| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/mm/page_alloc.c |
| 4 | * |
| 5 | * Manages the free list, the system allocates free pages here. |
| 6 | * Note that kmalloc() lives in slab.c |
| 7 | * |
| 8 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 9 | * Swap reorganised 29.12.95, Stephen Tweedie |
| 10 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
| 11 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 |
| 12 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
| 13 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 |
| 14 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 |
| 15 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) |
| 16 | */ |
| 17 | |
| 18 | #include <linux/stddef.h> |
| 19 | #include <linux/mm.h> |
| 20 | #include <linux/highmem.h> |
| 21 | #include <linux/interrupt.h> |
| 22 | #include <linux/jiffies.h> |
| 23 | #include <linux/compiler.h> |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/kasan.h> |
| 26 | #include <linux/kmsan.h> |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/suspend.h> |
| 29 | #include <linux/ratelimit.h> |
| 30 | #include <linux/oom.h> |
| 31 | #include <linux/topology.h> |
| 32 | #include <linux/sysctl.h> |
| 33 | #include <linux/cpu.h> |
| 34 | #include <linux/cpuset.h> |
| 35 | #include <linux/pagevec.h> |
| 36 | #include <linux/memory_hotplug.h> |
| 37 | #include <linux/nodemask.h> |
| 38 | #include <linux/vmstat.h> |
| 39 | #include <linux/fault-inject.h> |
| 40 | #include <linux/compaction.h> |
| 41 | #include <trace/events/kmem.h> |
| 42 | #include <trace/events/oom.h> |
| 43 | #include <linux/prefetch.h> |
| 44 | #include <linux/mm_inline.h> |
| 45 | #include <linux/mmu_notifier.h> |
| 46 | #include <linux/migrate.h> |
| 47 | #include <linux/sched/mm.h> |
| 48 | #include <linux/page_owner.h> |
| 49 | #include <linux/page_table_check.h> |
| 50 | #include <linux/memcontrol.h> |
| 51 | #include <linux/ftrace.h> |
| 52 | #include <linux/lockdep.h> |
| 53 | #include <linux/psi.h> |
| 54 | #include <linux/khugepaged.h> |
| 55 | #include <linux/delayacct.h> |
| 56 | #include <linux/cacheinfo.h> |
| 57 | #include <linux/pgalloc_tag.h> |
| 58 | #include <asm/div64.h> |
| 59 | #include "internal.h" |
| 60 | #include "shuffle.h" |
| 61 | #include "page_reporting.h" |
| 62 | |
| 63 | /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ |
| 64 | typedef int __bitwise fpi_t; |
| 65 | |
| 66 | /* No special request */ |
| 67 | #define FPI_NONE ((__force fpi_t)0) |
| 68 | |
| 69 | /* |
| 70 | * Skip free page reporting notification for the (possibly merged) page. |
| 71 | * This does not hinder free page reporting from grabbing the page, |
| 72 | * reporting it and marking it "reported" - it only skips notifying |
| 73 | * the free page reporting infrastructure about a newly freed page. For |
| 74 | * example, used when temporarily pulling a page from a freelist and |
| 75 | * putting it back unmodified. |
| 76 | */ |
| 77 | #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) |
| 78 | |
| 79 | /* |
| 80 | * Place the (possibly merged) page to the tail of the freelist. Will ignore |
| 81 | * page shuffling (relevant code - e.g., memory onlining - is expected to |
| 82 | * shuffle the whole zone). |
| 83 | * |
| 84 | * Note: No code should rely on this flag for correctness - it's purely |
| 85 | * to allow for optimizations when handing back either fresh pages |
| 86 | * (memory onlining) or untouched pages (page isolation, free page |
| 87 | * reporting). |
| 88 | */ |
| 89 | #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) |
| 90 | |
| 91 | /* Free the page without taking locks. Rely on trylock only. */ |
| 92 | #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) |
| 93 | |
| 94 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
| 95 | static DEFINE_MUTEX(pcp_batch_high_lock); |
| 96 | #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) |
| 97 | |
| 98 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) |
| 99 | /* |
| 100 | * On SMP, spin_trylock is sufficient protection. |
| 101 | * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. |
| 102 | */ |
| 103 | #define pcp_trylock_prepare(flags) do { } while (0) |
| 104 | #define pcp_trylock_finish(flag) do { } while (0) |
| 105 | #else |
| 106 | |
| 107 | /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ |
| 108 | #define pcp_trylock_prepare(flags) local_irq_save(flags) |
| 109 | #define pcp_trylock_finish(flags) local_irq_restore(flags) |
| 110 | #endif |
| 111 | |
| 112 | /* |
| 113 | * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid |
| 114 | * a migration causing the wrong PCP to be locked and remote memory being |
| 115 | * potentially allocated, pin the task to the CPU for the lookup+lock. |
| 116 | * preempt_disable is used on !RT because it is faster than migrate_disable. |
| 117 | * migrate_disable is used on RT because otherwise RT spinlock usage is |
| 118 | * interfered with and a high priority task cannot preempt the allocator. |
| 119 | */ |
| 120 | #ifndef CONFIG_PREEMPT_RT |
| 121 | #define pcpu_task_pin() preempt_disable() |
| 122 | #define pcpu_task_unpin() preempt_enable() |
| 123 | #else |
| 124 | #define pcpu_task_pin() migrate_disable() |
| 125 | #define pcpu_task_unpin() migrate_enable() |
| 126 | #endif |
| 127 | |
| 128 | /* |
| 129 | * Generic helper to lookup and a per-cpu variable with an embedded spinlock. |
| 130 | * Return value should be used with equivalent unlock helper. |
| 131 | */ |
| 132 | #define pcpu_spin_lock(type, member, ptr) \ |
| 133 | ({ \ |
| 134 | type *_ret; \ |
| 135 | pcpu_task_pin(); \ |
| 136 | _ret = this_cpu_ptr(ptr); \ |
| 137 | spin_lock(&_ret->member); \ |
| 138 | _ret; \ |
| 139 | }) |
| 140 | |
| 141 | #define pcpu_spin_trylock(type, member, ptr) \ |
| 142 | ({ \ |
| 143 | type *_ret; \ |
| 144 | pcpu_task_pin(); \ |
| 145 | _ret = this_cpu_ptr(ptr); \ |
| 146 | if (!spin_trylock(&_ret->member)) { \ |
| 147 | pcpu_task_unpin(); \ |
| 148 | _ret = NULL; \ |
| 149 | } \ |
| 150 | _ret; \ |
| 151 | }) |
| 152 | |
| 153 | #define pcpu_spin_unlock(member, ptr) \ |
| 154 | ({ \ |
| 155 | spin_unlock(&ptr->member); \ |
| 156 | pcpu_task_unpin(); \ |
| 157 | }) |
| 158 | |
| 159 | /* struct per_cpu_pages specific helpers. */ |
| 160 | #define pcp_spin_lock(ptr) \ |
| 161 | pcpu_spin_lock(struct per_cpu_pages, lock, ptr) |
| 162 | |
| 163 | #define pcp_spin_trylock(ptr) \ |
| 164 | pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) |
| 165 | |
| 166 | #define pcp_spin_unlock(ptr) \ |
| 167 | pcpu_spin_unlock(lock, ptr) |
| 168 | |
| 169 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
| 170 | DEFINE_PER_CPU(int, numa_node); |
| 171 | EXPORT_PER_CPU_SYMBOL(numa_node); |
| 172 | #endif |
| 173 | |
| 174 | DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); |
| 175 | |
| 176 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| 177 | /* |
| 178 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. |
| 179 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. |
| 180 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() |
| 181 | * defined in <linux/topology.h>. |
| 182 | */ |
| 183 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ |
| 184 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); |
| 185 | #endif |
| 186 | |
| 187 | static DEFINE_MUTEX(pcpu_drain_mutex); |
| 188 | |
| 189 | #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY |
| 190 | volatile unsigned long latent_entropy __latent_entropy; |
| 191 | EXPORT_SYMBOL(latent_entropy); |
| 192 | #endif |
| 193 | |
| 194 | /* |
| 195 | * Array of node states. |
| 196 | */ |
| 197 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
| 198 | [N_POSSIBLE] = NODE_MASK_ALL, |
| 199 | [N_ONLINE] = { { [0] = 1UL } }, |
| 200 | #ifndef CONFIG_NUMA |
| 201 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, |
| 202 | #ifdef CONFIG_HIGHMEM |
| 203 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, |
| 204 | #endif |
| 205 | [N_MEMORY] = { { [0] = 1UL } }, |
| 206 | [N_CPU] = { { [0] = 1UL } }, |
| 207 | #endif /* NUMA */ |
| 208 | }; |
| 209 | EXPORT_SYMBOL(node_states); |
| 210 | |
| 211 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
| 212 | |
| 213 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
| 214 | unsigned int pageblock_order __read_mostly; |
| 215 | #endif |
| 216 | |
| 217 | static void __free_pages_ok(struct page *page, unsigned int order, |
| 218 | fpi_t fpi_flags); |
| 219 | |
| 220 | /* |
| 221 | * results with 256, 32 in the lowmem_reserve sysctl: |
| 222 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) |
| 223 | * 1G machine -> (16M dma, 784M normal, 224M high) |
| 224 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA |
| 225 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL |
| 226 | * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
| 227 | * |
| 228 | * TBD: should special case ZONE_DMA32 machines here - in those we normally |
| 229 | * don't need any ZONE_NORMAL reservation |
| 230 | */ |
| 231 | static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { |
| 232 | #ifdef CONFIG_ZONE_DMA |
| 233 | [ZONE_DMA] = 256, |
| 234 | #endif |
| 235 | #ifdef CONFIG_ZONE_DMA32 |
| 236 | [ZONE_DMA32] = 256, |
| 237 | #endif |
| 238 | [ZONE_NORMAL] = 32, |
| 239 | #ifdef CONFIG_HIGHMEM |
| 240 | [ZONE_HIGHMEM] = 0, |
| 241 | #endif |
| 242 | [ZONE_MOVABLE] = 0, |
| 243 | }; |
| 244 | |
| 245 | char * const zone_names[MAX_NR_ZONES] = { |
| 246 | #ifdef CONFIG_ZONE_DMA |
| 247 | "DMA", |
| 248 | #endif |
| 249 | #ifdef CONFIG_ZONE_DMA32 |
| 250 | "DMA32", |
| 251 | #endif |
| 252 | "Normal", |
| 253 | #ifdef CONFIG_HIGHMEM |
| 254 | "HighMem", |
| 255 | #endif |
| 256 | "Movable", |
| 257 | #ifdef CONFIG_ZONE_DEVICE |
| 258 | "Device", |
| 259 | #endif |
| 260 | }; |
| 261 | |
| 262 | const char * const migratetype_names[MIGRATE_TYPES] = { |
| 263 | "Unmovable", |
| 264 | "Movable", |
| 265 | "Reclaimable", |
| 266 | "HighAtomic", |
| 267 | #ifdef CONFIG_CMA |
| 268 | "CMA", |
| 269 | #endif |
| 270 | #ifdef CONFIG_MEMORY_ISOLATION |
| 271 | "Isolate", |
| 272 | #endif |
| 273 | }; |
| 274 | |
| 275 | int min_free_kbytes = 1024; |
| 276 | int user_min_free_kbytes = -1; |
| 277 | static int watermark_boost_factor __read_mostly = 15000; |
| 278 | static int watermark_scale_factor = 10; |
| 279 | int defrag_mode; |
| 280 | |
| 281 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ |
| 282 | int movable_zone; |
| 283 | EXPORT_SYMBOL(movable_zone); |
| 284 | |
| 285 | #if MAX_NUMNODES > 1 |
| 286 | unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; |
| 287 | unsigned int nr_online_nodes __read_mostly = 1; |
| 288 | EXPORT_SYMBOL(nr_node_ids); |
| 289 | EXPORT_SYMBOL(nr_online_nodes); |
| 290 | #endif |
| 291 | |
| 292 | static bool page_contains_unaccepted(struct page *page, unsigned int order); |
| 293 | static bool cond_accept_memory(struct zone *zone, unsigned int order, |
| 294 | int alloc_flags); |
| 295 | static bool __free_unaccepted(struct page *page); |
| 296 | |
| 297 | int page_group_by_mobility_disabled __read_mostly; |
| 298 | |
| 299 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| 300 | /* |
| 301 | * During boot we initialize deferred pages on-demand, as needed, but once |
| 302 | * page_alloc_init_late() has finished, the deferred pages are all initialized, |
| 303 | * and we can permanently disable that path. |
| 304 | */ |
| 305 | DEFINE_STATIC_KEY_TRUE(deferred_pages); |
| 306 | |
| 307 | static inline bool deferred_pages_enabled(void) |
| 308 | { |
| 309 | return static_branch_unlikely(&deferred_pages); |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * deferred_grow_zone() is __init, but it is called from |
| 314 | * get_page_from_freelist() during early boot until deferred_pages permanently |
| 315 | * disables this call. This is why we have refdata wrapper to avoid warning, |
| 316 | * and to ensure that the function body gets unloaded. |
| 317 | */ |
| 318 | static bool __ref |
| 319 | _deferred_grow_zone(struct zone *zone, unsigned int order) |
| 320 | { |
| 321 | return deferred_grow_zone(zone, order); |
| 322 | } |
| 323 | #else |
| 324 | static inline bool deferred_pages_enabled(void) |
| 325 | { |
| 326 | return false; |
| 327 | } |
| 328 | |
| 329 | static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) |
| 330 | { |
| 331 | return false; |
| 332 | } |
| 333 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| 334 | |
| 335 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
| 336 | static inline unsigned long *get_pageblock_bitmap(const struct page *page, |
| 337 | unsigned long pfn) |
| 338 | { |
| 339 | #ifdef CONFIG_SPARSEMEM |
| 340 | return section_to_usemap(__pfn_to_section(pfn)); |
| 341 | #else |
| 342 | return page_zone(page)->pageblock_flags; |
| 343 | #endif /* CONFIG_SPARSEMEM */ |
| 344 | } |
| 345 | |
| 346 | static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) |
| 347 | { |
| 348 | #ifdef CONFIG_SPARSEMEM |
| 349 | pfn &= (PAGES_PER_SECTION-1); |
| 350 | #else |
| 351 | pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); |
| 352 | #endif /* CONFIG_SPARSEMEM */ |
| 353 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
| 354 | } |
| 355 | |
| 356 | /** |
| 357 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages |
| 358 | * @page: The page within the block of interest |
| 359 | * @pfn: The target page frame number |
| 360 | * @mask: mask of bits that the caller is interested in |
| 361 | * |
| 362 | * Return: pageblock_bits flags |
| 363 | */ |
| 364 | unsigned long get_pfnblock_flags_mask(const struct page *page, |
| 365 | unsigned long pfn, unsigned long mask) |
| 366 | { |
| 367 | unsigned long *bitmap; |
| 368 | unsigned long bitidx, word_bitidx; |
| 369 | unsigned long word; |
| 370 | |
| 371 | bitmap = get_pageblock_bitmap(page, pfn); |
| 372 | bitidx = pfn_to_bitidx(page, pfn); |
| 373 | word_bitidx = bitidx / BITS_PER_LONG; |
| 374 | bitidx &= (BITS_PER_LONG-1); |
| 375 | /* |
| 376 | * This races, without locks, with set_pfnblock_flags_mask(). Ensure |
| 377 | * a consistent read of the memory array, so that results, even though |
| 378 | * racy, are not corrupted. |
| 379 | */ |
| 380 | word = READ_ONCE(bitmap[word_bitidx]); |
| 381 | return (word >> bitidx) & mask; |
| 382 | } |
| 383 | |
| 384 | static __always_inline int get_pfnblock_migratetype(const struct page *page, |
| 385 | unsigned long pfn) |
| 386 | { |
| 387 | return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); |
| 388 | } |
| 389 | |
| 390 | /** |
| 391 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages |
| 392 | * @page: The page within the block of interest |
| 393 | * @flags: The flags to set |
| 394 | * @pfn: The target page frame number |
| 395 | * @mask: mask of bits that the caller is interested in |
| 396 | */ |
| 397 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, |
| 398 | unsigned long pfn, |
| 399 | unsigned long mask) |
| 400 | { |
| 401 | unsigned long *bitmap; |
| 402 | unsigned long bitidx, word_bitidx; |
| 403 | unsigned long word; |
| 404 | |
| 405 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); |
| 406 | BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); |
| 407 | |
| 408 | bitmap = get_pageblock_bitmap(page, pfn); |
| 409 | bitidx = pfn_to_bitidx(page, pfn); |
| 410 | word_bitidx = bitidx / BITS_PER_LONG; |
| 411 | bitidx &= (BITS_PER_LONG-1); |
| 412 | |
| 413 | VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); |
| 414 | |
| 415 | mask <<= bitidx; |
| 416 | flags <<= bitidx; |
| 417 | |
| 418 | word = READ_ONCE(bitmap[word_bitidx]); |
| 419 | do { |
| 420 | } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); |
| 421 | } |
| 422 | |
| 423 | void set_pageblock_migratetype(struct page *page, int migratetype) |
| 424 | { |
| 425 | if (unlikely(page_group_by_mobility_disabled && |
| 426 | migratetype < MIGRATE_PCPTYPES)) |
| 427 | migratetype = MIGRATE_UNMOVABLE; |
| 428 | |
| 429 | set_pfnblock_flags_mask(page, (unsigned long)migratetype, |
| 430 | page_to_pfn(page), MIGRATETYPE_MASK); |
| 431 | } |
| 432 | |
| 433 | #ifdef CONFIG_DEBUG_VM |
| 434 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
| 435 | { |
| 436 | int ret; |
| 437 | unsigned seq; |
| 438 | unsigned long pfn = page_to_pfn(page); |
| 439 | unsigned long sp, start_pfn; |
| 440 | |
| 441 | do { |
| 442 | seq = zone_span_seqbegin(zone); |
| 443 | start_pfn = zone->zone_start_pfn; |
| 444 | sp = zone->spanned_pages; |
| 445 | ret = !zone_spans_pfn(zone, pfn); |
| 446 | } while (zone_span_seqretry(zone, seq)); |
| 447 | |
| 448 | if (ret) |
| 449 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
| 450 | pfn, zone_to_nid(zone), zone->name, |
| 451 | start_pfn, start_pfn + sp); |
| 452 | |
| 453 | return ret; |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * Temporary debugging check for pages not lying within a given zone. |
| 458 | */ |
| 459 | static bool __maybe_unused bad_range(struct zone *zone, struct page *page) |
| 460 | { |
| 461 | if (page_outside_zone_boundaries(zone, page)) |
| 462 | return true; |
| 463 | if (zone != page_zone(page)) |
| 464 | return true; |
| 465 | |
| 466 | return false; |
| 467 | } |
| 468 | #else |
| 469 | static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) |
| 470 | { |
| 471 | return false; |
| 472 | } |
| 473 | #endif |
| 474 | |
| 475 | static void bad_page(struct page *page, const char *reason) |
| 476 | { |
| 477 | static unsigned long resume; |
| 478 | static unsigned long nr_shown; |
| 479 | static unsigned long nr_unshown; |
| 480 | |
| 481 | /* |
| 482 | * Allow a burst of 60 reports, then keep quiet for that minute; |
| 483 | * or allow a steady drip of one report per second. |
| 484 | */ |
| 485 | if (nr_shown == 60) { |
| 486 | if (time_before(jiffies, resume)) { |
| 487 | nr_unshown++; |
| 488 | goto out; |
| 489 | } |
| 490 | if (nr_unshown) { |
| 491 | pr_alert( |
| 492 | "BUG: Bad page state: %lu messages suppressed\n", |
| 493 | nr_unshown); |
| 494 | nr_unshown = 0; |
| 495 | } |
| 496 | nr_shown = 0; |
| 497 | } |
| 498 | if (nr_shown++ == 0) |
| 499 | resume = jiffies + 60 * HZ; |
| 500 | |
| 501 | pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", |
| 502 | current->comm, page_to_pfn(page)); |
| 503 | dump_page(page, reason); |
| 504 | |
| 505 | print_modules(); |
| 506 | dump_stack(); |
| 507 | out: |
| 508 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
| 509 | if (PageBuddy(page)) |
| 510 | __ClearPageBuddy(page); |
| 511 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
| 512 | } |
| 513 | |
| 514 | static inline unsigned int order_to_pindex(int migratetype, int order) |
| 515 | { |
| 516 | |
| 517 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 518 | bool movable; |
| 519 | if (order > PAGE_ALLOC_COSTLY_ORDER) { |
| 520 | VM_BUG_ON(order != HPAGE_PMD_ORDER); |
| 521 | |
| 522 | movable = migratetype == MIGRATE_MOVABLE; |
| 523 | |
| 524 | return NR_LOWORDER_PCP_LISTS + movable; |
| 525 | } |
| 526 | #else |
| 527 | VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); |
| 528 | #endif |
| 529 | |
| 530 | return (MIGRATE_PCPTYPES * order) + migratetype; |
| 531 | } |
| 532 | |
| 533 | static inline int pindex_to_order(unsigned int pindex) |
| 534 | { |
| 535 | int order = pindex / MIGRATE_PCPTYPES; |
| 536 | |
| 537 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 538 | if (pindex >= NR_LOWORDER_PCP_LISTS) |
| 539 | order = HPAGE_PMD_ORDER; |
| 540 | #else |
| 541 | VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); |
| 542 | #endif |
| 543 | |
| 544 | return order; |
| 545 | } |
| 546 | |
| 547 | static inline bool pcp_allowed_order(unsigned int order) |
| 548 | { |
| 549 | if (order <= PAGE_ALLOC_COSTLY_ORDER) |
| 550 | return true; |
| 551 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 552 | if (order == HPAGE_PMD_ORDER) |
| 553 | return true; |
| 554 | #endif |
| 555 | return false; |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | * Higher-order pages are called "compound pages". They are structured thusly: |
| 560 | * |
| 561 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
| 562 | * |
| 563 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
| 564 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. |
| 565 | * |
| 566 | * The first tail page's ->compound_order holds the order of allocation. |
| 567 | * This usage means that zero-order pages may not be compound. |
| 568 | */ |
| 569 | |
| 570 | void prep_compound_page(struct page *page, unsigned int order) |
| 571 | { |
| 572 | int i; |
| 573 | int nr_pages = 1 << order; |
| 574 | |
| 575 | __SetPageHead(page); |
| 576 | for (i = 1; i < nr_pages; i++) |
| 577 | prep_compound_tail(page, i); |
| 578 | |
| 579 | prep_compound_head(page, order); |
| 580 | } |
| 581 | |
| 582 | static inline void set_buddy_order(struct page *page, unsigned int order) |
| 583 | { |
| 584 | set_page_private(page, order); |
| 585 | __SetPageBuddy(page); |
| 586 | } |
| 587 | |
| 588 | #ifdef CONFIG_COMPACTION |
| 589 | static inline struct capture_control *task_capc(struct zone *zone) |
| 590 | { |
| 591 | struct capture_control *capc = current->capture_control; |
| 592 | |
| 593 | return unlikely(capc) && |
| 594 | !(current->flags & PF_KTHREAD) && |
| 595 | !capc->page && |
| 596 | capc->cc->zone == zone ? capc : NULL; |
| 597 | } |
| 598 | |
| 599 | static inline bool |
| 600 | compaction_capture(struct capture_control *capc, struct page *page, |
| 601 | int order, int migratetype) |
| 602 | { |
| 603 | if (!capc || order != capc->cc->order) |
| 604 | return false; |
| 605 | |
| 606 | /* Do not accidentally pollute CMA or isolated regions*/ |
| 607 | if (is_migrate_cma(migratetype) || |
| 608 | is_migrate_isolate(migratetype)) |
| 609 | return false; |
| 610 | |
| 611 | /* |
| 612 | * Do not let lower order allocations pollute a movable pageblock |
| 613 | * unless compaction is also requesting movable pages. |
| 614 | * This might let an unmovable request use a reclaimable pageblock |
| 615 | * and vice-versa but no more than normal fallback logic which can |
| 616 | * have trouble finding a high-order free page. |
| 617 | */ |
| 618 | if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && |
| 619 | capc->cc->migratetype != MIGRATE_MOVABLE) |
| 620 | return false; |
| 621 | |
| 622 | if (migratetype != capc->cc->migratetype) |
| 623 | trace_mm_page_alloc_extfrag(page, capc->cc->order, order, |
| 624 | capc->cc->migratetype, migratetype); |
| 625 | |
| 626 | capc->page = page; |
| 627 | return true; |
| 628 | } |
| 629 | |
| 630 | #else |
| 631 | static inline struct capture_control *task_capc(struct zone *zone) |
| 632 | { |
| 633 | return NULL; |
| 634 | } |
| 635 | |
| 636 | static inline bool |
| 637 | compaction_capture(struct capture_control *capc, struct page *page, |
| 638 | int order, int migratetype) |
| 639 | { |
| 640 | return false; |
| 641 | } |
| 642 | #endif /* CONFIG_COMPACTION */ |
| 643 | |
| 644 | static inline void account_freepages(struct zone *zone, int nr_pages, |
| 645 | int migratetype) |
| 646 | { |
| 647 | lockdep_assert_held(&zone->lock); |
| 648 | |
| 649 | if (is_migrate_isolate(migratetype)) |
| 650 | return; |
| 651 | |
| 652 | __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); |
| 653 | |
| 654 | if (is_migrate_cma(migratetype)) |
| 655 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); |
| 656 | else if (is_migrate_highatomic(migratetype)) |
| 657 | WRITE_ONCE(zone->nr_free_highatomic, |
| 658 | zone->nr_free_highatomic + nr_pages); |
| 659 | } |
| 660 | |
| 661 | /* Used for pages not on another list */ |
| 662 | static inline void __add_to_free_list(struct page *page, struct zone *zone, |
| 663 | unsigned int order, int migratetype, |
| 664 | bool tail) |
| 665 | { |
| 666 | struct free_area *area = &zone->free_area[order]; |
| 667 | int nr_pages = 1 << order; |
| 668 | |
| 669 | VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, |
| 670 | "page type is %lu, passed migratetype is %d (nr=%d)\n", |
| 671 | get_pageblock_migratetype(page), migratetype, nr_pages); |
| 672 | |
| 673 | if (tail) |
| 674 | list_add_tail(&page->buddy_list, &area->free_list[migratetype]); |
| 675 | else |
| 676 | list_add(&page->buddy_list, &area->free_list[migratetype]); |
| 677 | area->nr_free++; |
| 678 | |
| 679 | if (order >= pageblock_order && !is_migrate_isolate(migratetype)) |
| 680 | __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); |
| 681 | } |
| 682 | |
| 683 | /* |
| 684 | * Used for pages which are on another list. Move the pages to the tail |
| 685 | * of the list - so the moved pages won't immediately be considered for |
| 686 | * allocation again (e.g., optimization for memory onlining). |
| 687 | */ |
| 688 | static inline void move_to_free_list(struct page *page, struct zone *zone, |
| 689 | unsigned int order, int old_mt, int new_mt) |
| 690 | { |
| 691 | struct free_area *area = &zone->free_area[order]; |
| 692 | int nr_pages = 1 << order; |
| 693 | |
| 694 | /* Free page moving can fail, so it happens before the type update */ |
| 695 | VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, |
| 696 | "page type is %lu, passed migratetype is %d (nr=%d)\n", |
| 697 | get_pageblock_migratetype(page), old_mt, nr_pages); |
| 698 | |
| 699 | list_move_tail(&page->buddy_list, &area->free_list[new_mt]); |
| 700 | |
| 701 | account_freepages(zone, -nr_pages, old_mt); |
| 702 | account_freepages(zone, nr_pages, new_mt); |
| 703 | |
| 704 | if (order >= pageblock_order && |
| 705 | is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { |
| 706 | if (!is_migrate_isolate(old_mt)) |
| 707 | nr_pages = -nr_pages; |
| 708 | __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | static inline void __del_page_from_free_list(struct page *page, struct zone *zone, |
| 713 | unsigned int order, int migratetype) |
| 714 | { |
| 715 | int nr_pages = 1 << order; |
| 716 | |
| 717 | VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, |
| 718 | "page type is %lu, passed migratetype is %d (nr=%d)\n", |
| 719 | get_pageblock_migratetype(page), migratetype, nr_pages); |
| 720 | |
| 721 | /* clear reported state and update reported page count */ |
| 722 | if (page_reported(page)) |
| 723 | __ClearPageReported(page); |
| 724 | |
| 725 | list_del(&page->buddy_list); |
| 726 | __ClearPageBuddy(page); |
| 727 | set_page_private(page, 0); |
| 728 | zone->free_area[order].nr_free--; |
| 729 | |
| 730 | if (order >= pageblock_order && !is_migrate_isolate(migratetype)) |
| 731 | __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); |
| 732 | } |
| 733 | |
| 734 | static inline void del_page_from_free_list(struct page *page, struct zone *zone, |
| 735 | unsigned int order, int migratetype) |
| 736 | { |
| 737 | __del_page_from_free_list(page, zone, order, migratetype); |
| 738 | account_freepages(zone, -(1 << order), migratetype); |
| 739 | } |
| 740 | |
| 741 | static inline struct page *get_page_from_free_area(struct free_area *area, |
| 742 | int migratetype) |
| 743 | { |
| 744 | return list_first_entry_or_null(&area->free_list[migratetype], |
| 745 | struct page, buddy_list); |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * If this is less than the 2nd largest possible page, check if the buddy |
| 750 | * of the next-higher order is free. If it is, it's possible |
| 751 | * that pages are being freed that will coalesce soon. In case, |
| 752 | * that is happening, add the free page to the tail of the list |
| 753 | * so it's less likely to be used soon and more likely to be merged |
| 754 | * as a 2-level higher order page |
| 755 | */ |
| 756 | static inline bool |
| 757 | buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, |
| 758 | struct page *page, unsigned int order) |
| 759 | { |
| 760 | unsigned long higher_page_pfn; |
| 761 | struct page *higher_page; |
| 762 | |
| 763 | if (order >= MAX_PAGE_ORDER - 1) |
| 764 | return false; |
| 765 | |
| 766 | higher_page_pfn = buddy_pfn & pfn; |
| 767 | higher_page = page + (higher_page_pfn - pfn); |
| 768 | |
| 769 | return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, |
| 770 | NULL) != NULL; |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * Freeing function for a buddy system allocator. |
| 775 | * |
| 776 | * The concept of a buddy system is to maintain direct-mapped table |
| 777 | * (containing bit values) for memory blocks of various "orders". |
| 778 | * The bottom level table contains the map for the smallest allocatable |
| 779 | * units of memory (here, pages), and each level above it describes |
| 780 | * pairs of units from the levels below, hence, "buddies". |
| 781 | * At a high level, all that happens here is marking the table entry |
| 782 | * at the bottom level available, and propagating the changes upward |
| 783 | * as necessary, plus some accounting needed to play nicely with other |
| 784 | * parts of the VM system. |
| 785 | * At each level, we keep a list of pages, which are heads of continuous |
| 786 | * free pages of length of (1 << order) and marked with PageBuddy. |
| 787 | * Page's order is recorded in page_private(page) field. |
| 788 | * So when we are allocating or freeing one, we can derive the state of the |
| 789 | * other. That is, if we allocate a small block, and both were |
| 790 | * free, the remainder of the region must be split into blocks. |
| 791 | * If a block is freed, and its buddy is also free, then this |
| 792 | * triggers coalescing into a block of larger size. |
| 793 | * |
| 794 | * -- nyc |
| 795 | */ |
| 796 | |
| 797 | static inline void __free_one_page(struct page *page, |
| 798 | unsigned long pfn, |
| 799 | struct zone *zone, unsigned int order, |
| 800 | int migratetype, fpi_t fpi_flags) |
| 801 | { |
| 802 | struct capture_control *capc = task_capc(zone); |
| 803 | unsigned long buddy_pfn = 0; |
| 804 | unsigned long combined_pfn; |
| 805 | struct page *buddy; |
| 806 | bool to_tail; |
| 807 | |
| 808 | VM_BUG_ON(!zone_is_initialized(zone)); |
| 809 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
| 810 | |
| 811 | VM_BUG_ON(migratetype == -1); |
| 812 | VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); |
| 813 | VM_BUG_ON_PAGE(bad_range(zone, page), page); |
| 814 | |
| 815 | account_freepages(zone, 1 << order, migratetype); |
| 816 | |
| 817 | while (order < MAX_PAGE_ORDER) { |
| 818 | int buddy_mt = migratetype; |
| 819 | |
| 820 | if (compaction_capture(capc, page, order, migratetype)) { |
| 821 | account_freepages(zone, -(1 << order), migratetype); |
| 822 | return; |
| 823 | } |
| 824 | |
| 825 | buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); |
| 826 | if (!buddy) |
| 827 | goto done_merging; |
| 828 | |
| 829 | if (unlikely(order >= pageblock_order)) { |
| 830 | /* |
| 831 | * We want to prevent merge between freepages on pageblock |
| 832 | * without fallbacks and normal pageblock. Without this, |
| 833 | * pageblock isolation could cause incorrect freepage or CMA |
| 834 | * accounting or HIGHATOMIC accounting. |
| 835 | */ |
| 836 | buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); |
| 837 | |
| 838 | if (migratetype != buddy_mt && |
| 839 | (!migratetype_is_mergeable(migratetype) || |
| 840 | !migratetype_is_mergeable(buddy_mt))) |
| 841 | goto done_merging; |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, |
| 846 | * merge with it and move up one order. |
| 847 | */ |
| 848 | if (page_is_guard(buddy)) |
| 849 | clear_page_guard(zone, buddy, order); |
| 850 | else |
| 851 | __del_page_from_free_list(buddy, zone, order, buddy_mt); |
| 852 | |
| 853 | if (unlikely(buddy_mt != migratetype)) { |
| 854 | /* |
| 855 | * Match buddy type. This ensures that an |
| 856 | * expand() down the line puts the sub-blocks |
| 857 | * on the right freelists. |
| 858 | */ |
| 859 | set_pageblock_migratetype(buddy, migratetype); |
| 860 | } |
| 861 | |
| 862 | combined_pfn = buddy_pfn & pfn; |
| 863 | page = page + (combined_pfn - pfn); |
| 864 | pfn = combined_pfn; |
| 865 | order++; |
| 866 | } |
| 867 | |
| 868 | done_merging: |
| 869 | set_buddy_order(page, order); |
| 870 | |
| 871 | if (fpi_flags & FPI_TO_TAIL) |
| 872 | to_tail = true; |
| 873 | else if (is_shuffle_order(order)) |
| 874 | to_tail = shuffle_pick_tail(); |
| 875 | else |
| 876 | to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); |
| 877 | |
| 878 | __add_to_free_list(page, zone, order, migratetype, to_tail); |
| 879 | |
| 880 | /* Notify page reporting subsystem of freed page */ |
| 881 | if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) |
| 882 | page_reporting_notify_free(order); |
| 883 | } |
| 884 | |
| 885 | /* |
| 886 | * A bad page could be due to a number of fields. Instead of multiple branches, |
| 887 | * try and check multiple fields with one check. The caller must do a detailed |
| 888 | * check if necessary. |
| 889 | */ |
| 890 | static inline bool page_expected_state(struct page *page, |
| 891 | unsigned long check_flags) |
| 892 | { |
| 893 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
| 894 | return false; |
| 895 | |
| 896 | if (unlikely((unsigned long)page->mapping | |
| 897 | page_ref_count(page) | |
| 898 | #ifdef CONFIG_MEMCG |
| 899 | page->memcg_data | |
| 900 | #endif |
| 901 | page_pool_page_is_pp(page) | |
| 902 | (page->flags & check_flags))) |
| 903 | return false; |
| 904 | |
| 905 | return true; |
| 906 | } |
| 907 | |
| 908 | static const char *page_bad_reason(struct page *page, unsigned long flags) |
| 909 | { |
| 910 | const char *bad_reason = NULL; |
| 911 | |
| 912 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
| 913 | bad_reason = "nonzero mapcount"; |
| 914 | if (unlikely(page->mapping != NULL)) |
| 915 | bad_reason = "non-NULL mapping"; |
| 916 | if (unlikely(page_ref_count(page) != 0)) |
| 917 | bad_reason = "nonzero _refcount"; |
| 918 | if (unlikely(page->flags & flags)) { |
| 919 | if (flags == PAGE_FLAGS_CHECK_AT_PREP) |
| 920 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; |
| 921 | else |
| 922 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; |
| 923 | } |
| 924 | #ifdef CONFIG_MEMCG |
| 925 | if (unlikely(page->memcg_data)) |
| 926 | bad_reason = "page still charged to cgroup"; |
| 927 | #endif |
| 928 | if (unlikely(page_pool_page_is_pp(page))) |
| 929 | bad_reason = "page_pool leak"; |
| 930 | return bad_reason; |
| 931 | } |
| 932 | |
| 933 | static inline bool free_page_is_bad(struct page *page) |
