mm/vmscan.c: fix -Wunused-but-set-variable warning
[linux-2.6-block.git] / mm / page_alloc.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
25#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/random.h>
48#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/mmu_notifier.h>
61#include <linux/migrate.h>
62#include <linux/hugetlb.h>
63#include <linux/sched/rt.h>
64#include <linux/sched/mm.h>
65#include <linux/page_owner.h>
66#include <linux/kthread.h>
67#include <linux/memcontrol.h>
68#include <linux/ftrace.h>
69#include <linux/lockdep.h>
70#include <linux/nmi.h>
71#include <linux/psi.h>
72#include <linux/padata.h>
73#include <linux/khugepaged.h>
74#include <linux/buffer_head.h>
75#include <asm/sections.h>
76#include <asm/tlbflush.h>
77#include <asm/div64.h>
78#include "internal.h"
79#include "shuffle.h"
80#include "page_reporting.h"
81
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125struct pagesets {
126 local_lock_t lock;
127};
128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130};
131
132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133DEFINE_PER_CPU(int, numa_node);
134EXPORT_PER_CPU_SYMBOL(numa_node);
135#endif
136
137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
140/*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148#endif
149
150/* work_structs for global per-cpu drains */
151struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154};
155static DEFINE_MUTEX(pcpu_drain_mutex);
156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159volatile unsigned long latent_entropy __latent_entropy;
160EXPORT_SYMBOL(latent_entropy);
161#endif
162
163/*
164 * Array of node states.
165 */
166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169#ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171#ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173#endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176#endif /* NUMA */
177};
178EXPORT_SYMBOL(node_states);
179
180atomic_long_t _totalram_pages __read_mostly;
181EXPORT_SYMBOL(_totalram_pages);
182unsigned long totalreserve_pages __read_mostly;
183unsigned long totalcma_pages __read_mostly;
184
185int percpu_pagelist_high_fraction;
186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188EXPORT_SYMBOL(init_on_alloc);
189
190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191EXPORT_SYMBOL(init_on_free);
192
193static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195static int __init early_init_on_alloc(char *buf)
196{
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199}
200early_param("init_on_alloc", early_init_on_alloc);
201
202static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204static int __init early_init_on_free(char *buf)
205{
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207}
208early_param("init_on_free", early_init_on_free);
209
210/*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218static inline int get_pcppage_migratetype(struct page *page)
219{
220 return page->index;
221}
222
223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224{
225 page->index = migratetype;
226}
227
228#ifdef CONFIG_PM_SLEEP
229/*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239static gfp_t saved_gfp_mask;
240
241void pm_restore_gfp_mask(void)
242{
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248}
249
250void pm_restrict_gfp_mask(void)
251{
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256}
257
258bool pm_suspended_storage(void)
259{
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263}
264#endif /* CONFIG_PM_SLEEP */
265
266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267unsigned int pageblock_order __read_mostly;
268#endif
269
270static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273/*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285#ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287#endif
288#ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290#endif
291 [ZONE_NORMAL] = 32,
292#ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294#endif
295 [ZONE_MOVABLE] = 0,
296};
297
298static char * const zone_names[MAX_NR_ZONES] = {
299#ifdef CONFIG_ZONE_DMA
300 "DMA",
301#endif
302#ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304#endif
305 "Normal",
306#ifdef CONFIG_HIGHMEM
307 "HighMem",
308#endif
309 "Movable",
310#ifdef CONFIG_ZONE_DEVICE
311 "Device",
312#endif
313};
314
315const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320#ifdef CONFIG_CMA
321 "CMA",
322#endif
323#ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325#endif
326};
327
328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331#ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333#endif
334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336#endif
337};
338
339int min_free_kbytes = 1024;
340int user_min_free_kbytes = -1;
341int watermark_boost_factor __read_mostly = 15000;
342int watermark_scale_factor = 10;
343
344static unsigned long nr_kernel_pages __initdata;
345static unsigned long nr_all_pages __initdata;
346static unsigned long dma_reserve __initdata;
347
348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350static unsigned long required_kernelcore __initdata;
351static unsigned long required_kernelcore_percent __initdata;
352static unsigned long required_movablecore __initdata;
353static unsigned long required_movablecore_percent __initdata;
354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355static bool mirrored_kernelcore __meminitdata;
356
357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358int movable_zone;
359EXPORT_SYMBOL(movable_zone);
360
361#if MAX_NUMNODES > 1
362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363unsigned int nr_online_nodes __read_mostly = 1;
364EXPORT_SYMBOL(nr_node_ids);
365EXPORT_SYMBOL(nr_online_nodes);
366#endif
367
368int page_group_by_mobility_disabled __read_mostly;
369
370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371/*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378/*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392{
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397}
398
399/* Returns true if the struct page for the pfn is uninitialised */
400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401{
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408}
409
410/*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414static bool __meminit
415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416{
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445}
446#else
447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448{
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452}
453
454static inline bool early_page_uninitialised(unsigned long pfn)
455{
456 return false;
457}
458
459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460{
461 return false;
462}
463#endif
464
465/* Return a pointer to the bitmap storing bits affecting a block of pages */
466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468{
469#ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471#else
472 return page_zone(page)->pageblock_flags;
473#endif /* CONFIG_SPARSEMEM */
474}
475
476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477{
478#ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480#else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482#endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484}
485
486static __always_inline
487unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490{
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502}
503
504/**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
512unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514{
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516}
517
518static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520{
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522}
523
524/**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534{
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559}
560
561void set_pageblock_migratetype(struct page *page, int migratetype)
562{
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569}
570
571#ifdef CONFIG_DEBUG_VM
572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573{
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593}
594
595static int page_is_consistent(struct zone *zone, struct page *page)
596{
597 if (zone != page_zone(page))
598 return 0;
599
600 return 1;
601}
602/*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
605static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606{
607 if (page_outside_zone_boundaries(zone, page))
608 return 1;
609 if (!page_is_consistent(zone, page))
610 return 1;
611
612 return 0;
613}
614#else
615static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616{
617 return 0;
618}
619#endif
620
621static void bad_page(struct page *page, const char *reason)
622{
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
637 pr_alert(
638 "BUG: Bad page state: %lu messages suppressed\n",
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
648 current->comm, page_to_pfn(page));
649 dump_page(page, reason);
650
651 print_modules();
652 dump_stack();
653out:
654 /* Leave bad fields for debug, except PageBuddy could make trouble */
655 page_mapcount_reset(page); /* remove PageBuddy */
656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657}
658
659static inline unsigned int order_to_pindex(int migratetype, int order)
660{
661 int base = order;
662
663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668#else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670#endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673}
674
675static inline int pindex_to_order(unsigned int pindex)
676{
677 int order = pindex / MIGRATE_PCPTYPES;
678
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER)
681 order = pageblock_order;
682#else
683 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
684#endif
685
686 return order;
687}
688
689static inline bool pcp_allowed_order(unsigned int order)
690{
691 if (order <= PAGE_ALLOC_COSTLY_ORDER)
692 return true;
693#ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 if (order == pageblock_order)
695 return true;
696#endif
697 return false;
698}
699
700static inline void free_the_page(struct page *page, unsigned int order)
701{
702 if (pcp_allowed_order(order)) /* Via pcp? */
703 free_unref_page(page, order);
704 else
705 __free_pages_ok(page, order, FPI_NONE);
706}
707
708/*
709 * Higher-order pages are called "compound pages". They are structured thusly:
710 *
711 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
712 *
713 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
714 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
715 *
716 * The first tail page's ->compound_dtor holds the offset in array of compound
717 * page destructors. See compound_page_dtors.
718 *
719 * The first tail page's ->compound_order holds the order of allocation.
720 * This usage means that zero-order pages may not be compound.
721 */
722
723void free_compound_page(struct page *page)
724{
725 mem_cgroup_uncharge(page);
726 free_the_page(page, compound_order(page));
727}
728
729void prep_compound_page(struct page *page, unsigned int order)
730{
731 int i;
732 int nr_pages = 1 << order;
733
734 __SetPageHead(page);
735 for (i = 1; i < nr_pages; i++) {
736 struct page *p = page + i;
737 p->mapping = TAIL_MAPPING;
738 set_compound_head(p, page);
739 }
740
741 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
742 set_compound_order(page, order);
743 atomic_set(compound_mapcount_ptr(page), -1);
744 if (hpage_pincount_available(page))
745 atomic_set(compound_pincount_ptr(page), 0);
746}
747
748#ifdef CONFIG_DEBUG_PAGEALLOC
749unsigned int _debug_guardpage_minorder;
750
751bool _debug_pagealloc_enabled_early __read_mostly
752 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
753EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
754DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
755EXPORT_SYMBOL(_debug_pagealloc_enabled);
756
757DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
758
759static int __init early_debug_pagealloc(char *buf)
760{
761 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
762}
763early_param("debug_pagealloc", early_debug_pagealloc);
764
765static int __init debug_guardpage_minorder_setup(char *buf)
766{
767 unsigned long res;
768
769 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
770 pr_err("Bad debug_guardpage_minorder value\n");
771 return 0;
772 }
773 _debug_guardpage_minorder = res;
774 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
775 return 0;
776}
777early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
778
779static inline bool set_page_guard(struct zone *zone, struct page *page,
780 unsigned int order, int migratetype)
781{
782 if (!debug_guardpage_enabled())
783 return false;
784
785 if (order >= debug_guardpage_minorder())
786 return false;
787
788 __SetPageGuard(page);
789 INIT_LIST_HEAD(&page->lru);
790 set_page_private(page, order);
791 /* Guard pages are not available for any usage */
792 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
793
794 return true;
795}
796
797static inline void clear_page_guard(struct zone *zone, struct page *page,
798 unsigned int order, int migratetype)
799{
800 if (!debug_guardpage_enabled())
801 return;
802
803 __ClearPageGuard(page);
804
805 set_page_private(page, 0);
806 if (!is_migrate_isolate(migratetype))
807 __mod_zone_freepage_state(zone, (1 << order), migratetype);
808}
809#else
810static inline bool set_page_guard(struct zone *zone, struct page *page,
811 unsigned int order, int migratetype) { return false; }
812static inline void clear_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) {}
814#endif
815
816/*
817 * Enable static keys related to various memory debugging and hardening options.
818 * Some override others, and depend on early params that are evaluated in the
819 * order of appearance. So we need to first gather the full picture of what was
820 * enabled, and then make decisions.
821 */
822void init_mem_debugging_and_hardening(void)
823{
824 bool page_poisoning_requested = false;
825
826#ifdef CONFIG_PAGE_POISONING
827 /*
828 * Page poisoning is debug page alloc for some arches. If
829 * either of those options are enabled, enable poisoning.
830 */
831 if (page_poisoning_enabled() ||
832 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
833 debug_pagealloc_enabled())) {
834 static_branch_enable(&_page_poisoning_enabled);
835 page_poisoning_requested = true;
836 }
837#endif
838
839 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
840 page_poisoning_requested) {
841 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
842 "will take precedence over init_on_alloc and init_on_free\n");
843 _init_on_alloc_enabled_early = false;
844 _init_on_free_enabled_early = false;
845 }
846
847 if (_init_on_alloc_enabled_early)
848 static_branch_enable(&init_on_alloc);
849 else
850 static_branch_disable(&init_on_alloc);
851
852 if (_init_on_free_enabled_early)
853 static_branch_enable(&init_on_free);
854 else
855 static_branch_disable(&init_on_free);
856
857#ifdef CONFIG_DEBUG_PAGEALLOC
858 if (!debug_pagealloc_enabled())
859 return;
860
861 static_branch_enable(&_debug_pagealloc_enabled);
862
863 if (!debug_guardpage_minorder())
864 return;
865
866 static_branch_enable(&_debug_guardpage_enabled);
867#endif
868}
869
870static inline void set_buddy_order(struct page *page, unsigned int order)
871{
872 set_page_private(page, order);
873 __SetPageBuddy(page);
874}
875
876/*
877 * This function checks whether a page is free && is the buddy
878 * we can coalesce a page and its buddy if
879 * (a) the buddy is not in a hole (check before calling!) &&
880 * (b) the buddy is in the buddy system &&
881 * (c) a page and its buddy have the same order &&
882 * (d) a page and its buddy are in the same zone.
883 *
884 * For recording whether a page is in the buddy system, we set PageBuddy.
885 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
886 *
887 * For recording page's order, we use page_private(page).
888 */
889static inline bool page_is_buddy(struct page *page, struct page *buddy,
890 unsigned int order)
891{
892 if (!page_is_guard(buddy) && !PageBuddy(buddy))
893 return false;
894
895 if (buddy_order(buddy) != order)
896 return false;
897
898 /*
899 * zone check is done late to avoid uselessly calculating
900 * zone/node ids for pages that could never merge.
901 */
902 if (page_zone_id(page) != page_zone_id(buddy))
903 return false;
904
905 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
906
907 return true;
908}
909
910#ifdef CONFIG_COMPACTION
911static inline struct capture_control *task_capc(struct zone *zone)
912{
913 struct capture_control *capc = current->capture_control;
914
915 return unlikely(capc) &&
916 !(current->flags & PF_KTHREAD) &&
917 !capc->page &&
918 capc->cc->zone == zone ? capc : NULL;
919}
920
921static inline bool
922compaction_capture(struct capture_control *capc, struct page *page,
923 int order, int migratetype)
924{
925 if (!capc || order != capc->cc->order)
926 return false;
927
928 /* Do not accidentally pollute CMA or isolated regions*/
929 if (is_migrate_cma(migratetype) ||
930 is_migrate_isolate(migratetype))
931 return false;
932
933 /*
934 * Do not let lower order allocations pollute a movable pageblock.
935 * This might let an unmovable request use a reclaimable pageblock
936 * and vice-versa but no more than normal fallback logic which can
937 * have trouble finding a high-order free page.
938 */
939 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
940 return false;
941
942 capc->page = page;
943 return true;
944}
945
946#else
947static inline struct capture_control *task_capc(struct zone *zone)
948{
949 return NULL;
950}
951
952static inline bool
953compaction_capture(struct capture_control *capc, struct page *page,
954 int order, int migratetype)
955{
956 return false;
957}
958#endif /* CONFIG_COMPACTION */
959
960/* Used for pages not on another list */
961static inline void add_to_free_list(struct page *page, struct zone *zone,
962 unsigned int order, int migratetype)
963{
964 struct free_area *area = &zone->free_area[order];
965
966 list_add(&page->lru, &area->free_list[migratetype]);
967 area->nr_free++;
968}
969
970/* Used for pages not on another list */
971static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
972 unsigned int order, int migratetype)
973{
974 struct free_area *area = &zone->free_area[order];
975
976 list_add_tail(&page->lru, &area->free_list[migratetype]);
977 area->nr_free++;
978}
979
980/*
981 * Used for pages which are on another list. Move the pages to the tail
982 * of the list - so the moved pages won't immediately be considered for
983 * allocation again (e.g., optimization for memory onlining).
984 */
985static inline void move_to_free_list(struct page *page, struct zone *zone,
986 unsigned int order, int migratetype)
987{
988 struct free_area *area = &zone->free_area[order];
989
990 list_move_tail(&page->lru, &area->free_list[migratetype]);
991}
992
993static inline void del_page_from_free_list(struct page *page, struct zone *zone,
994 unsigned int order)
995{
996 /* clear reported state and update reported page count */
997 if (page_reported(page))
998 __ClearPageReported(page);
999
1000 list_del(&page->lru);
1001 __ClearPageBuddy(page);
1002 set_page_private(page, 0);
1003 zone->free_area[order].nr_free--;
1004}
1005
1006/*
1007 * If this is not the largest possible page, check if the buddy
1008 * of the next-highest order is free. If it is, it's possible
1009 * that pages are being freed that will coalesce soon. In case,
1010 * that is happening, add the free page to the tail of the list
1011 * so it's less likely to be used soon and more likely to be merged
1012 * as a higher order page
1013 */
1014static inline bool
1015buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1016 struct page *page, unsigned int order)
1017{
1018 struct page *higher_page, *higher_buddy;
1019 unsigned long combined_pfn;
1020
1021 if (order >= MAX_ORDER - 2)
1022 return false;
1023
1024 combined_pfn = buddy_pfn & pfn;
1025 higher_page = page + (combined_pfn - pfn);
1026 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1027 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1028
1029 return page_is_buddy(higher_page, higher_buddy, order + 1);
1030}
1031
1032/*
1033 * Freeing function for a buddy system allocator.
1034 *
1035 * The concept of a buddy system is to maintain direct-mapped table
1036 * (containing bit values) for memory blocks of various "orders".
1037 * The bottom level table contains the map for the smallest allocatable
1038 * units of memory (here, pages), and each level above it describes
1039 * pairs of units from the levels below, hence, "buddies".
1040 * At a high level, all that happens here is marking the table entry
1041 * at the bottom level available, and propagating the changes upward
1042 * as necessary, plus some accounting needed to play nicely with other
1043 * parts of the VM system.
1044 * At each level, we keep a list of pages, which are heads of continuous
1045 * free pages of length of (1 << order) and marked with PageBuddy.
1046 * Page's order is recorded in page_private(page) field.
1047 * So when we are allocating or freeing one, we can derive the state of the
1048 * other. That is, if we allocate a small block, and both were
1049 * free, the remainder of the region must be split into blocks.
1050 * If a block is freed, and its buddy is also free, then this
1051 * triggers coalescing into a block of larger size.
1052 *
1053 * -- nyc
1054 */
1055
1056static inline void __free_one_page(struct page *page,
1057 unsigned long pfn,
1058 struct zone *zone, unsigned int order,
1059 int migratetype, fpi_t fpi_flags)
1060{
1061 struct capture_control *capc = task_capc(zone);
1062 unsigned long buddy_pfn;
1063 unsigned long combined_pfn;
1064 unsigned int max_order;
1065 struct page *buddy;
1066 bool to_tail;
1067
1068 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1069
1070 VM_BUG_ON(!zone_is_initialized(zone));
1071 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1072
1073 VM_BUG_ON(migratetype == -1);
1074 if (likely(!is_migrate_isolate(migratetype)))
1075 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1076
1077 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1078 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1079
1080continue_merging:
1081 while (order < max_order) {
1082 if (compaction_capture(capc, page, order, migratetype)) {
1083 __mod_zone_freepage_state(zone, -(1 << order),
1084 migratetype);
1085 return;
1086 }
1087 buddy_pfn = __find_buddy_pfn(pfn, order);
1088 buddy = page + (buddy_pfn - pfn);
1089
1090 if (!page_is_buddy(page, buddy, order))
1091 goto done_merging;
1092 /*
1093 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1094 * merge with it and move up one order.
1095 */
1096 if (page_is_guard(buddy))
1097 clear_page_guard(zone, buddy, order, migratetype);
1098 else
1099 del_page_from_free_list(buddy, zone, order);
1100 combined_pfn = buddy_pfn & pfn;
1101 page = page + (combined_pfn - pfn);
1102 pfn = combined_pfn;
1103 order++;
1104 }
1105 if (order < MAX_ORDER - 1) {
1106 /* If we are here, it means order is >= pageblock_order.
1107 * We want to prevent merge between freepages on isolate
1108 * pageblock and normal pageblock. Without this, pageblock
1109 * isolation could cause incorrect freepage or CMA accounting.
1110 *
1111 * We don't want to hit this code for the more frequent
1112 * low-order merging.
1113 */
1114 if (unlikely(has_isolate_pageblock(zone))) {
1115 int buddy_mt;
1116
1117 buddy_pfn = __find_buddy_pfn(pfn, order);
1118 buddy = page + (buddy_pfn - pfn);
1119 buddy_mt = get_pageblock_migratetype(buddy);
1120
1121 if (migratetype != buddy_mt
1122 && (is_migrate_isolate(migratetype) ||
1123 is_migrate_isolate(buddy_mt)))
1124 goto done_merging;
1125 }
1126 max_order = order + 1;
1127 goto continue_merging;
1128 }
1129
1130done_merging:
1131 set_buddy_order(page, order);
1132
1133 if (fpi_flags & FPI_TO_TAIL)
1134 to_tail = true;
1135 else if (is_shuffle_order(order))
1136 to_tail = shuffle_pick_tail();
1137 else
1138 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1139
1140 if (to_tail)
1141 add_to_free_list_tail(page, zone, order, migratetype);
1142 else
1143 add_to_free_list(page, zone, order, migratetype);
1144
1145 /* Notify page reporting subsystem of freed page */
1146 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1147 page_reporting_notify_free(order);
1148}
1149
1150/*
1151 * A bad page could be due to a number of fields. Instead of multiple branches,
1152 * try and check multiple fields with one check. The caller must do a detailed
1153 * check if necessary.
1154 */
1155static inline bool page_expected_state(struct page *page,
1156 unsigned long check_flags)
1157{
1158 if (unlikely(atomic_read(&page->_mapcount) != -1))
1159 return false;
1160
1161 if (unlikely((unsigned long)page->mapping |
1162 page_ref_count(page) |
1163#ifdef CONFIG_MEMCG
1164 page->memcg_data |
1165#endif
1166 (page->flags & check_flags)))
1167 return false;
1168
1169 return true;
1170}
1171
1172static const char *page_bad_reason(struct page *page, unsigned long flags)
1173{
1174 const char *bad_reason = NULL;
1175
1176 if (unlikely(atomic_read(&page->_mapcount) != -1))
1177 bad_reason = "nonzero mapcount";
1178 if (unlikely(page->mapping != NULL))
1179 bad_reason = "non-NULL mapping";
1180 if (unlikely(page_ref_count(page) != 0))
1181 bad_reason = "nonzero _refcount";
1182 if (unlikely(page->flags & flags)) {
1183 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1184 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1185 else
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1187 }
1188#ifdef CONFIG_MEMCG
1189 if (unlikely(page->memcg_data))
1190 bad_reason = "page still charged to cgroup";
1191#endif
1192 return bad_reason;
1193}
1194
1195static void check_free_page_bad(struct page *page)
1196{
1197 bad_page(page,
1198 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1199}
1200
1201static inline int check_free_page(struct page *page)
1202{
1203 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1204 return 0;
1205
1206 /* Something has gone sideways, find it */
1207 check_free_page_bad(page);
1208 return 1;
1209}
1210
1211static int free_tail_pages_check(struct page *head_page, struct page *page)
1212{
1213 int ret = 1;
1214
1215 /*
1216 * We rely page->lru.next never has bit 0 set, unless the page
1217 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1218 */
1219 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1220
1221 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1222 ret = 0;
1223 goto out;
1224 }
1225 switch (page - head_page) {
1226 case 1:
1227 /* the first tail page: ->mapping may be compound_mapcount() */
1228 if (unlikely(compound_mapcount(page))) {
1229 bad_page(page, "nonzero compound_mapcount");
1230 goto out;
1231 }
1232 break;
1233 case 2:
1234 /*
1235 * the second tail page: ->mapping is
1236 * deferred_list.next -- ignore value.
1237 */
1238 break;
1239 default:
1240 if (page->mapping != TAIL_MAPPING) {
1241 bad_page(page, "corrupted mapping in tail page");
1242 goto out;
1243 }
1244 break;
1245 }
1246 if (unlikely(!PageTail(page))) {
1247 bad_page(page, "PageTail not set");
1248 goto out;
1249 }
1250 if (unlikely(compound_head(page) != head_page)) {
1251 bad_page(page, "compound_head not consistent");
1252 goto out;
1253 }
1254 ret = 0;
1255out:
1256 page->mapping = NULL;
1257 clear_compound_head(page);
1258 return ret;
1259}
1260
1261static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1262{
1263 int i;
1264
1265 if (zero_tags) {
1266 for (i = 0; i < numpages; i++)
1267 tag_clear_highpage(page + i);
1268 return;
1269 }
1270
1271 /* s390's use of memset() could override KASAN redzones. */
1272 kasan_disable_current();
1273 for (i = 0; i < numpages; i++) {
1274 u8 tag = page_kasan_tag(page + i);
1275 page_kasan_tag_reset(page + i);
1276 clear_highpage(page + i);
1277 page_kasan_tag_set(page + i, tag);
1278 }
1279 kasan_enable_current();
1280}
1281
1282static __always_inline bool free_pages_prepare(struct page *page,
1283 unsigned int order, bool check_free, fpi_t fpi_flags)
1284{
1285 int bad = 0;
1286 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1287
1288 VM_BUG_ON_PAGE(PageTail(page), page);
1289
1290 trace_mm_page_free(page, order);
1291
1292 if (unlikely(PageHWPoison(page)) && !order) {
1293 /*
1294 * Do not let hwpoison pages hit pcplists/buddy
1295 * Untie memcg state and reset page's owner
1296 */
1297 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1298 __memcg_kmem_uncharge_page(page, order);
1299 reset_page_owner(page, order);
1300 return false;
1301 }
1302
1303 /*
1304 * Check tail pages before head page information is cleared to
1305 * avoid checking PageCompound for order-0 pages.
1306 */
1307 if (unlikely(order)) {
1308 bool compound = PageCompound(page);
1309 int i;
1310
1311 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1312
1313 if (compound) {
1314 ClearPageDoubleMap(page);
1315 ClearPageHasHWPoisoned(page);
1316 }
1317 for (i = 1; i < (1 << order); i++) {
1318 if (compound)
1319 bad += free_tail_pages_check(page, page + i);
1320 if (unlikely(check_free_page(page + i))) {
1321 bad++;
1322 continue;
1323 }
1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 }
1326 }
1327 if (PageMappingFlags(page))
1328 page->mapping = NULL;
1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 __memcg_kmem_uncharge_page(page, order);
1331 if (check_free)
1332 bad += check_free_page(page);
1333 if (bad)
1334 return false;
1335
1336 page_cpupid_reset_last(page);
1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 reset_page_owner(page, order);
1339
1340 if (!PageHighMem(page)) {
1341 debug_check_no_locks_freed(page_address(page),
1342 PAGE_SIZE << order);
1343 debug_check_no_obj_freed(page_address(page),
1344 PAGE_SIZE << order);
1345 }
1346
1347 kernel_poison_pages(page, 1 << order);
1348
1349 /*
1350 * As memory initialization might be integrated into KASAN,
1351 * kasan_free_pages and kernel_init_free_pages must be
1352 * kept together to avoid discrepancies in behavior.
1353 *
1354 * With hardware tag-based KASAN, memory tags must be set before the
1355 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 */
1357 if (kasan_has_integrated_init()) {
1358 if (!skip_kasan_poison)
1359 kasan_free_pages(page, order);
1360 } else {
1361 bool init = want_init_on_free();
1362
1363 if (init)
1364 kernel_init_free_pages(page, 1 << order, false);
1365 if (!skip_kasan_poison)
1366 kasan_poison_pages(page, order, init);
1367 }
1368
1369 /*
1370 * arch_free_page() can make the page's contents inaccessible. s390
1371 * does this. So nothing which can access the page's contents should
1372 * happen after this.
1373 */
1374 arch_free_page(page, order);
1375
1376 debug_pagealloc_unmap_pages(page, 1 << order);
1377
1378 return true;
1379}
1380
1381#ifdef CONFIG_DEBUG_VM
1382/*
1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385 * moved from pcp lists to free lists.
1386 */
1387static bool free_pcp_prepare(struct page *page, unsigned int order)
1388{
1389 return free_pages_prepare(page, order, true, FPI_NONE);
1390}
1391
1392static bool bulkfree_pcp_prepare(struct page *page)
1393{
1394 if (debug_pagealloc_enabled_static())
1395 return check_free_page(page);
1396 else
1397 return false;
1398}
1399#else
1400/*
1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402 * moving from pcp lists to free list in order to reduce overhead. With
1403 * debug_pagealloc enabled, they are checked also immediately when being freed
1404 * to the pcp lists.
1405 */
1406static bool free_pcp_prepare(struct page *page, unsigned int order)
1407{
1408 if (debug_pagealloc_enabled_static())
1409 return free_pages_prepare(page, order, true, FPI_NONE);
1410 else
1411 return free_pages_prepare(page, order, false, FPI_NONE);
1412}
1413
1414static bool bulkfree_pcp_prepare(struct page *page)
1415{
1416 return check_free_page(page);
1417}
1418#endif /* CONFIG_DEBUG_VM */
1419
1420static inline void prefetch_buddy(struct page *page)
1421{
1422 unsigned long pfn = page_to_pfn(page);
1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 struct page *buddy = page + (buddy_pfn - pfn);
1425
1426 prefetch(buddy);
1427}
1428
1429/*
1430 * Frees a number of pages from the PCP lists
1431 * Assumes all pages on list are in same zone.
1432 * count is the number of pages to free.
1433 */
1434static void free_pcppages_bulk(struct zone *zone, int count,
1435 struct per_cpu_pages *pcp)
1436{
1437 int pindex = 0;
1438 int batch_free = 0;
1439 int nr_freed = 0;
1440 unsigned int order;
1441 int prefetch_nr = READ_ONCE(pcp->batch);
1442 bool isolated_pageblocks;
1443 struct page *page, *tmp;
1444 LIST_HEAD(head);
1445
1446 /*
1447 * Ensure proper count is passed which otherwise would stuck in the
1448 * below while (list_empty(list)) loop.
1449 */
1450 count = min(pcp->count, count);
1451 while (count > 0) {
1452 struct list_head *list;
1453
1454 /*
1455 * Remove pages from lists in a round-robin fashion. A
1456 * batch_free count is maintained that is incremented when an
1457 * empty list is encountered. This is so more pages are freed
1458 * off fuller lists instead of spinning excessively around empty
1459 * lists
1460 */
1461 do {
1462 batch_free++;
1463 if (++pindex == NR_PCP_LISTS)
1464 pindex = 0;
1465 list = &pcp->lists[pindex];
1466 } while (list_empty(list));
1467
1468 /* This is the only non-empty list. Free them all. */
1469 if (batch_free == NR_PCP_LISTS)
1470 batch_free = count;
1471
1472 order = pindex_to_order(pindex);
1473 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1474 do {
1475 page = list_last_entry(list, struct page, lru);
1476 /* must delete to avoid corrupting pcp list */
1477 list_del(&page->lru);
1478 nr_freed += 1 << order;
1479 count -= 1 << order;
1480
1481 if (bulkfree_pcp_prepare(page))
1482 continue;
1483
1484 /* Encode order with the migratetype */
1485 page->index <<= NR_PCP_ORDER_WIDTH;
1486 page->index |= order;
1487
1488 list_add_tail(&page->lru, &head);
1489
1490 /*
1491 * We are going to put the page back to the global
1492 * pool, prefetch its buddy to speed up later access
1493 * under zone->lock. It is believed the overhead of
1494 * an additional test and calculating buddy_pfn here
1495 * can be offset by reduced memory latency later. To
1496 * avoid excessive prefetching due to large count, only
1497 * prefetch buddy for the first pcp->batch nr of pages.
1498 */
1499 if (prefetch_nr) {
1500 prefetch_buddy(page);
1501 prefetch_nr--;
1502 }
1503 } while (count > 0 && --batch_free && !list_empty(list));
1504 }
1505 pcp->count -= nr_freed;
1506
1507 /*
1508 * local_lock_irq held so equivalent to spin_lock_irqsave for
1509 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1510 */
1511 spin_lock(&zone->lock);
1512 isolated_pageblocks = has_isolate_pageblock(zone);
1513
1514 /*
1515 * Use safe version since after __free_one_page(),
1516 * page->lru.next will not point to original list.
1517 */
1518 list_for_each_entry_safe(page, tmp, &head, lru) {
1519 int mt = get_pcppage_migratetype(page);
1520
1521 /* mt has been encoded with the order (see above) */
1522 order = mt & NR_PCP_ORDER_MASK;
1523 mt >>= NR_PCP_ORDER_WIDTH;
1524
1525 /* MIGRATE_ISOLATE page should not go to pcplists */
1526 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1527 /* Pageblock could have been isolated meanwhile */
1528 if (unlikely(isolated_pageblocks))
1529 mt = get_pageblock_migratetype(page);
1530
1531 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1532 trace_mm_page_pcpu_drain(page, order, mt);
1533 }
1534 spin_unlock(&zone->lock);
1535}
1536
1537static void free_one_page(struct zone *zone,
1538 struct page *page, unsigned long pfn,
1539 unsigned int order,
1540 int migratetype, fpi_t fpi_flags)
1541{
1542 unsigned long flags;
1543
1544 spin_lock_irqsave(&zone->lock, flags);
1545 if (unlikely(has_isolate_pageblock(zone) ||
1546 is_migrate_isolate(migratetype))) {
1547 migratetype = get_pfnblock_migratetype(page, pfn);
1548 }
1549 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1550 spin_unlock_irqrestore(&zone->lock, flags);
1551}
1552
1553static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1554 unsigned long zone, int nid)
1555{
1556 mm_zero_struct_page(page);
1557 set_page_links(page, zone, nid, pfn);
1558 init_page_count(page);
1559 page_mapcount_reset(page);
1560 page_cpupid_reset_last(page);
1561 page_kasan_tag_reset(page);
1562
1563 INIT_LIST_HEAD(&page->lru);
1564#ifdef WANT_PAGE_VIRTUAL
1565 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1566 if (!is_highmem_idx(zone))
1567 set_page_address(page, __va(pfn << PAGE_SHIFT));
1568#endif
1569}
1570
1571#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1572static void __meminit init_reserved_page(unsigned long pfn)
1573{
1574 pg_data_t *pgdat;
1575 int nid, zid;
1576
1577 if (!early_page_uninitialised(pfn))
1578 return;
1579
1580 nid = early_pfn_to_nid(pfn);
1581 pgdat = NODE_DATA(nid);
1582
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 struct zone *zone = &pgdat->node_zones[zid];
1585
1586 if (zone_spans_pfn(zone, pfn))
1587 break;
1588 }
1589 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1590}
1591#else
1592static inline void init_reserved_page(unsigned long pfn)
1593{
1594}
1595#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1596
1597/*
1598 * Initialised pages do not have PageReserved set. This function is
1599 * called for each range allocated by the bootmem allocator and
1600 * marks the pages PageReserved. The remaining valid pages are later
1601 * sent to the buddy page allocator.
