This function is called after an allocation or free changed @chunk. |
| 548 | * New slot according to the changed state is determined and @chunk is |
| 549 | * moved to the slot. Note that the reserved chunk is never put on |
| 550 | * chunk slots. |
| 551 | * |
| 552 | * CONTEXT: |
| 553 | * pcpu_lock. |
| 554 | */ |
| 555 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) |
| 556 | { |
| 557 | int nslot = pcpu_chunk_slot(chunk); |
| 558 | |
| 559 | /* leave isolated chunks in-place */ |
| 560 | if (chunk->isolated) |
| 561 | return; |
| 562 | |
| 563 | if (oslot != nslot) |
| 564 | __pcpu_chunk_move(chunk, nslot, oslot < nslot); |
| 565 | } |
| 566 | |
| 567 | static void pcpu_isolate_chunk(struct pcpu_chunk *chunk) |
| 568 | { |
| 569 | lockdep_assert_held(&pcpu_lock); |
| 570 | |
| 571 | if (!chunk->isolated) { |
| 572 | chunk->isolated = true; |
| 573 | pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages; |
| 574 | } |
| 575 | list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]); |
| 576 | } |
| 577 | |
| 578 | static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk) |
| 579 | { |
| 580 | lockdep_assert_held(&pcpu_lock); |
| 581 | |
| 582 | if (chunk->isolated) { |
| 583 | chunk->isolated = false; |
| 584 | pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages; |
| 585 | pcpu_chunk_relocate(chunk, -1); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * pcpu_update_empty_pages - update empty page counters |
| 591 | * @chunk: chunk of interest |
| 592 | * @nr: nr of empty pages |
| 593 | * |
| 594 | * This is used to keep track of the empty pages now based on the premise |
| 595 | * a md_block covers a page. The hint update functions recognize if a block |
| 596 | * is made full or broken to calculate deltas for keeping track of free pages. |
| 597 | */ |
| 598 | static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) |
| 599 | { |
| 600 | chunk->nr_empty_pop_pages += nr; |
| 601 | if (chunk != pcpu_reserved_chunk && !chunk->isolated) |
| 602 | pcpu_nr_empty_pop_pages += nr; |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * pcpu_region_overlap - determines if two regions overlap |
| 607 | * @a: start of first region, inclusive |
| 608 | * @b: end of first region, exclusive |
| 609 | * @x: start of second region, inclusive |
| 610 | * @y: end of second region, exclusive |
| 611 | * |
| 612 | * This is used to determine if the hint region [a, b) overlaps with the |
| 613 | * allocated region [x, y). |
| 614 | */ |
| 615 | static inline bool pcpu_region_overlap(int a, int b, int x, int y) |
| 616 | { |
| 617 | return (a < y) && (x < b); |
| 618 | } |
| 619 | |
| 620 | /** |
| 621 | * pcpu_block_update - updates a block given a free area |
| 622 | * @block: block of interest |
| 623 | * @start: start offset in block |
| 624 | * @end: end offset in block |
| 625 | * |
| 626 | * Updates a block given a known free area. The region [start, end) is |
| 627 | * expected to be the entirety of the free area within a block. Chooses |
| 628 | * the best starting offset if the contig hints are equal. |
| 629 | */ |
| 630 | static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) |
| 631 | { |
| 632 | int contig = end - start; |
| 633 | |
| 634 | block->first_free = min(block->first_free, start); |
| 635 | if (start == 0) |
| 636 | block->left_free = contig; |
| 637 | |
| 638 | if (end == block->nr_bits) |
| 639 | block->right_free = contig; |
| 640 | |
| 641 | if (contig > block->contig_hint) { |
| 642 | /* promote the old contig_hint to be the new scan_hint */ |
| 643 | if (start > block->contig_hint_start) { |
| 644 | if (block->contig_hint > block->scan_hint) { |
| 645 | block->scan_hint_start = |
| 646 | block->contig_hint_start; |
| 647 | block->scan_hint = block->contig_hint; |
| 648 | } else if (start < block->scan_hint_start) { |
| 649 | /* |
| 650 | * The old contig_hint == scan_hint. But, the |
| 651 | * new contig is larger so hold the invariant |
| 652 | * scan_hint_start < contig_hint_start. |
| 653 | */ |
| 654 | block->scan_hint = 0; |
| 655 | } |
| 656 | } else { |
| 657 | block->scan_hint = 0; |
| 658 | } |
| 659 | block->contig_hint_start = start; |
| 660 | block->contig_hint = contig; |
| 661 | } else if (contig == block->contig_hint) { |
| 662 | if (block->contig_hint_start && |
| 663 | (!start || |
| 664 | __ffs(start) > __ffs(block->contig_hint_start))) { |
| 665 | /* start has a better alignment so use it */ |
| 666 | block->contig_hint_start = start; |
| 667 | if (start < block->scan_hint_start && |
| 668 | block->contig_hint > block->scan_hint) |
| 669 | block->scan_hint = 0; |
| 670 | } else if (start > block->scan_hint_start || |
| 671 | block->contig_hint > block->scan_hint) { |
| 672 | /* |
| 673 | * Knowing contig == contig_hint, update the scan_hint |
| 674 | * if it is farther than or larger than the current |
| 675 | * scan_hint. |
| 676 | */ |
| 677 | block->scan_hint_start = start; |
| 678 | block->scan_hint = contig; |
| 679 | } |
| 680 | } else { |
| 681 | /* |
| 682 | * The region is smaller than the contig_hint. So only update |
| 683 | * the scan_hint if it is larger than or equal and farther than |
| 684 | * the current scan_hint. |
| 685 | */ |
| 686 | if ((start < block->contig_hint_start && |
| 687 | (contig > block->scan_hint || |
| 688 | (contig == block->scan_hint && |
| 689 | start > block->scan_hint_start)))) { |
| 690 | block->scan_hint_start = start; |
| 691 | block->scan_hint = contig; |
| 692 | } |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | /* |
| 697 | * pcpu_block_update_scan - update a block given a free area from a scan |
| 698 | * @chunk: chunk of interest |
| 699 | * @bit_off: chunk offset |
| 700 | * @bits: size of free area |
| 701 | * |
| 702 | * Finding the final allocation spot first goes through pcpu_find_block_fit() |
| 703 | * to find a block that can hold the allocation and then pcpu_alloc_area() |
| 704 | * where a scan is used. When allocations require specific alignments, |
| 705 | * we can inadvertently create holes which will not be seen in the alloc |
| 706 | * or free paths. |
| 707 | * |
| 708 | * This takes a given free area hole and updates a block as it may change the |
| 709 | * scan_hint. We need to scan backwards to ensure we don't miss free bits |
| 710 | * from alignment. |
| 711 | */ |
| 712 | static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, |
| 713 | int bits) |
| 714 | { |
| 715 | int s_off = pcpu_off_to_block_off(bit_off); |
| 716 | int e_off = s_off + bits; |
| 717 | int s_index, l_bit; |
| 718 | struct pcpu_block_md *block; |
| 719 | |
| 720 | if (e_off > PCPU_BITMAP_BLOCK_BITS) |
| 721 | return; |
| 722 | |
| 723 | s_index = pcpu_off_to_block_index(bit_off); |
| 724 | block = chunk->md_blocks + s_index; |
| 725 | |
| 726 | /* scan backwards in case of alignment skipping free bits */ |
| 727 | l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); |
| 728 | s_off = (s_off == l_bit) ? 0 : l_bit + 1; |
| 729 | |
| 730 | pcpu_block_update(block, s_off, e_off); |
| 731 | } |
| 732 | |
| 733 | /** |
| 734 | * pcpu_chunk_refresh_hint - updates metadata about a chunk |
| 735 | * @chunk: chunk of interest |
| 736 | * @full_scan: if we should scan from the beginning |
| 737 | * |
| 738 | * Iterates over the metadata blocks to find the largest contig area. |
| 739 | * A full scan can be avoided on the allocation path as this is triggered |
| 740 | * if we broke the contig_hint. In doing so, the scan_hint will be before |
| 741 | * the contig_hint or after if the scan_hint == contig_hint. This cannot |
| 742 | * be prevented on freeing as we want to find the largest area possibly |
| 743 | * spanning blocks. |
| 744 | */ |
| 745 | static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) |
| 746 | { |
| 747 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
| 748 | int bit_off, bits; |
| 749 | |
| 750 | /* promote scan_hint to contig_hint */ |
| 751 | if (!full_scan && chunk_md->scan_hint) { |
| 752 | bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; |
| 753 | chunk_md->contig_hint_start = chunk_md->scan_hint_start; |
| 754 | chunk_md->contig_hint = chunk_md->scan_hint; |
| 755 | chunk_md->scan_hint = 0; |
| 756 | } else { |
| 757 | bit_off = chunk_md->first_free; |
| 758 | chunk_md->contig_hint = 0; |
| 759 | } |
| 760 | |
| 761 | bits = 0; |
| 762 | pcpu_for_each_md_free_region(chunk, bit_off, bits) |
| 763 | pcpu_block_update(chunk_md, bit_off, bit_off + bits); |
| 764 | } |
| 765 | |
| 766 | /** |
| 767 | * pcpu_block_refresh_hint |
| 768 | * @chunk: chunk of interest |
| 769 | * @index: index of the metadata block |
| 770 | * |
| 771 | * Scans over the block beginning at first_free and updates the block |
| 772 | * metadata accordingly. |
| 773 | */ |
| 774 | static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) |
| 775 | { |
| 776 | struct pcpu_block_md *block = chunk->md_blocks + index; |
| 777 | unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); |
| 778 | unsigned int start, end; /* region start, region end */ |
| 779 | |
| 780 | /* promote scan_hint to contig_hint */ |
| 781 | if (block->scan_hint) { |
| 782 | start = block->scan_hint_start + block->scan_hint; |
| 783 | block->contig_hint_start = block->scan_hint_start; |
| 784 | block->contig_hint = block->scan_hint; |
| 785 | block->scan_hint = 0; |
| 786 | } else { |
| 787 | start = block->first_free; |
| 788 | block->contig_hint = 0; |
| 789 | } |
| 790 | |
| 791 | block->right_free = 0; |
| 792 | |
| 793 | /* iterate over free areas and update the contig hints */ |
| 794 | for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS) |
| 795 | pcpu_block_update(block, start, end); |
| 796 | } |
| 797 | |
| 798 | /** |
| 799 | * pcpu_block_update_hint_alloc - update hint on allocation path |
| 800 | * @chunk: chunk of interest |
| 801 | * @bit_off: chunk offset |
| 802 | * @bits: size of request |
| 803 | * |
| 804 | * Updates metadata for the allocation path. The metadata only has to be |
| 805 | * refreshed by a full scan iff the chunk's contig hint is broken. Block level |
| 806 | * scans are required if the block's contig hint is broken. |
| 807 | */ |
| 808 | static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, |
| 809 | int bits) |
| 810 | { |
| 811 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
| 812 | int nr_empty_pages = 0; |
| 813 | struct pcpu_block_md *s_block, *e_block, *block; |
| 814 | int s_index, e_index; /* block indexes of the freed allocation */ |
| 815 | int s_off, e_off; /* block offsets of the freed allocation */ |
| 816 | |
| 817 | /* |
| 818 | * Calculate per block offsets. |
| 819 | * The calculation uses an inclusive range, but the resulting offsets |
| 820 | * are [start, end). e_index always points to the last block in the |
| 821 | * range. |
| 822 | */ |
| 823 | s_index = pcpu_off_to_block_index(bit_off); |
| 824 | e_index = pcpu_off_to_block_index(bit_off + bits - 1); |
| 825 | s_off = pcpu_off_to_block_off(bit_off); |
| 826 | e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; |
| 827 | |
| 828 | s_block = chunk->md_blocks + s_index; |
| 829 | e_block = chunk->md_blocks + e_index; |
| 830 | |
| 831 | /* |
| 832 | * Update s_block. |
| 833 | */ |
| 834 | if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) |
| 835 | nr_empty_pages++; |
| 836 | |
| 837 | /* |
| 838 | * block->first_free must be updated if the allocation takes its place. |
| 839 | * If the allocation breaks the contig_hint, a scan is required to |
| 840 | * restore this hint. |
| 841 | */ |
| 842 | if (s_off == s_block->first_free) |
| 843 | s_block->first_free = find_next_zero_bit( |
| 844 | pcpu_index_alloc_map(chunk, s_index), |
| 845 | PCPU_BITMAP_BLOCK_BITS, |
| 846 | s_off + bits); |
| 847 | |
| 848 | if (pcpu_region_overlap(s_block->scan_hint_start, |
| 849 | s_block->scan_hint_start + s_block->scan_hint, |
| 850 | s_off, |
| 851 | s_off + bits)) |
| 852 | s_block->scan_hint = 0; |
| 853 | |
| 854 | if (pcpu_region_overlap(s_block->contig_hint_start, |
| 855 | s_block->contig_hint_start + |
| 856 | s_block->contig_hint, |
| 857 | s_off, |
| 858 | s_off + bits)) { |
| 859 | /* block contig hint is broken - scan to fix it */ |
| 860 | if (!s_off) |
| 861 | s_block->left_free = 0; |
| 862 | pcpu_block_refresh_hint(chunk, s_index); |
| 863 | } else { |
| 864 | /* update left and right contig manually */ |
| 865 | s_block->left_free = min(s_block->left_free, s_off); |
| 866 | if (s_index == e_index) |
| 867 | s_block->right_free = min_t(int, s_block->right_free, |
| 868 | PCPU_BITMAP_BLOCK_BITS - e_off); |
| 869 | else |
| 870 | s_block->right_free = 0; |
| 871 | } |
| 872 | |
| 873 | /* |
| 874 | * Update e_block. |
| 875 | */ |
| 876 | if (s_index != e_index) { |
| 877 | if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) |
| 878 | nr_empty_pages++; |
| 879 | |
| 880 | /* |
| 881 | * When the allocation is across blocks, the end is along |
| 882 | * the left part of the e_block. |
| 883 | */ |
| 884 | e_block->first_free = find_next_zero_bit( |
| 885 | pcpu_index_alloc_map(chunk, e_index), |
| 886 | PCPU_BITMAP_BLOCK_BITS, e_off); |
| 887 | |
| 888 | if (e_off == PCPU_BITMAP_BLOCK_BITS) { |
| 889 | /* reset the block */ |
| 890 | e_block++; |
| 891 | } else { |
| 892 | if (e_off > e_block->scan_hint_start) |
| 893 | e_block->scan_hint = 0; |
| 894 | |
| 895 | e_block->left_free = 0; |
| 896 | if (e_off > e_block->contig_hint_start) { |
| 897 | /* contig hint is broken - scan to fix it */ |
| 898 | pcpu_block_refresh_hint(chunk, e_index); |
| 899 | } else { |
| 900 | e_block->right_free = |
| 901 | min_t(int, e_block->right_free, |