| 934 | { |
| 935 | if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) |
| 936 | return false; |
| 937 | |
| 938 | /* Something has gone sideways, find it */ |
| 939 | bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); |
| 940 | return true; |
| 941 | } |
| 942 | |
| 943 | static inline bool is_check_pages_enabled(void) |
| 944 | { |
| 945 | return static_branch_unlikely(&check_pages_enabled); |
| 946 | } |
| 947 | |
| 948 | static int free_tail_page_prepare(struct page *head_page, struct page *page) |
| 949 | { |
| 950 | struct folio *folio = (struct folio *)head_page; |
| 951 | int ret = 1; |
| 952 | |
| 953 | /* |
| 954 | * We rely page->lru.next never has bit 0 set, unless the page |
| 955 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. |
| 956 | */ |
| 957 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); |
| 958 | |
| 959 | if (!is_check_pages_enabled()) { |
| 960 | ret = 0; |
| 961 | goto out; |
| 962 | } |
| 963 | switch (page - head_page) { |
| 964 | case 1: |
| 965 | /* the first tail page: these may be in place of ->mapping */ |
| 966 | if (unlikely(folio_large_mapcount(folio))) { |
| 967 | bad_page(page, "nonzero large_mapcount"); |
| 968 | goto out; |
| 969 | } |
| 970 | if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && |
| 971 | unlikely(atomic_read(&folio->_nr_pages_mapped))) { |
| 972 | bad_page(page, "nonzero nr_pages_mapped"); |
| 973 | goto out; |
| 974 | } |
| 975 | if (IS_ENABLED(CONFIG_MM_ID)) { |
| 976 | if (unlikely(folio->_mm_id_mapcount[0] != -1)) { |
| 977 | bad_page(page, "nonzero mm mapcount 0"); |
| 978 | goto out; |
| 979 | } |
| 980 | if (unlikely(folio->_mm_id_mapcount[1] != -1)) { |
| 981 | bad_page(page, "nonzero mm mapcount 1"); |
| 982 | goto out; |
| 983 | } |
| 984 | } |
| 985 | if (IS_ENABLED(CONFIG_64BIT)) { |
| 986 | if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { |
| 987 | bad_page(page, "nonzero entire_mapcount"); |
| 988 | goto out; |
| 989 | } |
| 990 | if (unlikely(atomic_read(&folio->_pincount))) { |
| 991 | bad_page(page, "nonzero pincount"); |
| 992 | goto out; |
| 993 | } |
| 994 | } |
| 995 | break; |
| 996 | case 2: |
| 997 | /* the second tail page: deferred_list overlaps ->mapping */ |
| 998 | if (unlikely(!list_empty(&folio->_deferred_list))) { |
| 999 | bad_page(page, "on deferred list"); |
| 1000 | goto out; |
| 1001 | } |
| 1002 | if (!IS_ENABLED(CONFIG_64BIT)) { |
| 1003 | if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { |
| 1004 | bad_page(page, "nonzero entire_mapcount"); |
| 1005 | goto out; |
| 1006 | } |
| 1007 | if (unlikely(atomic_read(&folio->_pincount))) { |
| 1008 | bad_page(page, "nonzero pincount"); |
| 1009 | goto out; |
| 1010 | } |
| 1011 | } |
| 1012 | break; |
| 1013 | case 3: |
| 1014 | /* the third tail page: hugetlb specifics overlap ->mappings */ |
| 1015 | if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) |
| 1016 | break; |
| 1017 | fallthrough; |
| 1018 | default: |
| 1019 | if (page->mapping != TAIL_MAPPING) { |
| 1020 | bad_page(page, "corrupted mapping in tail page"); |
| 1021 | goto out; |
| 1022 | } |
| 1023 | break; |
| 1024 | } |
| 1025 | if (unlikely(!PageTail(page))) { |
| 1026 | bad_page(page, "PageTail not set"); |
| 1027 | goto out; |
| 1028 | } |
| 1029 | if (unlikely(compound_head(page) != head_page)) { |
| 1030 | bad_page(page, "compound_head not consistent"); |
| 1031 | goto out; |
| 1032 | } |
| 1033 | ret = 0; |
| 1034 | out: |
| 1035 | page->mapping = NULL; |
| 1036 | clear_compound_head(page); |
| 1037 | return ret; |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * Skip KASAN memory poisoning when either: |
| 1042 | * |
| 1043 | * 1. For generic KASAN: deferred memory initialization has not yet completed. |
| 1044 | * Tag-based KASAN modes skip pages freed via deferred memory initialization |
| 1045 | * using page tags instead (see below). |
| 1046 | * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating |
| 1047 | * that error detection is disabled for accesses via the page address. |
| 1048 | * |
| 1049 | * Pages will have match-all tags in the following circumstances: |
| 1050 | * |
| 1051 | * 1. Pages are being initialized for the first time, including during deferred |
| 1052 | * memory init; see the call to page_kasan_tag_reset in __init_single_page. |
| 1053 | * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the |
| 1054 | * exception of pages unpoisoned by kasan_unpoison_vmalloc. |
| 1055 | * 3. The allocation was excluded from being checked due to sampling, |
| 1056 | * see the call to kasan_unpoison_pages. |
| 1057 | * |
| 1058 | * Poisoning pages during deferred memory init will greatly lengthen the |
| 1059 | * process and cause problem in large memory systems as the deferred pages |
| 1060 | * initialization is done with interrupt disabled. |
| 1061 | * |
| 1062 | * Assuming that there will be no reference to those newly initialized |
| 1063 | * pages before they are ever allocated, this should have no effect on |
| 1064 | * KASAN memory tracking as the poison will be properly inserted at page |
| 1065 | * allocation time. The only corner case is when pages are allocated by |
| 1066 | * on-demand allocation and then freed again before the deferred pages |
| 1067 | * initialization is done, but this is not likely to happen. |
| 1068 | */ |
| 1069 | static inline bool should_skip_kasan_poison(struct page *page) |
| 1070 | { |
| 1071 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| 1072 | return deferred_pages_enabled(); |
| 1073 | |
| 1074 | return page_kasan_tag(page) == KASAN_TAG_KERNEL; |
| 1075 | } |
| 1076 | |
| 1077 | static void kernel_init_pages(struct page *page, int numpages) |
| 1078 | { |
| 1079 | int i; |
| 1080 | |
| 1081 | /* s390's use of memset() could override KASAN redzones. */ |
| 1082 | kasan_disable_current(); |
| 1083 | for (i = 0; i < numpages; i++) |
| 1084 | clear_highpage_kasan_tagged(page + i); |
| 1085 | kasan_enable_current(); |
| 1086 | } |
| 1087 | |
| 1088 | #ifdef CONFIG_MEM_ALLOC_PROFILING |
| 1089 | |
| 1090 | /* Should be called only if mem_alloc_profiling_enabled() */ |
| 1091 | void __clear_page_tag_ref(struct page *page) |
| 1092 | { |
| 1093 | union pgtag_ref_handle handle; |
| 1094 | union codetag_ref ref; |
| 1095 | |
| 1096 | if (get_page_tag_ref(page, &ref, &handle)) { |
| 1097 | set_codetag_empty(&ref); |
| 1098 | update_page_tag_ref(handle, &ref); |
| 1099 | put_page_tag_ref(handle); |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | /* Should be called only if mem_alloc_profiling_enabled() */ |
| 1104 | static noinline |
| 1105 | void __pgalloc_tag_add(struct page *page, struct task_struct *task, |
| 1106 | unsigned int nr) |
| 1107 | { |
| 1108 | union pgtag_ref_handle handle; |
| 1109 | union codetag_ref ref; |
| 1110 | |
| 1111 | if (get_page_tag_ref(page, &ref, &handle)) { |
| 1112 | alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); |
| 1113 | update_page_tag_ref(handle, &ref); |
| 1114 | put_page_tag_ref(handle); |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, |
| 1119 | unsigned int nr) |
| 1120 | { |
| 1121 | if (mem_alloc_profiling_enabled()) |
| 1122 | __pgalloc_tag_add(page, task, nr); |
| 1123 | } |
| 1124 | |
| 1125 | /* Should be called only if mem_alloc_profiling_enabled() */ |
| 1126 | static noinline |
| 1127 | void __pgalloc_tag_sub(struct page *page, unsigned int nr) |
| 1128 | { |
| 1129 | union pgtag_ref_handle handle; |
| 1130 | union codetag_ref ref; |
| 1131 | |
| 1132 | if (get_page_tag_ref(page, &ref, &handle)) { |
| 1133 | alloc_tag_sub(&ref, PAGE_SIZE * nr); |
| 1134 | update_page_tag_ref(handle, &ref); |
| 1135 | put_page_tag_ref(handle); |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) |
| 1140 | { |
| 1141 | if (mem_alloc_profiling_enabled()) |
| 1142 | __pgalloc_tag_sub(page, nr); |
| 1143 | } |
| 1144 | |
| 1145 | /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ |
| 1146 | static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) |
| 1147 | { |
| 1148 | if (tag) |
| 1149 | this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); |
| 1150 | } |
| 1151 | |
| 1152 | #else /* CONFIG_MEM_ALLOC_PROFILING */ |
| 1153 | |
| 1154 | static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, |
| 1155 | unsigned int nr) {} |
| 1156 | static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} |
| 1157 | static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} |
| 1158 | |
| 1159 | #endif /* CONFIG_MEM_ALLOC_PROFILING */ |
| 1160 | |
| 1161 | __always_inline bool free_pages_prepare(struct page *page, |
| 1162 | unsigned int order) |
| 1163 | { |
| 1164 | int bad = 0; |
| 1165 | bool skip_kasan_poison = should_skip_kasan_poison(page); |
| 1166 | bool init = want_init_on_free(); |
| 1167 | bool compound = PageCompound(page); |
| 1168 | struct folio *folio = page_folio(page); |
| 1169 | |
| 1170 | VM_BUG_ON_PAGE(PageTail(page), page); |
| 1171 | |
| 1172 | trace_mm_page_free(page, order); |
| 1173 | kmsan_free_page(page, order); |
| 1174 | |
| 1175 | if (memcg_kmem_online() && PageMemcgKmem(page)) |
| 1176 | __memcg_kmem_uncharge_page(page, order); |
| 1177 | |
| 1178 | /* |
| 1179 | * In rare cases, when truncation or holepunching raced with |
| 1180 | * munlock after VM_LOCKED was cleared, Mlocked may still be |
| 1181 | * found set here. This does not indicate a problem, unless |
| 1182 | * "unevictable_pgs_cleared" appears worryingly large. |
| 1183 | */ |
| 1184 | if (unlikely(folio_test_mlocked(folio))) { |
| 1185 | long nr_pages = folio_nr_pages(folio); |
| 1186 | |
| 1187 | __folio_clear_mlocked(folio); |
| 1188 | zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); |
| 1189 | count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); |
| 1190 | } |
| 1191 | |
| 1192 | if (unlikely(PageHWPoison(page)) && !order) { |
| 1193 | /* Do not let hwpoison pages hit pcplists/buddy */ |
| 1194 | reset_page_owner(page, order); |
| 1195 | page_table_check_free(page, order); |
| 1196 | pgalloc_tag_sub(page, 1 << order); |
| 1197 | |
| 1198 | /* |
| 1199 | * The page is isolated and accounted for. |
| 1200 | * Mark the codetag as empty to avoid accounting error |
| 1201 | * when the page is freed by unpoison_memory(). |
| 1202 | */ |
| 1203 | clear_page_tag_ref(page); |
| 1204 | return false; |
| 1205 | } |
| 1206 | |
| 1207 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); |
| 1208 | |
| 1209 | /* |
| 1210 | * Check tail pages before head page information is cleared to |
| 1211 | * avoid checking PageCompound for order-0 pages. |
| 1212 | */ |
| 1213 | if (unlikely(order)) { |
| 1214 | int i; |
| 1215 | |
| 1216 | if (compound) { |
| 1217 | page[1].flags &= ~PAGE_FLAGS_SECOND; |
| 1218 | #ifdef NR_PAGES_IN_LARGE_FOLIO |
| 1219 | folio->_nr_pages = 0; |
| 1220 | #endif |
| 1221 | } |
| 1222 | for (i = 1; i < (1 << order); i++) { |
| 1223 | if (compound) |
| 1224 | bad += free_tail_page_prepare(page, page + i); |
| 1225 | if (is_check_pages_enabled()) { |
| 1226 | if (free_page_is_bad(page + i)) { |
| 1227 | bad++; |
| 1228 | continue; |
| 1229 | } |
| 1230 | } |
| 1231 | (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| 1232 | } |
| 1233 | } |
| 1234 | if (PageMappingFlags(page)) { |
| 1235 | if (PageAnon(page)) |
| 1236 | mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); |
| 1237 | page->mapping = NULL; |
| 1238 | } |
| 1239 | if (is_check_pages_enabled()) { |
| 1240 | if (free_page_is_bad(page)) |
| 1241 | bad++; |
| 1242 | if (bad) |
| 1243 | return false; |
| 1244 | } |
| 1245 | |
| 1246 | page_cpupid_reset_last(page); |
| 1247 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| 1248 | reset_page_owner(page, order); |
| 1249 | page_table_check_free(page, order); |
| 1250 | pgalloc_tag_sub(page, 1 << order); |
| 1251 | |
| 1252 | if (!PageHighMem(page)) { |
| 1253 | debug_check_no_locks_freed(page_address(page), |
| 1254 | PAGE_SIZE << order); |
| 1255 | debug_check_no_obj_freed(page_address(page), |
| 1256 | PAGE_SIZE << order); |
| 1257 | } |
| 1258 | |
| 1259 | kernel_poison_pages(page, 1 << order); |
| 1260 | |
| 1261 | /* |
| 1262 | * As memory initialization might be integrated into KASAN, |
| 1263 | * KASAN poisoning and memory initialization code must be |
| 1264 | * kept together to avoid discrepancies in behavior. |
| 1265 | * |
| 1266 | * With hardware tag-based KASAN, memory tags must be set before the |
| 1267 | * page becomes unavailable via debug_pagealloc or arch_free_page. |
| 1268 | */ |
| 1269 | if (!skip_kasan_poison) { |
| 1270 | kasan_poison_pages(page, order, init); |
| 1271 | |
| 1272 | /* Memory is already initialized if KASAN did it internally. */ |
| 1273 | if (kasan_has_integrated_init()) |
| 1274 | init = false; |
| 1275 | } |
| 1276 | if (init) |
| 1277 | kernel_init_pages(page, 1 << order); |
| 1278 | |
| 1279 | /* |
| 1280 | * arch_free_page() can make the page's contents inaccessible. s390 |
| 1281 | * does this. So nothing which can access the page's contents should |
| 1282 | * happen after this. |
| 1283 | */ |
| 1284 | arch_free_page(page, order); |
| 1285 | |
| 1286 | debug_pagealloc_unmap_pages(page, 1 << order); |
| 1287 | |
| 1288 | return true; |
| 1289 | } |
| 1290 | |
| 1291 | /* |
| 1292 | * Frees a number of pages from the PCP lists |
| 1293 | * Assumes all pages on list are in same zone. |
| 1294 | * count is the number of pages to free. |
| 1295 | */ |
| 1296 | static void free_pcppages_bulk(struct zone *zone, int count, |
| 1297 | struct per_cpu_pages *pcp, |
| 1298 | int pindex) |
| 1299 | { |
| 1300 | unsigned long flags; |
| 1301 | unsigned int order; |
| 1302 | struct page *page; |
| 1303 | |
| 1304 | /* |
| 1305 | * Ensure proper count is passed which otherwise would stuck in the |
| 1306 | * below while (list_empty(list)) loop. |
| 1307 | */ |
| 1308 | count = min(pcp->count, count); |
| 1309 | |
| 1310 | /* Ensure requested pindex is drained first. */ |
| 1311 | pindex = pindex - 1; |
| 1312 | |
| 1313 | spin_lock_irqsave(&zone->lock, flags); |
| 1314 | |
| 1315 | while (count > 0) { |
| 1316 | struct list_head *list; |
| 1317 | int nr_pages; |
| 1318 | |
| 1319 | /* Remove pages from lists in a round-robin fashion. */ |
| 1320 | do { |
| 1321 | if (++pindex > NR_PCP_LISTS - 1) |
| 1322 | pindex = 0; |
| 1323 | list = &pcp->lists[pindex]; |
| 1324 | } while (list_empty(list)); |
| 1325 | |
| 1326 | order = pindex_to_order(pindex); |
| 1327 | nr_pages = 1 << order; |
| 1328 | do { |
| 1329 | unsigned long pfn; |
| 1330 | int mt; |
| 1331 | |
| 1332 | page = list_last_entry(list, struct page, pcp_list); |
| 1333 | pfn = page_to_pfn(page); |
| 1334 | mt = get_pfnblock_migratetype(page, pfn); |
| 1335 | |
| 1336 | /* must delete to avoid corrupting pcp list */ |
| 1337 | list_del(&page->pcp_list); |
| 1338 | count -= nr_pages; |
| 1339 | pcp->count -= nr_pages; |
| 1340 | |
| 1341 | __free_one_page(page, pfn, zone, order, mt, FPI_NONE); |
| 1342 | trace_mm_page_pcpu_drain(page, order, mt); |
| 1343 | } while (count > 0 && !list_empty(list)); |
| 1344 | } |
| 1345 | |
| 1346 | spin_unlock_irqrestore(&zone->lock, flags); |
| 1347 | } |
| 1348 | |
| 1349 | /* Split a multi-block free page into its individual pageblocks. */ |
| 1350 | static void split_large_buddy(struct zone *zone, struct page *page, |
| 1351 | unsigned long pfn, int order, fpi_t fpi) |
| 1352 | { |
| 1353 | unsigned long end = pfn + (1 << order); |
| 1354 | |
| 1355 | VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); |
| 1356 | /* Caller removed page from freelist, buddy info cleared! */ |
| 1357 | VM_WARN_ON_ONCE(PageBuddy(page)); |
| 1358 | |
| 1359 | if (order > pageblock_order) |
| 1360 | order = pageblock_order; |
| 1361 | |
| 1362 | do { |
| 1363 | int mt = get_pfnblock_migratetype(page, pfn); |
| 1364 | |
| 1365 | __free_one_page(page, pfn, zone, order, mt, fpi); |
| 1366 | pfn += 1 << order; |
| 1367 | if (pfn == end) |
| 1368 | break; |
| 1369 | page = pfn_to_page(pfn); |
| 1370 | } while (1); |
| 1371 | } |
| 1372 | |
| 1373 | static void add_page_to_zone_llist(struct zone *zone, struct page *page, |
| 1374 | unsigned int order) |
| 1375 | { |
| 1376 | /* Remember the order */ |
| 1377 | page->order = order; |
| 1378 | /* Add the page to the free list */ |
| 1379 | llist_add(&page->pcp_llist, &zone->trylock_free_pages); |
| 1380 | } |
| 1381 | |
| 1382 | static void free_one_page(struct zone *zone, struct page *page, |
| 1383 | unsigned long pfn, unsigned int order, |
| 1384 | fpi_t fpi_flags) |
| 1385 | { |
| 1386 | struct llist_head *llhead; |
| 1387 | unsigned long flags; |
| 1388 | |
| 1389 | if (unlikely(fpi_flags & FPI_TRYLOCK)) { |
| 1390 | if (!spin_trylock_irqsave(&zone->lock, flags)) { |
| 1391 | add_page_to_zone_llist(zone, page, order); |
| 1392 | return; |
| 1393 | } |
| 1394 | } else { |
| 1395 | spin_lock_irqsave(&zone->lock, flags); |
| 1396 | } |
| 1397 | |
| 1398 | /* The lock succeeded. Process deferred pages. */ |
| 1399 | llhead = &zone->trylock_free_pages; |
| 1400 | if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { |
| 1401 | struct llist_node *llnode; |
| 1402 | struct page *p, *tmp; |
| 1403 | |
| 1404 | llnode = llist_del_all(llhead); |
| 1405 | llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { |
| 1406 | unsigned int p_order = p->order; |
| 1407 | |
| 1408 | split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); |
| 1409 | __count_vm_events(PGFREE, 1 << p_order); |
| 1410 | } |
| 1411 | } |
| 1412 | split_large_buddy(zone, page, pfn, order, fpi_flags); |
| 1413 | spin_unlock_irqrestore(&zone->lock, flags); |
| 1414 | |
| 1415 | __count_vm_events(PGFREE, 1 << order); |
| 1416 | } |
| 1417 | |
| 1418 | static void __free_pages_ok(struct page *page, unsigned int order, |
| 1419 | fpi_t fpi_flags) |
| 1420 | { |
| 1421 | unsigned long pfn = page_to_pfn(page); |
| 1422 | struct zone *zone = page_zone(page); |
| 1423 | |
| 1424 | if (free_pages_prepare(page, order)) |
| 1425 | free_one_page(zone, page, pfn, order, fpi_flags); |
| 1426 | } |
| 1427 | |
| 1428 | void __meminit __free_pages_core(struct page *page, unsigned int order, |
| 1429 | enum meminit_context context) |
| 1430 | { |
| 1431 | unsigned int nr_pages = 1 << order; |
| 1432 | struct page *p = page; |
| 1433 | unsigned int loop; |
| 1434 | |
| 1435 | /* |
| 1436 | * When initializing the memmap, __init_single_page() sets the refcount |
| 1437 | * of all pages to 1 ("allocated"/"not free"). We have to set the |
| 1438 | * refcount of all involved pages to 0. |
| 1439 | * |
| 1440 | * Note that hotplugged memory pages are initialized to PageOffline(). |
| 1441 | * Pages freed from memblock might be marked as reserved. |
| 1442 | */ |
| 1443 | if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && |
| 1444 | unlikely(context == MEMINIT_HOTPLUG)) { |
| 1445 | for (loop = 0; loop < nr_pages; loop++, p++) { |
| 1446 | VM_WARN_ON_ONCE(PageReserved(p)); |
| 1447 | __ClearPageOffline(p); |
| 1448 | set_page_count(p, 0); |
| 1449 | } |
| 1450 | |
| 1451 | adjust_managed_page_count(page, nr_pages); |
| 1452 | } else { |
| 1453 | for (loop = 0; loop < nr_pages; loop++, p++) { |
| 1454 | __ClearPageReserved(p); |
| 1455 | set_page_count(p, 0); |
| 1456 | } |
| 1457 | |
| 1458 | /* memblock adjusts totalram_pages() manually. */ |
| 1459 | atomic_long_add(nr_pages, &page_zone(page)->managed_pages); |
| 1460 | } |
| 1461 | |
| 1462 | if (page_contains_unaccepted(page, order)) { |
| 1463 | if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) |
| 1464 | return; |
| 1465 | |
| 1466 | accept_memory(page_to_phys(page), PAGE_SIZE << order); |
| 1467 | } |
| 1468 | |
| 1469 | /* |
| 1470 | * Bypass PCP and place fresh pages right to the tail, primarily |
| 1471 | * relevant for memory onlining. |
| 1472 | */ |
| 1473 | __free_pages_ok(page, order, FPI_TO_TAIL); |
| 1474 | } |
| 1475 | |
| 1476 | /* |
| 1477 | * Check that the whole (or subset of) a pageblock given by the interval of |
| 1478 | * [start_pfn, end_pfn) is valid and within the same zone, before scanning it |
| 1479 | * with the migration of free compaction scanner. |
| 1480 | * |
| 1481 | * Return struct page pointer of start_pfn, or NULL if checks were not passed. |
| 1482 | * |
| 1483 | * It's possible on some configurations to have a setup like node0 node1 node0 |
| 1484 | * i.e. it's possible that all pages within a zones range of pages do not |
| 1485 | * belong to a single zone. We assume that a border between node0 and node1 |
| 1486 | * can occur within a single pageblock, but not a node0 node1 node0 |
| 1487 | * interleaving within a single pageblock. It is therefore sufficient to check |
| 1488 | * the first and last page of a pageblock and avoid checking each individual |
| 1489 | * page in a pageblock. |
| 1490 | * |
| 1491 | * Note: the function may return non-NULL struct page even for a page block |
| 1492 | * which contains a memory hole (i.e. there is no physical memory for a subset |
| 1493 | * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which |
| 1494 | * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole |
| 1495 | * even though the start pfn is online and valid. This should be safe most of |
| 1496 | * the time because struct pages are still initialized via init_unavailable_range() |
| 1497 | * and pfn walkers shouldn't touch any physical memory range for which they do |
| 1498 | * not recognize any specific metadata in struct pages. |
| 1499 | */ |
| 1500 | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, |
| 1501 | unsigned long end_pfn, struct zone *zone) |
| 1502 | { |
| 1503 | struct page *start_page; |
| 1504 | struct page *end_page; |
| 1505 | |
| 1506 | /* end_pfn is one past the range we are checking */ |
| 1507 | end_pfn--; |
| 1508 | |
| 1509 | if (!pfn_valid(end_pfn)) |
| 1510 | return NULL; |
| 1511 | |
| 1512 | start_page = pfn_to_online_page(start_pfn); |
| 1513 | if (!start_page) |
| 1514 | return NULL; |
| 1515 | |
| 1516 | if (page_zone(start_page) != zone) |
| 1517 | return NULL; |
| 1518 | |
| 1519 | end_page = pfn_to_page(end_pfn); |
| 1520 | |
| 1521 | /* This gives a shorter code than deriving page_zone(end_page) */ |
| 1522 | if (page_zone_id(start_page) != page_zone_id(end_page)) |
| 1523 | return NULL; |
| 1524 | |
| 1525 | return start_page; |
| 1526 | } |
| 1527 | |
| 1528 | /* |
| 1529 | * The order of subdivision here is critical for the IO subsystem. |
| 1530 | * Please do not alter this order without good reasons and regression |
| 1531 | * testing. Specifically, as large blocks of memory are subdivided, |
| 1532 | * the order in which smaller blocks are delivered depends on the order |
| 1533 | * they're subdivided in this function. This is the primary factor |
| 1534 | * influencing the order in which pages are delivered to the IO |
| 1535 | * subsystem according to empirical testing, and this is also justified |
| 1536 | * by considering the behavior of a buddy system containing a single |
| 1537 | * large block of memory acted on by a series of small allocations. |
| 1538 | * This behavior is a critical factor in sglist merging's success. |
| 1539 | * |
| 1540 | * -- nyc |
| 1541 | */ |
| 1542 | static inline unsigned int expand(struct zone *zone, struct page *page, int low, |
| 1543 | int high, int migratetype) |
| 1544 | { |
| 1545 | unsigned int size = 1 << high; |
| 1546 | unsigned int nr_added = 0; |
| 1547 | |
| 1548 | while (high > low) { |
| 1549 | high--; |
| 1550 | size >>= 1; |
| 1551 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
| 1552 | |
| 1553 | /* |
| 1554 | * Mark as guard pages (or page), that will allow to |
| 1555 | * merge back to allocator when buddy will be freed. |
| 1556 | * Corresponding page table entries will not be touched, |
| 1557 | * pages will stay not present in virtual address space |
| 1558 | */ |
| 1559 | if (set_page_guard(zone, &page[size], high)) |
| 1560 | continue; |
| 1561 | |
| 1562 | __add_to_free_list(&page[size], zone, high, migratetype, false); |
| 1563 | set_buddy_order(&page[size], high); |
| 1564 | nr_added += size; |
| 1565 | } |
| 1566 | |
| 1567 | return nr_added; |
| 1568 | } |
| 1569 | |
| 1570 | static __always_inline void page_del_and_expand(struct zone *zone, |
| 1571 | struct page *page, int low, |
| 1572 | int high, int migratetype) |
| 1573 | { |
| 1574 | int nr_pages = 1 << high; |
| 1575 | |
| 1576 | __del_page_from_free_list(page, zone, high, migratetype); |
| 1577 | nr_pages -= expand(zone, page, low, high, migratetype); |
| 1578 | account_freepages(zone, -nr_pages, migratetype); |
| 1579 | } |
| 1580 | |
| 1581 | static void check_new_page_bad(struct page *page) |
| 1582 | { |
| 1583 | if (unlikely(PageHWPoison(page))) { |
| 1584 | /* Don't complain about hwpoisoned pages */ |
| 1585 | if (PageBuddy(page)) |
| 1586 | __ClearPageBuddy(page); |
| 1587 | return; |
| 1588 | } |
| 1589 | |
| 1590 | bad_page(page, |
| 1591 | page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); |
| 1592 | } |
| 1593 | |
| 1594 | /* |
| 1595 | * This page is about to be returned from the page allocator |
| 1596 | */ |
| 1597 | static bool check_new_page(struct page *page) |
| 1598 | { |
| 1599 | if (likely(page_expected_state(page, |
| 1600 | PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) |
| 1601 | return false; |
| 1602 | |
| 1603 | check_new_page_bad(page); |
| 1604 | return true; |
| 1605 | } |
| 1606 | |
| 1607 | static inline bool check_new_pages(struct page *page, unsigned int order) |
| 1608 | { |
| 1609 | if (is_check_pages_enabled()) { |
| 1610 | for (int i = 0; i < (1 << order); i++) { |
| 1611 | struct page *p = page + i; |
| 1612 | |
| 1613 | if (check_new_page(p)) |
| 1614 | return true; |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | return false; |
| 1619 | } |
| 1620 | |
| 1621 | static inline bool should_skip_kasan_unpoison(gfp_t flags) |
| 1622 | { |
| 1623 | /* Don't skip if a software KASAN mode is enabled. */ |
| 1624 | if (IS_ENABLED(CONFIG_KASAN_GENERIC) || |
| 1625 | IS_ENABLED(CONFIG_KASAN_SW_TAGS)) |
| 1626 | return false; |
| 1627 | |
| 1628 | /* Skip, if hardware tag-based KASAN is not enabled. */ |
| 1629 | if (!kasan_hw_tags_enabled()) |
| 1630 | return true; |
| 1631 | |
| 1632 | /* |
| 1633 | * With hardware tag-based KASAN enabled, skip if this has been |
| 1634 | * requested via __GFP_SKIP_KASAN. |
| 1635 | */ |
| 1636 | return flags & __GFP_SKIP_KASAN; |
| 1637 | } |
| 1638 | |
| 1639 | static inline bool should_skip_init(gfp_t flags) |
| 1640 | { |
| 1641 | /* Don't skip, if hardware tag-based KASAN is not enabled. */ |
| 1642 | if (!kasan_hw_tags_enabled()) |
| 1643 | return false; |
| 1644 | |
| 1645 | /* For hardware tag-based KASAN, skip if requested. */ |
| 1646 | return (flags & __GFP_SKIP_ZERO); |
| 1647 | } |
| 1648 | |
| 1649 | inline void post_alloc_hook(struct page *page, unsigned int order, |
| 1650 | gfp_t gfp_flags) |
| 1651 | { |
| 1652 | bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && |
| 1653 | !should_skip_init(gfp_flags); |
| 1654 | bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); |
| 1655 | int i; |
| 1656 | |
| 1657 | set_page_private(page, 0); |
| 1658 | |
| 1659 | arch_alloc_page(page, order); |
| 1660 | debug_pagealloc_map_pages(page, 1 << order); |
| 1661 | |
| 1662 | /* |
| 1663 | * Page unpoisoning must happen before memory initialization. |
| 1664 | * Otherwise, the poison pattern will be overwritten for __GFP_ZERO |
| 1665 | * allocations and the page unpoisoning code will complain. |
| 1666 | */ |
| 1667 | kernel_unpoison_pages(page, 1 << order); |
| 1668 | |
| 1669 | /* |
| 1670 | * As memory initialization might be integrated into KASAN, |
| 1671 | * KASAN unpoisoning and memory initializion code must be |
| 1672 | * kept together to avoid discrepancies in behavior. |
| 1673 | */ |
| 1674 | |
| 1675 | /* |
| 1676 | * If memory tags should be zeroed |
| 1677 | * (which happens only when memory should be initialized as well). |
| 1678 | */ |
| 1679 | if (zero_tags) { |
| 1680 | /* Initialize both memory and memory tags. */ |
| 1681 | for (i = 0; i != 1 << order; ++i) |
| 1682 | tag_clear_highpage(page + i); |
| 1683 | |
| 1684 | /* Take note that memory was initialized by the loop above. */ |
| 1685 | init = false; |
| 1686 | } |
| 1687 | if (!should_skip_kasan_unpoison(gfp_flags) && |
| 1688 | kasan_unpoison_pages(page, order, init)) { |
| 1689 | /* Take note that memory was initialized by KASAN. */ |
| 1690 | if (kasan_has_integrated_init()) |
| 1691 | init = false; |
| 1692 | } else { |
| 1693 | /* |
| 1694 | * If memory tags have not been set by KASAN, reset the page |
| 1695 | * tags to ensure page_address() dereferencing does not fault. |
| 1696 | */ |
| 1697 | for (i = 0; i != 1 << order; ++i) |
| 1698 | page_kasan_tag_reset(page + i); |
| 1699 | } |
| 1700 | /* If memory is still not initialized, initialize it now. */ |
| 1701 | if (init) |
| 1702 | kernel_init_pages(page, 1 << order); |
| 1703 | |
| 1704 | set_page_owner(page, order, gfp_flags); |
| 1705 | page_table_check_alloc(page, order); |
| 1706 | pgalloc_tag_add(page, current, 1 << order); |
| 1707 | } |
| 1708 | |
| 1709 | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
| 1710 | unsigned int alloc_flags) |
| 1711 | { |
| 1712 | post_alloc_hook(page, order, gfp_flags); |
| 1713 | |
| 1714 | if (order && (gfp_flags & __GFP_COMP)) |
| 1715 | prep_compound_page(page, order); |
| 1716 | |
| 1717 | /* |
| 1718 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
| 1719 | * allocate the page. The expectation is that the caller is taking |
| 1720 | * steps that will free more memory. The caller should avoid the page |
| 1721 | * being used for !PFMEMALLOC purposes. |
| 1722 | */ |
| 1723 | if (alloc_flags & ALLOC_NO_WATERMARKS) |
| 1724 | set_page_pfmemalloc(page); |
| 1725 | else |
| 1726 | clear_page_pfmemalloc(page); |
| 1727 | } |
| 1728 | |
| 1729 | /* |
| 1730 | * Go through the free lists for the given migratetype and remove |
| 1731 | * the smallest available page from the freelists |
| 1732 | */ |
| 1733 | static __always_inline |
| 1734 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, |
| 1735 | int migratetype) |
| 1736 | { |
| 1737 | unsigned int current_order; |
| 1738 | struct free_area *area; |
| 1739 | struct page *page; |
| 1740 | |
| 1741 | /* Find a page of the appropriate size in the preferred list */ |
| 1742 | for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { |
| 1743 | area = &(zone->free_area[current_order]); |
| 1744 | page = get_page_from_free_area(area, migratetype); |
| 1745 | if (!page) |
| 1746 | continue; |
| 1747 | |
| 1748 | page_del_and_expand(zone, page, order, current_order, |
| 1749 | migratetype); |
| 1750 | trace_mm_page_alloc_zone_locked(page, order, migratetype, |
| 1751 | pcp_allowed_order(order) && |
| 1752 | migratetype < MIGRATE_PCPTYPES); |
| 1753 | return page; |
| 1754 | } |
| 1755 | |
| 1756 | return NULL; |
| 1757 | } |
| 1758 | |
| 1759 | |
| 1760 | /* |
| 1761 | * This array describes the order lists are fallen back to when |
| 1762 | * the free lists for the desirable migrate type are depleted |
| 1763 | * |
| 1764 | * The other migratetypes do not have fallbacks. |
| 1765 | */ |
| 1766 | static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { |
| 1767 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, |
| 1768 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, |
| 1769 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, |
| 1770 | }; |
| 1771 | |
| 1772 | #ifdef CONFIG_CMA |
| 1773 | static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
| 1774 | unsigned int order) |
| 1775 | { |
| 1776 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); |
| 1777 | } |
| 1778 | #else |
| 1779 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
| 1780 | unsigned int order) { return NULL; } |
| 1781 | #endif |
| 1782 | |
| 1783 | /* |
| 1784 | * Change the type of a block and move all its free pages to that |
| 1785 | * type's freelist. |
| 1786 | */ |
| 1787 | static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, |
| 1788 | int old_mt, int new_mt) |
| 1789 | { |
| 1790 | struct page *page; |
| 1791 | unsigned long pfn, end_pfn; |
| 1792 | unsigned int order; |
| 1793 | int pages_moved = 0; |
| 1794 | |
| 1795 | VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); |
| 1796 | end_pfn = pageblock_end_pfn(start_pfn); |
| 1797 | |
| 1798 | for (pfn = start_pfn; pfn < end_pfn;) { |
| 1799 | page = pfn_to_page(pfn); |
| 1800 | if (!PageBuddy(page)) { |
| 1801 | pfn++; |
| 1802 | continue; |
| 1803 | } |
| 1804 | |
| 1805 | /* Make sure we are not inadvertently changing nodes */ |
| 1806 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); |
| 1807 | VM_BUG_ON_PAGE(page_zone(page) != zone, page); |
| 1808 | |
| 1809 | order = buddy_order(page); |
| 1810 | |
| 1811 | move_to_free_list(page, zone, order, old_mt, new_mt); |
| 1812 | |
| 1813 | pfn += 1 << order; |
| 1814 | pages_moved += 1 << order; |
| 1815 | } |
| 1816 | |
| 1817 | set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); |
| 1818 | |
| 1819 | return pages_moved; |
| 1820 | } |
| 1821 | |
| 1822 | static bool prep_move_freepages_block(struct zone *zone, struct page *page, |
| 1823 | unsigned long *start_pfn, |
| 1824 | int *num_free, int *num_movable) |
| 1825 | { |
| 1826 | unsigned long pfn, start, end; |
| 1827 | |
| 1828 | pfn = page_to_pfn(page); |
| 1829 | start = pageblock_start_pfn(pfn); |
| 1830 | end = pageblock_end_pfn(pfn); |
| 1831 | |
| 1832 | /* |
| 1833 | * The caller only has the lock for @zone, don't touch ranges |
| 1834 | * that straddle into other zones. While we could move part of |
| 1835 | * the range that's inside the zone, this call is usually |
| 1836 | * accompanied by other operations such as migratetype updates |
| 1837 | * which also should be locked. |
| 1838 | */ |
| 1839 | if (!zone_spans_pfn(zone, start)) |
| 1840 | return false; |
| 1841 | if (!zone_spans_pfn(zone, end - 1)) |
| 1842 | return false; |
| 1843 | |
| 1844 | *start_pfn = start; |
| 1845 | |
| 1846 | if (num_free) { |
| 1847 | *num_free = 0; |
| 1848 | *num_movable = 0; |
| 1849 | for (pfn = start; pfn < end;) { |
| 1850 | page = pfn_to_page(pfn); |
| 1851 | if (PageBuddy(page)) { |
| 1852 | int nr = 1 << buddy_order(page); |
| 1853 | |
| 1854 | *num_free += nr; |
| 1855 | pfn += nr; |
| 1856 | continue; |
| 1857 | } |
| 1858 | /* |
| 1859 | * We assume that pages that could be isolated for |