1602 */
1603void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1604{
1605 unsigned long start_pfn = PFN_DOWN(start);
1606 unsigned long end_pfn = PFN_UP(end);
1607
1608 for (; start_pfn < end_pfn; start_pfn++) {
1609 if (pfn_valid(start_pfn)) {
1610 struct page *page = pfn_to_page(start_pfn);
1611
1612 init_reserved_page(start_pfn);
1613
1614 /* Avoid false-positive PageTail() */
1615 INIT_LIST_HEAD(&page->lru);
1616
1617 /*
1618 * no need for atomic set_bit because the struct
1619 * page is not visible yet so nobody should
1620 * access it yet.
1621 */
1622 __SetPageReserved(page);
1623 }
1624 }
1625}
1626
1627static void __free_pages_ok(struct page *page, unsigned int order,
1628 fpi_t fpi_flags)
1629{
1630 unsigned long flags;
1631 int migratetype;
1632 unsigned long pfn = page_to_pfn(page);
1633 struct zone *zone = page_zone(page);
1634
1635 if (!free_pages_prepare(page, order, true, fpi_flags))
1636 return;
1637
1638 migratetype = get_pfnblock_migratetype(page, pfn);
1639
1640 spin_lock_irqsave(&zone->lock, flags);
1641 if (unlikely(has_isolate_pageblock(zone) ||
1642 is_migrate_isolate(migratetype))) {
1643 migratetype = get_pfnblock_migratetype(page, pfn);
1644 }
1645 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1646 spin_unlock_irqrestore(&zone->lock, flags);
1647
1648 __count_vm_events(PGFREE, 1 << order);
1649}
1650
1651void __free_pages_core(struct page *page, unsigned int order)
1652{
1653 unsigned int nr_pages = 1 << order;
1654 struct page *p = page;
1655 unsigned int loop;
1656
1657 /*
1658 * When initializing the memmap, __init_single_page() sets the refcount
1659 * of all pages to 1 ("allocated"/"not free"). We have to set the
1660 * refcount of all involved pages to 0.
1661 */
1662 prefetchw(p);
1663 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1664 prefetchw(p + 1);
1665 __ClearPageReserved(p);
1666 set_page_count(p, 0);
1667 }
1668 __ClearPageReserved(p);
1669 set_page_count(p, 0);
1670
1671 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1672
1673 /*
1674 * Bypass PCP and place fresh pages right to the tail, primarily
1675 * relevant for memory onlining.
1676 */
1677 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1678}
1679
1680#ifdef CONFIG_NUMA
1681
1682/*
1683 * During memory init memblocks map pfns to nids. The search is expensive and
1684 * this caches recent lookups. The implementation of __early_pfn_to_nid
1685 * treats start/end as pfns.
1686 */
1687struct mminit_pfnnid_cache {
1688 unsigned long last_start;
1689 unsigned long last_end;
1690 int last_nid;
1691};
1692
1693static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1694
1695/*
1696 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1697 */
1698static int __meminit __early_pfn_to_nid(unsigned long pfn,
1699 struct mminit_pfnnid_cache *state)
1700{
1701 unsigned long start_pfn, end_pfn;
1702 int nid;
1703
1704 if (state->last_start <= pfn && pfn < state->last_end)
1705 return state->last_nid;
1706
1707 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1708 if (nid != NUMA_NO_NODE) {
1709 state->last_start = start_pfn;
1710 state->last_end = end_pfn;
1711 state->last_nid = nid;
1712 }
1713
1714 return nid;
1715}
1716
1717int __meminit early_pfn_to_nid(unsigned long pfn)
1718{
1719 static DEFINE_SPINLOCK(early_pfn_lock);
1720 int nid;
1721
1722 spin_lock(&early_pfn_lock);
1723 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1724 if (nid < 0)
1725 nid = first_online_node;
1726 spin_unlock(&early_pfn_lock);
1727
1728 return nid;
1729}
1730#endif /* CONFIG_NUMA */
1731
1732void __init memblock_free_pages(struct page *page, unsigned long pfn,
1733 unsigned int order)
1734{
1735 if (early_page_uninitialised(pfn))
1736 return;
1737 __free_pages_core(page, order);
1738}
1739
1740/*
1741 * Check that the whole (or subset of) a pageblock given by the interval of
1742 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1743 * with the migration of free compaction scanner.
1744 *
1745 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1746 *
1747 * It's possible on some configurations to have a setup like node0 node1 node0
1748 * i.e. it's possible that all pages within a zones range of pages do not
1749 * belong to a single zone. We assume that a border between node0 and node1
1750 * can occur within a single pageblock, but not a node0 node1 node0
1751 * interleaving within a single pageblock. It is therefore sufficient to check
1752 * the first and last page of a pageblock and avoid checking each individual
1753 * page in a pageblock.
1754 */
1755struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1756 unsigned long end_pfn, struct zone *zone)
1757{
1758 struct page *start_page;
1759 struct page *end_page;
1760
1761 /* end_pfn is one past the range we are checking */
1762 end_pfn--;
1763
1764 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1765 return NULL;
1766
1767 start_page = pfn_to_online_page(start_pfn);
1768 if (!start_page)
1769 return NULL;
1770
1771 if (page_zone(start_page) != zone)
1772 return NULL;
1773
1774 end_page = pfn_to_page(end_pfn);
1775
1776 /* This gives a shorter code than deriving page_zone(end_page) */
1777 if (page_zone_id(start_page) != page_zone_id(end_page))
1778 return NULL;
1779
1780 return start_page;
1781}
1782
1783void set_zone_contiguous(struct zone *zone)
1784{
1785 unsigned long block_start_pfn = zone->zone_start_pfn;
1786 unsigned long block_end_pfn;
1787
1788 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1789 for (; block_start_pfn < zone_end_pfn(zone);
1790 block_start_pfn = block_end_pfn,
1791 block_end_pfn += pageblock_nr_pages) {
1792
1793 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1794
1795 if (!__pageblock_pfn_to_page(block_start_pfn,
1796 block_end_pfn, zone))
1797 return;
1798 cond_resched();
1799 }
1800
1801 /* We confirm that there is no hole */
1802 zone->contiguous = true;
1803}
1804
1805void clear_zone_contiguous(struct zone *zone)
1806{
1807 zone->contiguous = false;
1808}
1809
1810#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1811static void __init deferred_free_range(unsigned long pfn,
1812 unsigned long nr_pages)
1813{
1814 struct page *page;
1815 unsigned long i;
1816
1817 if (!nr_pages)
1818 return;
1819
1820 page = pfn_to_page(pfn);
1821
1822 /* Free a large naturally-aligned chunk if possible */
1823 if (nr_pages == pageblock_nr_pages &&
1824 (pfn & (pageblock_nr_pages - 1)) == 0) {
1825 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1826 __free_pages_core(page, pageblock_order);
1827 return;
1828 }
1829
1830 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1831 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1832 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1833 __free_pages_core(page, 0);
1834 }
1835}
1836
1837/* Completion tracking for deferred_init_memmap() threads */
1838static atomic_t pgdat_init_n_undone __initdata;
1839static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1840
1841static inline void __init pgdat_init_report_one_done(void)
1842{
1843 if (atomic_dec_and_test(&pgdat_init_n_undone))
1844 complete(&pgdat_init_all_done_comp);
1845}
1846
1847/*
1848 * Returns true if page needs to be initialized or freed to buddy allocator.
1849 *
1850 * First we check if pfn is valid on architectures where it is possible to have
1851 * holes within pageblock_nr_pages. On systems where it is not possible, this
1852 * function is optimized out.
1853 *
1854 * Then, we check if a current large page is valid by only checking the validity
1855 * of the head pfn.
1856 */
1857static inline bool __init deferred_pfn_valid(unsigned long pfn)
1858{
1859 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1860 return false;
1861 return true;
1862}
1863
1864/*
1865 * Free pages to buddy allocator. Try to free aligned pages in
1866 * pageblock_nr_pages sizes.
1867 */
1868static void __init deferred_free_pages(unsigned long pfn,
1869 unsigned long end_pfn)
1870{
1871 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1872 unsigned long nr_free = 0;
1873
1874 for (; pfn < end_pfn; pfn++) {
1875 if (!deferred_pfn_valid(pfn)) {
1876 deferred_free_range(pfn - nr_free, nr_free);
1877 nr_free = 0;
1878 } else if (!(pfn & nr_pgmask)) {
1879 deferred_free_range(pfn - nr_free, nr_free);
1880 nr_free = 1;
1881 } else {
1882 nr_free++;
1883 }
1884 }
1885 /* Free the last block of pages to allocator */
1886 deferred_free_range(pfn - nr_free, nr_free);
1887}
1888
1889/*
1890 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1891 * by performing it only once every pageblock_nr_pages.
1892 * Return number of pages initialized.
1893 */
1894static unsigned long __init deferred_init_pages(struct zone *zone,
1895 unsigned long pfn,
1896 unsigned long end_pfn)
1897{
1898 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1899 int nid = zone_to_nid(zone);
1900 unsigned long nr_pages = 0;
1901 int zid = zone_idx(zone);
1902 struct page *page = NULL;
1903
1904 for (; pfn < end_pfn; pfn++) {
1905 if (!deferred_pfn_valid(pfn)) {
1906 page = NULL;
1907 continue;
1908 } else if (!page || !(pfn & nr_pgmask)) {
1909 page = pfn_to_page(pfn);
1910 } else {
1911 page++;
1912 }
1913 __init_single_page(page, pfn, zid, nid);
1914 nr_pages++;
1915 }
1916 return (nr_pages);
1917}
1918
1919/*
1920 * This function is meant to pre-load the iterator for the zone init.
1921 * Specifically it walks through the ranges until we are caught up to the
1922 * first_init_pfn value and exits there. If we never encounter the value we
1923 * return false indicating there are no valid ranges left.
1924 */
1925static bool __init
1926deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1927 unsigned long *spfn, unsigned long *epfn,
1928 unsigned long first_init_pfn)
1929{
1930 u64 j;
1931
1932 /*
1933 * Start out by walking through the ranges in this zone that have
1934 * already been initialized. We don't need to do anything with them
1935 * so we just need to flush them out of the system.
1936 */
1937 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1938 if (*epfn <= first_init_pfn)
1939 continue;
1940 if (*spfn < first_init_pfn)
1941 *spfn = first_init_pfn;
1942 *i = j;
1943 return true;
1944 }
1945
1946 return false;
1947}
1948
1949/*
1950 * Initialize and free pages. We do it in two loops: first we initialize
1951 * struct page, then free to buddy allocator, because while we are
1952 * freeing pages we can access pages that are ahead (computing buddy
1953 * page in __free_one_page()).
1954 *
1955 * In order to try and keep some memory in the cache we have the loop
1956 * broken along max page order boundaries. This way we will not cause
1957 * any issues with the buddy page computation.
1958 */
1959static unsigned long __init
1960deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1961 unsigned long *end_pfn)
1962{
1963 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1964 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1965 unsigned long nr_pages = 0;
1966 u64 j = *i;
1967
1968 /* First we loop through and initialize the page values */
1969 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1970 unsigned long t;
1971
1972 if (mo_pfn <= *start_pfn)
1973 break;
1974
1975 t = min(mo_pfn, *end_pfn);
1976 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1977
1978 if (mo_pfn < *end_pfn) {
1979 *start_pfn = mo_pfn;
1980 break;
1981 }
1982 }
1983
1984 /* Reset values and now loop through freeing pages as needed */
1985 swap(j, *i);
1986
1987 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1988 unsigned long t;
1989
1990 if (mo_pfn <= spfn)
1991 break;
1992
1993 t = min(mo_pfn, epfn);
1994 deferred_free_pages(spfn, t);
1995
1996 if (mo_pfn <= epfn)
1997 break;
1998 }
1999
2000 return nr_pages;
2001}
2002
2003static void __init
2004deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2005 void *arg)
2006{
2007 unsigned long spfn, epfn;
2008 struct zone *zone = arg;
2009 u64 i;
2010
2011 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2012
2013 /*
2014 * Initialize and free pages in MAX_ORDER sized increments so that we
2015 * can avoid introducing any issues with the buddy allocator.
2016 */
2017 while (spfn < end_pfn) {
2018 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2019 cond_resched();
2020 }
2021}
2022
2023/* An arch may override for more concurrency. */
2024__weak int __init
2025deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2026{
2027 return 1;
2028}
2029
2030/* Initialise remaining memory on a node */
2031static int __init deferred_init_memmap(void *data)
2032{
2033 pg_data_t *pgdat = data;
2034 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2035 unsigned long spfn = 0, epfn = 0;
2036 unsigned long first_init_pfn, flags;
2037 unsigned long start = jiffies;
2038 struct zone *zone;
2039 int zid, max_threads;
2040 u64 i;
2041
2042 /* Bind memory initialisation thread to a local node if possible */
2043 if (!cpumask_empty(cpumask))
2044 set_cpus_allowed_ptr(current, cpumask);
2045
2046 pgdat_resize_lock(pgdat, &flags);
2047 first_init_pfn = pgdat->first_deferred_pfn;
2048 if (first_init_pfn == ULONG_MAX) {
2049 pgdat_resize_unlock(pgdat, &flags);
2050 pgdat_init_report_one_done();
2051 return 0;
2052 }
2053
2054 /* Sanity check boundaries */
2055 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2056 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2057 pgdat->first_deferred_pfn = ULONG_MAX;
2058
2059 /*
2060 * Once we unlock here, the zone cannot be grown anymore, thus if an
2061 * interrupt thread must allocate this early in boot, zone must be
2062 * pre-grown prior to start of deferred page initialization.
2063 */
2064 pgdat_resize_unlock(pgdat, &flags);
2065
2066 /* Only the highest zone is deferred so find it */
2067 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2068 zone = pgdat->node_zones + zid;
2069 if (first_init_pfn < zone_end_pfn(zone))
2070 break;
2071 }
2072
2073 /* If the zone is empty somebody else may have cleared out the zone */
2074 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2075 first_init_pfn))
2076 goto zone_empty;
2077
2078 max_threads = deferred_page_init_max_threads(cpumask);
2079
2080 while (spfn < epfn) {
2081 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2082 struct padata_mt_job job = {
2083 .thread_fn = deferred_init_memmap_chunk,
2084 .fn_arg = zone,
2085 .start = spfn,
2086 .size = epfn_align - spfn,
2087 .align = PAGES_PER_SECTION,
2088 .min_chunk = PAGES_PER_SECTION,
2089 .max_threads = max_threads,
2090 };
2091
2092 padata_do_multithreaded(&job);
2093 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2094 epfn_align);
2095 }
2096zone_empty:
2097 /* Sanity check that the next zone really is unpopulated */
2098 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2099
2100 pr_info("node %d deferred pages initialised in %ums\n",
2101 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2102
2103 pgdat_init_report_one_done();
2104 return 0;
2105}
2106
2107/*
2108 * If this zone has deferred pages, try to grow it by initializing enough
2109 * deferred pages to satisfy the allocation specified by order, rounded up to
2110 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2111 * of SECTION_SIZE bytes by initializing struct pages in increments of
2112 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2113 *
2114 * Return true when zone was grown, otherwise return false. We return true even
2115 * when we grow less than requested, to let the caller decide if there are
2116 * enough pages to satisfy the allocation.
2117 *
2118 * Note: We use noinline because this function is needed only during boot, and
2119 * it is called from a __ref function _deferred_grow_zone. This way we are
2120 * making sure that it is not inlined into permanent text section.
2121 */
2122static noinline bool __init
2123deferred_grow_zone(struct zone *zone, unsigned int order)
2124{
2125 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2126 pg_data_t *pgdat = zone->zone_pgdat;
2127 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2128 unsigned long spfn, epfn, flags;
2129 unsigned long nr_pages = 0;
2130 u64 i;
2131
2132 /* Only the last zone may have deferred pages */
2133 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2134 return false;
2135
2136 pgdat_resize_lock(pgdat, &flags);
2137
2138 /*
2139 * If someone grew this zone while we were waiting for spinlock, return
2140 * true, as there might be enough pages already.
2141 */
2142 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2143 pgdat_resize_unlock(pgdat, &flags);
2144 return true;
2145 }
2146
2147 /* If the zone is empty somebody else may have cleared out the zone */
2148 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2149 first_deferred_pfn)) {
2150 pgdat->first_deferred_pfn = ULONG_MAX;
2151 pgdat_resize_unlock(pgdat, &flags);
2152 /* Retry only once. */
2153 return first_deferred_pfn != ULONG_MAX;
2154 }
2155
2156 /*
2157 * Initialize and free pages in MAX_ORDER sized increments so
2158 * that we can avoid introducing any issues with the buddy
2159 * allocator.
2160 */
2161 while (spfn < epfn) {
2162 /* update our first deferred PFN for this section */
2163 first_deferred_pfn = spfn;
2164
2165 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2166 touch_nmi_watchdog();
2167
2168 /* We should only stop along section boundaries */
2169 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2170 continue;
2171
2172 /* If our quota has been met we can stop here */
2173 if (nr_pages >= nr_pages_needed)
2174 break;
2175 }
2176
2177 pgdat->first_deferred_pfn = spfn;
2178 pgdat_resize_unlock(pgdat, &flags);
2179
2180 return nr_pages > 0;
2181}
2182
2183/*
2184 * deferred_grow_zone() is __init, but it is called from
2185 * get_page_from_freelist() during early boot until deferred_pages permanently
2186 * disables this call. This is why we have refdata wrapper to avoid warning,
2187 * and to ensure that the function body gets unloaded.
2188 */
2189static bool __ref
2190_deferred_grow_zone(struct zone *zone, unsigned int order)
2191{
2192 return deferred_grow_zone(zone, order);
2193}
2194
2195#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2196
2197void __init page_alloc_init_late(void)
2198{
2199 struct zone *zone;
2200 int nid;
2201
2202#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2203
2204 /* There will be num_node_state(N_MEMORY) threads */
2205 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2206 for_each_node_state(nid, N_MEMORY) {
2207 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2208 }
2209
2210 /* Block until all are initialised */
2211 wait_for_completion(&pgdat_init_all_done_comp);
2212
2213 /*
2214 * We initialized the rest of the deferred pages. Permanently disable
2215 * on-demand struct page initialization.
2216 */
2217 static_branch_disable(&deferred_pages);
2218
2219 /* Reinit limits that are based on free pages after the kernel is up */
2220 files_maxfiles_init();
2221#endif
2222
2223 buffer_init();
2224
2225 /* Discard memblock private memory */
2226 memblock_discard();
2227
2228 for_each_node_state(nid, N_MEMORY)
2229 shuffle_free_memory(NODE_DATA(nid));
2230
2231 for_each_populated_zone(zone)
2232 set_zone_contiguous(zone);
2233}
2234
2235#ifdef CONFIG_CMA
2236/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2237void __init init_cma_reserved_pageblock(struct page *page)
2238{
2239 unsigned i = pageblock_nr_pages;
2240 struct page *p = page;
2241
2242 do {
2243 __ClearPageReserved(p);
2244 set_page_count(p, 0);
2245 } while (++p, --i);
2246
2247 set_pageblock_migratetype(page, MIGRATE_CMA);
2248
2249 if (pageblock_order >= MAX_ORDER) {
2250 i = pageblock_nr_pages;
2251 p = page;
2252 do {
2253 set_page_refcounted(p);
2254 __free_pages(p, MAX_ORDER - 1);
2255 p += MAX_ORDER_NR_PAGES;
2256 } while (i -= MAX_ORDER_NR_PAGES);
2257 } else {
2258 set_page_refcounted(page);
2259 __free_pages(page, pageblock_order);
2260 }
2261
2262 adjust_managed_page_count(page, pageblock_nr_pages);
2263 page_zone(page)->cma_pages += pageblock_nr_pages;
2264}
2265#endif
2266
2267/*
2268 * The order of subdivision here is critical for the IO subsystem.
2269 * Please do not alter this order without good reasons and regression
2270 * testing. Specifically, as large blocks of memory are subdivided,
2271 * the order in which smaller blocks are delivered depends on the order
2272 * they're subdivided in this function. This is the primary factor
2273 * influencing the order in which pages are delivered to the IO
2274 * subsystem according to empirical testing, and this is also justified
2275 * by considering the behavior of a buddy system containing a single
2276 * large block of memory acted on by a series of small allocations.
2277 * This behavior is a critical factor in sglist merging's success.
2278 *
2279 * -- nyc
2280 */
2281static inline void expand(struct zone *zone, struct page *page,
2282 int low, int high, int migratetype)
2283{
2284 unsigned long size = 1 << high;
2285
2286 while (high > low) {
2287 high--;
2288 size >>= 1;
2289 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2290
2291 /*
2292 * Mark as guard pages (or page), that will allow to
2293 * merge back to allocator when buddy will be freed.
2294 * Corresponding page table entries will not be touched,
2295 * pages will stay not present in virtual address space
2296 */
2297 if (set_page_guard(zone, &page[size], high, migratetype))
2298 continue;
2299
2300 add_to_free_list(&page[size], zone, high, migratetype);
2301 set_buddy_order(&page[size], high);
2302 }
2303}
2304
2305static void check_new_page_bad(struct page *page)
2306{
2307 if (unlikely(page->flags & __PG_HWPOISON)) {
2308 /* Don't complain about hwpoisoned pages */
2309 page_mapcount_reset(page); /* remove PageBuddy */
2310 return;
2311 }
2312
2313 bad_page(page,
2314 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2315}
2316
2317/*
2318 * This page is about to be returned from the page allocator
2319 */
2320static inline int check_new_page(struct page *page)
2321{
2322 if (likely(page_expected_state(page,
2323 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2324 return 0;
2325
2326 check_new_page_bad(page);
2327 return 1;
2328}
2329
2330#ifdef CONFIG_DEBUG_VM
2331/*
2332 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2333 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2334 * also checked when pcp lists are refilled from the free lists.
2335 */
2336static inline bool check_pcp_refill(struct page *page)
2337{
2338 if (debug_pagealloc_enabled_static())
2339 return check_new_page(page);
2340 else
2341 return false;
2342}
2343
2344static inline bool check_new_pcp(struct page *page)
2345{
2346 return check_new_page(page);
2347}
2348#else
2349/*
2350 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2351 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2352 * enabled, they are also checked when being allocated from the pcp lists.
2353 */
2354static inline bool check_pcp_refill(struct page *page)
2355{
2356 return check_new_page(page);
2357}
2358static inline bool check_new_pcp(struct page *page)
2359{
2360 if (debug_pagealloc_enabled_static())
2361 return check_new_page(page);
2362 else
2363 return false;
2364}
2365#endif /* CONFIG_DEBUG_VM */
2366
2367static bool check_new_pages(struct page *page, unsigned int order)
2368{
2369 int i;
2370 for (i = 0; i < (1 << order); i++) {
2371 struct page *p = page + i;
2372
2373 if (unlikely(check_new_page(p)))
2374 return true;
2375 }
2376
2377 return false;
2378}
2379
2380inline void post_alloc_hook(struct page *page, unsigned int order,
2381 gfp_t gfp_flags)
2382{
2383 set_page_private(page, 0);
2384 set_page_refcounted(page);
2385
2386 arch_alloc_page(page, order);
2387 debug_pagealloc_map_pages(page, 1 << order);
2388
2389 /*
2390 * Page unpoisoning must happen before memory initialization.
2391 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2392 * allocations and the page unpoisoning code will complain.
2393 */
2394 kernel_unpoison_pages(page, 1 << order);
2395
2396 /*
2397 * As memory initialization might be integrated into KASAN,
2398 * kasan_alloc_pages and kernel_init_free_pages must be
2399 * kept together to avoid discrepancies in behavior.
2400 */
2401 if (kasan_has_integrated_init()) {
2402 kasan_alloc_pages(page, order, gfp_flags);
2403 } else {
2404 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2405
2406 kasan_unpoison_pages(page, order, init);
2407 if (init)
2408 kernel_init_free_pages(page, 1 << order,
2409 gfp_flags & __GFP_ZEROTAGS);
2410 }
2411
2412 set_page_owner(page, order, gfp_flags);
2413}
2414
2415static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2416 unsigned int alloc_flags)
2417{
2418 post_alloc_hook(page, order, gfp_flags);
2419
2420 if (order && (gfp_flags & __GFP_COMP))
2421 prep_compound_page(page, order);
2422
2423 /*
2424 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2425 * allocate the page. The expectation is that the caller is taking
2426 * steps that will free more memory. The caller should avoid the page
2427 * being used for !PFMEMALLOC purposes.
2428 */
2429 if (alloc_flags & ALLOC_NO_WATERMARKS)
2430 set_page_pfmemalloc(page);
2431 else
2432 clear_page_pfmemalloc(page);
2433}
2434
2435/*
2436 * Go through the free lists for the given migratetype and remove
2437 * the smallest available page from the freelists
2438 */
2439static __always_inline
2440struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2441 int migratetype)
2442{
2443 unsigned int current_order;
2444 struct free_area *area;
2445 struct page *page;
2446
2447 /* Find a page of the appropriate size in the preferred list */
2448 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2449 area = &(zone->free_area[current_order]);
2450 page = get_page_from_free_area(area, migratetype);
2451 if (!page)
2452 continue;
2453 del_page_from_free_list(page, zone, current_order);
2454 expand(zone, page, order, current_order, migratetype);
2455 set_pcppage_migratetype(page, migratetype);
2456 return page;
2457 }
2458
2459 return NULL;
2460}
2461
2462
2463/*
2464 * This array describes the order lists are fallen back to when
2465 * the free lists for the desirable migrate type are depleted
2466 */
2467static int fallbacks[MIGRATE_TYPES][3] = {
2468 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2469 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2470 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2471#ifdef CONFIG_CMA
2472 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2473#endif
2474#ifdef CONFIG_MEMORY_ISOLATION
2475 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2476#endif
2477};
2478
2479#ifdef CONFIG_CMA
2480static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2481 unsigned int order)
2482{
2483 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2484}
2485#else
2486static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2487 unsigned int order) { return NULL; }
2488#endif
2489
2490/*
2491 * Move the free pages in a range to the freelist tail of the requested type.
2492 * Note that start_page and end_pages are not aligned on a pageblock
2493 * boundary. If alignment is required, use move_freepages_block()
2494 */
2495static int move_freepages(struct zone *zone,
2496 unsigned long start_pfn, unsigned long end_pfn,
2497 int migratetype, int *num_movable)
2498{
2499 struct page *page;
2500 unsigned long pfn;
2501 unsigned int order;
2502 int pages_moved = 0;
2503
2504 for (pfn = start_pfn; pfn <= end_pfn;) {
2505 page = pfn_to_page(pfn);
2506 if (!PageBuddy(page)) {
2507 /*
2508 * We assume that pages that could be isolated for
2509 * migration are movable. But we don't actually try
2510 * isolating, as that would be expensive.
2511 */
2512 if (num_movable &&
2513 (PageLRU(page) || __PageMovable(page)))
2514 (*num_movable)++;
2515 pfn++;
2516 continue;
2517 }
2518
2519 /* Make sure we are not inadvertently changing nodes */
2520 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2521 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2522
2523 order = buddy_order(page);
2524 move_to_free_list(page, zone, order, migratetype);
2525 pfn += 1 << order;
2526 pages_moved += 1 << order;
2527 }
2528
2529 return pages_moved;
2530}
2531
2532int move_freepages_block(struct zone *zone, struct page *page,
2533 int migratetype, int *num_movable)
2534{
2535 unsigned long start_pfn, end_pfn, pfn;
2536
2537 if (num_movable)
2538 *num_movable = 0;
2539
2540 pfn = page_to_pfn(page);
2541 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2542 end_pfn = start_pfn + pageblock_nr_pages - 1;
2543
2544 /* Do not cross zone boundaries */
2545 if (!zone_spans_pfn(zone, start_pfn))
2546 start_pfn = pfn;
2547 if (!zone_spans_pfn(zone, end_pfn))
2548 return 0;
2549
2550 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2551 num_movable);
2552}
2553
2554static void change_pageblock_range(struct page *pageblock_page,
2555 int start_order, int migratetype)
2556{
2557 int nr_pageblocks = 1 << (start_order - pageblock_order);
2558
2559 while (nr_pageblocks--) {
2560 set_pageblock_migratetype(pageblock_page, migratetype);
2561 pageblock_page += pageblock_nr_pages;
2562 }
2563}
2564
2565/*
2566 * When we are falling back to another migratetype during allocation, try to
2567 * steal extra free pages from the same pageblocks to satisfy further
2568 * allocations, instead of polluting multiple pageblocks.
2569 *
2570 * If we are stealing a relatively large buddy page, it is likely there will
2571 * be more free pages in the pageblock, so try to steal them all. For
2572 * reclaimable and unmovable allocations, we steal regardless of page size,
2573 * as fragmentation caused by those allocations polluting movable pageblocks
2574 * is worse than movable allocations stealing from unmovable and reclaimable
2575 * pageblocks.
2576 */
2577static bool can_steal_fallback(unsigned int order, int start_mt)
2578{
2579 /*
2580 * Leaving this order check is intended, although there is
2581 * relaxed order check in next check. The reason is that
2582 * we can actually steal whole pageblock if this condition met,
2583 * but, below check doesn't guarantee it and that is just heuristic
2584 * so could be changed anytime.
2585 */
2586 if (order >= pageblock_order)
2587 return true;
2588
2589 if (order >= pageblock_order / 2 ||
2590 start_mt == MIGRATE_RECLAIMABLE ||
2591 start_mt == MIGRATE_UNMOVABLE ||
2592 page_group_by_mobility_disabled)
2593 return true;
2594
2595 return false;
2596}
2597
2598static inline bool boost_watermark(struct zone *zone)
2599{
2600 unsigned long max_boost;
2601
2602 if (!watermark_boost_factor)
2603 return false;
2604 /*
2605 * Don't bother in zones that are unlikely to produce results.
2606 * On small machines, including kdump capture kernels running
2607 * in a small area, boosting the watermark can cause an out of
2608 * memory situation immediately.
2609 */
2610 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2611 return false;
2612
2613 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2614 watermark_boost_factor, 10000);
2615
2616 /*
2617 * high watermark may be uninitialised if fragmentation occurs
2618 * very early in boot so do not boost. We do not fall
2619 * through and boost by pageblock_nr_pages as failing
2620 * allocations that early means that reclaim is not going
2621 * to help and it may even be impossible to reclaim the
2622 * boosted watermark resulting in a hang.
2623 */
2624 if (!max_boost)
2625 return false;
2626
2627 max_boost = max(pageblock_nr_pages, max_boost);
2628
2629 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2630 max_boost);
2631
2632 return true;
2633}
2634
2635/*
2636 * This function implements actual steal behaviour. If order is large enough,
2637 * we can steal whole pageblock. If not, we first move freepages in this
2638 * pageblock to our migratetype and determine how many already-allocated pages
2639 * are there in the pageblock with a compatible migratetype. If at least half
2640 * of pages are free or compatible, we can change migratetype of the pageblock
2641 * itself, so pages freed in the future will be put on the correct free list.
2642 */
2643static void steal_suitable_fallback(struct zone *zone, struct page *page,
2644 unsigned int alloc_flags, int start_type, bool whole_block)
2645{
2646 unsigned int current_order = buddy_order(page);
2647 int free_pages, movable_pages, alike_pages;
2648 int old_block_type;
2649
2650 old_block_type = get_pageblock_migratetype(page);
2651
2652 /*
2653 * This can happen due to races and we want to prevent broken
2654 * highatomic accounting.
2655 */
2656 if (is_migrate_highatomic(old_block_type))
2657 goto single_page;
2658
2659 /* Take ownership for orders >= pageblock_order */
2660 if (current_order >= pageblock_order) {
2661 change_pageblock_range(page, current_order, start_type);
2662 goto single_page;
2663 }
2664
2665 /*
2666 * Boost watermarks to increase reclaim pressure to reduce the
2667 * likelihood of future fallbacks. Wake kswapd now as the node
2668 * may be balanced overall and kswapd will not wake naturally.
2669 */
2670 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2671 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2672
2673 /* We are not allowed to try stealing from the whole block */
2674 if (!whole_block)
2675 goto single_page;
2676
2677 free_pages = move_freepages_block(zone, page, start_type,
2678 &movable_pages);
2679 /*
2680 * Determine how many pages are compatible with our allocation.
2681 * For movable allocation, it's the number of movable pages which
2682 * we just obtained. For other types it's a bit more tricky.
2683 */
2684 if (start_type == MIGRATE_MOVABLE) {
2685 alike_pages = movable_pages;
2686 } else {
2687 /*
2688 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2689 * to MOVABLE pageblock, consider all non-movable pages as
2690 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2691 * vice versa, be conservative since we can't distinguish the
2692 * exact migratetype of non-movable pages.
2693 */
2694 if (old_block_type == MIGRATE_MOVABLE)
2695 alike_pages = pageblock_nr_pages
2696 - (free_pages + movable_pages);
2697 else
2698 alike_pages = 0;
2699 }
2700
2701 /* moving whole block can fail due to zone boundary conditions */
2702 if (!free_pages)
2703 goto single_page;
2704
2705 /*
2706 * If a sufficient number of pages in the block are either free or of
2707 * comparable migratability as our allocation, claim the whole block.
2708 */
2709 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2710 page_group_by_mobility_disabled)
2711 set_pageblock_migratetype(page, start_type);
2712
2713 return;
2714
2715single_page:
2716 move_to_free_list(page, zone, current_order, start_type);
2717}
2718
2719/*
2720 * Check whether there is a suitable fallback freepage with requested order.