| 902 | PCPU_BITMAP_BLOCK_BITS - e_off); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | /* update in-between md_blocks */ |
| 907 | nr_empty_pages += (e_index - s_index - 1); |
| 908 | for (block = s_block + 1; block < e_block; block++) { |
| 909 | block->scan_hint = 0; |
| 910 | block->contig_hint = 0; |
| 911 | block->left_free = 0; |
| 912 | block->right_free = 0; |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * If the allocation is not atomic, some blocks may not be |
| 918 | * populated with pages, while we account it here. The number |
| 919 | * of pages will be added back with pcpu_chunk_populated() |
| 920 | * when populating pages. |
| 921 | */ |
| 922 | if (nr_empty_pages) |
| 923 | pcpu_update_empty_pages(chunk, -nr_empty_pages); |
| 924 | |
| 925 | if (pcpu_region_overlap(chunk_md->scan_hint_start, |
| 926 | chunk_md->scan_hint_start + |
| 927 | chunk_md->scan_hint, |
| 928 | bit_off, |
| 929 | bit_off + bits)) |
| 930 | chunk_md->scan_hint = 0; |
| 931 | |
| 932 | /* |
| 933 | * The only time a full chunk scan is required is if the chunk |
| 934 | * contig hint is broken. Otherwise, it means a smaller space |
| 935 | * was used and therefore the chunk contig hint is still correct. |
| 936 | */ |
| 937 | if (pcpu_region_overlap(chunk_md->contig_hint_start, |
| 938 | chunk_md->contig_hint_start + |
| 939 | chunk_md->contig_hint, |
| 940 | bit_off, |
| 941 | bit_off + bits)) |
| 942 | pcpu_chunk_refresh_hint(chunk, false); |
| 943 | } |
| 944 | |
| 945 | /** |
| 946 | * pcpu_block_update_hint_free - updates the block hints on the free path |
| 947 | * @chunk: chunk of interest |
| 948 | * @bit_off: chunk offset |
| 949 | * @bits: size of request |
| 950 | * |
| 951 | * Updates metadata for the allocation path. This avoids a blind block |
| 952 | * refresh by making use of the block contig hints. If this fails, it scans |
| 953 | * forward and backward to determine the extent of the free area. This is |
| 954 | * capped at the boundary of blocks. |
| 955 | * |
| 956 | * A chunk update is triggered if a page becomes free, a block becomes free, |
| 957 | * or the free spans across blocks. This tradeoff is to minimize iterating |
| 958 | * over the block metadata to update chunk_md->contig_hint. |
| 959 | * chunk_md->contig_hint may be off by up to a page, but it will never be more |
| 960 | * than the available space. If the contig hint is contained in one block, it |
| 961 | * will be accurate. |
| 962 | */ |
| 963 | static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, |
| 964 | int bits) |
| 965 | { |
| 966 | int nr_empty_pages = 0; |
| 967 | struct pcpu_block_md *s_block, *e_block, *block; |
| 968 | int s_index, e_index; /* block indexes of the freed allocation */ |
| 969 | int s_off, e_off; /* block offsets of the freed allocation */ |
| 970 | int start, end; /* start and end of the whole free area */ |
| 971 | |
| 972 | /* |
| 973 | * Calculate per block offsets. |
| 974 | * The calculation uses an inclusive range, but the resulting offsets |
| 975 | * are [start, end). e_index always points to the last block in the |
| 976 | * range. |
| 977 | */ |
| 978 | s_index = pcpu_off_to_block_index(bit_off); |
| 979 | e_index = pcpu_off_to_block_index(bit_off + bits - 1); |
| 980 | s_off = pcpu_off_to_block_off(bit_off); |
| 981 | e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; |
| 982 | |
| 983 | s_block = chunk->md_blocks + s_index; |
| 984 | e_block = chunk->md_blocks + e_index; |
| 985 | |
| 986 | /* |
| 987 | * Check if the freed area aligns with the block->contig_hint. |
| 988 | * If it does, then the scan to find the beginning/end of the |
| 989 | * larger free area can be avoided. |
| 990 | * |
| 991 | * start and end refer to beginning and end of the free area |
| 992 | * within each their respective blocks. This is not necessarily |
| 993 | * the entire free area as it may span blocks past the beginning |
| 994 | * or end of the block. |
| 995 | */ |
| 996 | start = s_off; |
| 997 | if (s_off == s_block->contig_hint + s_block->contig_hint_start) { |
| 998 | start = s_block->contig_hint_start; |
| 999 | } else { |
| 1000 | /* |
| 1001 | * Scan backwards to find the extent of the free area. |
| 1002 | * find_last_bit returns the starting bit, so if the start bit |
| 1003 | * is returned, that means there was no last bit and the |
| 1004 | * remainder of the chunk is free. |
| 1005 | */ |
| 1006 | int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), |
| 1007 | start); |
| 1008 | start = (start == l_bit) ? 0 : l_bit + 1; |
| 1009 | } |
| 1010 | |
| 1011 | end = e_off; |
| 1012 | if (e_off == e_block->contig_hint_start) |
| 1013 | end = e_block->contig_hint_start + e_block->contig_hint; |
| 1014 | else |
| 1015 | end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), |
| 1016 | PCPU_BITMAP_BLOCK_BITS, end); |
| 1017 | |
| 1018 | /* update s_block */ |
| 1019 | e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; |
| 1020 | if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) |
| 1021 | nr_empty_pages++; |
| 1022 | pcpu_block_update(s_block, start, e_off); |
| 1023 | |
| 1024 | /* freeing in the same block */ |
| 1025 | if (s_index != e_index) { |
| 1026 | /* update e_block */ |
| 1027 | if (end == PCPU_BITMAP_BLOCK_BITS) |
| 1028 | nr_empty_pages++; |
| 1029 | pcpu_block_update(e_block, 0, end); |
| 1030 | |
| 1031 | /* reset md_blocks in the middle */ |
| 1032 | nr_empty_pages += (e_index - s_index - 1); |
| 1033 | for (block = s_block + 1; block < e_block; block++) { |
| 1034 | block->first_free = 0; |
| 1035 | block->scan_hint = 0; |
| 1036 | block->contig_hint_start = 0; |
| 1037 | block->contig_hint = PCPU_BITMAP_BLOCK_BITS; |
| 1038 | block->left_free = PCPU_BITMAP_BLOCK_BITS; |
| 1039 | block->right_free = PCPU_BITMAP_BLOCK_BITS; |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | if (nr_empty_pages) |
| 1044 | pcpu_update_empty_pages(chunk, nr_empty_pages); |
| 1045 | |
| 1046 | /* |
| 1047 | * Refresh chunk metadata when the free makes a block free or spans |
| 1048 | * across blocks. The contig_hint may be off by up to a page, but if |
| 1049 | * the contig_hint is contained in a block, it will be accurate with |
| 1050 | * the else condition below. |
| 1051 | */ |
| 1052 | if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) |
| 1053 | pcpu_chunk_refresh_hint(chunk, true); |
| 1054 | else |
| 1055 | pcpu_block_update(&chunk->chunk_md, |
| 1056 | pcpu_block_off_to_off(s_index, start), |
| 1057 | end); |
| 1058 | } |
| 1059 | |
| 1060 | /** |
| 1061 | * pcpu_is_populated - determines if the region is populated |
| 1062 | * @chunk: chunk of interest |
| 1063 | * @bit_off: chunk offset |
| 1064 | * @bits: size of area |
| 1065 | * @next_off: return value for the next offset to start searching |
| 1066 | * |
| 1067 | * For atomic allocations, check if the backing pages are populated. |
| 1068 | * |
| 1069 | * RETURNS: |
| 1070 | * Bool if the backing pages are populated. |
| 1071 | * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. |
| 1072 | */ |
| 1073 | static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, |
| 1074 | int *next_off) |
| 1075 | { |
| 1076 | unsigned int start, end; |
| 1077 | |
| 1078 | start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); |
| 1079 | end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); |
| 1080 | |
| 1081 | start = find_next_zero_bit(chunk->populated, end, start); |
| 1082 | if (start >= end) |
| 1083 | return true; |
| 1084 | |
| 1085 | end = find_next_bit(chunk->populated, end, start + 1); |
| 1086 | |
| 1087 | *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; |
| 1088 | return false; |
| 1089 | } |
| 1090 | |
| 1091 | /** |
| 1092 | * pcpu_find_block_fit - finds the block index to start searching |
| 1093 | * @chunk: chunk of interest |
| 1094 | * @alloc_bits: size of request in allocation units |
| 1095 | * @align: alignment of area (max PAGE_SIZE bytes) |
| 1096 | * @pop_only: use populated regions only |
| 1097 | * |
| 1098 | * Given a chunk and an allocation spec, find the offset to begin searching |
| 1099 | * for a free region. This iterates over the bitmap metadata blocks to |
| 1100 | * find an offset that will be guaranteed to fit the requirements. It is |
| 1101 | * not quite first fit as if the allocation does not fit in the contig hint |
| 1102 | * of a block or chunk, it is skipped. This errs on the side of caution |
| 1103 | * to prevent excess iteration. Poor alignment can cause the allocator to |
| 1104 | * skip over blocks and chunks that have valid free areas. |
| 1105 | * |
| 1106 | * RETURNS: |
| 1107 | * The offset in the bitmap to begin searching. |
| 1108 | * -1 if no offset is found. |
| 1109 | */ |
| 1110 | static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, |
| 1111 | size_t align, bool pop_only) |
| 1112 | { |
| 1113 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
| 1114 | int bit_off, bits, next_off; |
| 1115 | |
| 1116 | /* |
| 1117 | * This is an optimization to prevent scanning by assuming if the |
| 1118 | * allocation cannot fit in the global hint, there is memory pressure |
| 1119 | * and creating a new chunk would happen soon. |
| 1120 | */ |
| 1121 | if (!pcpu_check_block_hint(chunk_md, alloc_bits, align)) |
| 1122 | return -1; |
| 1123 | |
| 1124 | bit_off = pcpu_next_hint(chunk_md, alloc_bits); |
| 1125 | bits = 0; |
| 1126 | pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { |
| 1127 | if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, |
| 1128 | &next_off)) |
| 1129 | break; |
| 1130 | |
| 1131 | bit_off = next_off; |
| 1132 | bits = 0; |
| 1133 | } |
| 1134 | |
| 1135 | if (bit_off == pcpu_chunk_map_bits(chunk)) |
| 1136 | return -1; |
| 1137 | |
| 1138 | return bit_off; |
| 1139 | } |
| 1140 | |
| 1141 | /* |
| 1142 | * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() |
| 1143 | * @map: the address to base the search on |
| 1144 | * @size: the bitmap size in bits |
| 1145 | * @start: the bitnumber to start searching at |
| 1146 | * @nr: the number of zeroed bits we're looking for |
| 1147 | * @align_mask: alignment mask for zero area |
| 1148 | * @largest_off: offset of the largest area skipped |
| 1149 | * @largest_bits: size of the largest area skipped |
| 1150 | * |
| 1151 | * The @align_mask should be one less than a power of 2. |
| 1152 | * |
| 1153 | * This is a modified version of bitmap_find_next_zero_area_off() to remember |
| 1154 | * the largest area that was skipped. This is imperfect, but in general is |
| 1155 | * good enough. The largest remembered region is the largest failed region |
| 1156 | * seen. This does not include anything we possibly skipped due to alignment. |
| 1157 | * pcpu_block_update_scan() does scan backwards to try and recover what was |
| 1158 | * lost to alignment. While this can cause scanning to miss earlier possible |
| 1159 | * free areas, smaller allocations will eventually fill those holes. |
| 1160 | */ |
| 1161 | static unsigned long pcpu_find_zero_area(unsigned long *map, |
| 1162 | unsigned long size, |
| 1163 | unsigned long start, |
| 1164 | unsigned long nr, |
| 1165 | unsigned long align_mask, |
| 1166 | unsigned long *largest_off, |
| 1167 | unsigned long *largest_bits) |
| 1168 | { |
| 1169 | unsigned long index, end, i, area_off, area_bits; |
| 1170 | again: |
| 1171 | index = find_next_zero_bit(map, size, start); |
| 1172 | |
| 1173 | /* Align allocation */ |
| 1174 | index = __ALIGN_MASK(index, align_mask); |
| 1175 | area_off = index; |
| 1176 | |
| 1177 | end = index + nr; |
| 1178 | if (end > size) |
| 1179 | return end; |
| 1180 | i = find_next_bit(map, end, index); |
| 1181 | if (i < end) { |
| 1182 | area_bits = i - area_off; |
| 1183 | /* remember largest unused area with best alignment */ |
| 1184 | if (area_bits > *largest_bits || |
| 1185 | (area_bits == *largest_bits && *largest_off && |
| 1186 | (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { |
| 1187 | *largest_off = area_off; |
| 1188 | *largest_bits = area_bits; |
| 1189 | } |
| 1190 | |
| 1191 | start = i + 1; |
| 1192 | goto again; |
| 1193 | } |
| 1194 | return index; |
| 1195 | } |
| 1196 | |
| 1197 | /** |
| 1198 | * pcpu_alloc_area - allocates an area from a pcpu_chunk |
| 1199 | * @chunk: chunk of interest |
| 1200 | * @alloc_bits: size of request in allocation units |
| 1201 | * @align: alignment of area (max PAGE_SIZE) |
| 1202 | * @start: bit_off to start searching |
| 1203 | * |
| 1204 | * This function takes in a @start offset to begin searching to fit an |
| 1205 | * allocation of @alloc_bits with alignment @align. It needs to scan |
| 1206 | * the allocation map because if it fits within the block's contig hint, |
| 1207 | * @start will be block->first_free. This is an attempt to fill the |
| 1208 | * allocation prior to breaking the contig hint. The allocation and |
| 1209 | * boundary maps are updated accordingly if it confirms a valid |
| 1210 | * free area. |
| 1211 | * |
| 1212 | * RETURNS: |
| 1213 | * Allocated addr offset in @chunk on success. |
| 1214 | * -1 if no matching area is found. |
| 1215 | */ |
| 1216 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, |
| 1217 | size_t align, int start) |
| 1218 | { |
| 1219 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
| 1220 | size_t align_mask = (align) ? (align - 1) : 0; |
| 1221 | unsigned long area_off = 0, area_bits = 0; |
| 1222 | int bit_off, end, oslot; |
| 1223 | |
| 1224 | lockdep_assert_held(&pcpu_lock); |
| 1225 | |
| 1226 | oslot = pcpu_chunk_slot(chunk); |
| 1227 | |
| 1228 | /* |
| 1229 | * Search to find a fit. |
| 1230 | */ |
| 1231 | end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, |
| 1232 | pcpu_chunk_map_bits(chunk)); |