| 1860 | * migration are movable. But we don't actually try |
| 1861 | * isolating, as that would be expensive. |
| 1862 | */ |
| 1863 | if (PageLRU(page) || __PageMovable(page)) |
| 1864 | (*num_movable)++; |
| 1865 | pfn++; |
| 1866 | } |
| 1867 | } |
| 1868 | |
| 1869 | return true; |
| 1870 | } |
| 1871 | |
| 1872 | static int move_freepages_block(struct zone *zone, struct page *page, |
| 1873 | int old_mt, int new_mt) |
| 1874 | { |
| 1875 | unsigned long start_pfn; |
| 1876 | |
| 1877 | if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) |
| 1878 | return -1; |
| 1879 | |
| 1880 | return __move_freepages_block(zone, start_pfn, old_mt, new_mt); |
| 1881 | } |
| 1882 | |
| 1883 | #ifdef CONFIG_MEMORY_ISOLATION |
| 1884 | /* Look for a buddy that straddles start_pfn */ |
| 1885 | static unsigned long find_large_buddy(unsigned long start_pfn) |
| 1886 | { |
| 1887 | int order = 0; |
| 1888 | struct page *page; |
| 1889 | unsigned long pfn = start_pfn; |
| 1890 | |
| 1891 | while (!PageBuddy(page = pfn_to_page(pfn))) { |
| 1892 | /* Nothing found */ |
| 1893 | if (++order > MAX_PAGE_ORDER) |
| 1894 | return start_pfn; |
| 1895 | pfn &= ~0UL << order; |
| 1896 | } |
| 1897 | |
| 1898 | /* |
| 1899 | * Found a preceding buddy, but does it straddle? |
| 1900 | */ |
| 1901 | if (pfn + (1 << buddy_order(page)) > start_pfn) |
| 1902 | return pfn; |
| 1903 | |
| 1904 | /* Nothing found */ |
| 1905 | return start_pfn; |
| 1906 | } |
| 1907 | |
| 1908 | /** |
| 1909 | * move_freepages_block_isolate - move free pages in block for page isolation |
| 1910 | * @zone: the zone |
| 1911 | * @page: the pageblock page |
| 1912 | * @migratetype: migratetype to set on the pageblock |
| 1913 | * |
| 1914 | * This is similar to move_freepages_block(), but handles the special |
| 1915 | * case encountered in page isolation, where the block of interest |
| 1916 | * might be part of a larger buddy spanning multiple pageblocks. |
| 1917 | * |
| 1918 | * Unlike the regular page allocator path, which moves pages while |
| 1919 | * stealing buddies off the freelist, page isolation is interested in |
| 1920 | * arbitrary pfn ranges that may have overlapping buddies on both ends. |
| 1921 | * |
| 1922 | * This function handles that. Straddling buddies are split into |
| 1923 | * individual pageblocks. Only the block of interest is moved. |
| 1924 | * |
| 1925 | * Returns %true if pages could be moved, %false otherwise. |
| 1926 | */ |
| 1927 | bool move_freepages_block_isolate(struct zone *zone, struct page *page, |
| 1928 | int migratetype) |
| 1929 | { |
| 1930 | unsigned long start_pfn, pfn; |
| 1931 | |
| 1932 | if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) |
| 1933 | return false; |
| 1934 | |
| 1935 | /* No splits needed if buddies can't span multiple blocks */ |
| 1936 | if (pageblock_order == MAX_PAGE_ORDER) |
| 1937 | goto move; |
| 1938 | |
| 1939 | /* We're a tail block in a larger buddy */ |
| 1940 | pfn = find_large_buddy(start_pfn); |
| 1941 | if (pfn != start_pfn) { |
| 1942 | struct page *buddy = pfn_to_page(pfn); |
| 1943 | int order = buddy_order(buddy); |
| 1944 | |
| 1945 | del_page_from_free_list(buddy, zone, order, |
| 1946 | get_pfnblock_migratetype(buddy, pfn)); |
| 1947 | set_pageblock_migratetype(page, migratetype); |
| 1948 | split_large_buddy(zone, buddy, pfn, order, FPI_NONE); |
| 1949 | return true; |
| 1950 | } |
| 1951 | |
| 1952 | /* We're the starting block of a larger buddy */ |
| 1953 | if (PageBuddy(page) && buddy_order(page) > pageblock_order) { |
| 1954 | int order = buddy_order(page); |
| 1955 | |
| 1956 | del_page_from_free_list(page, zone, order, |
| 1957 | get_pfnblock_migratetype(page, pfn)); |
| 1958 | set_pageblock_migratetype(page, migratetype); |
| 1959 | split_large_buddy(zone, page, pfn, order, FPI_NONE); |
| 1960 | return true; |
| 1961 | } |
| 1962 | move: |
| 1963 | __move_freepages_block(zone, start_pfn, |
| 1964 | get_pfnblock_migratetype(page, start_pfn), |
| 1965 | migratetype); |
| 1966 | return true; |
| 1967 | } |
| 1968 | #endif /* CONFIG_MEMORY_ISOLATION */ |
| 1969 | |
| 1970 | static void change_pageblock_range(struct page *pageblock_page, |
| 1971 | int start_order, int migratetype) |
| 1972 | { |
| 1973 | int nr_pageblocks = 1 << (start_order - pageblock_order); |
| 1974 | |
| 1975 | while (nr_pageblocks--) { |
| 1976 | set_pageblock_migratetype(pageblock_page, migratetype); |
| 1977 | pageblock_page += pageblock_nr_pages; |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | static inline bool boost_watermark(struct zone *zone) |
| 1982 | { |
| 1983 | unsigned long max_boost; |
| 1984 | |
| 1985 | if (!watermark_boost_factor) |
| 1986 | return false; |
| 1987 | /* |
| 1988 | * Don't bother in zones that are unlikely to produce results. |
| 1989 | * On small machines, including kdump capture kernels running |
| 1990 | * in a small area, boosting the watermark can cause an out of |
| 1991 | * memory situation immediately. |
| 1992 | */ |
| 1993 | if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) |
| 1994 | return false; |
| 1995 | |
| 1996 | max_boost = mult_frac(zone->_watermark[WMARK_HIGH], |
| 1997 | watermark_boost_factor, 10000); |
| 1998 | |
| 1999 | /* |
| 2000 | * high watermark may be uninitialised if fragmentation occurs |
| 2001 | * very early in boot so do not boost. We do not fall |
| 2002 | * through and boost by pageblock_nr_pages as failing |
| 2003 | * allocations that early means that reclaim is not going |
| 2004 | * to help and it may even be impossible to reclaim the |
| 2005 | * boosted watermark resulting in a hang. |
| 2006 | */ |
| 2007 | if (!max_boost) |
| 2008 | return false; |
| 2009 | |
| 2010 | max_boost = max(pageblock_nr_pages, max_boost); |
| 2011 | |
| 2012 | zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, |
| 2013 | max_boost); |
| 2014 | |
| 2015 | return true; |
| 2016 | } |
| 2017 | |
| 2018 | /* |
| 2019 | * When we are falling back to another migratetype during allocation, should we |
| 2020 | * try to claim an entire block to satisfy further allocations, instead of |
| 2021 | * polluting multiple pageblocks? |
| 2022 | */ |
| 2023 | static bool should_try_claim_block(unsigned int order, int start_mt) |
| 2024 | { |
| 2025 | /* |
| 2026 | * Leaving this order check is intended, although there is |
| 2027 | * relaxed order check in next check. The reason is that |
| 2028 | * we can actually claim the whole pageblock if this condition met, |
| 2029 | * but, below check doesn't guarantee it and that is just heuristic |
| 2030 | * so could be changed anytime. |
| 2031 | */ |
| 2032 | if (order >= pageblock_order) |
| 2033 | return true; |
| 2034 | |
| 2035 | /* |
| 2036 | * Above a certain threshold, always try to claim, as it's likely there |
| 2037 | * will be more free pages in the pageblock. |
| 2038 | */ |
| 2039 | if (order >= pageblock_order / 2) |
| 2040 | return true; |
| 2041 | |
| 2042 | /* |
| 2043 | * Unmovable/reclaimable allocations would cause permanent |
| 2044 | * fragmentations if they fell back to allocating from a movable block |
| 2045 | * (polluting it), so we try to claim the whole block regardless of the |
| 2046 | * allocation size. Later movable allocations can always steal from this |
| 2047 | * block, which is less problematic. |
| 2048 | */ |
| 2049 | if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) |
| 2050 | return true; |
| 2051 | |
| 2052 | if (page_group_by_mobility_disabled) |
| 2053 | return true; |
| 2054 | |
| 2055 | /* |
| 2056 | * Movable pages won't cause permanent fragmentation, so when you alloc |
| 2057 | * small pages, we just need to temporarily steal unmovable or |
| 2058 | * reclaimable pages that are closest to the request size. After a |
| 2059 | * while, memory compaction may occur to form large contiguous pages, |
| 2060 | * and the next movable allocation may not need to steal. |
| 2061 | */ |
| 2062 | return false; |
| 2063 | } |
| 2064 | |
| 2065 | /* |
| 2066 | * Check whether there is a suitable fallback freepage with requested order. |
| 2067 | * If claimable is true, this function returns fallback_mt only if |
| 2068 | * we would do this whole-block claiming. This would help to reduce |
| 2069 | * fragmentation due to mixed migratetype pages in one pageblock. |
| 2070 | */ |
| 2071 | int find_suitable_fallback(struct free_area *area, unsigned int order, |
| 2072 | int migratetype, bool claimable) |
| 2073 | { |
| 2074 | int i; |
| 2075 | |
| 2076 | if (claimable && !should_try_claim_block(order, migratetype)) |
| 2077 | return -2; |
| 2078 | |
| 2079 | if (area->nr_free == 0) |
| 2080 | return -1; |
| 2081 | |
| 2082 | for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { |
| 2083 | int fallback_mt = fallbacks[migratetype][i]; |
| 2084 | |
| 2085 | if (!free_area_empty(area, fallback_mt)) |
| 2086 | return fallback_mt; |
| 2087 | } |
| 2088 | |
| 2089 | return -1; |
| 2090 | } |
| 2091 | |
| 2092 | /* |
| 2093 | * This function implements actual block claiming behaviour. If order is large |
| 2094 | * enough, we can claim the whole pageblock for the requested migratetype. If |
| 2095 | * not, we check the pageblock for constituent pages; if at least half of the |
| 2096 | * pages are free or compatible, we can still claim the whole block, so pages |
| 2097 | * freed in the future will be put on the correct free list. |
| 2098 | */ |
| 2099 | static struct page * |
| 2100 | try_to_claim_block(struct zone *zone, struct page *page, |
| 2101 | int current_order, int order, int start_type, |
| 2102 | int block_type, unsigned int alloc_flags) |
| 2103 | { |
| 2104 | int free_pages, movable_pages, alike_pages; |
| 2105 | unsigned long start_pfn; |
| 2106 | |
| 2107 | /* Take ownership for orders >= pageblock_order */ |
| 2108 | if (current_order >= pageblock_order) { |
| 2109 | unsigned int nr_added; |
| 2110 | |
| 2111 | del_page_from_free_list(page, zone, current_order, block_type); |
| 2112 | change_pageblock_range(page, current_order, start_type); |
| 2113 | nr_added = expand(zone, page, order, current_order, start_type); |
| 2114 | account_freepages(zone, nr_added, start_type); |
| 2115 | return page; |
| 2116 | } |
| 2117 | |
| 2118 | /* |
| 2119 | * Boost watermarks to increase reclaim pressure to reduce the |
| 2120 | * likelihood of future fallbacks. Wake kswapd now as the node |
| 2121 | * may be balanced overall and kswapd will not wake naturally. |
| 2122 | */ |
| 2123 | if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) |
| 2124 | set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
| 2125 | |
| 2126 | /* moving whole block can fail due to zone boundary conditions */ |
| 2127 | if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, |
| 2128 | &movable_pages)) |
| 2129 | return NULL; |
| 2130 | |
| 2131 | /* |
| 2132 | * Determine how many pages are compatible with our allocation. |
| 2133 | * For movable allocation, it's the number of movable pages which |
| 2134 | * we just obtained. For other types it's a bit more tricky. |
| 2135 | */ |
| 2136 | if (start_type == MIGRATE_MOVABLE) { |
| 2137 | alike_pages = movable_pages; |
| 2138 | } else { |
| 2139 | /* |
| 2140 | * If we are falling back a RECLAIMABLE or UNMOVABLE allocation |
| 2141 | * to MOVABLE pageblock, consider all non-movable pages as |
| 2142 | * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or |
| 2143 | * vice versa, be conservative since we can't distinguish the |
| 2144 | * exact migratetype of non-movable pages. |
| 2145 | */ |
| 2146 | if (block_type == MIGRATE_MOVABLE) |
| 2147 | alike_pages = pageblock_nr_pages |
| 2148 | - (free_pages + movable_pages); |
| 2149 | else |
| 2150 | alike_pages = 0; |
| 2151 | } |
| 2152 | /* |
| 2153 | * If a sufficient number of pages in the block are either free or of |
| 2154 | * compatible migratability as our allocation, claim the whole block. |
| 2155 | */ |
| 2156 | if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || |
| 2157 | page_group_by_mobility_disabled) { |
| 2158 | __move_freepages_block(zone, start_pfn, block_type, start_type); |
| 2159 | return __rmqueue_smallest(zone, order, start_type); |
| 2160 | } |
| 2161 | |
| 2162 | return NULL; |
| 2163 | } |
| 2164 | |
| 2165 | /* |
| 2166 | * Try to allocate from some fallback migratetype by claiming the entire block, |
| 2167 | * i.e. converting it to the allocation's start migratetype. |
| 2168 | * |
| 2169 | * The use of signed ints for order and current_order is a deliberate |
| 2170 | * deviation from the rest of this file, to make the for loop |
| 2171 | * condition simpler. |
| 2172 | */ |
| 2173 | static __always_inline struct page * |
| 2174 | __rmqueue_claim(struct zone *zone, int order, int start_migratetype, |
| 2175 | unsigned int alloc_flags) |
| 2176 | { |
| 2177 | struct free_area *area; |
| 2178 | int current_order; |
| 2179 | int min_order = order; |
| 2180 | struct page *page; |
| 2181 | int fallback_mt; |
| 2182 | |
| 2183 | /* |
| 2184 | * Do not steal pages from freelists belonging to other pageblocks |
| 2185 | * i.e. orders < pageblock_order. If there are no local zones free, |
| 2186 | * the zonelists will be reiterated without ALLOC_NOFRAGMENT. |
| 2187 | */ |
| 2188 | if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) |
| 2189 | min_order = pageblock_order; |
| 2190 | |
| 2191 | /* |
| 2192 | * Find the largest available free page in the other list. This roughly |
| 2193 | * approximates finding the pageblock with the most free pages, which |
| 2194 | * would be too costly to do exactly. |
| 2195 | */ |
| 2196 | for (current_order = MAX_PAGE_ORDER; current_order >= min_order; |
| 2197 | --current_order) { |
| 2198 | area = &(zone->free_area[current_order]); |
| 2199 | fallback_mt = find_suitable_fallback(area, current_order, |
| 2200 | start_migratetype, true); |
| 2201 | |
| 2202 | /* No block in that order */ |
| 2203 | if (fallback_mt == -1) |
| 2204 | continue; |
| 2205 | |
| 2206 | /* Advanced into orders too low to claim, abort */ |
| 2207 | if (fallback_mt == -2) |
| 2208 | break; |
| 2209 | |
| 2210 | page = get_page_from_free_area(area, fallback_mt); |
| 2211 | page = try_to_claim_block(zone, page, current_order, order, |
| 2212 | start_migratetype, fallback_mt, |
| 2213 | alloc_flags); |
| 2214 | if (page) { |
| 2215 | trace_mm_page_alloc_extfrag(page, order, current_order, |
| 2216 | start_migratetype, fallback_mt); |
| 2217 | return page; |
| 2218 | } |
| 2219 | } |
| 2220 | |
| 2221 | return NULL; |
| 2222 | } |
| 2223 | |
| 2224 | /* |
| 2225 | * Try to steal a single page from some fallback migratetype. Leave the rest of |
| 2226 | * the block as its current migratetype, potentially causing fragmentation. |
| 2227 | */ |
| 2228 | static __always_inline struct page * |
| 2229 | __rmqueue_steal(struct zone *zone, int order, int start_migratetype) |
| 2230 | { |
| 2231 | struct free_area *area; |
| 2232 | int current_order; |
| 2233 | struct page *page; |
| 2234 | int fallback_mt; |
| 2235 | |
| 2236 | for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { |
| 2237 | area = &(zone->free_area[current_order]); |
| 2238 | fallback_mt = find_suitable_fallback(area, current_order, |
| 2239 | start_migratetype, false); |
| 2240 | if (fallback_mt == -1) |
| 2241 | continue; |
| 2242 | |
| 2243 | page = get_page_from_free_area(area, fallback_mt); |
| 2244 | page_del_and_expand(zone, page, order, current_order, fallback_mt); |
| 2245 | trace_mm_page_alloc_extfrag(page, order, current_order, |
| 2246 | start_migratetype, fallback_mt); |
| 2247 | return page; |
| 2248 | } |
| 2249 | |
| 2250 | return NULL; |
| 2251 | } |
| 2252 | |
| 2253 | enum rmqueue_mode { |
| 2254 | RMQUEUE_NORMAL, |
| 2255 | RMQUEUE_CMA, |
| 2256 | RMQUEUE_CLAIM, |
| 2257 | RMQUEUE_STEAL, |
| 2258 | }; |
| 2259 | |
| 2260 | /* |
| 2261 | * Do the hard work of removing an element from the buddy allocator. |
| 2262 | * Call me with the zone->lock already held. |
| 2263 | */ |
| 2264 | static __always_inline struct page * |
| 2265 | __rmqueue(struct zone *zone, unsigned int order, int migratetype, |
| 2266 | unsigned int alloc_flags, enum rmqueue_mode *mode) |
| 2267 | { |
| 2268 | struct page *page; |
| 2269 | |
| 2270 | if (IS_ENABLED(CONFIG_CMA)) { |
| 2271 | /* |
| 2272 | * Balance movable allocations between regular and CMA areas by |
| 2273 | * allocating from CMA when over half of the zone's free memory |
| 2274 | * is in the CMA area. |
| 2275 | */ |
| 2276 | if (alloc_flags & ALLOC_CMA && |
| 2277 | zone_page_state(zone, NR_FREE_CMA_PAGES) > |
| 2278 | zone_page_state(zone, NR_FREE_PAGES) / 2) { |
| 2279 | page = __rmqueue_cma_fallback(zone, order); |
| 2280 | if (page) |
| 2281 | return page; |
| 2282 | } |
| 2283 | } |
| 2284 | |
| 2285 | /* |
| 2286 | * First try the freelists of the requested migratetype, then try |
| 2287 | * fallbacks modes with increasing levels of fragmentation risk. |
| 2288 | * |
| 2289 | * The fallback logic is expensive and rmqueue_bulk() calls in |
| 2290 | * a loop with the zone->lock held, meaning the freelists are |
| 2291 | * not subject to any outside changes. Remember in *mode where |
| 2292 | * we found pay dirt, to save us the search on the next call. |
| 2293 | */ |
| 2294 | switch (*mode) { |
| 2295 | case RMQUEUE_NORMAL: |
| 2296 | page = __rmqueue_smallest(zone, order, migratetype); |
| 2297 | if (page) |
| 2298 | return page; |
| 2299 | fallthrough; |
| 2300 | case RMQUEUE_CMA: |
| 2301 | if (alloc_flags & ALLOC_CMA) { |
| 2302 | page = __rmqueue_cma_fallback(zone, order); |
| 2303 | if (page) { |
| 2304 | *mode = RMQUEUE_CMA; |
| 2305 | return page; |
| 2306 | } |
| 2307 | } |
| 2308 | fallthrough; |
| 2309 | case RMQUEUE_CLAIM: |
| 2310 | page = __rmqueue_claim(zone, order, migratetype, alloc_flags); |
| 2311 | if (page) { |
| 2312 | /* Replenished preferred freelist, back to normal mode. */ |
| 2313 | *mode = RMQUEUE_NORMAL; |
| 2314 | return page; |
| 2315 | } |
| 2316 | fallthrough; |
| 2317 | case RMQUEUE_STEAL: |
| 2318 | if (!(alloc_flags & ALLOC_NOFRAGMENT)) { |
| 2319 | page = __rmqueue_steal(zone, order, migratetype); |
| 2320 | if (page) { |
| 2321 | *mode = RMQUEUE_STEAL; |
| 2322 | return page; |
| 2323 | } |
| 2324 | } |
| 2325 | } |
| 2326 | return NULL; |
| 2327 | } |
| 2328 | |
| 2329 | /* |
| 2330 | * Obtain a specified number of elements from the buddy allocator, all under |
| 2331 | * a single hold of the lock, for efficiency. Add them to the supplied list. |
| 2332 | * Returns the number of new pages which were placed at *list. |
| 2333 | */ |
| 2334 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
| 2335 | unsigned long count, struct list_head *list, |
| 2336 | int migratetype, unsigned int alloc_flags) |
| 2337 | { |
| 2338 | enum rmqueue_mode rmqm = RMQUEUE_NORMAL; |
| 2339 | unsigned long flags; |
| 2340 | int i; |
| 2341 | |
| 2342 | if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { |
| 2343 | if (!spin_trylock_irqsave(&zone->lock, flags)) |
| 2344 | return 0; |
| 2345 | } else { |
| 2346 | spin_lock_irqsave(&zone->lock, flags); |
| 2347 | } |
| 2348 | for (i = 0; i < count; ++i) { |
| 2349 | struct page *page = __rmqueue(zone, order, migratetype, |
| 2350 | alloc_flags, &rmqm); |
| 2351 | if (unlikely(page == NULL)) |
| 2352 | break; |
| 2353 | |
| 2354 | /* |
| 2355 | * Split buddy pages returned by expand() are received here in |
| 2356 | * physical page order. The page is added to the tail of |
| 2357 | * caller's list. From the callers perspective, the linked list |
| 2358 | * is ordered by page number under some conditions. This is |
| 2359 | * useful for IO devices that can forward direction from the |
| 2360 | * head, thus also in the physical page order. This is useful |
| 2361 | * for IO devices that can merge IO requests if the physical |
| 2362 | * pages are ordered properly. |
| 2363 | */ |
| 2364 | list_add_tail(&page->pcp_list, list); |
| 2365 | } |
| 2366 | spin_unlock_irqrestore(&zone->lock, flags); |
| 2367 | |
| 2368 | return i; |
| 2369 | } |
| 2370 | |
| 2371 | /* |
| 2372 | * Called from the vmstat counter updater to decay the PCP high. |
| 2373 | * Return whether there are addition works to do. |
| 2374 | */ |
| 2375 | int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) |
| 2376 | { |
| 2377 | int high_min, to_drain, batch; |
| 2378 | int todo = 0; |
| 2379 | |
| 2380 | high_min = READ_ONCE(pcp->high_min); |
| 2381 | batch = READ_ONCE(pcp->batch); |
| 2382 | /* |
| 2383 | * Decrease pcp->high periodically to try to free possible |
| 2384 | * idle PCP pages. And, avoid to free too many pages to |
| 2385 | * control latency. This caps pcp->high decrement too. |
| 2386 | */ |
| 2387 | if (pcp->high > high_min) { |
| 2388 | pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), |
| 2389 | pcp->high - (pcp->high >> 3), high_min); |
| 2390 | if (pcp->high > high_min) |
| 2391 | todo++; |
| 2392 | } |
| 2393 | |
| 2394 | to_drain = pcp->count - pcp->high; |
| 2395 | if (to_drain > 0) { |
| 2396 | spin_lock(&pcp->lock); |
| 2397 | free_pcppages_bulk(zone, to_drain, pcp, 0); |
| 2398 | spin_unlock(&pcp->lock); |
| 2399 | todo++; |
| 2400 | } |
| 2401 | |
| 2402 | return todo; |
| 2403 | } |
| 2404 | |
| 2405 | #ifdef CONFIG_NUMA |
| 2406 | /* |
| 2407 | * Called from the vmstat counter updater to drain pagesets of this |
| 2408 | * currently executing processor on remote nodes after they have |
| 2409 | * expired. |
| 2410 | */ |
| 2411 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
| 2412 | { |
| 2413 | int to_drain, batch; |
| 2414 | |
| 2415 | batch = READ_ONCE(pcp->batch); |
| 2416 | to_drain = min(pcp->count, batch); |
| 2417 | if (to_drain > 0) { |
| 2418 | spin_lock(&pcp->lock); |
| 2419 | free_pcppages_bulk(zone, to_drain, pcp, 0); |
| 2420 | spin_unlock(&pcp->lock); |
| 2421 | } |
| 2422 | } |
| 2423 | #endif |
| 2424 | |
| 2425 | /* |
| 2426 | * Drain pcplists of the indicated processor and zone. |
| 2427 | */ |
| 2428 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
| 2429 | { |
| 2430 | struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| 2431 | int count; |
| 2432 | |
| 2433 | do { |
| 2434 | spin_lock(&pcp->lock); |
| 2435 | count = pcp->count; |
| 2436 | if (count) { |
| 2437 | int to_drain = min(count, |
| 2438 | pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); |
| 2439 | |
| 2440 | free_pcppages_bulk(zone, to_drain, pcp, 0); |
| 2441 | count -= to_drain; |
| 2442 | } |
| 2443 | spin_unlock(&pcp->lock); |
| 2444 | } while (count); |
| 2445 | } |
| 2446 | |
| 2447 | /* |
| 2448 | * Drain pcplists of all zones on the indicated processor. |
| 2449 | */ |
| 2450 | static void drain_pages(unsigned int cpu) |
| 2451 | { |
| 2452 | struct zone *zone; |
| 2453 | |
| 2454 | for_each_populated_zone(zone) { |
| 2455 | drain_pages_zone(cpu, zone); |
| 2456 | } |
| 2457 | } |
| 2458 | |
| 2459 | /* |
| 2460 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. |
| 2461 | */ |
| 2462 | void drain_local_pages(struct zone *zone) |
| 2463 | { |
| 2464 | int cpu = smp_processor_id(); |
| 2465 | |
| 2466 | if (zone) |
| 2467 | drain_pages_zone(cpu, zone); |
| 2468 | else |
| 2469 | drain_pages(cpu); |
| 2470 | } |
| 2471 | |
| 2472 | /* |
| 2473 | * The implementation of drain_all_pages(), exposing an extra parameter to |
| 2474 | * drain on all cpus. |
| 2475 | * |
| 2476 | * drain_all_pages() is optimized to only execute on cpus where pcplists are |
| 2477 | * not empty. The check for non-emptiness can however race with a free to |
| 2478 | * pcplist that has not yet increased the pcp->count from 0 to 1. Callers |
| 2479 | * that need the guarantee that every CPU has drained can disable the |
| 2480 | * optimizing racy check. |
| 2481 | */ |
| 2482 | static void __drain_all_pages(struct zone *zone, bool force_all_cpus) |
| 2483 | { |
| 2484 | int cpu; |
| 2485 | |
| 2486 | /* |
| 2487 | * Allocate in the BSS so we won't require allocation in |
| 2488 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y |
| 2489 | */ |
| 2490 | static cpumask_t cpus_with_pcps; |
| 2491 | |
| 2492 | /* |
| 2493 | * Do not drain if one is already in progress unless it's specific to |
| 2494 | * a zone. Such callers are primarily CMA and memory hotplug and need |
| 2495 | * the drain to be complete when the call returns. |
| 2496 | */ |
| 2497 | if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { |
| 2498 | if (!zone) |
| 2499 | return; |
| 2500 | mutex_lock(&pcpu_drain_mutex); |
| 2501 | } |
| 2502 | |
| 2503 | /* |
| 2504 | * We don't care about racing with CPU hotplug event |
| 2505 | * as offline notification will cause the notified |
| 2506 | * cpu to drain that CPU pcps and on_each_cpu_mask |
| 2507 | * disables preemption as part of its processing |
| 2508 | */ |
| 2509 | for_each_online_cpu(cpu) { |
| 2510 | struct per_cpu_pages *pcp; |
| 2511 | struct zone *z; |
| 2512 | bool has_pcps = false; |
| 2513 | |
| 2514 | if (force_all_cpus) { |
| 2515 | /* |
| 2516 | * The pcp.count check is racy, some callers need a |
| 2517 | * guarantee that no cpu is missed. |
| 2518 | */ |
| 2519 | has_pcps = true; |
| 2520 | } else if (zone) { |
| 2521 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| 2522 | if (pcp->count) |
| 2523 | has_pcps = true; |
| 2524 | } else { |
| 2525 | for_each_populated_zone(z) { |
| 2526 | pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); |
| 2527 | if (pcp->count) { |
| 2528 | has_pcps = true; |
| 2529 | break; |
| 2530 | } |
| 2531 | } |
| 2532 | } |
| 2533 | |
| 2534 | if (has_pcps) |
| 2535 | cpumask_set_cpu(cpu, &cpus_with_pcps); |
| 2536 | else |
| 2537 | cpumask_clear_cpu(cpu, &cpus_with_pcps); |
| 2538 | } |
| 2539 | |
| 2540 | for_each_cpu(cpu, &cpus_with_pcps) { |
| 2541 | if (zone) |
| 2542 | drain_pages_zone(cpu, zone); |
| 2543 | else |
| 2544 | drain_pages(cpu); |
| 2545 | } |
| 2546 | |
| 2547 | mutex_unlock(&pcpu_drain_mutex); |
| 2548 | } |
| 2549 | |
| 2550 | /* |
| 2551 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
| 2552 | * |
| 2553 | * When zone parameter is non-NULL, spill just the single zone's pages. |
| 2554 | */ |
| 2555 | void drain_all_pages(struct zone *zone) |
| 2556 | { |
| 2557 | __drain_all_pages(zone, false); |
| 2558 | } |
| 2559 | |
| 2560 | static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) |
| 2561 | { |
| 2562 | int min_nr_free, max_nr_free; |
| 2563 | |
| 2564 | /* Free as much as possible if batch freeing high-order pages. */ |
| 2565 | if (unlikely(free_high)) |
| 2566 | return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); |
| 2567 | |
| 2568 | /* Check for PCP disabled or boot pageset */ |
| 2569 | if (unlikely(high < batch)) |
| 2570 | return 1; |
| 2571 | |
| 2572 | /* Leave at least pcp->batch pages on the list */ |
| 2573 | min_nr_free = batch; |
| 2574 | max_nr_free = high - batch; |
| 2575 | |
| 2576 | /* |
| 2577 | * Increase the batch number to the number of the consecutive |
| 2578 | * freed pages to reduce zone lock contention. |
| 2579 | */ |
| 2580 | batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); |
| 2581 | |
| 2582 | return batch; |
| 2583 | } |
| 2584 | |
| 2585 | static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, |
| 2586 | int batch, bool free_high) |
| 2587 | { |
| 2588 | int high, high_min, high_max; |
| 2589 | |
| 2590 | high_min = READ_ONCE(pcp->high_min); |
| 2591 | high_max = READ_ONCE(pcp->high_max); |
| 2592 | high = pcp->high = clamp(pcp->high, high_min, high_max); |
| 2593 | |
| 2594 | if (unlikely(!high)) |
| 2595 | return 0; |
| 2596 | |
| 2597 | if (unlikely(free_high)) { |
| 2598 | pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), |
| 2599 | high_min); |
| 2600 | return 0; |
| 2601 | } |
| 2602 | |
| 2603 | /* |
| 2604 | * If reclaim is active, limit the number of pages that can be |
| 2605 | * stored on pcp lists |
| 2606 | */ |
| 2607 | if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { |
| 2608 | int free_count = max_t(int, pcp->free_count, batch); |
| 2609 | |
| 2610 | pcp->high = max(high - free_count, high_min); |
| 2611 | return min(batch << 2, pcp->high); |
| 2612 | } |
| 2613 | |
| 2614 | if (high_min == high_max) |
| 2615 | return high; |
| 2616 | |
| 2617 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { |
| 2618 | int free_count = max_t(int, pcp->free_count, batch); |
| 2619 | |
| 2620 | pcp->high = max(high - free_count, high_min); |
| 2621 | high = max(pcp->count, high_min); |
| 2622 | } else if (pcp->count >= high) { |
| 2623 | int need_high = pcp->free_count + batch; |
| 2624 | |
| 2625 | /* pcp->high should be large enough to hold batch freed pages */ |
| 2626 | if (pcp->high < need_high) |
| 2627 | pcp->high = clamp(need_high, high_min, high_max); |
| 2628 | } |
| 2629 | |
| 2630 | return high; |
| 2631 | } |
| 2632 | |
| 2633 | static void free_frozen_page_commit(struct zone *zone, |
| 2634 | struct per_cpu_pages *pcp, struct page *page, int migratetype, |
| 2635 | unsigned int order, fpi_t fpi_flags) |
| 2636 | { |
| 2637 | int high, batch; |
| 2638 | int pindex; |
| 2639 | bool free_high = false; |
| 2640 | |
| 2641 | /* |
| 2642 | * On freeing, reduce the number of pages that are batch allocated. |
| 2643 | * See nr_pcp_alloc() where alloc_factor is increased for subsequent |
| 2644 | * allocations. |
| 2645 | */ |
| 2646 | pcp->alloc_factor >>= 1; |
| 2647 | __count_vm_events(PGFREE, 1 << order); |
| 2648 | pindex = order_to_pindex(migratetype, order); |
| 2649 | list_add(&page->pcp_list, &pcp->lists[pindex]); |
| 2650 | pcp->count += 1 << order; |
| 2651 | |
| 2652 | batch = READ_ONCE(pcp->batch); |
| 2653 | /* |
| 2654 | * As high-order pages other than THP's stored on PCP can contribute |
| 2655 | * to fragmentation, limit the number stored when PCP is heavily |
| 2656 | * freeing without allocation. The remainder after bulk freeing |
| 2657 | * stops will be drained from vmstat refresh context. |
| 2658 | */ |
| 2659 | if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { |
| 2660 | free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && |
| 2661 | (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && |
| 2662 | (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || |
| 2663 | pcp->count >= batch)); |
| 2664 | pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; |
| 2665 | } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { |
| 2666 | pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; |
| 2667 | } |
| 2668 | if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) |
| 2669 | pcp->free_count += (1 << order); |
| 2670 | |
| 2671 | if (unlikely(fpi_flags & FPI_TRYLOCK)) { |
| 2672 | /* |
| 2673 | * Do not attempt to take a zone lock. Let pcp->count get |
| 2674 | * over high mark temporarily. |
| 2675 | */ |
| 2676 | return; |
| 2677 | } |
| 2678 | high = nr_pcp_high(pcp, zone, batch, free_high); |
| 2679 | if (pcp->count >= high) { |
| 2680 | free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), |
| 2681 | pcp, pindex); |
| 2682 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && |
| 2683 | zone_watermark_ok(zone, 0, high_wmark_pages(zone), |
| 2684 | ZONE_MOVABLE, 0)) |
| 2685 | clear_bit(ZONE_BELOW_HIGH, &zone->flags); |
| 2686 | } |
| 2687 | } |
| 2688 | |
| 2689 | /* |
| 2690 | * Free a pcp page |
| 2691 | */ |
| 2692 | static void __free_frozen_pages(struct page *page, unsigned int order, |
| 2693 | fpi_t fpi_flags) |
| 2694 | { |
| 2695 | unsigned long __maybe_unused UP_flags; |
| 2696 | struct per_cpu_pages *pcp; |
| 2697 | struct zone *zone; |
| 2698 | unsigned long pfn = page_to_pfn(page); |
| 2699 | int migratetype; |
| 2700 | |
| 2701 | if (!pcp_allowed_order(order)) { |
| 2702 | __free_pages_ok(page, order, fpi_flags); |
| 2703 | return; |
| 2704 | } |
| 2705 | |
| 2706 | if (!free_pages_prepare(page, order)) |
| 2707 | return; |
| 2708 | |
| 2709 | /* |
| 2710 | * We only track unmovable, reclaimable and movable on pcp lists. |
| 2711 | * Place ISOLATE pages on the isolated list because they are being |
| 2712 | * offlined but treat HIGHATOMIC and CMA as movable pages so we can |
| 2713 | * get those areas back if necessary. Otherwise, we may have to free |
| 2714 | * excessively into the page allocator |
| 2715 | */ |
| 2716 | zone = page_zone(page); |
| 2717 | migratetype = get_pfnblock_migratetype(page, pfn); |
| 2718 | if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { |
| 2719 | if (unlikely(is_migrate_isolate(migratetype))) { |
| 2720 | free_one_page(zone, page, pfn, order, fpi_flags); |
| 2721 | return; |
| 2722 | } |
| 2723 | migratetype = MIGRATE_MOVABLE; |
| 2724 | } |
| 2725 | |
| 2726 | if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) |
| 2727 | && (in_nmi() || in_hardirq()))) { |
| 2728 | add_page_to_zone_llist(zone, page, order); |
| 2729 | return; |
| 2730 | } |
| 2731 | pcp_trylock_prepare(UP_flags); |
| 2732 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
| 2733 | if (pcp) { |
| 2734 | free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); |
| 2735 | pcp_spin_unlock(pcp); |
| 2736 | } else { |
| 2737 | free_one_page(zone, page, pfn, order, fpi_flags); |
| 2738 | } |
| 2739 | pcp_trylock_finish(UP_flags); |
| 2740 | } |
| 2741 | |
| 2742 | void free_frozen_pages(struct page *page, unsigned int order) |
| 2743 | { |
| 2744 | __free_frozen_pages(page, order, FPI_NONE); |
| 2745 | } |
| 2746 | |
| 2747 | /* |
| 2748 | * Free a batch of folios |
| 2749 | */ |
| 2750 | void free_unref_folios(struct folio_batch *folios) |
| 2751 | { |
| 2752 | unsigned long __maybe_unused UP_flags; |
| 2753 | struct per_cpu_pages *pcp = NULL; |
| 2754 | struct zone *locked_zone = NULL; |
| 2755 | int i, j; |
| 2756 | |
| 2757 | /* Prepare folios for freeing */ |
| 2758 | for (i = 0, j = 0; i < folios->nr; i++) { |
| 2759 | struct folio *folio = folios->folios[i]; |
| 2760 | unsigned long pfn = folio_pfn(folio); |
| 2761 | unsigned int order = folio_order(folio); |
| 2762 | |
| 2763 | if (!free_pages_prepare(&folio->page, order)) |
| 2764 | continue; |
| 2765 | /* |
| 2766 | * Free orders not handled on the PCP directly to the |
| 2767 | * allocator. |
| 2768 | */ |
| 2769 | if (!pcp_allowed_order(order)) { |
| 2770 | free_one_page(folio_zone(folio), &folio->page, |
| 2771 | pfn, order, FPI_NONE); |
| 2772 | continue; |
| 2773 | } |
| 2774 | folio->private = (void *)(unsigned long)order; |
| 2775 | if (j != i) |
| 2776 | folios->folios[j] = folio; |
| 2777 | j++; |
| 2778 | } |
| 2779 | folios->nr = j; |
| 2780 | |