2721 * If only_stealable is true, this function returns fallback_mt only if
2722 * we can steal other freepages all together. This would help to reduce
2723 * fragmentation due to mixed migratetype pages in one pageblock.
2724 */
2725int find_suitable_fallback(struct free_area *area, unsigned int order,
2726 int migratetype, bool only_stealable, bool *can_steal)
2727{
2728 int i;
2729 int fallback_mt;
2730
2731 if (area->nr_free == 0)
2732 return -1;
2733
2734 *can_steal = false;
2735 for (i = 0;; i++) {
2736 fallback_mt = fallbacks[migratetype][i];
2737 if (fallback_mt == MIGRATE_TYPES)
2738 break;
2739
2740 if (free_area_empty(area, fallback_mt))
2741 continue;
2742
2743 if (can_steal_fallback(order, migratetype))
2744 *can_steal = true;
2745
2746 if (!only_stealable)
2747 return fallback_mt;
2748
2749 if (*can_steal)
2750 return fallback_mt;
2751 }
2752
2753 return -1;
2754}
2755
2756/*
2757 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2758 * there are no empty page blocks that contain a page with a suitable order
2759 */
2760static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2761 unsigned int alloc_order)
2762{
2763 int mt;
2764 unsigned long max_managed, flags;
2765
2766 /*
2767 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2768 * Check is race-prone but harmless.
2769 */
2770 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2771 if (zone->nr_reserved_highatomic >= max_managed)
2772 return;
2773
2774 spin_lock_irqsave(&zone->lock, flags);
2775
2776 /* Recheck the nr_reserved_highatomic limit under the lock */
2777 if (zone->nr_reserved_highatomic >= max_managed)
2778 goto out_unlock;
2779
2780 /* Yoink! */
2781 mt = get_pageblock_migratetype(page);
2782 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2783 && !is_migrate_cma(mt)) {
2784 zone->nr_reserved_highatomic += pageblock_nr_pages;
2785 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2786 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2787 }
2788
2789out_unlock:
2790 spin_unlock_irqrestore(&zone->lock, flags);
2791}
2792
2793/*
2794 * Used when an allocation is about to fail under memory pressure. This
2795 * potentially hurts the reliability of high-order allocations when under
2796 * intense memory pressure but failed atomic allocations should be easier
2797 * to recover from than an OOM.
2798 *
2799 * If @force is true, try to unreserve a pageblock even though highatomic
2800 * pageblock is exhausted.
2801 */
2802static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2803 bool force)
2804{
2805 struct zonelist *zonelist = ac->zonelist;
2806 unsigned long flags;
2807 struct zoneref *z;
2808 struct zone *zone;
2809 struct page *page;
2810 int order;
2811 bool ret;
2812
2813 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2814 ac->nodemask) {
2815 /*
2816 * Preserve at least one pageblock unless memory pressure
2817 * is really high.
2818 */
2819 if (!force && zone->nr_reserved_highatomic <=
2820 pageblock_nr_pages)
2821 continue;
2822
2823 spin_lock_irqsave(&zone->lock, flags);
2824 for (order = 0; order < MAX_ORDER; order++) {
2825 struct free_area *area = &(zone->free_area[order]);
2826
2827 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2828 if (!page)
2829 continue;
2830
2831 /*
2832 * In page freeing path, migratetype change is racy so
2833 * we can counter several free pages in a pageblock
2834 * in this loop although we changed the pageblock type
2835 * from highatomic to ac->migratetype. So we should
2836 * adjust the count once.
2837 */
2838 if (is_migrate_highatomic_page(page)) {
2839 /*
2840 * It should never happen but changes to
2841 * locking could inadvertently allow a per-cpu
2842 * drain to add pages to MIGRATE_HIGHATOMIC
2843 * while unreserving so be safe and watch for
2844 * underflows.
2845 */
2846 zone->nr_reserved_highatomic -= min(
2847 pageblock_nr_pages,
2848 zone->nr_reserved_highatomic);
2849 }
2850
2851 /*
2852 * Convert to ac->migratetype and avoid the normal
2853 * pageblock stealing heuristics. Minimally, the caller
2854 * is doing the work and needs the pages. More
2855 * importantly, if the block was always converted to
2856 * MIGRATE_UNMOVABLE or another type then the number
2857 * of pageblocks that cannot be completely freed
2858 * may increase.
2859 */
2860 set_pageblock_migratetype(page, ac->migratetype);
2861 ret = move_freepages_block(zone, page, ac->migratetype,
2862 NULL);
2863 if (ret) {
2864 spin_unlock_irqrestore(&zone->lock, flags);
2865 return ret;
2866 }
2867 }
2868 spin_unlock_irqrestore(&zone->lock, flags);
2869 }
2870
2871 return false;
2872}
2873
2874/*
2875 * Try finding a free buddy page on the fallback list and put it on the free
2876 * list of requested migratetype, possibly along with other pages from the same
2877 * block, depending on fragmentation avoidance heuristics. Returns true if
2878 * fallback was found so that __rmqueue_smallest() can grab it.
2879 *
2880 * The use of signed ints for order and current_order is a deliberate
2881 * deviation from the rest of this file, to make the for loop
2882 * condition simpler.
2883 */
2884static __always_inline bool
2885__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2886 unsigned int alloc_flags)
2887{
2888 struct free_area *area;
2889 int current_order;
2890 int min_order = order;
2891 struct page *page;
2892 int fallback_mt;
2893 bool can_steal;
2894
2895 /*
2896 * Do not steal pages from freelists belonging to other pageblocks
2897 * i.e. orders < pageblock_order. If there are no local zones free,
2898 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2899 */
2900 if (alloc_flags & ALLOC_NOFRAGMENT)
2901 min_order = pageblock_order;
2902
2903 /*
2904 * Find the largest available free page in the other list. This roughly
2905 * approximates finding the pageblock with the most free pages, which
2906 * would be too costly to do exactly.
2907 */
2908 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2909 --current_order) {
2910 area = &(zone->free_area[current_order]);
2911 fallback_mt = find_suitable_fallback(area, current_order,
2912 start_migratetype, false, &can_steal);
2913 if (fallback_mt == -1)
2914 continue;
2915
2916 /*
2917 * We cannot steal all free pages from the pageblock and the
2918 * requested migratetype is movable. In that case it's better to
2919 * steal and split the smallest available page instead of the
2920 * largest available page, because even if the next movable
2921 * allocation falls back into a different pageblock than this
2922 * one, it won't cause permanent fragmentation.
2923 */
2924 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2925 && current_order > order)
2926 goto find_smallest;
2927
2928 goto do_steal;
2929 }
2930
2931 return false;
2932
2933find_smallest:
2934 for (current_order = order; current_order < MAX_ORDER;
2935 current_order++) {
2936 area = &(zone->free_area[current_order]);
2937 fallback_mt = find_suitable_fallback(area, current_order,
2938 start_migratetype, false, &can_steal);
2939 if (fallback_mt != -1)
2940 break;
2941 }
2942
2943 /*
2944 * This should not happen - we already found a suitable fallback
2945 * when looking for the largest page.
2946 */
2947 VM_BUG_ON(current_order == MAX_ORDER);
2948
2949do_steal:
2950 page = get_page_from_free_area(area, fallback_mt);
2951
2952 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2953 can_steal);
2954
2955 trace_mm_page_alloc_extfrag(page, order, current_order,
2956 start_migratetype, fallback_mt);
2957
2958 return true;
2959
2960}
2961
2962/*
2963 * Do the hard work of removing an element from the buddy allocator.
2964 * Call me with the zone->lock already held.
2965 */
2966static __always_inline struct page *
2967__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2968 unsigned int alloc_flags)
2969{
2970 struct page *page;
2971
2972 if (IS_ENABLED(CONFIG_CMA)) {
2973 /*
2974 * Balance movable allocations between regular and CMA areas by
2975 * allocating from CMA when over half of the zone's free memory
2976 * is in the CMA area.
2977 */
2978 if (alloc_flags & ALLOC_CMA &&
2979 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2980 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2981 page = __rmqueue_cma_fallback(zone, order);
2982 if (page)
2983 goto out;
2984 }
2985 }
2986retry:
2987 page = __rmqueue_smallest(zone, order, migratetype);
2988 if (unlikely(!page)) {
2989 if (alloc_flags & ALLOC_CMA)
2990 page = __rmqueue_cma_fallback(zone, order);
2991
2992 if (!page && __rmqueue_fallback(zone, order, migratetype,
2993 alloc_flags))
2994 goto retry;
2995 }
2996out:
2997 if (page)
2998 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2999 return page;
3000}
3001
3002/*
3003 * Obtain a specified number of elements from the buddy allocator, all under
3004 * a single hold of the lock, for efficiency. Add them to the supplied list.
3005 * Returns the number of new pages which were placed at *list.
3006 */
3007static int rmqueue_bulk(struct zone *zone, unsigned int order,
3008 unsigned long count, struct list_head *list,
3009 int migratetype, unsigned int alloc_flags)
3010{
3011 int i, allocated = 0;
3012
3013 /*
3014 * local_lock_irq held so equivalent to spin_lock_irqsave for
3015 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3016 */
3017 spin_lock(&zone->lock);
3018 for (i = 0; i < count; ++i) {
3019 struct page *page = __rmqueue(zone, order, migratetype,
3020 alloc_flags);
3021 if (unlikely(page == NULL))
3022 break;
3023
3024 if (unlikely(check_pcp_refill(page)))
3025 continue;
3026
3027 /*
3028 * Split buddy pages returned by expand() are received here in
3029 * physical page order. The page is added to the tail of
3030 * caller's list. From the callers perspective, the linked list
3031 * is ordered by page number under some conditions. This is
3032 * useful for IO devices that can forward direction from the
3033 * head, thus also in the physical page order. This is useful
3034 * for IO devices that can merge IO requests if the physical
3035 * pages are ordered properly.
3036 */
3037 list_add_tail(&page->lru, list);
3038 allocated++;
3039 if (is_migrate_cma(get_pcppage_migratetype(page)))
3040 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3041 -(1 << order));
3042 }
3043
3044 /*
3045 * i pages were removed from the buddy list even if some leak due
3046 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3047 * on i. Do not confuse with 'allocated' which is the number of
3048 * pages added to the pcp list.
3049 */
3050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3051 spin_unlock(&zone->lock);
3052 return allocated;
3053}
3054
3055#ifdef CONFIG_NUMA
3056/*
3057 * Called from the vmstat counter updater to drain pagesets of this
3058 * currently executing processor on remote nodes after they have
3059 * expired.
3060 *
3061 * Note that this function must be called with the thread pinned to
3062 * a single processor.
3063 */
3064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3065{
3066 unsigned long flags;
3067 int to_drain, batch;
3068
3069 local_lock_irqsave(&pagesets.lock, flags);
3070 batch = READ_ONCE(pcp->batch);
3071 to_drain = min(pcp->count, batch);
3072 if (to_drain > 0)
3073 free_pcppages_bulk(zone, to_drain, pcp);
3074 local_unlock_irqrestore(&pagesets.lock, flags);
3075}
3076#endif
3077
3078/*
3079 * Drain pcplists of the indicated processor and zone.
3080 *
3081 * The processor must either be the current processor and the
3082 * thread pinned to the current processor or a processor that
3083 * is not online.
3084 */
3085static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3086{
3087 unsigned long flags;
3088 struct per_cpu_pages *pcp;
3089
3090 local_lock_irqsave(&pagesets.lock, flags);
3091
3092 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3093 if (pcp->count)
3094 free_pcppages_bulk(zone, pcp->count, pcp);
3095
3096 local_unlock_irqrestore(&pagesets.lock, flags);
3097}
3098
3099/*
3100 * Drain pcplists of all zones on the indicated processor.
3101 *
3102 * The processor must either be the current processor and the
3103 * thread pinned to the current processor or a processor that
3104 * is not online.
3105 */
3106static void drain_pages(unsigned int cpu)
3107{
3108 struct zone *zone;
3109
3110 for_each_populated_zone(zone) {
3111 drain_pages_zone(cpu, zone);
3112 }
3113}
3114
3115/*
3116 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3117 *
3118 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3119 * the single zone's pages.
3120 */
3121void drain_local_pages(struct zone *zone)
3122{
3123 int cpu = smp_processor_id();
3124
3125 if (zone)
3126 drain_pages_zone(cpu, zone);
3127 else
3128 drain_pages(cpu);
3129}
3130
3131static void drain_local_pages_wq(struct work_struct *work)
3132{
3133 struct pcpu_drain *drain;
3134
3135 drain = container_of(work, struct pcpu_drain, work);
3136
3137 /*
3138 * drain_all_pages doesn't use proper cpu hotplug protection so
3139 * we can race with cpu offline when the WQ can move this from
3140 * a cpu pinned worker to an unbound one. We can operate on a different
3141 * cpu which is alright but we also have to make sure to not move to
3142 * a different one.
3143 */
3144 migrate_disable();
3145 drain_local_pages(drain->zone);
3146 migrate_enable();
3147}
3148
3149/*
3150 * The implementation of drain_all_pages(), exposing an extra parameter to
3151 * drain on all cpus.
3152 *
3153 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3154 * not empty. The check for non-emptiness can however race with a free to
3155 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3156 * that need the guarantee that every CPU has drained can disable the
3157 * optimizing racy check.
3158 */
3159static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3160{
3161 int cpu;
3162
3163 /*
3164 * Allocate in the BSS so we won't require allocation in
3165 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3166 */
3167 static cpumask_t cpus_with_pcps;
3168
3169 /*
3170 * Make sure nobody triggers this path before mm_percpu_wq is fully
3171 * initialized.
3172 */
3173 if (WARN_ON_ONCE(!mm_percpu_wq))
3174 return;
3175
3176 /*
3177 * Do not drain if one is already in progress unless it's specific to
3178 * a zone. Such callers are primarily CMA and memory hotplug and need
3179 * the drain to be complete when the call returns.
3180 */
3181 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3182 if (!zone)
3183 return;
3184 mutex_lock(&pcpu_drain_mutex);
3185 }
3186
3187 /*
3188 * We don't care about racing with CPU hotplug event
3189 * as offline notification will cause the notified
3190 * cpu to drain that CPU pcps and on_each_cpu_mask
3191 * disables preemption as part of its processing
3192 */
3193 for_each_online_cpu(cpu) {
3194 struct per_cpu_pages *pcp;
3195 struct zone *z;
3196 bool has_pcps = false;
3197
3198 if (force_all_cpus) {
3199 /*
3200 * The pcp.count check is racy, some callers need a
3201 * guarantee that no cpu is missed.
3202 */
3203 has_pcps = true;
3204 } else if (zone) {
3205 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3206 if (pcp->count)
3207 has_pcps = true;
3208 } else {
3209 for_each_populated_zone(z) {
3210 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3211 if (pcp->count) {
3212 has_pcps = true;
3213 break;
3214 }
3215 }
3216 }
3217
3218 if (has_pcps)
3219 cpumask_set_cpu(cpu, &cpus_with_pcps);
3220 else
3221 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3222 }
3223
3224 for_each_cpu(cpu, &cpus_with_pcps) {
3225 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3226
3227 drain->zone = zone;
3228 INIT_WORK(&drain->work, drain_local_pages_wq);
3229 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3230 }
3231 for_each_cpu(cpu, &cpus_with_pcps)
3232 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3233
3234 mutex_unlock(&pcpu_drain_mutex);
3235}
3236
3237/*
3238 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3239 *
3240 * When zone parameter is non-NULL, spill just the single zone's pages.
3241 *
3242 * Note that this can be extremely slow as the draining happens in a workqueue.
3243 */
3244void drain_all_pages(struct zone *zone)
3245{
3246 __drain_all_pages(zone, false);
3247}
3248
3249#ifdef CONFIG_HIBERNATION
3250
3251/*
3252 * Touch the watchdog for every WD_PAGE_COUNT pages.
3253 */
3254#define WD_PAGE_COUNT (128*1024)
3255
3256void mark_free_pages(struct zone *zone)
3257{
3258 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3259 unsigned long flags;
3260 unsigned int order, t;
3261 struct page *page;
3262
3263 if (zone_is_empty(zone))
3264 return;
3265
3266 spin_lock_irqsave(&zone->lock, flags);
3267
3268 max_zone_pfn = zone_end_pfn(zone);
3269 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3270 if (pfn_valid(pfn)) {
3271 page = pfn_to_page(pfn);
3272
3273 if (!--page_count) {
3274 touch_nmi_watchdog();
3275 page_count = WD_PAGE_COUNT;
3276 }
3277
3278 if (page_zone(page) != zone)
3279 continue;
3280
3281 if (!swsusp_page_is_forbidden(page))
3282 swsusp_unset_page_free(page);
3283 }
3284
3285 for_each_migratetype_order(order, t) {
3286 list_for_each_entry(page,
3287 &zone->free_area[order].free_list[t], lru) {
3288 unsigned long i;
3289
3290 pfn = page_to_pfn(page);
3291 for (i = 0; i < (1UL << order); i++) {
3292 if (!--page_count) {
3293 touch_nmi_watchdog();
3294 page_count = WD_PAGE_COUNT;
3295 }
3296 swsusp_set_page_free(pfn_to_page(pfn + i));
3297 }
3298 }
3299 }
3300 spin_unlock_irqrestore(&zone->lock, flags);
3301}
3302#endif /* CONFIG_PM */
3303
3304static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3305 unsigned int order)
3306{
3307 int migratetype;
3308
3309 if (!free_pcp_prepare(page, order))
3310 return false;
3311
3312 migratetype = get_pfnblock_migratetype(page, pfn);
3313 set_pcppage_migratetype(page, migratetype);
3314 return true;
3315}
3316
3317static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3318{
3319 int min_nr_free, max_nr_free;
3320
3321 /* Check for PCP disabled or boot pageset */
3322 if (unlikely(high < batch))
3323 return 1;
3324
3325 /* Leave at least pcp->batch pages on the list */
3326 min_nr_free = batch;
3327 max_nr_free = high - batch;
3328
3329 /*
3330 * Double the number of pages freed each time there is subsequent
3331 * freeing of pages without any allocation.
3332 */
3333 batch <<= pcp->free_factor;
3334 if (batch < max_nr_free)
3335 pcp->free_factor++;
3336 batch = clamp(batch, min_nr_free, max_nr_free);
3337
3338 return batch;
3339}
3340
3341static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3342{
3343 int high = READ_ONCE(pcp->high);
3344
3345 if (unlikely(!high))
3346 return 0;
3347
3348 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3349 return high;
3350
3351 /*
3352 * If reclaim is active, limit the number of pages that can be
3353 * stored on pcp lists
3354 */
3355 return min(READ_ONCE(pcp->batch) << 2, high);
3356}
3357
3358static void free_unref_page_commit(struct page *page, unsigned long pfn,
3359 int migratetype, unsigned int order)
3360{
3361 struct zone *zone = page_zone(page);
3362 struct per_cpu_pages *pcp;
3363 int high;
3364 int pindex;
3365
3366 __count_vm_event(PGFREE);
3367 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3368 pindex = order_to_pindex(migratetype, order);
3369 list_add(&page->lru, &pcp->lists[pindex]);
3370 pcp->count += 1 << order;
3371 high = nr_pcp_high(pcp, zone);
3372 if (pcp->count >= high) {
3373 int batch = READ_ONCE(pcp->batch);
3374
3375 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3376 }
3377}
3378
3379/*
3380 * Free a pcp page
3381 */
3382void free_unref_page(struct page *page, unsigned int order)
3383{
3384 unsigned long flags;
3385 unsigned long pfn = page_to_pfn(page);
3386 int migratetype;
3387
3388 if (!free_unref_page_prepare(page, pfn, order))
3389 return;
3390
3391 /*
3392 * We only track unmovable, reclaimable and movable on pcp lists.
3393 * Place ISOLATE pages on the isolated list because they are being
3394 * offlined but treat HIGHATOMIC as movable pages so we can get those
3395 * areas back if necessary. Otherwise, we may have to free
3396 * excessively into the page allocator
3397 */
3398 migratetype = get_pcppage_migratetype(page);
3399 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3400 if (unlikely(is_migrate_isolate(migratetype))) {
3401 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3402 return;
3403 }
3404 migratetype = MIGRATE_MOVABLE;
3405 }
3406
3407 local_lock_irqsave(&pagesets.lock, flags);
3408 free_unref_page_commit(page, pfn, migratetype, order);
3409 local_unlock_irqrestore(&pagesets.lock, flags);
3410}
3411
3412/*
3413 * Free a list of 0-order pages
3414 */
3415void free_unref_page_list(struct list_head *list)
3416{
3417 struct page *page, *next;
3418 unsigned long flags, pfn;
3419 int batch_count = 0;
3420 int migratetype;
3421
3422 /* Prepare pages for freeing */
3423 list_for_each_entry_safe(page, next, list, lru) {
3424 pfn = page_to_pfn(page);
3425 if (!free_unref_page_prepare(page, pfn, 0)) {
3426 list_del(&page->lru);
3427 continue;
3428 }
3429
3430 /*
3431 * Free isolated pages directly to the allocator, see
3432 * comment in free_unref_page.
3433 */
3434 migratetype = get_pcppage_migratetype(page);
3435 if (unlikely(is_migrate_isolate(migratetype))) {
3436 list_del(&page->lru);
3437 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3438 continue;
3439 }
3440
3441 set_page_private(page, pfn);
3442 }
3443
3444 local_lock_irqsave(&pagesets.lock, flags);
3445 list_for_each_entry_safe(page, next, list, lru) {
3446 pfn = page_private(page);
3447 set_page_private(page, 0);
3448
3449 /*
3450 * Non-isolated types over MIGRATE_PCPTYPES get added
3451 * to the MIGRATE_MOVABLE pcp list.
3452 */
3453 migratetype = get_pcppage_migratetype(page);
3454 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3455 migratetype = MIGRATE_MOVABLE;
3456
3457 trace_mm_page_free_batched(page);
3458 free_unref_page_commit(page, pfn, migratetype, 0);
3459
3460 /*
3461 * Guard against excessive IRQ disabled times when we get
3462 * a large list of pages to free.
3463 */
3464 if (++batch_count == SWAP_CLUSTER_MAX) {
3465 local_unlock_irqrestore(&pagesets.lock, flags);
3466 batch_count = 0;
3467 local_lock_irqsave(&pagesets.lock, flags);
3468 }
3469 }
3470 local_unlock_irqrestore(&pagesets.lock, flags);
3471}
3472
3473/*
3474 * split_page takes a non-compound higher-order page, and splits it into
3475 * n (1<<order) sub-pages: page[0..n]
3476 * Each sub-page must be freed individually.
3477 *
3478 * Note: this is probably too low level an operation for use in drivers.
3479 * Please consult with lkml before using this in your driver.
3480 */
3481void split_page(struct page *page, unsigned int order)
3482{
3483 int i;
3484
3485 VM_BUG_ON_PAGE(PageCompound(page), page);
3486 VM_BUG_ON_PAGE(!page_count(page), page);
3487
3488 for (i = 1; i < (1 << order); i++)
3489 set_page_refcounted(page + i);
3490 split_page_owner(page, 1 << order);
3491 split_page_memcg(page, 1 << order);
3492}
3493EXPORT_SYMBOL_GPL(split_page);
3494
3495int __isolate_free_page(struct page *page, unsigned int order)
3496{
3497 unsigned long watermark;
3498 struct zone *zone;
3499 int mt;
3500
3501 BUG_ON(!PageBuddy(page));
3502
3503 zone = page_zone(page);
3504 mt = get_pageblock_migratetype(page);
3505
3506 if (!is_migrate_isolate(mt)) {
3507 /*
3508 * Obey watermarks as if the page was being allocated. We can
3509 * emulate a high-order watermark check with a raised order-0
3510 * watermark, because we already know our high-order page
3511 * exists.
3512 */
3513 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3514 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3515 return 0;
3516
3517 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3518 }
3519
3520 /* Remove page from free list */
3521
3522 del_page_from_free_list(page, zone, order);
3523
3524 /*
3525 * Set the pageblock if the isolated page is at least half of a
3526 * pageblock
3527 */
3528 if (order >= pageblock_order - 1) {
3529 struct page *endpage = page + (1 << order) - 1;
3530 for (; page < endpage; page += pageblock_nr_pages) {
3531 int mt = get_pageblock_migratetype(page);
3532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3533 && !is_migrate_highatomic(mt))
3534 set_pageblock_migratetype(page,
3535 MIGRATE_MOVABLE);
3536 }
3537 }
3538
3539
3540 return 1UL << order;
3541}
3542
3543/**
3544 * __putback_isolated_page - Return a now-isolated page back where we got it
3545 * @page: Page that was isolated
3546 * @order: Order of the isolated page
3547 * @mt: The page's pageblock's migratetype
3548 *
3549 * This function is meant to return a page pulled from the free lists via
3550 * __isolate_free_page back to the free lists they were pulled from.
3551 */
3552void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3553{
3554 struct zone *zone = page_zone(page);
3555
3556 /* zone lock should be held when this function is called */
3557 lockdep_assert_held(&zone->lock);
3558
3559 /* Return isolated page to tail of freelist. */
3560 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3561 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3562}
3563
3564/*
3565 * Update NUMA hit/miss statistics
3566 *
3567 * Must be called with interrupts disabled.
3568 */
3569static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3570 long nr_account)
3571{
3572#ifdef CONFIG_NUMA
3573 enum numa_stat_item local_stat = NUMA_LOCAL;
3574
3575 /* skip numa counters update if numa stats is disabled */
3576 if (!static_branch_likely(&vm_numa_stat_key))
3577 return;
3578
3579 if (zone_to_nid(z) != numa_node_id())
3580 local_stat = NUMA_OTHER;
3581
3582 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3583 __count_numa_events(z, NUMA_HIT, nr_account);
3584 else {
3585 __count_numa_events(z, NUMA_MISS, nr_account);
3586 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3587 }
3588 __count_numa_events(z, local_stat, nr_account);
3589#endif
3590}
3591
3592/* Remove page from the per-cpu list, caller must protect the list */
3593static inline
3594struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3595 int migratetype,
3596 unsigned int alloc_flags,
3597 struct per_cpu_pages *pcp,
3598 struct list_head *list)
3599{
3600 struct page *page;
3601
3602 do {
3603 if (list_empty(list)) {
3604 int batch = READ_ONCE(pcp->batch);
3605 int alloced;
3606
3607 /*
3608 * Scale batch relative to order if batch implies
3609 * free pages can be stored on the PCP. Batch can
3610 * be 1 for small zones or for boot pagesets which
3611 * should never store free pages as the pages may
3612 * belong to arbitrary zones.
3613 */
3614 if (batch > 1)
3615 batch = max(batch >> order, 2);
3616 alloced = rmqueue_bulk(zone, order,
3617 batch, list,
3618 migratetype, alloc_flags);
3619
3620 pcp->count += alloced << order;
3621 if (unlikely(list_empty(list)))
3622 return NULL;
3623 }
3624
3625 page = list_first_entry(list, struct page, lru);
3626 list_del(&page->lru);
3627 pcp->count -= 1 << order;
3628 } while (check_new_pcp(page));
3629
3630 return page;
3631}
3632
3633/* Lock and remove page from the per-cpu list */
3634static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3635 struct zone *zone, unsigned int order,
3636 gfp_t gfp_flags, int migratetype,
3637 unsigned int alloc_flags)
3638{
3639 struct per_cpu_pages *pcp;
3640 struct list_head *list;
3641 struct page *page;
3642 unsigned long flags;
3643
3644 local_lock_irqsave(&pagesets.lock, flags);
3645
3646 /*
3647 * On allocation, reduce the number of pages that are batch freed.
3648 * See nr_pcp_free() where free_factor is increased for subsequent
3649 * frees.
3650 */
3651 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3652 pcp->free_factor >>= 1;
3653 list = &pcp->lists[order_to_pindex(migratetype, order)];
3654 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3655 local_unlock_irqrestore(&pagesets.lock, flags);
3656 if (page) {
3657 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3658 zone_statistics(preferred_zone, zone, 1);
3659 }
3660 return page;
3661}
3662
3663/*
3664 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3665 */
3666static inline
3667struct page *rmqueue(struct zone *preferred_zone,
3668 struct zone *zone, unsigned int order,
3669 gfp_t gfp_flags, unsigned int alloc_flags,
3670 int migratetype)
3671{
3672 unsigned long flags;
3673 struct page *page;
3674
3675 if (likely(pcp_allowed_order(order))) {
3676 /*
3677 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3678 * we need to skip it when CMA area isn't allowed.
3679 */
3680 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3681 migratetype != MIGRATE_MOVABLE) {
3682 page = rmqueue_pcplist(preferred_zone, zone, order,
3683 gfp_flags, migratetype, alloc_flags);
3684 goto out;
3685 }
3686 }
3687
3688 /*
3689 * We most definitely don't want callers attempting to
3690 * allocate greater than order-1 page units with __GFP_NOFAIL.
3691 */
3692 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3693 spin_lock_irqsave(&zone->lock, flags);
3694
3695 do {
3696 page = NULL;
3697 /*
3698 * order-0 request can reach here when the pcplist is skipped
3699 * due to non-CMA allocation context. HIGHATOMIC area is
3700 * reserved for high-order atomic allocation, so order-0
3701 * request should skip it.
3702 */
3703 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3704 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3705 if (page)
3706 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3707 }
3708 if (!page)
3709 page = __rmqueue(zone, order, migratetype, alloc_flags);
3710 } while (page && check_new_pages(page, order));
3711 if (!page)
3712 goto failed;
3713
3714 __mod_zone_freepage_state(zone, -(1 << order),
3715 get_pcppage_migratetype(page));
3716 spin_unlock_irqrestore(&zone->lock, flags);
3717
3718 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3719 zone_statistics(preferred_zone, zone, 1);
3720
3721out:
3722 /* Separate test+clear to avoid unnecessary atomics */
3723 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3724 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3725 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3726 }
3727
3728 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3729 return page;
3730
3731failed:
3732 spin_unlock_irqrestore(&zone->lock, flags);
3733 return NULL;
3734}
3735
3736#ifdef CONFIG_FAIL_PAGE_ALLOC
3737
3738static struct {
3739 struct fault_attr attr;
3740
3741 bool ignore_gfp_highmem;
3742 bool ignore_gfp_reclaim;
3743 u32 min_order;
3744} fail_page_alloc = {
3745 .attr = FAULT_ATTR_INITIALIZER,
3746 .ignore_gfp_reclaim = true,
3747 .ignore_gfp_highmem = true,
3748 .min_order = 1,
3749};
3750
3751static int __init setup_fail_page_alloc(char *str)
3752{
3753 return setup_fault_attr(&fail_page_alloc.attr, str);
3754}
3755__setup("fail_page_alloc=", setup_fail_page_alloc);
3756
3757static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3758{
3759 if (order < fail_page_alloc.min_order)
3760 return false;
3761 if (gfp_mask & __GFP_NOFAIL)
3762 return false;
3763 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3764 return false;
3765 if (fail_page_alloc.ignore_gfp_reclaim &&
3766 (gfp_mask & __GFP_DIRECT_RECLAIM))
3767 return false;
3768
3769 return should_fail(&fail_page_alloc.attr, 1 << order);
3770}
3771
3772#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3773
3774static int __init fail_page_alloc_debugfs(void)
3775{
3776 umode_t mode = S_IFREG | 0600;
3777 struct dentry *dir;
3778
3779 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3780 &fail_page_alloc.attr);
3781
3782 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3783 &fail_page_alloc.ignore_gfp_reclaim);
3784 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3785 &fail_page_alloc.ignore_gfp_highmem);
3786 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3787
3788 return 0;
3789}
3790
3791late_initcall(fail_page_alloc_debugfs);
3792
3793#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3794
3795#else /* CONFIG_FAIL_PAGE_ALLOC */
3796
3797static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3798{
3799 return false;
3800}
3801
3802#endif /* CONFIG_FAIL_PAGE_ALLOC */
3803
3804noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3805{
3806 return __should_fail_alloc_page(gfp_mask, order);
3807}
3808ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3809
3810static inline long __zone_watermark_unusable_free(struct zone *z,
3811 unsigned int order, unsigned int alloc_flags)
3812{
3813 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3814 long unusable_free = (1 << order) - 1;
3815
3816 /*
3817 * If the caller does not have rights to ALLOC_HARDER then subtract
3818 * the high-atomic reserves. This will over-estimate the size of the
3819 * atomic reserve but it avoids a search.
3820 */
3821 if (likely(!alloc_harder))
3822 unusable_free += z->nr_reserved_highatomic;
3823
3824#ifdef CONFIG_CMA
3825 /* If allocation can't use CMA areas don't use free CMA pages */
3826 if (!(alloc_flags & ALLOC_CMA))
3827 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3828#endif
3829
3830 return unusable_free;
3831}
3832
3833/*
3834 * Return true if free base pages are above 'mark'. For high-order checks it
3835 * will return true of the order-0 watermark is reached and there is at least
3836 * one free page of a suitable size. Checking now avoids taking the zone lock
3837 * to check in the allocation paths if no pages are free.
3838 */
3839bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3840 int highest_zoneidx, unsigned int alloc_flags,
3841 long free_pages)
3842{
3843 long min = mark;
3844 int o;
3845 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3846
3847 /* free_pages may go negative - that's OK */
3848 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3849
3850 if (alloc_flags & ALLOC_HIGH)
3851 min -= min / 2;
3852
3853 if (unlikely(alloc_harder)) {
3854 /*
3855 * OOM victims can try even harder than normal ALLOC_HARDER
3856 * users on the grounds that it's definitely going to be in
3857 * the exit path shortly and free memory. Any allocation it
3858 * makes during the free path will be small and short-lived.
3859 */
3860 if (alloc_flags & ALLOC_OOM)
3861 min -= min / 2;
3862 else
3863 min -= min / 4;
3864 }
3865
3866 /*
3867 * Check watermarks for an order-0 allocation request. If these
3868 * are not met, then a high-order request also cannot go ahead
3869 * even if a suitable page happened to be free.