| 1233 | bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, |
| 1234 | align_mask, &area_off, &area_bits); |
| 1235 | if (bit_off >= end) |
| 1236 | return -1; |
| 1237 | |
| 1238 | if (area_bits) |
| 1239 | pcpu_block_update_scan(chunk, area_off, area_bits); |
| 1240 | |
| 1241 | /* update alloc map */ |
| 1242 | bitmap_set(chunk->alloc_map, bit_off, alloc_bits); |
| 1243 | |
| 1244 | /* update boundary map */ |
| 1245 | set_bit(bit_off, chunk->bound_map); |
| 1246 | bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); |
| 1247 | set_bit(bit_off + alloc_bits, chunk->bound_map); |
| 1248 | |
| 1249 | chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; |
| 1250 | |
| 1251 | /* update first free bit */ |
| 1252 | if (bit_off == chunk_md->first_free) |
| 1253 | chunk_md->first_free = find_next_zero_bit( |
| 1254 | chunk->alloc_map, |
| 1255 | pcpu_chunk_map_bits(chunk), |
| 1256 | bit_off + alloc_bits); |
| 1257 | |
| 1258 | pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); |
| 1259 | |
| 1260 | pcpu_chunk_relocate(chunk, oslot); |
| 1261 | |
| 1262 | return bit_off * PCPU_MIN_ALLOC_SIZE; |
| 1263 | } |
| 1264 | |
| 1265 | /** |
| 1266 | * pcpu_free_area - frees the corresponding offset |
| 1267 | * @chunk: chunk of interest |
| 1268 | * @off: addr offset into chunk |
| 1269 | * |
| 1270 | * This function determines the size of an allocation to free using |
| 1271 | * the boundary bitmap and clears the allocation map. |
| 1272 | * |
| 1273 | * RETURNS: |
| 1274 | * Number of freed bytes. |
| 1275 | */ |
| 1276 | static int pcpu_free_area(struct pcpu_chunk *chunk, int off) |
| 1277 | { |
| 1278 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
| 1279 | int bit_off, bits, end, oslot, freed; |
| 1280 | |
| 1281 | lockdep_assert_held(&pcpu_lock); |
| 1282 | pcpu_stats_area_dealloc(chunk); |
| 1283 | |
| 1284 | oslot = pcpu_chunk_slot(chunk); |
| 1285 | |
| 1286 | bit_off = off / PCPU_MIN_ALLOC_SIZE; |
| 1287 | |
| 1288 | /* find end index */ |
| 1289 | end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), |
| 1290 | bit_off + 1); |
| 1291 | bits = end - bit_off; |
| 1292 | bitmap_clear(chunk->alloc_map, bit_off, bits); |
| 1293 | |
| 1294 | freed = bits * PCPU_MIN_ALLOC_SIZE; |
| 1295 | |
| 1296 | /* update metadata */ |
| 1297 | chunk->free_bytes += freed; |
| 1298 | |
| 1299 | /* update first free bit */ |
| 1300 | chunk_md->first_free = min(chunk_md->first_free, bit_off); |
| 1301 | |
| 1302 | pcpu_block_update_hint_free(chunk, bit_off, bits); |
| 1303 | |
| 1304 | pcpu_chunk_relocate(chunk, oslot); |
| 1305 | |
| 1306 | return freed; |
| 1307 | } |
| 1308 | |
| 1309 | static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) |
| 1310 | { |
| 1311 | block->scan_hint = 0; |
| 1312 | block->contig_hint = nr_bits; |
| 1313 | block->left_free = nr_bits; |
| 1314 | block->right_free = nr_bits; |
| 1315 | block->first_free = 0; |
| 1316 | block->nr_bits = nr_bits; |
| 1317 | } |
| 1318 | |
| 1319 | static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) |
| 1320 | { |
| 1321 | struct pcpu_block_md *md_block; |
| 1322 | |
| 1323 | /* init the chunk's block */ |
| 1324 | pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); |
| 1325 | |
| 1326 | for (md_block = chunk->md_blocks; |
| 1327 | md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); |
| 1328 | md_block++) |
| 1329 | pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); |
| 1330 | } |
| 1331 | |
| 1332 | /** |
| 1333 | * pcpu_alloc_first_chunk - creates chunks that serve the first chunk |
| 1334 | * @tmp_addr: the start of the region served |
| 1335 | * @map_size: size of the region served |
| 1336 | * |
| 1337 | * This is responsible for creating the chunks that serve the first chunk. The |
| 1338 | * base_addr is page aligned down of @tmp_addr while the region end is page |
| 1339 | * aligned up. Offsets are kept track of to determine the region served. All |
| 1340 | * this is done to appease the bitmap allocator in avoiding partial blocks. |
| 1341 | * |
| 1342 | * RETURNS: |
| 1343 | * Chunk serving the region at @tmp_addr of @map_size. |
| 1344 | */ |
| 1345 | static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, |
| 1346 | int map_size) |
| 1347 | { |
| 1348 | struct pcpu_chunk *chunk; |
| 1349 | unsigned long aligned_addr; |
| 1350 | int start_offset, offset_bits, region_size, region_bits; |
| 1351 | size_t alloc_size; |
| 1352 | |
| 1353 | /* region calculations */ |
| 1354 | aligned_addr = tmp_addr & PAGE_MASK; |
| 1355 | |
| 1356 | start_offset = tmp_addr - aligned_addr; |
| 1357 | region_size = ALIGN(start_offset + map_size, PAGE_SIZE); |
| 1358 | |
| 1359 | /* allocate chunk */ |
| 1360 | alloc_size = struct_size(chunk, populated, |
| 1361 | BITS_TO_LONGS(region_size >> PAGE_SHIFT)); |
| 1362 | chunk = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES); |
| 1363 | |
| 1364 | INIT_LIST_HEAD(&chunk->list); |
| 1365 | |
| 1366 | chunk->base_addr = (void *)aligned_addr; |
| 1367 | chunk->start_offset = start_offset; |
| 1368 | chunk->end_offset = region_size - chunk->start_offset - map_size; |
| 1369 | |
| 1370 | chunk->nr_pages = region_size >> PAGE_SHIFT; |
| 1371 | region_bits = pcpu_chunk_map_bits(chunk); |
| 1372 | |
| 1373 | alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); |
| 1374 | chunk->alloc_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES); |
| 1375 | |
| 1376 | alloc_size = |
| 1377 | BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); |
| 1378 | chunk->bound_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES); |
| 1379 | |
| 1380 | alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); |
| 1381 | chunk->md_blocks = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES); |
| 1382 | #ifdef NEED_PCPUOBJ_EXT |
| 1383 | /* first chunk is free to use */ |
| 1384 | chunk->obj_exts = NULL; |
| 1385 | #endif |
| 1386 | pcpu_init_md_blocks(chunk); |
| 1387 | |
| 1388 | /* manage populated page bitmap */ |
| 1389 | chunk->immutable = true; |
| 1390 | bitmap_fill(chunk->populated, chunk->nr_pages); |
| 1391 | chunk->nr_populated = chunk->nr_pages; |
| 1392 | chunk->nr_empty_pop_pages = chunk->nr_pages; |
| 1393 | |
| 1394 | chunk->free_bytes = map_size; |
| 1395 | |
| 1396 | if (chunk->start_offset) { |
| 1397 | /* hide the beginning of the bitmap */ |
| 1398 | offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; |
| 1399 | bitmap_set(chunk->alloc_map, 0, offset_bits); |
| 1400 | set_bit(0, chunk->bound_map); |
| 1401 | set_bit(offset_bits, chunk->bound_map); |
| 1402 | |
| 1403 | chunk->chunk_md.first_free = offset_bits; |
| 1404 | |
| 1405 | pcpu_block_update_hint_alloc(chunk, 0, offset_bits); |
| 1406 | } |
| 1407 | |
| 1408 | if (chunk->end_offset) { |
| 1409 | /* hide the end of the bitmap */ |
| 1410 | offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; |
| 1411 | bitmap_set(chunk->alloc_map, |
| 1412 | pcpu_chunk_map_bits(chunk) - offset_bits, |
| 1413 | offset_bits); |
| 1414 | set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, |
| 1415 | chunk->bound_map); |
| 1416 | set_bit(region_bits, chunk->bound_map); |
| 1417 | |
| 1418 | pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) |
| 1419 | - offset_bits, offset_bits); |
| 1420 | } |
| 1421 | |
| 1422 | return chunk; |
| 1423 | } |
| 1424 | |
| 1425 | static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) |
| 1426 | { |
| 1427 | struct pcpu_chunk *chunk; |
| 1428 | int region_bits; |
| 1429 | |
| 1430 | chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); |
| 1431 | if (!chunk) |
| 1432 | return NULL; |
| 1433 | |
| 1434 | INIT_LIST_HEAD(&chunk->list); |
| 1435 | chunk->nr_pages = pcpu_unit_pages; |
| 1436 | region_bits = pcpu_chunk_map_bits(chunk); |
| 1437 | |
| 1438 | chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * |
| 1439 | sizeof(chunk->alloc_map[0]), gfp); |
| 1440 | if (!chunk->alloc_map) |
| 1441 | goto alloc_map_fail; |
| 1442 | |
| 1443 | chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * |
| 1444 | sizeof(chunk->bound_map[0]), gfp); |
| 1445 | if (!chunk->bound_map) |
| 1446 | goto bound_map_fail; |
| 1447 | |
| 1448 | chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * |
| 1449 | sizeof(chunk->md_blocks[0]), gfp); |
| 1450 | if (!chunk->md_blocks) |
| 1451 | goto md_blocks_fail; |
| 1452 | |
| 1453 | #ifdef NEED_PCPUOBJ_EXT |
| 1454 | if (need_pcpuobj_ext()) { |
| 1455 | chunk->obj_exts = |
| 1456 | pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * |
| 1457 | sizeof(struct pcpuobj_ext), gfp); |
| 1458 | if (!chunk->obj_exts) |
| 1459 | goto objcg_fail; |
| 1460 | } |
| 1461 | #endif |
| 1462 | |
| 1463 | pcpu_init_md_blocks(chunk); |
| 1464 | |
| 1465 | /* init metadata */ |
| 1466 | chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; |
| 1467 | |
| 1468 | return chunk; |
| 1469 | |
| 1470 | #ifdef NEED_PCPUOBJ_EXT |
| 1471 | objcg_fail: |
| 1472 | pcpu_mem_free(chunk->md_blocks); |
| 1473 | #endif |
| 1474 | md_blocks_fail: |
| 1475 | pcpu_mem_free(chunk->bound_map); |
| 1476 | bound_map_fail: |
| 1477 | pcpu_mem_free(chunk->alloc_map); |
| 1478 | alloc_map_fail: |
| 1479 | pcpu_mem_free(chunk); |
| 1480 | |
| 1481 | return NULL; |
| 1482 | } |
| 1483 | |
| 1484 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) |
| 1485 | { |
| 1486 | if (!chunk) |
| 1487 | return; |
| 1488 | #ifdef NEED_PCPUOBJ_EXT |
| 1489 | pcpu_mem_free(chunk->obj_exts); |
| 1490 | #endif |
| 1491 | pcpu_mem_free(chunk->md_blocks); |
| 1492 | pcpu_mem_free(chunk->bound_map); |
| 1493 | pcpu_mem_free(chunk->alloc_map); |
| 1494 | pcpu_mem_free(chunk); |
| 1495 | } |
| 1496 | |
| 1497 | /** |
| 1498 | * pcpu_chunk_populated - post-population bookkeeping |
| 1499 | * @chunk: pcpu_chunk which got populated |
| 1500 | * @page_start: the start page |
| 1501 | * @page_end: the end page |
| 1502 | * |
| 1503 | * Pages in [@page_start,@page_end) have been populated to @chunk. Update |
| 1504 | * the bookkeeping information accordingly. Must be called after each |
| 1505 | * successful population. |
| 1506 | */ |
| 1507 | static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, |
| 1508 | int page_end) |
| 1509 | { |
| 1510 | int nr = page_end - page_start; |
| 1511 | |
| 1512 | lockdep_assert_held(&pcpu_lock); |
| 1513 | |
| 1514 | bitmap_set(chunk->populated, page_start, nr); |
| 1515 | chunk->nr_populated += nr; |
| 1516 | pcpu_nr_populated += nr; |
| 1517 | |
| 1518 | pcpu_update_empty_pages(chunk, nr); |
| 1519 | } |
| 1520 | |
| 1521 | /** |
| 1522 | * pcpu_chunk_depopulated - post-depopulation bookkeeping |
| 1523 | * @chunk: pcpu_chunk which got depopulated |
| 1524 | * @page_start: the start page |
| 1525 | * @page_end: the end page |
| 1526 | * |
| 1527 | * Pages in [@page_start,@page_end) have been depopulated from @chunk. |
| 1528 | * Update the bookkeeping information accordingly. Must be called after |
| 1529 | * each successful depopulation. |
| 1530 | */ |
| 1531 | static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, |
| 1532 | int page_start, int page_end) |
| 1533 | { |
| 1534 | int nr = page_end - page_start; |
| 1535 | |
| 1536 | lockdep_assert_held(&pcpu_lock); |
| 1537 | |
| 1538 | bitmap_clear(chunk->populated, page_start, nr); |
| 1539 | chunk->nr_populated -= nr; |
| 1540 | pcpu_nr_populated -= nr; |
| 1541 | |
| 1542 | pcpu_update_empty_pages(chunk, -nr); |
| 1543 | } |
| 1544 | |
| 1545 | /* |
| 1546 | * Chunk management implementation. |
| 1547 | * |
| 1548 | * To allow different implementations, chunk alloc/free and |
| 1549 | * [de]population are implemented in a separate file which is pulled |
| 1550 | * into this file and compiled together. The following functions |
| 1551 | * should be implemented. |
| 1552 | * |
| 1553 | * pcpu_populate_chunk - populate the specified range of a chunk |
| 1554 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk |
| 1555 | * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk |
| 1556 | * pcpu_create_chunk - create a new chunk |
| 1557 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop |
| 1558 | * pcpu_addr_to_page - translate address to physical address |
| 1559 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init |
| 1560 | */ |
| 1561 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, |
| 1562 | int page_start, int page_end, gfp_t gfp); |
| 1563 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, |
| 1564 | int page_start, int page_end); |
| 1565 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, |
| 1566 | int page_start, int page_end); |
| 1567 | static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); |
| 1568 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); |
| 1569 | static struct page *pcpu_addr_to_page(void *addr); |
| 1570 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); |
| 1571 | |
| 1572 | #ifdef CONFIG_NEED_PER_CPU_KM |
| 1573 | #include "percpu-km.c" |
| 1574 | #else |
| 1575 | #include "percpu-vm.c" |
| 1576 | #endif |
| 1577 | |
| 1578 | /** |
| 1579 | * pcpu_chunk_addr_search - determine chunk containing specified address |
| 1580 | * @addr: address for which the chunk needs to be determined. |
| 1581 | * |
| 1582 | * This is an internal function that handles all but static allocations. |
| 1583 | * Static percpu address values should never be passed into the allocator. |
| 1584 | * |
| 1585 | * RETURNS: |
| 1586 | * The address of the found chunk. |
| 1587 | */ |
| 1588 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) |
| 1589 | { |
| 1590 | /* is it in the dynamic region (first chunk)? */ |
| 1591 | if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) |
| 1592 | return pcpu_first_chunk; |
| 1593 | |
| 1594 | /* is it in the reserved region? */ |