| 2781 | for (i = 0; i < folios->nr; i++) { |
| 2782 | struct folio *folio = folios->folios[i]; |
| 2783 | struct zone *zone = folio_zone(folio); |
| 2784 | unsigned long pfn = folio_pfn(folio); |
| 2785 | unsigned int order = (unsigned long)folio->private; |
| 2786 | int migratetype; |
| 2787 | |
| 2788 | folio->private = NULL; |
| 2789 | migratetype = get_pfnblock_migratetype(&folio->page, pfn); |
| 2790 | |
| 2791 | /* Different zone requires a different pcp lock */ |
| 2792 | if (zone != locked_zone || |
| 2793 | is_migrate_isolate(migratetype)) { |
| 2794 | if (pcp) { |
| 2795 | pcp_spin_unlock(pcp); |
| 2796 | pcp_trylock_finish(UP_flags); |
| 2797 | locked_zone = NULL; |
| 2798 | pcp = NULL; |
| 2799 | } |
| 2800 | |
| 2801 | /* |
| 2802 | * Free isolated pages directly to the |
| 2803 | * allocator, see comment in free_frozen_pages. |
| 2804 | */ |
| 2805 | if (is_migrate_isolate(migratetype)) { |
| 2806 | free_one_page(zone, &folio->page, pfn, |
| 2807 | order, FPI_NONE); |
| 2808 | continue; |
| 2809 | } |
| 2810 | |
| 2811 | /* |
| 2812 | * trylock is necessary as folios may be getting freed |
| 2813 | * from IRQ or SoftIRQ context after an IO completion. |
| 2814 | */ |
| 2815 | pcp_trylock_prepare(UP_flags); |
| 2816 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
| 2817 | if (unlikely(!pcp)) { |
| 2818 | pcp_trylock_finish(UP_flags); |
| 2819 | free_one_page(zone, &folio->page, pfn, |
| 2820 | order, FPI_NONE); |
| 2821 | continue; |
| 2822 | } |
| 2823 | locked_zone = zone; |
| 2824 | } |
| 2825 | |
| 2826 | /* |
| 2827 | * Non-isolated types over MIGRATE_PCPTYPES get added |
| 2828 | * to the MIGRATE_MOVABLE pcp list. |
| 2829 | */ |
| 2830 | if (unlikely(migratetype >= MIGRATE_PCPTYPES)) |
| 2831 | migratetype = MIGRATE_MOVABLE; |
| 2832 | |
| 2833 | trace_mm_page_free_batched(&folio->page); |
| 2834 | free_frozen_page_commit(zone, pcp, &folio->page, migratetype, |
| 2835 | order, FPI_NONE); |
| 2836 | } |
| 2837 | |
| 2838 | if (pcp) { |
| 2839 | pcp_spin_unlock(pcp); |
| 2840 | pcp_trylock_finish(UP_flags); |
| 2841 | } |
| 2842 | folio_batch_reinit(folios); |
| 2843 | } |
| 2844 | |
| 2845 | /* |
| 2846 | * split_page takes a non-compound higher-order page, and splits it into |
| 2847 | * n (1<<order) sub-pages: page[0..n] |
| 2848 | * Each sub-page must be freed individually. |
| 2849 | * |
| 2850 | * Note: this is probably too low level an operation for use in drivers. |
| 2851 | * Please consult with lkml before using this in your driver. |
| 2852 | */ |
| 2853 | void split_page(struct page *page, unsigned int order) |
| 2854 | { |
| 2855 | int i; |
| 2856 | |
| 2857 | VM_BUG_ON_PAGE(PageCompound(page), page); |
| 2858 | VM_BUG_ON_PAGE(!page_count(page), page); |
| 2859 | |
| 2860 | for (i = 1; i < (1 << order); i++) |
| 2861 | set_page_refcounted(page + i); |
| 2862 | split_page_owner(page, order, 0); |
| 2863 | pgalloc_tag_split(page_folio(page), order, 0); |
| 2864 | split_page_memcg(page, order); |
| 2865 | } |
| 2866 | EXPORT_SYMBOL_GPL(split_page); |
| 2867 | |
| 2868 | int __isolate_free_page(struct page *page, unsigned int order) |
| 2869 | { |
| 2870 | struct zone *zone = page_zone(page); |
| 2871 | int mt = get_pageblock_migratetype(page); |
| 2872 | |
| 2873 | if (!is_migrate_isolate(mt)) { |
| 2874 | unsigned long watermark; |
| 2875 | /* |
| 2876 | * Obey watermarks as if the page was being allocated. We can |
| 2877 | * emulate a high-order watermark check with a raised order-0 |
| 2878 | * watermark, because we already know our high-order page |
| 2879 | * exists. |
| 2880 | */ |
| 2881 | watermark = zone->_watermark[WMARK_MIN] + (1UL << order); |
| 2882 | if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) |
| 2883 | return 0; |
| 2884 | } |
| 2885 | |
| 2886 | del_page_from_free_list(page, zone, order, mt); |
| 2887 | |
| 2888 | /* |
| 2889 | * Set the pageblock if the isolated page is at least half of a |
| 2890 | * pageblock |
| 2891 | */ |
| 2892 | if (order >= pageblock_order - 1) { |
| 2893 | struct page *endpage = page + (1 << order) - 1; |
| 2894 | for (; page < endpage; page += pageblock_nr_pages) { |
| 2895 | int mt = get_pageblock_migratetype(page); |
| 2896 | /* |
| 2897 | * Only change normal pageblocks (i.e., they can merge |
| 2898 | * with others) |
| 2899 | */ |
| 2900 | if (migratetype_is_mergeable(mt)) |
| 2901 | move_freepages_block(zone, page, mt, |
| 2902 | MIGRATE_MOVABLE); |
| 2903 | } |
| 2904 | } |
| 2905 | |
| 2906 | return 1UL << order; |
| 2907 | } |
| 2908 | |
| 2909 | /** |
| 2910 | * __putback_isolated_page - Return a now-isolated page back where we got it |
| 2911 | * @page: Page that was isolated |
| 2912 | * @order: Order of the isolated page |
| 2913 | * @mt: The page's pageblock's migratetype |
| 2914 | * |
| 2915 | * This function is meant to return a page pulled from the free lists via |
| 2916 | * __isolate_free_page back to the free lists they were pulled from. |
| 2917 | */ |
| 2918 | void __putback_isolated_page(struct page *page, unsigned int order, int mt) |
| 2919 | { |
| 2920 | struct zone *zone = page_zone(page); |
| 2921 | |
| 2922 | /* zone lock should be held when this function is called */ |
| 2923 | lockdep_assert_held(&zone->lock); |
| 2924 | |
| 2925 | /* Return isolated page to tail of freelist. */ |
| 2926 | __free_one_page(page, page_to_pfn(page), zone, order, mt, |
| 2927 | FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); |
| 2928 | } |
| 2929 | |
| 2930 | /* |
| 2931 | * Update NUMA hit/miss statistics |
| 2932 | */ |
| 2933 | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, |
| 2934 | long nr_account) |
| 2935 | { |
| 2936 | #ifdef CONFIG_NUMA |
| 2937 | enum numa_stat_item local_stat = NUMA_LOCAL; |
| 2938 | |
| 2939 | /* skip numa counters update if numa stats is disabled */ |
| 2940 | if (!static_branch_likely(&vm_numa_stat_key)) |
| 2941 | return; |
| 2942 | |
| 2943 | if (zone_to_nid(z) != numa_node_id()) |
| 2944 | local_stat = NUMA_OTHER; |
| 2945 | |
| 2946 | if (zone_to_nid(z) == zone_to_nid(preferred_zone)) |
| 2947 | __count_numa_events(z, NUMA_HIT, nr_account); |
| 2948 | else { |
| 2949 | __count_numa_events(z, NUMA_MISS, nr_account); |
| 2950 | __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); |
| 2951 | } |
| 2952 | __count_numa_events(z, local_stat, nr_account); |
| 2953 | #endif |
| 2954 | } |
| 2955 | |
| 2956 | static __always_inline |
| 2957 | struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, |
| 2958 | unsigned int order, unsigned int alloc_flags, |
| 2959 | int migratetype) |
| 2960 | { |
| 2961 | struct page *page; |
| 2962 | unsigned long flags; |
| 2963 | |
| 2964 | do { |
| 2965 | page = NULL; |
| 2966 | if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { |
| 2967 | if (!spin_trylock_irqsave(&zone->lock, flags)) |
| 2968 | return NULL; |
| 2969 | } else { |
| 2970 | spin_lock_irqsave(&zone->lock, flags); |
| 2971 | } |
| 2972 | if (alloc_flags & ALLOC_HIGHATOMIC) |
| 2973 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); |
| 2974 | if (!page) { |
| 2975 | enum rmqueue_mode rmqm = RMQUEUE_NORMAL; |
| 2976 | |
| 2977 | page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); |
| 2978 | |
| 2979 | /* |
| 2980 | * If the allocation fails, allow OOM handling and |
| 2981 | * order-0 (atomic) allocs access to HIGHATOMIC |
| 2982 | * reserves as failing now is worse than failing a |
| 2983 | * high-order atomic allocation in the future. |
| 2984 | */ |
| 2985 | if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) |
| 2986 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); |
| 2987 | |
| 2988 | if (!page) { |
| 2989 | spin_unlock_irqrestore(&zone->lock, flags); |
| 2990 | return NULL; |
| 2991 | } |
| 2992 | } |
| 2993 | spin_unlock_irqrestore(&zone->lock, flags); |
| 2994 | } while (check_new_pages(page, order)); |
| 2995 | |
| 2996 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
| 2997 | zone_statistics(preferred_zone, zone, 1); |
| 2998 | |
| 2999 | return page; |
| 3000 | } |
| 3001 | |
| 3002 | static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) |
| 3003 | { |
| 3004 | int high, base_batch, batch, max_nr_alloc; |
| 3005 | int high_max, high_min; |
| 3006 | |
| 3007 | base_batch = READ_ONCE(pcp->batch); |
| 3008 | high_min = READ_ONCE(pcp->high_min); |
| 3009 | high_max = READ_ONCE(pcp->high_max); |
| 3010 | high = pcp->high = clamp(pcp->high, high_min, high_max); |
| 3011 | |
| 3012 | /* Check for PCP disabled or boot pageset */ |
| 3013 | if (unlikely(high < base_batch)) |
| 3014 | return 1; |
| 3015 | |
| 3016 | if (order) |
| 3017 | batch = base_batch; |
| 3018 | else |
| 3019 | batch = (base_batch << pcp->alloc_factor); |
| 3020 | |
| 3021 | /* |
| 3022 | * If we had larger pcp->high, we could avoid to allocate from |
| 3023 | * zone. |
| 3024 | */ |
| 3025 | if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) |
| 3026 | high = pcp->high = min(high + batch, high_max); |
| 3027 | |
| 3028 | if (!order) { |
| 3029 | max_nr_alloc = max(high - pcp->count - base_batch, base_batch); |
| 3030 | /* |
| 3031 | * Double the number of pages allocated each time there is |
| 3032 | * subsequent allocation of order-0 pages without any freeing. |
| 3033 | */ |
| 3034 | if (batch <= max_nr_alloc && |
| 3035 | pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) |
| 3036 | pcp->alloc_factor++; |
| 3037 | batch = min(batch, max_nr_alloc); |
| 3038 | } |
| 3039 | |
| 3040 | /* |
| 3041 | * Scale batch relative to order if batch implies free pages |
| 3042 | * can be stored on the PCP. Batch can be 1 for small zones or |
| 3043 | * for boot pagesets which should never store free pages as |
| 3044 | * the pages may belong to arbitrary zones. |
| 3045 | */ |
| 3046 | if (batch > 1) |
| 3047 | batch = max(batch >> order, 2); |
| 3048 | |
| 3049 | return batch; |
| 3050 | } |
| 3051 | |
| 3052 | /* Remove page from the per-cpu list, caller must protect the list */ |
| 3053 | static inline |
| 3054 | struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, |
| 3055 | int migratetype, |
| 3056 | unsigned int alloc_flags, |
| 3057 | struct per_cpu_pages *pcp, |
| 3058 | struct list_head *list) |
| 3059 | { |
| 3060 | struct page *page; |
| 3061 | |
| 3062 | do { |
| 3063 | if (list_empty(list)) { |
| 3064 | int batch = nr_pcp_alloc(pcp, zone, order); |
| 3065 | int alloced; |
| 3066 | |
| 3067 | alloced = rmqueue_bulk(zone, order, |
| 3068 | batch, list, |
| 3069 | migratetype, alloc_flags); |
| 3070 | |
| 3071 | pcp->count += alloced << order; |
| 3072 | if (unlikely(list_empty(list))) |
| 3073 | return NULL; |
| 3074 | } |
| 3075 | |
| 3076 | page = list_first_entry(list, struct page, pcp_list); |
| 3077 | list_del(&page->pcp_list); |
| 3078 | pcp->count -= 1 << order; |
| 3079 | } while (check_new_pages(page, order)); |
| 3080 | |
| 3081 | return page; |
| 3082 | } |
| 3083 | |
| 3084 | /* Lock and remove page from the per-cpu list */ |
| 3085 | static struct page *rmqueue_pcplist(struct zone *preferred_zone, |
| 3086 | struct zone *zone, unsigned int order, |
| 3087 | int migratetype, unsigned int alloc_flags) |
| 3088 | { |
| 3089 | struct per_cpu_pages *pcp; |
| 3090 | struct list_head *list; |
| 3091 | struct page *page; |
| 3092 | unsigned long __maybe_unused UP_flags; |
| 3093 | |
| 3094 | /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ |
| 3095 | pcp_trylock_prepare(UP_flags); |
| 3096 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
| 3097 | if (!pcp) { |
| 3098 | pcp_trylock_finish(UP_flags); |
| 3099 | return NULL; |
| 3100 | } |
| 3101 | |
| 3102 | /* |
| 3103 | * On allocation, reduce the number of pages that are batch freed. |
| 3104 | * See nr_pcp_free() where free_factor is increased for subsequent |
| 3105 | * frees. |
| 3106 | */ |
| 3107 | pcp->free_count >>= 1; |
| 3108 | list = &pcp->lists[order_to_pindex(migratetype, order)]; |
| 3109 | page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); |
| 3110 | pcp_spin_unlock(pcp); |
| 3111 | pcp_trylock_finish(UP_flags); |
| 3112 | if (page) { |
| 3113 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
| 3114 | zone_statistics(preferred_zone, zone, 1); |
| 3115 | } |
| 3116 | return page; |
| 3117 | } |
| 3118 | |
| 3119 | /* |
| 3120 | * Allocate a page from the given zone. |
| 3121 | * Use pcplists for THP or "cheap" high-order allocations. |
| 3122 | */ |
| 3123 | |
| 3124 | /* |
| 3125 | * Do not instrument rmqueue() with KMSAN. This function may call |
| 3126 | * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). |
| 3127 | * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it |
| 3128 | * may call rmqueue() again, which will result in a deadlock. |
| 3129 | */ |
| 3130 | __no_sanitize_memory |
| 3131 | static inline |
| 3132 | struct page *rmqueue(struct zone *preferred_zone, |
| 3133 | struct zone *zone, unsigned int order, |
| 3134 | gfp_t gfp_flags, unsigned int alloc_flags, |
| 3135 | int migratetype) |
| 3136 | { |
| 3137 | struct page *page; |
| 3138 | |
| 3139 | if (likely(pcp_allowed_order(order))) { |
| 3140 | page = rmqueue_pcplist(preferred_zone, zone, order, |
| 3141 | migratetype, alloc_flags); |
| 3142 | if (likely(page)) |
| 3143 | goto out; |
| 3144 | } |
| 3145 | |
| 3146 | page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, |
| 3147 | migratetype); |
| 3148 | |
| 3149 | out: |
| 3150 | /* Separate test+clear to avoid unnecessary atomics */ |
| 3151 | if ((alloc_flags & ALLOC_KSWAPD) && |
| 3152 | unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { |
| 3153 | clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
| 3154 | wakeup_kswapd(zone, 0, 0, zone_idx(zone)); |
| 3155 | } |
| 3156 | |
| 3157 | VM_BUG_ON_PAGE(page && bad_range(zone, page), page); |
| 3158 | return page; |
| 3159 | } |
| 3160 | |
| 3161 | /* |
| 3162 | * Reserve the pageblock(s) surrounding an allocation request for |
| 3163 | * exclusive use of high-order atomic allocations if there are no |
| 3164 | * empty page blocks that contain a page with a suitable order |
| 3165 | */ |
| 3166 | static void reserve_highatomic_pageblock(struct page *page, int order, |
| 3167 | struct zone *zone) |
| 3168 | { |
| 3169 | int mt; |
| 3170 | unsigned long max_managed, flags; |
| 3171 | |
| 3172 | /* |
| 3173 | * The number reserved as: minimum is 1 pageblock, maximum is |
| 3174 | * roughly 1% of a zone. But if 1% of a zone falls below a |
| 3175 | * pageblock size, then don't reserve any pageblocks. |
| 3176 | * Check is race-prone but harmless. |
| 3177 | */ |
| 3178 | if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) |
| 3179 | return; |
| 3180 | max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); |
| 3181 | if (zone->nr_reserved_highatomic >= max_managed) |
| 3182 | return; |
| 3183 | |
| 3184 | spin_lock_irqsave(&zone->lock, flags); |
| 3185 | |
| 3186 | /* Recheck the nr_reserved_highatomic limit under the lock */ |
| 3187 | if (zone->nr_reserved_highatomic >= max_managed) |
| 3188 | goto out_unlock; |
| 3189 | |
| 3190 | /* Yoink! */ |
| 3191 | mt = get_pageblock_migratetype(page); |
| 3192 | /* Only reserve normal pageblocks (i.e., they can merge with others) */ |
| 3193 | if (!migratetype_is_mergeable(mt)) |
| 3194 | goto out_unlock; |
| 3195 | |
| 3196 | if (order < pageblock_order) { |
| 3197 | if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) |
| 3198 | goto out_unlock; |
| 3199 | zone->nr_reserved_highatomic += pageblock_nr_pages; |
| 3200 | } else { |
| 3201 | change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); |
| 3202 | zone->nr_reserved_highatomic += 1 << order; |
| 3203 | } |
| 3204 | |
| 3205 | out_unlock: |
| 3206 | spin_unlock_irqrestore(&zone->lock, flags); |
| 3207 | } |
| 3208 | |
| 3209 | /* |
| 3210 | * Used when an allocation is about to fail under memory pressure. This |
| 3211 | * potentially hurts the reliability of high-order allocations when under |
| 3212 | * intense memory pressure but failed atomic allocations should be easier |
| 3213 | * to recover from than an OOM. |
| 3214 | * |
| 3215 | * If @force is true, try to unreserve pageblocks even though highatomic |
| 3216 | * pageblock is exhausted. |
| 3217 | */ |
| 3218 | static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, |
| 3219 | bool force) |
| 3220 | { |
| 3221 | struct zonelist *zonelist = ac->zonelist; |
| 3222 | unsigned long flags; |
| 3223 | struct zoneref *z; |
| 3224 | struct zone *zone; |
| 3225 | struct page *page; |
| 3226 | int order; |
| 3227 | int ret; |
| 3228 | |
| 3229 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, |
| 3230 | ac->nodemask) { |
| 3231 | /* |
| 3232 | * Preserve at least one pageblock unless memory pressure |
| 3233 | * is really high. |
| 3234 | */ |
| 3235 | if (!force && zone->nr_reserved_highatomic <= |
| 3236 | pageblock_nr_pages) |
| 3237 | continue; |
| 3238 | |
| 3239 | spin_lock_irqsave(&zone->lock, flags); |
| 3240 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| 3241 | struct free_area *area = &(zone->free_area[order]); |
| 3242 | unsigned long size; |
| 3243 | |
| 3244 | page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); |
| 3245 | if (!page) |
| 3246 | continue; |
| 3247 | |
| 3248 | size = max(pageblock_nr_pages, 1UL << order); |
| 3249 | /* |
| 3250 | * It should never happen but changes to |
| 3251 | * locking could inadvertently allow a per-cpu |
| 3252 | * drain to add pages to MIGRATE_HIGHATOMIC |
| 3253 | * while unreserving so be safe and watch for |
| 3254 | * underflows. |
| 3255 | */ |
| 3256 | if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) |
| 3257 | size = zone->nr_reserved_highatomic; |
| 3258 | zone->nr_reserved_highatomic -= size; |
| 3259 | |
| 3260 | /* |
| 3261 | * Convert to ac->migratetype and avoid the normal |
| 3262 | * pageblock stealing heuristics. Minimally, the caller |
| 3263 | * is doing the work and needs the pages. More |
| 3264 | * importantly, if the block was always converted to |
| 3265 | * MIGRATE_UNMOVABLE or another type then the number |
| 3266 | * of pageblocks that cannot be completely freed |
| 3267 | * may increase. |
| 3268 | */ |
| 3269 | if (order < pageblock_order) |
| 3270 | ret = move_freepages_block(zone, page, |
| 3271 | MIGRATE_HIGHATOMIC, |
| 3272 | ac->migratetype); |
| 3273 | else { |
| 3274 | move_to_free_list(page, zone, order, |
| 3275 | MIGRATE_HIGHATOMIC, |
| 3276 | ac->migratetype); |
| 3277 | change_pageblock_range(page, order, |
| 3278 | ac->migratetype); |
| 3279 | ret = 1; |
| 3280 | } |
| 3281 | /* |
| 3282 | * Reserving the block(s) already succeeded, |
| 3283 | * so this should not fail on zone boundaries. |
| 3284 | */ |
| 3285 | WARN_ON_ONCE(ret == -1); |
| 3286 | if (ret > 0) { |
| 3287 | spin_unlock_irqrestore(&zone->lock, flags); |
| 3288 | return ret; |
| 3289 | } |
| 3290 | } |
| 3291 | spin_unlock_irqrestore(&zone->lock, flags); |
| 3292 | } |
| 3293 | |
| 3294 | return false; |
| 3295 | } |
| 3296 | |
| 3297 | static inline long __zone_watermark_unusable_free(struct zone *z, |
| 3298 | unsigned int order, unsigned int alloc_flags) |
| 3299 | { |
| 3300 | long unusable_free = (1 << order) - 1; |
| 3301 | |
| 3302 | /* |
| 3303 | * If the caller does not have rights to reserves below the min |
| 3304 | * watermark then subtract the free pages reserved for highatomic. |
| 3305 | */ |
| 3306 | if (likely(!(alloc_flags & ALLOC_RESERVES))) |
| 3307 | unusable_free += READ_ONCE(z->nr_free_highatomic); |
| 3308 | |
| 3309 | #ifdef CONFIG_CMA |
| 3310 | /* If allocation can't use CMA areas don't use free CMA pages */ |
| 3311 | if (!(alloc_flags & ALLOC_CMA)) |
| 3312 | unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); |
| 3313 | #endif |
| 3314 | |
| 3315 | return unusable_free; |
| 3316 | } |
| 3317 | |
| 3318 | /* |
| 3319 | * Return true if free base pages are above 'mark'. For high-order checks it |
| 3320 | * will return true of the order-0 watermark is reached and there is at least |
| 3321 | * one free page of a suitable size. Checking now avoids taking the zone lock |
| 3322 | * to check in the allocation paths if no pages are free. |
| 3323 | */ |
| 3324 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
| 3325 | int highest_zoneidx, unsigned int alloc_flags, |
| 3326 | long free_pages) |
| 3327 | { |
| 3328 | long min = mark; |
| 3329 | int o; |
| 3330 | |
| 3331 | /* free_pages may go negative - that's OK */ |
| 3332 | free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); |
| 3333 | |
| 3334 | if (unlikely(alloc_flags & ALLOC_RESERVES)) { |
| 3335 | /* |
| 3336 | * __GFP_HIGH allows access to 50% of the min reserve as well |
| 3337 | * as OOM. |
| 3338 | */ |
| 3339 | if (alloc_flags & ALLOC_MIN_RESERVE) { |
| 3340 | min -= min / 2; |
| 3341 | |
| 3342 | /* |
| 3343 | * Non-blocking allocations (e.g. GFP_ATOMIC) can |
| 3344 | * access more reserves than just __GFP_HIGH. Other |
| 3345 | * non-blocking allocations requests such as GFP_NOWAIT |
| 3346 | * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get |
| 3347 | * access to the min reserve. |
| 3348 | */ |
| 3349 | if (alloc_flags & ALLOC_NON_BLOCK) |
| 3350 | min -= min / 4; |
| 3351 | } |
| 3352 | |
| 3353 | /* |
| 3354 | * OOM victims can try even harder than the normal reserve |
| 3355 | * users on the grounds that it's definitely going to be in |
| 3356 | * the exit path shortly and free memory. Any allocation it |
| 3357 | * makes during the free path will be small and short-lived. |
| 3358 | */ |
| 3359 | if (alloc_flags & ALLOC_OOM) |
| 3360 | min -= min / 2; |
| 3361 | } |
| 3362 | |
| 3363 | /* |
| 3364 | * Check watermarks for an order-0 allocation request. If these |
| 3365 | * are not met, then a high-order request also cannot go ahead |
| 3366 | * even if a suitable page happened to be free. |
| 3367 | */ |
| 3368 | if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) |
| 3369 | return false; |
| 3370 | |
| 3371 | /* If this is an order-0 request then the watermark is fine */ |
| 3372 | if (!order) |
| 3373 | return true; |
| 3374 | |
| 3375 | /* For a high-order request, check at least one suitable page is free */ |
| 3376 | for (o = order; o < NR_PAGE_ORDERS; o++) { |
| 3377 | struct free_area *area = &z->free_area[o]; |
| 3378 | int mt; |
| 3379 | |
| 3380 | if (!area->nr_free) |
| 3381 | continue; |
| 3382 | |
| 3383 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
| 3384 | if (!free_area_empty(area, mt)) |
| 3385 | return true; |
| 3386 | } |
| 3387 | |
| 3388 | #ifdef CONFIG_CMA |
| 3389 | if ((alloc_flags & ALLOC_CMA) && |
| 3390 | !free_area_empty(area, MIGRATE_CMA)) { |
| 3391 | return true; |
| 3392 | } |
| 3393 | #endif |
| 3394 | if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && |
| 3395 | !free_area_empty(area, MIGRATE_HIGHATOMIC)) { |
| 3396 | return true; |
| 3397 | } |
| 3398 | } |
| 3399 | return false; |
| 3400 | } |
| 3401 | |
| 3402 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
| 3403 | int highest_zoneidx, unsigned int alloc_flags) |
| 3404 | { |
| 3405 | return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, |
| 3406 | zone_page_state(z, NR_FREE_PAGES)); |
| 3407 | } |
| 3408 | |
| 3409 | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, |
| 3410 | unsigned long mark, int highest_zoneidx, |
| 3411 | unsigned int alloc_flags, gfp_t gfp_mask) |
| 3412 | { |
| 3413 | long free_pages; |
| 3414 | |
| 3415 | free_pages = zone_page_state(z, NR_FREE_PAGES); |
| 3416 | |
| 3417 | /* |
| 3418 | * Fast check for order-0 only. If this fails then the reserves |
| 3419 | * need to be calculated. |
| 3420 | */ |
| 3421 | if (!order) { |
| 3422 | long usable_free; |
| 3423 | long reserved; |
| 3424 | |
| 3425 | usable_free = free_pages; |
| 3426 | reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); |
| 3427 | |
| 3428 | /* reserved may over estimate high-atomic reserves. */ |
| 3429 | usable_free -= min(usable_free, reserved); |
| 3430 | if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) |
| 3431 | return true; |
| 3432 | } |
| 3433 | |
| 3434 | if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, |
| 3435 | free_pages)) |
| 3436 | return true; |
| 3437 | |
| 3438 | /* |
| 3439 | * Ignore watermark boosting for __GFP_HIGH order-0 allocations |
| 3440 | * when checking the min watermark. The min watermark is the |
| 3441 | * point where boosting is ignored so that kswapd is woken up |
| 3442 | * when below the low watermark. |
| 3443 | */ |
| 3444 | if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost |
| 3445 | && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { |
| 3446 | mark = z->_watermark[WMARK_MIN]; |
| 3447 | return __zone_watermark_ok(z, order, mark, highest_zoneidx, |
| 3448 | alloc_flags, free_pages); |
| 3449 | } |
| 3450 | |
| 3451 | return false; |
| 3452 | } |
| 3453 | |
| 3454 | #ifdef CONFIG_NUMA |
| 3455 | int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; |
| 3456 | |
| 3457 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
| 3458 | { |
| 3459 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= |
| 3460 | node_reclaim_distance; |
| 3461 | } |
| 3462 | #else /* CONFIG_NUMA */ |
| 3463 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
| 3464 | { |
| 3465 | return true; |
| 3466 | } |
| 3467 | #endif /* CONFIG_NUMA */ |
| 3468 | |
| 3469 | /* |
| 3470 | * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid |
| 3471 | * fragmentation is subtle. If the preferred zone was HIGHMEM then |
| 3472 | * premature use of a lower zone may cause lowmem pressure problems that |
| 3473 | * are worse than fragmentation. If the next zone is ZONE_DMA then it is |
| 3474 | * probably too small. It only makes sense to spread allocations to avoid |
| 3475 | * fragmentation between the Normal and DMA32 zones. |
| 3476 | */ |
| 3477 | static inline unsigned int |
| 3478 | alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) |
| 3479 | { |
| 3480 | unsigned int alloc_flags; |
| 3481 | |
| 3482 | /* |
| 3483 | * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD |
| 3484 | * to save a branch. |
| 3485 | */ |
| 3486 | alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); |
| 3487 | |
| 3488 | if (defrag_mode) { |
| 3489 | alloc_flags |= ALLOC_NOFRAGMENT; |
| 3490 | return alloc_flags; |
| 3491 | } |
| 3492 | |
| 3493 | #ifdef CONFIG_ZONE_DMA32 |
| 3494 | if (!zone) |
| 3495 | return alloc_flags; |
| 3496 | |
| 3497 | if (zone_idx(zone) != ZONE_NORMAL) |
| 3498 | return alloc_flags; |
| 3499 | |
| 3500 | /* |
| 3501 | * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and |
| 3502 | * the pointer is within zone->zone_pgdat->node_zones[]. Also assume |
| 3503 | * on UMA that if Normal is populated then so is DMA32. |
| 3504 | */ |
| 3505 | BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); |
| 3506 | if (nr_online_nodes > 1 && !populated_zone(--zone)) |
| 3507 | return alloc_flags; |
| 3508 | |
| 3509 | alloc_flags |= ALLOC_NOFRAGMENT; |
| 3510 | #endif /* CONFIG_ZONE_DMA32 */ |
| 3511 | return alloc_flags; |
| 3512 | } |
| 3513 | |
| 3514 | /* Must be called after current_gfp_context() which can change gfp_mask */ |
| 3515 | static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, |
| 3516 | unsigned int alloc_flags) |
| 3517 | { |
| 3518 | #ifdef CONFIG_CMA |
| 3519 | if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
| 3520 | alloc_flags |= ALLOC_CMA; |
| 3521 | #endif |
| 3522 | return alloc_flags; |
| 3523 | } |
| 3524 | |
| 3525 | /* |
| 3526 | * get_page_from_freelist goes through the zonelist trying to allocate |
| 3527 | * a page. |
| 3528 | */ |
| 3529 | static struct page * |
| 3530 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
| 3531 | const struct alloc_context *ac) |
| 3532 | { |
| 3533 | struct zoneref *z; |
| 3534 | struct zone *zone; |
| 3535 | struct pglist_data *last_pgdat = NULL; |
| 3536 | bool last_pgdat_dirty_ok = false; |
| 3537 | bool no_fallback; |
| 3538 | |
| 3539 | retry: |
| 3540 | /* |
| 3541 | * Scan zonelist, looking for a zone with enough free. |
| 3542 | * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. |
| 3543 | */ |
| 3544 | no_fallback = alloc_flags & ALLOC_NOFRAGMENT; |
| 3545 | z = ac->preferred_zoneref; |
| 3546 | for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, |
| 3547 | ac->nodemask) { |
| 3548 | struct page *page; |
| 3549 | unsigned long mark; |
| 3550 | |
| 3551 | if (cpusets_enabled() && |
| 3552 | (alloc_flags & ALLOC_CPUSET) && |
| 3553 | !__cpuset_zone_allowed(zone, gfp_mask)) |
| 3554 | continue; |
| 3555 | /* |
| 3556 | * When allocating a page cache page for writing, we |
| 3557 | * want to get it from a node that is within its dirty |
| 3558 | * limit, such that no single node holds more than its |
| 3559 | * proportional share of globally allowed dirty pages. |
| 3560 | * The dirty limits take into account the node's |
| 3561 | * lowmem reserves and high watermark so that kswapd |
| 3562 | * should be able to balance it without having to |
| 3563 | * write pages from its LRU list. |
| 3564 | * |
| 3565 | * XXX: For now, allow allocations to potentially |
| 3566 | * exceed the per-node dirty limit in the slowpath |
| 3567 | * (spread_dirty_pages unset) before going into reclaim, |
| 3568 | * which is important when on a NUMA setup the allowed |
| 3569 | * nodes are together not big enough to reach the |
| 3570 | * global limit. The proper fix for these situations |
| 3571 | * will require awareness of nodes in the |
| 3572 | * dirty-throttling and the flusher threads. |
| 3573 | */ |
| 3574 | if (ac->spread_dirty_pages) { |
| 3575 | if (last_pgdat != zone->zone_pgdat) { |
| 3576 | last_pgdat = zone->zone_pgdat; |
| 3577 | last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); |
| 3578 | } |
| 3579 | |
| 3580 | if (!last_pgdat_dirty_ok) |
| 3581 | continue; |
| 3582 | } |
| 3583 | |
| 3584 | if (no_fallback && !defrag_mode && nr_online_nodes > 1 && |
| 3585 | zone != zonelist_zone(ac->preferred_zoneref)) { |
| 3586 | int local_nid; |
| 3587 | |
| 3588 | /* |
| 3589 | * If moving to a remote node, retry but allow |
| 3590 | * fragmenting fallbacks. Locality is more important |
| 3591 | * than fragmentation avoidance. |
| 3592 | */ |
| 3593 | local_nid = zonelist_node_idx(ac->preferred_zoneref); |
| 3594 | if (zone_to_nid(zone) != local_nid) { |
| 3595 | alloc_flags &= ~ALLOC_NOFRAGMENT; |
| 3596 | goto retry; |
| 3597 | } |
| 3598 | } |
| 3599 | |
| 3600 | cond_accept_memory(zone, order, alloc_flags); |
| 3601 | |
| 3602 | /* |
| 3603 | * Detect whether the number of free pages is below high |
| 3604 | * watermark. If so, we will decrease pcp->high and free |
| 3605 | * PCP pages in free path to reduce the possibility of |
| 3606 | * premature page reclaiming. Detection is done here to |
| 3607 | * avoid to do that in hotter free path. |
| 3608 | */ |
| 3609 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) |
| 3610 | goto check_alloc_wmark; |
| 3611 | |
| 3612 | mark = high_wmark_pages(zone); |
| 3613 | if (zone_watermark_fast(zone, order, mark, |
| 3614 | ac->highest_zoneidx, alloc_flags, |
| 3615 | gfp_mask)) |
| 3616 | goto try_this_zone; |
| 3617 | else |
| 3618 | set_bit(ZONE_BELOW_HIGH, &zone->flags); |
| 3619 | |
| 3620 | check_alloc_wmark: |
| 3621 | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); |
| 3622 | if (!zone_watermark_fast(zone, order, mark, |
| 3623 | ac->highest_zoneidx, alloc_flags, |
| 3624 | gfp_mask)) { |
| 3625 | int ret; |
| 3626 | |
| 3627 | if (cond_accept_memory(zone, order, alloc_flags)) |
| 3628 | goto try_this_zone; |
| 3629 | |
| 3630 | /* |
| 3631 | * Watermark failed for this zone, but see if we can |
| 3632 | * grow this zone if it contains deferred pages. |
| 3633 | */ |
| 3634 | if (deferred_pages_enabled()) { |
| 3635 | if (_deferred_grow_zone(zone, order)) |
| 3636 | goto try_this_zone; |
| 3637 | } |
| 3638 | /* Checked here to keep the fast path fast */ |
| 3639 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); |
| 3640 | if (alloc_flags & ALLOC_NO_WATERMARKS) |
| 3641 | goto try_this_zone; |
| 3642 | |
| 3643 | if (!node_reclaim_enabled() || |
| 3644 | !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) |
| 3645 | continue; |
| 3646 | |
| 3647 | ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); |
| 3648 | switch (ret) { |
| 3649 | case NODE_RECLAIM_NOSCAN: |
| 3650 | /* did not scan */ |
| 3651 | continue; |
| 3652 | case NODE_RECLAIM_FULL: |
| 3653 | /* scanned but unreclaimable */ |
| 3654 | continue; |
| 3655 | default: |
| 3656 | /* did we reclaim enough */ |
| 3657 | if (zone_watermark_ok(zone, order, mark, |
| 3658 | ac->highest_zoneidx, alloc_flags)) |
| 3659 | goto try_this_zone; |
| 3660 | |
| 3661 | continue; |
| 3662 | } |
| 3663 | } |
| 3664 | |
| 3665 | try_this_zone: |
| 3666 | page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, |
| 3667 | gfp_mask, alloc_flags, ac->migratetype); |
| 3668 | if (page) { |
| 3669 | prep_new_page(page, order, gfp_mask, alloc_flags); |
| 3670 | |
| 3671 | /* |
| 3672 | * If this is a high-order atomic allocation then check |
| 3673 | * if the pageblock should be reserved for the future |
| 3674 | */ |
| 3675 | if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) |
| 3676 | reserve_highatomic_pageblock(page, order, zone); |
| 3677 | |
| 3678 | return page; |
| 3679 | } else { |
| 3680 | if (cond_accept_memory(zone, order, alloc_flags)) |
| 3681 | goto try_this_zone; |
| 3682 | |
| 3683 | /* Try again if zone has deferred pages */ |
| 3684 | if (deferred_pages_enabled()) { |
| 3685 | if (_deferred_grow_zone(zone, order)) |
| 3686 | goto try_this_zone; |
| 3687 | } |
| 3688 | } |
| 3689 | } |
| 3690 | |
| 3691 | /* |
| 3692 | * It's possible on a UMA machine to get through all zones that are |
| 3693 | * fragmented. If avoiding fragmentation, reset and try again. |
| 3694 | */ |
| 3695 | if (no_fallback && !defrag_mode) { |
| 3696 | alloc_flags &= ~ALLOC_NOFRAGMENT; |
| 3697 | goto retry; |
| 3698 | } |
| 3699 | |
| 3700 | return NULL; |
| 3701 | } |
| 3702 | |
| 3703 | static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) |
| 3704 | { |
| 3705 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
| 3706 | |
| 3707 | /* |
| 3708 | * This documents exceptions given to allocations in certain |
| 3709 | * contexts that are allowed to allocate outside current's set |
| 3710 | * of allowed nodes. |
| 3711 | */ |
| 3712 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
| 3713 | if (tsk_is_oom_victim(current) || |