3870 */
3871 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3872 return false;
3873
3874 /* If this is an order-0 request then the watermark is fine */
3875 if (!order)
3876 return true;
3877
3878 /* For a high-order request, check at least one suitable page is free */
3879 for (o = order; o < MAX_ORDER; o++) {
3880 struct free_area *area = &z->free_area[o];
3881 int mt;
3882
3883 if (!area->nr_free)
3884 continue;
3885
3886 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3887 if (!free_area_empty(area, mt))
3888 return true;
3889 }
3890
3891#ifdef CONFIG_CMA
3892 if ((alloc_flags & ALLOC_CMA) &&
3893 !free_area_empty(area, MIGRATE_CMA)) {
3894 return true;
3895 }
3896#endif
3897 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3898 return true;
3899 }
3900 return false;
3901}
3902
3903bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3904 int highest_zoneidx, unsigned int alloc_flags)
3905{
3906 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3907 zone_page_state(z, NR_FREE_PAGES));
3908}
3909
3910static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3911 unsigned long mark, int highest_zoneidx,
3912 unsigned int alloc_flags, gfp_t gfp_mask)
3913{
3914 long free_pages;
3915
3916 free_pages = zone_page_state(z, NR_FREE_PAGES);
3917
3918 /*
3919 * Fast check for order-0 only. If this fails then the reserves
3920 * need to be calculated.
3921 */
3922 if (!order) {
3923 long fast_free;
3924
3925 fast_free = free_pages;
3926 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3927 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3928 return true;
3929 }
3930
3931 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3932 free_pages))
3933 return true;
3934 /*
3935 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3936 * when checking the min watermark. The min watermark is the
3937 * point where boosting is ignored so that kswapd is woken up
3938 * when below the low watermark.
3939 */
3940 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3941 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3942 mark = z->_watermark[WMARK_MIN];
3943 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3944 alloc_flags, free_pages);
3945 }
3946
3947 return false;
3948}
3949
3950bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3951 unsigned long mark, int highest_zoneidx)
3952{
3953 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3954
3955 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3956 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3957
3958 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3959 free_pages);
3960}
3961
3962#ifdef CONFIG_NUMA
3963int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3964
3965static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3966{
3967 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3968 node_reclaim_distance;
3969}
3970#else /* CONFIG_NUMA */
3971static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3972{
3973 return true;
3974}
3975#endif /* CONFIG_NUMA */
3976
3977/*
3978 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3979 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3980 * premature use of a lower zone may cause lowmem pressure problems that
3981 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3982 * probably too small. It only makes sense to spread allocations to avoid
3983 * fragmentation between the Normal and DMA32 zones.
3984 */
3985static inline unsigned int
3986alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3987{
3988 unsigned int alloc_flags;
3989
3990 /*
3991 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3992 * to save a branch.
3993 */
3994 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3995
3996#ifdef CONFIG_ZONE_DMA32
3997 if (!zone)
3998 return alloc_flags;
3999
4000 if (zone_idx(zone) != ZONE_NORMAL)
4001 return alloc_flags;
4002
4003 /*
4004 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4005 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4006 * on UMA that if Normal is populated then so is DMA32.
4007 */
4008 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4009 if (nr_online_nodes > 1 && !populated_zone(--zone))
4010 return alloc_flags;
4011
4012 alloc_flags |= ALLOC_NOFRAGMENT;
4013#endif /* CONFIG_ZONE_DMA32 */
4014 return alloc_flags;
4015}
4016
4017/* Must be called after current_gfp_context() which can change gfp_mask */
4018static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4019 unsigned int alloc_flags)
4020{
4021#ifdef CONFIG_CMA
4022 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4023 alloc_flags |= ALLOC_CMA;
4024#endif
4025 return alloc_flags;
4026}
4027
4028/*
4029 * get_page_from_freelist goes through the zonelist trying to allocate
4030 * a page.
4031 */
4032static struct page *
4033get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4034 const struct alloc_context *ac)
4035{
4036 struct zoneref *z;
4037 struct zone *zone;
4038 struct pglist_data *last_pgdat_dirty_limit = NULL;
4039 bool no_fallback;
4040
4041retry:
4042 /*
4043 * Scan zonelist, looking for a zone with enough free.
4044 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4045 */
4046 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4047 z = ac->preferred_zoneref;
4048 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4049 ac->nodemask) {
4050 struct page *page;
4051 unsigned long mark;
4052
4053 if (cpusets_enabled() &&
4054 (alloc_flags & ALLOC_CPUSET) &&
4055 !__cpuset_zone_allowed(zone, gfp_mask))
4056 continue;
4057 /*
4058 * When allocating a page cache page for writing, we
4059 * want to get it from a node that is within its dirty
4060 * limit, such that no single node holds more than its
4061 * proportional share of globally allowed dirty pages.
4062 * The dirty limits take into account the node's
4063 * lowmem reserves and high watermark so that kswapd
4064 * should be able to balance it without having to
4065 * write pages from its LRU list.
4066 *
4067 * XXX: For now, allow allocations to potentially
4068 * exceed the per-node dirty limit in the slowpath
4069 * (spread_dirty_pages unset) before going into reclaim,
4070 * which is important when on a NUMA setup the allowed
4071 * nodes are together not big enough to reach the
4072 * global limit. The proper fix for these situations
4073 * will require awareness of nodes in the
4074 * dirty-throttling and the flusher threads.
4075 */
4076 if (ac->spread_dirty_pages) {
4077 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4078 continue;
4079
4080 if (!node_dirty_ok(zone->zone_pgdat)) {
4081 last_pgdat_dirty_limit = zone->zone_pgdat;
4082 continue;
4083 }
4084 }
4085
4086 if (no_fallback && nr_online_nodes > 1 &&
4087 zone != ac->preferred_zoneref->zone) {
4088 int local_nid;
4089
4090 /*
4091 * If moving to a remote node, retry but allow
4092 * fragmenting fallbacks. Locality is more important
4093 * than fragmentation avoidance.
4094 */
4095 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4096 if (zone_to_nid(zone) != local_nid) {
4097 alloc_flags &= ~ALLOC_NOFRAGMENT;
4098 goto retry;
4099 }
4100 }
4101
4102 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4103 if (!zone_watermark_fast(zone, order, mark,
4104 ac->highest_zoneidx, alloc_flags,
4105 gfp_mask)) {
4106 int ret;
4107
4108#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4109 /*
4110 * Watermark failed for this zone, but see if we can
4111 * grow this zone if it contains deferred pages.
4112 */
4113 if (static_branch_unlikely(&deferred_pages)) {
4114 if (_deferred_grow_zone(zone, order))
4115 goto try_this_zone;
4116 }
4117#endif
4118 /* Checked here to keep the fast path fast */
4119 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4120 if (alloc_flags & ALLOC_NO_WATERMARKS)
4121 goto try_this_zone;
4122
4123 if (!node_reclaim_enabled() ||
4124 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4125 continue;
4126
4127 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4128 switch (ret) {
4129 case NODE_RECLAIM_NOSCAN:
4130 /* did not scan */
4131 continue;
4132 case NODE_RECLAIM_FULL:
4133 /* scanned but unreclaimable */
4134 continue;
4135 default:
4136 /* did we reclaim enough */
4137 if (zone_watermark_ok(zone, order, mark,
4138 ac->highest_zoneidx, alloc_flags))
4139 goto try_this_zone;
4140
4141 continue;
4142 }
4143 }
4144
4145try_this_zone:
4146 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4147 gfp_mask, alloc_flags, ac->migratetype);
4148 if (page) {
4149 prep_new_page(page, order, gfp_mask, alloc_flags);
4150
4151 /*
4152 * If this is a high-order atomic allocation then check
4153 * if the pageblock should be reserved for the future
4154 */
4155 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4156 reserve_highatomic_pageblock(page, zone, order);
4157
4158 return page;
4159 } else {
4160#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4161 /* Try again if zone has deferred pages */
4162 if (static_branch_unlikely(&deferred_pages)) {
4163 if (_deferred_grow_zone(zone, order))
4164 goto try_this_zone;
4165 }
4166#endif
4167 }
4168 }
4169
4170 /*
4171 * It's possible on a UMA machine to get through all zones that are
4172 * fragmented. If avoiding fragmentation, reset and try again.
4173 */
4174 if (no_fallback) {
4175 alloc_flags &= ~ALLOC_NOFRAGMENT;
4176 goto retry;
4177 }
4178
4179 return NULL;
4180}
4181
4182static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4183{
4184 unsigned int filter = SHOW_MEM_FILTER_NODES;
4185
4186 /*
4187 * This documents exceptions given to allocations in certain
4188 * contexts that are allowed to allocate outside current's set
4189 * of allowed nodes.
4190 */
4191 if (!(gfp_mask & __GFP_NOMEMALLOC))
4192 if (tsk_is_oom_victim(current) ||
4193 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4194 filter &= ~SHOW_MEM_FILTER_NODES;
4195 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4196 filter &= ~SHOW_MEM_FILTER_NODES;
4197
4198 show_mem(filter, nodemask);
4199}
4200
4201void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4202{
4203 struct va_format vaf;
4204 va_list args;
4205 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4206
4207 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4208 return;
4209
4210 va_start(args, fmt);
4211 vaf.fmt = fmt;
4212 vaf.va = &args;
4213 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4214 current->comm, &vaf, gfp_mask, &gfp_mask,
4215 nodemask_pr_args(nodemask));
4216 va_end(args);
4217
4218 cpuset_print_current_mems_allowed();
4219 pr_cont("\n");
4220 dump_stack();
4221 warn_alloc_show_mem(gfp_mask, nodemask);
4222}
4223
4224static inline struct page *
4225__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4226 unsigned int alloc_flags,
4227 const struct alloc_context *ac)
4228{
4229 struct page *page;
4230
4231 page = get_page_from_freelist(gfp_mask, order,
4232 alloc_flags|ALLOC_CPUSET, ac);
4233 /*
4234 * fallback to ignore cpuset restriction if our nodes
4235 * are depleted
4236 */
4237 if (!page)
4238 page = get_page_from_freelist(gfp_mask, order,
4239 alloc_flags, ac);
4240
4241 return page;
4242}
4243
4244static inline struct page *
4245__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4246 const struct alloc_context *ac, unsigned long *did_some_progress)
4247{
4248 struct oom_control oc = {
4249 .zonelist = ac->zonelist,
4250 .nodemask = ac->nodemask,
4251 .memcg = NULL,
4252 .gfp_mask = gfp_mask,
4253 .order = order,
4254 };
4255 struct page *page;
4256
4257 *did_some_progress = 0;
4258
4259 /*
4260 * Acquire the oom lock. If that fails, somebody else is
4261 * making progress for us.
4262 */
4263 if (!mutex_trylock(&oom_lock)) {
4264 *did_some_progress = 1;
4265 schedule_timeout_uninterruptible(1);
4266 return NULL;
4267 }
4268
4269 /*
4270 * Go through the zonelist yet one more time, keep very high watermark
4271 * here, this is only to catch a parallel oom killing, we must fail if
4272 * we're still under heavy pressure. But make sure that this reclaim
4273 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4274 * allocation which will never fail due to oom_lock already held.
4275 */
4276 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4277 ~__GFP_DIRECT_RECLAIM, order,
4278 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4279 if (page)
4280 goto out;
4281
4282 /* Coredumps can quickly deplete all memory reserves */
4283 if (current->flags & PF_DUMPCORE)
4284 goto out;
4285 /* The OOM killer will not help higher order allocs */
4286 if (order > PAGE_ALLOC_COSTLY_ORDER)
4287 goto out;
4288 /*
4289 * We have already exhausted all our reclaim opportunities without any
4290 * success so it is time to admit defeat. We will skip the OOM killer
4291 * because it is very likely that the caller has a more reasonable
4292 * fallback than shooting a random task.
4293 *
4294 * The OOM killer may not free memory on a specific node.
4295 */
4296 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4297 goto out;
4298 /* The OOM killer does not needlessly kill tasks for lowmem */
4299 if (ac->highest_zoneidx < ZONE_NORMAL)
4300 goto out;
4301 if (pm_suspended_storage())
4302 goto out;
4303 /*
4304 * XXX: GFP_NOFS allocations should rather fail than rely on
4305 * other request to make a forward progress.
4306 * We are in an unfortunate situation where out_of_memory cannot
4307 * do much for this context but let's try it to at least get
4308 * access to memory reserved if the current task is killed (see
4309 * out_of_memory). Once filesystems are ready to handle allocation
4310 * failures more gracefully we should just bail out here.
4311 */
4312
4313 /* Exhausted what can be done so it's blame time */
4314 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4315 *did_some_progress = 1;
4316
4317 /*
4318 * Help non-failing allocations by giving them access to memory
4319 * reserves
4320 */
4321 if (gfp_mask & __GFP_NOFAIL)
4322 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4323 ALLOC_NO_WATERMARKS, ac);
4324 }
4325out:
4326 mutex_unlock(&oom_lock);
4327 return page;
4328}
4329
4330/*
4331 * Maximum number of compaction retries with a progress before OOM
4332 * killer is consider as the only way to move forward.
4333 */
4334#define MAX_COMPACT_RETRIES 16
4335
4336#ifdef CONFIG_COMPACTION
4337/* Try memory compaction for high-order allocations before reclaim */
4338static struct page *
4339__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4340 unsigned int alloc_flags, const struct alloc_context *ac,
4341 enum compact_priority prio, enum compact_result *compact_result)
4342{
4343 struct page *page = NULL;
4344 unsigned long pflags;
4345 unsigned int noreclaim_flag;
4346
4347 if (!order)
4348 return NULL;
4349
4350 psi_memstall_enter(&pflags);
4351 noreclaim_flag = memalloc_noreclaim_save();
4352
4353 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4354 prio, &page);
4355
4356 memalloc_noreclaim_restore(noreclaim_flag);
4357 psi_memstall_leave(&pflags);
4358
4359 if (*compact_result == COMPACT_SKIPPED)
4360 return NULL;
4361 /*
4362 * At least in one zone compaction wasn't deferred or skipped, so let's
4363 * count a compaction stall
4364 */
4365 count_vm_event(COMPACTSTALL);
4366
4367 /* Prep a captured page if available */
4368 if (page)
4369 prep_new_page(page, order, gfp_mask, alloc_flags);
4370
4371 /* Try get a page from the freelist if available */
4372 if (!page)
4373 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4374
4375 if (page) {
4376 struct zone *zone = page_zone(page);
4377
4378 zone->compact_blockskip_flush = false;
4379 compaction_defer_reset(zone, order, true);
4380 count_vm_event(COMPACTSUCCESS);
4381 return page;
4382 }
4383
4384 /*
4385 * It's bad if compaction run occurs and fails. The most likely reason
4386 * is that pages exist, but not enough to satisfy watermarks.
4387 */
4388 count_vm_event(COMPACTFAIL);
4389
4390 cond_resched();
4391
4392 return NULL;
4393}
4394
4395static inline bool
4396should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4397 enum compact_result compact_result,
4398 enum compact_priority *compact_priority,
4399 int *compaction_retries)
4400{
4401 int max_retries = MAX_COMPACT_RETRIES;
4402 int min_priority;
4403 bool ret = false;
4404 int retries = *compaction_retries;
4405 enum compact_priority priority = *compact_priority;
4406
4407 if (!order)
4408 return false;
4409
4410 if (fatal_signal_pending(current))
4411 return false;
4412
4413 if (compaction_made_progress(compact_result))
4414 (*compaction_retries)++;
4415
4416 /*
4417 * compaction considers all the zone as desperately out of memory
4418 * so it doesn't really make much sense to retry except when the
4419 * failure could be caused by insufficient priority
4420 */
4421 if (compaction_failed(compact_result))
4422 goto check_priority;
4423
4424 /*
4425 * compaction was skipped because there are not enough order-0 pages
4426 * to work with, so we retry only if it looks like reclaim can help.
4427 */
4428 if (compaction_needs_reclaim(compact_result)) {
4429 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4430 goto out;
4431 }
4432
4433 /*
4434 * make sure the compaction wasn't deferred or didn't bail out early
4435 * due to locks contention before we declare that we should give up.
4436 * But the next retry should use a higher priority if allowed, so
4437 * we don't just keep bailing out endlessly.
4438 */
4439 if (compaction_withdrawn(compact_result)) {
4440 goto check_priority;
4441 }
4442
4443 /*
4444 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4445 * costly ones because they are de facto nofail and invoke OOM
4446 * killer to move on while costly can fail and users are ready
4447 * to cope with that. 1/4 retries is rather arbitrary but we
4448 * would need much more detailed feedback from compaction to
4449 * make a better decision.
4450 */
4451 if (order > PAGE_ALLOC_COSTLY_ORDER)
4452 max_retries /= 4;
4453 if (*compaction_retries <= max_retries) {
4454 ret = true;
4455 goto out;
4456 }
4457
4458 /*
4459 * Make sure there are attempts at the highest priority if we exhausted
4460 * all retries or failed at the lower priorities.
4461 */
4462check_priority:
4463 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4464 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4465
4466 if (*compact_priority > min_priority) {
4467 (*compact_priority)--;
4468 *compaction_retries = 0;
4469 ret = true;
4470 }
4471out:
4472 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4473 return ret;
4474}
4475#else
4476static inline struct page *
4477__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4478 unsigned int alloc_flags, const struct alloc_context *ac,
4479 enum compact_priority prio, enum compact_result *compact_result)
4480{
4481 *compact_result = COMPACT_SKIPPED;
4482 return NULL;
4483}
4484
4485static inline bool
4486should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4487 enum compact_result compact_result,
4488 enum compact_priority *compact_priority,
4489 int *compaction_retries)
4490{
4491 struct zone *zone;
4492 struct zoneref *z;
4493
4494 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4495 return false;
4496
4497 /*
4498 * There are setups with compaction disabled which would prefer to loop
4499 * inside the allocator rather than hit the oom killer prematurely.
4500 * Let's give them a good hope and keep retrying while the order-0
4501 * watermarks are OK.
4502 */
4503 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4504 ac->highest_zoneidx, ac->nodemask) {
4505 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4506 ac->highest_zoneidx, alloc_flags))
4507 return true;
4508 }
4509 return false;
4510}
4511#endif /* CONFIG_COMPACTION */
4512
4513#ifdef CONFIG_LOCKDEP
4514static struct lockdep_map __fs_reclaim_map =
4515 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4516
4517static bool __need_reclaim(gfp_t gfp_mask)
4518{
4519 /* no reclaim without waiting on it */
4520 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4521 return false;
4522
4523 /* this guy won't enter reclaim */
4524 if (current->flags & PF_MEMALLOC)
4525 return false;
4526
4527 if (gfp_mask & __GFP_NOLOCKDEP)
4528 return false;
4529
4530 return true;
4531}
4532
4533void __fs_reclaim_acquire(unsigned long ip)
4534{
4535 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4536}
4537
4538void __fs_reclaim_release(unsigned long ip)
4539{
4540 lock_release(&__fs_reclaim_map, ip);
4541}
4542
4543void fs_reclaim_acquire(gfp_t gfp_mask)
4544{
4545 gfp_mask = current_gfp_context(gfp_mask);
4546
4547 if (__need_reclaim(gfp_mask)) {
4548 if (gfp_mask & __GFP_FS)
4549 __fs_reclaim_acquire(_RET_IP_);
4550
4551#ifdef CONFIG_MMU_NOTIFIER
4552 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4553 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4554#endif
4555
4556 }
4557}
4558EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4559
4560void fs_reclaim_release(gfp_t gfp_mask)
4561{
4562 gfp_mask = current_gfp_context(gfp_mask);
4563
4564 if (__need_reclaim(gfp_mask)) {
4565 if (gfp_mask & __GFP_FS)
4566 __fs_reclaim_release(_RET_IP_);
4567 }
4568}
4569EXPORT_SYMBOL_GPL(fs_reclaim_release);
4570#endif
4571
4572/* Perform direct synchronous page reclaim */
4573static unsigned long
4574__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4575 const struct alloc_context *ac)
4576{
4577 unsigned int noreclaim_flag;
4578 unsigned long pflags, progress;
4579
4580 cond_resched();
4581
4582 /* We now go into synchronous reclaim */
4583 cpuset_memory_pressure_bump();
4584 psi_memstall_enter(&pflags);
4585 fs_reclaim_acquire(gfp_mask);
4586 noreclaim_flag = memalloc_noreclaim_save();
4587
4588 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4589 ac->nodemask);
4590
4591 memalloc_noreclaim_restore(noreclaim_flag);
4592 fs_reclaim_release(gfp_mask);
4593 psi_memstall_leave(&pflags);
4594
4595 cond_resched();
4596
4597 return progress;
4598}
4599
4600/* The really slow allocator path where we enter direct reclaim */
4601static inline struct page *
4602__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4603 unsigned int alloc_flags, const struct alloc_context *ac,
4604 unsigned long *did_some_progress)
4605{
4606 struct page *page = NULL;
4607 bool drained = false;
4608
4609 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4610 if (unlikely(!(*did_some_progress)))
4611 return NULL;
4612
4613retry:
4614 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4615
4616 /*
4617 * If an allocation failed after direct reclaim, it could be because
4618 * pages are pinned on the per-cpu lists or in high alloc reserves.
4619 * Shrink them and try again
4620 */
4621 if (!page && !drained) {
4622 unreserve_highatomic_pageblock(ac, false);
4623 drain_all_pages(NULL);
4624 drained = true;
4625 goto retry;
4626 }
4627
4628 return page;
4629}
4630
4631static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4632 const struct alloc_context *ac)
4633{
4634 struct zoneref *z;
4635 struct zone *zone;
4636 pg_data_t *last_pgdat = NULL;
4637 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4638
4639 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4640 ac->nodemask) {
4641 if (last_pgdat != zone->zone_pgdat)
4642 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4643 last_pgdat = zone->zone_pgdat;
4644 }
4645}
4646
4647static inline unsigned int
4648gfp_to_alloc_flags(gfp_t gfp_mask)
4649{
4650 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4651
4652 /*
4653 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4654 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4655 * to save two branches.
4656 */
4657 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4658 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4659
4660 /*
4661 * The caller may dip into page reserves a bit more if the caller
4662 * cannot run direct reclaim, or if the caller has realtime scheduling
4663 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4664 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4665 */
4666 alloc_flags |= (__force int)
4667 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4668
4669 if (gfp_mask & __GFP_ATOMIC) {
4670 /*
4671 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4672 * if it can't schedule.
4673 */
4674 if (!(gfp_mask & __GFP_NOMEMALLOC))
4675 alloc_flags |= ALLOC_HARDER;
4676 /*
4677 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4678 * comment for __cpuset_node_allowed().
4679 */
4680 alloc_flags &= ~ALLOC_CPUSET;
4681 } else if (unlikely(rt_task(current)) && in_task())
4682 alloc_flags |= ALLOC_HARDER;
4683
4684 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4685
4686 return alloc_flags;
4687}
4688
4689static bool oom_reserves_allowed(struct task_struct *tsk)
4690{
4691 if (!tsk_is_oom_victim(tsk))
4692 return false;
4693
4694 /*
4695 * !MMU doesn't have oom reaper so give access to memory reserves
4696 * only to the thread with TIF_MEMDIE set
4697 */
4698 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4699 return false;
4700
4701 return true;
4702}
4703
4704/*
4705 * Distinguish requests which really need access to full memory
4706 * reserves from oom victims which can live with a portion of it
4707 */
4708static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4709{
4710 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4711 return 0;
4712 if (gfp_mask & __GFP_MEMALLOC)
4713 return ALLOC_NO_WATERMARKS;
4714 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4715 return ALLOC_NO_WATERMARKS;
4716 if (!in_interrupt()) {
4717 if (current->flags & PF_MEMALLOC)
4718 return ALLOC_NO_WATERMARKS;
4719 else if (oom_reserves_allowed(current))
4720 return ALLOC_OOM;
4721 }
4722
4723 return 0;
4724}
4725
4726bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4727{
4728 return !!__gfp_pfmemalloc_flags(gfp_mask);
4729}
4730
4731/*
4732 * Checks whether it makes sense to retry the reclaim to make a forward progress
4733 * for the given allocation request.
4734 *
4735 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4736 * without success, or when we couldn't even meet the watermark if we
4737 * reclaimed all remaining pages on the LRU lists.
4738 *
4739 * Returns true if a retry is viable or false to enter the oom path.
4740 */
4741static inline bool
4742should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4743 struct alloc_context *ac, int alloc_flags,
4744 bool did_some_progress, int *no_progress_loops)
4745{
4746 struct zone *zone;
4747 struct zoneref *z;
4748 bool ret = false;
4749
4750 /*
4751 * Costly allocations might have made a progress but this doesn't mean
4752 * their order will become available due to high fragmentation so
4753 * always increment the no progress counter for them
4754 */
4755 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4756 *no_progress_loops = 0;
4757 else
4758 (*no_progress_loops)++;
4759
4760 /*
4761 * Make sure we converge to OOM if we cannot make any progress
4762 * several times in the row.
4763 */
4764 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4765 /* Before OOM, exhaust highatomic_reserve */
4766 return unreserve_highatomic_pageblock(ac, true);
4767 }
4768
4769 /*
4770 * Keep reclaiming pages while there is a chance this will lead
4771 * somewhere. If none of the target zones can satisfy our allocation
4772 * request even if all reclaimable pages are considered then we are
4773 * screwed and have to go OOM.
4774 */
4775 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4776 ac->highest_zoneidx, ac->nodemask) {
4777 unsigned long available;
4778 unsigned long reclaimable;
4779 unsigned long min_wmark = min_wmark_pages(zone);
4780 bool wmark;
4781
4782 available = reclaimable = zone_reclaimable_pages(zone);
4783 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4784
4785 /*
4786 * Would the allocation succeed if we reclaimed all
4787 * reclaimable pages?
4788 */
4789 wmark = __zone_watermark_ok(zone, order, min_wmark,
4790 ac->highest_zoneidx, alloc_flags, available);
4791 trace_reclaim_retry_zone(z, order, reclaimable,
4792 available, min_wmark, *no_progress_loops, wmark);
4793 if (wmark) {
4794 /*
4795 * If we didn't make any progress and have a lot of
4796 * dirty + writeback pages then we should wait for
4797 * an IO to complete to slow down the reclaim and
4798 * prevent from pre mature OOM
4799 */
4800 if (!did_some_progress) {
4801 unsigned long write_pending;
4802
4803 write_pending = zone_page_state_snapshot(zone,
4804 NR_ZONE_WRITE_PENDING);
4805
4806 if (2 * write_pending > reclaimable) {
4807 congestion_wait(BLK_RW_ASYNC, HZ/10);
4808 return true;
4809 }
4810 }
4811
4812 ret = true;
4813 goto out;
4814 }
4815 }
4816
4817out:
4818 /*
4819 * Memory allocation/reclaim might be called from a WQ context and the
4820 * current implementation of the WQ concurrency control doesn't
4821 * recognize that a particular WQ is congested if the worker thread is
4822 * looping without ever sleeping. Therefore we have to do a short sleep
4823 * here rather than calling cond_resched().
4824 */
4825 if (current->flags & PF_WQ_WORKER)
4826 schedule_timeout_uninterruptible(1);
4827 else
4828 cond_resched();
4829 return ret;
4830}
4831
4832static inline bool
4833check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4834{
4835 /*
4836 * It's possible that cpuset's mems_allowed and the nodemask from
4837 * mempolicy don't intersect. This should be normally dealt with by
4838 * policy_nodemask(), but it's possible to race with cpuset update in
4839 * such a way the check therein was true, and then it became false
4840 * before we got our cpuset_mems_cookie here.
4841 * This assumes that for all allocations, ac->nodemask can come only
4842 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4843 * when it does not intersect with the cpuset restrictions) or the
4844 * caller can deal with a violated nodemask.
4845 */
4846 if (cpusets_enabled() && ac->nodemask &&
4847 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4848 ac->nodemask = NULL;
4849 return true;
4850 }
4851
4852 /*
4853 * When updating a task's mems_allowed or mempolicy nodemask, it is
4854 * possible to race with parallel threads in such a way that our
4855 * allocation can fail while the mask is being updated. If we are about
4856 * to fail, check if the cpuset changed during allocation and if so,
4857 * retry.
4858 */
4859 if (read_mems_allowed_retry(cpuset_mems_cookie))
4860 return true;
4861
4862 return false;
4863}
4864
4865static inline struct page *
4866__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4867 struct alloc_context *ac)
4868{
4869 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4870 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4871 struct page *page = NULL;
4872 unsigned int alloc_flags;
4873 unsigned long did_some_progress;
4874 enum compact_priority compact_priority;
4875 enum compact_result compact_result;
4876 int compaction_retries;
4877 int no_progress_loops;
4878 unsigned int cpuset_mems_cookie;
4879 int reserve_flags;
4880
4881 /*
4882 * We also sanity check to catch abuse of atomic reserves being used by
4883 * callers that are not in atomic context.
4884 */
4885 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4886 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4887 gfp_mask &= ~__GFP_ATOMIC;
4888
4889retry_cpuset:
4890 compaction_retries = 0;
4891 no_progress_loops = 0;
4892 compact_priority = DEF_COMPACT_PRIORITY;
4893 cpuset_mems_cookie = read_mems_allowed_begin();
4894
4895 /*
4896 * The fast path uses conservative alloc_flags to succeed only until
4897 * kswapd needs to be woken up, and to avoid the cost of setting up
4898 * alloc_flags precisely. So we do that now.
4899 */
4900 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4901
4902 /*
4903 * We need to recalculate the starting point for the zonelist iterator
4904 * because we might have used different nodemask in the fast path, or
4905 * there was a cpuset modification and we are retrying - otherwise we
4906 * could end up iterating over non-eligible zones endlessly.
4907 */
4908 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4909 ac->highest_zoneidx, ac->nodemask);
4910 if (!ac->preferred_zoneref->zone)
4911 goto nopage;
4912
4913 /*
4914 * Check for insane configurations where the cpuset doesn't contain
4915 * any suitable zone to satisfy the request - e.g. non-movable
4916 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4917 */
4918 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4919 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4920 ac->highest_zoneidx,
4921 &cpuset_current_mems_allowed);
4922 if (!z->zone)
4923 goto nopage;
4924 }
4925
4926 if (alloc_flags & ALLOC_KSWAPD)
4927 wake_all_kswapds(order, gfp_mask, ac);
4928
4929 /*
4930 * The adjusted alloc_flags might result in immediate success, so try
4931 * that first
4932 */
4933 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4934 if (page)
4935 goto got_pg;
4936
4937 /*
4938 * For costly allocations, try direct compaction first, as it's likely
4939 * that we have enough base pages and don't need to reclaim. For non-
4940 * movable high-order allocations, do that as well, as compaction will
4941 * try prevent permanent fragmentation by migrating from blocks of the
4942 * same migratetype.
4943 * Don't try this for allocations that are allowed to ignore
4944 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4945 */
4946 if (can_direct_reclaim &&
4947 (costly_order ||
4948 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4949 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4950 page = __alloc_pages_direct_compact(gfp_mask, order,
4951 alloc_flags, ac,
4952 INIT_COMPACT_PRIORITY,
4953 &compact_result);
4954 if (page)
4955 goto got_pg;
4956
4957 /*
4958 * Checks for costly allocations with __GFP_NORETRY, which
4959 * includes some THP page fault allocations
4960 */
4961 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4962 /*
4963 * If allocating entire pageblock(s) and compaction
4964 * failed because all zones are below low watermarks
4965 * or is prohibited because it recently failed at this
4966 * order, fail immediately unless the allocator has
4967 * requested compaction and reclaim retry.
4968 *
4969 * Reclaim is
4970 * - potentially very expensive because zones are far
4971 * below their low watermarks or this is part of very
4972 * bursty high order allocations,
4973 * - not guaranteed to help because isolate_freepages()
4974 * may not iterate over freed pages as part of its
4975 * linear scan, and
4976 * - unlikely to make entire pageblocks free on its
4977 * own.
4978 */
4979 if (compact_result == COMPACT_SKIPPED ||
4980 compact_result == COMPACT_DEFERRED)
4981 goto nopage;
4982
4983 /*
4984 * Looks like reclaim/compaction is worth trying, but
4985 * sync compaction could be very expensive, so keep
4986 * using async compaction.
4987 */
4988 compact_priority = INIT_COMPACT_PRIORITY;
4989 }
4990 }
4991
4992retry:
4993 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4994 if (alloc_flags & ALLOC_KSWAPD)
4995 wake_all_kswapds(order, gfp_mask, ac);
4996
4997 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4998 if (reserve_flags)
4999 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5000
5001 /*
5002 * Reset the nodemask and zonelist iterators if memory policies can be
5003 * ignored. These allocations are high priority and system rather than
5004 * user oriented.