| 1595 | if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) |
| 1596 | return pcpu_reserved_chunk; |
| 1597 | |
| 1598 | /* |
| 1599 | * The address is relative to unit0 which might be unused and |
| 1600 | * thus unmapped. Offset the address to the unit space of the |
| 1601 | * current processor before looking it up in the vmalloc |
| 1602 | * space. Note that any possible cpu id can be used here, so |
| 1603 | * there's no need to worry about preemption or cpu hotplug. |
| 1604 | */ |
| 1605 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; |
| 1606 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
| 1607 | } |
| 1608 | |
| 1609 | #ifdef CONFIG_MEMCG |
| 1610 | static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, |
| 1611 | struct obj_cgroup **objcgp) |
| 1612 | { |
| 1613 | struct obj_cgroup *objcg; |
| 1614 | |
| 1615 | if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT)) |
| 1616 | return true; |
| 1617 | |
| 1618 | objcg = current_obj_cgroup(); |
| 1619 | if (!objcg) |
| 1620 | return true; |
| 1621 | |
| 1622 | if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) |
| 1623 | return false; |
| 1624 | |
| 1625 | *objcgp = objcg; |
| 1626 | return true; |
| 1627 | } |
| 1628 | |
| 1629 | static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, |
| 1630 | struct pcpu_chunk *chunk, int off, |
| 1631 | size_t size) |
| 1632 | { |
| 1633 | if (!objcg) |
| 1634 | return; |
| 1635 | |
| 1636 | if (likely(chunk && chunk->obj_exts)) { |
| 1637 | obj_cgroup_get(objcg); |
| 1638 | chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = objcg; |
| 1639 | |
| 1640 | rcu_read_lock(); |
| 1641 | mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, |
| 1642 | pcpu_obj_full_size(size)); |
| 1643 | rcu_read_unlock(); |
| 1644 | } else { |
| 1645 | obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) |
| 1650 | { |
| 1651 | struct obj_cgroup *objcg; |
| 1652 | |
| 1653 | if (unlikely(!chunk->obj_exts)) |
| 1654 | return; |
| 1655 | |
| 1656 | objcg = chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup; |
| 1657 | if (!objcg) |
| 1658 | return; |
| 1659 | chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = NULL; |
| 1660 | |
| 1661 | obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); |
| 1662 | |
| 1663 | rcu_read_lock(); |
| 1664 | mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, |
| 1665 | -pcpu_obj_full_size(size)); |
| 1666 | rcu_read_unlock(); |
| 1667 | |
| 1668 | obj_cgroup_put(objcg); |
| 1669 | } |
| 1670 | |
| 1671 | #else /* CONFIG_MEMCG */ |
| 1672 | static bool |
| 1673 | pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) |
| 1674 | { |
| 1675 | return true; |
| 1676 | } |
| 1677 | |
| 1678 | static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, |
| 1679 | struct pcpu_chunk *chunk, int off, |
| 1680 | size_t size) |
| 1681 | { |
| 1682 | } |
| 1683 | |
| 1684 | static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) |
| 1685 | { |
| 1686 | } |
| 1687 | #endif /* CONFIG_MEMCG */ |
| 1688 | |
| 1689 | #ifdef CONFIG_MEM_ALLOC_PROFILING |
| 1690 | static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off, |
| 1691 | size_t size) |
| 1692 | { |
| 1693 | if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts)) { |
| 1694 | alloc_tag_add(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag, |
| 1695 | current->alloc_tag, size); |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size) |
| 1700 | { |
| 1701 | if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts)) |
| 1702 | alloc_tag_sub(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag, size); |
| 1703 | } |
| 1704 | #else |
| 1705 | static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off, |
| 1706 | size_t size) |
| 1707 | { |
| 1708 | } |
| 1709 | |
| 1710 | static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size) |
| 1711 | { |
| 1712 | } |
| 1713 | #endif |
| 1714 | |
| 1715 | /** |
| 1716 | * pcpu_alloc - the percpu allocator |
| 1717 | * @size: size of area to allocate in bytes |
| 1718 | * @align: alignment of area (max PAGE_SIZE) |
| 1719 | * @reserved: allocate from the reserved chunk if available |
| 1720 | * @gfp: allocation flags |
| 1721 | * |
| 1722 | * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't |
| 1723 | * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN |
| 1724 | * then no warning will be triggered on invalid or failed allocation |
| 1725 | * requests. |
| 1726 | * |
| 1727 | * RETURNS: |
| 1728 | * Percpu pointer to the allocated area on success, NULL on failure. |
| 1729 | */ |
| 1730 | void __percpu *pcpu_alloc_noprof(size_t size, size_t align, bool reserved, |
| 1731 | gfp_t gfp) |
| 1732 | { |
| 1733 | gfp_t pcpu_gfp; |
| 1734 | bool is_atomic; |
| 1735 | bool do_warn; |
| 1736 | struct obj_cgroup *objcg = NULL; |
| 1737 | static int warn_limit = 10; |
| 1738 | struct pcpu_chunk *chunk, *next; |
| 1739 | const char *err; |
| 1740 | int slot, off, cpu, ret; |
| 1741 | unsigned long flags; |
| 1742 | void __percpu *ptr; |
| 1743 | size_t bits, bit_align; |
| 1744 | |
| 1745 | gfp = current_gfp_context(gfp); |
| 1746 | /* whitelisted flags that can be passed to the backing allocators */ |
| 1747 | pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); |
| 1748 | is_atomic = !gfpflags_allow_blocking(gfp); |
| 1749 | do_warn = !(gfp & __GFP_NOWARN); |
| 1750 | |
| 1751 | /* |
| 1752 | * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, |
| 1753 | * therefore alignment must be a minimum of that many bytes. |
| 1754 | * An allocation may have internal fragmentation from rounding up |
| 1755 | * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. |
| 1756 | */ |
| 1757 | if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) |
| 1758 | align = PCPU_MIN_ALLOC_SIZE; |
| 1759 | |
| 1760 | size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); |
| 1761 | bits = size >> PCPU_MIN_ALLOC_SHIFT; |
| 1762 | bit_align = align >> PCPU_MIN_ALLOC_SHIFT; |
| 1763 | |
| 1764 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || |
| 1765 | !is_power_of_2(align))) { |
| 1766 | WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", |
| 1767 | size, align); |
| 1768 | return NULL; |
| 1769 | } |
| 1770 | |
| 1771 | if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg))) |
| 1772 | return NULL; |
| 1773 | |
| 1774 | if (!is_atomic) { |
| 1775 | /* |
| 1776 | * pcpu_balance_workfn() allocates memory under this mutex, |
| 1777 | * and it may wait for memory reclaim. Allow current task |
| 1778 | * to become OOM victim, in case of memory pressure. |
| 1779 | */ |
| 1780 | if (gfp & __GFP_NOFAIL) { |
| 1781 | mutex_lock(&pcpu_alloc_mutex); |
| 1782 | } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { |
| 1783 | pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); |
| 1784 | return NULL; |
| 1785 | } |
| 1786 | } |
| 1787 | |
| 1788 | spin_lock_irqsave(&pcpu_lock, flags); |
| 1789 | |
| 1790 | /* serve reserved allocations from the reserved chunk if available */ |
| 1791 | if (reserved && pcpu_reserved_chunk) { |
| 1792 | chunk = pcpu_reserved_chunk; |
| 1793 | |
| 1794 | off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); |
| 1795 | if (off < 0) { |
| 1796 | err = "alloc from reserved chunk failed"; |
| 1797 | goto fail_unlock; |
| 1798 | } |
| 1799 | |
| 1800 | off = pcpu_alloc_area(chunk, bits, bit_align, off); |
| 1801 | if (off >= 0) |
| 1802 | goto area_found; |
| 1803 | |
| 1804 | err = "alloc from reserved chunk failed"; |
| 1805 | goto fail_unlock; |
| 1806 | } |
| 1807 | |
| 1808 | restart: |
| 1809 | /* search through normal chunks */ |
| 1810 | for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) { |
| 1811 | list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot], |
| 1812 | list) { |
| 1813 | off = pcpu_find_block_fit(chunk, bits, bit_align, |
| 1814 | is_atomic); |
| 1815 | if (off < 0) { |
| 1816 | if (slot < PCPU_SLOT_FAIL_THRESHOLD) |
| 1817 | pcpu_chunk_move(chunk, 0); |
| 1818 | continue; |
| 1819 | } |
| 1820 | |
| 1821 | off = pcpu_alloc_area(chunk, bits, bit_align, off); |
| 1822 | if (off >= 0) { |
| 1823 | pcpu_reintegrate_chunk(chunk); |
| 1824 | goto area_found; |
| 1825 | } |
| 1826 | } |
| 1827 | } |
| 1828 | |
| 1829 | spin_unlock_irqrestore(&pcpu_lock, flags); |
| 1830 | |
| 1831 | if (is_atomic) { |
| 1832 | err = "atomic alloc failed, no space left"; |
| 1833 | goto fail; |
| 1834 | } |
| 1835 | |
| 1836 | /* No space left. Create a new chunk. */ |
| 1837 | if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) { |
| 1838 | chunk = pcpu_create_chunk(pcpu_gfp); |
| 1839 | if (!chunk) { |
| 1840 | err = "failed to allocate new chunk"; |
| 1841 | goto fail; |
| 1842 | } |
| 1843 | |
| 1844 | spin_lock_irqsave(&pcpu_lock, flags); |
| 1845 | pcpu_chunk_relocate(chunk, -1); |
| 1846 | } else { |
| 1847 | spin_lock_irqsave(&pcpu_lock, flags); |
| 1848 | } |
| 1849 | |
| 1850 | goto restart; |
| 1851 | |
| 1852 | area_found: |
| 1853 | pcpu_stats_area_alloc(chunk, size); |
| 1854 | |
| 1855 | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) |
| 1856 | pcpu_schedule_balance_work(); |
| 1857 | |
| 1858 | spin_unlock_irqrestore(&pcpu_lock, flags); |
| 1859 | |
| 1860 | /* populate if not all pages are already there */ |
| 1861 | if (!is_atomic) { |
| 1862 | unsigned int page_end, rs, re; |
| 1863 | |
| 1864 | rs = PFN_DOWN(off); |
| 1865 | page_end = PFN_UP(off + size); |
| 1866 | |
| 1867 | for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) { |
| 1868 | WARN_ON(chunk->immutable); |
| 1869 | |
| 1870 | ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); |
| 1871 | |
| 1872 | spin_lock_irqsave(&pcpu_lock, flags); |
| 1873 | if (ret) { |
| 1874 | pcpu_free_area(chunk, off); |
| 1875 | err = "failed to populate"; |
| 1876 | goto fail_unlock; |
| 1877 | } |
| 1878 | pcpu_chunk_populated(chunk, rs, re); |
| 1879 | spin_unlock_irqrestore(&pcpu_lock, flags); |
| 1880 | } |
| 1881 | |
| 1882 | mutex_unlock(&pcpu_alloc_mutex); |
| 1883 | } |
| 1884 | |
| 1885 | /* clear the areas and return address relative to base address */ |
| 1886 | for_each_possible_cpu(cpu) |
| 1887 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); |
| 1888 | |
| 1889 | ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); |
| 1890 | kmemleak_alloc_percpu(ptr, size, gfp); |
| 1891 | |
| 1892 | trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align, |
| 1893 | chunk->base_addr, off, ptr, |
| 1894 | pcpu_obj_full_size(size), gfp); |
| 1895 | |
| 1896 | pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); |
| 1897 | |
| 1898 | pcpu_alloc_tag_alloc_hook(chunk, off, size); |
| 1899 | |
| 1900 | return ptr; |
| 1901 | |
| 1902 | fail_unlock: |
| 1903 | spin_unlock_irqrestore(&pcpu_lock, flags); |
| 1904 | fail: |
| 1905 | trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); |
| 1906 | |
| 1907 | if (do_warn && warn_limit) { |
| 1908 | pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", |
| 1909 | size, align, is_atomic, err); |
| 1910 | if (!is_atomic) |
| 1911 | dump_stack(); |
| 1912 | if (!--warn_limit) |
| 1913 | pr_info("limit reached, disable warning\n"); |
| 1914 | } |
| 1915 | |
| 1916 | if (is_atomic) { |
| 1917 | /* see the flag handling in pcpu_balance_workfn() */ |
| 1918 | pcpu_atomic_alloc_failed = true; |
| 1919 | pcpu_schedule_balance_work(); |
| 1920 | } else { |
| 1921 | mutex_unlock(&pcpu_alloc_mutex); |
| 1922 | } |
| 1923 | |
| 1924 | pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); |
| 1925 | |
| 1926 | return NULL; |
| 1927 | } |
| 1928 | EXPORT_SYMBOL_GPL(pcpu_alloc_noprof); |
| 1929 | |
| 1930 | /** |
| 1931 | * pcpu_balance_free - manage the amount of free chunks |
| 1932 | * @empty_only: free chunks only if there are no populated pages |
| 1933 | * |
| 1934 | * If empty_only is %false, reclaim all fully free chunks regardless of the |
| 1935 | * number of populated pages. Otherwise, only reclaim chunks that have no |
| 1936 | * populated pages. |
| 1937 | * |
| 1938 | * CONTEXT: |
| 1939 | * pcpu_lock (can be dropped temporarily) |
| 1940 | */ |
| 1941 | static void pcpu_balance_free(bool empty_only) |
| 1942 | { |
| 1943 | LIST_HEAD(to_free); |
| 1944 | struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot]; |
| 1945 | struct pcpu_chunk *chunk, *next; |
| 1946 | |
| 1947 | lockdep_assert_held(&pcpu_lock); |
| 1948 | |
| 1949 | /* |
| 1950 | * There's no reason to keep around multiple unused chunks and VM |
| 1951 | * areas can be scarce. Destroy all free chunks except for one. |
| 1952 | */ |
| 1953 | list_for_each_entry_safe(chunk, next, free_head, list) { |
| 1954 | WARN_ON(chunk->immutable); |
| 1955 | |
| 1956 | /* spare the first one */ |
| 1957 | if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) |
| 1958 | continue; |
| 1959 | |
| 1960 | if (!empty_only || chunk->nr_empty_pop_pages == 0) |
| 1961 | list_move(&chunk->list, &to_free); |
| 1962 | } |
| 1963 | |
| 1964 | if (list_empty(&to_free)) |
| 1965 | return; |
| 1966 | |
| 1967 | spin_unlock_irq(&pcpu_lock); |
| 1968 | list_for_each_entry_safe(chunk, next, &to_free, list) { |
| 1969 | unsigned int rs, re; |
| 1970 | |
| 1971 | for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) { |
| 1972 | pcpu_depopulate_chunk(chunk, rs, re); |
| 1973 | spin_lock_irq(&pcpu_lock); |
| 1974 | pcpu_chunk_depopulated(chunk, rs, re); |
| 1975 | spin_unlock_irq(&pcpu_lock); |
| 1976 | } |
| 1977 | pcpu_destroy_chunk(chunk); |
| 1978 | cond_resched(); |
| 1979 | } |
| 1980 | spin_lock_irq(&pcpu_lock); |
| 1981 | } |
| 1982 | |
| 1983 | /** |
| 1984 | * pcpu_balance_populated - manage the amount of populated pages |
| 1985 | * |