| 3714 | (current->flags & (PF_MEMALLOC | PF_EXITING))) |
| 3715 | filter &= ~SHOW_MEM_FILTER_NODES; |
| 3716 | if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
| 3717 | filter &= ~SHOW_MEM_FILTER_NODES; |
| 3718 | |
| 3719 | __show_mem(filter, nodemask, gfp_zone(gfp_mask)); |
| 3720 | } |
| 3721 | |
| 3722 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) |
| 3723 | { |
| 3724 | struct va_format vaf; |
| 3725 | va_list args; |
| 3726 | static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); |
| 3727 | |
| 3728 | if ((gfp_mask & __GFP_NOWARN) || |
| 3729 | !__ratelimit(&nopage_rs) || |
| 3730 | ((gfp_mask & __GFP_DMA) && !has_managed_dma())) |
| 3731 | return; |
| 3732 | |
| 3733 | va_start(args, fmt); |
| 3734 | vaf.fmt = fmt; |
| 3735 | vaf.va = &args; |
| 3736 | pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", |
| 3737 | current->comm, &vaf, gfp_mask, &gfp_mask, |
| 3738 | nodemask_pr_args(nodemask)); |
| 3739 | va_end(args); |
| 3740 | |
| 3741 | cpuset_print_current_mems_allowed(); |
| 3742 | pr_cont("\n"); |
| 3743 | dump_stack(); |
| 3744 | warn_alloc_show_mem(gfp_mask, nodemask); |
| 3745 | } |
| 3746 | |
| 3747 | static inline struct page * |
| 3748 | __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, |
| 3749 | unsigned int alloc_flags, |
| 3750 | const struct alloc_context *ac) |
| 3751 | { |
| 3752 | struct page *page; |
| 3753 | |
| 3754 | page = get_page_from_freelist(gfp_mask, order, |
| 3755 | alloc_flags|ALLOC_CPUSET, ac); |
| 3756 | /* |
| 3757 | * fallback to ignore cpuset restriction if our nodes |
| 3758 | * are depleted |
| 3759 | */ |
| 3760 | if (!page) |
| 3761 | page = get_page_from_freelist(gfp_mask, order, |
| 3762 | alloc_flags, ac); |
| 3763 | return page; |
| 3764 | } |
| 3765 | |
| 3766 | static inline struct page * |
| 3767 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, |
| 3768 | const struct alloc_context *ac, unsigned long *did_some_progress) |
| 3769 | { |
| 3770 | struct oom_control oc = { |
| 3771 | .zonelist = ac->zonelist, |
| 3772 | .nodemask = ac->nodemask, |
| 3773 | .memcg = NULL, |
| 3774 | .gfp_mask = gfp_mask, |
| 3775 | .order = order, |
| 3776 | }; |
| 3777 | struct page *page; |
| 3778 | |
| 3779 | *did_some_progress = 0; |
| 3780 | |
| 3781 | /* |
| 3782 | * Acquire the oom lock. If that fails, somebody else is |
| 3783 | * making progress for us. |
| 3784 | */ |
| 3785 | if (!mutex_trylock(&oom_lock)) { |
| 3786 | *did_some_progress = 1; |
| 3787 | schedule_timeout_uninterruptible(1); |
| 3788 | return NULL; |
| 3789 | } |
| 3790 | |
| 3791 | /* |
| 3792 | * Go through the zonelist yet one more time, keep very high watermark |
| 3793 | * here, this is only to catch a parallel oom killing, we must fail if |
| 3794 | * we're still under heavy pressure. But make sure that this reclaim |
| 3795 | * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY |
| 3796 | * allocation which will never fail due to oom_lock already held. |
| 3797 | */ |
| 3798 | page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & |
| 3799 | ~__GFP_DIRECT_RECLAIM, order, |
| 3800 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); |
| 3801 | if (page) |
| 3802 | goto out; |
| 3803 | |
| 3804 | /* Coredumps can quickly deplete all memory reserves */ |
| 3805 | if (current->flags & PF_DUMPCORE) |
| 3806 | goto out; |
| 3807 | /* The OOM killer will not help higher order allocs */ |
| 3808 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
| 3809 | goto out; |
| 3810 | /* |
| 3811 | * We have already exhausted all our reclaim opportunities without any |
| 3812 | * success so it is time to admit defeat. We will skip the OOM killer |
| 3813 | * because it is very likely that the caller has a more reasonable |
| 3814 | * fallback than shooting a random task. |
| 3815 | * |
| 3816 | * The OOM killer may not free memory on a specific node. |
| 3817 | */ |
| 3818 | if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) |
| 3819 | goto out; |
| 3820 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
| 3821 | if (ac->highest_zoneidx < ZONE_NORMAL) |
| 3822 | goto out; |
| 3823 | if (pm_suspended_storage()) |
| 3824 | goto out; |
| 3825 | /* |
| 3826 | * XXX: GFP_NOFS allocations should rather fail than rely on |
| 3827 | * other request to make a forward progress. |
| 3828 | * We are in an unfortunate situation where out_of_memory cannot |
| 3829 | * do much for this context but let's try it to at least get |
| 3830 | * access to memory reserved if the current task is killed (see |
| 3831 | * out_of_memory). Once filesystems are ready to handle allocation |
| 3832 | * failures more gracefully we should just bail out here. |
| 3833 | */ |
| 3834 | |
| 3835 | /* Exhausted what can be done so it's blame time */ |
| 3836 | if (out_of_memory(&oc) || |
| 3837 | WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { |
| 3838 | *did_some_progress = 1; |
| 3839 | |
| 3840 | /* |
| 3841 | * Help non-failing allocations by giving them access to memory |
| 3842 | * reserves |
| 3843 | */ |
| 3844 | if (gfp_mask & __GFP_NOFAIL) |
| 3845 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, |
| 3846 | ALLOC_NO_WATERMARKS, ac); |
| 3847 | } |
| 3848 | out: |
| 3849 | mutex_unlock(&oom_lock); |
| 3850 | return page; |
| 3851 | } |
| 3852 | |
| 3853 | /* |
| 3854 | * Maximum number of compaction retries with a progress before OOM |
| 3855 | * killer is consider as the only way to move forward. |
| 3856 | */ |
| 3857 | #define MAX_COMPACT_RETRIES 16 |
| 3858 | |
| 3859 | #ifdef CONFIG_COMPACTION |
| 3860 | /* Try memory compaction for high-order allocations before reclaim */ |
| 3861 | static struct page * |
| 3862 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
| 3863 | unsigned int alloc_flags, const struct alloc_context *ac, |
| 3864 | enum compact_priority prio, enum compact_result *compact_result) |
| 3865 | { |
| 3866 | struct page *page = NULL; |
| 3867 | unsigned long pflags; |
| 3868 | unsigned int noreclaim_flag; |
| 3869 | |
| 3870 | if (!order) |
| 3871 | return NULL; |
| 3872 | |
| 3873 | psi_memstall_enter(&pflags); |
| 3874 | delayacct_compact_start(); |
| 3875 | noreclaim_flag = memalloc_noreclaim_save(); |
| 3876 | |
| 3877 | *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
| 3878 | prio, &page); |
| 3879 | |
| 3880 | memalloc_noreclaim_restore(noreclaim_flag); |
| 3881 | psi_memstall_leave(&pflags); |
| 3882 | delayacct_compact_end(); |
| 3883 | |
| 3884 | if (*compact_result == COMPACT_SKIPPED) |
| 3885 | return NULL; |
| 3886 | /* |
| 3887 | * At least in one zone compaction wasn't deferred or skipped, so let's |
| 3888 | * count a compaction stall |
| 3889 | */ |
| 3890 | count_vm_event(COMPACTSTALL); |
| 3891 | |
| 3892 | /* Prep a captured page if available */ |
| 3893 | if (page) |
| 3894 | prep_new_page(page, order, gfp_mask, alloc_flags); |
| 3895 | |
| 3896 | /* Try get a page from the freelist if available */ |
| 3897 | if (!page) |
| 3898 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| 3899 | |
| 3900 | if (page) { |
| 3901 | struct zone *zone = page_zone(page); |
| 3902 | |
| 3903 | zone->compact_blockskip_flush = false; |
| 3904 | compaction_defer_reset(zone, order, true); |
| 3905 | count_vm_event(COMPACTSUCCESS); |
| 3906 | return page; |
| 3907 | } |
| 3908 | |
| 3909 | /* |
| 3910 | * It's bad if compaction run occurs and fails. The most likely reason |
| 3911 | * is that pages exist, but not enough to satisfy watermarks. |
| 3912 | */ |
| 3913 | count_vm_event(COMPACTFAIL); |
| 3914 | |
| 3915 | cond_resched(); |
| 3916 | |
| 3917 | return NULL; |
| 3918 | } |
| 3919 | |
| 3920 | static inline bool |
| 3921 | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, |
| 3922 | enum compact_result compact_result, |
| 3923 | enum compact_priority *compact_priority, |
| 3924 | int *compaction_retries) |
| 3925 | { |
| 3926 | int max_retries = MAX_COMPACT_RETRIES; |
| 3927 | int min_priority; |
| 3928 | bool ret = false; |
| 3929 | int retries = *compaction_retries; |
| 3930 | enum compact_priority priority = *compact_priority; |
| 3931 | |
| 3932 | if (!order) |
| 3933 | return false; |
| 3934 | |
| 3935 | if (fatal_signal_pending(current)) |
| 3936 | return false; |
| 3937 | |
| 3938 | /* |
| 3939 | * Compaction was skipped due to a lack of free order-0 |
| 3940 | * migration targets. Continue if reclaim can help. |
| 3941 | */ |
| 3942 | if (compact_result == COMPACT_SKIPPED) { |
| 3943 | ret = compaction_zonelist_suitable(ac, order, alloc_flags); |
| 3944 | goto out; |
| 3945 | } |
| 3946 | |
| 3947 | /* |
| 3948 | * Compaction managed to coalesce some page blocks, but the |
| 3949 | * allocation failed presumably due to a race. Retry some. |
| 3950 | */ |
| 3951 | if (compact_result == COMPACT_SUCCESS) { |
| 3952 | /* |
| 3953 | * !costly requests are much more important than |
| 3954 | * __GFP_RETRY_MAYFAIL costly ones because they are de |
| 3955 | * facto nofail and invoke OOM killer to move on while |
| 3956 | * costly can fail and users are ready to cope with |
| 3957 | * that. 1/4 retries is rather arbitrary but we would |
| 3958 | * need much more detailed feedback from compaction to |
| 3959 | * make a better decision. |
| 3960 | */ |
| 3961 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
| 3962 | max_retries /= 4; |
| 3963 | |
| 3964 | if (++(*compaction_retries) <= max_retries) { |
| 3965 | ret = true; |
| 3966 | goto out; |
| 3967 | } |
| 3968 | } |
| 3969 | |
| 3970 | /* |
| 3971 | * Compaction failed. Retry with increasing priority. |
| 3972 | */ |
| 3973 | min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? |
| 3974 | MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; |
| 3975 | |
| 3976 | if (*compact_priority > min_priority) { |
| 3977 | (*compact_priority)--; |
| 3978 | *compaction_retries = 0; |
| 3979 | ret = true; |
| 3980 | } |
| 3981 | out: |
| 3982 | trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); |
| 3983 | return ret; |
| 3984 | } |
| 3985 | #else |
| 3986 | static inline struct page * |
| 3987 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, |
| 3988 | unsigned int alloc_flags, const struct alloc_context *ac, |
| 3989 | enum compact_priority prio, enum compact_result *compact_result) |
| 3990 | { |
| 3991 | *compact_result = COMPACT_SKIPPED; |
| 3992 | return NULL; |
| 3993 | } |
| 3994 | |
| 3995 | static inline bool |
| 3996 | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, |
| 3997 | enum compact_result compact_result, |
| 3998 | enum compact_priority *compact_priority, |
| 3999 | int *compaction_retries) |
| 4000 | { |
| 4001 | struct zone *zone; |
| 4002 | struct zoneref *z; |
| 4003 | |
| 4004 | if (!order || order > PAGE_ALLOC_COSTLY_ORDER) |
| 4005 | return false; |
| 4006 | |
| 4007 | /* |
| 4008 | * There are setups with compaction disabled which would prefer to loop |
| 4009 | * inside the allocator rather than hit the oom killer prematurely. |
| 4010 | * Let's give them a good hope and keep retrying while the order-0 |
| 4011 | * watermarks are OK. |
| 4012 | */ |
| 4013 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
| 4014 | ac->highest_zoneidx, ac->nodemask) { |
| 4015 | if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), |
| 4016 | ac->highest_zoneidx, alloc_flags)) |
| 4017 | return true; |
| 4018 | } |
| 4019 | return false; |
| 4020 | } |
| 4021 | #endif /* CONFIG_COMPACTION */ |
| 4022 | |
| 4023 | #ifdef CONFIG_LOCKDEP |
| 4024 | static struct lockdep_map __fs_reclaim_map = |
| 4025 | STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); |
| 4026 | |
| 4027 | static bool __need_reclaim(gfp_t gfp_mask) |
| 4028 | { |
| 4029 | /* no reclaim without waiting on it */ |
| 4030 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) |
| 4031 | return false; |
| 4032 | |
| 4033 | /* this guy won't enter reclaim */ |
| 4034 | if (current->flags & PF_MEMALLOC) |
| 4035 | return false; |
| 4036 | |
| 4037 | if (gfp_mask & __GFP_NOLOCKDEP) |
| 4038 | return false; |
| 4039 | |
| 4040 | return true; |
| 4041 | } |
| 4042 | |
| 4043 | void __fs_reclaim_acquire(unsigned long ip) |
| 4044 | { |
| 4045 | lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); |
| 4046 | } |
| 4047 | |
| 4048 | void __fs_reclaim_release(unsigned long ip) |
| 4049 | { |
| 4050 | lock_release(&__fs_reclaim_map, ip); |
| 4051 | } |
| 4052 | |
| 4053 | void fs_reclaim_acquire(gfp_t gfp_mask) |
| 4054 | { |
| 4055 | gfp_mask = current_gfp_context(gfp_mask); |
| 4056 | |
| 4057 | if (__need_reclaim(gfp_mask)) { |
| 4058 | if (gfp_mask & __GFP_FS) |
| 4059 | __fs_reclaim_acquire(_RET_IP_); |
| 4060 | |
| 4061 | #ifdef CONFIG_MMU_NOTIFIER |
| 4062 | lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); |
| 4063 | lock_map_release(&__mmu_notifier_invalidate_range_start_map); |
| 4064 | #endif |
| 4065 | |
| 4066 | } |
| 4067 | } |
| 4068 | EXPORT_SYMBOL_GPL(fs_reclaim_acquire); |
| 4069 | |
| 4070 | void fs_reclaim_release(gfp_t gfp_mask) |
| 4071 | { |
| 4072 | gfp_mask = current_gfp_context(gfp_mask); |
| 4073 | |
| 4074 | if (__need_reclaim(gfp_mask)) { |
| 4075 | if (gfp_mask & __GFP_FS) |
| 4076 | __fs_reclaim_release(_RET_IP_); |
| 4077 | } |
| 4078 | } |
| 4079 | EXPORT_SYMBOL_GPL(fs_reclaim_release); |
| 4080 | #endif |
| 4081 | |
| 4082 | /* |
| 4083 | * Zonelists may change due to hotplug during allocation. Detect when zonelists |
| 4084 | * have been rebuilt so allocation retries. Reader side does not lock and |
| 4085 | * retries the allocation if zonelist changes. Writer side is protected by the |
| 4086 | * embedded spin_lock. |
| 4087 | */ |
| 4088 | static DEFINE_SEQLOCK(zonelist_update_seq); |
| 4089 | |
| 4090 | static unsigned int zonelist_iter_begin(void) |
| 4091 | { |
| 4092 | if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) |
| 4093 | return read_seqbegin(&zonelist_update_seq); |
| 4094 | |
| 4095 | return 0; |
| 4096 | } |
| 4097 | |
| 4098 | static unsigned int check_retry_zonelist(unsigned int seq) |
| 4099 | { |
| 4100 | if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) |
| 4101 | return read_seqretry(&zonelist_update_seq, seq); |
| 4102 | |
| 4103 | return seq; |
| 4104 | } |
| 4105 | |
| 4106 | /* Perform direct synchronous page reclaim */ |
| 4107 | static unsigned long |
| 4108 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
| 4109 | const struct alloc_context *ac) |
| 4110 | { |
| 4111 | unsigned int noreclaim_flag; |
| 4112 | unsigned long progress; |
| 4113 | |
| 4114 | cond_resched(); |
| 4115 | |
| 4116 | /* We now go into synchronous reclaim */ |
| 4117 | cpuset_memory_pressure_bump(); |
| 4118 | fs_reclaim_acquire(gfp_mask); |
| 4119 | noreclaim_flag = memalloc_noreclaim_save(); |
| 4120 | |
| 4121 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
| 4122 | ac->nodemask); |
| 4123 | |
| 4124 | memalloc_noreclaim_restore(noreclaim_flag); |
| 4125 | fs_reclaim_release(gfp_mask); |
| 4126 | |
| 4127 | cond_resched(); |
| 4128 | |
| 4129 | return progress; |
| 4130 | } |
| 4131 | |
| 4132 | /* The really slow allocator path where we enter direct reclaim */ |
| 4133 | static inline struct page * |
| 4134 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, |
| 4135 | unsigned int alloc_flags, const struct alloc_context *ac, |
| 4136 | unsigned long *did_some_progress) |
| 4137 | { |
| 4138 | struct page *page = NULL; |
| 4139 | unsigned long pflags; |
| 4140 | bool drained = false; |
| 4141 | |
| 4142 | psi_memstall_enter(&pflags); |
| 4143 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
| 4144 | if (unlikely(!(*did_some_progress))) |
| 4145 | goto out; |
| 4146 | |
| 4147 | retry: |
| 4148 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| 4149 | |
| 4150 | /* |
| 4151 | * If an allocation failed after direct reclaim, it could be because |
| 4152 | * pages are pinned on the per-cpu lists or in high alloc reserves. |
| 4153 | * Shrink them and try again |
| 4154 | */ |
| 4155 | if (!page && !drained) { |
| 4156 | unreserve_highatomic_pageblock(ac, false); |
| 4157 | drain_all_pages(NULL); |
| 4158 | drained = true; |
| 4159 | goto retry; |
| 4160 | } |
| 4161 | out: |
| 4162 | psi_memstall_leave(&pflags); |
| 4163 | |
| 4164 | return page; |
| 4165 | } |
| 4166 | |
| 4167 | static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, |
| 4168 | const struct alloc_context *ac) |
| 4169 | { |
| 4170 | struct zoneref *z; |
| 4171 | struct zone *zone; |
| 4172 | pg_data_t *last_pgdat = NULL; |
| 4173 | enum zone_type highest_zoneidx = ac->highest_zoneidx; |
| 4174 | unsigned int reclaim_order; |
| 4175 | |
| 4176 | if (defrag_mode) |
| 4177 | reclaim_order = max(order, pageblock_order); |
| 4178 | else |
| 4179 | reclaim_order = order; |
| 4180 | |
| 4181 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, |
| 4182 | ac->nodemask) { |
| 4183 | if (!managed_zone(zone)) |
| 4184 | continue; |
| 4185 | if (last_pgdat == zone->zone_pgdat) |
| 4186 | continue; |
| 4187 | wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); |
| 4188 | last_pgdat = zone->zone_pgdat; |
| 4189 | } |
| 4190 | } |
| 4191 | |
| 4192 | static inline unsigned int |
| 4193 | gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) |
| 4194 | { |
| 4195 | unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
| 4196 | |
| 4197 | /* |
| 4198 | * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE |
| 4199 | * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD |
| 4200 | * to save two branches. |
| 4201 | */ |
| 4202 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); |
| 4203 | BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); |
| 4204 | |
| 4205 | /* |
| 4206 | * The caller may dip into page reserves a bit more if the caller |
| 4207 | * cannot run direct reclaim, or if the caller has realtime scheduling |
| 4208 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will |
| 4209 | * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). |
| 4210 | */ |
| 4211 | alloc_flags |= (__force int) |
| 4212 | (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); |
| 4213 | |
| 4214 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { |
| 4215 | /* |
| 4216 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
| 4217 | * if it can't schedule. |
| 4218 | */ |
| 4219 | if (!(gfp_mask & __GFP_NOMEMALLOC)) { |
| 4220 | alloc_flags |= ALLOC_NON_BLOCK; |
| 4221 | |
| 4222 | if (order > 0) |
| 4223 | alloc_flags |= ALLOC_HIGHATOMIC; |
| 4224 | } |
| 4225 | |
| 4226 | /* |
| 4227 | * Ignore cpuset mems for non-blocking __GFP_HIGH (probably |
| 4228 | * GFP_ATOMIC) rather than fail, see the comment for |
| 4229 | * cpuset_current_node_allowed(). |
| 4230 | */ |
| 4231 | if (alloc_flags & ALLOC_MIN_RESERVE) |
| 4232 | alloc_flags &= ~ALLOC_CPUSET; |
| 4233 | } else if (unlikely(rt_or_dl_task(current)) && in_task()) |
| 4234 | alloc_flags |= ALLOC_MIN_RESERVE; |
| 4235 | |
| 4236 | alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); |
| 4237 | |
| 4238 | if (defrag_mode) |
| 4239 | alloc_flags |= ALLOC_NOFRAGMENT; |
| 4240 | |
| 4241 | return alloc_flags; |
| 4242 | } |
| 4243 | |
| 4244 | static bool oom_reserves_allowed(struct task_struct *tsk) |
| 4245 | { |
| 4246 | if (!tsk_is_oom_victim(tsk)) |
| 4247 | return false; |
| 4248 | |
| 4249 | /* |
| 4250 | * !MMU doesn't have oom reaper so give access to memory reserves |
| 4251 | * only to the thread with TIF_MEMDIE set |
| 4252 | */ |
| 4253 | if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) |
| 4254 | return false; |
| 4255 | |
| 4256 | return true; |
| 4257 | } |
| 4258 | |
| 4259 | /* |
| 4260 | * Distinguish requests which really need access to full memory |
| 4261 | * reserves from oom victims which can live with a portion of it |
| 4262 | */ |
| 4263 | static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) |
| 4264 | { |
| 4265 | if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) |
| 4266 | return 0; |
| 4267 | if (gfp_mask & __GFP_MEMALLOC) |
| 4268 | return ALLOC_NO_WATERMARKS; |
| 4269 | if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
| 4270 | return ALLOC_NO_WATERMARKS; |
| 4271 | if (!in_interrupt()) { |
| 4272 | if (current->flags & PF_MEMALLOC) |
| 4273 | return ALLOC_NO_WATERMARKS; |
| 4274 | else if (oom_reserves_allowed(current)) |
| 4275 | return ALLOC_OOM; |
| 4276 | } |
| 4277 | |
| 4278 | return 0; |
| 4279 | } |
| 4280 | |
| 4281 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
| 4282 | { |
| 4283 | return !!__gfp_pfmemalloc_flags(gfp_mask); |
| 4284 | } |
| 4285 | |
| 4286 | /* |
| 4287 | * Checks whether it makes sense to retry the reclaim to make a forward progress |
| 4288 | * for the given allocation request. |
| 4289 | * |
| 4290 | * We give up when we either have tried MAX_RECLAIM_RETRIES in a row |
| 4291 | * without success, or when we couldn't even meet the watermark if we |
| 4292 | * reclaimed all remaining pages on the LRU lists. |
| 4293 | * |
| 4294 | * Returns true if a retry is viable or false to enter the oom path. |
| 4295 | */ |
| 4296 | static inline bool |
| 4297 | should_reclaim_retry(gfp_t gfp_mask, unsigned order, |
| 4298 | struct alloc_context *ac, int alloc_flags, |
| 4299 | bool did_some_progress, int *no_progress_loops) |
| 4300 | { |
| 4301 | struct zone *zone; |
| 4302 | struct zoneref *z; |
| 4303 | bool ret = false; |
| 4304 | |
| 4305 | /* |
| 4306 | * Costly allocations might have made a progress but this doesn't mean |
| 4307 | * their order will become available due to high fragmentation so |
| 4308 | * always increment the no progress counter for them |
| 4309 | */ |
| 4310 | if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) |
| 4311 | *no_progress_loops = 0; |
| 4312 | else |
| 4313 | (*no_progress_loops)++; |
| 4314 | |
| 4315 | if (*no_progress_loops > MAX_RECLAIM_RETRIES) |
| 4316 | goto out; |
| 4317 | |
| 4318 | |
| 4319 | /* |
| 4320 | * Keep reclaiming pages while there is a chance this will lead |
| 4321 | * somewhere. If none of the target zones can satisfy our allocation |
| 4322 | * request even if all reclaimable pages are considered then we are |
| 4323 | * screwed and have to go OOM. |
| 4324 | */ |
| 4325 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
| 4326 | ac->highest_zoneidx, ac->nodemask) { |
| 4327 | unsigned long available; |
| 4328 | unsigned long reclaimable; |
| 4329 | unsigned long min_wmark = min_wmark_pages(zone); |
| 4330 | bool wmark; |
| 4331 | |
| 4332 | if (cpusets_enabled() && |
| 4333 | (alloc_flags & ALLOC_CPUSET) && |
| 4334 | !__cpuset_zone_allowed(zone, gfp_mask)) |
| 4335 | continue; |
| 4336 | |
| 4337 | available = reclaimable = zone_reclaimable_pages(zone); |
| 4338 | available += zone_page_state_snapshot(zone, NR_FREE_PAGES); |
| 4339 | |
| 4340 | /* |
| 4341 | * Would the allocation succeed if we reclaimed all |
| 4342 | * reclaimable pages? |
| 4343 | */ |
| 4344 | wmark = __zone_watermark_ok(zone, order, min_wmark, |
| 4345 | ac->highest_zoneidx, alloc_flags, available); |
| 4346 | trace_reclaim_retry_zone(z, order, reclaimable, |
| 4347 | available, min_wmark, *no_progress_loops, wmark); |
| 4348 | if (wmark) { |
| 4349 | ret = true; |
| 4350 | break; |
| 4351 | } |
| 4352 | } |
| 4353 | |
| 4354 | /* |
| 4355 | * Memory allocation/reclaim might be called from a WQ context and the |
| 4356 | * current implementation of the WQ concurrency control doesn't |
| 4357 | * recognize that a particular WQ is congested if the worker thread is |
| 4358 | * looping without ever sleeping. Therefore we have to do a short sleep |
| 4359 | * here rather than calling cond_resched(). |
| 4360 | */ |
| 4361 | if (current->flags & PF_WQ_WORKER) |
| 4362 | schedule_timeout_uninterruptible(1); |
| 4363 | else |
| 4364 | cond_resched(); |
| 4365 | out: |
| 4366 | /* Before OOM, exhaust highatomic_reserve */ |
| 4367 | if (!ret) |
| 4368 | return unreserve_highatomic_pageblock(ac, true); |
| 4369 | |
| 4370 | return ret; |
| 4371 | } |
| 4372 | |
| 4373 | static inline bool |
| 4374 | check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) |
| 4375 | { |
| 4376 | /* |
| 4377 | * It's possible that cpuset's mems_allowed and the nodemask from |
| 4378 | * mempolicy don't intersect. This should be normally dealt with by |
| 4379 | * policy_nodemask(), but it's possible to race with cpuset update in |
| 4380 | * such a way the check therein was true, and then it became false |
| 4381 | * before we got our cpuset_mems_cookie here. |
| 4382 | * This assumes that for all allocations, ac->nodemask can come only |
| 4383 | * from MPOL_BIND mempolicy (whose documented semantics is to be ignored |
| 4384 | * when it does not intersect with the cpuset restrictions) or the |
| 4385 | * caller can deal with a violated nodemask. |
| 4386 | */ |
| 4387 | if (cpusets_enabled() && ac->nodemask && |
| 4388 | !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { |
| 4389 | ac->nodemask = NULL; |
| 4390 | return true; |
| 4391 | } |
| 4392 | |
| 4393 | /* |
| 4394 | * When updating a task's mems_allowed or mempolicy nodemask, it is |
| 4395 | * possible to race with parallel threads in such a way that our |
| 4396 | * allocation can fail while the mask is being updated. If we are about |
| 4397 | * to fail, check if the cpuset changed during allocation and if so, |
| 4398 | * retry. |
| 4399 | */ |
| 4400 | if (read_mems_allowed_retry(cpuset_mems_cookie)) |
| 4401 | return true; |
| 4402 | |
| 4403 | return false; |
| 4404 | } |
| 4405 | |
| 4406 | static inline struct page * |
| 4407 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, |
| 4408 | struct alloc_context *ac) |
| 4409 | { |
| 4410 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
| 4411 | bool can_compact = gfp_compaction_allowed(gfp_mask); |
| 4412 | bool nofail = gfp_mask & __GFP_NOFAIL; |
| 4413 | const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; |
| 4414 | struct page *page = NULL; |
| 4415 | unsigned int alloc_flags; |
| 4416 | unsigned long did_some_progress; |
| 4417 | enum compact_priority compact_priority; |
| 4418 | enum compact_result compact_result; |
| 4419 | int compaction_retries; |
| 4420 | int no_progress_loops; |
| 4421 | unsigned int cpuset_mems_cookie; |
| 4422 | unsigned int zonelist_iter_cookie; |
| 4423 | int reserve_flags; |
| 4424 | |
| 4425 | if (unlikely(nofail)) { |
| 4426 | /* |
| 4427 | * We most definitely don't want callers attempting to |
| 4428 | * allocate greater than order-1 page units with __GFP_NOFAIL. |
| 4429 | */ |
| 4430 | WARN_ON_ONCE(order > 1); |
| 4431 | /* |
| 4432 | * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, |
| 4433 | * otherwise, we may result in lockup. |
| 4434 | */ |
| 4435 | WARN_ON_ONCE(!can_direct_reclaim); |
| 4436 | /* |
| 4437 | * PF_MEMALLOC request from this context is rather bizarre |
| 4438 | * because we cannot reclaim anything and only can loop waiting |
| 4439 | * for somebody to do a work for us. |
| 4440 | */ |
| 4441 | WARN_ON_ONCE(current->flags & PF_MEMALLOC); |
| 4442 | } |
| 4443 | |
| 4444 | restart: |
| 4445 | compaction_retries = 0; |
| 4446 | no_progress_loops = 0; |
| 4447 | compact_result = COMPACT_SKIPPED; |
| 4448 | compact_priority = DEF_COMPACT_PRIORITY; |
| 4449 | cpuset_mems_cookie = read_mems_allowed_begin(); |
| 4450 | zonelist_iter_cookie = zonelist_iter_begin(); |
| 4451 | |
| 4452 | /* |
| 4453 | * The fast path uses conservative alloc_flags to succeed only until |
| 4454 | * kswapd needs to be woken up, and to avoid the cost of setting up |
| 4455 | * alloc_flags precisely. So we do that now. |
| 4456 | */ |
| 4457 | alloc_flags = gfp_to_alloc_flags(gfp_mask, order); |
| 4458 | |
| 4459 | /* |
| 4460 | * We need to recalculate the starting point for the zonelist iterator |
| 4461 | * because we might have used different nodemask in the fast path, or |
| 4462 | * there was a cpuset modification and we are retrying - otherwise we |
| 4463 | * could end up iterating over non-eligible zones endlessly. |
| 4464 | */ |
| 4465 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| 4466 | ac->highest_zoneidx, ac->nodemask); |
| 4467 | if (!zonelist_zone(ac->preferred_zoneref)) |
| 4468 | goto nopage; |
| 4469 | |
| 4470 | /* |
| 4471 | * Check for insane configurations where the cpuset doesn't contain |
| 4472 | * any suitable zone to satisfy the request - e.g. non-movable |
| 4473 | * GFP_HIGHUSER allocations from MOVABLE nodes only. |
| 4474 | */ |
| 4475 | if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { |
| 4476 | struct zoneref *z = first_zones_zonelist(ac->zonelist, |
| 4477 | ac->highest_zoneidx, |
| 4478 | &cpuset_current_mems_allowed); |
| 4479 | if (!zonelist_zone(z)) |
| 4480 | goto nopage; |
| 4481 | } |
| 4482 | |
| 4483 | if (alloc_flags & ALLOC_KSWAPD) |
| 4484 | wake_all_kswapds(order, gfp_mask, ac); |
| 4485 | |
| 4486 | /* |
| 4487 | * The adjusted alloc_flags might result in immediate success, so try |
| 4488 | * that first |
| 4489 | */ |
| 4490 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| 4491 | if (page) |
| 4492 | goto got_pg; |
| 4493 | |
| 4494 | /* |
| 4495 | * For costly allocations, try direct compaction first, as it's likely |
| 4496 | * that we have enough base pages and don't need to reclaim. For non- |
| 4497 | * movable high-order allocations, do that as well, as compaction will |
| 4498 | * try prevent permanent fragmentation by migrating from blocks of the |
| 4499 | * same migratetype. |
| 4500 | * Don't try this for allocations that are allowed to ignore |
| 4501 | * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. |
| 4502 | */ |
| 4503 | if (can_direct_reclaim && can_compact && |
| 4504 | (costly_order || |
| 4505 | (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) |
| 4506 | && !gfp_pfmemalloc_allowed(gfp_mask)) { |
| 4507 | page = __alloc_pages_direct_compact(gfp_mask, order, |
| 4508 | alloc_flags, ac, |
| 4509 | INIT_COMPACT_PRIORITY, |
| 4510 | &compact_result); |
| 4511 | if (page) |
| 4512 | goto got_pg; |
| 4513 | |
| 4514 | /* |
| 4515 | * Checks for costly allocations with __GFP_NORETRY, which |
| 4516 | * includes some THP page fault allocations |
| 4517 | */ |
| 4518 | if (costly_order && (gfp_mask & __GFP_NORETRY)) { |
| 4519 | /* |
| 4520 | * If allocating entire pageblock(s) and compaction |
| 4521 | * failed because all zones are below low watermarks |
| 4522 | * or is prohibited because it recently failed at this |
| 4523 | * order, fail immediately unless the allocator has |
| 4524 | * requested compaction and reclaim retry. |
| 4525 | * |
| 4526 | * Reclaim is |
| 4527 | * - potentially very expensive because zones are far |
| 4528 | * below their low watermarks or this is part of very |
| 4529 | * bursty high order allocations, |
| 4530 | * - not guaranteed to help because isolate_freepages() |
| 4531 | * may not iterate over freed pages as part of its |
| 4532 | * linear scan, and |
| 4533 | * - unlikely to make entire pageblocks free on its |
| 4534 | * own. |
| 4535 | */ |
| 4536 | if (compact_result == COMPACT_SKIPPED || |
| 4537 | compact_result == COMPACT_DEFERRED) |
| 4538 | goto nopage; |
| 4539 | |
| 4540 | /* |
| 4541 | * Looks like reclaim/compaction is worth trying, but |
| 4542 | * sync compaction could be very expensive, so keep |
| 4543 | * using async compaction. |
| 4544 | */ |
| 4545 | compact_priority = INIT_COMPACT_PRIORITY; |
| 4546 | } |
| 4547 | } |
| 4548 | |
| 4549 | retry: |
| 4550 | /* |
| 4551 | * Deal with possible cpuset update races or zonelist updates to avoid |
| 4552 | * infinite retries. |
| 4553 | */ |
| 4554 | if (check_retry_cpuset(cpuset_mems_cookie, ac) || |
| 4555 | check_retry_zonelist(zonelist_iter_cookie)) |
| 4556 | goto restart; |
| 4557 | |
| 4558 | /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ |
| 4559 | if (alloc_flags & ALLOC_KSWAPD) |
| 4560 | wake_all_kswapds(order, gfp_mask, ac); |
| 4561 | |
| 4562 | reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); |
| 4563 | if (reserve_flags) |
| 4564 | alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | |
| 4565 | (alloc_flags & ALLOC_KSWAPD); |
| 4566 | |
| 4567 | /* |
| 4568 | * Reset the nodemask and zonelist iterators if memory policies can be |
| 4569 | * ignored. These allocations are high priority and system rather than |
| 4570 | * user oriented. |
| 4571 | */ |
| 4572 | if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { |
| 4573 | ac->nodemask = NULL; |
| 4574 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| 4575 | ac->highest_zoneidx, ac->nodemask); |
| 4576 | } |
| 4577 | |
| 4578 | /* Attempt with potentially adjusted zonelist and alloc_flags */ |
| 4579 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
| 4580 | if (page) |
| 4581 | goto got_pg; |
| 4582 | |
| 4583 | /* Caller is not willing to reclaim, we can't balance anything */ |
| 4584 | if (!can_direct_reclaim) |
| 4585 | goto nopage; |
| 4586 | |
| 4587 | /* Avoid recursion of direct reclaim */ |
| 4588 | if (current->flags & PF_MEMALLOC) |
| 4589 | goto nopage; |
| 4590 | |
| 4591 | /* Try direct reclaim and then allocating */ |
| 4592 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, |
| 4593 | &did_some_progress); |
| 4594 | if (page) |
| 4595 | goto got_pg; |
| 4596 | |
| 4597 | /* Try direct compaction and then allocating */ |
| 4598 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
| 4599 | compact_priority, &compact_result); |
| 4600 | if (page) |
| 4601 | goto got_pg; |
| 4602 | |
| 4603 | /* Do not loop if specifically requested */ |
| 4604 | if (gfp_mask & __GFP_NORETRY) |
| 4605 | goto nopage; |
| 4606 | |
| 4607 | /* |
| 4608 | * Do not retry costly high order allocations unless they are |
| 4609 | * __GFP_RETRY_MAYFAIL and we can compact |
| 4610 | */ |
| 4611 | if (costly_order && (!can_compact || |
| 4612 | !(gfp_mask & __GFP_RETRY_MAYFAIL))) |
| 4613 | goto nopage; |
| 4614 | |
| 4615 | if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, |
| 4616 | did_some_progress > 0, &no_progress_loops)) |
| 4617 | goto retry; |
| 4618 | |
| 4619 | /* |
| 4620 | * It doesn't make any sense to retry for the compaction if the order-0 |
| 4621 | * reclaim is not able to make any progress because the current |
| 4622 | * implementation of the compaction depends on the sufficient amount |
| 4623 | * of free memory (see __compaction_suitable) |
| 4624 | */ |
| 4625 | if (did_some_progress > 0 && can_compact && |
| 4626 | should_compact_retry(ac, order, alloc_flags, |
| 4627 | compact_result, &compact_priority, |
| 4628 | &compaction_retries)) |