5005 */
5006 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5007 ac->nodemask = NULL;
5008 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5009 ac->highest_zoneidx, ac->nodemask);
5010 }
5011
5012 /* Attempt with potentially adjusted zonelist and alloc_flags */
5013 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5014 if (page)
5015 goto got_pg;
5016
5017 /* Caller is not willing to reclaim, we can't balance anything */
5018 if (!can_direct_reclaim)
5019 goto nopage;
5020
5021 /* Avoid recursion of direct reclaim */
5022 if (current->flags & PF_MEMALLOC)
5023 goto nopage;
5024
5025 /* Try direct reclaim and then allocating */
5026 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5027 &did_some_progress);
5028 if (page)
5029 goto got_pg;
5030
5031 /* Try direct compaction and then allocating */
5032 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5033 compact_priority, &compact_result);
5034 if (page)
5035 goto got_pg;
5036
5037 /* Do not loop if specifically requested */
5038 if (gfp_mask & __GFP_NORETRY)
5039 goto nopage;
5040
5041 /*
5042 * Do not retry costly high order allocations unless they are
5043 * __GFP_RETRY_MAYFAIL
5044 */
5045 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5046 goto nopage;
5047
5048 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5049 did_some_progress > 0, &no_progress_loops))
5050 goto retry;
5051
5052 /*
5053 * It doesn't make any sense to retry for the compaction if the order-0
5054 * reclaim is not able to make any progress because the current
5055 * implementation of the compaction depends on the sufficient amount
5056 * of free memory (see __compaction_suitable)
5057 */
5058 if (did_some_progress > 0 &&
5059 should_compact_retry(ac, order, alloc_flags,
5060 compact_result, &compact_priority,
5061 &compaction_retries))
5062 goto retry;
5063
5064
5065 /* Deal with possible cpuset update races before we start OOM killing */
5066 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5067 goto retry_cpuset;
5068
5069 /* Reclaim has failed us, start killing things */
5070 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5071 if (page)
5072 goto got_pg;
5073
5074 /* Avoid allocations with no watermarks from looping endlessly */
5075 if (tsk_is_oom_victim(current) &&
5076 (alloc_flags & ALLOC_OOM ||
5077 (gfp_mask & __GFP_NOMEMALLOC)))
5078 goto nopage;
5079
5080 /* Retry as long as the OOM killer is making progress */
5081 if (did_some_progress) {
5082 no_progress_loops = 0;
5083 goto retry;
5084 }
5085
5086nopage:
5087 /* Deal with possible cpuset update races before we fail */
5088 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5089 goto retry_cpuset;
5090
5091 /*
5092 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5093 * we always retry
5094 */
5095 if (gfp_mask & __GFP_NOFAIL) {
5096 /*
5097 * All existing users of the __GFP_NOFAIL are blockable, so warn
5098 * of any new users that actually require GFP_NOWAIT
5099 */
5100 if (WARN_ON_ONCE(!can_direct_reclaim))
5101 goto fail;
5102
5103 /*
5104 * PF_MEMALLOC request from this context is rather bizarre
5105 * because we cannot reclaim anything and only can loop waiting
5106 * for somebody to do a work for us
5107 */
5108 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5109
5110 /*
5111 * non failing costly orders are a hard requirement which we
5112 * are not prepared for much so let's warn about these users
5113 * so that we can identify them and convert them to something
5114 * else.
5115 */
5116 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5117
5118 /*
5119 * Help non-failing allocations by giving them access to memory
5120 * reserves but do not use ALLOC_NO_WATERMARKS because this
5121 * could deplete whole memory reserves which would just make
5122 * the situation worse
5123 */
5124 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5125 if (page)
5126 goto got_pg;
5127
5128 cond_resched();
5129 goto retry;
5130 }
5131fail:
5132 warn_alloc(gfp_mask, ac->nodemask,
5133 "page allocation failure: order:%u", order);
5134got_pg:
5135 return page;
5136}
5137
5138static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5139 int preferred_nid, nodemask_t *nodemask,
5140 struct alloc_context *ac, gfp_t *alloc_gfp,
5141 unsigned int *alloc_flags)
5142{
5143 ac->highest_zoneidx = gfp_zone(gfp_mask);
5144 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5145 ac->nodemask = nodemask;
5146 ac->migratetype = gfp_migratetype(gfp_mask);
5147
5148 if (cpusets_enabled()) {
5149 *alloc_gfp |= __GFP_HARDWALL;
5150 /*
5151 * When we are in the interrupt context, it is irrelevant
5152 * to the current task context. It means that any node ok.
5153 */
5154 if (in_task() && !ac->nodemask)
5155 ac->nodemask = &cpuset_current_mems_allowed;
5156 else
5157 *alloc_flags |= ALLOC_CPUSET;
5158 }
5159
5160 fs_reclaim_acquire(gfp_mask);
5161 fs_reclaim_release(gfp_mask);
5162
5163 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5164
5165 if (should_fail_alloc_page(gfp_mask, order))
5166 return false;
5167
5168 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5169
5170 /* Dirty zone balancing only done in the fast path */
5171 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5172
5173 /*
5174 * The preferred zone is used for statistics but crucially it is
5175 * also used as the starting point for the zonelist iterator. It
5176 * may get reset for allocations that ignore memory policies.
5177 */
5178 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5179 ac->highest_zoneidx, ac->nodemask);
5180
5181 return true;
5182}
5183
5184/*
5185 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5186 * @gfp: GFP flags for the allocation
5187 * @preferred_nid: The preferred NUMA node ID to allocate from
5188 * @nodemask: Set of nodes to allocate from, may be NULL
5189 * @nr_pages: The number of pages desired on the list or array
5190 * @page_list: Optional list to store the allocated pages
5191 * @page_array: Optional array to store the pages
5192 *
5193 * This is a batched version of the page allocator that attempts to
5194 * allocate nr_pages quickly. Pages are added to page_list if page_list
5195 * is not NULL, otherwise it is assumed that the page_array is valid.
5196 *
5197 * For lists, nr_pages is the number of pages that should be allocated.
5198 *
5199 * For arrays, only NULL elements are populated with pages and nr_pages
5200 * is the maximum number of pages that will be stored in the array.
5201 *
5202 * Returns the number of pages on the list or array.
5203 */
5204unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5205 nodemask_t *nodemask, int nr_pages,
5206 struct list_head *page_list,
5207 struct page **page_array)
5208{
5209 struct page *page;
5210 unsigned long flags;
5211 struct zone *zone;
5212 struct zoneref *z;
5213 struct per_cpu_pages *pcp;
5214 struct list_head *pcp_list;
5215 struct alloc_context ac;
5216 gfp_t alloc_gfp;
5217 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5218 int nr_populated = 0, nr_account = 0;
5219
5220 /*
5221 * Skip populated array elements to determine if any pages need
5222 * to be allocated before disabling IRQs.
5223 */
5224 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5225 nr_populated++;
5226
5227 /* No pages requested? */
5228 if (unlikely(nr_pages <= 0))
5229 goto out;
5230
5231 /* Already populated array? */
5232 if (unlikely(page_array && nr_pages - nr_populated == 0))
5233 goto out;
5234
5235 /* Bulk allocator does not support memcg accounting. */
5236 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5237 goto failed;
5238
5239 /* Use the single page allocator for one page. */
5240 if (nr_pages - nr_populated == 1)
5241 goto failed;
5242
5243#ifdef CONFIG_PAGE_OWNER
5244 /*
5245 * PAGE_OWNER may recurse into the allocator to allocate space to
5246 * save the stack with pagesets.lock held. Releasing/reacquiring
5247 * removes much of the performance benefit of bulk allocation so
5248 * force the caller to allocate one page at a time as it'll have
5249 * similar performance to added complexity to the bulk allocator.
5250 */
5251 if (static_branch_unlikely(&page_owner_inited))
5252 goto failed;
5253#endif
5254
5255 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5256 gfp &= gfp_allowed_mask;
5257 alloc_gfp = gfp;
5258 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5259 goto out;
5260 gfp = alloc_gfp;
5261
5262 /* Find an allowed local zone that meets the low watermark. */
5263 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5264 unsigned long mark;
5265
5266 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5267 !__cpuset_zone_allowed(zone, gfp)) {
5268 continue;
5269 }
5270
5271 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5272 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5273 goto failed;
5274 }
5275
5276 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5277 if (zone_watermark_fast(zone, 0, mark,
5278 zonelist_zone_idx(ac.preferred_zoneref),
5279 alloc_flags, gfp)) {
5280 break;
5281 }
5282 }
5283
5284 /*
5285 * If there are no allowed local zones that meets the watermarks then
5286 * try to allocate a single page and reclaim if necessary.
5287 */
5288 if (unlikely(!zone))
5289 goto failed;
5290
5291 /* Attempt the batch allocation */
5292 local_lock_irqsave(&pagesets.lock, flags);
5293 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5294 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5295
5296 while (nr_populated < nr_pages) {
5297
5298 /* Skip existing pages */
5299 if (page_array && page_array[nr_populated]) {
5300 nr_populated++;
5301 continue;
5302 }
5303
5304 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5305 pcp, pcp_list);
5306 if (unlikely(!page)) {
5307 /* Try and get at least one page */
5308 if (!nr_populated)
5309 goto failed_irq;
5310 break;
5311 }
5312 nr_account++;
5313
5314 prep_new_page(page, 0, gfp, 0);
5315 if (page_list)
5316 list_add(&page->lru, page_list);
5317 else
5318 page_array[nr_populated] = page;
5319 nr_populated++;
5320 }
5321
5322 local_unlock_irqrestore(&pagesets.lock, flags);
5323
5324 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5325 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5326
5327out:
5328 return nr_populated;
5329
5330failed_irq:
5331 local_unlock_irqrestore(&pagesets.lock, flags);
5332
5333failed:
5334 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5335 if (page) {
5336 if (page_list)
5337 list_add(&page->lru, page_list);
5338 else
5339 page_array[nr_populated] = page;
5340 nr_populated++;
5341 }
5342
5343 goto out;
5344}
5345EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5346
5347/*
5348 * This is the 'heart' of the zoned buddy allocator.
5349 */
5350struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5351 nodemask_t *nodemask)
5352{
5353 struct page *page;
5354 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5355 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5356 struct alloc_context ac = { };
5357
5358 /*
5359 * There are several places where we assume that the order value is sane
5360 * so bail out early if the request is out of bound.
5361 */
5362 if (unlikely(order >= MAX_ORDER)) {
5363 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5364 return NULL;
5365 }
5366
5367 gfp &= gfp_allowed_mask;
5368 /*
5369 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5370 * resp. GFP_NOIO which has to be inherited for all allocation requests
5371 * from a particular context which has been marked by
5372 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5373 * movable zones are not used during allocation.
5374 */
5375 gfp = current_gfp_context(gfp);
5376 alloc_gfp = gfp;
5377 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5378 &alloc_gfp, &alloc_flags))
5379 return NULL;
5380
5381 /*
5382 * Forbid the first pass from falling back to types that fragment
5383 * memory until all local zones are considered.
5384 */
5385 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5386
5387 /* First allocation attempt */
5388 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5389 if (likely(page))
5390 goto out;
5391
5392 alloc_gfp = gfp;
5393 ac.spread_dirty_pages = false;
5394
5395 /*
5396 * Restore the original nodemask if it was potentially replaced with
5397 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5398 */
5399 ac.nodemask = nodemask;
5400
5401 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5402
5403out:
5404 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5405 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5406 __free_pages(page, order);
5407 page = NULL;
5408 }
5409
5410 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5411
5412 return page;
5413}
5414EXPORT_SYMBOL(__alloc_pages);
5415
5416/*
5417 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5418 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5419 * you need to access high mem.
5420 */
5421unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5422{
5423 struct page *page;
5424
5425 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5426 if (!page)
5427 return 0;
5428 return (unsigned long) page_address(page);
5429}
5430EXPORT_SYMBOL(__get_free_pages);
5431
5432unsigned long get_zeroed_page(gfp_t gfp_mask)
5433{
5434 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5435}
5436EXPORT_SYMBOL(get_zeroed_page);
5437
5438/**
5439 * __free_pages - Free pages allocated with alloc_pages().
5440 * @page: The page pointer returned from alloc_pages().
5441 * @order: The order of the allocation.
5442 *
5443 * This function can free multi-page allocations that are not compound
5444 * pages. It does not check that the @order passed in matches that of
5445 * the allocation, so it is easy to leak memory. Freeing more memory
5446 * than was allocated will probably emit a warning.
5447 *
5448 * If the last reference to this page is speculative, it will be released
5449 * by put_page() which only frees the first page of a non-compound
5450 * allocation. To prevent the remaining pages from being leaked, we free
5451 * the subsequent pages here. If you want to use the page's reference
5452 * count to decide when to free the allocation, you should allocate a
5453 * compound page, and use put_page() instead of __free_pages().
5454 *
5455 * Context: May be called in interrupt context or while holding a normal
5456 * spinlock, but not in NMI context or while holding a raw spinlock.
5457 */
5458void __free_pages(struct page *page, unsigned int order)
5459{
5460 if (put_page_testzero(page))
5461 free_the_page(page, order);
5462 else if (!PageHead(page))
5463 while (order-- > 0)
5464 free_the_page(page + (1 << order), order);
5465}
5466EXPORT_SYMBOL(__free_pages);
5467
5468void free_pages(unsigned long addr, unsigned int order)
5469{
5470 if (addr != 0) {
5471 VM_BUG_ON(!virt_addr_valid((void *)addr));
5472 __free_pages(virt_to_page((void *)addr), order);
5473 }
5474}
5475
5476EXPORT_SYMBOL(free_pages);
5477
5478/*
5479 * Page Fragment:
5480 * An arbitrary-length arbitrary-offset area of memory which resides
5481 * within a 0 or higher order page. Multiple fragments within that page
5482 * are individually refcounted, in the page's reference counter.
5483 *
5484 * The page_frag functions below provide a simple allocation framework for
5485 * page fragments. This is used by the network stack and network device
5486 * drivers to provide a backing region of memory for use as either an
5487 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5488 */
5489static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5490 gfp_t gfp_mask)
5491{
5492 struct page *page = NULL;
5493 gfp_t gfp = gfp_mask;
5494
5495#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5496 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5497 __GFP_NOMEMALLOC;
5498 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5499 PAGE_FRAG_CACHE_MAX_ORDER);
5500 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5501#endif
5502 if (unlikely(!page))
5503 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5504
5505 nc->va = page ? page_address(page) : NULL;
5506
5507 return page;
5508}
5509
5510void __page_frag_cache_drain(struct page *page, unsigned int count)
5511{
5512 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5513
5514 if (page_ref_sub_and_test(page, count))
5515 free_the_page(page, compound_order(page));
5516}
5517EXPORT_SYMBOL(__page_frag_cache_drain);
5518
5519void *page_frag_alloc_align(struct page_frag_cache *nc,
5520 unsigned int fragsz, gfp_t gfp_mask,
5521 unsigned int align_mask)
5522{
5523 unsigned int size = PAGE_SIZE;
5524 struct page *page;
5525 int offset;
5526
5527 if (unlikely(!nc->va)) {
5528refill:
5529 page = __page_frag_cache_refill(nc, gfp_mask);
5530 if (!page)
5531 return NULL;
5532
5533#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5534 /* if size can vary use size else just use PAGE_SIZE */
5535 size = nc->size;
5536#endif
5537 /* Even if we own the page, we do not use atomic_set().
5538 * This would break get_page_unless_zero() users.
5539 */
5540 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5541
5542 /* reset page count bias and offset to start of new frag */
5543 nc->pfmemalloc = page_is_pfmemalloc(page);
5544 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5545 nc->offset = size;
5546 }
5547
5548 offset = nc->offset - fragsz;
5549 if (unlikely(offset < 0)) {
5550 page = virt_to_page(nc->va);
5551
5552 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5553 goto refill;
5554
5555 if (unlikely(nc->pfmemalloc)) {
5556 free_the_page(page, compound_order(page));
5557 goto refill;
5558 }
5559
5560#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5561 /* if size can vary use size else just use PAGE_SIZE */
5562 size = nc->size;
5563#endif
5564 /* OK, page count is 0, we can safely set it */
5565 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5566
5567 /* reset page count bias and offset to start of new frag */
5568 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5569 offset = size - fragsz;
5570 }
5571
5572 nc->pagecnt_bias--;
5573 offset &= align_mask;
5574 nc->offset = offset;
5575
5576 return nc->va + offset;
5577}
5578EXPORT_SYMBOL(page_frag_alloc_align);
5579
5580/*
5581 * Frees a page fragment allocated out of either a compound or order 0 page.
5582 */
5583void page_frag_free(void *addr)
5584{
5585 struct page *page = virt_to_head_page(addr);
5586
5587 if (unlikely(put_page_testzero(page)))
5588 free_the_page(page, compound_order(page));
5589}
5590EXPORT_SYMBOL(page_frag_free);
5591
5592static void *make_alloc_exact(unsigned long addr, unsigned int order,
5593 size_t size)
5594{
5595 if (addr) {
5596 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5597 unsigned long used = addr + PAGE_ALIGN(size);
5598
5599 split_page(virt_to_page((void *)addr), order);
5600 while (used < alloc_end) {
5601 free_page(used);
5602 used += PAGE_SIZE;
5603 }
5604 }
5605 return (void *)addr;
5606}
5607
5608/**
5609 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5610 * @size: the number of bytes to allocate
5611 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5612 *
5613 * This function is similar to alloc_pages(), except that it allocates the
5614 * minimum number of pages to satisfy the request. alloc_pages() can only
5615 * allocate memory in power-of-two pages.
5616 *
5617 * This function is also limited by MAX_ORDER.
5618 *
5619 * Memory allocated by this function must be released by free_pages_exact().
5620 *
5621 * Return: pointer to the allocated area or %NULL in case of error.
5622 */
5623void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5624{
5625 unsigned int order = get_order(size);
5626 unsigned long addr;
5627
5628 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5629 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5630
5631 addr = __get_free_pages(gfp_mask, order);
5632 return make_alloc_exact(addr, order, size);
5633}
5634EXPORT_SYMBOL(alloc_pages_exact);
5635
5636/**
5637 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5638 * pages on a node.
5639 * @nid: the preferred node ID where memory should be allocated
5640 * @size: the number of bytes to allocate
5641 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5642 *
5643 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5644 * back.
5645 *
5646 * Return: pointer to the allocated area or %NULL in case of error.
5647 */
5648void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5649{
5650 unsigned int order = get_order(size);
5651 struct page *p;
5652
5653 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5654 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5655
5656 p = alloc_pages_node(nid, gfp_mask, order);
5657 if (!p)
5658 return NULL;
5659 return make_alloc_exact((unsigned long)page_address(p), order, size);
5660}
5661
5662/**
5663 * free_pages_exact - release memory allocated via alloc_pages_exact()
5664 * @virt: the value returned by alloc_pages_exact.
5665 * @size: size of allocation, same value as passed to alloc_pages_exact().
5666 *
5667 * Release the memory allocated by a previous call to alloc_pages_exact.
5668 */
5669void free_pages_exact(void *virt, size_t size)
5670{
5671 unsigned long addr = (unsigned long)virt;
5672 unsigned long end = addr + PAGE_ALIGN(size);
5673
5674 while (addr < end) {
5675 free_page(addr);
5676 addr += PAGE_SIZE;
5677 }
5678}
5679EXPORT_SYMBOL(free_pages_exact);
5680
5681/**
5682 * nr_free_zone_pages - count number of pages beyond high watermark
5683 * @offset: The zone index of the highest zone
5684 *
5685 * nr_free_zone_pages() counts the number of pages which are beyond the
5686 * high watermark within all zones at or below a given zone index. For each
5687 * zone, the number of pages is calculated as:
5688 *
5689 * nr_free_zone_pages = managed_pages - high_pages
5690 *
5691 * Return: number of pages beyond high watermark.
5692 */
5693static unsigned long nr_free_zone_pages(int offset)
5694{
5695 struct zoneref *z;
5696 struct zone *zone;
5697
5698 /* Just pick one node, since fallback list is circular */
5699 unsigned long sum = 0;
5700
5701 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5702
5703 for_each_zone_zonelist(zone, z, zonelist, offset) {
5704 unsigned long size = zone_managed_pages(zone);
5705 unsigned long high = high_wmark_pages(zone);
5706 if (size > high)
5707 sum += size - high;
5708 }
5709
5710 return sum;
5711}
5712
5713/**
5714 * nr_free_buffer_pages - count number of pages beyond high watermark
5715 *
5716 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5717 * watermark within ZONE_DMA and ZONE_NORMAL.
5718 *
5719 * Return: number of pages beyond high watermark within ZONE_DMA and
5720 * ZONE_NORMAL.
5721 */
5722unsigned long nr_free_buffer_pages(void)
5723{
5724 return nr_free_zone_pages(gfp_zone(GFP_USER));
5725}
5726EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5727
5728static inline void show_node(struct zone *zone)
5729{
5730 if (IS_ENABLED(CONFIG_NUMA))
5731 printk("Node %d ", zone_to_nid(zone));
5732}
5733
5734long si_mem_available(void)
5735{
5736 long available;
5737 unsigned long pagecache;
5738 unsigned long wmark_low = 0;
5739 unsigned long pages[NR_LRU_LISTS];
5740 unsigned long reclaimable;
5741 struct zone *zone;
5742 int lru;
5743
5744 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5745 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5746
5747 for_each_zone(zone)
5748 wmark_low += low_wmark_pages(zone);
5749
5750 /*
5751 * Estimate the amount of memory available for userspace allocations,
5752 * without causing swapping.
5753 */
5754 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5755
5756 /*
5757 * Not all the page cache can be freed, otherwise the system will
5758 * start swapping. Assume at least half of the page cache, or the
5759 * low watermark worth of cache, needs to stay.
5760 */
5761 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5762 pagecache -= min(pagecache / 2, wmark_low);
5763 available += pagecache;
5764
5765 /*
5766 * Part of the reclaimable slab and other kernel memory consists of
5767 * items that are in use, and cannot be freed. Cap this estimate at the
5768 * low watermark.
5769 */
5770 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5771 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5772 available += reclaimable - min(reclaimable / 2, wmark_low);
5773
5774 if (available < 0)
5775 available = 0;
5776 return available;
5777}
5778EXPORT_SYMBOL_GPL(si_mem_available);
5779
5780void si_meminfo(struct sysinfo *val)
5781{
5782 val->totalram = totalram_pages();
5783 val->sharedram = global_node_page_state(NR_SHMEM);
5784 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5785 val->bufferram = nr_blockdev_pages();
5786 val->totalhigh = totalhigh_pages();
5787 val->freehigh = nr_free_highpages();
5788 val->mem_unit = PAGE_SIZE;
5789}
5790
5791EXPORT_SYMBOL(si_meminfo);
5792
5793#ifdef CONFIG_NUMA
5794void si_meminfo_node(struct sysinfo *val, int nid)
5795{
5796 int zone_type; /* needs to be signed */
5797 unsigned long managed_pages = 0;
5798 unsigned long managed_highpages = 0;
5799 unsigned long free_highpages = 0;
5800 pg_data_t *pgdat = NODE_DATA(nid);
5801
5802 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5803 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5804 val->totalram = managed_pages;
5805 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5806 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5807#ifdef CONFIG_HIGHMEM
5808 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5809 struct zone *zone = &pgdat->node_zones[zone_type];
5810
5811 if (is_highmem(zone)) {
5812 managed_highpages += zone_managed_pages(zone);
5813 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5814 }
5815 }
5816 val->totalhigh = managed_highpages;
5817 val->freehigh = free_highpages;
5818#else
5819 val->totalhigh = managed_highpages;
5820 val->freehigh = free_highpages;
5821#endif
5822 val->mem_unit = PAGE_SIZE;
5823}
5824#endif
5825
5826/*
5827 * Determine whether the node should be displayed or not, depending on whether
5828 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5829 */
5830static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5831{
5832 if (!(flags & SHOW_MEM_FILTER_NODES))
5833 return false;
5834
5835 /*
5836 * no node mask - aka implicit memory numa policy. Do not bother with
5837 * the synchronization - read_mems_allowed_begin - because we do not
5838 * have to be precise here.
5839 */
5840 if (!nodemask)
5841 nodemask = &cpuset_current_mems_allowed;
5842
5843 return !node_isset(nid, *nodemask);
5844}
5845
5846#define K(x) ((x) << (PAGE_SHIFT-10))
5847
5848static void show_migration_types(unsigned char type)
5849{
5850 static const char types[MIGRATE_TYPES] = {
5851 [MIGRATE_UNMOVABLE] = 'U',
5852 [MIGRATE_MOVABLE] = 'M',
5853 [MIGRATE_RECLAIMABLE] = 'E',
5854 [MIGRATE_HIGHATOMIC] = 'H',
5855#ifdef CONFIG_CMA
5856 [MIGRATE_CMA] = 'C',
5857#endif
5858#ifdef CONFIG_MEMORY_ISOLATION
5859 [MIGRATE_ISOLATE] = 'I',
5860#endif
5861 };
5862 char tmp[MIGRATE_TYPES + 1];
5863 char *p = tmp;
5864 int i;
5865
5866 for (i = 0; i < MIGRATE_TYPES; i++) {
5867 if (type & (1 << i))
5868 *p++ = types[i];
5869 }
5870
5871 *p = '\0';
5872 printk(KERN_CONT "(%s) ", tmp);
5873}
5874
5875/*
5876 * Show free area list (used inside shift_scroll-lock stuff)
5877 * We also calculate the percentage fragmentation. We do this by counting the
5878 * memory on each free list with the exception of the first item on the list.
5879 *
5880 * Bits in @filter:
5881 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5882 * cpuset.
5883 */
5884void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5885{
5886 unsigned long free_pcp = 0;
5887 int cpu;
5888 struct zone *zone;
5889 pg_data_t *pgdat;
5890
5891 for_each_populated_zone(zone) {
5892 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5893 continue;
5894
5895 for_each_online_cpu(cpu)
5896 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5897 }
5898
5899 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5900 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5901 " unevictable:%lu dirty:%lu writeback:%lu\n"
5902 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5903 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5904 " kernel_misc_reclaimable:%lu\n"
5905 " free:%lu free_pcp:%lu free_cma:%lu\n",
5906 global_node_page_state(NR_ACTIVE_ANON),
5907 global_node_page_state(NR_INACTIVE_ANON),
5908 global_node_page_state(NR_ISOLATED_ANON),
5909 global_node_page_state(NR_ACTIVE_FILE),
5910 global_node_page_state(NR_INACTIVE_FILE),
5911 global_node_page_state(NR_ISOLATED_FILE),
5912 global_node_page_state(NR_UNEVICTABLE),
5913 global_node_page_state(NR_FILE_DIRTY),
5914 global_node_page_state(NR_WRITEBACK),
5915 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5916 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5917 global_node_page_state(NR_FILE_MAPPED),
5918 global_node_page_state(NR_SHMEM),
5919 global_node_page_state(NR_PAGETABLE),
5920 global_zone_page_state(NR_BOUNCE),
5921 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5922 global_zone_page_state(NR_FREE_PAGES),
5923 free_pcp,
5924 global_zone_page_state(NR_FREE_CMA_PAGES));
5925
5926 for_each_online_pgdat(pgdat) {
5927 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5928 continue;
5929
5930 printk("Node %d"
5931 " active_anon:%lukB"
5932 " inactive_anon:%lukB"
5933 " active_file:%lukB"
5934 " inactive_file:%lukB"
5935 " unevictable:%lukB"
5936 " isolated(anon):%lukB"
5937 " isolated(file):%lukB"
5938 " mapped:%lukB"
5939 " dirty:%lukB"
5940 " writeback:%lukB"
5941 " shmem:%lukB"
5942#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5943 " shmem_thp: %lukB"
5944 " shmem_pmdmapped: %lukB"
5945 " anon_thp: %lukB"
5946#endif
5947 " writeback_tmp:%lukB"
5948 " kernel_stack:%lukB"
5949#ifdef CONFIG_SHADOW_CALL_STACK
5950 " shadow_call_stack:%lukB"
5951#endif
5952 " pagetables:%lukB"
5953 " all_unreclaimable? %s"
5954 "\n",
5955 pgdat->node_id,
5956 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5957 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5958 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5959 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5960 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5961 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5962 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5963 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5964 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5965 K(node_page_state(pgdat, NR_WRITEBACK)),
5966 K(node_page_state(pgdat, NR_SHMEM)),
5967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5968 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5969 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5970 K(node_page_state(pgdat, NR_ANON_THPS)),
5971#endif
5972 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5973 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5974#ifdef CONFIG_SHADOW_CALL_STACK
5975 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5976#endif
5977 K(node_page_state(pgdat, NR_PAGETABLE)),
5978 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5979 "yes" : "no");
5980 }
5981
5982 for_each_populated_zone(zone) {
5983 int i;
5984
5985 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5986 continue;
5987
5988 free_pcp = 0;
5989 for_each_online_cpu(cpu)
5990 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5991
5992 show_node(zone);
5993 printk(KERN_CONT
5994 "%s"
5995 " free:%lukB"
5996 " boost:%lukB"
5997 " min:%lukB"
5998 " low:%lukB"
5999 " high:%lukB"
6000 " reserved_highatomic:%luKB"
6001 " active_anon:%lukB"
6002 " inactive_anon:%lukB"
6003 " active_file:%lukB"
6004 " inactive_file:%lukB"
6005 " unevictable:%lukB"
6006 " writepending:%lukB"
6007 " present:%lukB"
6008 " managed:%lukB"
6009 " mlocked:%lukB"
6010 " bounce:%lukB"
6011 " free_pcp:%lukB"
6012 " local_pcp:%ukB"
6013 " free_cma:%lukB"
6014 "\n",
6015 zone->name,
6016 K(zone_page_state(zone, NR_FREE_PAGES)),
6017 K(zone->watermark_boost),
6018 K(min_wmark_pages(zone)),
6019 K(low_wmark_pages(zone)),
6020 K(high_wmark_pages(zone)),
6021 K(zone->nr_reserved_highatomic),
6022 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6023 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6024 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6025 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6026 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6027 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6028 K(zone->present_pages),
6029 K(zone_managed_pages(zone)),
6030 K(zone_page_state(zone, NR_MLOCK)),
6031 K(zone_page_state(zone, NR_BOUNCE)),
6032 K(free_pcp),
6033 K(this_cpu_read(zone->per_cpu_pageset->count)),
6034 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6035 printk("lowmem_reserve[]:");
6036 for (i = 0; i < MAX_NR_ZONES; i++)
6037 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6038 printk(KERN_CONT "\n");
6039 }
6040
6041 for_each_populated_zone(zone) {
6042 unsigned int order;
6043 unsigned long nr[MAX_ORDER], flags, total = 0;
6044 unsigned char types[MAX_ORDER];
6045
6046 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6047 continue;
6048 show_node(zone);
6049 printk(KERN_CONT "%s: ", zone->name);
6050
6051 spin_lock_irqsave(&zone->lock, flags);
6052 for (order = 0; order < MAX_ORDER; order++) {
6053 struct free_area *area = &zone->free_area[order];
6054 int type;
6055
6056 nr[order] = area->nr_free;
6057 total += nr[order] << order;
6058
6059 types[order] = 0;
6060 for (type = 0; type < MIGRATE_TYPES; type++) {
6061 if (!free_area_empty(area, type))
6062 types[order] |= 1 << type;
6063 }
6064 }
6065 spin_unlock_irqrestore(&zone->lock, flags);
6066 for (order = 0; order < MAX_ORDER; order++) {
6067 printk(KERN_CONT "%lu*%lukB ",
6068 nr[order], K(1UL) << order);
6069 if (nr[order])
6070 show_migration_types(types[order]);
6071 }
6072 printk(KERN_CONT "= %lukB\n", K(total));
6073 }
6074
6075 hugetlb_show_meminfo();
6076
6077 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6078
6079 show_swap_cache_info();
6080}
6081
6082static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6083{
6084 zoneref->zone = zone;
6085 zoneref->zone_idx = zone_idx(zone);
6086}
6087
6088/*
6089 * Builds allocation fallback zone lists.
6090 *
6091 * Add all populated zones of a node to the zonelist.
6092 */
6093static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6094{
6095 struct zone *zone;
6096 enum zone_type zone_type = MAX_NR_ZONES;
6097 int nr_zones = 0;
6098
6099 do {
6100 zone_type--;
6101 zone = pgdat->node_zones + zone_type;
6102 if (managed_zone(zone)) {
6103 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6104 check_highest_zone(zone_type);
6105 }
6106 } while (zone_type);
6107
6108 return nr_zones;
6109}
6110
6111#ifdef CONFIG_NUMA
6112
6113static int __parse_numa_zonelist_order(char *s)
6114{
6115 /*
6116 * We used to support different zonelists modes but they turned
6117 * out to be just not useful. Let's keep the warning in place
6118 * if somebody still use the cmd line parameter so that we do
6119 * not fail it silently
6120 */
6121 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6122 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6123 return -EINVAL;
6124 }
6125 return 0;
6126}
6127
6128char numa_zonelist_order[] = "Node";
6129
6130/*
6131 * sysctl handler for numa_zonelist_order
6132 */
6133int numa_zonelist_order_handler(struct ctl_table *table, int write,
6134 void *buffer, size_t *length, loff_t *ppos)
6135{
6136 if (write)
6137 return __parse_numa_zonelist_order(buffer);
6138 return proc_dostring(table, write, buffer, length, ppos);
6139}
6140
6141
6142#define MAX_NODE_LOAD (nr_online_nodes)
6143static int node_load[MAX_NUMNODES];
6144
6145/**
6146 * find_next_best_node - find the next node that should appear in a given node's fallback list
6147 * @node: node whose fallback list we're appending
6148 * @used_node_mask: nodemask_t of already used nodes
6149 *
6150 * We use a number of factors to determine which is the next node that should
6151 * appear on a given node's fallback list. The node should not have appeared
6152 * already in @node's fallback list, and it should be the next closest node
6153 * according to the distance array (which contains arbitrary distance values
6154 * from each node to each node in the system), and should also prefer nodes
6155 * with no CPUs, since presumably they'll have very little allocation pressure
6156 * on them otherwise.