| 1986 | * Maintain a certain amount of populated pages to satisfy atomic allocations. |
| 1987 | * It is possible that this is called when physical memory is scarce causing |
| 1988 | * OOM killer to be triggered. We should avoid doing so until an actual |
| 1989 | * allocation causes the failure as it is possible that requests can be |
| 1990 | * serviced from already backed regions. |
| 1991 | * |
| 1992 | * CONTEXT: |
| 1993 | * pcpu_lock (can be dropped temporarily) |
| 1994 | */ |
| 1995 | static void pcpu_balance_populated(void) |
| 1996 | { |
| 1997 | /* gfp flags passed to underlying allocators */ |
| 1998 | const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; |
| 1999 | struct pcpu_chunk *chunk; |
| 2000 | int slot, nr_to_pop, ret; |
| 2001 | |
| 2002 | lockdep_assert_held(&pcpu_lock); |
| 2003 | |
| 2004 | /* |
| 2005 | * Ensure there are certain number of free populated pages for |
| 2006 | * atomic allocs. Fill up from the most packed so that atomic |
| 2007 | * allocs don't increase fragmentation. If atomic allocation |
| 2008 | * failed previously, always populate the maximum amount. This |
| 2009 | * should prevent atomic allocs larger than PAGE_SIZE from keeping |
| 2010 | * failing indefinitely; however, large atomic allocs are not |
| 2011 | * something we support properly and can be highly unreliable and |
| 2012 | * inefficient. |
| 2013 | */ |
| 2014 | retry_pop: |
| 2015 | if (pcpu_atomic_alloc_failed) { |
| 2016 | nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; |
| 2017 | /* best effort anyway, don't worry about synchronization */ |
| 2018 | pcpu_atomic_alloc_failed = false; |
| 2019 | } else { |
| 2020 | nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - |
| 2021 | pcpu_nr_empty_pop_pages, |
| 2022 | 0, PCPU_EMPTY_POP_PAGES_HIGH); |
| 2023 | } |
| 2024 | |
| 2025 | for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) { |
| 2026 | unsigned int nr_unpop = 0, rs, re; |
| 2027 | |
| 2028 | if (!nr_to_pop) |
| 2029 | break; |
| 2030 | |
| 2031 | list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { |
| 2032 | nr_unpop = chunk->nr_pages - chunk->nr_populated; |
| 2033 | if (nr_unpop) |
| 2034 | break; |
| 2035 | } |
| 2036 | |
| 2037 | if (!nr_unpop) |
| 2038 | continue; |
| 2039 | |
| 2040 | /* @chunk can't go away while pcpu_alloc_mutex is held */ |
| 2041 | for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) { |
| 2042 | int nr = min_t(int, re - rs, nr_to_pop); |
| 2043 | |
| 2044 | spin_unlock_irq(&pcpu_lock); |
| 2045 | ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); |
| 2046 | cond_resched(); |
| 2047 | spin_lock_irq(&pcpu_lock); |
| 2048 | if (!ret) { |
| 2049 | nr_to_pop -= nr; |
| 2050 | pcpu_chunk_populated(chunk, rs, rs + nr); |
| 2051 | } else { |
| 2052 | nr_to_pop = 0; |
| 2053 | } |
| 2054 | |
| 2055 | if (!nr_to_pop) |
| 2056 | break; |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | if (nr_to_pop) { |
| 2061 | /* ran out of chunks to populate, create a new one and retry */ |
| 2062 | spin_unlock_irq(&pcpu_lock); |
| 2063 | chunk = pcpu_create_chunk(gfp); |
| 2064 | cond_resched(); |
| 2065 | spin_lock_irq(&pcpu_lock); |
| 2066 | if (chunk) { |
| 2067 | pcpu_chunk_relocate(chunk, -1); |
| 2068 | goto retry_pop; |
| 2069 | } |
| 2070 | } |
| 2071 | } |
| 2072 | |
| 2073 | /** |
| 2074 | * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages |
| 2075 | * |
| 2076 | * Scan over chunks in the depopulate list and try to release unused populated |
| 2077 | * pages back to the system. Depopulated chunks are sidelined to prevent |
| 2078 | * repopulating these pages unless required. Fully free chunks are reintegrated |
| 2079 | * and freed accordingly (1 is kept around). If we drop below the empty |
| 2080 | * populated pages threshold, reintegrate the chunk if it has empty free pages. |
| 2081 | * Each chunk is scanned in the reverse order to keep populated pages close to |
| 2082 | * the beginning of the chunk. |
| 2083 | * |
| 2084 | * CONTEXT: |
| 2085 | * pcpu_lock (can be dropped temporarily) |
| 2086 | * |
| 2087 | */ |
| 2088 | static void pcpu_reclaim_populated(void) |
| 2089 | { |
| 2090 | struct pcpu_chunk *chunk; |
| 2091 | struct pcpu_block_md *block; |
| 2092 | int freed_page_start, freed_page_end; |
| 2093 | int i, end; |
| 2094 | bool reintegrate; |
| 2095 | |
| 2096 | lockdep_assert_held(&pcpu_lock); |
| 2097 | |
| 2098 | /* |
| 2099 | * Once a chunk is isolated to the to_depopulate list, the chunk is no |
| 2100 | * longer discoverable to allocations whom may populate pages. The only |
| 2101 | * other accessor is the free path which only returns area back to the |
| 2102 | * allocator not touching the populated bitmap. |
| 2103 | */ |
| 2104 | while ((chunk = list_first_entry_or_null( |
| 2105 | &pcpu_chunk_lists[pcpu_to_depopulate_slot], |
| 2106 | struct pcpu_chunk, list))) { |
| 2107 | WARN_ON(chunk->immutable); |
| 2108 | |
| 2109 | /* |
| 2110 | * Scan chunk's pages in the reverse order to keep populated |
| 2111 | * pages close to the beginning of the chunk. |
| 2112 | */ |
| 2113 | freed_page_start = chunk->nr_pages; |
| 2114 | freed_page_end = 0; |
| 2115 | reintegrate = false; |
| 2116 | for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) { |
| 2117 | /* no more work to do */ |
| 2118 | if (chunk->nr_empty_pop_pages == 0) |
| 2119 | break; |
| 2120 | |
| 2121 | /* reintegrate chunk to prevent atomic alloc failures */ |
| 2122 | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) { |
| 2123 | reintegrate = true; |
| 2124 | break; |
| 2125 | } |
| 2126 | |
| 2127 | /* |
| 2128 | * If the page is empty and populated, start or |
| 2129 | * extend the (i, end) range. If i == 0, decrease |
| 2130 | * i and perform the depopulation to cover the last |
| 2131 | * (first) page in the chunk. |
| 2132 | */ |
| 2133 | block = chunk->md_blocks + i; |
| 2134 | if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS && |
| 2135 | test_bit(i, chunk->populated)) { |
| 2136 | if (end == -1) |
| 2137 | end = i; |
| 2138 | if (i > 0) |
| 2139 | continue; |
| 2140 | i--; |
| 2141 | } |
| 2142 | |
| 2143 | /* depopulate if there is an active range */ |
| 2144 | if (end == -1) |
| 2145 | continue; |
| 2146 | |
| 2147 | spin_unlock_irq(&pcpu_lock); |
| 2148 | pcpu_depopulate_chunk(chunk, i + 1, end + 1); |
| 2149 | cond_resched(); |
| 2150 | spin_lock_irq(&pcpu_lock); |
| 2151 | |
| 2152 | pcpu_chunk_depopulated(chunk, i + 1, end + 1); |
| 2153 | freed_page_start = min(freed_page_start, i + 1); |
| 2154 | freed_page_end = max(freed_page_end, end + 1); |
| 2155 | |
| 2156 | /* reset the range and continue */ |
| 2157 | end = -1; |
| 2158 | } |
| 2159 | |
| 2160 | /* batch tlb flush per chunk to amortize cost */ |
| 2161 | if (freed_page_start < freed_page_end) { |
| 2162 | spin_unlock_irq(&pcpu_lock); |
| 2163 | pcpu_post_unmap_tlb_flush(chunk, |
| 2164 | freed_page_start, |
| 2165 | freed_page_end); |
| 2166 | cond_resched(); |
| 2167 | spin_lock_irq(&pcpu_lock); |
| 2168 | } |
| 2169 | |
| 2170 | if (reintegrate || chunk->free_bytes == pcpu_unit_size) |
| 2171 | pcpu_reintegrate_chunk(chunk); |
| 2172 | else |
| 2173 | list_move_tail(&chunk->list, |
| 2174 | &pcpu_chunk_lists[pcpu_sidelined_slot]); |
| 2175 | } |
| 2176 | } |
| 2177 | |
| 2178 | /** |
| 2179 | * pcpu_balance_workfn - manage the amount of free chunks and populated pages |
| 2180 | * @work: unused |
| 2181 | * |
| 2182 | * For each chunk type, manage the number of fully free chunks and the number of |
| 2183 | * populated pages. An important thing to consider is when pages are freed and |
| 2184 | * how they contribute to the global counts. |
| 2185 | */ |
| 2186 | static void pcpu_balance_workfn(struct work_struct *work) |
| 2187 | { |
| 2188 | /* |
| 2189 | * pcpu_balance_free() is called twice because the first time we may |
| 2190 | * trim pages in the active pcpu_nr_empty_pop_pages which may cause us |
| 2191 | * to grow other chunks. This then gives pcpu_reclaim_populated() time |
| 2192 | * to move fully free chunks to the active list to be freed if |
| 2193 | * appropriate. |
| 2194 | * |
| 2195 | * Enforce GFP_NOIO allocations because we have pcpu_alloc users |
| 2196 | * constrained to GFP_NOIO/NOFS contexts and they could form lock |
| 2197 | * dependency through pcpu_alloc_mutex |
| 2198 | */ |
| 2199 | unsigned int flags = memalloc_noio_save(); |
| 2200 | mutex_lock(&pcpu_alloc_mutex); |
| 2201 | spin_lock_irq(&pcpu_lock); |
| 2202 | |
| 2203 | pcpu_balance_free(false); |
| 2204 | pcpu_reclaim_populated(); |
| 2205 | pcpu_balance_populated(); |
| 2206 | pcpu_balance_free(true); |
| 2207 | |
| 2208 | spin_unlock_irq(&pcpu_lock); |
| 2209 | mutex_unlock(&pcpu_alloc_mutex); |
| 2210 | memalloc_noio_restore(flags); |
| 2211 | } |
| 2212 | |
| 2213 | /** |
| 2214 | * free_percpu - free percpu area |
| 2215 | * @ptr: pointer to area to free |
| 2216 | * |
| 2217 | * Free percpu area @ptr. |
| 2218 | * |
| 2219 | * CONTEXT: |
| 2220 | * Can be called from atomic context. |
| 2221 | */ |
| 2222 | void free_percpu(void __percpu *ptr) |
| 2223 | { |
| 2224 | void *addr; |
| 2225 | struct pcpu_chunk *chunk; |
| 2226 | unsigned long flags; |
| 2227 | int size, off; |
| 2228 | bool need_balance = false; |
| 2229 | |
| 2230 | if (!ptr) |
| 2231 | return; |
| 2232 | |
| 2233 | kmemleak_free_percpu(ptr); |
| 2234 | |
| 2235 | addr = __pcpu_ptr_to_addr(ptr); |
| 2236 | chunk = pcpu_chunk_addr_search(addr); |
| 2237 | off = addr - chunk->base_addr; |
| 2238 | |
| 2239 | spin_lock_irqsave(&pcpu_lock, flags); |
| 2240 | size = pcpu_free_area(chunk, off); |
| 2241 | |
| 2242 | pcpu_alloc_tag_free_hook(chunk, off, size); |
| 2243 | |
| 2244 | pcpu_memcg_free_hook(chunk, off, size); |
| 2245 | |
| 2246 | /* |
| 2247 | * If there are more than one fully free chunks, wake up grim reaper. |
| 2248 | * If the chunk is isolated, it may be in the process of being |
| 2249 | * reclaimed. Let reclaim manage cleaning up of that chunk. |
| 2250 | */ |
| 2251 | if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) { |
| 2252 | struct pcpu_chunk *pos; |
| 2253 | |
| 2254 | list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list) |
| 2255 | if (pos != chunk) { |
| 2256 | need_balance = true; |
| 2257 | break; |
| 2258 | } |
| 2259 | } else if (pcpu_should_reclaim_chunk(chunk)) { |
| 2260 | pcpu_isolate_chunk(chunk); |
| 2261 | need_balance = true; |
| 2262 | } |
| 2263 | |
| 2264 | trace_percpu_free_percpu(chunk->base_addr, off, ptr); |
| 2265 | |
| 2266 | spin_unlock_irqrestore(&pcpu_lock, flags); |
| 2267 | |
| 2268 | if (need_balance) |
| 2269 | pcpu_schedule_balance_work(); |
| 2270 | } |
| 2271 | EXPORT_SYMBOL_GPL(free_percpu); |
| 2272 | |
| 2273 | bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) |
| 2274 | { |
| 2275 | #ifdef CONFIG_SMP |
| 2276 | const size_t static_size = __per_cpu_end - __per_cpu_start; |
| 2277 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); |
| 2278 | unsigned int cpu; |
| 2279 | |
| 2280 | for_each_possible_cpu(cpu) { |
| 2281 | void *start = per_cpu_ptr(base, cpu); |
| 2282 | void *va = (void *)addr; |
| 2283 | |
| 2284 | if (va >= start && va < start + static_size) { |
| 2285 | if (can_addr) { |
| 2286 | *can_addr = (unsigned long) (va - start); |
| 2287 | *can_addr += (unsigned long) |
| 2288 | per_cpu_ptr(base, get_boot_cpu_id()); |
| 2289 | } |
| 2290 | return true; |
| 2291 | } |
| 2292 | } |
| 2293 | #endif |
| 2294 | /* on UP, can't distinguish from other static vars, always false */ |
| 2295 | return false; |
| 2296 | } |
| 2297 | |
| 2298 | /** |
| 2299 | * is_kernel_percpu_address - test whether address is from static percpu area |
| 2300 | * @addr: address to test |
| 2301 | * |
| 2302 | * Test whether @addr belongs to in-kernel static percpu area. Module |
| 2303 | * static percpu areas are not considered. For those, use |
| 2304 | * is_module_percpu_address(). |
| 2305 | * |
| 2306 | * RETURNS: |
| 2307 | * %true if @addr is from in-kernel static percpu area, %false otherwise. |
| 2308 | */ |
| 2309 | bool is_kernel_percpu_address(unsigned long addr) |
| 2310 | { |
| 2311 | return __is_kernel_percpu_address(addr, NULL); |
| 2312 | } |
| 2313 | |
| 2314 | /** |
| 2315 | * per_cpu_ptr_to_phys - convert translated percpu address to physical address |
| 2316 | * @addr: the address to be converted to physical address |
| 2317 | * |
| 2318 | * Given @addr which is dereferenceable address obtained via one of |
| 2319 | * percpu access macros, this function translates it into its physical |
| 2320 | * address. The caller is responsible for ensuring @addr stays valid |
| 2321 | * until this function finishes. |
| 2322 | * |
| 2323 | * percpu allocator has special setup for the first chunk, which currently |
| 2324 | * supports either embedding in linear address space or vmalloc mapping, |
| 2325 | * and, from the second one, the backing allocator (currently either vm or |
| 2326 | * km) provides translation. |
| 2327 | * |
| 2328 | * The addr can be translated simply without checking if it falls into the |
| 2329 | * first chunk. But the current code reflects better how percpu allocator |
| 2330 | * actually works, and the verification can discover both bugs in percpu |
| 2331 | * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current |
| 2332 | * code. |
| 2333 | * |
| 2334 | * RETURNS: |
| 2335 | * The physical address for @addr. |
| 2336 | */ |
| 2337 | phys_addr_t per_cpu_ptr_to_phys(void *addr) |
| 2338 | { |
| 2339 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); |
| 2340 | bool in_first_chunk = false; |
| 2341 | unsigned long first_low, first_high; |
| 2342 | unsigned int cpu; |
| 2343 | |
| 2344 | /* |
| 2345 | * The following test on unit_low/high isn't strictly |