| 4629 | goto retry; |
| 4630 | |
| 4631 | /* Reclaim/compaction failed to prevent the fallback */ |
| 4632 | if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { |
| 4633 | alloc_flags &= ~ALLOC_NOFRAGMENT; |
| 4634 | goto retry; |
| 4635 | } |
| 4636 | |
| 4637 | /* |
| 4638 | * Deal with possible cpuset update races or zonelist updates to avoid |
| 4639 | * a unnecessary OOM kill. |
| 4640 | */ |
| 4641 | if (check_retry_cpuset(cpuset_mems_cookie, ac) || |
| 4642 | check_retry_zonelist(zonelist_iter_cookie)) |
| 4643 | goto restart; |
| 4644 | |
| 4645 | /* Reclaim has failed us, start killing things */ |
| 4646 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); |
| 4647 | if (page) |
| 4648 | goto got_pg; |
| 4649 | |
| 4650 | /* Avoid allocations with no watermarks from looping endlessly */ |
| 4651 | if (tsk_is_oom_victim(current) && |
| 4652 | (alloc_flags & ALLOC_OOM || |
| 4653 | (gfp_mask & __GFP_NOMEMALLOC))) |
| 4654 | goto nopage; |
| 4655 | |
| 4656 | /* Retry as long as the OOM killer is making progress */ |
| 4657 | if (did_some_progress) { |
| 4658 | no_progress_loops = 0; |
| 4659 | goto retry; |
| 4660 | } |
| 4661 | |
| 4662 | nopage: |
| 4663 | /* |
| 4664 | * Deal with possible cpuset update races or zonelist updates to avoid |
| 4665 | * a unnecessary OOM kill. |
| 4666 | */ |
| 4667 | if (check_retry_cpuset(cpuset_mems_cookie, ac) || |
| 4668 | check_retry_zonelist(zonelist_iter_cookie)) |
| 4669 | goto restart; |
| 4670 | |
| 4671 | /* |
| 4672 | * Make sure that __GFP_NOFAIL request doesn't leak out and make sure |
| 4673 | * we always retry |
| 4674 | */ |
| 4675 | if (unlikely(nofail)) { |
| 4676 | /* |
| 4677 | * Lacking direct_reclaim we can't do anything to reclaim memory, |
| 4678 | * we disregard these unreasonable nofail requests and still |
| 4679 | * return NULL |
| 4680 | */ |
| 4681 | if (!can_direct_reclaim) |
| 4682 | goto fail; |
| 4683 | |
| 4684 | /* |
| 4685 | * Help non-failing allocations by giving some access to memory |
| 4686 | * reserves normally used for high priority non-blocking |
| 4687 | * allocations but do not use ALLOC_NO_WATERMARKS because this |
| 4688 | * could deplete whole memory reserves which would just make |
| 4689 | * the situation worse. |
| 4690 | */ |
| 4691 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); |
| 4692 | if (page) |
| 4693 | goto got_pg; |
| 4694 | |
| 4695 | cond_resched(); |
| 4696 | goto retry; |
| 4697 | } |
| 4698 | fail: |
| 4699 | warn_alloc(gfp_mask, ac->nodemask, |
| 4700 | "page allocation failure: order:%u", order); |
| 4701 | got_pg: |
| 4702 | return page; |
| 4703 | } |
| 4704 | |
| 4705 | static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, |
| 4706 | int preferred_nid, nodemask_t *nodemask, |
| 4707 | struct alloc_context *ac, gfp_t *alloc_gfp, |
| 4708 | unsigned int *alloc_flags) |
| 4709 | { |
| 4710 | ac->highest_zoneidx = gfp_zone(gfp_mask); |
| 4711 | ac->zonelist = node_zonelist(preferred_nid, gfp_mask); |
| 4712 | ac->nodemask = nodemask; |
| 4713 | ac->migratetype = gfp_migratetype(gfp_mask); |
| 4714 | |
| 4715 | if (cpusets_enabled()) { |
| 4716 | *alloc_gfp |= __GFP_HARDWALL; |
| 4717 | /* |
| 4718 | * When we are in the interrupt context, it is irrelevant |
| 4719 | * to the current task context. It means that any node ok. |
| 4720 | */ |
| 4721 | if (in_task() && !ac->nodemask) |
| 4722 | ac->nodemask = &cpuset_current_mems_allowed; |
| 4723 | else |
| 4724 | *alloc_flags |= ALLOC_CPUSET; |
| 4725 | } |
| 4726 | |
| 4727 | might_alloc(gfp_mask); |
| 4728 | |
| 4729 | /* |
| 4730 | * Don't invoke should_fail logic, since it may call |
| 4731 | * get_random_u32() and printk() which need to spin_lock. |
| 4732 | */ |
| 4733 | if (!(*alloc_flags & ALLOC_TRYLOCK) && |
| 4734 | should_fail_alloc_page(gfp_mask, order)) |
| 4735 | return false; |
| 4736 | |
| 4737 | *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); |
| 4738 | |
| 4739 | /* Dirty zone balancing only done in the fast path */ |
| 4740 | ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); |
| 4741 | |
| 4742 | /* |
| 4743 | * The preferred zone is used for statistics but crucially it is |
| 4744 | * also used as the starting point for the zonelist iterator. It |
| 4745 | * may get reset for allocations that ignore memory policies. |
| 4746 | */ |
| 4747 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
| 4748 | ac->highest_zoneidx, ac->nodemask); |
| 4749 | |
| 4750 | return true; |
| 4751 | } |
| 4752 | |
| 4753 | /* |
| 4754 | * __alloc_pages_bulk - Allocate a number of order-0 pages to an array |
| 4755 | * @gfp: GFP flags for the allocation |
| 4756 | * @preferred_nid: The preferred NUMA node ID to allocate from |
| 4757 | * @nodemask: Set of nodes to allocate from, may be NULL |
| 4758 | * @nr_pages: The number of pages desired in the array |
| 4759 | * @page_array: Array to store the pages |
| 4760 | * |
| 4761 | * This is a batched version of the page allocator that attempts to |
| 4762 | * allocate nr_pages quickly. Pages are added to the page_array. |
| 4763 | * |
| 4764 | * Note that only NULL elements are populated with pages and nr_pages |
| 4765 | * is the maximum number of pages that will be stored in the array. |
| 4766 | * |
| 4767 | * Returns the number of pages in the array. |
| 4768 | */ |
| 4769 | unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, |
| 4770 | nodemask_t *nodemask, int nr_pages, |
| 4771 | struct page **page_array) |
| 4772 | { |
| 4773 | struct page *page; |
| 4774 | unsigned long __maybe_unused UP_flags; |
| 4775 | struct zone *zone; |
| 4776 | struct zoneref *z; |
| 4777 | struct per_cpu_pages *pcp; |
| 4778 | struct list_head *pcp_list; |
| 4779 | struct alloc_context ac; |
| 4780 | gfp_t alloc_gfp; |
| 4781 | unsigned int alloc_flags = ALLOC_WMARK_LOW; |
| 4782 | int nr_populated = 0, nr_account = 0; |
| 4783 | |
| 4784 | /* |
| 4785 | * Skip populated array elements to determine if any pages need |
| 4786 | * to be allocated before disabling IRQs. |
| 4787 | */ |
| 4788 | while (nr_populated < nr_pages && page_array[nr_populated]) |
| 4789 | nr_populated++; |
| 4790 | |
| 4791 | /* No pages requested? */ |
| 4792 | if (unlikely(nr_pages <= 0)) |
| 4793 | goto out; |
| 4794 | |
| 4795 | /* Already populated array? */ |
| 4796 | if (unlikely(nr_pages - nr_populated == 0)) |
| 4797 | goto out; |
| 4798 | |
| 4799 | /* Bulk allocator does not support memcg accounting. */ |
| 4800 | if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) |
| 4801 | goto failed; |
| 4802 | |
| 4803 | /* Use the single page allocator for one page. */ |
| 4804 | if (nr_pages - nr_populated == 1) |
| 4805 | goto failed; |
| 4806 | |
| 4807 | #ifdef CONFIG_PAGE_OWNER |
| 4808 | /* |
| 4809 | * PAGE_OWNER may recurse into the allocator to allocate space to |
| 4810 | * save the stack with pagesets.lock held. Releasing/reacquiring |
| 4811 | * removes much of the performance benefit of bulk allocation so |
| 4812 | * force the caller to allocate one page at a time as it'll have |
| 4813 | * similar performance to added complexity to the bulk allocator. |
| 4814 | */ |
| 4815 | if (static_branch_unlikely(&page_owner_inited)) |
| 4816 | goto failed; |
| 4817 | #endif |
| 4818 | |
| 4819 | /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ |
| 4820 | gfp &= gfp_allowed_mask; |
| 4821 | alloc_gfp = gfp; |
| 4822 | if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) |
| 4823 | goto out; |
| 4824 | gfp = alloc_gfp; |
| 4825 | |
| 4826 | /* Find an allowed local zone that meets the low watermark. */ |
| 4827 | z = ac.preferred_zoneref; |
| 4828 | for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { |
| 4829 | unsigned long mark; |
| 4830 | |
| 4831 | if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && |
| 4832 | !__cpuset_zone_allowed(zone, gfp)) { |
| 4833 | continue; |
| 4834 | } |
| 4835 | |
| 4836 | if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && |
| 4837 | zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { |
| 4838 | goto failed; |
| 4839 | } |
| 4840 | |
| 4841 | cond_accept_memory(zone, 0, alloc_flags); |
| 4842 | retry_this_zone: |
| 4843 | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; |
| 4844 | if (zone_watermark_fast(zone, 0, mark, |
| 4845 | zonelist_zone_idx(ac.preferred_zoneref), |
| 4846 | alloc_flags, gfp)) { |
| 4847 | break; |
| 4848 | } |
| 4849 | |
| 4850 | if (cond_accept_memory(zone, 0, alloc_flags)) |
| 4851 | goto retry_this_zone; |
| 4852 | |
| 4853 | /* Try again if zone has deferred pages */ |
| 4854 | if (deferred_pages_enabled()) { |
| 4855 | if (_deferred_grow_zone(zone, 0)) |
| 4856 | goto retry_this_zone; |
| 4857 | } |
| 4858 | } |
| 4859 | |
| 4860 | /* |
| 4861 | * If there are no allowed local zones that meets the watermarks then |
| 4862 | * try to allocate a single page and reclaim if necessary. |
| 4863 | */ |
| 4864 | if (unlikely(!zone)) |
| 4865 | goto failed; |
| 4866 | |
| 4867 | /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ |
| 4868 | pcp_trylock_prepare(UP_flags); |
| 4869 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
| 4870 | if (!pcp) |
| 4871 | goto failed_irq; |
| 4872 | |
| 4873 | /* Attempt the batch allocation */ |
| 4874 | pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; |
| 4875 | while (nr_populated < nr_pages) { |
| 4876 | |
| 4877 | /* Skip existing pages */ |
| 4878 | if (page_array[nr_populated]) { |
| 4879 | nr_populated++; |
| 4880 | continue; |
| 4881 | } |
| 4882 | |
| 4883 | page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, |
| 4884 | pcp, pcp_list); |
| 4885 | if (unlikely(!page)) { |
| 4886 | /* Try and allocate at least one page */ |
| 4887 | if (!nr_account) { |
| 4888 | pcp_spin_unlock(pcp); |
| 4889 | goto failed_irq; |
| 4890 | } |
| 4891 | break; |
| 4892 | } |
| 4893 | nr_account++; |
| 4894 | |
| 4895 | prep_new_page(page, 0, gfp, 0); |
| 4896 | set_page_refcounted(page); |
| 4897 | page_array[nr_populated++] = page; |
| 4898 | } |
| 4899 | |
| 4900 | pcp_spin_unlock(pcp); |
| 4901 | pcp_trylock_finish(UP_flags); |
| 4902 | |
| 4903 | __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); |
| 4904 | zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); |
| 4905 | |
| 4906 | out: |
| 4907 | return nr_populated; |
| 4908 | |
| 4909 | failed_irq: |
| 4910 | pcp_trylock_finish(UP_flags); |
| 4911 | |
| 4912 | failed: |
| 4913 | page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); |
| 4914 | if (page) |
| 4915 | page_array[nr_populated++] = page; |
| 4916 | goto out; |
| 4917 | } |
| 4918 | EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); |
| 4919 | |
| 4920 | /* |
| 4921 | * This is the 'heart' of the zoned buddy allocator. |
| 4922 | */ |
| 4923 | struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, |
| 4924 | int preferred_nid, nodemask_t *nodemask) |
| 4925 | { |
| 4926 | struct page *page; |
| 4927 | unsigned int alloc_flags = ALLOC_WMARK_LOW; |
| 4928 | gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ |
| 4929 | struct alloc_context ac = { }; |
| 4930 | |
| 4931 | /* |
| 4932 | * There are several places where we assume that the order value is sane |
| 4933 | * so bail out early if the request is out of bound. |
| 4934 | */ |
| 4935 | if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) |
| 4936 | return NULL; |
| 4937 | |
| 4938 | gfp &= gfp_allowed_mask; |
| 4939 | /* |
| 4940 | * Apply scoped allocation constraints. This is mainly about GFP_NOFS |
| 4941 | * resp. GFP_NOIO which has to be inherited for all allocation requests |
| 4942 | * from a particular context which has been marked by |
| 4943 | * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures |
| 4944 | * movable zones are not used during allocation. |
| 4945 | */ |
| 4946 | gfp = current_gfp_context(gfp); |
| 4947 | alloc_gfp = gfp; |
| 4948 | if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, |
| 4949 | &alloc_gfp, &alloc_flags)) |
| 4950 | return NULL; |
| 4951 | |
| 4952 | /* |
| 4953 | * Forbid the first pass from falling back to types that fragment |
| 4954 | * memory until all local zones are considered. |
| 4955 | */ |
| 4956 | alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); |
| 4957 | |
| 4958 | /* First allocation attempt */ |
| 4959 | page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); |
| 4960 | if (likely(page)) |
| 4961 | goto out; |
| 4962 | |
| 4963 | alloc_gfp = gfp; |
| 4964 | ac.spread_dirty_pages = false; |
| 4965 | |
| 4966 | /* |
| 4967 | * Restore the original nodemask if it was potentially replaced with |
| 4968 | * &cpuset_current_mems_allowed to optimize the fast-path attempt. |
| 4969 | */ |
| 4970 | ac.nodemask = nodemask; |
| 4971 | |
| 4972 | page = __alloc_pages_slowpath(alloc_gfp, order, &ac); |
| 4973 | |
| 4974 | out: |
| 4975 | if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && |
| 4976 | unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { |
| 4977 | free_frozen_pages(page, order); |
| 4978 | page = NULL; |
| 4979 | } |
| 4980 | |
| 4981 | trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); |
| 4982 | kmsan_alloc_page(page, order, alloc_gfp); |
| 4983 | |
| 4984 | return page; |
| 4985 | } |
| 4986 | EXPORT_SYMBOL(__alloc_frozen_pages_noprof); |
| 4987 | |
| 4988 | struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, |
| 4989 | int preferred_nid, nodemask_t *nodemask) |
| 4990 | { |
| 4991 | struct page *page; |
| 4992 | |
| 4993 | page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); |
| 4994 | if (page) |
| 4995 | set_page_refcounted(page); |
| 4996 | return page; |
| 4997 | } |
| 4998 | EXPORT_SYMBOL(__alloc_pages_noprof); |
| 4999 | |
| 5000 | struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, |
| 5001 | nodemask_t *nodemask) |
| 5002 | { |
| 5003 | struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, |
| 5004 | preferred_nid, nodemask); |
| 5005 | return page_rmappable_folio(page); |
| 5006 | } |
| 5007 | EXPORT_SYMBOL(__folio_alloc_noprof); |
| 5008 | |
| 5009 | /* |
| 5010 | * Common helper functions. Never use with __GFP_HIGHMEM because the returned |
| 5011 | * address cannot represent highmem pages. Use alloc_pages and then kmap if |
| 5012 | * you need to access high mem. |
| 5013 | */ |
| 5014 | unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) |
| 5015 | { |
| 5016 | struct page *page; |
| 5017 | |
| 5018 | page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); |
| 5019 | if (!page) |
| 5020 | return 0; |
| 5021 | return (unsigned long) page_address(page); |
| 5022 | } |
| 5023 | EXPORT_SYMBOL(get_free_pages_noprof); |
| 5024 | |
| 5025 | unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) |
| 5026 | { |
| 5027 | return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); |
| 5028 | } |
| 5029 | EXPORT_SYMBOL(get_zeroed_page_noprof); |
| 5030 | |
| 5031 | /** |
| 5032 | * ___free_pages - Free pages allocated with alloc_pages(). |
| 5033 | * @page: The page pointer returned from alloc_pages(). |
| 5034 | * @order: The order of the allocation. |
| 5035 | * @fpi_flags: Free Page Internal flags. |
| 5036 | * |
| 5037 | * This function can free multi-page allocations that are not compound |
| 5038 | * pages. It does not check that the @order passed in matches that of |
| 5039 | * the allocation, so it is easy to leak memory. Freeing more memory |
| 5040 | * than was allocated will probably emit a warning. |
| 5041 | * |
| 5042 | * If the last reference to this page is speculative, it will be released |
| 5043 | * by put_page() which only frees the first page of a non-compound |
| 5044 | * allocation. To prevent the remaining pages from being leaked, we free |
| 5045 | * the subsequent pages here. If you want to use the page's reference |
| 5046 | * count to decide when to free the allocation, you should allocate a |
| 5047 | * compound page, and use put_page() instead of __free_pages(). |
| 5048 | * |
| 5049 | * Context: May be called in interrupt context or while holding a normal |
| 5050 | * spinlock, but not in NMI context or while holding a raw spinlock. |
| 5051 | */ |
| 5052 | static void ___free_pages(struct page *page, unsigned int order, |
| 5053 | fpi_t fpi_flags) |
| 5054 | { |
| 5055 | /* get PageHead before we drop reference */ |
| 5056 | int head = PageHead(page); |
| 5057 | /* get alloc tag in case the page is released by others */ |
| 5058 | struct alloc_tag *tag = pgalloc_tag_get(page); |
| 5059 | |
| 5060 | if (put_page_testzero(page)) |
| 5061 | __free_frozen_pages(page, order, fpi_flags); |
| 5062 | else if (!head) { |
| 5063 | pgalloc_tag_sub_pages(tag, (1 << order) - 1); |
| 5064 | while (order-- > 0) |
| 5065 | __free_frozen_pages(page + (1 << order), order, |
| 5066 | fpi_flags); |
| 5067 | } |
| 5068 | } |
| 5069 | void __free_pages(struct page *page, unsigned int order) |
| 5070 | { |
| 5071 | ___free_pages(page, order, FPI_NONE); |
| 5072 | } |
| 5073 | EXPORT_SYMBOL(__free_pages); |
| 5074 | |
| 5075 | /* |
| 5076 | * Can be called while holding raw_spin_lock or from IRQ and NMI for any |
| 5077 | * page type (not only those that came from alloc_pages_nolock) |
| 5078 | */ |
| 5079 | void free_pages_nolock(struct page *page, unsigned int order) |
| 5080 | { |
| 5081 | ___free_pages(page, order, FPI_TRYLOCK); |
| 5082 | } |
| 5083 | |
| 5084 | void free_pages(unsigned long addr, unsigned int order) |
| 5085 | { |
| 5086 | if (addr != 0) { |
| 5087 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
| 5088 | __free_pages(virt_to_page((void *)addr), order); |
| 5089 | } |
| 5090 | } |
| 5091 | |
| 5092 | EXPORT_SYMBOL(free_pages); |
| 5093 | |
| 5094 | static void *make_alloc_exact(unsigned long addr, unsigned int order, |
| 5095 | size_t size) |
| 5096 | { |
| 5097 | if (addr) { |
| 5098 | unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); |
| 5099 | struct page *page = virt_to_page((void *)addr); |
| 5100 | struct page *last = page + nr; |
| 5101 | |
| 5102 | split_page_owner(page, order, 0); |
| 5103 | pgalloc_tag_split(page_folio(page), order, 0); |
| 5104 | split_page_memcg(page, order); |
| 5105 | while (page < --last) |
| 5106 | set_page_refcounted(last); |
| 5107 | |
| 5108 | last = page + (1UL << order); |
| 5109 | for (page += nr; page < last; page++) |
| 5110 | __free_pages_ok(page, 0, FPI_TO_TAIL); |
| 5111 | } |
| 5112 | return (void *)addr; |
| 5113 | } |
| 5114 | |
| 5115 | /** |
| 5116 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. |
| 5117 | * @size: the number of bytes to allocate |
| 5118 | * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP |
| 5119 | * |
| 5120 | * This function is similar to alloc_pages(), except that it allocates the |
| 5121 | * minimum number of pages to satisfy the request. alloc_pages() can only |
| 5122 | * allocate memory in power-of-two pages. |
| 5123 | * |
| 5124 | * This function is also limited by MAX_PAGE_ORDER. |
| 5125 | * |
| 5126 | * Memory allocated by this function must be released by free_pages_exact(). |
| 5127 | * |
| 5128 | * Return: pointer to the allocated area or %NULL in case of error. |
| 5129 | */ |
| 5130 | void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) |
| 5131 | { |
| 5132 | unsigned int order = get_order(size); |
| 5133 | unsigned long addr; |
| 5134 | |
| 5135 | if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) |
| 5136 | gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); |
| 5137 | |
| 5138 | addr = get_free_pages_noprof(gfp_mask, order); |
| 5139 | return make_alloc_exact(addr, order, size); |
| 5140 | } |
| 5141 | EXPORT_SYMBOL(alloc_pages_exact_noprof); |
| 5142 | |
| 5143 | /** |
| 5144 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous |
| 5145 | * pages on a node. |
| 5146 | * @nid: the preferred node ID where memory should be allocated |
| 5147 | * @size: the number of bytes to allocate |
| 5148 | * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP |
| 5149 | * |
| 5150 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling |
| 5151 | * back. |
| 5152 | * |
| 5153 | * Return: pointer to the allocated area or %NULL in case of error. |
| 5154 | */ |
| 5155 | void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) |
| 5156 | { |
| 5157 | unsigned int order = get_order(size); |
| 5158 | struct page *p; |
| 5159 | |
| 5160 | if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) |
| 5161 | gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); |
| 5162 | |
| 5163 | p = alloc_pages_node_noprof(nid, gfp_mask, order); |
| 5164 | if (!p) |
| 5165 | return NULL; |
| 5166 | return make_alloc_exact((unsigned long)page_address(p), order, size); |
| 5167 | } |
| 5168 | |
| 5169 | /** |
| 5170 | * free_pages_exact - release memory allocated via alloc_pages_exact() |
| 5171 | * @virt: the value returned by alloc_pages_exact. |
| 5172 | * @size: size of allocation, same value as passed to alloc_pages_exact(). |
| 5173 | * |
| 5174 | * Release the memory allocated by a previous call to alloc_pages_exact. |
| 5175 | */ |
| 5176 | void free_pages_exact(void *virt, size_t size) |
| 5177 | { |
| 5178 | unsigned long addr = (unsigned long)virt; |
| 5179 | unsigned long end = addr + PAGE_ALIGN(size); |
| 5180 | |
| 5181 | while (addr < end) { |
| 5182 | free_page(addr); |
| 5183 | addr += PAGE_SIZE; |
| 5184 | } |
| 5185 | } |
| 5186 | EXPORT_SYMBOL(free_pages_exact); |
| 5187 | |
| 5188 | /** |
| 5189 | * nr_free_zone_pages - count number of pages beyond high watermark |
| 5190 | * @offset: The zone index of the highest zone |
| 5191 | * |
| 5192 | * nr_free_zone_pages() counts the number of pages which are beyond the |
| 5193 | * high watermark within all zones at or below a given zone index. For each |
| 5194 | * zone, the number of pages is calculated as: |
| 5195 | * |
| 5196 | * nr_free_zone_pages = managed_pages - high_pages |
| 5197 | * |
| 5198 | * Return: number of pages beyond high watermark. |
| 5199 | */ |
| 5200 | static unsigned long nr_free_zone_pages(int offset) |
| 5201 | { |
| 5202 | struct zoneref *z; |
| 5203 | struct zone *zone; |
| 5204 | |
| 5205 | /* Just pick one node, since fallback list is circular */ |
| 5206 | unsigned long sum = 0; |
| 5207 | |
| 5208 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
| 5209 | |
| 5210 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
| 5211 | unsigned long size = zone_managed_pages(zone); |
| 5212 | unsigned long high = high_wmark_pages(zone); |
| 5213 | if (size > high) |
| 5214 | sum += size - high; |
| 5215 | } |
| 5216 | |
| 5217 | return sum; |
| 5218 | } |
| 5219 | |
| 5220 | /** |
| 5221 | * nr_free_buffer_pages - count number of pages beyond high watermark |
| 5222 | * |
| 5223 | * nr_free_buffer_pages() counts the number of pages which are beyond the high |
| 5224 | * watermark within ZONE_DMA and ZONE_NORMAL. |
| 5225 | * |
| 5226 | * Return: number of pages beyond high watermark within ZONE_DMA and |
| 5227 | * ZONE_NORMAL. |
| 5228 | */ |
| 5229 | unsigned long nr_free_buffer_pages(void) |
| 5230 | { |
| 5231 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
| 5232 | } |
| 5233 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
| 5234 | |
| 5235 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
| 5236 | { |
| 5237 | zoneref->zone = zone; |
| 5238 | zoneref->zone_idx = zone_idx(zone); |
| 5239 | } |
| 5240 | |
| 5241 | /* |
| 5242 | * Builds allocation fallback zone lists. |
| 5243 | * |
| 5244 | * Add all populated zones of a node to the zonelist. |
| 5245 | */ |
| 5246 | static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) |
| 5247 | { |
| 5248 | struct zone *zone; |
| 5249 | enum zone_type zone_type = MAX_NR_ZONES; |
| 5250 | int nr_zones = 0; |
| 5251 | |
| 5252 | do { |
| 5253 | zone_type--; |
| 5254 | zone = pgdat->node_zones + zone_type; |
| 5255 | if (populated_zone(zone)) { |
| 5256 | zoneref_set_zone(zone, &zonerefs[nr_zones++]); |
| 5257 | check_highest_zone(zone_type); |
| 5258 | } |
| 5259 | } while (zone_type); |
| 5260 | |
| 5261 | return nr_zones; |
| 5262 | } |
| 5263 | |
| 5264 | #ifdef CONFIG_NUMA |
| 5265 | |
| 5266 | static int __parse_numa_zonelist_order(char *s) |
| 5267 | { |
| 5268 | /* |
| 5269 | * We used to support different zonelists modes but they turned |
| 5270 | * out to be just not useful. Let's keep the warning in place |
| 5271 | * if somebody still use the cmd line parameter so that we do |
| 5272 | * not fail it silently |
| 5273 | */ |
| 5274 | if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { |
| 5275 | pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); |
| 5276 | return -EINVAL; |
| 5277 | } |
| 5278 | return 0; |
| 5279 | } |
| 5280 | |
| 5281 | static char numa_zonelist_order[] = "Node"; |
| 5282 | #define NUMA_ZONELIST_ORDER_LEN 16 |
| 5283 | /* |
| 5284 | * sysctl handler for numa_zonelist_order |
| 5285 | */ |
| 5286 | static int numa_zonelist_order_handler(const struct ctl_table *table, int write, |
| 5287 | void *buffer, size_t *length, loff_t *ppos) |
| 5288 | { |
| 5289 | if (write) |
| 5290 | return __parse_numa_zonelist_order(buffer); |
| 5291 | return proc_dostring(table, write, buffer, length, ppos); |
| 5292 | } |
| 5293 | |
| 5294 | static int node_load[MAX_NUMNODES]; |
| 5295 | |
| 5296 | /** |
| 5297 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
| 5298 | * @node: node whose fallback list we're appending |
| 5299 | * @used_node_mask: nodemask_t of already used nodes |
| 5300 | * |
| 5301 | * We use a number of factors to determine which is the next node that should |
| 5302 | * appear on a given node's fallback list. The node should not have appeared |
| 5303 | * already in @node's fallback list, and it should be the next closest node |
| 5304 | * according to the distance array (which contains arbitrary distance values |
| 5305 | * from each node to each node in the system), and should also prefer nodes |
| 5306 | * with no CPUs, since presumably they'll have very little allocation pressure |
| 5307 | * on them otherwise. |
| 5308 | * |
| 5309 | * Return: node id of the found node or %NUMA_NO_NODE if no node is found. |
| 5310 | */ |
| 5311 | int find_next_best_node(int node, nodemask_t *used_node_mask) |
| 5312 | { |
| 5313 | int n, val; |
| 5314 | int min_val = INT_MAX; |
| 5315 | int best_node = NUMA_NO_NODE; |
| 5316 | |
| 5317 | /* |
| 5318 | * Use the local node if we haven't already, but for memoryless local |
| 5319 | * node, we should skip it and fall back to other nodes. |
| 5320 | */ |
| 5321 | if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { |
| 5322 | node_set(node, *used_node_mask); |
| 5323 | return node; |
| 5324 | } |
| 5325 | |
| 5326 | for_each_node_state(n, N_MEMORY) { |
| 5327 | |
| 5328 | /* Don't want a node to appear more than once */ |
| 5329 | if (node_isset(n, *used_node_mask)) |
| 5330 | continue; |
| 5331 | |
| 5332 | /* Use the distance array to find the distance */ |
| 5333 | val = node_distance(node, n); |
| 5334 | |
| 5335 | /* Penalize nodes under us ("prefer the next node") */ |
| 5336 | val += (n < node); |
| 5337 | |
| 5338 | /* Give preference to headless and unused nodes */ |
| 5339 | if (!cpumask_empty(cpumask_of_node(n))) |
| 5340 | val += PENALTY_FOR_NODE_WITH_CPUS; |
| 5341 | |
| 5342 | /* Slight preference for less loaded node */ |
| 5343 | val *= MAX_NUMNODES; |
| 5344 | val += node_load[n]; |
| 5345 | |
| 5346 | if (val < min_val) { |
| 5347 | min_val = val; |
| 5348 | best_node = n; |
| 5349 | } |
| 5350 | } |
| 5351 | |
| 5352 | if (best_node >= 0) |
| 5353 | node_set(best_node, *used_node_mask); |
| 5354 | |
| 5355 | return best_node; |
| 5356 | } |
| 5357 | |
| 5358 | |
| 5359 | /* |
| 5360 | * Build zonelists ordered by node and zones within node. |
| 5361 | * This results in maximum locality--normal zone overflows into local |
| 5362 | * DMA zone, if any--but risks exhausting DMA zone. |
| 5363 | */ |
| 5364 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, |
| 5365 | unsigned nr_nodes) |
| 5366 | { |
| 5367 | struct zoneref *zonerefs; |
| 5368 | int i; |
| 5369 | |
| 5370 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
| 5371 | |
| 5372 | for (i = 0; i < nr_nodes; i++) { |
| 5373 | int nr_zones; |
| 5374 | |
| 5375 | pg_data_t *node = NODE_DATA(node_order[i]); |
| 5376 | |
| 5377 | nr_zones = build_zonerefs_node(node, zonerefs); |
| 5378 | zonerefs += nr_zones; |
| 5379 | } |
| 5380 | zonerefs->zone = NULL; |
| 5381 | zonerefs->zone_idx = 0; |
| 5382 | } |
| 5383 | |
| 5384 | /* |
| 5385 | * Build __GFP_THISNODE zonelists |
| 5386 | */ |
| 5387 | static void build_thisnode_zonelists(pg_data_t *pgdat) |
| 5388 | { |
| 5389 | struct zoneref *zonerefs; |
| 5390 | int nr_zones; |
| 5391 | |
| 5392 | zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; |
| 5393 | nr_zones = build_zonerefs_node(pgdat, zonerefs); |
| 5394 | zonerefs += nr_zones; |
| 5395 | zonerefs->zone = NULL; |
| 5396 | zonerefs->zone_idx = 0; |
| 5397 | } |
| 5398 | |
| 5399 | static void build_zonelists(pg_data_t *pgdat) |
| 5400 | { |
| 5401 | static int node_order[MAX_NUMNODES]; |
| 5402 | int node, nr_nodes = 0; |
| 5403 | nodemask_t used_mask = NODE_MASK_NONE; |
| 5404 | int local_node, prev_node; |
| 5405 | |
| 5406 | /* NUMA-aware ordering of nodes */ |
| 5407 | local_node = pgdat->node_id; |
| 5408 | prev_node = local_node; |
| 5409 | |
| 5410 | memset(node_order, 0, sizeof(node_order)); |
| 5411 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
| 5412 | /* |
| 5413 | * We don't want to pressure a particular node. |
| 5414 | * So adding penalty to the first node in same |
| 5415 | * distance group to make it round-robin. |
| 5416 | */ |
| 5417 | if (node_distance(local_node, node) != |
| 5418 | node_distance(local_node, prev_node)) |
| 5419 | node_load[node] += 1; |
| 5420 | |
| 5421 | node_order[nr_nodes++] = node; |
| 5422 | prev_node = node; |
| 5423 | } |
| 5424 | |
| 5425 | build_zonelists_in_node_order(pgdat, node_order, nr_nodes); |
| 5426 | build_thisnode_zonelists(pgdat); |
| 5427 | pr_info("Fallback order for Node %d: ", local_node); |
| 5428 | for (node = 0; node < nr_nodes; node++) |
| 5429 | pr_cont("%d ", node_order[node]); |
| 5430 | pr_cont("\n"); |
| 5431 | } |
| 5432 | |
| 5433 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| 5434 | /* |
| 5435 | * Return node id of node used for "local" allocations. |
| 5436 | * I.e., first node id of first zone in arg node's generic zonelist. |
| 5437 | * Used for initializing percpu 'numa_mem', which is used primarily |
| 5438 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. |
| 5439 | */ |
| 5440 | int local_memory_node(int node) |
| 5441 | { |
| 5442 | struct zoneref *z; |
| 5443 | |
| 5444 | z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
| 5445 | gfp_zone(GFP_KERNEL), |
| 5446 | NULL); |
| 5447 | return zonelist_node_idx(z); |
| 5448 | } |
| 5449 | #endif |
| 5450 | |
| 5451 | static void setup_min_unmapped_ratio(void); |
| 5452 | static void setup_min_slab_ratio(void); |
| 5453 | #else /* CONFIG_NUMA */ |
| 5454 | |
| 5455 | static void build_zonelists(pg_data_t *pgdat) |
| 5456 | { |
| 5457 | struct zoneref *zonerefs; |
| 5458 | int nr_zones; |
| 5459 | |
| 5460 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
| 5461 | nr_zones = build_zonerefs_node(pgdat, zonerefs); |
| 5462 | zonerefs += nr_zones; |
| 5463 | |
| 5464 | zonerefs->zone = NULL; |
| 5465 | zonerefs->zone_idx = 0; |
| 5466 | } |
| 5467 | |
| 5468 | #endif /* CONFIG_NUMA */ |
| 5469 | |
| 5470 | /* |
| 5471 | * Boot pageset table. One per cpu which is going to be used for all |
| 5472 | * zones and all nodes. The parameters will be set in such a way |
| 5473 | * that an item put on a list will immediately be handed over to |
| 5474 | * the buddy list. This is safe since pageset manipulation is done |
| 5475 | * with interrupts disabled. |
| 5476 | * |
| 5477 | * The boot_pagesets must be kept even after bootup is complete for |
| 5478 | * unused processors and/or zones. They do play a role for bootstrapping |
| 5479 | * hotplugged processors. |
| 5480 | * |
| 5481 | * zoneinfo_show() and maybe other functions do |
| 5482 | * not check if the processor is online before following the pageset pointer. |
| 5483 | * Other parts of the kernel may not check if the zone is available. |
| 5484 | */ |
| 5485 | static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); |
| 5486 | /* These effectively disable the pcplists in the boot pageset completely */ |
| 5487 | #define BOOT_PAGESET_HIGH 0 |
| 5488 | #define BOOT_PAGESET_BATCH 1 |
| 5489 | static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); |
| 5490 | static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); |
| 5491 | |
| 5492 | static void __build_all_zonelists(void *data) |
| 5493 | { |
| 5494 | int nid; |
| 5495 | int __maybe_unused cpu; |
| 5496 | pg_data_t *self = data; |
| 5497 | unsigned long flags; |
| 5498 | |
| 5499 | /* |
| 5500 | * The zonelist_update_seq must be acquired with irqsave because the |
| 5501 | * reader can be invoked from IRQ with GFP_ATOMIC. |
| 5502 | */ |
| 5503 | write_seqlock_irqsave(&zonelist_update_seq, flags); |
| 5504 | /* |
| 5505 | * Also disable synchronous printk() to prevent any printk() from |
| 5506 | * trying to hold port->lock, for |
| 5507 | * tty_insert_flip_string_and_push_buffer() on other CPU might be |
| 5508 | * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. |
| 5509 | */ |
| 5510 | printk_deferred_enter(); |
| 5511 | |
| 5512 | #ifdef CONFIG_NUMA |
| 5513 | memset(node_load, 0, sizeof(node_load)); |
| 5514 | #endif |
| 5515 | |
| 5516 | /* |
| 5517 | * This node is hotadded and no memory is yet present. So just |
| 5518 | * building zonelists is fine - no need to touch other nodes. |
| 5519 | */ |
| 5520 | if (self && !node_online(self->node_id)) { |
| 5521 | build_zonelists(self); |
| 5522 | } else { |
| 5523 | /* |
| 5524 | * All possible nodes have pgdat preallocated |
| 5525 | * in free_area_init |
| 5526 | */ |
| 5527 | for_each_node(nid) { |
| 5528 | pg_data_t *pgdat = NODE_DATA(nid); |
| 5529 | |
| 5530 | build_zonelists(pgdat); |
| 5531 | } |
| 5532 | |
| 5533 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| 5534 | /* |
| 5535 | * We now know the "local memory node" for each node-- |
| 5536 | * i.e., the node of the first zone in the generic zonelist. |
| 5537 | * Set up numa_mem percpu variable for on-line cpus. During |
| 5538 | * boot, only the boot cpu should be on-line; we'll init the |