6157 *
6158 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6159 */
6160int find_next_best_node(int node, nodemask_t *used_node_mask)
6161{
6162 int n, val;
6163 int min_val = INT_MAX;
6164 int best_node = NUMA_NO_NODE;
6165
6166 /* Use the local node if we haven't already */
6167 if (!node_isset(node, *used_node_mask)) {
6168 node_set(node, *used_node_mask);
6169 return node;
6170 }
6171
6172 for_each_node_state(n, N_MEMORY) {
6173
6174 /* Don't want a node to appear more than once */
6175 if (node_isset(n, *used_node_mask))
6176 continue;
6177
6178 /* Use the distance array to find the distance */
6179 val = node_distance(node, n);
6180
6181 /* Penalize nodes under us ("prefer the next node") */
6182 val += (n < node);
6183
6184 /* Give preference to headless and unused nodes */
6185 if (!cpumask_empty(cpumask_of_node(n)))
6186 val += PENALTY_FOR_NODE_WITH_CPUS;
6187
6188 /* Slight preference for less loaded node */
6189 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6190 val += node_load[n];
6191
6192 if (val < min_val) {
6193 min_val = val;
6194 best_node = n;
6195 }
6196 }
6197
6198 if (best_node >= 0)
6199 node_set(best_node, *used_node_mask);
6200
6201 return best_node;
6202}
6203
6204
6205/*
6206 * Build zonelists ordered by node and zones within node.
6207 * This results in maximum locality--normal zone overflows into local
6208 * DMA zone, if any--but risks exhausting DMA zone.
6209 */
6210static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6211 unsigned nr_nodes)
6212{
6213 struct zoneref *zonerefs;
6214 int i;
6215
6216 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6217
6218 for (i = 0; i < nr_nodes; i++) {
6219 int nr_zones;
6220
6221 pg_data_t *node = NODE_DATA(node_order[i]);
6222
6223 nr_zones = build_zonerefs_node(node, zonerefs);
6224 zonerefs += nr_zones;
6225 }
6226 zonerefs->zone = NULL;
6227 zonerefs->zone_idx = 0;
6228}
6229
6230/*
6231 * Build gfp_thisnode zonelists
6232 */
6233static void build_thisnode_zonelists(pg_data_t *pgdat)
6234{
6235 struct zoneref *zonerefs;
6236 int nr_zones;
6237
6238 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6239 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6240 zonerefs += nr_zones;
6241 zonerefs->zone = NULL;
6242 zonerefs->zone_idx = 0;
6243}
6244
6245/*
6246 * Build zonelists ordered by zone and nodes within zones.
6247 * This results in conserving DMA zone[s] until all Normal memory is
6248 * exhausted, but results in overflowing to remote node while memory
6249 * may still exist in local DMA zone.
6250 */
6251
6252static void build_zonelists(pg_data_t *pgdat)
6253{
6254 static int node_order[MAX_NUMNODES];
6255 int node, load, nr_nodes = 0;
6256 nodemask_t used_mask = NODE_MASK_NONE;
6257 int local_node, prev_node;
6258
6259 /* NUMA-aware ordering of nodes */
6260 local_node = pgdat->node_id;
6261 load = nr_online_nodes;
6262 prev_node = local_node;
6263
6264 memset(node_order, 0, sizeof(node_order));
6265 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6266 /*
6267 * We don't want to pressure a particular node.
6268 * So adding penalty to the first node in same
6269 * distance group to make it round-robin.
6270 */
6271 if (node_distance(local_node, node) !=
6272 node_distance(local_node, prev_node))
6273 node_load[node] += load;
6274
6275 node_order[nr_nodes++] = node;
6276 prev_node = node;
6277 load--;
6278 }
6279
6280 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6281 build_thisnode_zonelists(pgdat);
6282 pr_info("Fallback order for Node %d: ", local_node);
6283 for (node = 0; node < nr_nodes; node++)
6284 pr_cont("%d ", node_order[node]);
6285 pr_cont("\n");
6286}
6287
6288#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6289/*
6290 * Return node id of node used for "local" allocations.
6291 * I.e., first node id of first zone in arg node's generic zonelist.
6292 * Used for initializing percpu 'numa_mem', which is used primarily
6293 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6294 */
6295int local_memory_node(int node)
6296{
6297 struct zoneref *z;
6298
6299 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6300 gfp_zone(GFP_KERNEL),
6301 NULL);
6302 return zone_to_nid(z->zone);
6303}
6304#endif
6305
6306static void setup_min_unmapped_ratio(void);
6307static void setup_min_slab_ratio(void);
6308#else /* CONFIG_NUMA */
6309
6310static void build_zonelists(pg_data_t *pgdat)
6311{
6312 int node, local_node;
6313 struct zoneref *zonerefs;
6314 int nr_zones;
6315
6316 local_node = pgdat->node_id;
6317
6318 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6319 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6320 zonerefs += nr_zones;
6321
6322 /*
6323 * Now we build the zonelist so that it contains the zones
6324 * of all the other nodes.
6325 * We don't want to pressure a particular node, so when
6326 * building the zones for node N, we make sure that the
6327 * zones coming right after the local ones are those from
6328 * node N+1 (modulo N)
6329 */
6330 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6331 if (!node_online(node))
6332 continue;
6333 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6334 zonerefs += nr_zones;
6335 }
6336 for (node = 0; node < local_node; node++) {
6337 if (!node_online(node))
6338 continue;
6339 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6340 zonerefs += nr_zones;
6341 }
6342
6343 zonerefs->zone = NULL;
6344 zonerefs->zone_idx = 0;
6345}
6346
6347#endif /* CONFIG_NUMA */
6348
6349/*
6350 * Boot pageset table. One per cpu which is going to be used for all
6351 * zones and all nodes. The parameters will be set in such a way
6352 * that an item put on a list will immediately be handed over to
6353 * the buddy list. This is safe since pageset manipulation is done
6354 * with interrupts disabled.
6355 *
6356 * The boot_pagesets must be kept even after bootup is complete for
6357 * unused processors and/or zones. They do play a role for bootstrapping
6358 * hotplugged processors.
6359 *
6360 * zoneinfo_show() and maybe other functions do
6361 * not check if the processor is online before following the pageset pointer.
6362 * Other parts of the kernel may not check if the zone is available.
6363 */
6364static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6365/* These effectively disable the pcplists in the boot pageset completely */
6366#define BOOT_PAGESET_HIGH 0
6367#define BOOT_PAGESET_BATCH 1
6368static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6369static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6370static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6371
6372static void __build_all_zonelists(void *data)
6373{
6374 int nid;
6375 int __maybe_unused cpu;
6376 pg_data_t *self = data;
6377 static DEFINE_SPINLOCK(lock);
6378
6379 spin_lock(&lock);
6380
6381#ifdef CONFIG_NUMA
6382 memset(node_load, 0, sizeof(node_load));
6383#endif
6384
6385 /*
6386 * This node is hotadded and no memory is yet present. So just
6387 * building zonelists is fine - no need to touch other nodes.
6388 */
6389 if (self && !node_online(self->node_id)) {
6390 build_zonelists(self);
6391 } else {
6392 for_each_online_node(nid) {
6393 pg_data_t *pgdat = NODE_DATA(nid);
6394
6395 build_zonelists(pgdat);
6396 }
6397
6398#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6399 /*
6400 * We now know the "local memory node" for each node--
6401 * i.e., the node of the first zone in the generic zonelist.
6402 * Set up numa_mem percpu variable for on-line cpus. During
6403 * boot, only the boot cpu should be on-line; we'll init the
6404 * secondary cpus' numa_mem as they come on-line. During
6405 * node/memory hotplug, we'll fixup all on-line cpus.
6406 */
6407 for_each_online_cpu(cpu)
6408 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6409#endif
6410 }
6411
6412 spin_unlock(&lock);
6413}
6414
6415static noinline void __init
6416build_all_zonelists_init(void)
6417{
6418 int cpu;
6419
6420 __build_all_zonelists(NULL);
6421
6422 /*
6423 * Initialize the boot_pagesets that are going to be used
6424 * for bootstrapping processors. The real pagesets for
6425 * each zone will be allocated later when the per cpu
6426 * allocator is available.
6427 *
6428 * boot_pagesets are used also for bootstrapping offline
6429 * cpus if the system is already booted because the pagesets
6430 * are needed to initialize allocators on a specific cpu too.
6431 * F.e. the percpu allocator needs the page allocator which
6432 * needs the percpu allocator in order to allocate its pagesets
6433 * (a chicken-egg dilemma).
6434 */
6435 for_each_possible_cpu(cpu)
6436 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6437
6438 mminit_verify_zonelist();
6439 cpuset_init_current_mems_allowed();
6440}
6441
6442/*
6443 * unless system_state == SYSTEM_BOOTING.
6444 *
6445 * __ref due to call of __init annotated helper build_all_zonelists_init
6446 * [protected by SYSTEM_BOOTING].
6447 */
6448void __ref build_all_zonelists(pg_data_t *pgdat)
6449{
6450 unsigned long vm_total_pages;
6451
6452 if (system_state == SYSTEM_BOOTING) {
6453 build_all_zonelists_init();
6454 } else {
6455 __build_all_zonelists(pgdat);
6456 /* cpuset refresh routine should be here */
6457 }
6458 /* Get the number of free pages beyond high watermark in all zones. */
6459 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6460 /*
6461 * Disable grouping by mobility if the number of pages in the
6462 * system is too low to allow the mechanism to work. It would be
6463 * more accurate, but expensive to check per-zone. This check is
6464 * made on memory-hotadd so a system can start with mobility
6465 * disabled and enable it later
6466 */
6467 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6468 page_group_by_mobility_disabled = 1;
6469 else
6470 page_group_by_mobility_disabled = 0;
6471
6472 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6473 nr_online_nodes,
6474 page_group_by_mobility_disabled ? "off" : "on",
6475 vm_total_pages);
6476#ifdef CONFIG_NUMA
6477 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6478#endif
6479}
6480
6481/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6482static bool __meminit
6483overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6484{
6485 static struct memblock_region *r;
6486
6487 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6488 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6489 for_each_mem_region(r) {
6490 if (*pfn < memblock_region_memory_end_pfn(r))
6491 break;
6492 }
6493 }
6494 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6495 memblock_is_mirror(r)) {
6496 *pfn = memblock_region_memory_end_pfn(r);
6497 return true;
6498 }
6499 }
6500 return false;
6501}
6502
6503/*
6504 * Initially all pages are reserved - free ones are freed
6505 * up by memblock_free_all() once the early boot process is
6506 * done. Non-atomic initialization, single-pass.
6507 *
6508 * All aligned pageblocks are initialized to the specified migratetype
6509 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6510 * zone stats (e.g., nr_isolate_pageblock) are touched.
6511 */
6512void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6513 unsigned long start_pfn, unsigned long zone_end_pfn,
6514 enum meminit_context context,
6515 struct vmem_altmap *altmap, int migratetype)
6516{
6517 unsigned long pfn, end_pfn = start_pfn + size;
6518 struct page *page;
6519
6520 if (highest_memmap_pfn < end_pfn - 1)
6521 highest_memmap_pfn = end_pfn - 1;
6522
6523#ifdef CONFIG_ZONE_DEVICE
6524 /*
6525 * Honor reservation requested by the driver for this ZONE_DEVICE
6526 * memory. We limit the total number of pages to initialize to just
6527 * those that might contain the memory mapping. We will defer the
6528 * ZONE_DEVICE page initialization until after we have released
6529 * the hotplug lock.
6530 */
6531 if (zone == ZONE_DEVICE) {
6532 if (!altmap)
6533 return;
6534
6535 if (start_pfn == altmap->base_pfn)
6536 start_pfn += altmap->reserve;
6537 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6538 }
6539#endif
6540
6541 for (pfn = start_pfn; pfn < end_pfn; ) {
6542 /*
6543 * There can be holes in boot-time mem_map[]s handed to this
6544 * function. They do not exist on hotplugged memory.
6545 */
6546 if (context == MEMINIT_EARLY) {
6547 if (overlap_memmap_init(zone, &pfn))
6548 continue;
6549 if (defer_init(nid, pfn, zone_end_pfn))
6550 break;
6551 }
6552
6553 page = pfn_to_page(pfn);
6554 __init_single_page(page, pfn, zone, nid);
6555 if (context == MEMINIT_HOTPLUG)
6556 __SetPageReserved(page);
6557
6558 /*
6559 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6560 * such that unmovable allocations won't be scattered all
6561 * over the place during system boot.
6562 */
6563 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6564 set_pageblock_migratetype(page, migratetype);
6565 cond_resched();
6566 }
6567 pfn++;
6568 }
6569}
6570
6571#ifdef CONFIG_ZONE_DEVICE
6572void __ref memmap_init_zone_device(struct zone *zone,
6573 unsigned long start_pfn,
6574 unsigned long nr_pages,
6575 struct dev_pagemap *pgmap)
6576{
6577 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6578 struct pglist_data *pgdat = zone->zone_pgdat;
6579 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6580 unsigned long zone_idx = zone_idx(zone);
6581 unsigned long start = jiffies;
6582 int nid = pgdat->node_id;
6583
6584 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6585 return;
6586
6587 /*
6588 * The call to memmap_init should have already taken care
6589 * of the pages reserved for the memmap, so we can just jump to
6590 * the end of that region and start processing the device pages.
6591 */
6592 if (altmap) {
6593 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6594 nr_pages = end_pfn - start_pfn;
6595 }
6596
6597 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6598 struct page *page = pfn_to_page(pfn);
6599
6600 __init_single_page(page, pfn, zone_idx, nid);
6601
6602 /*
6603 * Mark page reserved as it will need to wait for onlining
6604 * phase for it to be fully associated with a zone.
6605 *
6606 * We can use the non-atomic __set_bit operation for setting
6607 * the flag as we are still initializing the pages.
6608 */
6609 __SetPageReserved(page);
6610
6611 /*
6612 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6613 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6614 * ever freed or placed on a driver-private list.
6615 */
6616 page->pgmap = pgmap;
6617 page->zone_device_data = NULL;
6618
6619 /*
6620 * Mark the block movable so that blocks are reserved for
6621 * movable at startup. This will force kernel allocations
6622 * to reserve their blocks rather than leaking throughout
6623 * the address space during boot when many long-lived
6624 * kernel allocations are made.
6625 *
6626 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6627 * because this is done early in section_activate()
6628 */
6629 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6630 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6631 cond_resched();
6632 }
6633 }
6634
6635 pr_info("%s initialised %lu pages in %ums\n", __func__,
6636 nr_pages, jiffies_to_msecs(jiffies - start));
6637}
6638
6639#endif
6640static void __meminit zone_init_free_lists(struct zone *zone)
6641{
6642 unsigned int order, t;
6643 for_each_migratetype_order(order, t) {
6644 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6645 zone->free_area[order].nr_free = 0;
6646 }
6647}
6648
6649/*
6650 * Only struct pages that correspond to ranges defined by memblock.memory
6651 * are zeroed and initialized by going through __init_single_page() during
6652 * memmap_init_zone_range().
6653 *
6654 * But, there could be struct pages that correspond to holes in
6655 * memblock.memory. This can happen because of the following reasons:
6656 * - physical memory bank size is not necessarily the exact multiple of the
6657 * arbitrary section size
6658 * - early reserved memory may not be listed in memblock.memory
6659 * - memory layouts defined with memmap= kernel parameter may not align
6660 * nicely with memmap sections
6661 *
6662 * Explicitly initialize those struct pages so that:
6663 * - PG_Reserved is set
6664 * - zone and node links point to zone and node that span the page if the
6665 * hole is in the middle of a zone
6666 * - zone and node links point to adjacent zone/node if the hole falls on
6667 * the zone boundary; the pages in such holes will be prepended to the
6668 * zone/node above the hole except for the trailing pages in the last
6669 * section that will be appended to the zone/node below.
6670 */
6671static void __init init_unavailable_range(unsigned long spfn,
6672 unsigned long epfn,
6673 int zone, int node)
6674{
6675 unsigned long pfn;
6676 u64 pgcnt = 0;
6677
6678 for (pfn = spfn; pfn < epfn; pfn++) {
6679 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6680 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6681 + pageblock_nr_pages - 1;
6682 continue;
6683 }
6684 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6685 __SetPageReserved(pfn_to_page(pfn));
6686 pgcnt++;
6687 }
6688
6689 if (pgcnt)
6690 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6691 node, zone_names[zone], pgcnt);
6692}
6693
6694static void __init memmap_init_zone_range(struct zone *zone,
6695 unsigned long start_pfn,
6696 unsigned long end_pfn,
6697 unsigned long *hole_pfn)
6698{
6699 unsigned long zone_start_pfn = zone->zone_start_pfn;
6700 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6701 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6702
6703 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6704 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6705
6706 if (start_pfn >= end_pfn)
6707 return;
6708
6709 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6710 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6711
6712 if (*hole_pfn < start_pfn)
6713 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6714
6715 *hole_pfn = end_pfn;
6716}
6717
6718static void __init memmap_init(void)
6719{
6720 unsigned long start_pfn, end_pfn;
6721 unsigned long hole_pfn = 0;
6722 int i, j, zone_id = 0, nid;
6723
6724 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6725 struct pglist_data *node = NODE_DATA(nid);
6726
6727 for (j = 0; j < MAX_NR_ZONES; j++) {
6728 struct zone *zone = node->node_zones + j;
6729
6730 if (!populated_zone(zone))
6731 continue;
6732
6733 memmap_init_zone_range(zone, start_pfn, end_pfn,
6734 &hole_pfn);
6735 zone_id = j;
6736 }
6737 }
6738
6739#ifdef CONFIG_SPARSEMEM
6740 /*
6741 * Initialize the memory map for hole in the range [memory_end,
6742 * section_end].
6743 * Append the pages in this hole to the highest zone in the last
6744 * node.
6745 * The call to init_unavailable_range() is outside the ifdef to
6746 * silence the compiler warining about zone_id set but not used;
6747 * for FLATMEM it is a nop anyway
6748 */
6749 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6750 if (hole_pfn < end_pfn)
6751#endif
6752 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6753}
6754
6755void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6756 phys_addr_t min_addr, int nid, bool exact_nid)
6757{
6758 void *ptr;
6759
6760 if (exact_nid)
6761 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6762 MEMBLOCK_ALLOC_ACCESSIBLE,
6763 nid);
6764 else
6765 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6766 MEMBLOCK_ALLOC_ACCESSIBLE,
6767 nid);
6768
6769 if (ptr && size > 0)
6770 page_init_poison(ptr, size);
6771
6772 return ptr;
6773}
6774
6775static int zone_batchsize(struct zone *zone)
6776{
6777#ifdef CONFIG_MMU
6778 int batch;
6779
6780 /*
6781 * The number of pages to batch allocate is either ~0.1%
6782 * of the zone or 1MB, whichever is smaller. The batch
6783 * size is striking a balance between allocation latency
6784 * and zone lock contention.
6785 */
6786 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6787 batch /= 4; /* We effectively *= 4 below */
6788 if (batch < 1)
6789 batch = 1;
6790
6791 /*
6792 * Clamp the batch to a 2^n - 1 value. Having a power
6793 * of 2 value was found to be more likely to have
6794 * suboptimal cache aliasing properties in some cases.
6795 *
6796 * For example if 2 tasks are alternately allocating
6797 * batches of pages, one task can end up with a lot
6798 * of pages of one half of the possible page colors
6799 * and the other with pages of the other colors.
6800 */
6801 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6802
6803 return batch;
6804
6805#else
6806 /* The deferral and batching of frees should be suppressed under NOMMU
6807 * conditions.
6808 *
6809 * The problem is that NOMMU needs to be able to allocate large chunks
6810 * of contiguous memory as there's no hardware page translation to
6811 * assemble apparent contiguous memory from discontiguous pages.
6812 *
6813 * Queueing large contiguous runs of pages for batching, however,
6814 * causes the pages to actually be freed in smaller chunks. As there
6815 * can be a significant delay between the individual batches being
6816 * recycled, this leads to the once large chunks of space being
6817 * fragmented and becoming unavailable for high-order allocations.
6818 */
6819 return 0;
6820#endif
6821}
6822
6823static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6824{
6825#ifdef CONFIG_MMU
6826 int high;
6827 int nr_split_cpus;
6828 unsigned long total_pages;
6829
6830 if (!percpu_pagelist_high_fraction) {
6831 /*
6832 * By default, the high value of the pcp is based on the zone
6833 * low watermark so that if they are full then background
6834 * reclaim will not be started prematurely.
6835 */
6836 total_pages = low_wmark_pages(zone);
6837 } else {
6838 /*
6839 * If percpu_pagelist_high_fraction is configured, the high
6840 * value is based on a fraction of the managed pages in the
6841 * zone.
6842 */
6843 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6844 }
6845
6846 /*
6847 * Split the high value across all online CPUs local to the zone. Note
6848 * that early in boot that CPUs may not be online yet and that during
6849 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6850 * onlined. For memory nodes that have no CPUs, split pcp->high across
6851 * all online CPUs to mitigate the risk that reclaim is triggered
6852 * prematurely due to pages stored on pcp lists.
6853 */
6854 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6855 if (!nr_split_cpus)
6856 nr_split_cpus = num_online_cpus();
6857 high = total_pages / nr_split_cpus;
6858
6859 /*
6860 * Ensure high is at least batch*4. The multiple is based on the
6861 * historical relationship between high and batch.
6862 */
6863 high = max(high, batch << 2);
6864
6865 return high;
6866#else
6867 return 0;
6868#endif
6869}
6870
6871/*
6872 * pcp->high and pcp->batch values are related and generally batch is lower
6873 * than high. They are also related to pcp->count such that count is lower
6874 * than high, and as soon as it reaches high, the pcplist is flushed.
6875 *
6876 * However, guaranteeing these relations at all times would require e.g. write
6877 * barriers here but also careful usage of read barriers at the read side, and
6878 * thus be prone to error and bad for performance. Thus the update only prevents
6879 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6880 * can cope with those fields changing asynchronously, and fully trust only the
6881 * pcp->count field on the local CPU with interrupts disabled.
6882 *
6883 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6884 * outside of boot time (or some other assurance that no concurrent updaters
6885 * exist).
6886 */
6887static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6888 unsigned long batch)
6889{
6890 WRITE_ONCE(pcp->batch, batch);
6891 WRITE_ONCE(pcp->high, high);
6892}
6893
6894static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6895{
6896 int pindex;
6897
6898 memset(pcp, 0, sizeof(*pcp));
6899 memset(pzstats, 0, sizeof(*pzstats));
6900
6901 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6902 INIT_LIST_HEAD(&pcp->lists[pindex]);
6903
6904 /*
6905 * Set batch and high values safe for a boot pageset. A true percpu
6906 * pageset's initialization will update them subsequently. Here we don't
6907 * need to be as careful as pageset_update() as nobody can access the
6908 * pageset yet.
6909 */
6910 pcp->high = BOOT_PAGESET_HIGH;
6911 pcp->batch = BOOT_PAGESET_BATCH;
6912 pcp->free_factor = 0;
6913}
6914
6915static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6916 unsigned long batch)
6917{
6918 struct per_cpu_pages *pcp;
6919 int cpu;
6920
6921 for_each_possible_cpu(cpu) {
6922 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6923 pageset_update(pcp, high, batch);
6924 }
6925}
6926
6927/*
6928 * Calculate and set new high and batch values for all per-cpu pagesets of a
6929 * zone based on the zone's size.
6930 */
6931static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6932{
6933 int new_high, new_batch;
6934
6935 new_batch = max(1, zone_batchsize(zone));
6936 new_high = zone_highsize(zone, new_batch, cpu_online);
6937
6938 if (zone->pageset_high == new_high &&
6939 zone->pageset_batch == new_batch)
6940 return;
6941
6942 zone->pageset_high = new_high;
6943 zone->pageset_batch = new_batch;
6944
6945 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6946}
6947
6948void __meminit setup_zone_pageset(struct zone *zone)
6949{
6950 int cpu;
6951
6952 /* Size may be 0 on !SMP && !NUMA */
6953 if (sizeof(struct per_cpu_zonestat) > 0)
6954 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6955
6956 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6957 for_each_possible_cpu(cpu) {
6958 struct per_cpu_pages *pcp;
6959 struct per_cpu_zonestat *pzstats;
6960
6961 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6962 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6963 per_cpu_pages_init(pcp, pzstats);
6964 }
6965
6966 zone_set_pageset_high_and_batch(zone, 0);
6967}
6968
6969/*
6970 * Allocate per cpu pagesets and initialize them.
6971 * Before this call only boot pagesets were available.
6972 */
6973void __init setup_per_cpu_pageset(void)
6974{
6975 struct pglist_data *pgdat;
6976 struct zone *zone;
6977 int __maybe_unused cpu;
6978
6979 for_each_populated_zone(zone)
6980 setup_zone_pageset(zone);
6981
6982#ifdef CONFIG_NUMA
6983 /*
6984 * Unpopulated zones continue using the boot pagesets.
6985 * The numa stats for these pagesets need to be reset.
6986 * Otherwise, they will end up skewing the stats of
6987 * the nodes these zones are associated with.
6988 */
6989 for_each_possible_cpu(cpu) {
6990 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6991 memset(pzstats->vm_numa_event, 0,
6992 sizeof(pzstats->vm_numa_event));
6993 }
6994#endif
6995
6996 for_each_online_pgdat(pgdat)
6997 pgdat->per_cpu_nodestats =
6998 alloc_percpu(struct per_cpu_nodestat);
6999}
7000
7001static __meminit void zone_pcp_init(struct zone *zone)
7002{
7003 /*
7004 * per cpu subsystem is not up at this point. The following code
7005 * relies on the ability of the linker to provide the
7006 * offset of a (static) per cpu variable into the per cpu area.
7007 */
7008 zone->per_cpu_pageset = &boot_pageset;
7009 zone->per_cpu_zonestats = &boot_zonestats;
7010 zone->pageset_high = BOOT_PAGESET_HIGH;
7011 zone->pageset_batch = BOOT_PAGESET_BATCH;
7012
7013 if (populated_zone(zone))
7014 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7015 zone->present_pages, zone_batchsize(zone));
7016}
7017
7018void __meminit init_currently_empty_zone(struct zone *zone,
7019 unsigned long zone_start_pfn,
7020 unsigned long size)
7021{
7022 struct pglist_data *pgdat = zone->zone_pgdat;
7023 int zone_idx = zone_idx(zone) + 1;
7024
7025 if (zone_idx > pgdat->nr_zones)
7026 pgdat->nr_zones = zone_idx;
7027
7028 zone->zone_start_pfn = zone_start_pfn;
7029
7030 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7031 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7032 pgdat->node_id,
7033 (unsigned long)zone_idx(zone),
7034 zone_start_pfn, (zone_start_pfn + size));
7035
7036 zone_init_free_lists(zone);
7037 zone->initialized = 1;
7038}
7039
7040/**
7041 * get_pfn_range_for_nid - Return the start and end page frames for a node
7042 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7043 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7044 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7045 *
7046 * It returns the start and end page frame of a node based on information
7047 * provided by memblock_set_node(). If called for a node
7048 * with no available memory, a warning is printed and the start and end
7049 * PFNs will be 0.
7050 */
7051void __init get_pfn_range_for_nid(unsigned int nid,
7052 unsigned long *start_pfn, unsigned long *end_pfn)
7053{
7054 unsigned long this_start_pfn, this_end_pfn;
7055 int i;
7056
7057 *start_pfn = -1UL;
7058 *end_pfn = 0;
7059
7060 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7061 *start_pfn = min(*start_pfn, this_start_pfn);
7062 *end_pfn = max(*end_pfn, this_end_pfn);
7063 }
7064
7065 if (*start_pfn == -1UL)
7066 *start_pfn = 0;
7067}
7068
7069/*
7070 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7071 * assumption is made that zones within a node are ordered in monotonic
7072 * increasing memory addresses so that the "highest" populated zone is used
7073 */
7074static void __init find_usable_zone_for_movable(void)
7075{
7076 int zone_index;
7077 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7078 if (zone_index == ZONE_MOVABLE)
7079 continue;
7080
7081 if (arch_zone_highest_possible_pfn[zone_index] >
7082 arch_zone_lowest_possible_pfn[zone_index])
7083 break;
7084 }
7085
7086 VM_BUG_ON(zone_index == -1);
7087 movable_zone = zone_index;
7088}
7089
7090/*
7091 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7092 * because it is sized independent of architecture. Unlike the other zones,
7093 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7094 * in each node depending on the size of each node and how evenly kernelcore
7095 * is distributed. This helper function adjusts the zone ranges
7096 * provided by the architecture for a given node by using the end of the
7097 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7098 * zones within a node are in order of monotonic increases memory addresses
7099 */
7100static void __init adjust_zone_range_for_zone_movable(int nid,
7101 unsigned long zone_type,
7102 unsigned long node_start_pfn,
7103 unsigned long node_end_pfn,
7104 unsigned long *zone_start_pfn,
7105 unsigned long *zone_end_pfn)
7106{
7107 /* Only adjust if ZONE_MOVABLE is on this node */
7108 if (zone_movable_pfn[nid]) {
7109 /* Size ZONE_MOVABLE */
7110 if (zone_type == ZONE_MOVABLE) {
7111 *zone_start_pfn = zone_movable_pfn[nid];
7112 *zone_end_pfn = min(node_end_pfn,
7113 arch_zone_highest_possible_pfn[movable_zone]);
7114
7115 /* Adjust for ZONE_MOVABLE starting within this range */
7116 } else if (!mirrored_kernelcore &&
7117 *zone_start_pfn < zone_movable_pfn[nid] &&
7118 *zone_end_pfn > zone_movable_pfn[nid]) {
7119 *zone_end_pfn = zone_movable_pfn[nid];
7120
7121 /* Check if this whole range is within ZONE_MOVABLE */
7122 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7123 *zone_start_pfn = *zone_end_pfn;
7124 }
7125}
7126
7127/*
7128 * Return the number of pages a zone spans in a node, including holes
7129 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7130 */
7131static unsigned long __init zone_spanned_pages_in_node(int nid,
7132 unsigned long zone_type,
7133 unsigned long node_start_pfn,
7134 unsigned long node_end_pfn,
7135 unsigned long *zone_start_pfn,
7136 unsigned long *zone_end_pfn)
7137{
7138 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7139 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7140 /* When hotadd a new node from cpu_up(), the node should be empty */
7141 if (!node_start_pfn && !node_end_pfn)
7142 return 0;
7143
7144 /* Get the start and end of the zone */
7145 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7146 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7147 adjust_zone_range_for_zone_movable(nid, zone_type,
7148 node_start_pfn, node_end_pfn,
7149 zone_start_pfn, zone_end_pfn);
7150
7151 /* Check that this node has pages within the zone's required range */
7152 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7153 return 0;
7154
7155 /* Move the zone boundaries inside the node if necessary */
7156 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7157 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7158
7159 /* Return the spanned pages */
7160 return *zone_end_pfn - *zone_start_pfn;
7161}
7162
7163/*
7164 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7165 * then all holes in the requested range will be accounted for.
7166 */
7167unsigned long __init __absent_pages_in_range(int nid,
7168 unsigned long range_start_pfn,
7169 unsigned long range_end_pfn)
7170{
7171 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7172 unsigned long start_pfn, end_pfn;
7173 int i;
7174
7175 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7176 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7177 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7178 nr_absent -= end_pfn - start_pfn;
7179 }
7180 return nr_absent;
7181}
7182
7183/**
7184 * absent_pages_in_range - Return number of page frames in holes within a range
7185 * @start_pfn: The start PFN to start searching for holes
7186 * @end_pfn: The end PFN to stop searching for holes
7187 *
7188 * Return: the number of pages frames in memory holes within a range.
7189 */
7190unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7191 unsigned long end_pfn)
7192{
7193 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7194}
7195
7196/* Return the number of page frames in holes in a zone on a node */
7197static unsigned long __init zone_absent_pages_in_node(int nid,
7198 unsigned long zone_type,
7199 unsigned long node_start_pfn,
7200 unsigned long node_end_pfn)
7201{
7202 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7203 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7204 unsigned long zone_start_pfn, zone_end_pfn;
7205 unsigned long nr_absent;
7206
7207 /* When hotadd a new node from cpu_up(), the node should be empty */
7208 if (!node_start_pfn && !node_end_pfn)
7209 return 0;
7210
7211 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7212 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7213
7214 adjust_zone_range_for_zone_movable(nid, zone_type,
7215 node_start_pfn, node_end_pfn,
7216 &zone_start_pfn, &zone_end_pfn);
7217 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7218
7219 /*
7220 * ZONE_MOVABLE handling.
7221 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7222 * and vice versa.
7223 */
7224 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7225 unsigned long start_pfn, end_pfn;
7226 struct memblock_region *r;
7227
7228 for_each_mem_region(r) {
7229 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7230 zone_start_pfn, zone_end_pfn);
7231 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7232 zone_start_pfn, zone_end_pfn);
7233
7234 if (zone_type == ZONE_MOVABLE &&
7235 memblock_is_mirror(r))
7236 nr_absent += end_pfn - start_pfn;
7237
7238 if (zone_type == ZONE_NORMAL &&
7239 !memblock_is_mirror(r))
7240 nr_absent += end_pfn - start_pfn;
7241 }
7242 }
7243
7244 return nr_absent;
7245}
7246
7247static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7248 unsigned long node_start_pfn,
7249 unsigned long node_end_pfn)
7250{
7251 unsigned long realtotalpages = 0, totalpages = 0;
7252 enum zone_type i;
7253
7254 for (i = 0; i < MAX_NR_ZONES; i++) {
7255 struct zone *zone = pgdat->node_zones + i;
7256 unsigned long zone_start_pfn, zone_end_pfn;
7257 unsigned long spanned, absent;
7258 unsigned long size, real_size;
7259
7260 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7261 node_start_pfn,
7262 node_end_pfn,
7263 &zone_start_pfn,
7264 &zone_end_pfn);
7265 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7266 node_start_pfn,
7267 node_end_pfn);
7268
7269 size = spanned;
7270 real_size = size - absent;
7271
7272 if (size)
7273 zone->zone_start_pfn = zone_start_pfn;
7274 else
7275 zone->zone_start_pfn = 0;
7276 zone->spanned_pages = size;
7277 zone->present_pages = real_size;
7278#if defined(CONFIG_MEMORY_HOTPLUG)
7279 zone->present_early_pages = real_size;
7280#endif
7281
7282 totalpages += size;
7283 realtotalpages += real_size;
7284 }
7285
7286 pgdat->node_spanned_pages = totalpages;
7287 pgdat->node_present_pages = realtotalpages;
7288 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7289}
7290
7291#ifndef CONFIG_SPARSEMEM
7292/*
7293 * Calculate the size of the zone->blockflags rounded to an unsigned long
7294 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7295 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7296 * round what is now in bits to nearest long in bits, then return it in
7297 * bytes.