| 2346 | * necessary but will speed up lookups of addresses which |
| 2347 | * aren't in the first chunk. |
| 2348 | * |
| 2349 | * The address check is against full chunk sizes. pcpu_base_addr |
| 2350 | * points to the beginning of the first chunk including the |
| 2351 | * static region. Assumes good intent as the first chunk may |
| 2352 | * not be full (ie. < pcpu_unit_pages in size). |
| 2353 | */ |
| 2354 | first_low = (unsigned long)pcpu_base_addr + |
| 2355 | pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); |
| 2356 | first_high = (unsigned long)pcpu_base_addr + |
| 2357 | pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); |
| 2358 | if ((unsigned long)addr >= first_low && |
| 2359 | (unsigned long)addr < first_high) { |
| 2360 | for_each_possible_cpu(cpu) { |
| 2361 | void *start = per_cpu_ptr(base, cpu); |
| 2362 | |
| 2363 | if (addr >= start && addr < start + pcpu_unit_size) { |
| 2364 | in_first_chunk = true; |
| 2365 | break; |
| 2366 | } |
| 2367 | } |
| 2368 | } |
| 2369 | |
| 2370 | if (in_first_chunk) { |
| 2371 | if (!is_vmalloc_addr(addr)) |
| 2372 | return __pa(addr); |
| 2373 | else |
| 2374 | return page_to_phys(vmalloc_to_page(addr)) + |
| 2375 | offset_in_page(addr); |
| 2376 | } else |
| 2377 | return page_to_phys(pcpu_addr_to_page(addr)) + |
| 2378 | offset_in_page(addr); |
| 2379 | } |
| 2380 | |
| 2381 | /** |
| 2382 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
| 2383 | * @nr_groups: the number of groups |
| 2384 | * @nr_units: the number of units |
| 2385 | * |
| 2386 | * Allocate ai which is large enough for @nr_groups groups containing |
| 2387 | * @nr_units units. The returned ai's groups[0].cpu_map points to the |
| 2388 | * cpu_map array which is long enough for @nr_units and filled with |
| 2389 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map |
| 2390 | * pointer of other groups. |
| 2391 | * |
| 2392 | * RETURNS: |
| 2393 | * Pointer to the allocated pcpu_alloc_info on success, NULL on |
| 2394 | * failure. |
| 2395 | */ |
| 2396 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, |
| 2397 | int nr_units) |
| 2398 | { |
| 2399 | struct pcpu_alloc_info *ai; |
| 2400 | size_t base_size, ai_size; |
| 2401 | void *ptr; |
| 2402 | int unit; |
| 2403 | |
| 2404 | base_size = ALIGN(struct_size(ai, groups, nr_groups), |
| 2405 | __alignof__(ai->groups[0].cpu_map[0])); |
| 2406 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); |
| 2407 | |
| 2408 | ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); |
| 2409 | if (!ptr) |
| 2410 | return NULL; |
| 2411 | ai = ptr; |
| 2412 | ptr += base_size; |
| 2413 | |
| 2414 | ai->groups[0].cpu_map = ptr; |
| 2415 | |
| 2416 | for (unit = 0; unit < nr_units; unit++) |
| 2417 | ai->groups[0].cpu_map[unit] = NR_CPUS; |
| 2418 | |
| 2419 | ai->nr_groups = nr_groups; |
| 2420 | ai->__ai_size = PFN_ALIGN(ai_size); |
| 2421 | |
| 2422 | return ai; |
| 2423 | } |
| 2424 | |
| 2425 | /** |
| 2426 | * pcpu_free_alloc_info - free percpu allocation info |
| 2427 | * @ai: pcpu_alloc_info to free |
| 2428 | * |
| 2429 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). |
| 2430 | */ |
| 2431 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) |
| 2432 | { |
| 2433 | memblock_free(ai, ai->__ai_size); |
| 2434 | } |
| 2435 | |
| 2436 | /** |
| 2437 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info |
| 2438 | * @lvl: loglevel |
| 2439 | * @ai: allocation info to dump |
| 2440 | * |
| 2441 | * Print out information about @ai using loglevel @lvl. |
| 2442 | */ |
| 2443 | static void pcpu_dump_alloc_info(const char *lvl, |
| 2444 | const struct pcpu_alloc_info *ai) |
| 2445 | { |
| 2446 | int group_width = 1, cpu_width = 1, width; |
| 2447 | char empty_str[] = "--------"; |
| 2448 | int alloc = 0, alloc_end = 0; |
| 2449 | int group, v; |
| 2450 | int upa, apl; /* units per alloc, allocs per line */ |
| 2451 | |
| 2452 | v = ai->nr_groups; |
| 2453 | while (v /= 10) |
| 2454 | group_width++; |
| 2455 | |
| 2456 | v = num_possible_cpus(); |
| 2457 | while (v /= 10) |
| 2458 | cpu_width++; |
| 2459 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; |
| 2460 | |
| 2461 | upa = ai->alloc_size / ai->unit_size; |
| 2462 | width = upa * (cpu_width + 1) + group_width + 3; |
| 2463 | apl = rounddown_pow_of_two(max(60 / width, 1)); |
| 2464 | |
| 2465 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", |
| 2466 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, |
| 2467 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); |
| 2468 | |
| 2469 | for (group = 0; group < ai->nr_groups; group++) { |
| 2470 | const struct pcpu_group_info *gi = &ai->groups[group]; |
| 2471 | int unit = 0, unit_end = 0; |
| 2472 | |
| 2473 | BUG_ON(gi->nr_units % upa); |
| 2474 | for (alloc_end += gi->nr_units / upa; |
| 2475 | alloc < alloc_end; alloc++) { |
| 2476 | if (!(alloc % apl)) { |
| 2477 | pr_cont("\n"); |
| 2478 | printk("%spcpu-alloc: ", lvl); |
| 2479 | } |
| 2480 | pr_cont("[%0*d] ", group_width, group); |
| 2481 | |
| 2482 | for (unit_end += upa; unit < unit_end; unit++) |
| 2483 | if (gi->cpu_map[unit] != NR_CPUS) |
| 2484 | pr_cont("%0*d ", |
| 2485 | cpu_width, gi->cpu_map[unit]); |
| 2486 | else |
| 2487 | pr_cont("%s ", empty_str); |
| 2488 | } |
| 2489 | } |
| 2490 | pr_cont("\n"); |
| 2491 | } |
| 2492 | |
| 2493 | /** |
| 2494 | * pcpu_setup_first_chunk - initialize the first percpu chunk |
| 2495 | * @ai: pcpu_alloc_info describing how to percpu area is shaped |
| 2496 | * @base_addr: mapped address |
| 2497 | * |
| 2498 | * Initialize the first percpu chunk which contains the kernel static |
| 2499 | * percpu area. This function is to be called from arch percpu area |
| 2500 | * setup path. |
| 2501 | * |
| 2502 | * @ai contains all information necessary to initialize the first |
| 2503 | * chunk and prime the dynamic percpu allocator. |
| 2504 | * |
| 2505 | * @ai->static_size is the size of static percpu area. |
| 2506 | * |
| 2507 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to |
| 2508 | * reserve after the static area in the first chunk. This reserves |
| 2509 | * the first chunk such that it's available only through reserved |
| 2510 | * percpu allocation. This is primarily used to serve module percpu |
| 2511 | * static areas on architectures where the addressing model has |
| 2512 | * limited offset range for symbol relocations to guarantee module |
| 2513 | * percpu symbols fall inside the relocatable range. |
| 2514 | * |
| 2515 | * @ai->dyn_size determines the number of bytes available for dynamic |
| 2516 | * allocation in the first chunk. The area between @ai->static_size + |
| 2517 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. |
| 2518 | * |
| 2519 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
| 2520 | * and equal to or larger than @ai->static_size + @ai->reserved_size + |
| 2521 | * @ai->dyn_size. |
| 2522 | * |
| 2523 | * @ai->atom_size is the allocation atom size and used as alignment |
| 2524 | * for vm areas. |
| 2525 | * |
| 2526 | * @ai->alloc_size is the allocation size and always multiple of |
| 2527 | * @ai->atom_size. This is larger than @ai->atom_size if |
| 2528 | * @ai->unit_size is larger than @ai->atom_size. |
| 2529 | * |
| 2530 | * @ai->nr_groups and @ai->groups describe virtual memory layout of |
| 2531 | * percpu areas. Units which should be colocated are put into the |
| 2532 | * same group. Dynamic VM areas will be allocated according to these |
| 2533 | * groupings. If @ai->nr_groups is zero, a single group containing |
| 2534 | * all units is assumed. |
| 2535 | * |
| 2536 | * The caller should have mapped the first chunk at @base_addr and |
| 2537 | * copied static data to each unit. |
| 2538 | * |
| 2539 | * The first chunk will always contain a static and a dynamic region. |
| 2540 | * However, the static region is not managed by any chunk. If the first |
| 2541 | * chunk also contains a reserved region, it is served by two chunks - |
| 2542 | * one for the reserved region and one for the dynamic region. They |
| 2543 | * share the same vm, but use offset regions in the area allocation map. |
| 2544 | * The chunk serving the dynamic region is circulated in the chunk slots |
| 2545 | * and available for dynamic allocation like any other chunk. |
| 2546 | */ |
| 2547 | void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
| 2548 | void *base_addr) |
| 2549 | { |
| 2550 | size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
| 2551 | size_t static_size, dyn_size; |
| 2552 | unsigned long *group_offsets; |
| 2553 | size_t *group_sizes; |
| 2554 | unsigned long *unit_off; |
| 2555 | unsigned int cpu; |
| 2556 | int *unit_map; |
| 2557 | int group, unit, i; |
| 2558 | unsigned long tmp_addr; |
| 2559 | size_t alloc_size; |
| 2560 | |
| 2561 | #define PCPU_SETUP_BUG_ON(cond) do { \ |
| 2562 | if (unlikely(cond)) { \ |
| 2563 | pr_emerg("failed to initialize, %s\n", #cond); \ |
| 2564 | pr_emerg("cpu_possible_mask=%*pb\n", \ |
| 2565 | cpumask_pr_args(cpu_possible_mask)); \ |
| 2566 | pcpu_dump_alloc_info(KERN_EMERG, ai); \ |
| 2567 | BUG(); \ |
| 2568 | } \ |
| 2569 | } while (0) |
| 2570 | |
| 2571 | /* sanity checks */ |
| 2572 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); |
| 2573 | #ifdef CONFIG_SMP |
| 2574 | PCPU_SETUP_BUG_ON(!ai->static_size); |
| 2575 | PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); |
| 2576 | #endif |
| 2577 | PCPU_SETUP_BUG_ON(!base_addr); |
| 2578 | PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); |
| 2579 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
| 2580 | PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); |
| 2581 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
| 2582 | PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); |
| 2583 | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); |
| 2584 | PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); |
| 2585 | PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || |
| 2586 | IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); |
| 2587 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); |
| 2588 | |
| 2589 | /* process group information and build config tables accordingly */ |
| 2590 | alloc_size = ai->nr_groups * sizeof(group_offsets[0]); |
| 2591 | group_offsets = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES); |
| 2592 | |
| 2593 | alloc_size = ai->nr_groups * sizeof(group_sizes[0]); |
| 2594 | group_sizes = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES); |
| 2595 | |
| 2596 | alloc_size = nr_cpu_ids * sizeof(unit_map[0]); |
| 2597 | unit_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES); |
| 2598 | |
| 2599 | alloc_size = nr_cpu_ids * sizeof(unit_off[0]); |
| 2600 | unit_off = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES); |
| 2601 | |
| 2602 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) |
| 2603 | unit_map[cpu] = UINT_MAX; |
| 2604 | |
| 2605 | pcpu_low_unit_cpu = NR_CPUS; |
| 2606 | pcpu_high_unit_cpu = NR_CPUS; |
| 2607 | |
| 2608 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { |
| 2609 | const struct pcpu_group_info *gi = &ai->groups[group]; |
| 2610 | |
| 2611 | group_offsets[group] = gi->base_offset; |
| 2612 | group_sizes[group] = gi->nr_units * ai->unit_size; |
| 2613 | |
| 2614 | for (i = 0; i < gi->nr_units; i++) { |
| 2615 | cpu = gi->cpu_map[i]; |
| 2616 | if (cpu == NR_CPUS) |
| 2617 | continue; |
| 2618 | |
| 2619 | PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); |
| 2620 | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); |
| 2621 | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); |
| 2622 | |
| 2623 | unit_map[cpu] = unit + i; |
| 2624 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
| 2625 | |
| 2626 | /* determine low/high unit_cpu */ |
| 2627 | if (pcpu_low_unit_cpu == NR_CPUS || |
| 2628 | unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) |
| 2629 | pcpu_low_unit_cpu = cpu; |
| 2630 | if (pcpu_high_unit_cpu == NR_CPUS || |
| 2631 | unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) |
| 2632 | pcpu_high_unit_cpu = cpu; |
| 2633 | } |
| 2634 | } |
| 2635 | pcpu_nr_units = unit; |
| 2636 | |
| 2637 | for_each_possible_cpu(cpu) |
| 2638 | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); |
| 2639 | |
| 2640 | /* we're done parsing the input, undefine BUG macro and dump config */ |
| 2641 | #undef PCPU_SETUP_BUG_ON |
| 2642 | pcpu_dump_alloc_info(KERN_DEBUG, ai); |
| 2643 | |
| 2644 | pcpu_nr_groups = ai->nr_groups; |
| 2645 | pcpu_group_offsets = group_offsets; |
| 2646 | pcpu_group_sizes = group_sizes; |
| 2647 | pcpu_unit_map = unit_map; |
| 2648 | pcpu_unit_offsets = unit_off; |
| 2649 | |
| 2650 | /* determine basic parameters */ |
| 2651 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; |
| 2652 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; |
| 2653 | pcpu_atom_size = ai->atom_size; |
| 2654 | pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated, |
| 2655 | BITS_TO_LONGS(pcpu_unit_pages)); |
| 2656 | |
| 2657 | pcpu_stats_save_ai(ai); |
| 2658 | |
| 2659 | /* |
| 2660 | * Allocate chunk slots. The slots after the active slots are: |
| 2661 | * sidelined_slot - isolated, depopulated chunks |
| 2662 | * free_slot - fully free chunks |
| 2663 | * to_depopulate_slot - isolated, chunks to depopulate |
| 2664 | */ |
| 2665 | pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1; |
| 2666 | pcpu_free_slot = pcpu_sidelined_slot + 1; |
| 2667 | pcpu_to_depopulate_slot = pcpu_free_slot + 1; |
| 2668 | pcpu_nr_slots = pcpu_to_depopulate_slot + 1; |
| 2669 | pcpu_chunk_lists = memblock_alloc_or_panic(pcpu_nr_slots * |
| 2670 | sizeof(pcpu_chunk_lists[0]), |