| 5539 | * secondary cpus' numa_mem as they come on-line. During |
| 5540 | * node/memory hotplug, we'll fixup all on-line cpus. |
| 5541 | */ |
| 5542 | for_each_online_cpu(cpu) |
| 5543 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); |
| 5544 | #endif |
| 5545 | } |
| 5546 | |
| 5547 | printk_deferred_exit(); |
| 5548 | write_sequnlock_irqrestore(&zonelist_update_seq, flags); |
| 5549 | } |
| 5550 | |
| 5551 | static noinline void __init |
| 5552 | build_all_zonelists_init(void) |
| 5553 | { |
| 5554 | int cpu; |
| 5555 | |
| 5556 | __build_all_zonelists(NULL); |
| 5557 | |
| 5558 | /* |
| 5559 | * Initialize the boot_pagesets that are going to be used |
| 5560 | * for bootstrapping processors. The real pagesets for |
| 5561 | * each zone will be allocated later when the per cpu |
| 5562 | * allocator is available. |
| 5563 | * |
| 5564 | * boot_pagesets are used also for bootstrapping offline |
| 5565 | * cpus if the system is already booted because the pagesets |
| 5566 | * are needed to initialize allocators on a specific cpu too. |
| 5567 | * F.e. the percpu allocator needs the page allocator which |
| 5568 | * needs the percpu allocator in order to allocate its pagesets |
| 5569 | * (a chicken-egg dilemma). |
| 5570 | */ |
| 5571 | for_each_possible_cpu(cpu) |
| 5572 | per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); |
| 5573 | |
| 5574 | mminit_verify_zonelist(); |
| 5575 | cpuset_init_current_mems_allowed(); |
| 5576 | } |
| 5577 | |
| 5578 | /* |
| 5579 | * unless system_state == SYSTEM_BOOTING. |
| 5580 | * |
| 5581 | * __ref due to call of __init annotated helper build_all_zonelists_init |
| 5582 | * [protected by SYSTEM_BOOTING]. |
| 5583 | */ |
| 5584 | void __ref build_all_zonelists(pg_data_t *pgdat) |
| 5585 | { |
| 5586 | unsigned long vm_total_pages; |
| 5587 | |
| 5588 | if (system_state == SYSTEM_BOOTING) { |
| 5589 | build_all_zonelists_init(); |
| 5590 | } else { |
| 5591 | __build_all_zonelists(pgdat); |
| 5592 | /* cpuset refresh routine should be here */ |
| 5593 | } |
| 5594 | /* Get the number of free pages beyond high watermark in all zones. */ |
| 5595 | vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
| 5596 | /* |
| 5597 | * Disable grouping by mobility if the number of pages in the |
| 5598 | * system is too low to allow the mechanism to work. It would be |
| 5599 | * more accurate, but expensive to check per-zone. This check is |
| 5600 | * made on memory-hotadd so a system can start with mobility |
| 5601 | * disabled and enable it later |
| 5602 | */ |
| 5603 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
| 5604 | page_group_by_mobility_disabled = 1; |
| 5605 | else |
| 5606 | page_group_by_mobility_disabled = 0; |
| 5607 | |
| 5608 | pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", |
| 5609 | nr_online_nodes, |
| 5610 | str_off_on(page_group_by_mobility_disabled), |
| 5611 | vm_total_pages); |
| 5612 | #ifdef CONFIG_NUMA |
| 5613 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
| 5614 | #endif |
| 5615 | } |
| 5616 | |
| 5617 | static int zone_batchsize(struct zone *zone) |
| 5618 | { |
| 5619 | #ifdef CONFIG_MMU |
| 5620 | int batch; |
| 5621 | |
| 5622 | /* |
| 5623 | * The number of pages to batch allocate is either ~0.1% |
| 5624 | * of the zone or 1MB, whichever is smaller. The batch |
| 5625 | * size is striking a balance between allocation latency |
| 5626 | * and zone lock contention. |
| 5627 | */ |
| 5628 | batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); |
| 5629 | batch /= 4; /* We effectively *= 4 below */ |
| 5630 | if (batch < 1) |
| 5631 | batch = 1; |
| 5632 | |
| 5633 | /* |
| 5634 | * Clamp the batch to a 2^n - 1 value. Having a power |
| 5635 | * of 2 value was found to be more likely to have |
| 5636 | * suboptimal cache aliasing properties in some cases. |
| 5637 | * |
| 5638 | * For example if 2 tasks are alternately allocating |
| 5639 | * batches of pages, one task can end up with a lot |
| 5640 | * of pages of one half of the possible page colors |
| 5641 | * and the other with pages of the other colors. |
| 5642 | */ |
| 5643 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
| 5644 | |
| 5645 | return batch; |
| 5646 | |
| 5647 | #else |
| 5648 | /* The deferral and batching of frees should be suppressed under NOMMU |
| 5649 | * conditions. |
| 5650 | * |
| 5651 | * The problem is that NOMMU needs to be able to allocate large chunks |
| 5652 | * of contiguous memory as there's no hardware page translation to |
| 5653 | * assemble apparent contiguous memory from discontiguous pages. |
| 5654 | * |
| 5655 | * Queueing large contiguous runs of pages for batching, however, |
| 5656 | * causes the pages to actually be freed in smaller chunks. As there |
| 5657 | * can be a significant delay between the individual batches being |
| 5658 | * recycled, this leads to the once large chunks of space being |
| 5659 | * fragmented and becoming unavailable for high-order allocations. |
| 5660 | */ |
| 5661 | return 0; |
| 5662 | #endif |
| 5663 | } |
| 5664 | |
| 5665 | static int percpu_pagelist_high_fraction; |
| 5666 | static int zone_highsize(struct zone *zone, int batch, int cpu_online, |
| 5667 | int high_fraction) |
| 5668 | { |
| 5669 | #ifdef CONFIG_MMU |
| 5670 | int high; |
| 5671 | int nr_split_cpus; |
| 5672 | unsigned long total_pages; |
| 5673 | |
| 5674 | if (!high_fraction) { |
| 5675 | /* |
| 5676 | * By default, the high value of the pcp is based on the zone |
| 5677 | * low watermark so that if they are full then background |
| 5678 | * reclaim will not be started prematurely. |
| 5679 | */ |
| 5680 | total_pages = low_wmark_pages(zone); |
| 5681 | } else { |
| 5682 | /* |
| 5683 | * If percpu_pagelist_high_fraction is configured, the high |
| 5684 | * value is based on a fraction of the managed pages in the |
| 5685 | * zone. |
| 5686 | */ |
| 5687 | total_pages = zone_managed_pages(zone) / high_fraction; |
| 5688 | } |
| 5689 | |
| 5690 | /* |
| 5691 | * Split the high value across all online CPUs local to the zone. Note |
| 5692 | * that early in boot that CPUs may not be online yet and that during |
| 5693 | * CPU hotplug that the cpumask is not yet updated when a CPU is being |
| 5694 | * onlined. For memory nodes that have no CPUs, split the high value |
| 5695 | * across all online CPUs to mitigate the risk that reclaim is triggered |
| 5696 | * prematurely due to pages stored on pcp lists. |
| 5697 | */ |
| 5698 | nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; |
| 5699 | if (!nr_split_cpus) |
| 5700 | nr_split_cpus = num_online_cpus(); |
| 5701 | high = total_pages / nr_split_cpus; |
| 5702 | |
| 5703 | /* |
| 5704 | * Ensure high is at least batch*4. The multiple is based on the |
| 5705 | * historical relationship between high and batch. |
| 5706 | */ |
| 5707 | high = max(high, batch << 2); |
| 5708 | |
| 5709 | return high; |
| 5710 | #else |
| 5711 | return 0; |
| 5712 | #endif |
| 5713 | } |
| 5714 | |
| 5715 | /* |
| 5716 | * pcp->high and pcp->batch values are related and generally batch is lower |
| 5717 | * than high. They are also related to pcp->count such that count is lower |
| 5718 | * than high, and as soon as it reaches high, the pcplist is flushed. |
| 5719 | * |
| 5720 | * However, guaranteeing these relations at all times would require e.g. write |
| 5721 | * barriers here but also careful usage of read barriers at the read side, and |
| 5722 | * thus be prone to error and bad for performance. Thus the update only prevents |
| 5723 | * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max |
| 5724 | * should ensure they can cope with those fields changing asynchronously, and |
| 5725 | * fully trust only the pcp->count field on the local CPU with interrupts |
| 5726 | * disabled. |
| 5727 | * |
| 5728 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function |
| 5729 | * outside of boot time (or some other assurance that no concurrent updaters |
| 5730 | * exist). |
| 5731 | */ |
| 5732 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, |
| 5733 | unsigned long high_max, unsigned long batch) |
| 5734 | { |
| 5735 | WRITE_ONCE(pcp->batch, batch); |
| 5736 | WRITE_ONCE(pcp->high_min, high_min); |
| 5737 | WRITE_ONCE(pcp->high_max, high_max); |
| 5738 | } |
| 5739 | |
| 5740 | static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) |
| 5741 | { |
| 5742 | int pindex; |
| 5743 | |
| 5744 | memset(pcp, 0, sizeof(*pcp)); |
| 5745 | memset(pzstats, 0, sizeof(*pzstats)); |
| 5746 | |
| 5747 | spin_lock_init(&pcp->lock); |
| 5748 | for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) |
| 5749 | INIT_LIST_HEAD(&pcp->lists[pindex]); |
| 5750 | |
| 5751 | /* |
| 5752 | * Set batch and high values safe for a boot pageset. A true percpu |
| 5753 | * pageset's initialization will update them subsequently. Here we don't |
| 5754 | * need to be as careful as pageset_update() as nobody can access the |
| 5755 | * pageset yet. |
| 5756 | */ |
| 5757 | pcp->high_min = BOOT_PAGESET_HIGH; |
| 5758 | pcp->high_max = BOOT_PAGESET_HIGH; |
| 5759 | pcp->batch = BOOT_PAGESET_BATCH; |
| 5760 | pcp->free_count = 0; |
| 5761 | } |
| 5762 | |
| 5763 | static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, |
| 5764 | unsigned long high_max, unsigned long batch) |
| 5765 | { |
| 5766 | struct per_cpu_pages *pcp; |
| 5767 | int cpu; |
| 5768 | |
| 5769 | for_each_possible_cpu(cpu) { |
| 5770 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| 5771 | pageset_update(pcp, high_min, high_max, batch); |
| 5772 | } |
| 5773 | } |
| 5774 | |
| 5775 | /* |
| 5776 | * Calculate and set new high and batch values for all per-cpu pagesets of a |
| 5777 | * zone based on the zone's size. |
| 5778 | */ |
| 5779 | static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) |
| 5780 | { |
| 5781 | int new_high_min, new_high_max, new_batch; |
| 5782 | |
| 5783 | new_batch = max(1, zone_batchsize(zone)); |
| 5784 | if (percpu_pagelist_high_fraction) { |
| 5785 | new_high_min = zone_highsize(zone, new_batch, cpu_online, |
| 5786 | percpu_pagelist_high_fraction); |
| 5787 | /* |
| 5788 | * PCP high is tuned manually, disable auto-tuning via |
| 5789 | * setting high_min and high_max to the manual value. |
| 5790 | */ |
| 5791 | new_high_max = new_high_min; |
| 5792 | } else { |
| 5793 | new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); |
| 5794 | new_high_max = zone_highsize(zone, new_batch, cpu_online, |
| 5795 | MIN_PERCPU_PAGELIST_HIGH_FRACTION); |
| 5796 | } |
| 5797 | |
| 5798 | if (zone->pageset_high_min == new_high_min && |
| 5799 | zone->pageset_high_max == new_high_max && |
| 5800 | zone->pageset_batch == new_batch) |
| 5801 | return; |
| 5802 | |
| 5803 | zone->pageset_high_min = new_high_min; |
| 5804 | zone->pageset_high_max = new_high_max; |
| 5805 | zone->pageset_batch = new_batch; |
| 5806 | |
| 5807 | __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, |
| 5808 | new_batch); |
| 5809 | } |
| 5810 | |
| 5811 | void __meminit setup_zone_pageset(struct zone *zone) |
| 5812 | { |
| 5813 | int cpu; |
| 5814 | |
| 5815 | /* Size may be 0 on !SMP && !NUMA */ |
| 5816 | if (sizeof(struct per_cpu_zonestat) > 0) |
| 5817 | zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); |
| 5818 | |
| 5819 | zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); |
| 5820 | for_each_possible_cpu(cpu) { |
| 5821 | struct per_cpu_pages *pcp; |
| 5822 | struct per_cpu_zonestat *pzstats; |
| 5823 | |
| 5824 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| 5825 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| 5826 | per_cpu_pages_init(pcp, pzstats); |
| 5827 | } |
| 5828 | |
| 5829 | zone_set_pageset_high_and_batch(zone, 0); |
| 5830 | } |
| 5831 | |
| 5832 | /* |
| 5833 | * The zone indicated has a new number of managed_pages; batch sizes and percpu |
| 5834 | * page high values need to be recalculated. |
| 5835 | */ |
| 5836 | static void zone_pcp_update(struct zone *zone, int cpu_online) |
| 5837 | { |
| 5838 | mutex_lock(&pcp_batch_high_lock); |
| 5839 | zone_set_pageset_high_and_batch(zone, cpu_online); |
| 5840 | mutex_unlock(&pcp_batch_high_lock); |
| 5841 | } |
| 5842 | |
| 5843 | static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) |
| 5844 | { |
| 5845 | struct per_cpu_pages *pcp; |
| 5846 | struct cpu_cacheinfo *cci; |
| 5847 | |
| 5848 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
| 5849 | cci = get_cpu_cacheinfo(cpu); |
| 5850 | /* |
| 5851 | * If data cache slice of CPU is large enough, "pcp->batch" |
| 5852 | * pages can be preserved in PCP before draining PCP for |
| 5853 | * consecutive high-order pages freeing without allocation. |
| 5854 | * This can reduce zone lock contention without hurting |
| 5855 | * cache-hot pages sharing. |
| 5856 | */ |
| 5857 | spin_lock(&pcp->lock); |
| 5858 | if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) |
| 5859 | pcp->flags |= PCPF_FREE_HIGH_BATCH; |
| 5860 | else |
| 5861 | pcp->flags &= ~PCPF_FREE_HIGH_BATCH; |
| 5862 | spin_unlock(&pcp->lock); |
| 5863 | } |
| 5864 | |
| 5865 | void setup_pcp_cacheinfo(unsigned int cpu) |
| 5866 | { |
| 5867 | struct zone *zone; |
| 5868 | |
| 5869 | for_each_populated_zone(zone) |
| 5870 | zone_pcp_update_cacheinfo(zone, cpu); |
| 5871 | } |
| 5872 | |
| 5873 | /* |
| 5874 | * Allocate per cpu pagesets and initialize them. |
| 5875 | * Before this call only boot pagesets were available. |
| 5876 | */ |
| 5877 | void __init setup_per_cpu_pageset(void) |
| 5878 | { |
| 5879 | struct pglist_data *pgdat; |
| 5880 | struct zone *zone; |
| 5881 | int __maybe_unused cpu; |
| 5882 | |
| 5883 | for_each_populated_zone(zone) |
| 5884 | setup_zone_pageset(zone); |
| 5885 | |
| 5886 | #ifdef CONFIG_NUMA |
| 5887 | /* |
| 5888 | * Unpopulated zones continue using the boot pagesets. |
| 5889 | * The numa stats for these pagesets need to be reset. |
| 5890 | * Otherwise, they will end up skewing the stats of |
| 5891 | * the nodes these zones are associated with. |
| 5892 | */ |
| 5893 | for_each_possible_cpu(cpu) { |
| 5894 | struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); |
| 5895 | memset(pzstats->vm_numa_event, 0, |
| 5896 | sizeof(pzstats->vm_numa_event)); |
| 5897 | } |
| 5898 | #endif |
| 5899 | |
| 5900 | for_each_online_pgdat(pgdat) |
| 5901 | pgdat->per_cpu_nodestats = |
| 5902 | alloc_percpu(struct per_cpu_nodestat); |
| 5903 | } |
| 5904 | |
| 5905 | __meminit void zone_pcp_init(struct zone *zone) |
| 5906 | { |
| 5907 | /* |
| 5908 | * per cpu subsystem is not up at this point. The following code |
| 5909 | * relies on the ability of the linker to provide the |
| 5910 | * offset of a (static) per cpu variable into the per cpu area. |
| 5911 | */ |
| 5912 | zone->per_cpu_pageset = &boot_pageset; |
| 5913 | zone->per_cpu_zonestats = &boot_zonestats; |
| 5914 | zone->pageset_high_min = BOOT_PAGESET_HIGH; |
| 5915 | zone->pageset_high_max = BOOT_PAGESET_HIGH; |
| 5916 | zone->pageset_batch = BOOT_PAGESET_BATCH; |
| 5917 | |
| 5918 | if (populated_zone(zone)) |
| 5919 | pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, |
| 5920 | zone->present_pages, zone_batchsize(zone)); |
| 5921 | } |
| 5922 | |
| 5923 | static void setup_per_zone_lowmem_reserve(void); |
| 5924 | |
| 5925 | void adjust_managed_page_count(struct page *page, long count) |
| 5926 | { |
| 5927 | atomic_long_add(count, &page_zone(page)->managed_pages); |
| 5928 | totalram_pages_add(count); |
| 5929 | setup_per_zone_lowmem_reserve(); |
| 5930 | } |
| 5931 | EXPORT_SYMBOL(adjust_managed_page_count); |
| 5932 | |
| 5933 | unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) |
| 5934 | { |
| 5935 | void *pos; |
| 5936 | unsigned long pages = 0; |
| 5937 | |
| 5938 | start = (void *)PAGE_ALIGN((unsigned long)start); |
| 5939 | end = (void *)((unsigned long)end & PAGE_MASK); |
| 5940 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { |
| 5941 | struct page *page = virt_to_page(pos); |
| 5942 | void *direct_map_addr; |
| 5943 | |
| 5944 | /* |
| 5945 | * 'direct_map_addr' might be different from 'pos' |
| 5946 | * because some architectures' virt_to_page() |
| 5947 | * work with aliases. Getting the direct map |
| 5948 | * address ensures that we get a _writeable_ |
| 5949 | * alias for the memset(). |
| 5950 | */ |
| 5951 | direct_map_addr = page_address(page); |
| 5952 | /* |
| 5953 | * Perform a kasan-unchecked memset() since this memory |
| 5954 | * has not been initialized. |
| 5955 | */ |
| 5956 | direct_map_addr = kasan_reset_tag(direct_map_addr); |
| 5957 | if ((unsigned int)poison <= 0xFF) |
| 5958 | memset(direct_map_addr, poison, PAGE_SIZE); |
| 5959 | |
| 5960 | free_reserved_page(page); |
| 5961 | } |
| 5962 | |
| 5963 | if (pages && s) |
| 5964 | pr_info("Freeing %s memory: %ldK\n", s, K(pages)); |
| 5965 | |
| 5966 | return pages; |
| 5967 | } |
| 5968 | |
| 5969 | void free_reserved_page(struct page *page) |
| 5970 | { |
| 5971 | clear_page_tag_ref(page); |
| 5972 | ClearPageReserved(page); |
| 5973 | init_page_count(page); |
| 5974 | __free_page(page); |
| 5975 | adjust_managed_page_count(page, 1); |
| 5976 | } |
| 5977 | EXPORT_SYMBOL(free_reserved_page); |
| 5978 | |
| 5979 | static int page_alloc_cpu_dead(unsigned int cpu) |
| 5980 | { |
| 5981 | struct zone *zone; |
| 5982 | |
| 5983 | lru_add_drain_cpu(cpu); |
| 5984 | mlock_drain_remote(cpu); |
| 5985 | drain_pages(cpu); |
| 5986 | |
| 5987 | /* |
| 5988 | * Spill the event counters of the dead processor |
| 5989 | * into the current processors event counters. |
| 5990 | * This artificially elevates the count of the current |
| 5991 | * processor. |
| 5992 | */ |
| 5993 | vm_events_fold_cpu(cpu); |
| 5994 | |
| 5995 | /* |
| 5996 | * Zero the differential counters of the dead processor |
| 5997 | * so that the vm statistics are consistent. |
| 5998 | * |
| 5999 | * This is only okay since the processor is dead and cannot |
| 6000 | * race with what we are doing. |
| 6001 | */ |
| 6002 | cpu_vm_stats_fold(cpu); |
| 6003 | |
| 6004 | for_each_populated_zone(zone) |
| 6005 | zone_pcp_update(zone, 0); |
| 6006 | |
| 6007 | return 0; |
| 6008 | } |
| 6009 | |
| 6010 | static int page_alloc_cpu_online(unsigned int cpu) |
| 6011 | { |
| 6012 | struct zone *zone; |
| 6013 | |
| 6014 | for_each_populated_zone(zone) |
| 6015 | zone_pcp_update(zone, 1); |
| 6016 | return 0; |
| 6017 | } |
| 6018 | |
| 6019 | void __init page_alloc_init_cpuhp(void) |
| 6020 | { |
| 6021 | int ret; |
| 6022 | |
| 6023 | ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, |
| 6024 | "mm/page_alloc:pcp", |
| 6025 | page_alloc_cpu_online, |
| 6026 | page_alloc_cpu_dead); |
| 6027 | WARN_ON(ret < 0); |
| 6028 | } |
| 6029 | |
| 6030 | /* |
| 6031 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
| 6032 | * or min_free_kbytes changes. |
| 6033 | */ |
| 6034 | static void calculate_totalreserve_pages(void) |
| 6035 | { |
| 6036 | struct pglist_data *pgdat; |
| 6037 | unsigned long reserve_pages = 0; |
| 6038 | enum zone_type i, j; |
| 6039 | |
| 6040 | for_each_online_pgdat(pgdat) { |
| 6041 | |
| 6042 | pgdat->totalreserve_pages = 0; |
| 6043 | |
| 6044 | for (i = 0; i < MAX_NR_ZONES; i++) { |
| 6045 | struct zone *zone = pgdat->node_zones + i; |
| 6046 | long max = 0; |
| 6047 | unsigned long managed_pages = zone_managed_pages(zone); |
| 6048 | |
| 6049 | /* Find valid and maximum lowmem_reserve in the zone */ |
| 6050 | for (j = i; j < MAX_NR_ZONES; j++) { |
| 6051 | if (zone->lowmem_reserve[j] > max) |
| 6052 | max = zone->lowmem_reserve[j]; |
| 6053 | } |
| 6054 | |
| 6055 | /* we treat the high watermark as reserved pages. */ |
| 6056 | max += high_wmark_pages(zone); |
| 6057 | |
| 6058 | if (max > managed_pages) |
| 6059 | max = managed_pages; |
| 6060 | |
| 6061 | pgdat->totalreserve_pages += max; |
| 6062 | |
| 6063 | reserve_pages += max; |
| 6064 | } |
| 6065 | } |
| 6066 | totalreserve_pages = reserve_pages; |
| 6067 | trace_mm_calculate_totalreserve_pages(totalreserve_pages); |
| 6068 | } |
| 6069 | |
| 6070 | /* |
| 6071 | * setup_per_zone_lowmem_reserve - called whenever |
| 6072 | * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
| 6073 | * has a correct pages reserved value, so an adequate number of |
| 6074 | * pages are left in the zone after a successful __alloc_pages(). |
| 6075 | */ |
| 6076 | static void setup_per_zone_lowmem_reserve(void) |
| 6077 | { |
| 6078 | struct pglist_data *pgdat; |
| 6079 | enum zone_type i, j; |
| 6080 | |
| 6081 | for_each_online_pgdat(pgdat) { |
| 6082 | for (i = 0; i < MAX_NR_ZONES - 1; i++) { |
| 6083 | struct zone *zone = &pgdat->node_zones[i]; |
| 6084 | int ratio = sysctl_lowmem_reserve_ratio[i]; |
| 6085 | bool clear = !ratio || !zone_managed_pages(zone); |
| 6086 | unsigned long managed_pages = 0; |
| 6087 | |
| 6088 | for (j = i + 1; j < MAX_NR_ZONES; j++) { |
| 6089 | struct zone *upper_zone = &pgdat->node_zones[j]; |
| 6090 | |
| 6091 | managed_pages += zone_managed_pages(upper_zone); |
| 6092 | |
| 6093 | if (clear) |
| 6094 | zone->lowmem_reserve[j] = 0; |
| 6095 | else |
| 6096 | zone->lowmem_reserve[j] = managed_pages / ratio; |
| 6097 | trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, |
| 6098 | zone->lowmem_reserve[j]); |
| 6099 | } |
| 6100 | } |
| 6101 | } |
| 6102 | |
| 6103 | /* update totalreserve_pages */ |
| 6104 | calculate_totalreserve_pages(); |
| 6105 | } |
| 6106 | |
| 6107 | static void __setup_per_zone_wmarks(void) |
| 6108 | { |
| 6109 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); |
| 6110 | unsigned long lowmem_pages = 0; |
| 6111 | struct zone *zone; |
| 6112 | unsigned long flags; |
| 6113 | |
| 6114 | /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ |
| 6115 | for_each_zone(zone) { |
| 6116 | if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) |
| 6117 | lowmem_pages += zone_managed_pages(zone); |
| 6118 | } |
| 6119 | |
| 6120 | for_each_zone(zone) { |
| 6121 | u64 tmp; |
| 6122 | |
| 6123 | spin_lock_irqsave(&zone->lock, flags); |
| 6124 | tmp = (u64)pages_min * zone_managed_pages(zone); |
| 6125 | tmp = div64_ul(tmp, lowmem_pages); |
| 6126 | if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { |
| 6127 | /* |
| 6128 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
| 6129 | * need highmem and movable zones pages, so cap pages_min |
| 6130 | * to a small value here. |
| 6131 | * |
| 6132 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
| 6133 | * deltas control async page reclaim, and so should |
| 6134 | * not be capped for highmem and movable zones. |
| 6135 | */ |
| 6136 | unsigned long min_pages; |
| 6137 | |
| 6138 | min_pages = zone_managed_pages(zone) / 1024; |
| 6139 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
| 6140 | zone->_watermark[WMARK_MIN] = min_pages; |
| 6141 | } else { |
| 6142 | /* |
| 6143 | * If it's a lowmem zone, reserve a number of pages |
| 6144 | * proportionate to the zone's size. |
| 6145 | */ |
| 6146 | zone->_watermark[WMARK_MIN] = tmp; |
| 6147 | } |
| 6148 | |
| 6149 | /* |
| 6150 | * Set the kswapd watermarks distance according to the |
| 6151 | * scale factor in proportion to available memory, but |
| 6152 | * ensure a minimum size on small systems. |
| 6153 | */ |
| 6154 | tmp = max_t(u64, tmp >> 2, |
| 6155 | mult_frac(zone_managed_pages(zone), |
| 6156 | watermark_scale_factor, 10000)); |
| 6157 | |
| 6158 | zone->watermark_boost = 0; |
| 6159 | zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; |
| 6160 | zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; |
| 6161 | zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; |
| 6162 | trace_mm_setup_per_zone_wmarks(zone); |
| 6163 | |
| 6164 | spin_unlock_irqrestore(&zone->lock, flags); |
| 6165 | } |
| 6166 | |
| 6167 | /* update totalreserve_pages */ |
| 6168 | calculate_totalreserve_pages(); |
| 6169 | } |
| 6170 | |
| 6171 | /** |
| 6172 | * setup_per_zone_wmarks - called when min_free_kbytes changes |
| 6173 | * or when memory is hot-{added|removed} |
| 6174 | * |
| 6175 | * Ensures that the watermark[min,low,high] values for each zone are set |
| 6176 | * correctly with respect to min_free_kbytes. |
| 6177 | */ |
| 6178 | void setup_per_zone_wmarks(void) |
| 6179 | { |
| 6180 | struct zone *zone; |
| 6181 | static DEFINE_SPINLOCK(lock); |
| 6182 | |
| 6183 | spin_lock(&lock); |
| 6184 | __setup_per_zone_wmarks(); |
| 6185 | spin_unlock(&lock); |
| 6186 | |
| 6187 | /* |
| 6188 | * The watermark size have changed so update the pcpu batch |
| 6189 | * and high limits or the limits may be inappropriate. |
| 6190 | */ |
| 6191 | for_each_zone(zone) |
| 6192 | zone_pcp_update(zone, 0); |
| 6193 | } |
| 6194 | |
| 6195 | /* |
| 6196 | * Initialise min_free_kbytes. |
| 6197 | * |
| 6198 | * For small machines we want it small (128k min). For large machines |
| 6199 | * we want it large (256MB max). But it is not linear, because network |
| 6200 | * bandwidth does not increase linearly with machine size. We use |
| 6201 | * |
| 6202 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
| 6203 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
| 6204 | * |
| 6205 | * which yields |
| 6206 | * |
| 6207 | * 16MB: 512k |
| 6208 | * 32MB: 724k |
| 6209 | * 64MB: 1024k |
| 6210 | * 128MB: 1448k |
| 6211 | * 256MB: 2048k |
| 6212 | * 512MB: 2896k |
| 6213 | * 1024MB: 4096k |
| 6214 | * 2048MB: 5792k |
| 6215 | * 4096MB: 8192k |
| 6216 | * 8192MB: 11584k |
| 6217 | * 16384MB: 16384k |
| 6218 | */ |
| 6219 | void calculate_min_free_kbytes(void) |
| 6220 | { |
| 6221 | unsigned long lowmem_kbytes; |
| 6222 | int new_min_free_kbytes; |
| 6223 | |
| 6224 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); |
| 6225 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
| 6226 | |
| 6227 | if (new_min_free_kbytes > user_min_free_kbytes) |
| 6228 | min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); |
| 6229 | else |
| 6230 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", |
| 6231 | new_min_free_kbytes, user_min_free_kbytes); |
| 6232 | |
| 6233 | } |
| 6234 | |
| 6235 | int __meminit init_per_zone_wmark_min(void) |
| 6236 | { |
| 6237 | calculate_min_free_kbytes(); |
| 6238 | setup_per_zone_wmarks(); |
| 6239 | refresh_zone_stat_thresholds(); |
| 6240 | setup_per_zone_lowmem_reserve(); |
| 6241 | |
| 6242 | #ifdef CONFIG_NUMA |
| 6243 | setup_min_unmapped_ratio(); |
| 6244 | setup_min_slab_ratio(); |
| 6245 | #endif |
| 6246 | |
| 6247 | khugepaged_min_free_kbytes_update(); |
| 6248 | |
| 6249 | return 0; |
| 6250 | } |
| 6251 | postcore_initcall(init_per_zone_wmark_min) |
| 6252 | |
| 6253 | /* |
| 6254 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
| 6255 | * that we can call two helper functions whenever min_free_kbytes |
| 6256 | * changes. |
| 6257 | */ |
| 6258 | static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, |
| 6259 | void *buffer, size_t *length, loff_t *ppos) |
| 6260 | { |
| 6261 | int rc; |
| 6262 | |
| 6263 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| 6264 | if (rc) |
| 6265 | return rc; |
| 6266 | |
| 6267 | if (write) { |
| 6268 | user_min_free_kbytes = min_free_kbytes; |
| 6269 | setup_per_zone_wmarks(); |
| 6270 | } |
| 6271 | return 0; |
| 6272 | } |
| 6273 | |
| 6274 | static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, |
| 6275 | void *buffer, size_t *length, loff_t *ppos) |
| 6276 | { |
| 6277 | int rc; |
| 6278 | |
| 6279 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| 6280 | if (rc) |
| 6281 | return rc; |
| 6282 | |
| 6283 | if (write) |
| 6284 | setup_per_zone_wmarks(); |
| 6285 | |
| 6286 | return 0; |
| 6287 | } |
| 6288 | |
| 6289 | #ifdef CONFIG_NUMA |
| 6290 | static void setup_min_unmapped_ratio(void) |
| 6291 | { |
| 6292 | pg_data_t *pgdat; |
| 6293 | struct zone *zone; |
| 6294 | |
| 6295 | for_each_online_pgdat(pgdat) |
| 6296 | pgdat->min_unmapped_pages = 0; |
| 6297 | |
| 6298 | for_each_zone(zone) |
| 6299 | zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * |
| 6300 | sysctl_min_unmapped_ratio) / 100; |
| 6301 | } |
| 6302 | |
| 6303 | |
| 6304 | static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, |
| 6305 | void *buffer, size_t *length, loff_t *ppos) |
| 6306 | { |
| 6307 | int rc; |
| 6308 | |
| 6309 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| 6310 | if (rc) |
| 6311 | return rc; |
| 6312 | |
| 6313 | setup_min_unmapped_ratio(); |
| 6314 | |
| 6315 | return 0; |
| 6316 | } |
| 6317 | |
| 6318 | static void setup_min_slab_ratio(void) |
| 6319 | { |
| 6320 | pg_data_t *pgdat; |
| 6321 | struct zone *zone; |
| 6322 | |
| 6323 | for_each_online_pgdat(pgdat) |
| 6324 | pgdat->min_slab_pages = 0; |
| 6325 | |
| 6326 | for_each_zone(zone) |
| 6327 | zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * |
| 6328 | sysctl_min_slab_ratio) / 100; |
| 6329 | } |
| 6330 | |
| 6331 | static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, |
| 6332 | void *buffer, size_t *length, loff_t *ppos) |
| 6333 | { |
| 6334 | int rc; |
| 6335 | |
| 6336 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| 6337 | if (rc) |
| 6338 | return rc; |
| 6339 | |
| 6340 | setup_min_slab_ratio(); |
| 6341 | |
| 6342 | return 0; |
| 6343 | } |
| 6344 | #endif |
| 6345 | |
| 6346 | /* |
| 6347 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around |
| 6348 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() |
| 6349 | * whenever sysctl_lowmem_reserve_ratio changes. |
| 6350 | * |
| 6351 | * The reserve ratio obviously has absolutely no relation with the |
| 6352 | * minimum watermarks. The lowmem reserve ratio can only make sense |
| 6353 | * if in function of the boot time zone sizes. |
| 6354 | */ |
| 6355 | static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, |
| 6356 | int write, void *buffer, size_t *length, loff_t *ppos) |
| 6357 | { |
| 6358 | int i; |
| 6359 | |
| 6360 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
| 6361 | |
| 6362 | for (i = 0; i < MAX_NR_ZONES; i++) { |
| 6363 | if (sysctl_lowmem_reserve_ratio[i] < 1) |
| 6364 | sysctl_lowmem_reserve_ratio[i] = 0; |
| 6365 | } |
| 6366 | |
| 6367 | setup_per_zone_lowmem_reserve(); |
| 6368 | return 0; |
| 6369 | } |
| 6370 | |
| 6371 | /* |
| 6372 | * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each |
| 6373 | * cpu. It is the fraction of total pages in each zone that a hot per cpu |
| 6374 | * pagelist can have before it gets flushed back to buddy allocator. |
| 6375 | */ |
| 6376 | static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, |
| 6377 | int write, void *buffer, size_t *length, loff_t *ppos) |
| 6378 | { |
| 6379 | struct zone *zone; |
| 6380 | int old_percpu_pagelist_high_fraction; |
| 6381 | int ret; |
| 6382 | |
| 6383 | mutex_lock(&pcp_batch_high_lock); |
| 6384 | old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; |
| 6385 | |
| 6386 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| 6387 | if (!write || ret < 0) |
| 6388 | goto out; |
| 6389 | |
| 6390 | /* Sanity checking to avoid pcp imbalance */ |
| 6391 | if (percpu_pagelist_high_fraction && |
| 6392 | percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { |
| 6393 | percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; |
| 6394 | ret = -EINVAL; |
| 6395 | goto out; |
| 6396 | } |
| 6397 | |
| 6398 | /* No change? */ |
| 6399 | if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) |
| 6400 | goto out; |
| 6401 | |
| 6402 | for_each_populated_zone(zone) |
| 6403 | zone_set_pageset_high_and_batch(zone, 0); |
| 6404 | out: |
| 6405 | mutex_unlock(&pcp_batch_high_lock); |
| 6406 | return ret; |
| 6407 | } |
| 6408 | |
| 6409 | static const struct ctl_table page_alloc_sysctl_table[] = { |
| 6410 | { |
| 6411 | .procname = "min_free_kbytes", |
| 6412 | .data = &min_free_kbytes, |
| 6413 | .maxlen = sizeof(min_free_kbytes), |
| 6414 | .mode = 0644, |
| 6415 | .proc_handler = min_free_kbytes_sysctl_handler, |
| 6416 | .extra1 = SYSCTL_ZERO, |
| 6417 | }, |
| 6418 | { |
| 6419 | .procname = "watermark_boost_factor", |
| 6420 | .data = &watermark_boost_factor, |
| 6421 | .maxlen = sizeof(watermark_boost_factor), |
| 6422 | .mode = 0644, |
| 6423 | .proc_handler = proc_dointvec_minmax, |
| 6424 | .extra1 = SYSCTL_ZERO, |
| 6425 | }, |
| 6426 | { |
| 6427 | .procname = "watermark_scale_factor", |
| 6428 | .data = &watermark_scale_factor, |
| 6429 | .maxlen = sizeof(watermark_scale_factor), |
| 6430 | .mode = 0644, |
| 6431 | .proc_handler = watermark_scale_factor_sysctl_handler, |
| 6432 | .extra1 = SYSCTL_ONE, |
| 6433 | .extra2 = SYSCTL_THREE_THOUSAND, |
| 6434 | }, |
| 6435 | { |
| 6436 | .procname = "defrag_mode", |
| 6437 | .data = &defrag_mode, |
| 6438 | .maxlen = sizeof(defrag_mode), |
| 6439 | .mode = 0644, |
| 6440 | .proc_handler = proc_dointvec_minmax, |
| 6441 | .extra1 = SYSCTL_ZERO, |
| 6442 | .extra2 = SYSCTL_ONE, |
| 6443 | }, |
| 6444 | { |
| 6445 | .procname = "percpu_pagelist_high_fraction", |
| 6446 | .data = &percpu_pagelist_high_fraction, |
| 6447 | .maxlen = sizeof(percpu_pagelist_high_fraction), |
| 6448 | .mode = 0644, |
| 6449 | .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, |
| 6450 | .extra1 = SYSCTL_ZERO, |
| 6451 | }, |
| 6452 | { |
| 6453 | .procname = "lowmem_reserve_ratio", |
| 6454 | .data = &sysctl_lowmem_reserve_ratio, |
| 6455 | .maxlen = sizeof(sysctl_lowmem_reserve_ratio), |
| 6456 | .mode = 0644, |
| 6457 | .proc_handler = lowmem_reserve_ratio_sysctl_handler, |
| 6458 | }, |
| 6459 | #ifdef CONFIG_NUMA |
| 6460 | { |
| 6461 | .procname = "numa_zonelist_order", |
| 6462 | .data = &numa_zonelist_order, |
| 6463 | .maxlen = NUMA_ZONELIST_ORDER_LEN, |
| 6464 | .mode = 0644, |
| 6465 | .proc_handler = numa_zonelist_order_handler, |
| 6466 | }, |
| 6467 | { |
| 6468 | .procname = "min_unmapped_ratio", |
| 6469 | .data = &sysctl_min_unmapped_ratio, |
| 6470 | .maxlen = sizeof(sysctl_min_unmapped_ratio), |
| 6471 | .mode = 0644, |
| 6472 | .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, |
| 6473 | .extra1 = SYSCTL_ZERO, |
| 6474 | .extra2 = SYSCTL_ONE_HUNDRED, |
| 6475 | }, |
| 6476 | { |
| 6477 | .procname = "min_slab_ratio", |
| 6478 | .data = &sysctl_min_slab_ratio, |
| 6479 | .maxlen = sizeof(sysctl_min_slab_ratio), |
| 6480 | .mode = 0644, |
| 6481 | .proc_handler = sysctl_min_slab_ratio_sysctl_handler, |
| 6482 | .extra1 = SYSCTL_ZERO, |
| 6483 | .extra2 = SYSCTL_ONE_HUNDRED, |
| 6484 | }, |
| 6485 | #endif |
| 6486 | }; |
| 6487 | |
| 6488 | void __init page_alloc_sysctl_init(void) |
| 6489 | { |