7298 */
7299static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7300{
7301 unsigned long usemapsize;
7302
7303 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7304 usemapsize = roundup(zonesize, pageblock_nr_pages);
7305 usemapsize = usemapsize >> pageblock_order;
7306 usemapsize *= NR_PAGEBLOCK_BITS;
7307 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7308
7309 return usemapsize / 8;
7310}
7311
7312static void __ref setup_usemap(struct zone *zone)
7313{
7314 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7315 zone->spanned_pages);
7316 zone->pageblock_flags = NULL;
7317 if (usemapsize) {
7318 zone->pageblock_flags =
7319 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7320 zone_to_nid(zone));
7321 if (!zone->pageblock_flags)
7322 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7323 usemapsize, zone->name, zone_to_nid(zone));
7324 }
7325}
7326#else
7327static inline void setup_usemap(struct zone *zone) {}
7328#endif /* CONFIG_SPARSEMEM */
7329
7330#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7331
7332/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7333void __init set_pageblock_order(void)
7334{
7335 unsigned int order;
7336
7337 /* Check that pageblock_nr_pages has not already been setup */
7338 if (pageblock_order)
7339 return;
7340
7341 if (HPAGE_SHIFT > PAGE_SHIFT)
7342 order = HUGETLB_PAGE_ORDER;
7343 else
7344 order = MAX_ORDER - 1;
7345
7346 /*
7347 * Assume the largest contiguous order of interest is a huge page.
7348 * This value may be variable depending on boot parameters on IA64 and
7349 * powerpc.
7350 */
7351 pageblock_order = order;
7352}
7353#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7354
7355/*
7356 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7357 * is unused as pageblock_order is set at compile-time. See
7358 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7359 * the kernel config
7360 */
7361void __init set_pageblock_order(void)
7362{
7363}
7364
7365#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7366
7367static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7368 unsigned long present_pages)
7369{
7370 unsigned long pages = spanned_pages;
7371
7372 /*
7373 * Provide a more accurate estimation if there are holes within
7374 * the zone and SPARSEMEM is in use. If there are holes within the
7375 * zone, each populated memory region may cost us one or two extra
7376 * memmap pages due to alignment because memmap pages for each
7377 * populated regions may not be naturally aligned on page boundary.
7378 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7379 */
7380 if (spanned_pages > present_pages + (present_pages >> 4) &&
7381 IS_ENABLED(CONFIG_SPARSEMEM))
7382 pages = present_pages;
7383
7384 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7385}
7386
7387#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7388static void pgdat_init_split_queue(struct pglist_data *pgdat)
7389{
7390 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7391
7392 spin_lock_init(&ds_queue->split_queue_lock);
7393 INIT_LIST_HEAD(&ds_queue->split_queue);
7394 ds_queue->split_queue_len = 0;
7395}
7396#else
7397static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7398#endif
7399
7400#ifdef CONFIG_COMPACTION
7401static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7402{
7403 init_waitqueue_head(&pgdat->kcompactd_wait);
7404}
7405#else
7406static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7407#endif
7408
7409static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7410{
7411 pgdat_resize_init(pgdat);
7412
7413 pgdat_init_split_queue(pgdat);
7414 pgdat_init_kcompactd(pgdat);
7415
7416 init_waitqueue_head(&pgdat->kswapd_wait);
7417 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7418
7419 pgdat_page_ext_init(pgdat);
7420 lruvec_init(&pgdat->__lruvec);
7421}
7422
7423static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7424 unsigned long remaining_pages)
7425{
7426 atomic_long_set(&zone->managed_pages, remaining_pages);
7427 zone_set_nid(zone, nid);
7428 zone->name = zone_names[idx];
7429 zone->zone_pgdat = NODE_DATA(nid);
7430 spin_lock_init(&zone->lock);
7431 zone_seqlock_init(zone);
7432 zone_pcp_init(zone);
7433}
7434
7435/*
7436 * Set up the zone data structures
7437 * - init pgdat internals
7438 * - init all zones belonging to this node
7439 *
7440 * NOTE: this function is only called during memory hotplug
7441 */
7442#ifdef CONFIG_MEMORY_HOTPLUG
7443void __ref free_area_init_core_hotplug(int nid)
7444{
7445 enum zone_type z;
7446 pg_data_t *pgdat = NODE_DATA(nid);
7447
7448 pgdat_init_internals(pgdat);
7449 for (z = 0; z < MAX_NR_ZONES; z++)
7450 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7451}
7452#endif
7453
7454/*
7455 * Set up the zone data structures:
7456 * - mark all pages reserved
7457 * - mark all memory queues empty
7458 * - clear the memory bitmaps
7459 *
7460 * NOTE: pgdat should get zeroed by caller.
7461 * NOTE: this function is only called during early init.
7462 */
7463static void __init free_area_init_core(struct pglist_data *pgdat)
7464{
7465 enum zone_type j;
7466 int nid = pgdat->node_id;
7467
7468 pgdat_init_internals(pgdat);
7469 pgdat->per_cpu_nodestats = &boot_nodestats;
7470
7471 for (j = 0; j < MAX_NR_ZONES; j++) {
7472 struct zone *zone = pgdat->node_zones + j;
7473 unsigned long size, freesize, memmap_pages;
7474
7475 size = zone->spanned_pages;
7476 freesize = zone->present_pages;
7477
7478 /*
7479 * Adjust freesize so that it accounts for how much memory
7480 * is used by this zone for memmap. This affects the watermark
7481 * and per-cpu initialisations
7482 */
7483 memmap_pages = calc_memmap_size(size, freesize);
7484 if (!is_highmem_idx(j)) {
7485 if (freesize >= memmap_pages) {
7486 freesize -= memmap_pages;
7487 if (memmap_pages)
7488 pr_debug(" %s zone: %lu pages used for memmap\n",
7489 zone_names[j], memmap_pages);
7490 } else
7491 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7492 zone_names[j], memmap_pages, freesize);
7493 }
7494
7495 /* Account for reserved pages */
7496 if (j == 0 && freesize > dma_reserve) {
7497 freesize -= dma_reserve;
7498 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7499 }
7500
7501 if (!is_highmem_idx(j))
7502 nr_kernel_pages += freesize;
7503 /* Charge for highmem memmap if there are enough kernel pages */
7504 else if (nr_kernel_pages > memmap_pages * 2)
7505 nr_kernel_pages -= memmap_pages;
7506 nr_all_pages += freesize;
7507
7508 /*
7509 * Set an approximate value for lowmem here, it will be adjusted
7510 * when the bootmem allocator frees pages into the buddy system.
7511 * And all highmem pages will be managed by the buddy system.
7512 */
7513 zone_init_internals(zone, j, nid, freesize);
7514
7515 if (!size)
7516 continue;
7517
7518 set_pageblock_order();
7519 setup_usemap(zone);
7520 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7521 }
7522}
7523
7524#ifdef CONFIG_FLATMEM
7525static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7526{
7527 unsigned long __maybe_unused start = 0;
7528 unsigned long __maybe_unused offset = 0;
7529
7530 /* Skip empty nodes */
7531 if (!pgdat->node_spanned_pages)
7532 return;
7533
7534 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7535 offset = pgdat->node_start_pfn - start;
7536 /* ia64 gets its own node_mem_map, before this, without bootmem */
7537 if (!pgdat->node_mem_map) {
7538 unsigned long size, end;
7539 struct page *map;
7540
7541 /*
7542 * The zone's endpoints aren't required to be MAX_ORDER
7543 * aligned but the node_mem_map endpoints must be in order
7544 * for the buddy allocator to function correctly.
7545 */
7546 end = pgdat_end_pfn(pgdat);
7547 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7548 size = (end - start) * sizeof(struct page);
7549 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7550 pgdat->node_id, false);
7551 if (!map)
7552 panic("Failed to allocate %ld bytes for node %d memory map\n",
7553 size, pgdat->node_id);
7554 pgdat->node_mem_map = map + offset;
7555 }
7556 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7557 __func__, pgdat->node_id, (unsigned long)pgdat,
7558 (unsigned long)pgdat->node_mem_map);
7559#ifndef CONFIG_NUMA
7560 /*
7561 * With no DISCONTIG, the global mem_map is just set as node 0's
7562 */
7563 if (pgdat == NODE_DATA(0)) {
7564 mem_map = NODE_DATA(0)->node_mem_map;
7565 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7566 mem_map -= offset;
7567 }
7568#endif
7569}
7570#else
7571static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7572#endif /* CONFIG_FLATMEM */
7573
7574#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7575static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7576{
7577 pgdat->first_deferred_pfn = ULONG_MAX;
7578}
7579#else
7580static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7581#endif
7582
7583static void __init free_area_init_node(int nid)
7584{
7585 pg_data_t *pgdat = NODE_DATA(nid);
7586 unsigned long start_pfn = 0;
7587 unsigned long end_pfn = 0;
7588
7589 /* pg_data_t should be reset to zero when it's allocated */
7590 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7591
7592 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7593
7594 pgdat->node_id = nid;
7595 pgdat->node_start_pfn = start_pfn;
7596 pgdat->per_cpu_nodestats = NULL;
7597
7598 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7599 (u64)start_pfn << PAGE_SHIFT,
7600 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7601 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7602
7603 alloc_node_mem_map(pgdat);
7604 pgdat_set_deferred_range(pgdat);
7605
7606 free_area_init_core(pgdat);
7607}
7608
7609void __init free_area_init_memoryless_node(int nid)
7610{
7611 free_area_init_node(nid);
7612}
7613
7614#if MAX_NUMNODES > 1
7615/*
7616 * Figure out the number of possible node ids.
7617 */
7618void __init setup_nr_node_ids(void)
7619{
7620 unsigned int highest;
7621
7622 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7623 nr_node_ids = highest + 1;
7624}
7625#endif
7626
7627/**
7628 * node_map_pfn_alignment - determine the maximum internode alignment
7629 *
7630 * This function should be called after node map is populated and sorted.
7631 * It calculates the maximum power of two alignment which can distinguish
7632 * all the nodes.
7633 *
7634 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7635 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7636 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7637 * shifted, 1GiB is enough and this function will indicate so.
7638 *
7639 * This is used to test whether pfn -> nid mapping of the chosen memory
7640 * model has fine enough granularity to avoid incorrect mapping for the
7641 * populated node map.
7642 *
7643 * Return: the determined alignment in pfn's. 0 if there is no alignment
7644 * requirement (single node).
7645 */
7646unsigned long __init node_map_pfn_alignment(void)
7647{
7648 unsigned long accl_mask = 0, last_end = 0;
7649 unsigned long start, end, mask;
7650 int last_nid = NUMA_NO_NODE;
7651 int i, nid;
7652
7653 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7654 if (!start || last_nid < 0 || last_nid == nid) {
7655 last_nid = nid;
7656 last_end = end;
7657 continue;
7658 }
7659
7660 /*
7661 * Start with a mask granular enough to pin-point to the
7662 * start pfn and tick off bits one-by-one until it becomes
7663 * too coarse to separate the current node from the last.
7664 */
7665 mask = ~((1 << __ffs(start)) - 1);
7666 while (mask && last_end <= (start & (mask << 1)))
7667 mask <<= 1;
7668
7669 /* accumulate all internode masks */
7670 accl_mask |= mask;
7671 }
7672
7673 /* convert mask to number of pages */
7674 return ~accl_mask + 1;
7675}
7676
7677/**
7678 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7679 *
7680 * Return: the minimum PFN based on information provided via
7681 * memblock_set_node().
7682 */
7683unsigned long __init find_min_pfn_with_active_regions(void)
7684{
7685 return PHYS_PFN(memblock_start_of_DRAM());
7686}
7687
7688/*
7689 * early_calculate_totalpages()
7690 * Sum pages in active regions for movable zone.
7691 * Populate N_MEMORY for calculating usable_nodes.
7692 */
7693static unsigned long __init early_calculate_totalpages(void)
7694{
7695 unsigned long totalpages = 0;
7696 unsigned long start_pfn, end_pfn;
7697 int i, nid;
7698
7699 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7700 unsigned long pages = end_pfn - start_pfn;
7701
7702 totalpages += pages;
7703 if (pages)
7704 node_set_state(nid, N_MEMORY);
7705 }
7706 return totalpages;
7707}
7708
7709/*
7710 * Find the PFN the Movable zone begins in each node. Kernel memory
7711 * is spread evenly between nodes as long as the nodes have enough
7712 * memory. When they don't, some nodes will have more kernelcore than
7713 * others
7714 */
7715static void __init find_zone_movable_pfns_for_nodes(void)
7716{
7717 int i, nid;
7718 unsigned long usable_startpfn;
7719 unsigned long kernelcore_node, kernelcore_remaining;
7720 /* save the state before borrow the nodemask */
7721 nodemask_t saved_node_state = node_states[N_MEMORY];
7722 unsigned long totalpages = early_calculate_totalpages();
7723 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7724 struct memblock_region *r;
7725
7726 /* Need to find movable_zone earlier when movable_node is specified. */
7727 find_usable_zone_for_movable();
7728
7729 /*
7730 * If movable_node is specified, ignore kernelcore and movablecore
7731 * options.
7732 */
7733 if (movable_node_is_enabled()) {
7734 for_each_mem_region(r) {
7735 if (!memblock_is_hotpluggable(r))
7736 continue;
7737
7738 nid = memblock_get_region_node(r);
7739
7740 usable_startpfn = PFN_DOWN(r->base);
7741 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7742 min(usable_startpfn, zone_movable_pfn[nid]) :
7743 usable_startpfn;
7744 }
7745
7746 goto out2;
7747 }
7748
7749 /*
7750 * If kernelcore=mirror is specified, ignore movablecore option
7751 */
7752 if (mirrored_kernelcore) {
7753 bool mem_below_4gb_not_mirrored = false;
7754
7755 for_each_mem_region(r) {
7756 if (memblock_is_mirror(r))
7757 continue;
7758
7759 nid = memblock_get_region_node(r);
7760
7761 usable_startpfn = memblock_region_memory_base_pfn(r);
7762
7763 if (usable_startpfn < 0x100000) {
7764 mem_below_4gb_not_mirrored = true;
7765 continue;
7766 }
7767
7768 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7769 min(usable_startpfn, zone_movable_pfn[nid]) :
7770 usable_startpfn;
7771 }
7772
7773 if (mem_below_4gb_not_mirrored)
7774 pr_warn("This configuration results in unmirrored kernel memory.\n");
7775
7776 goto out2;
7777 }
7778
7779 /*
7780 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7781 * amount of necessary memory.
7782 */
7783 if (required_kernelcore_percent)
7784 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7785 10000UL;
7786 if (required_movablecore_percent)
7787 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7788 10000UL;
7789
7790 /*
7791 * If movablecore= was specified, calculate what size of
7792 * kernelcore that corresponds so that memory usable for
7793 * any allocation type is evenly spread. If both kernelcore
7794 * and movablecore are specified, then the value of kernelcore
7795 * will be used for required_kernelcore if it's greater than
7796 * what movablecore would have allowed.
7797 */
7798 if (required_movablecore) {
7799 unsigned long corepages;
7800
7801 /*
7802 * Round-up so that ZONE_MOVABLE is at least as large as what
7803 * was requested by the user
7804 */
7805 required_movablecore =
7806 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7807 required_movablecore = min(totalpages, required_movablecore);
7808 corepages = totalpages - required_movablecore;
7809
7810 required_kernelcore = max(required_kernelcore, corepages);
7811 }
7812
7813 /*
7814 * If kernelcore was not specified or kernelcore size is larger
7815 * than totalpages, there is no ZONE_MOVABLE.
7816 */
7817 if (!required_kernelcore || required_kernelcore >= totalpages)
7818 goto out;
7819
7820 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7821 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7822
7823restart:
7824 /* Spread kernelcore memory as evenly as possible throughout nodes */
7825 kernelcore_node = required_kernelcore / usable_nodes;
7826 for_each_node_state(nid, N_MEMORY) {
7827 unsigned long start_pfn, end_pfn;
7828
7829 /*
7830 * Recalculate kernelcore_node if the division per node
7831 * now exceeds what is necessary to satisfy the requested
7832 * amount of memory for the kernel
7833 */
7834 if (required_kernelcore < kernelcore_node)
7835 kernelcore_node = required_kernelcore / usable_nodes;
7836
7837 /*
7838 * As the map is walked, we track how much memory is usable
7839 * by the kernel using kernelcore_remaining. When it is
7840 * 0, the rest of the node is usable by ZONE_MOVABLE
7841 */
7842 kernelcore_remaining = kernelcore_node;
7843
7844 /* Go through each range of PFNs within this node */
7845 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7846 unsigned long size_pages;
7847
7848 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7849 if (start_pfn >= end_pfn)
7850 continue;
7851
7852 /* Account for what is only usable for kernelcore */
7853 if (start_pfn < usable_startpfn) {
7854 unsigned long kernel_pages;
7855 kernel_pages = min(end_pfn, usable_startpfn)
7856 - start_pfn;
7857
7858 kernelcore_remaining -= min(kernel_pages,
7859 kernelcore_remaining);
7860 required_kernelcore -= min(kernel_pages,
7861 required_kernelcore);
7862
7863 /* Continue if range is now fully accounted */
7864 if (end_pfn <= usable_startpfn) {
7865
7866 /*
7867 * Push zone_movable_pfn to the end so
7868 * that if we have to rebalance
7869 * kernelcore across nodes, we will
7870 * not double account here
7871 */
7872 zone_movable_pfn[nid] = end_pfn;
7873 continue;
7874 }
7875 start_pfn = usable_startpfn;
7876 }
7877
7878 /*
7879 * The usable PFN range for ZONE_MOVABLE is from
7880 * start_pfn->end_pfn. Calculate size_pages as the
7881 * number of pages used as kernelcore
7882 */
7883 size_pages = end_pfn - start_pfn;
7884 if (size_pages > kernelcore_remaining)
7885 size_pages = kernelcore_remaining;
7886 zone_movable_pfn[nid] = start_pfn + size_pages;
7887
7888 /*
7889 * Some kernelcore has been met, update counts and
7890 * break if the kernelcore for this node has been
7891 * satisfied
7892 */
7893 required_kernelcore -= min(required_kernelcore,
7894 size_pages);
7895 kernelcore_remaining -= size_pages;
7896 if (!kernelcore_remaining)
7897 break;
7898 }
7899 }
7900
7901 /*
7902 * If there is still required_kernelcore, we do another pass with one
7903 * less node in the count. This will push zone_movable_pfn[nid] further
7904 * along on the nodes that still have memory until kernelcore is
7905 * satisfied
7906 */
7907 usable_nodes--;
7908 if (usable_nodes && required_kernelcore > usable_nodes)
7909 goto restart;
7910
7911out2:
7912 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7913 for (nid = 0; nid < MAX_NUMNODES; nid++)
7914 zone_movable_pfn[nid] =
7915 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7916
7917out:
7918 /* restore the node_state */
7919 node_states[N_MEMORY] = saved_node_state;
7920}
7921
7922/* Any regular or high memory on that node ? */
7923static void check_for_memory(pg_data_t *pgdat, int nid)
7924{
7925 enum zone_type zone_type;
7926
7927 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7928 struct zone *zone = &pgdat->node_zones[zone_type];
7929 if (populated_zone(zone)) {
7930 if (IS_ENABLED(CONFIG_HIGHMEM))
7931 node_set_state(nid, N_HIGH_MEMORY);
7932 if (zone_type <= ZONE_NORMAL)
7933 node_set_state(nid, N_NORMAL_MEMORY);
7934 break;
7935 }
7936 }
7937}
7938
7939/*
7940 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7941 * such cases we allow max_zone_pfn sorted in the descending order
7942 */
7943bool __weak arch_has_descending_max_zone_pfns(void)
7944{
7945 return false;
7946}
7947
7948/**
7949 * free_area_init - Initialise all pg_data_t and zone data
7950 * @max_zone_pfn: an array of max PFNs for each zone
7951 *
7952 * This will call free_area_init_node() for each active node in the system.
7953 * Using the page ranges provided by memblock_set_node(), the size of each
7954 * zone in each node and their holes is calculated. If the maximum PFN
7955 * between two adjacent zones match, it is assumed that the zone is empty.
7956 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7957 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7958 * starts where the previous one ended. For example, ZONE_DMA32 starts
7959 * at arch_max_dma_pfn.
7960 */
7961void __init free_area_init(unsigned long *max_zone_pfn)
7962{
7963 unsigned long start_pfn, end_pfn;
7964 int i, nid, zone;
7965 bool descending;
7966
7967 /* Record where the zone boundaries are */
7968 memset(arch_zone_lowest_possible_pfn, 0,
7969 sizeof(arch_zone_lowest_possible_pfn));
7970 memset(arch_zone_highest_possible_pfn, 0,
7971 sizeof(arch_zone_highest_possible_pfn));
7972
7973 start_pfn = find_min_pfn_with_active_regions();
7974 descending = arch_has_descending_max_zone_pfns();
7975
7976 for (i = 0; i < MAX_NR_ZONES; i++) {
7977 if (descending)
7978 zone = MAX_NR_ZONES - i - 1;
7979 else
7980 zone = i;
7981
7982 if (zone == ZONE_MOVABLE)
7983 continue;
7984
7985 end_pfn = max(max_zone_pfn[zone], start_pfn);
7986 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7987 arch_zone_highest_possible_pfn[zone] = end_pfn;
7988
7989 start_pfn = end_pfn;
7990 }
7991
7992 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7993 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7994 find_zone_movable_pfns_for_nodes();
7995
7996 /* Print out the zone ranges */
7997 pr_info("Zone ranges:\n");
7998 for (i = 0; i < MAX_NR_ZONES; i++) {
7999 if (i == ZONE_MOVABLE)
8000 continue;
8001 pr_info(" %-8s ", zone_names[i]);
8002 if (arch_zone_lowest_possible_pfn[i] ==
8003 arch_zone_highest_possible_pfn[i])
8004 pr_cont("empty\n");
8005 else
8006 pr_cont("[mem %#018Lx-%#018Lx]\n",
8007 (u64)arch_zone_lowest_possible_pfn[i]
8008 << PAGE_SHIFT,
8009 ((u64)arch_zone_highest_possible_pfn[i]
8010 << PAGE_SHIFT) - 1);
8011 }
8012
8013 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8014 pr_info("Movable zone start for each node\n");
8015 for (i = 0; i < MAX_NUMNODES; i++) {
8016 if (zone_movable_pfn[i])
8017 pr_info(" Node %d: %#018Lx\n", i,
8018 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8019 }
8020
8021 /*
8022 * Print out the early node map, and initialize the
8023 * subsection-map relative to active online memory ranges to
8024 * enable future "sub-section" extensions of the memory map.
8025 */
8026 pr_info("Early memory node ranges\n");
8027 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8028 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8029 (u64)start_pfn << PAGE_SHIFT,
8030 ((u64)end_pfn << PAGE_SHIFT) - 1);
8031 subsection_map_init(start_pfn, end_pfn - start_pfn);
8032 }
8033
8034 /* Initialise every node */
8035 mminit_verify_pageflags_layout();
8036 setup_nr_node_ids();
8037 for_each_online_node(nid) {
8038 pg_data_t *pgdat = NODE_DATA(nid);
8039 free_area_init_node(nid);
8040
8041 /* Any memory on that node */
8042 if (pgdat->node_present_pages)
8043 node_set_state(nid, N_MEMORY);
8044 check_for_memory(pgdat, nid);
8045 }
8046
8047 memmap_init();
8048}
8049
8050static int __init cmdline_parse_core(char *p, unsigned long *core,
8051 unsigned long *percent)
8052{
8053 unsigned long long coremem;
8054 char *endptr;
8055
8056 if (!p)
8057 return -EINVAL;
8058
8059 /* Value may be a percentage of total memory, otherwise bytes */
8060 coremem = simple_strtoull(p, &endptr, 0);
8061 if (*endptr == '%') {
8062 /* Paranoid check for percent values greater than 100 */
8063 WARN_ON(coremem > 100);
8064
8065 *percent = coremem;
8066 } else {
8067 coremem = memparse(p, &p);
8068 /* Paranoid check that UL is enough for the coremem value */
8069 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8070
8071 *core = coremem >> PAGE_SHIFT;
8072 *percent = 0UL;
8073 }
8074 return 0;
8075}
8076
8077/*
8078 * kernelcore=size sets the amount of memory for use for allocations that
8079 * cannot be reclaimed or migrated.
8080 */
8081static int __init cmdline_parse_kernelcore(char *p)
8082{
8083 /* parse kernelcore=mirror */
8084 if (parse_option_str(p, "mirror")) {
8085 mirrored_kernelcore = true;
8086 return 0;
8087 }
8088
8089 return cmdline_parse_core(p, &required_kernelcore,
8090 &required_kernelcore_percent);
8091}
8092
8093/*
8094 * movablecore=size sets the amount of memory for use for allocations that
8095 * can be reclaimed or migrated.
8096 */
8097static int __init cmdline_parse_movablecore(char *p)
8098{
8099 return cmdline_parse_core(p, &required_movablecore,
8100 &required_movablecore_percent);
8101}
8102
8103early_param("kernelcore", cmdline_parse_kernelcore);
8104early_param("movablecore", cmdline_parse_movablecore);
8105
8106void adjust_managed_page_count(struct page *page, long count)
8107{
8108 atomic_long_add(count, &page_zone(page)->managed_pages);
8109 totalram_pages_add(count);
8110#ifdef CONFIG_HIGHMEM
8111 if (PageHighMem(page))
8112 totalhigh_pages_add(count);
8113#endif
8114}
8115EXPORT_SYMBOL(adjust_managed_page_count);
8116
8117unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8118{
8119 void *pos;
8120 unsigned long pages = 0;
8121
8122 start = (void *)PAGE_ALIGN((unsigned long)start);
8123 end = (void *)((unsigned long)end & PAGE_MASK);
8124 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8125 struct page *page = virt_to_page(pos);
8126 void *direct_map_addr;
8127
8128 /*
8129 * 'direct_map_addr' might be different from 'pos'
8130 * because some architectures' virt_to_page()
8131 * work with aliases. Getting the direct map
8132 * address ensures that we get a _writeable_
8133 * alias for the memset().
8134 */
8135 direct_map_addr = page_address(page);
8136 /*
8137 * Perform a kasan-unchecked memset() since this memory
8138 * has not been initialized.
8139 */
8140 direct_map_addr = kasan_reset_tag(direct_map_addr);
8141 if ((unsigned int)poison <= 0xFF)
8142 memset(direct_map_addr, poison, PAGE_SIZE);
8143
8144 free_reserved_page(page);
8145 }
8146
8147 if (pages && s)
8148 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8149
8150 return pages;
8151}
8152
8153void __init mem_init_print_info(void)
8154{
8155 unsigned long physpages, codesize, datasize, rosize, bss_size;
8156 unsigned long init_code_size, init_data_size;
8157
8158 physpages = get_num_physpages();
8159 codesize = _etext - _stext;
8160 datasize = _edata - _sdata;
8161 rosize = __end_rodata - __start_rodata;
8162 bss_size = __bss_stop - __bss_start;
8163 init_data_size = __init_end - __init_begin;
8164 init_code_size = _einittext - _sinittext;
8165
8166 /*
8167 * Detect special cases and adjust section sizes accordingly:
8168 * 1) .init.* may be embedded into .data sections
8169 * 2) .init.text.* may be out of [__init_begin, __init_end],
8170 * please refer to arch/tile/kernel/vmlinux.lds.S.
8171 * 3) .rodata.* may be embedded into .text or .data sections.
8172 */
8173#define adj_init_size(start, end, size, pos, adj) \
8174 do { \
8175 if (start <= pos && pos < end && size > adj) \
8176 size -= adj; \
8177 } while (0)
8178
8179 adj_init_size(__init_begin, __init_end, init_data_size,
8180 _sinittext, init_code_size);
8181 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8182 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8183 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8184 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8185
8186#undef adj_init_size
8187
8188 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8189#ifdef CONFIG_HIGHMEM
8190 ", %luK highmem"
8191#endif
8192 ")\n",
8193 K(nr_free_pages()), K(physpages),
8194 codesize >> 10, datasize >> 10, rosize >> 10,
8195 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8196 K(physpages - totalram_pages() - totalcma_pages),
8197 K(totalcma_pages)
8198#ifdef CONFIG_HIGHMEM
8199 , K(totalhigh_pages())
8200#endif
8201 );
8202}
8203
8204/**
8205 * set_dma_reserve - set the specified number of pages reserved in the first zone
8206 * @new_dma_reserve: The number of pages to mark reserved
8207 *
8208 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8209 * In the DMA zone, a significant percentage may be consumed by kernel image
8210 * and other unfreeable allocations which can skew the watermarks badly. This
8211 * function may optionally be used to account for unfreeable pages in the
8212 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8213 * smaller per-cpu batchsize.
8214 */
8215void __init set_dma_reserve(unsigned long new_dma_reserve)
8216{
8217 dma_reserve = new_dma_reserve;
8218}
8219
8220static int page_alloc_cpu_dead(unsigned int cpu)
8221{
8222 struct zone *zone;
8223
8224 lru_add_drain_cpu(cpu);
8225 drain_pages(cpu);
8226
8227 /*
8228 * Spill the event counters of the dead processor
8229 * into the current processors event counters.
8230 * This artificially elevates the count of the current
8231 * processor.
8232 */
8233 vm_events_fold_cpu(cpu);
8234
8235 /*
8236 * Zero the differential counters of the dead processor
8237 * so that the vm statistics are consistent.
8238 *
8239 * This is only okay since the processor is dead and cannot
8240 * race with what we are doing.
8241 */
8242 cpu_vm_stats_fold(cpu);
8243
8244 for_each_populated_zone(zone)
8245 zone_pcp_update(zone, 0);
8246
8247 return 0;
8248}
8249
8250static int page_alloc_cpu_online(unsigned int cpu)
8251{
8252 struct zone *zone;
8253
8254 for_each_populated_zone(zone)
8255 zone_pcp_update(zone, 1);
8256 return 0;
8257}
8258
8259#ifdef CONFIG_NUMA
8260int hashdist = HASHDIST_DEFAULT;
8261
8262static int __init set_hashdist(char *str)
8263{
8264 if (!str)
8265 return 0;
8266 hashdist = simple_strtoul(str, &str, 0);
8267 return 1;
8268}
8269__setup("hashdist=", set_hashdist);
8270#endif
8271
8272void __init page_alloc_init(void)
8273{
8274 int ret;
8275
8276#ifdef CONFIG_NUMA
8277 if (num_node_state(N_MEMORY) == 1)
8278 hashdist = 0;
8279#endif
8280
8281 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8282 "mm/page_alloc:pcp",
8283 page_alloc_cpu_online,
8284 page_alloc_cpu_dead);
8285 WARN_ON(ret < 0);
8286}
8287
8288/*
8289 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8290 * or min_free_kbytes changes.
8291 */
8292static void calculate_totalreserve_pages(void)
8293{
8294 struct pglist_data *pgdat;
8295 unsigned long reserve_pages = 0;
8296 enum zone_type i, j;
8297
8298 for_each_online_pgdat(pgdat) {
8299
8300 pgdat->totalreserve_pages = 0;
8301
8302 for (i = 0; i < MAX_NR_ZONES; i++) {
8303 struct zone *zone = pgdat->node_zones + i;
8304 long max = 0;
8305 unsigned long managed_pages = zone_managed_pages(zone);
8306
8307 /* Find valid and maximum lowmem_reserve in the zone */
8308 for (j = i; j < MAX_NR_ZONES; j++) {
8309 if (zone->lowmem_reserve[j] > max)
8310 max = zone->lowmem_reserve[j];
8311 }
8312
8313 /* we treat the high watermark as reserved pages. */
8314 max += high_wmark_pages(zone);
8315
8316 if (max > managed_pages)
8317 max = managed_pages;
8318
8319 pgdat->totalreserve_pages += max;
8320
8321 reserve_pages += max;
8322 }
8323 }
8324 totalreserve_pages = reserve_pages;
8325}
8326
8327/*
8328 * setup_per_zone_lowmem_reserve - called whenever
8329 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8330 * has a correct pages reserved value, so an adequate number of
8331 * pages are left in the zone after a successful __alloc_pages().
8332 */
8333static void setup_per_zone_lowmem_reserve(void)
8334{
8335 struct pglist_data *pgdat;
8336 enum zone_type i, j;
8337
8338 for_each_online_pgdat(pgdat) {
8339 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8340 struct zone *zone = &pgdat->node_zones[i];
8341 int ratio = sysctl_lowmem_reserve_ratio[i];
8342 bool clear = !ratio || !zone_managed_pages(zone);
8343 unsigned long managed_pages = 0;
8344
8345 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8346 struct zone *upper_zone = &pgdat->node_zones[j];
8347
8348 managed_pages += zone_managed_pages(upper_zone);
8349
8350 if (clear)
8351 zone->lowmem_reserve[j] = 0;
8352 else
8353 zone->lowmem_reserve[j] = managed_pages / ratio;
8354 }
8355 }
8356 }
8357
8358 /* update totalreserve_pages */
8359 calculate_totalreserve_pages();
8360}
8361
8362static void __setup_per_zone_wmarks(void)
8363{
8364 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8365 unsigned long lowmem_pages = 0;
8366 struct zone *zone;
8367 unsigned long flags;
8368
8369 /* Calculate total number of !ZONE_HIGHMEM pages */
8370 for_each_zone(zone) {
8371 if (!is_highmem(zone))
8372 lowmem_pages += zone_managed_pages(zone);
8373 }
8374
8375 for_each_zone(zone) {
8376 u64 tmp;
8377
8378 spin_lock_irqsave(&zone->lock, flags);
8379 tmp = (u64)pages_min * zone_managed_pages(zone);
8380 do_div(tmp, lowmem_pages);
8381 if (is_highmem(zone)) {
8382 /*
8383 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8384 * need highmem pages, so cap pages_min to a small
8385 * value here.