| 2671 | SMP_CACHE_BYTES); |
| 2672 | |
| 2673 | for (i = 0; i < pcpu_nr_slots; i++) |
| 2674 | INIT_LIST_HEAD(&pcpu_chunk_lists[i]); |
| 2675 | |
| 2676 | /* |
| 2677 | * The end of the static region needs to be aligned with the |
| 2678 | * minimum allocation size as this offsets the reserved and |
| 2679 | * dynamic region. The first chunk ends page aligned by |
| 2680 | * expanding the dynamic region, therefore the dynamic region |
| 2681 | * can be shrunk to compensate while still staying above the |
| 2682 | * configured sizes. |
| 2683 | */ |
| 2684 | static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); |
| 2685 | dyn_size = ai->dyn_size - (static_size - ai->static_size); |
| 2686 | |
| 2687 | /* |
| 2688 | * Initialize first chunk: |
| 2689 | * This chunk is broken up into 3 parts: |
| 2690 | * < static | [reserved] | dynamic > |
| 2691 | * - static - there is no backing chunk because these allocations can |
| 2692 | * never be freed. |
| 2693 | * - reserved (pcpu_reserved_chunk) - exists primarily to serve |
| 2694 | * allocations from module load. |
| 2695 | * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first |
| 2696 | * chunk. |
| 2697 | */ |
| 2698 | tmp_addr = (unsigned long)base_addr + static_size; |
| 2699 | if (ai->reserved_size) |
| 2700 | pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr, |
| 2701 | ai->reserved_size); |
| 2702 | tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size; |
| 2703 | pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size); |
| 2704 | |
| 2705 | pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; |
| 2706 | pcpu_chunk_relocate(pcpu_first_chunk, -1); |
| 2707 | |
| 2708 | /* include all regions of the first chunk */ |
| 2709 | pcpu_nr_populated += PFN_DOWN(size_sum); |
| 2710 | |
| 2711 | pcpu_stats_chunk_alloc(); |
| 2712 | trace_percpu_create_chunk(base_addr); |
| 2713 | |
| 2714 | /* we're done */ |
| 2715 | pcpu_base_addr = base_addr; |
| 2716 | } |
| 2717 | |
| 2718 | #ifdef CONFIG_SMP |
| 2719 | |
| 2720 | const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { |
| 2721 | [PCPU_FC_AUTO] = "auto", |
| 2722 | [PCPU_FC_EMBED] = "embed", |
| 2723 | [PCPU_FC_PAGE] = "page", |
| 2724 | }; |
| 2725 | |
| 2726 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
| 2727 | |
| 2728 | static int __init percpu_alloc_setup(char *str) |
| 2729 | { |
| 2730 | if (!str) |
| 2731 | return -EINVAL; |
| 2732 | |
| 2733 | if (0) |
| 2734 | /* nada */; |
| 2735 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK |
| 2736 | else if (!strcmp(str, "embed")) |
| 2737 | pcpu_chosen_fc = PCPU_FC_EMBED; |
| 2738 | #endif |
| 2739 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK |
| 2740 | else if (!strcmp(str, "page")) |
| 2741 | pcpu_chosen_fc = PCPU_FC_PAGE; |
| 2742 | #endif |
| 2743 | else |
| 2744 | pr_warn("unknown allocator %s specified\n", str); |
| 2745 | |
| 2746 | return 0; |
| 2747 | } |
| 2748 | early_param("percpu_alloc", percpu_alloc_setup); |
| 2749 | |
| 2750 | /* |
| 2751 | * pcpu_embed_first_chunk() is used by the generic percpu setup. |
| 2752 | * Build it if needed by the arch config or the generic setup is going |
| 2753 | * to be used. |
| 2754 | */ |
| 2755 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ |
| 2756 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) |
| 2757 | #define BUILD_EMBED_FIRST_CHUNK |
| 2758 | #endif |
| 2759 | |
| 2760 | /* build pcpu_page_first_chunk() iff needed by the arch config */ |
| 2761 | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) |
| 2762 | #define BUILD_PAGE_FIRST_CHUNK |
| 2763 | #endif |
| 2764 | |
| 2765 | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ |
| 2766 | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) |
| 2767 | /** |
| 2768 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs |
| 2769 | * @reserved_size: the size of reserved percpu area in bytes |
| 2770 | * @dyn_size: minimum free size for dynamic allocation in bytes |
| 2771 | * @atom_size: allocation atom size |
| 2772 | * @cpu_distance_fn: callback to determine distance between cpus, optional |
| 2773 | * |
| 2774 | * This function determines grouping of units, their mappings to cpus |
| 2775 | * and other parameters considering needed percpu size, allocation |
| 2776 | * atom size and distances between CPUs. |
| 2777 | * |
| 2778 | * Groups are always multiples of atom size and CPUs which are of |
| 2779 | * LOCAL_DISTANCE both ways are grouped together and share space for |
| 2780 | * units in the same group. The returned configuration is guaranteed |
| 2781 | * to have CPUs on different nodes on different groups and >=75% usage |
| 2782 | * of allocated virtual address space. |
| 2783 | * |
| 2784 | * RETURNS: |
| 2785 | * On success, pointer to the new allocation_info is returned. On |
| 2786 | * failure, ERR_PTR value is returned. |
| 2787 | */ |
| 2788 | static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( |
| 2789 | size_t reserved_size, size_t dyn_size, |
| 2790 | size_t atom_size, |
| 2791 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) |
| 2792 | { |
| 2793 | static int group_map[NR_CPUS] __initdata; |
| 2794 | static int group_cnt[NR_CPUS] __initdata; |
| 2795 | static struct cpumask mask __initdata; |
| 2796 | const size_t static_size = __per_cpu_end - __per_cpu_start; |
| 2797 | int nr_groups = 1, nr_units = 0; |
| 2798 | size_t size_sum, min_unit_size, alloc_size; |
| 2799 | int upa, max_upa, best_upa; /* units_per_alloc */ |
| 2800 | int last_allocs, group, unit; |
| 2801 | unsigned int cpu, tcpu; |
| 2802 | struct pcpu_alloc_info *ai; |
| 2803 | unsigned int *cpu_map; |
| 2804 | |
| 2805 | /* this function may be called multiple times */ |
| 2806 | memset(group_map, 0, sizeof(group_map)); |
| 2807 | memset(group_cnt, 0, sizeof(group_cnt)); |
| 2808 | cpumask_clear(&mask); |
| 2809 | |
| 2810 | /* calculate size_sum and ensure dyn_size is enough for early alloc */ |
| 2811 | size_sum = PFN_ALIGN(static_size + reserved_size + |
| 2812 | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); |
| 2813 | dyn_size = size_sum - static_size - reserved_size; |
| 2814 | |
| 2815 | /* |
| 2816 | * Determine min_unit_size, alloc_size and max_upa such that |
| 2817 | * alloc_size is multiple of atom_size and is the smallest |
| 2818 | * which can accommodate 4k aligned segments which are equal to |
| 2819 | * or larger than min_unit_size. |
| 2820 | */ |
| 2821 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); |
| 2822 | |
| 2823 | /* determine the maximum # of units that can fit in an allocation */ |
| 2824 | alloc_size = roundup(min_unit_size, atom_size); |
| 2825 | upa = alloc_size / min_unit_size; |
| 2826 | while (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
| 2827 | upa--; |
| 2828 | max_upa = upa; |
| 2829 | |
| 2830 | cpumask_copy(&mask, cpu_possible_mask); |
| 2831 | |
| 2832 | /* group cpus according to their proximity */ |
| 2833 | for (group = 0; !cpumask_empty(&mask); group++) { |
| 2834 | /* pop the group's first cpu */ |
| 2835 | cpu = cpumask_first(&mask); |
| 2836 | group_map[cpu] = group; |
| 2837 | group_cnt[group]++; |
| 2838 | cpumask_clear_cpu(cpu, &mask); |
| 2839 | |
| 2840 | for_each_cpu(tcpu, &mask) { |
| 2841 | if (!cpu_distance_fn || |
| 2842 | (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && |
| 2843 | cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { |
| 2844 | group_map[tcpu] = group; |
| 2845 | group_cnt[group]++; |
| 2846 | cpumask_clear_cpu(tcpu, &mask); |
| 2847 | } |
| 2848 | } |
| 2849 | } |
| 2850 | nr_groups = group; |
| 2851 | |
| 2852 | /* |
| 2853 | * Wasted space is caused by a ratio imbalance of upa to group_cnt. |
| 2854 | * Expand the unit_size until we use >= 75% of the units allocated. |
| 2855 | * Related to atom_size, which could be much larger than the unit_size. |
| 2856 | */ |
| 2857 | last_allocs = INT_MAX; |
| 2858 | best_upa = 0; |
| 2859 | for (upa = max_upa; upa; upa--) { |
| 2860 | int allocs = 0, wasted = 0; |
| 2861 | |
| 2862 | if (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
| 2863 | continue; |
| 2864 | |
| 2865 | for (group = 0; group < nr_groups; group++) { |
| 2866 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); |
| 2867 | allocs += this_allocs; |
| 2868 | wasted += this_allocs * upa - group_cnt[group]; |
| 2869 | } |
| 2870 | |
| 2871 | /* |
| 2872 | * Don't accept if wastage is over 1/3. The |
| 2873 | * greater-than comparison ensures upa==1 always |
| 2874 | * passes the following check. |
| 2875 | */ |
| 2876 | if (wasted > num_possible_cpus() / 3) |
| 2877 | continue; |
| 2878 | |
| 2879 | /* and then don't consume more memory */ |
| 2880 | if (allocs > last_allocs) |
| 2881 | break; |
| 2882 | last_allocs = allocs; |
| 2883 | best_upa = upa; |
| 2884 | } |
| 2885 | BUG_ON(!best_upa); |
| 2886 | upa = best_upa; |
| 2887 | |
| 2888 | /* allocate and fill alloc_info */ |
| 2889 | for (group = 0; group < nr_groups; group++) |
| 2890 | nr_units += roundup(group_cnt[group], upa); |
| 2891 | |
| 2892 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); |
| 2893 | if (!ai) |
| 2894 | return ERR_PTR(-ENOMEM); |
| 2895 | cpu_map = ai->groups[0].cpu_map; |
| 2896 | |
| 2897 | for (group = 0; group < nr_groups; group++) { |
| 2898 | ai->groups[group].cpu_map = cpu_map; |
| 2899 | cpu_map += roundup(group_cnt[group], upa); |
| 2900 | } |
| 2901 | |
| 2902 | ai->static_size = static_size; |
| 2903 | ai->reserved_size = reserved_size; |
| 2904 | ai->dyn_size = dyn_size; |
| 2905 | ai->unit_size = alloc_size / upa; |
| 2906 | ai->atom_size = atom_size; |
| 2907 | ai->alloc_size = alloc_size; |
| 2908 | |
| 2909 | for (group = 0, unit = 0; group < nr_groups; group++) { |
| 2910 | struct pcpu_group_info *gi = &ai->groups[group]; |
| 2911 | |
| 2912 | /* |
| 2913 | * Initialize base_offset as if all groups are located |
| 2914 | * back-to-back. The caller should update this to |
| 2915 | * reflect actual allocation. |
| 2916 | */ |
| 2917 | gi->base_offset = unit * ai->unit_size; |
| 2918 | |
| 2919 | for_each_possible_cpu(cpu) |
| 2920 | if (group_map[cpu] == group) |
| 2921 | gi->cpu_map[gi->nr_units++] = cpu; |
| 2922 | gi->nr_units = roundup(gi->nr_units, upa); |
| 2923 | unit += gi->nr_units; |
| 2924 | } |
| 2925 | BUG_ON(unit != nr_units); |
| 2926 | |
| 2927 | return ai; |
| 2928 | } |
| 2929 | |
| 2930 | static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align, |
| 2931 | pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) |
| 2932 | { |
| 2933 | const unsigned long goal = __pa(MAX_DMA_ADDRESS); |
| 2934 | #ifdef CONFIG_NUMA |
| 2935 | int node = NUMA_NO_NODE; |
| 2936 | void *ptr; |
| 2937 | |
| 2938 | if (cpu_to_nd_fn) |
| 2939 | node = cpu_to_nd_fn(cpu); |
| 2940 | |
| 2941 | if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) { |
| 2942 | ptr = memblock_alloc_from(size, align, goal); |
| 2943 | pr_info("cpu %d has no node %d or node-local memory\n", |
| 2944 | cpu, node); |
| 2945 | pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n", |
| 2946 | cpu, size, (u64)__pa(ptr)); |
| 2947 | } else { |
| 2948 | ptr = memblock_alloc_try_nid(size, align, goal, |
| 2949 | MEMBLOCK_ALLOC_ACCESSIBLE, |
| 2950 | node); |
| 2951 | |
| 2952 | pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n", |
| 2953 | cpu, size, node, (u64)__pa(ptr)); |
| 2954 | } |
| 2955 | return ptr; |
| 2956 | #else |
| 2957 | return memblock_alloc_from(size, align, goal); |
| 2958 | #endif |
| 2959 | } |
| 2960 | |
| 2961 | static void __init pcpu_fc_free(void *ptr, size_t size) |
| 2962 | { |
| 2963 | memblock_free(ptr, size); |
| 2964 | } |
| 2965 | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ |
| 2966 | |
| 2967 | #if defined(BUILD_EMBED_FIRST_CHUNK) |
| 2968 | /** |
| 2969 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem |
| 2970 | * @reserved_size: the size of reserved percpu area in bytes |
| 2971 | * @dyn_size: minimum free size for dynamic allocation in bytes |
| 2972 | * @atom_size: allocation atom size |
| 2973 | * @cpu_distance_fn: callback to determine distance between cpus, optional |
| 2974 | * @cpu_to_nd_fn: callback to convert cpu to it's node, optional |
| 2975 | * |
| 2976 | * This is a helper to ease setting up embedded first percpu chunk and |
| 2977 | * can be called where pcpu_setup_first_chunk() is expected. |
| 2978 | * |
| 2979 | * If this function is used to setup the first chunk, it is allocated |
| 2980 | * by calling pcpu_fc_alloc and used as-is without being mapped into |
| 2981 | * vmalloc area. Allocations are always whole multiples of @atom_size |
| 2982 | * aligned to @atom_size. |
| 2983 | * |
| 2984 | * This enables the first chunk to piggy back on the linear physical |
| 2985 | * mapping which often uses larger page size. Please note that this |
| 2986 | * can result in very sparse cpu->unit mapping on NUMA machines thus |
| 2987 | * requiring large vmalloc address space. Don't use this allocator if |
| 2988 | * vmalloc space is not orders of magnitude larger than distances |
| 2989 | * between node memory addresses (ie. 32bit NUMA machines). |
| 2990 | * |
| 2991 | * @dyn_size specifies the minimum dynamic area size. |
| 2992 | * |
| 2993 | * If the needed size is smaller than the minimum or specified unit |
| 2994 | * size, the leftover is returned using pcpu_fc_free. |
| 2995 | * |
| 2996 | * RETURNS: |
| 2997 | * 0 on success, -errno on failure. |
| 2998 | */ |
| 2999 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
| 3000 | size_t atom_size, |
| 3001 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, |
| 3002 | pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) |
| 3003 | { |
| 3004 | void *base = (void *)ULONG_MAX; |