| 6490 | register_sysctl_init("vm", page_alloc_sysctl_table); |
| 6491 | } |
| 6492 | |
| 6493 | #ifdef CONFIG_CONTIG_ALLOC |
| 6494 | /* Usage: See admin-guide/dynamic-debug-howto.rst */ |
| 6495 | static void alloc_contig_dump_pages(struct list_head *page_list) |
| 6496 | { |
| 6497 | DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); |
| 6498 | |
| 6499 | if (DYNAMIC_DEBUG_BRANCH(descriptor)) { |
| 6500 | struct page *page; |
| 6501 | |
| 6502 | dump_stack(); |
| 6503 | list_for_each_entry(page, page_list, lru) |
| 6504 | dump_page(page, "migration failure"); |
| 6505 | } |
| 6506 | } |
| 6507 | |
| 6508 | /* |
| 6509 | * [start, end) must belong to a single zone. |
| 6510 | * @migratetype: using migratetype to filter the type of migration in |
| 6511 | * trace_mm_alloc_contig_migrate_range_info. |
| 6512 | */ |
| 6513 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
| 6514 | unsigned long start, unsigned long end, int migratetype) |
| 6515 | { |
| 6516 | /* This function is based on compact_zone() from compaction.c. */ |
| 6517 | unsigned int nr_reclaimed; |
| 6518 | unsigned long pfn = start; |
| 6519 | unsigned int tries = 0; |
| 6520 | int ret = 0; |
| 6521 | struct migration_target_control mtc = { |
| 6522 | .nid = zone_to_nid(cc->zone), |
| 6523 | .gfp_mask = cc->gfp_mask, |
| 6524 | .reason = MR_CONTIG_RANGE, |
| 6525 | }; |
| 6526 | struct page *page; |
| 6527 | unsigned long total_mapped = 0; |
| 6528 | unsigned long total_migrated = 0; |
| 6529 | unsigned long total_reclaimed = 0; |
| 6530 | |
| 6531 | lru_cache_disable(); |
| 6532 | |
| 6533 | while (pfn < end || !list_empty(&cc->migratepages)) { |
| 6534 | if (fatal_signal_pending(current)) { |
| 6535 | ret = -EINTR; |
| 6536 | break; |
| 6537 | } |
| 6538 | |
| 6539 | if (list_empty(&cc->migratepages)) { |
| 6540 | cc->nr_migratepages = 0; |
| 6541 | ret = isolate_migratepages_range(cc, pfn, end); |
| 6542 | if (ret && ret != -EAGAIN) |
| 6543 | break; |
| 6544 | pfn = cc->migrate_pfn; |
| 6545 | tries = 0; |
| 6546 | } else if (++tries == 5) { |
| 6547 | ret = -EBUSY; |
| 6548 | break; |
| 6549 | } |
| 6550 | |
| 6551 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
| 6552 | &cc->migratepages); |
| 6553 | cc->nr_migratepages -= nr_reclaimed; |
| 6554 | |
| 6555 | if (trace_mm_alloc_contig_migrate_range_info_enabled()) { |
| 6556 | total_reclaimed += nr_reclaimed; |
| 6557 | list_for_each_entry(page, &cc->migratepages, lru) { |
| 6558 | struct folio *folio = page_folio(page); |
| 6559 | |
| 6560 | total_mapped += folio_mapped(folio) * |
| 6561 | folio_nr_pages(folio); |
| 6562 | } |
| 6563 | } |
| 6564 | |
| 6565 | ret = migrate_pages(&cc->migratepages, alloc_migration_target, |
| 6566 | NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); |
| 6567 | |
| 6568 | if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) |
| 6569 | total_migrated += cc->nr_migratepages; |
| 6570 | |
| 6571 | /* |
| 6572 | * On -ENOMEM, migrate_pages() bails out right away. It is pointless |
| 6573 | * to retry again over this error, so do the same here. |
| 6574 | */ |
| 6575 | if (ret == -ENOMEM) |
| 6576 | break; |
| 6577 | } |
| 6578 | |
| 6579 | lru_cache_enable(); |
| 6580 | if (ret < 0) { |
| 6581 | if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) |
| 6582 | alloc_contig_dump_pages(&cc->migratepages); |
| 6583 | putback_movable_pages(&cc->migratepages); |
| 6584 | } |
| 6585 | |
| 6586 | trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, |
| 6587 | total_migrated, |
| 6588 | total_reclaimed, |
| 6589 | total_mapped); |
| 6590 | return (ret < 0) ? ret : 0; |
| 6591 | } |
| 6592 | |
| 6593 | static void split_free_pages(struct list_head *list, gfp_t gfp_mask) |
| 6594 | { |
| 6595 | int order; |
| 6596 | |
| 6597 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| 6598 | struct page *page, *next; |
| 6599 | int nr_pages = 1 << order; |
| 6600 | |
| 6601 | list_for_each_entry_safe(page, next, &list[order], lru) { |
| 6602 | int i; |
| 6603 | |
| 6604 | post_alloc_hook(page, order, gfp_mask); |
| 6605 | set_page_refcounted(page); |
| 6606 | if (!order) |
| 6607 | continue; |
| 6608 | |
| 6609 | split_page(page, order); |
| 6610 | |
| 6611 | /* Add all subpages to the order-0 head, in sequence. */ |
| 6612 | list_del(&page->lru); |
| 6613 | for (i = 0; i < nr_pages; i++) |
| 6614 | list_add_tail(&page[i].lru, &list[0]); |
| 6615 | } |
| 6616 | } |
| 6617 | } |
| 6618 | |
| 6619 | static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) |
| 6620 | { |
| 6621 | const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; |
| 6622 | const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | |
| 6623 | __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; |
| 6624 | const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; |
| 6625 | |
| 6626 | /* |
| 6627 | * We are given the range to allocate; node, mobility and placement |
| 6628 | * hints are irrelevant at this point. We'll simply ignore them. |
| 6629 | */ |
| 6630 | gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | |
| 6631 | __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); |
| 6632 | |
| 6633 | /* |
| 6634 | * We only support most reclaim flags (but not NOFAIL/NORETRY), and |
| 6635 | * selected action flags. |
| 6636 | */ |
| 6637 | if (gfp_mask & ~(reclaim_mask | action_mask)) |
| 6638 | return -EINVAL; |
| 6639 | |
| 6640 | /* |
| 6641 | * Flags to control page compaction/migration/reclaim, to free up our |
| 6642 | * page range. Migratable pages are movable, __GFP_MOVABLE is implied |
| 6643 | * for them. |
| 6644 | * |
| 6645 | * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that |
| 6646 | * to not degrade callers. |
| 6647 | */ |
| 6648 | *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | |
| 6649 | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; |
| 6650 | return 0; |
| 6651 | } |
| 6652 | |
| 6653 | /** |
| 6654 | * alloc_contig_range() -- tries to allocate given range of pages |
| 6655 | * @start: start PFN to allocate |
| 6656 | * @end: one-past-the-last PFN to allocate |
| 6657 | * @migratetype: migratetype of the underlying pageblocks (either |
| 6658 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks |
| 6659 | * in range must have the same migratetype and it must |
| 6660 | * be either of the two. |
| 6661 | * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some |
| 6662 | * action and reclaim modifiers are supported. Reclaim modifiers |
| 6663 | * control allocation behavior during compaction/migration/reclaim. |
| 6664 | * |
| 6665 | * The PFN range does not have to be pageblock aligned. The PFN range must |
| 6666 | * belong to a single zone. |
| 6667 | * |
| 6668 | * The first thing this routine does is attempt to MIGRATE_ISOLATE all |
| 6669 | * pageblocks in the range. Once isolated, the pageblocks should not |
| 6670 | * be modified by others. |
| 6671 | * |
| 6672 | * Return: zero on success or negative error code. On success all |
| 6673 | * pages which PFN is in [start, end) are allocated for the caller and |
| 6674 | * need to be freed with free_contig_range(). |
| 6675 | */ |
| 6676 | int alloc_contig_range_noprof(unsigned long start, unsigned long end, |
| 6677 | unsigned migratetype, gfp_t gfp_mask) |
| 6678 | { |
| 6679 | unsigned long outer_start, outer_end; |
| 6680 | int ret = 0; |
| 6681 | |
| 6682 | struct compact_control cc = { |
| 6683 | .nr_migratepages = 0, |
| 6684 | .order = -1, |
| 6685 | .zone = page_zone(pfn_to_page(start)), |
| 6686 | .mode = MIGRATE_SYNC, |
| 6687 | .ignore_skip_hint = true, |
| 6688 | .no_set_skip_hint = true, |
| 6689 | .alloc_contig = true, |
| 6690 | }; |
| 6691 | INIT_LIST_HEAD(&cc.migratepages); |
| 6692 | |
| 6693 | gfp_mask = current_gfp_context(gfp_mask); |
| 6694 | if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) |
| 6695 | return -EINVAL; |
| 6696 | |
| 6697 | /* |
| 6698 | * What we do here is we mark all pageblocks in range as |
| 6699 | * MIGRATE_ISOLATE. Because pageblock and max order pages may |
| 6700 | * have different sizes, and due to the way page allocator |
| 6701 | * work, start_isolate_page_range() has special handlings for this. |
| 6702 | * |
| 6703 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we |
| 6704 | * migrate the pages from an unaligned range (ie. pages that |
| 6705 | * we are interested in). This will put all the pages in |
| 6706 | * range back to page allocator as MIGRATE_ISOLATE. |
| 6707 | * |
| 6708 | * When this is done, we take the pages in range from page |
| 6709 | * allocator removing them from the buddy system. This way |
| 6710 | * page allocator will never consider using them. |
| 6711 | * |
| 6712 | * This lets us mark the pageblocks back as |
| 6713 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the |
| 6714 | * aligned range but not in the unaligned, original range are |
| 6715 | * put back to page allocator so that buddy can use them. |
| 6716 | */ |
| 6717 | |
| 6718 | ret = start_isolate_page_range(start, end, migratetype, 0); |
| 6719 | if (ret) |
| 6720 | goto done; |
| 6721 | |
| 6722 | drain_all_pages(cc.zone); |
| 6723 | |
| 6724 | /* |
| 6725 | * In case of -EBUSY, we'd like to know which page causes problem. |
| 6726 | * So, just fall through. test_pages_isolated() has a tracepoint |
| 6727 | * which will report the busy page. |
| 6728 | * |
| 6729 | * It is possible that busy pages could become available before |
| 6730 | * the call to test_pages_isolated, and the range will actually be |
| 6731 | * allocated. So, if we fall through be sure to clear ret so that |
| 6732 | * -EBUSY is not accidentally used or returned to caller. |
| 6733 | */ |
| 6734 | ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); |
| 6735 | if (ret && ret != -EBUSY) |
| 6736 | goto done; |
| 6737 | |
| 6738 | /* |
| 6739 | * When in-use hugetlb pages are migrated, they may simply be released |
| 6740 | * back into the free hugepage pool instead of being returned to the |
| 6741 | * buddy system. After the migration of in-use huge pages is completed, |
| 6742 | * we will invoke replace_free_hugepage_folios() to ensure that these |
| 6743 | * hugepages are properly released to the buddy system. |
| 6744 | */ |
| 6745 | ret = replace_free_hugepage_folios(start, end); |
| 6746 | if (ret) |
| 6747 | goto done; |
| 6748 | |
| 6749 | /* |
| 6750 | * Pages from [start, end) are within a pageblock_nr_pages |
| 6751 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's |
| 6752 | * more, all pages in [start, end) are free in page allocator. |
| 6753 | * What we are going to do is to allocate all pages from |
| 6754 | * [start, end) (that is remove them from page allocator). |
| 6755 | * |
| 6756 | * The only problem is that pages at the beginning and at the |
| 6757 | * end of interesting range may be not aligned with pages that |
| 6758 | * page allocator holds, ie. they can be part of higher order |
| 6759 | * pages. Because of this, we reserve the bigger range and |
| 6760 | * once this is done free the pages we are not interested in. |
| 6761 | * |
| 6762 | * We don't have to hold zone->lock here because the pages are |
| 6763 | * isolated thus they won't get removed from buddy. |
| 6764 | */ |
| 6765 | outer_start = find_large_buddy(start); |
| 6766 | |
| 6767 | /* Make sure the range is really isolated. */ |
| 6768 | if (test_pages_isolated(outer_start, end, 0)) { |
| 6769 | ret = -EBUSY; |
| 6770 | goto done; |
| 6771 | } |
| 6772 | |
| 6773 | /* Grab isolated pages from freelists. */ |
| 6774 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
| 6775 | if (!outer_end) { |
| 6776 | ret = -EBUSY; |
| 6777 | goto done; |
| 6778 | } |
| 6779 | |
| 6780 | if (!(gfp_mask & __GFP_COMP)) { |
| 6781 | split_free_pages(cc.freepages, gfp_mask); |
| 6782 | |
| 6783 | /* Free head and tail (if any) */ |
| 6784 | if (start != outer_start) |
| 6785 | free_contig_range(outer_start, start - outer_start); |
| 6786 | if (end != outer_end) |
| 6787 | free_contig_range(end, outer_end - end); |
| 6788 | } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { |
| 6789 | struct page *head = pfn_to_page(start); |
| 6790 | int order = ilog2(end - start); |
| 6791 | |
| 6792 | check_new_pages(head, order); |
| 6793 | prep_new_page(head, order, gfp_mask, 0); |
| 6794 | set_page_refcounted(head); |
| 6795 | } else { |
| 6796 | ret = -EINVAL; |
| 6797 | WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", |
| 6798 | start, end, outer_start, outer_end); |
| 6799 | } |
| 6800 | done: |
| 6801 | undo_isolate_page_range(start, end, migratetype); |
| 6802 | return ret; |
| 6803 | } |
| 6804 | EXPORT_SYMBOL(alloc_contig_range_noprof); |
| 6805 | |
| 6806 | static int __alloc_contig_pages(unsigned long start_pfn, |
| 6807 | unsigned long nr_pages, gfp_t gfp_mask) |
| 6808 | { |
| 6809 | unsigned long end_pfn = start_pfn + nr_pages; |
| 6810 | |
| 6811 | return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, |
| 6812 | gfp_mask); |
| 6813 | } |
| 6814 | |
| 6815 | static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, |
| 6816 | unsigned long nr_pages) |
| 6817 | { |
| 6818 | unsigned long i, end_pfn = start_pfn + nr_pages; |
| 6819 | struct page *page; |
| 6820 | |
| 6821 | for (i = start_pfn; i < end_pfn; i++) { |
| 6822 | page = pfn_to_online_page(i); |
| 6823 | if (!page) |
| 6824 | return false; |
| 6825 | |
| 6826 | if (page_zone(page) != z) |
| 6827 | return false; |
| 6828 | |
| 6829 | if (PageReserved(page)) |
| 6830 | return false; |
| 6831 | |
| 6832 | if (PageHuge(page)) |
| 6833 | return false; |
| 6834 | } |
| 6835 | return true; |
| 6836 | } |
| 6837 | |
| 6838 | static bool zone_spans_last_pfn(const struct zone *zone, |
| 6839 | unsigned long start_pfn, unsigned long nr_pages) |
| 6840 | { |
| 6841 | unsigned long last_pfn = start_pfn + nr_pages - 1; |
| 6842 | |
| 6843 | return zone_spans_pfn(zone, last_pfn); |
| 6844 | } |
| 6845 | |
| 6846 | /** |
| 6847 | * alloc_contig_pages() -- tries to find and allocate contiguous range of pages |
| 6848 | * @nr_pages: Number of contiguous pages to allocate |
| 6849 | * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some |
| 6850 | * action and reclaim modifiers are supported. Reclaim modifiers |
| 6851 | * control allocation behavior during compaction/migration/reclaim. |
| 6852 | * @nid: Target node |
| 6853 | * @nodemask: Mask for other possible nodes |
| 6854 | * |
| 6855 | * This routine is a wrapper around alloc_contig_range(). It scans over zones |
| 6856 | * on an applicable zonelist to find a contiguous pfn range which can then be |
| 6857 | * tried for allocation with alloc_contig_range(). This routine is intended |
| 6858 | * for allocation requests which can not be fulfilled with the buddy allocator. |
| 6859 | * |
| 6860 | * The allocated memory is always aligned to a page boundary. If nr_pages is a |
| 6861 | * power of two, then allocated range is also guaranteed to be aligned to same |
| 6862 | * nr_pages (e.g. 1GB request would be aligned to 1GB). |
| 6863 | * |
| 6864 | * Allocated pages can be freed with free_contig_range() or by manually calling |
| 6865 | * __free_page() on each allocated page. |
| 6866 | * |
| 6867 | * Return: pointer to contiguous pages on success, or NULL if not successful. |
| 6868 | */ |
| 6869 | struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, |
| 6870 | int nid, nodemask_t *nodemask) |
| 6871 | { |
| 6872 | unsigned long ret, pfn, flags; |
| 6873 | struct zonelist *zonelist; |
| 6874 | struct zone *zone; |
| 6875 | struct zoneref *z; |
| 6876 | |
| 6877 | zonelist = node_zonelist(nid, gfp_mask); |
| 6878 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
| 6879 | gfp_zone(gfp_mask), nodemask) { |
| 6880 | spin_lock_irqsave(&zone->lock, flags); |
| 6881 | |
| 6882 | pfn = ALIGN(zone->zone_start_pfn, nr_pages); |
| 6883 | while (zone_spans_last_pfn(zone, pfn, nr_pages)) { |
| 6884 | if (pfn_range_valid_contig(zone, pfn, nr_pages)) { |
| 6885 | /* |
| 6886 | * We release the zone lock here because |
| 6887 | * alloc_contig_range() will also lock the zone |
| 6888 | * at some point. If there's an allocation |
| 6889 | * spinning on this lock, it may win the race |
| 6890 | * and cause alloc_contig_range() to fail... |
| 6891 | */ |
| 6892 | spin_unlock_irqrestore(&zone->lock, flags); |
| 6893 | ret = __alloc_contig_pages(pfn, nr_pages, |
| 6894 | gfp_mask); |
| 6895 | if (!ret) |
| 6896 | return pfn_to_page(pfn); |
| 6897 | spin_lock_irqsave(&zone->lock, flags); |
| 6898 | } |
| 6899 | pfn += nr_pages; |
| 6900 | } |
| 6901 | spin_unlock_irqrestore(&zone->lock, flags); |
| 6902 | } |
| 6903 | return NULL; |
| 6904 | } |
| 6905 | #endif /* CONFIG_CONTIG_ALLOC */ |
| 6906 | |
| 6907 | void free_contig_range(unsigned long pfn, unsigned long nr_pages) |
| 6908 | { |
| 6909 | unsigned long count = 0; |
| 6910 | struct folio *folio = pfn_folio(pfn); |
| 6911 | |
| 6912 | if (folio_test_large(folio)) { |
| 6913 | int expected = folio_nr_pages(folio); |
| 6914 | |
| 6915 | if (nr_pages == expected) |
| 6916 | folio_put(folio); |
| 6917 | else |
| 6918 | WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", |
| 6919 | pfn, nr_pages, expected); |
| 6920 | return; |
| 6921 | } |
| 6922 | |
| 6923 | for (; nr_pages--; pfn++) { |
| 6924 | struct page *page = pfn_to_page(pfn); |
| 6925 | |
| 6926 | count += page_count(page) != 1; |
| 6927 | __free_page(page); |
| 6928 | } |
| 6929 | WARN(count != 0, "%lu pages are still in use!\n", count); |
| 6930 | } |
| 6931 | EXPORT_SYMBOL(free_contig_range); |
| 6932 | |
| 6933 | /* |
| 6934 | * Effectively disable pcplists for the zone by setting the high limit to 0 |
| 6935 | * and draining all cpus. A concurrent page freeing on another CPU that's about |
| 6936 | * to put the page on pcplist will either finish before the drain and the page |
| 6937 | * will be drained, or observe the new high limit and skip the pcplist. |
| 6938 | * |
| 6939 | * Must be paired with a call to zone_pcp_enable(). |
| 6940 | */ |
| 6941 | void zone_pcp_disable(struct zone *zone) |
| 6942 | { |
| 6943 | mutex_lock(&pcp_batch_high_lock); |
| 6944 | __zone_set_pageset_high_and_batch(zone, 0, 0, 1); |
| 6945 | __drain_all_pages(zone, true); |
| 6946 | } |
| 6947 | |
| 6948 | void zone_pcp_enable(struct zone *zone) |
| 6949 | { |
| 6950 | __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, |
| 6951 | zone->pageset_high_max, zone->pageset_batch); |
| 6952 | mutex_unlock(&pcp_batch_high_lock); |
| 6953 | } |
| 6954 | |
| 6955 | void zone_pcp_reset(struct zone *zone) |
| 6956 | { |
| 6957 | int cpu; |
| 6958 | struct per_cpu_zonestat *pzstats; |
| 6959 | |
| 6960 | if (zone->per_cpu_pageset != &boot_pageset) { |
| 6961 | for_each_online_cpu(cpu) { |
| 6962 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
| 6963 | drain_zonestat(zone, pzstats); |
| 6964 | } |
| 6965 | free_percpu(zone->per_cpu_pageset); |
| 6966 | zone->per_cpu_pageset = &boot_pageset; |
| 6967 | if (zone->per_cpu_zonestats != &boot_zonestats) { |
| 6968 | free_percpu(zone->per_cpu_zonestats); |
| 6969 | zone->per_cpu_zonestats = &boot_zonestats; |
| 6970 | } |
| 6971 | } |
| 6972 | } |
| 6973 | |
| 6974 | #ifdef CONFIG_MEMORY_HOTREMOVE |
| 6975 | /* |
| 6976 | * All pages in the range must be in a single zone, must not contain holes, |
| 6977 | * must span full sections, and must be isolated before calling this function. |
| 6978 | * |
| 6979 | * Returns the number of managed (non-PageOffline()) pages in the range: the |
| 6980 | * number of pages for which memory offlining code must adjust managed page |
| 6981 | * counters using adjust_managed_page_count(). |
| 6982 | */ |
| 6983 | unsigned long __offline_isolated_pages(unsigned long start_pfn, |
| 6984 | unsigned long end_pfn) |
| 6985 | { |
| 6986 | unsigned long already_offline = 0, flags; |
| 6987 | unsigned long pfn = start_pfn; |
| 6988 | struct page *page; |
| 6989 | struct zone *zone; |
| 6990 | unsigned int order; |
| 6991 | |
| 6992 | offline_mem_sections(pfn, end_pfn); |
| 6993 | zone = page_zone(pfn_to_page(pfn)); |
| 6994 | spin_lock_irqsave(&zone->lock, flags); |
| 6995 | while (pfn < end_pfn) { |
| 6996 | page = pfn_to_page(pfn); |
| 6997 | /* |
| 6998 | * The HWPoisoned page may be not in buddy system, and |
| 6999 | * page_count() is not 0. |
| 7000 | */ |
| 7001 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { |
| 7002 | pfn++; |
| 7003 | continue; |
| 7004 | } |
| 7005 | /* |
| 7006 | * At this point all remaining PageOffline() pages have a |
| 7007 | * reference count of 0 and can simply be skipped. |
| 7008 | */ |
| 7009 | if (PageOffline(page)) { |
| 7010 | BUG_ON(page_count(page)); |
| 7011 | BUG_ON(PageBuddy(page)); |
| 7012 | already_offline++; |
| 7013 | pfn++; |
| 7014 | continue; |
| 7015 | } |
| 7016 | |
| 7017 | BUG_ON(page_count(page)); |
| 7018 | BUG_ON(!PageBuddy(page)); |
| 7019 | VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); |
| 7020 | order = buddy_order(page); |
| 7021 | del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); |
| 7022 | pfn += (1 << order); |
| 7023 | } |
| 7024 | spin_unlock_irqrestore(&zone->lock, flags); |
| 7025 | |
| 7026 | return end_pfn - start_pfn - already_offline; |
| 7027 | } |
| 7028 | #endif |
| 7029 | |
| 7030 | /* |
| 7031 | * This function returns a stable result only if called under zone lock. |
| 7032 | */ |
| 7033 | bool is_free_buddy_page(const struct page *page) |
| 7034 | { |
| 7035 | unsigned long pfn = page_to_pfn(page); |
| 7036 | unsigned int order; |
| 7037 | |
| 7038 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| 7039 | const struct page *head = page - (pfn & ((1 << order) - 1)); |
| 7040 | |
| 7041 | if (PageBuddy(head) && |
| 7042 | buddy_order_unsafe(head) >= order) |
| 7043 | break; |
| 7044 | } |
| 7045 | |
| 7046 | return order <= MAX_PAGE_ORDER; |
| 7047 | } |
| 7048 | EXPORT_SYMBOL(is_free_buddy_page); |
| 7049 | |
| 7050 | #ifdef CONFIG_MEMORY_FAILURE |
| 7051 | static inline void add_to_free_list(struct page *page, struct zone *zone, |
| 7052 | unsigned int order, int migratetype, |
| 7053 | bool tail) |
| 7054 | { |
| 7055 | __add_to_free_list(page, zone, order, migratetype, tail); |
| 7056 | account_freepages(zone, 1 << order, migratetype); |
| 7057 | } |
| 7058 | |
| 7059 | /* |
| 7060 | * Break down a higher-order page in sub-pages, and keep our target out of |
| 7061 | * buddy allocator. |
| 7062 | */ |
| 7063 | static void break_down_buddy_pages(struct zone *zone, struct page *page, |
| 7064 | struct page *target, int low, int high, |
| 7065 | int migratetype) |
| 7066 | { |
| 7067 | unsigned long size = 1 << high; |
| 7068 | struct page *current_buddy; |
| 7069 | |
| 7070 | while (high > low) { |
| 7071 | high--; |
| 7072 | size >>= 1; |
| 7073 | |
| 7074 | if (target >= &page[size]) { |
| 7075 | current_buddy = page; |
| 7076 | page = page + size; |
| 7077 | } else { |
| 7078 | current_buddy = page + size; |
| 7079 | } |
| 7080 | |
| 7081 | if (set_page_guard(zone, current_buddy, high)) |
| 7082 | continue; |
| 7083 | |
| 7084 | add_to_free_list(current_buddy, zone, high, migratetype, false); |
| 7085 | set_buddy_order(current_buddy, high); |
| 7086 | } |
| 7087 | } |
| 7088 | |
| 7089 | /* |
| 7090 | * Take a page that will be marked as poisoned off the buddy allocator. |
| 7091 | */ |
| 7092 | bool take_page_off_buddy(struct page *page) |
| 7093 | { |
| 7094 | struct zone *zone = page_zone(page); |
| 7095 | unsigned long pfn = page_to_pfn(page); |
| 7096 | unsigned long flags; |
| 7097 | unsigned int order; |
| 7098 | bool ret = false; |
| 7099 | |
| 7100 | spin_lock_irqsave(&zone->lock, flags); |
| 7101 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
| 7102 | struct page *page_head = page - (pfn & ((1 << order) - 1)); |
| 7103 | int page_order = buddy_order(page_head); |
| 7104 | |
| 7105 | if (PageBuddy(page_head) && page_order >= order) { |
| 7106 | unsigned long pfn_head = page_to_pfn(page_head); |
| 7107 | int migratetype = get_pfnblock_migratetype(page_head, |
| 7108 | pfn_head); |
| 7109 | |
| 7110 | del_page_from_free_list(page_head, zone, page_order, |
| 7111 | migratetype); |
| 7112 | break_down_buddy_pages(zone, page_head, page, 0, |
| 7113 | page_order, migratetype); |
| 7114 | SetPageHWPoisonTakenOff(page); |
| 7115 | ret = true; |
| 7116 | break; |
| 7117 | } |
| 7118 | if (page_count(page_head) > 0) |
| 7119 | break; |
| 7120 | } |
| 7121 | spin_unlock_irqrestore(&zone->lock, flags); |
| 7122 | return ret; |
| 7123 | } |
| 7124 | |
| 7125 | /* |
| 7126 | * Cancel takeoff done by take_page_off_buddy(). |
| 7127 | */ |
| 7128 | bool put_page_back_buddy(struct page *page) |
| 7129 | { |
| 7130 | struct zone *zone = page_zone(page); |
| 7131 | unsigned long flags; |
| 7132 | bool ret = false; |
| 7133 | |
| 7134 | spin_lock_irqsave(&zone->lock, flags); |
| 7135 | if (put_page_testzero(page)) { |
| 7136 | unsigned long pfn = page_to_pfn(page); |
| 7137 | int migratetype = get_pfnblock_migratetype(page, pfn); |
| 7138 | |
| 7139 | ClearPageHWPoisonTakenOff(page); |
| 7140 | __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); |
| 7141 | if (TestClearPageHWPoison(page)) { |
| 7142 | ret = true; |
| 7143 | } |
| 7144 | } |
| 7145 | spin_unlock_irqrestore(&zone->lock, flags); |
| 7146 | |
| 7147 | return ret; |
| 7148 | } |
| 7149 | #endif |
| 7150 | |
| 7151 | #ifdef CONFIG_ZONE_DMA |
| 7152 | bool has_managed_dma(void) |
| 7153 | { |
| 7154 | struct pglist_data *pgdat; |
| 7155 | |
| 7156 | for_each_online_pgdat(pgdat) { |
| 7157 | struct zone *zone = &pgdat->node_zones[ZONE_DMA]; |
| 7158 | |
| 7159 | if (managed_zone(zone)) |
| 7160 | return true; |
| 7161 | } |
| 7162 | return false; |
| 7163 | } |
| 7164 | #endif /* CONFIG_ZONE_DMA */ |
| 7165 | |
| 7166 | #ifdef CONFIG_UNACCEPTED_MEMORY |
| 7167 | |
| 7168 | static bool lazy_accept = true; |
| 7169 | |
| 7170 | static int __init accept_memory_parse(char *p) |
| 7171 | { |
| 7172 | if (!strcmp(p, "lazy")) { |
| 7173 | lazy_accept = true; |
| 7174 | return 0; |
| 7175 | } else if (!strcmp(p, "eager")) { |
| 7176 | lazy_accept = false; |
| 7177 | return 0; |
| 7178 | } else { |
| 7179 | return -EINVAL; |
| 7180 | } |
| 7181 | } |
| 7182 | early_param("accept_memory", accept_memory_parse); |
| 7183 | |
| 7184 | static bool page_contains_unaccepted(struct page *page, unsigned int order) |
| 7185 | { |
| 7186 | phys_addr_t start = page_to_phys(page); |
| 7187 | |
| 7188 | return range_contains_unaccepted_memory(start, PAGE_SIZE << order); |
| 7189 | } |
| 7190 | |
| 7191 | static void __accept_page(struct zone *zone, unsigned long *flags, |
| 7192 | struct page *page) |
| 7193 | { |
| 7194 | list_del(&page->lru); |
| 7195 | account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); |
| 7196 | __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); |
| 7197 | __ClearPageUnaccepted(page); |
| 7198 | spin_unlock_irqrestore(&zone->lock, *flags); |
| 7199 | |
| 7200 | accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); |
| 7201 | |
| 7202 | __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); |
| 7203 | } |
| 7204 | |
| 7205 | void accept_page(struct page *page) |
| 7206 | { |
| 7207 | struct zone *zone = page_zone(page); |
| 7208 | unsigned long flags; |
| 7209 | |
| 7210 | spin_lock_irqsave(&zone->lock, flags); |
| 7211 | if (!PageUnaccepted(page)) { |
| 7212 | spin_unlock_irqrestore(&zone->lock, flags); |
| 7213 | return; |
| 7214 | } |
| 7215 | |
| 7216 | /* Unlocks zone->lock */ |
| 7217 | __accept_page(zone, &flags, page); |
| 7218 | } |
| 7219 | |
| 7220 | static bool try_to_accept_memory_one(struct zone *zone) |
| 7221 | { |
| 7222 | unsigned long flags; |
| 7223 | struct page *page; |
| 7224 | |
| 7225 | spin_lock_irqsave(&zone->lock, flags); |
| 7226 | page = list_first_entry_or_null(&zone->unaccepted_pages, |
| 7227 | struct page, lru); |
| 7228 | if (!page) { |
| 7229 | spin_unlock_irqrestore(&zone->lock, flags); |
| 7230 | return false; |
| 7231 | } |
| 7232 | |
| 7233 | /* Unlocks zone->lock */ |
| 7234 | __accept_page(zone, &flags, page); |
| 7235 | |
| 7236 | return true; |
| 7237 | } |
| 7238 | |
| 7239 | static bool cond_accept_memory(struct zone *zone, unsigned int order, |
| 7240 | int alloc_flags) |
| 7241 | { |
| 7242 | long to_accept, wmark; |
| 7243 | bool ret = false; |
| 7244 | |
| 7245 | if (list_empty(&zone->unaccepted_pages)) |
| 7246 | return false; |
| 7247 | |
| 7248 | /* Bailout, since try_to_accept_memory_one() needs to take a lock */ |
| 7249 | if (alloc_flags & ALLOC_TRYLOCK) |
| 7250 | return false; |
| 7251 | |
| 7252 | wmark = promo_wmark_pages(zone); |
| 7253 | |
| 7254 | /* |
| 7255 | * Watermarks have not been initialized yet. |
| 7256 | * |
| 7257 | * Accepting one MAX_ORDER page to ensure progress. |
| 7258 | */ |
| 7259 | if (!wmark) |
| 7260 | return try_to_accept_memory_one(zone); |
| 7261 | |
| 7262 | /* How much to accept to get to promo watermark? */ |
| 7263 | to_accept = wmark - |
| 7264 | (zone_page_state(zone, NR_FREE_PAGES) - |
| 7265 | __zone_watermark_unusable_free(zone, order, 0) - |
| 7266 | zone_page_state(zone, NR_UNACCEPTED)); |
| 7267 | |
| 7268 | while (to_accept > 0) { |
| 7269 | if (!try_to_accept_memory_one(zone)) |
| 7270 | break; |
| 7271 | ret = true; |
| 7272 | to_accept -= MAX_ORDER_NR_PAGES; |
| 7273 | } |
| 7274 | |
| 7275 | return ret; |
| 7276 | } |
| 7277 | |
| 7278 | static bool __free_unaccepted(struct page *page) |
| 7279 | { |
| 7280 | struct zone *zone = page_zone(page); |
| 7281 | unsigned long flags; |
| 7282 | |
| 7283 | if (!lazy_accept) |
| 7284 | return false; |
| 7285 | |
| 7286 | spin_lock_irqsave(&zone->lock, flags); |
| 7287 | list_add_tail(&page->lru, &zone->unaccepted_pages); |
| 7288 | account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); |
| 7289 | __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); |
| 7290 | __SetPageUnaccepted(page); |
| 7291 | spin_unlock_irqrestore(&zone->lock, flags); |
| 7292 | |
| 7293 | return true; |
| 7294 | } |
| 7295 | |
| 7296 | #else |
| 7297 | |
| 7298 | static bool page_contains_unaccepted(struct page *page, unsigned int order) |
| 7299 | { |
| 7300 | return false; |
| 7301 | } |
| 7302 | |
| 7303 | static bool cond_accept_memory(struct zone *zone, unsigned int order, |
| 7304 | int alloc_flags) |
| 7305 | { |
| 7306 | return false; |
| 7307 | } |
| 7308 | |
| 7309 | static bool __free_unaccepted(struct page *page) |
| 7310 | { |
| 7311 | BUILD_BUG(); |
| 7312 | return false; |
| 7313 | } |
| 7314 | |
| 7315 | #endif /* CONFIG_UNACCEPTED_MEMORY */ |
| 7316 | |
| 7317 | /** |
| 7318 | * alloc_pages_nolock - opportunistic reentrant allocation from any context |
| 7319 | * @nid: node to allocate from |
| 7320 | * @order: allocation order size |
| 7321 | * |
| 7322 | * Allocates pages of a given order from the given node. This is safe to |
| 7323 | * call from any context (from atomic, NMI, and also reentrant |
| 7324 | * allocator -> tracepoint -> alloc_pages_nolock_noprof). |
| 7325 | * Allocation is best effort and to be expected to fail easily so nobody should |
| 7326 | * rely on the success. Failures are not reported via warn_alloc(). |
| 7327 | * See always fail conditions below. |
| 7328 | * |
| 7329 | * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. |
| 7330 | * It means ENOMEM. There is no reason to call it again and expect !NULL. |
| 7331 | */ |
| 7332 | struct page *alloc_pages_nolock_noprof(int nid, unsigned int order) |
| 7333 | { |
| 7334 | /* |
| 7335 | * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. |
| 7336 | * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd |
| 7337 | * is not safe in arbitrary context. |
| 7338 | * |
| 7339 | * These two are the conditions for gfpflags_allow_spinning() being true. |
| 7340 | * |
| 7341 | * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason |
| 7342 | * to warn. Also warn would trigger printk() which is unsafe from |
| 7343 | * various contexts. We cannot use printk_deferred_enter() to mitigate, |
| 7344 | * since the running context is unknown. |
| 7345 | * |
| 7346 | * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below |
| 7347 | * is safe in any context. Also zeroing the page is mandatory for |
| 7348 | * BPF use cases. |
| 7349 | * |
| 7350 | * Though __GFP_NOMEMALLOC is not checked in the code path below, |
| 7351 | * specify it here to highlight that alloc_pages_nolock() |
| 7352 | * doesn't want to deplete reserves. |
| 7353 | */ |
| 7354 | gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC |
| 7355 | | __GFP_ACCOUNT; |
| 7356 | unsigned int alloc_flags = ALLOC_TRYLOCK; |
| 7357 | struct alloc_context ac = { }; |
| 7358 | struct page *page; |
| 7359 | |
| 7360 | /* |
| 7361 | * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is |
| 7362 | * unsafe in NMI. If spin_trylock() is called from hard IRQ the current |
| 7363 | * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will |
| 7364 | * mark the task as the owner of another rt_spin_lock which will |
| 7365 | * confuse PI logic, so return immediately if called form hard IRQ or |
| 7366 | * NMI. |
| 7367 | * |
| 7368 | * Note, irqs_disabled() case is ok. This function can be called |
| 7369 | * from raw_spin_lock_irqsave region. |
| 7370 | */ |
| 7371 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) |
| 7372 | return NULL; |
| 7373 | if (!pcp_allowed_order(order)) |
| 7374 | return NULL; |
| 7375 | |
| 7376 | /* Bailout, since _deferred_grow_zone() needs to take a lock */ |
| 7377 | if (deferred_pages_enabled()) |
| 7378 | return NULL; |
| 7379 | |
| 7380 | if (nid == NUMA_NO_NODE) |
| 7381 | nid = numa_node_id(); |
| 7382 | |
| 7383 | prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, |
| 7384 | &alloc_gfp, &alloc_flags); |
| 7385 | |
| 7386 | /* |
| 7387 | * Best effort allocation from percpu free list. |
| 7388 | * If it's empty attempt to spin_trylock zone->lock. |
| 7389 | */ |
| 7390 | page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); |
| 7391 | |
| 7392 | /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ |
| 7393 | |
| 7394 | if (page) |
| 7395 | set_page_refcounted(page); |
| 7396 | |
| 7397 | if (memcg_kmem_online() && page && |
| 7398 | unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { |
| 7399 | free_pages_nolock(page, order); |
| 7400 | page = NULL; |
| 7401 | } |
| 7402 | trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); |
| 7403 | kmsan_alloc_page(page, order, alloc_gfp); |
| 7404 | return page; |
| 7405 | } |