8386 *
8387 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8388 * deltas control async page reclaim, and so should
8389 * not be capped for highmem.
8390 */
8391 unsigned long min_pages;
8392
8393 min_pages = zone_managed_pages(zone) / 1024;
8394 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8395 zone->_watermark[WMARK_MIN] = min_pages;
8396 } else {
8397 /*
8398 * If it's a lowmem zone, reserve a number of pages
8399 * proportionate to the zone's size.
8400 */
8401 zone->_watermark[WMARK_MIN] = tmp;
8402 }
8403
8404 /*
8405 * Set the kswapd watermarks distance according to the
8406 * scale factor in proportion to available memory, but
8407 * ensure a minimum size on small systems.
8408 */
8409 tmp = max_t(u64, tmp >> 2,
8410 mult_frac(zone_managed_pages(zone),
8411 watermark_scale_factor, 10000));
8412
8413 zone->watermark_boost = 0;
8414 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8415 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8416
8417 spin_unlock_irqrestore(&zone->lock, flags);
8418 }
8419
8420 /* update totalreserve_pages */
8421 calculate_totalreserve_pages();
8422}
8423
8424/**
8425 * setup_per_zone_wmarks - called when min_free_kbytes changes
8426 * or when memory is hot-{added|removed}
8427 *
8428 * Ensures that the watermark[min,low,high] values for each zone are set
8429 * correctly with respect to min_free_kbytes.
8430 */
8431void setup_per_zone_wmarks(void)
8432{
8433 struct zone *zone;
8434 static DEFINE_SPINLOCK(lock);
8435
8436 spin_lock(&lock);
8437 __setup_per_zone_wmarks();
8438 spin_unlock(&lock);
8439
8440 /*
8441 * The watermark size have changed so update the pcpu batch
8442 * and high limits or the limits may be inappropriate.
8443 */
8444 for_each_zone(zone)
8445 zone_pcp_update(zone, 0);
8446}
8447
8448/*
8449 * Initialise min_free_kbytes.
8450 *
8451 * For small machines we want it small (128k min). For large machines
8452 * we want it large (256MB max). But it is not linear, because network
8453 * bandwidth does not increase linearly with machine size. We use
8454 *
8455 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8456 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8457 *
8458 * which yields
8459 *
8460 * 16MB: 512k
8461 * 32MB: 724k
8462 * 64MB: 1024k
8463 * 128MB: 1448k
8464 * 256MB: 2048k
8465 * 512MB: 2896k
8466 * 1024MB: 4096k
8467 * 2048MB: 5792k
8468 * 4096MB: 8192k
8469 * 8192MB: 11584k
8470 * 16384MB: 16384k
8471 */
8472void calculate_min_free_kbytes(void)
8473{
8474 unsigned long lowmem_kbytes;
8475 int new_min_free_kbytes;
8476
8477 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8478 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8479
8480 if (new_min_free_kbytes > user_min_free_kbytes)
8481 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8482 else
8483 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8484 new_min_free_kbytes, user_min_free_kbytes);
8485
8486}
8487
8488int __meminit init_per_zone_wmark_min(void)
8489{
8490 calculate_min_free_kbytes();
8491 setup_per_zone_wmarks();
8492 refresh_zone_stat_thresholds();
8493 setup_per_zone_lowmem_reserve();
8494
8495#ifdef CONFIG_NUMA
8496 setup_min_unmapped_ratio();
8497 setup_min_slab_ratio();
8498#endif
8499
8500 khugepaged_min_free_kbytes_update();
8501
8502 return 0;
8503}
8504postcore_initcall(init_per_zone_wmark_min)
8505
8506/*
8507 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8508 * that we can call two helper functions whenever min_free_kbytes
8509 * changes.
8510 */
8511int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8512 void *buffer, size_t *length, loff_t *ppos)
8513{
8514 int rc;
8515
8516 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8517 if (rc)
8518 return rc;
8519
8520 if (write) {
8521 user_min_free_kbytes = min_free_kbytes;
8522 setup_per_zone_wmarks();
8523 }
8524 return 0;
8525}
8526
8527int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8528 void *buffer, size_t *length, loff_t *ppos)
8529{
8530 int rc;
8531
8532 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8533 if (rc)
8534 return rc;
8535
8536 if (write)
8537 setup_per_zone_wmarks();
8538
8539 return 0;
8540}
8541
8542#ifdef CONFIG_NUMA
8543static void setup_min_unmapped_ratio(void)
8544{
8545 pg_data_t *pgdat;
8546 struct zone *zone;
8547
8548 for_each_online_pgdat(pgdat)
8549 pgdat->min_unmapped_pages = 0;
8550
8551 for_each_zone(zone)
8552 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8553 sysctl_min_unmapped_ratio) / 100;
8554}
8555
8556
8557int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8558 void *buffer, size_t *length, loff_t *ppos)
8559{
8560 int rc;
8561
8562 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8563 if (rc)
8564 return rc;
8565
8566 setup_min_unmapped_ratio();
8567
8568 return 0;
8569}
8570
8571static void setup_min_slab_ratio(void)
8572{
8573 pg_data_t *pgdat;
8574 struct zone *zone;
8575
8576 for_each_online_pgdat(pgdat)
8577 pgdat->min_slab_pages = 0;
8578
8579 for_each_zone(zone)
8580 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8581 sysctl_min_slab_ratio) / 100;
8582}
8583
8584int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8585 void *buffer, size_t *length, loff_t *ppos)
8586{
8587 int rc;
8588
8589 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8590 if (rc)
8591 return rc;
8592
8593 setup_min_slab_ratio();
8594
8595 return 0;
8596}
8597#endif
8598
8599/*
8600 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8601 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8602 * whenever sysctl_lowmem_reserve_ratio changes.
8603 *
8604 * The reserve ratio obviously has absolutely no relation with the
8605 * minimum watermarks. The lowmem reserve ratio can only make sense
8606 * if in function of the boot time zone sizes.
8607 */
8608int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8609 void *buffer, size_t *length, loff_t *ppos)
8610{
8611 int i;
8612
8613 proc_dointvec_minmax(table, write, buffer, length, ppos);
8614
8615 for (i = 0; i < MAX_NR_ZONES; i++) {
8616 if (sysctl_lowmem_reserve_ratio[i] < 1)
8617 sysctl_lowmem_reserve_ratio[i] = 0;
8618 }
8619
8620 setup_per_zone_lowmem_reserve();
8621 return 0;
8622}
8623
8624/*
8625 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8626 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8627 * pagelist can have before it gets flushed back to buddy allocator.
8628 */
8629int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8630 int write, void *buffer, size_t *length, loff_t *ppos)
8631{
8632 struct zone *zone;
8633 int old_percpu_pagelist_high_fraction;
8634 int ret;
8635
8636 mutex_lock(&pcp_batch_high_lock);
8637 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8638
8639 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8640 if (!write || ret < 0)
8641 goto out;
8642
8643 /* Sanity checking to avoid pcp imbalance */
8644 if (percpu_pagelist_high_fraction &&
8645 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8646 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8647 ret = -EINVAL;
8648 goto out;
8649 }
8650
8651 /* No change? */
8652 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8653 goto out;
8654
8655 for_each_populated_zone(zone)
8656 zone_set_pageset_high_and_batch(zone, 0);
8657out:
8658 mutex_unlock(&pcp_batch_high_lock);
8659 return ret;
8660}
8661
8662#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8663/*
8664 * Returns the number of pages that arch has reserved but
8665 * is not known to alloc_large_system_hash().
8666 */
8667static unsigned long __init arch_reserved_kernel_pages(void)
8668{
8669 return 0;
8670}
8671#endif
8672
8673/*
8674 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8675 * machines. As memory size is increased the scale is also increased but at
8676 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8677 * quadruples the scale is increased by one, which means the size of hash table
8678 * only doubles, instead of quadrupling as well.
8679 * Because 32-bit systems cannot have large physical memory, where this scaling
8680 * makes sense, it is disabled on such platforms.
8681 */
8682#if __BITS_PER_LONG > 32
8683#define ADAPT_SCALE_BASE (64ul << 30)
8684#define ADAPT_SCALE_SHIFT 2
8685#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8686#endif
8687
8688/*
8689 * allocate a large system hash table from bootmem
8690 * - it is assumed that the hash table must contain an exact power-of-2
8691 * quantity of entries
8692 * - limit is the number of hash buckets, not the total allocation size
8693 */
8694void *__init alloc_large_system_hash(const char *tablename,
8695 unsigned long bucketsize,
8696 unsigned long numentries,
8697 int scale,
8698 int flags,
8699 unsigned int *_hash_shift,
8700 unsigned int *_hash_mask,
8701 unsigned long low_limit,
8702 unsigned long high_limit)
8703{
8704 unsigned long long max = high_limit;
8705 unsigned long log2qty, size;
8706 void *table = NULL;
8707 gfp_t gfp_flags;
8708 bool virt;
8709 bool huge;
8710
8711 /* allow the kernel cmdline to have a say */
8712 if (!numentries) {
8713 /* round applicable memory size up to nearest megabyte */
8714 numentries = nr_kernel_pages;
8715 numentries -= arch_reserved_kernel_pages();
8716
8717 /* It isn't necessary when PAGE_SIZE >= 1MB */
8718 if (PAGE_SHIFT < 20)
8719 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8720
8721#if __BITS_PER_LONG > 32
8722 if (!high_limit) {
8723 unsigned long adapt;
8724
8725 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8726 adapt <<= ADAPT_SCALE_SHIFT)
8727 scale++;
8728 }
8729#endif
8730
8731 /* limit to 1 bucket per 2^scale bytes of low memory */
8732 if (scale > PAGE_SHIFT)
8733 numentries >>= (scale - PAGE_SHIFT);
8734 else
8735 numentries <<= (PAGE_SHIFT - scale);
8736
8737 /* Make sure we've got at least a 0-order allocation.. */
8738 if (unlikely(flags & HASH_SMALL)) {
8739 /* Makes no sense without HASH_EARLY */
8740 WARN_ON(!(flags & HASH_EARLY));
8741 if (!(numentries >> *_hash_shift)) {
8742 numentries = 1UL << *_hash_shift;
8743 BUG_ON(!numentries);
8744 }
8745 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8746 numentries = PAGE_SIZE / bucketsize;
8747 }
8748 numentries = roundup_pow_of_two(numentries);
8749
8750 /* limit allocation size to 1/16 total memory by default */
8751 if (max == 0) {
8752 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8753 do_div(max, bucketsize);
8754 }
8755 max = min(max, 0x80000000ULL);
8756
8757 if (numentries < low_limit)
8758 numentries = low_limit;
8759 if (numentries > max)
8760 numentries = max;
8761
8762 log2qty = ilog2(numentries);
8763
8764 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8765 do {
8766 virt = false;
8767 size = bucketsize << log2qty;
8768 if (flags & HASH_EARLY) {
8769 if (flags & HASH_ZERO)
8770 table = memblock_alloc(size, SMP_CACHE_BYTES);
8771 else
8772 table = memblock_alloc_raw(size,
8773 SMP_CACHE_BYTES);
8774 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8775 table = __vmalloc(size, gfp_flags);
8776 virt = true;
8777 if (table)
8778 huge = is_vm_area_hugepages(table);
8779 } else {
8780 /*
8781 * If bucketsize is not a power-of-two, we may free
8782 * some pages at the end of hash table which
8783 * alloc_pages_exact() automatically does
8784 */
8785 table = alloc_pages_exact(size, gfp_flags);
8786 kmemleak_alloc(table, size, 1, gfp_flags);
8787 }
8788 } while (!table && size > PAGE_SIZE && --log2qty);
8789
8790 if (!table)
8791 panic("Failed to allocate %s hash table\n", tablename);
8792
8793 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8794 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8795 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8796
8797 if (_hash_shift)
8798 *_hash_shift = log2qty;
8799 if (_hash_mask)
8800 *_hash_mask = (1 << log2qty) - 1;
8801
8802 return table;
8803}
8804
8805/*
8806 * This function checks whether pageblock includes unmovable pages or not.
8807 *
8808 * PageLRU check without isolation or lru_lock could race so that
8809 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8810 * check without lock_page also may miss some movable non-lru pages at
8811 * race condition. So you can't expect this function should be exact.
8812 *
8813 * Returns a page without holding a reference. If the caller wants to
8814 * dereference that page (e.g., dumping), it has to make sure that it
8815 * cannot get removed (e.g., via memory unplug) concurrently.
8816 *
8817 */
8818struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8819 int migratetype, int flags)
8820{
8821 unsigned long iter = 0;
8822 unsigned long pfn = page_to_pfn(page);
8823 unsigned long offset = pfn % pageblock_nr_pages;
8824
8825 if (is_migrate_cma_page(page)) {
8826 /*
8827 * CMA allocations (alloc_contig_range) really need to mark
8828 * isolate CMA pageblocks even when they are not movable in fact
8829 * so consider them movable here.
8830 */
8831 if (is_migrate_cma(migratetype))
8832 return NULL;
8833
8834 return page;
8835 }
8836
8837 for (; iter < pageblock_nr_pages - offset; iter++) {
8838 page = pfn_to_page(pfn + iter);
8839
8840 /*
8841 * Both, bootmem allocations and memory holes are marked
8842 * PG_reserved and are unmovable. We can even have unmovable
8843 * allocations inside ZONE_MOVABLE, for example when
8844 * specifying "movablecore".
8845 */
8846 if (PageReserved(page))
8847 return page;
8848
8849 /*
8850 * If the zone is movable and we have ruled out all reserved
8851 * pages then it should be reasonably safe to assume the rest
8852 * is movable.
8853 */
8854 if (zone_idx(zone) == ZONE_MOVABLE)
8855 continue;
8856
8857 /*
8858 * Hugepages are not in LRU lists, but they're movable.
8859 * THPs are on the LRU, but need to be counted as #small pages.
8860 * We need not scan over tail pages because we don't
8861 * handle each tail page individually in migration.
8862 */
8863 if (PageHuge(page) || PageTransCompound(page)) {
8864 struct page *head = compound_head(page);
8865 unsigned int skip_pages;
8866
8867 if (PageHuge(page)) {
8868 if (!hugepage_migration_supported(page_hstate(head)))
8869 return page;
8870 } else if (!PageLRU(head) && !__PageMovable(head)) {
8871 return page;
8872 }
8873
8874 skip_pages = compound_nr(head) - (page - head);
8875 iter += skip_pages - 1;
8876 continue;
8877 }
8878
8879 /*
8880 * We can't use page_count without pin a page
8881 * because another CPU can free compound page.
8882 * This check already skips compound tails of THP
8883 * because their page->_refcount is zero at all time.
8884 */
8885 if (!page_ref_count(page)) {
8886 if (PageBuddy(page))
8887 iter += (1 << buddy_order(page)) - 1;
8888 continue;
8889 }
8890
8891 /*
8892 * The HWPoisoned page may be not in buddy system, and
8893 * page_count() is not 0.
8894 */
8895 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8896 continue;
8897
8898 /*
8899 * We treat all PageOffline() pages as movable when offlining
8900 * to give drivers a chance to decrement their reference count
8901 * in MEM_GOING_OFFLINE in order to indicate that these pages
8902 * can be offlined as there are no direct references anymore.
8903 * For actually unmovable PageOffline() where the driver does
8904 * not support this, we will fail later when trying to actually
8905 * move these pages that still have a reference count > 0.
8906 * (false negatives in this function only)
8907 */
8908 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8909 continue;
8910
8911 if (__PageMovable(page) || PageLRU(page))
8912 continue;
8913
8914 /*
8915 * If there are RECLAIMABLE pages, we need to check
8916 * it. But now, memory offline itself doesn't call
8917 * shrink_node_slabs() and it still to be fixed.
8918 */
8919 return page;
8920 }
8921 return NULL;
8922}
8923
8924#ifdef CONFIG_CONTIG_ALLOC
8925static unsigned long pfn_max_align_down(unsigned long pfn)
8926{
8927 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8928 pageblock_nr_pages) - 1);
8929}
8930
8931static unsigned long pfn_max_align_up(unsigned long pfn)
8932{
8933 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8934 pageblock_nr_pages));
8935}
8936
8937#if defined(CONFIG_DYNAMIC_DEBUG) || \
8938 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8939/* Usage: See admin-guide/dynamic-debug-howto.rst */
8940static void alloc_contig_dump_pages(struct list_head *page_list)
8941{
8942 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8943
8944 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8945 struct page *page;
8946
8947 dump_stack();
8948 list_for_each_entry(page, page_list, lru)
8949 dump_page(page, "migration failure");
8950 }
8951}
8952#else
8953static inline void alloc_contig_dump_pages(struct list_head *page_list)
8954{
8955}
8956#endif
8957
8958/* [start, end) must belong to a single zone. */
8959static int __alloc_contig_migrate_range(struct compact_control *cc,
8960 unsigned long start, unsigned long end)
8961{
8962 /* This function is based on compact_zone() from compaction.c. */
8963 unsigned int nr_reclaimed;
8964 unsigned long pfn = start;
8965 unsigned int tries = 0;
8966 int ret = 0;
8967 struct migration_target_control mtc = {
8968 .nid = zone_to_nid(cc->zone),
8969 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8970 };
8971
8972 lru_cache_disable();
8973
8974 while (pfn < end || !list_empty(&cc->migratepages)) {
8975 if (fatal_signal_pending(current)) {
8976 ret = -EINTR;
8977 break;
8978 }
8979
8980 if (list_empty(&cc->migratepages)) {
8981 cc->nr_migratepages = 0;
8982 ret = isolate_migratepages_range(cc, pfn, end);
8983 if (ret && ret != -EAGAIN)
8984 break;
8985 pfn = cc->migrate_pfn;
8986 tries = 0;
8987 } else if (++tries == 5) {
8988 ret = -EBUSY;
8989 break;
8990 }
8991
8992 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8993 &cc->migratepages);
8994 cc->nr_migratepages -= nr_reclaimed;
8995
8996 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8997 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8998
8999 /*
9000 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9001 * to retry again over this error, so do the same here.
9002 */
9003 if (ret == -ENOMEM)
9004 break;
9005 }
9006
9007 lru_cache_enable();
9008 if (ret < 0) {
9009 if (ret == -EBUSY)
9010 alloc_contig_dump_pages(&cc->migratepages);
9011 putback_movable_pages(&cc->migratepages);
9012 return ret;
9013 }
9014 return 0;
9015}
9016
9017/**
9018 * alloc_contig_range() -- tries to allocate given range of pages
9019 * @start: start PFN to allocate
9020 * @end: one-past-the-last PFN to allocate
9021 * @migratetype: migratetype of the underlying pageblocks (either
9022 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9023 * in range must have the same migratetype and it must
9024 * be either of the two.
9025 * @gfp_mask: GFP mask to use during compaction
9026 *
9027 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9028 * aligned. The PFN range must belong to a single zone.
9029 *
9030 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9031 * pageblocks in the range. Once isolated, the pageblocks should not
9032 * be modified by others.
9033 *
9034 * Return: zero on success or negative error code. On success all
9035 * pages which PFN is in [start, end) are allocated for the caller and
9036 * need to be freed with free_contig_range().
9037 */
9038int alloc_contig_range(unsigned long start, unsigned long end,
9039 unsigned migratetype, gfp_t gfp_mask)
9040{
9041 unsigned long outer_start, outer_end;
9042 unsigned int order;
9043 int ret = 0;
9044
9045 struct compact_control cc = {
9046 .nr_migratepages = 0,
9047 .order = -1,
9048 .zone = page_zone(pfn_to_page(start)),
9049 .mode = MIGRATE_SYNC,
9050 .ignore_skip_hint = true,
9051 .no_set_skip_hint = true,
9052 .gfp_mask = current_gfp_context(gfp_mask),
9053 .alloc_contig = true,
9054 };
9055 INIT_LIST_HEAD(&cc.migratepages);
9056
9057 /*
9058 * What we do here is we mark all pageblocks in range as
9059 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9060 * have different sizes, and due to the way page allocator
9061 * work, we align the range to biggest of the two pages so
9062 * that page allocator won't try to merge buddies from
9063 * different pageblocks and change MIGRATE_ISOLATE to some
9064 * other migration type.
9065 *
9066 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9067 * migrate the pages from an unaligned range (ie. pages that
9068 * we are interested in). This will put all the pages in
9069 * range back to page allocator as MIGRATE_ISOLATE.
9070 *
9071 * When this is done, we take the pages in range from page
9072 * allocator removing them from the buddy system. This way
9073 * page allocator will never consider using them.
9074 *
9075 * This lets us mark the pageblocks back as
9076 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9077 * aligned range but not in the unaligned, original range are
9078 * put back to page allocator so that buddy can use them.
9079 */
9080
9081 ret = start_isolate_page_range(pfn_max_align_down(start),
9082 pfn_max_align_up(end), migratetype, 0);
9083 if (ret)
9084 return ret;
9085
9086 drain_all_pages(cc.zone);
9087
9088 /*
9089 * In case of -EBUSY, we'd like to know which page causes problem.
9090 * So, just fall through. test_pages_isolated() has a tracepoint
9091 * which will report the busy page.
9092 *
9093 * It is possible that busy pages could become available before
9094 * the call to test_pages_isolated, and the range will actually be
9095 * allocated. So, if we fall through be sure to clear ret so that
9096 * -EBUSY is not accidentally used or returned to caller.
9097 */
9098 ret = __alloc_contig_migrate_range(&cc, start, end);
9099 if (ret && ret != -EBUSY)
9100 goto done;
9101 ret = 0;
9102
9103 /*
9104 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9105 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9106 * more, all pages in [start, end) are free in page allocator.
9107 * What we are going to do is to allocate all pages from
9108 * [start, end) (that is remove them from page allocator).
9109 *
9110 * The only problem is that pages at the beginning and at the
9111 * end of interesting range may be not aligned with pages that
9112 * page allocator holds, ie. they can be part of higher order
9113 * pages. Because of this, we reserve the bigger range and
9114 * once this is done free the pages we are not interested in.
9115 *
9116 * We don't have to hold zone->lock here because the pages are
9117 * isolated thus they won't get removed from buddy.
9118 */
9119
9120 order = 0;
9121 outer_start = start;
9122 while (!PageBuddy(pfn_to_page(outer_start))) {
9123 if (++order >= MAX_ORDER) {
9124 outer_start = start;
9125 break;
9126 }
9127 outer_start &= ~0UL << order;
9128 }
9129
9130 if (outer_start != start) {
9131 order = buddy_order(pfn_to_page(outer_start));
9132
9133 /*
9134 * outer_start page could be small order buddy page and
9135 * it doesn't include start page. Adjust outer_start
9136 * in this case to report failed page properly
9137 * on tracepoint in test_pages_isolated()
9138 */
9139 if (outer_start + (1UL << order) <= start)
9140 outer_start = start;
9141 }
9142
9143 /* Make sure the range is really isolated. */
9144 if (test_pages_isolated(outer_start, end, 0)) {
9145 ret = -EBUSY;
9146 goto done;
9147 }
9148
9149 /* Grab isolated pages from freelists. */
9150 outer_end = isolate_freepages_range(&cc, outer_start, end);
9151 if (!outer_end) {
9152 ret = -EBUSY;
9153 goto done;
9154 }
9155
9156 /* Free head and tail (if any) */
9157 if (start != outer_start)
9158 free_contig_range(outer_start, start - outer_start);
9159 if (end != outer_end)
9160 free_contig_range(end, outer_end - end);
9161
9162done:
9163 undo_isolate_page_range(pfn_max_align_down(start),
9164 pfn_max_align_up(end), migratetype);
9165 return ret;
9166}
9167EXPORT_SYMBOL(alloc_contig_range);
9168
9169static int __alloc_contig_pages(unsigned long start_pfn,
9170 unsigned long nr_pages, gfp_t gfp_mask)
9171{
9172 unsigned long end_pfn = start_pfn + nr_pages;
9173
9174 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9175 gfp_mask);
9176}
9177
9178static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9179 unsigned long nr_pages)
9180{
9181 unsigned long i, end_pfn = start_pfn + nr_pages;
9182 struct page *page;
9183
9184 for (i = start_pfn; i < end_pfn; i++) {
9185 page = pfn_to_online_page(i);
9186 if (!page)
9187 return false;
9188
9189 if (page_zone(page) != z)
9190 return false;
9191
9192 if (PageReserved(page))
9193 return false;
9194 }
9195 return true;
9196}
9197
9198static bool zone_spans_last_pfn(const struct zone *zone,
9199 unsigned long start_pfn, unsigned long nr_pages)
9200{
9201 unsigned long last_pfn = start_pfn + nr_pages - 1;
9202
9203 return zone_spans_pfn(zone, last_pfn);
9204}
9205
9206/**
9207 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9208 * @nr_pages: Number of contiguous pages to allocate
9209 * @gfp_mask: GFP mask to limit search and used during compaction
9210 * @nid: Target node
9211 * @nodemask: Mask for other possible nodes
9212 *
9213 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9214 * on an applicable zonelist to find a contiguous pfn range which can then be
9215 * tried for allocation with alloc_contig_range(). This routine is intended
9216 * for allocation requests which can not be fulfilled with the buddy allocator.
9217 *
9218 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9219 * power of two then the alignment is guaranteed to be to the given nr_pages
9220 * (e.g. 1GB request would be aligned to 1GB).
9221 *
9222 * Allocated pages can be freed with free_contig_range() or by manually calling
9223 * __free_page() on each allocated page.
9224 *
9225 * Return: pointer to contiguous pages on success, or NULL if not successful.
9226 */
9227struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9228 int nid, nodemask_t *nodemask)
9229{
9230 unsigned long ret, pfn, flags;
9231 struct zonelist *zonelist;
9232 struct zone *zone;
9233 struct zoneref *z;
9234
9235 zonelist = node_zonelist(nid, gfp_mask);
9236 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9237 gfp_zone(gfp_mask), nodemask) {
9238 spin_lock_irqsave(&zone->lock, flags);
9239
9240 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9241 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9242 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9243 /*
9244 * We release the zone lock here because
9245 * alloc_contig_range() will also lock the zone
9246 * at some point. If there's an allocation
9247 * spinning on this lock, it may win the race
9248 * and cause alloc_contig_range() to fail...
9249 */
9250 spin_unlock_irqrestore(&zone->lock, flags);
9251 ret = __alloc_contig_pages(pfn, nr_pages,
9252 gfp_mask);
9253 if (!ret)
9254 return pfn_to_page(pfn);
9255 spin_lock_irqsave(&zone->lock, flags);
9256 }
9257 pfn += nr_pages;
9258 }
9259 spin_unlock_irqrestore(&zone->lock, flags);
9260 }
9261 return NULL;
9262}
9263#endif /* CONFIG_CONTIG_ALLOC */
9264
9265void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9266{
9267 unsigned long count = 0;
9268
9269 for (; nr_pages--; pfn++) {
9270 struct page *page = pfn_to_page(pfn);
9271
9272 count += page_count(page) != 1;
9273 __free_page(page);
9274 }
9275 WARN(count != 0, "%lu pages are still in use!\n", count);
9276}
9277EXPORT_SYMBOL(free_contig_range);
9278
9279/*
9280 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9281 * page high values need to be recalculated.
9282 */
9283void zone_pcp_update(struct zone *zone, int cpu_online)
9284{
9285 mutex_lock(&pcp_batch_high_lock);
9286 zone_set_pageset_high_and_batch(zone, cpu_online);
9287 mutex_unlock(&pcp_batch_high_lock);
9288}
9289
9290/*
9291 * Effectively disable pcplists for the zone by setting the high limit to 0
9292 * and draining all cpus. A concurrent page freeing on another CPU that's about
9293 * to put the page on pcplist will either finish before the drain and the page
9294 * will be drained, or observe the new high limit and skip the pcplist.
9295 *
9296 * Must be paired with a call to zone_pcp_enable().
9297 */
9298void zone_pcp_disable(struct zone *zone)
9299{
9300 mutex_lock(&pcp_batch_high_lock);
9301 __zone_set_pageset_high_and_batch(zone, 0, 1);
9302 __drain_all_pages(zone, true);
9303}
9304
9305void zone_pcp_enable(struct zone *zone)
9306{
9307 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9308 mutex_unlock(&pcp_batch_high_lock);
9309}
9310
9311void zone_pcp_reset(struct zone *zone)
9312{
9313 int cpu;
9314 struct per_cpu_zonestat *pzstats;
9315
9316 if (zone->per_cpu_pageset != &boot_pageset) {
9317 for_each_online_cpu(cpu) {
9318 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9319 drain_zonestat(zone, pzstats);
9320 }
9321 free_percpu(zone->per_cpu_pageset);
9322 free_percpu(zone->per_cpu_zonestats);
9323 zone->per_cpu_pageset = &boot_pageset;
9324 zone->per_cpu_zonestats = &boot_zonestats;
9325 }
9326}
9327
9328#ifdef CONFIG_MEMORY_HOTREMOVE
9329/*
9330 * All pages in the range must be in a single zone, must not contain holes,
9331 * must span full sections, and must be isolated before calling this function.
9332 */
9333void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9334{
9335 unsigned long pfn = start_pfn;
9336 struct page *page;
9337 struct zone *zone;
9338 unsigned int order;
9339 unsigned long flags;
9340
9341 offline_mem_sections(pfn, end_pfn);
9342 zone = page_zone(pfn_to_page(pfn));
9343 spin_lock_irqsave(&zone->lock, flags);
9344 while (pfn < end_pfn) {
9345 page = pfn_to_page(pfn);
9346 /*
9347 * The HWPoisoned page may be not in buddy system, and
9348 * page_count() is not 0.
9349 */
9350 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9351 pfn++;
9352 continue;
9353 }
9354 /*
9355 * At this point all remaining PageOffline() pages have a
9356 * reference count of 0 and can simply be skipped.
9357 */
9358 if (PageOffline(page)) {
9359 BUG_ON(page_count(page));
9360 BUG_ON(PageBuddy(page));
9361 pfn++;
9362 continue;
9363 }
9364
9365 BUG_ON(page_count(page));
9366 BUG_ON(!PageBuddy(page));
9367 order = buddy_order(page);
9368 del_page_from_free_list(page, zone, order);
9369 pfn += (1 << order);
9370 }
9371 spin_unlock_irqrestore(&zone->lock, flags);
9372}
9373#endif
9374
9375/*
9376 * This function returns a stable result only if called under zone lock.
9377 */
9378bool is_free_buddy_page(struct page *page)
9379{
9380 unsigned long pfn = page_to_pfn(page);
9381 unsigned int order;
9382
9383 for (order = 0; order < MAX_ORDER; order++) {
9384 struct page *page_head = page - (pfn & ((1 << order) - 1));
9385
9386 if (PageBuddy(page_head) &&
9387 buddy_order_unsafe(page_head) >= order)
9388 break;
9389 }
9390
9391 return order < MAX_ORDER;
9392}
9393
9394#ifdef CONFIG_MEMORY_FAILURE
9395/*
9396 * Break down a higher-order page in sub-pages, and keep our target out of
9397 * buddy allocator.
9398 */
9399static void break_down_buddy_pages(struct zone *zone, struct page *page,
9400 struct page *target, int low, int high,
9401 int migratetype)
9402{
9403 unsigned long size = 1 << high;
9404 struct page *current_buddy, *next_page;
9405
9406 while (high > low) {
9407 high--;
9408 size >>= 1;
9409
9410 if (target >= &page[size]) {
9411 next_page = page + size;
9412 current_buddy = page;
9413 } else {
9414 next_page = page;
9415 current_buddy = page + size;
9416 }
9417
9418 if (set_page_guard(zone, current_buddy, high, migratetype))
9419 continue;
9420
9421 if (current_buddy != target) {
9422 add_to_free_list(current_buddy, zone, high, migratetype);
9423 set_buddy_order(current_buddy, high);
9424 page = next_page;
9425 }
9426 }
9427}
9428
9429/*
9430 * Take a page that will be marked as poisoned off the buddy allocator.
9431 */
9432bool take_page_off_buddy(struct page *page)
9433{
9434 struct zone *zone = page_zone(page);
9435 unsigned long pfn = page_to_pfn(page);
9436 unsigned long flags;
9437 unsigned int order;
9438 bool ret = false;
9439
9440 spin_lock_irqsave(&zone->lock, flags);
9441 for (order = 0; order < MAX_ORDER; order++) {
9442 struct page *page_head = page - (pfn & ((1 << order) - 1));
9443 int page_order = buddy_order(page_head);
9444
9445 if (PageBuddy(page_head) && page_order >= order) {
9446 unsigned long pfn_head = page_to_pfn(page_head);
9447 int migratetype = get_pfnblock_migratetype(page_head,
9448 pfn_head);
9449
9450 del_page_from_free_list(page_head, zone, page_order);
9451 break_down_buddy_pages(zone, page_head, page, 0,
9452 page_order, migratetype);
9453 if (!is_migrate_isolate(migratetype))
9454 __mod_zone_freepage_state(zone, -1, migratetype);
9455 ret = true;
9456 break;
9457 }
9458 if (page_count(page_head) > 0)
9459 break;
9460 }
9461 spin_unlock_irqrestore(&zone->lock, flags);
9462 return ret;
9463}
9464#endif