| 3005 | void **areas = NULL; |
| 3006 | struct pcpu_alloc_info *ai; |
| 3007 | size_t size_sum, areas_size; |
| 3008 | unsigned long max_distance; |
| 3009 | int group, i, highest_group, rc = 0; |
| 3010 | |
| 3011 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, |
| 3012 | cpu_distance_fn); |
| 3013 | if (IS_ERR(ai)) |
| 3014 | return PTR_ERR(ai); |
| 3015 | |
| 3016 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
| 3017 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); |
| 3018 | |
| 3019 | areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); |
| 3020 | if (!areas) { |
| 3021 | rc = -ENOMEM; |
| 3022 | goto out_free; |
| 3023 | } |
| 3024 | |
| 3025 | /* allocate, copy and determine base address & max_distance */ |
| 3026 | highest_group = 0; |
| 3027 | for (group = 0; group < ai->nr_groups; group++) { |
| 3028 | struct pcpu_group_info *gi = &ai->groups[group]; |
| 3029 | unsigned int cpu = NR_CPUS; |
| 3030 | void *ptr; |
| 3031 | |
| 3032 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) |
| 3033 | cpu = gi->cpu_map[i]; |
| 3034 | BUG_ON(cpu == NR_CPUS); |
| 3035 | |
| 3036 | /* allocate space for the whole group */ |
| 3037 | ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn); |
| 3038 | if (!ptr) { |
| 3039 | rc = -ENOMEM; |
| 3040 | goto out_free_areas; |
| 3041 | } |
| 3042 | /* kmemleak tracks the percpu allocations separately */ |
| 3043 | kmemleak_ignore_phys(__pa(ptr)); |
| 3044 | areas[group] = ptr; |
| 3045 | |
| 3046 | base = min(ptr, base); |
| 3047 | if (ptr > areas[highest_group]) |
| 3048 | highest_group = group; |
| 3049 | } |
| 3050 | max_distance = areas[highest_group] - base; |
| 3051 | max_distance += ai->unit_size * ai->groups[highest_group].nr_units; |
| 3052 | |
| 3053 | /* warn if maximum distance is further than 75% of vmalloc space */ |
| 3054 | if (max_distance > VMALLOC_TOTAL * 3 / 4) { |
| 3055 | pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", |
| 3056 | max_distance, VMALLOC_TOTAL); |
| 3057 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK |
| 3058 | /* and fail if we have fallback */ |
| 3059 | rc = -EINVAL; |
| 3060 | goto out_free_areas; |
| 3061 | #endif |
| 3062 | } |
| 3063 | |
| 3064 | /* |
| 3065 | * Copy data and free unused parts. This should happen after all |
| 3066 | * allocations are complete; otherwise, we may end up with |
| 3067 | * overlapping groups. |
| 3068 | */ |
| 3069 | for (group = 0; group < ai->nr_groups; group++) { |
| 3070 | struct pcpu_group_info *gi = &ai->groups[group]; |
| 3071 | void *ptr = areas[group]; |
| 3072 | |
| 3073 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { |
| 3074 | if (gi->cpu_map[i] == NR_CPUS) { |
| 3075 | /* unused unit, free whole */ |
| 3076 | pcpu_fc_free(ptr, ai->unit_size); |
| 3077 | continue; |
| 3078 | } |
| 3079 | /* copy and return the unused part */ |
| 3080 | memcpy(ptr, __per_cpu_start, ai->static_size); |
| 3081 | pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum); |
| 3082 | } |
| 3083 | } |
| 3084 | |
| 3085 | /* base address is now known, determine group base offsets */ |
| 3086 | for (group = 0; group < ai->nr_groups; group++) { |
| 3087 | ai->groups[group].base_offset = areas[group] - base; |
| 3088 | } |
| 3089 | |
| 3090 | pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", |
| 3091 | PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, |
| 3092 | ai->dyn_size, ai->unit_size); |
| 3093 | |
| 3094 | pcpu_setup_first_chunk(ai, base); |
| 3095 | goto out_free; |
| 3096 | |
| 3097 | out_free_areas: |
| 3098 | for (group = 0; group < ai->nr_groups; group++) |
| 3099 | if (areas[group]) |
| 3100 | pcpu_fc_free(areas[group], |
| 3101 | ai->groups[group].nr_units * ai->unit_size); |
| 3102 | out_free: |
| 3103 | pcpu_free_alloc_info(ai); |
| 3104 | if (areas) |
| 3105 | memblock_free(areas, areas_size); |
| 3106 | return rc; |
| 3107 | } |
| 3108 | #endif /* BUILD_EMBED_FIRST_CHUNK */ |
| 3109 | |
| 3110 | #ifdef BUILD_PAGE_FIRST_CHUNK |
| 3111 | #include <asm/pgalloc.h> |
| 3112 | |
| 3113 | #ifndef P4D_TABLE_SIZE |
| 3114 | #define P4D_TABLE_SIZE PAGE_SIZE |
| 3115 | #endif |
| 3116 | |
| 3117 | #ifndef PUD_TABLE_SIZE |
| 3118 | #define PUD_TABLE_SIZE PAGE_SIZE |
| 3119 | #endif |
| 3120 | |
| 3121 | #ifndef PMD_TABLE_SIZE |
| 3122 | #define PMD_TABLE_SIZE PAGE_SIZE |
| 3123 | #endif |
| 3124 | |
| 3125 | #ifndef PTE_TABLE_SIZE |
| 3126 | #define PTE_TABLE_SIZE PAGE_SIZE |
| 3127 | #endif |
| 3128 | void __init __weak pcpu_populate_pte(unsigned long addr) |
| 3129 | { |
| 3130 | pgd_t *pgd = pgd_offset_k(addr); |
| 3131 | p4d_t *p4d; |
| 3132 | pud_t *pud; |
| 3133 | pmd_t *pmd; |
| 3134 | |
| 3135 | if (pgd_none(*pgd)) { |
| 3136 | p4d = memblock_alloc_or_panic(P4D_TABLE_SIZE, P4D_TABLE_SIZE); |
| 3137 | pgd_populate(&init_mm, pgd, p4d); |
| 3138 | } |
| 3139 | |
| 3140 | p4d = p4d_offset(pgd, addr); |
| 3141 | if (p4d_none(*p4d)) { |
| 3142 | pud = memblock_alloc_or_panic(PUD_TABLE_SIZE, PUD_TABLE_SIZE); |
| 3143 | p4d_populate(&init_mm, p4d, pud); |
| 3144 | } |
| 3145 | |
| 3146 | pud = pud_offset(p4d, addr); |
| 3147 | if (pud_none(*pud)) { |
| 3148 | pmd = memblock_alloc_or_panic(PMD_TABLE_SIZE, PMD_TABLE_SIZE); |
| 3149 | pud_populate(&init_mm, pud, pmd); |
| 3150 | } |
| 3151 | |
| 3152 | pmd = pmd_offset(pud, addr); |
| 3153 | if (!pmd_present(*pmd)) { |
| 3154 | pte_t *new; |
| 3155 | |
| 3156 | new = memblock_alloc_or_panic(PTE_TABLE_SIZE, PTE_TABLE_SIZE); |
| 3157 | pmd_populate_kernel(&init_mm, pmd, new); |
| 3158 | } |
| 3159 | |
| 3160 | return; |
| 3161 | } |
| 3162 | |
| 3163 | /** |
| 3164 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages |
| 3165 | * @reserved_size: the size of reserved percpu area in bytes |
| 3166 | * @cpu_to_nd_fn: callback to convert cpu to it's node, optional |
| 3167 | * |
| 3168 | * This is a helper to ease setting up page-remapped first percpu |
| 3169 | * chunk and can be called where pcpu_setup_first_chunk() is expected. |
| 3170 | * |
| 3171 | * This is the basic allocator. Static percpu area is allocated |
| 3172 | * page-by-page into vmalloc area. |
| 3173 | * |
| 3174 | * RETURNS: |
| 3175 | * 0 on success, -errno on failure. |
| 3176 | */ |
| 3177 | int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) |
| 3178 | { |
| 3179 | static struct vm_struct vm; |
| 3180 | struct pcpu_alloc_info *ai; |
| 3181 | char psize_str[16]; |
| 3182 | int unit_pages; |
| 3183 | size_t pages_size; |
| 3184 | struct page **pages; |
| 3185 | int unit, i, j, rc = 0; |
| 3186 | int upa; |
| 3187 | int nr_g0_units; |
| 3188 | |
| 3189 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); |
| 3190 | |
| 3191 | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); |
| 3192 | if (IS_ERR(ai)) |
| 3193 | return PTR_ERR(ai); |
| 3194 | BUG_ON(ai->nr_groups != 1); |
| 3195 | upa = ai->alloc_size/ai->unit_size; |
| 3196 | nr_g0_units = roundup(num_possible_cpus(), upa); |
| 3197 | if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { |
| 3198 | pcpu_free_alloc_info(ai); |
| 3199 | return -EINVAL; |
| 3200 | } |
| 3201 | |
| 3202 | unit_pages = ai->unit_size >> PAGE_SHIFT; |
| 3203 | |
| 3204 | /* unaligned allocations can't be freed, round up to page size */ |
| 3205 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * |
| 3206 | sizeof(pages[0])); |
| 3207 | pages = memblock_alloc_or_panic(pages_size, SMP_CACHE_BYTES); |
| 3208 | |
| 3209 | /* allocate pages */ |
| 3210 | j = 0; |
| 3211 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
| 3212 | unsigned int cpu = ai->groups[0].cpu_map[unit]; |
| 3213 | for (i = 0; i < unit_pages; i++) { |
| 3214 | void *ptr; |
| 3215 | |
| 3216 | ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn); |
| 3217 | if (!ptr) { |
| 3218 | pr_warn("failed to allocate %s page for cpu%u\n", |
| 3219 | psize_str, cpu); |
| 3220 | goto enomem; |
| 3221 | } |
| 3222 | /* kmemleak tracks the percpu allocations separately */ |
| 3223 | kmemleak_ignore_phys(__pa(ptr)); |
| 3224 | pages[j++] = virt_to_page(ptr); |
| 3225 | } |
| 3226 | } |
| 3227 | |
| 3228 | /* allocate vm area, map the pages and copy static data */ |
| 3229 | vm.flags = VM_ALLOC; |
| 3230 | vm.size = num_possible_cpus() * ai->unit_size; |
| 3231 | vm_area_register_early(&vm, PAGE_SIZE); |
| 3232 | |
| 3233 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
| 3234 | unsigned long unit_addr = |
| 3235 | (unsigned long)vm.addr + unit * ai->unit_size; |
| 3236 | |
| 3237 | for (i = 0; i < unit_pages; i++) |
| 3238 | pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT)); |
| 3239 | |
| 3240 | /* pte already populated, the following shouldn't fail */ |
| 3241 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], |
| 3242 | unit_pages); |
| 3243 | if (rc < 0) |
| 3244 | panic("failed to map percpu area, err=%d\n", rc); |
| 3245 | |
| 3246 | flush_cache_vmap_early(unit_addr, unit_addr + ai->unit_size); |
| 3247 | |
| 3248 | /* copy static data */ |
| 3249 | memcpy((void *)unit_addr, __per_cpu_start, ai->static_size); |
| 3250 | } |
| 3251 | |
| 3252 | /* we're ready, commit */ |
| 3253 | pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", |
| 3254 | unit_pages, psize_str, ai->static_size, |
| 3255 | ai->reserved_size, ai->dyn_size); |
| 3256 | |
| 3257 | pcpu_setup_first_chunk(ai, vm.addr); |
| 3258 | goto out_free_ar; |
| 3259 | |
| 3260 | enomem: |
| 3261 | while (--j >= 0) |
| 3262 | pcpu_fc_free(page_address(pages[j]), PAGE_SIZE); |
| 3263 | rc = -ENOMEM; |
| 3264 | out_free_ar: |
| 3265 | memblock_free(pages, pages_size); |
| 3266 | pcpu_free_alloc_info(ai); |
| 3267 | return rc; |
| 3268 | } |
| 3269 | #endif /* BUILD_PAGE_FIRST_CHUNK */ |
| 3270 | |
| 3271 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA |
| 3272 | /* |
| 3273 | * Generic SMP percpu area setup. |
| 3274 | * |
| 3275 | * The embedding helper is used because its behavior closely resembles |
| 3276 | * the original non-dynamic generic percpu area setup. This is |
| 3277 | * important because many archs have addressing restrictions and might |
| 3278 | * fail if the percpu area is located far away from the previous |
| 3279 | * location. As an added bonus, in non-NUMA cases, embedding is |
| 3280 | * generally a good idea TLB-wise because percpu area can piggy back |
| 3281 | * on the physical linear memory mapping which uses large page |
| 3282 | * mappings on applicable archs. |
| 3283 | */ |
| 3284 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
| 3285 | EXPORT_SYMBOL(__per_cpu_offset); |
| 3286 | |
| 3287 | void __init setup_per_cpu_areas(void) |
| 3288 | { |
| 3289 | unsigned long delta; |
| 3290 | unsigned int cpu; |
| 3291 | int rc; |
| 3292 | |
| 3293 | /* |
| 3294 | * Always reserve area for module percpu variables. That's |
| 3295 | * what the legacy allocator did. |
| 3296 | */ |
| 3297 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, |
| 3298 | PAGE_SIZE, NULL, NULL); |
| 3299 | if (rc < 0) |
| 3300 | panic("Failed to initialize percpu areas."); |
| 3301 | |
| 3302 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| 3303 | for_each_possible_cpu(cpu) |
| 3304 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
| 3305 | } |
| 3306 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ |
| 3307 | |
| 3308 | #else /* CONFIG_SMP */ |
| 3309 | |
| 3310 | /* |
| 3311 | * UP percpu area setup. |
| 3312 | * |
| 3313 | * UP always uses km-based percpu allocator with identity mapping. |
| 3314 | * Static percpu variables are indistinguishable from the usual static |
| 3315 | * variables and don't require any special preparation. |
| 3316 | */ |
| 3317 | void __init setup_per_cpu_areas(void) |
| 3318 | { |
| 3319 | const size_t unit_size = |
| 3320 | roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, |
| 3321 | PERCPU_DYNAMIC_RESERVE)); |
| 3322 | struct pcpu_alloc_info *ai; |
| 3323 | void *fc; |
| 3324 | |
| 3325 | ai = pcpu_alloc_alloc_info(1, 1); |
| 3326 | fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
| 3327 | if (!ai || !fc) |
| 3328 | panic("Failed to allocate memory for percpu areas."); |
| 3329 | /* kmemleak tracks the percpu allocations separately */ |
| 3330 | kmemleak_ignore_phys(__pa(fc)); |
| 3331 | |
| 3332 | ai->dyn_size = unit_size; |
| 3333 | ai->unit_size = unit_size; |
| 3334 | ai->atom_size = unit_size; |
| 3335 | ai->alloc_size = unit_size; |
| 3336 | ai->groups[0].nr_units = 1; |
| 3337 | ai->groups[0].cpu_map[0] = 0; |
| 3338 | |
| 3339 | pcpu_setup_first_chunk(ai, fc); |
| 3340 | pcpu_free_alloc_info(ai); |
| 3341 | } |
| 3342 | |
| 3343 | #endif /* CONFIG_SMP */ |
| 3344 | |
| 3345 | /* |
| 3346 | * pcpu_nr_pages - calculate total number of populated backing pages |
| 3347 | * |
| 3348 | * This reflects the number of pages populated to back chunks. Metadata is |
| 3349 | * excluded in the number exposed in meminfo as the number of backing pages |
| 3350 | * scales with the number of cpus and can quickly outweigh the memory used for |
| 3351 | * metadata. It also keeps this calculation nice and simple. |
| 3352 | * |
| 3353 | * RETURNS: |
| 3354 | * Total number of populated backing pages in use by the allocator. |
| 3355 | */ |
| 3356 | unsigned long pcpu_nr_pages(void) |
| 3357 | { |
| 3358 | return pcpu_nr_populated * pcpu_nr_units; |
| 3359 | } |
| 3360 | |
| 3361 | /* |
| 3362 | * Percpu allocator is initialized early during boot when neither slab or |
| 3363 | * workqueue is available. Plug async management until everything is up |
| 3364 | * and running. |
| 3365 | */ |
| 3366 | static int __init percpu_enable_async(void) |
| 3367 | { |
| 3368 | pcpu_async_enabled = true; |
| 3369 | return 0; |
| 3370 | } |
| 3371 | subsys_initcall(percpu_enable_async); |