[PATCH] mm: move determination of policy_zone into page allocator
[linux-2.6-block.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/memory_hotplug.h>
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39#include <linux/mempolicy.h>
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49EXPORT_SYMBOL(node_online_map);
50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51EXPORT_SYMBOL(node_possible_map);
52struct pglist_data *pgdat_list __read_mostly;
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
55long nr_swap_pages;
56
57static void fastcall free_hot_cold_page(struct page *page, int cold);
58
59/*
60 * results with 256, 32 in the lowmem_reserve sysctl:
61 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
62 * 1G machine -> (16M dma, 784M normal, 224M high)
63 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
64 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
65 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
66 *
67 * TBD: should special case ZONE_DMA32 machines here - in those we normally
68 * don't need any ZONE_NORMAL reservation
69 */
70int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
71
72EXPORT_SYMBOL(totalram_pages);
73
74/*
75 * Used by page_zone() to look up the address of the struct zone whose
76 * id is encoded in the upper bits of page->flags
77 */
78struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
79EXPORT_SYMBOL(zone_table);
80
81static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
82int min_free_kbytes = 1024;
83
84unsigned long __initdata nr_kernel_pages;
85unsigned long __initdata nr_all_pages;
86
87#ifdef CONFIG_DEBUG_VM
88static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
89{
90 int ret = 0;
91 unsigned seq;
92 unsigned long pfn = page_to_pfn(page);
93
94 do {
95 seq = zone_span_seqbegin(zone);
96 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
97 ret = 1;
98 else if (pfn < zone->zone_start_pfn)
99 ret = 1;
100 } while (zone_span_seqretry(zone, seq));
101
102 return ret;
103}
104
105static int page_is_consistent(struct zone *zone, struct page *page)
106{
107#ifdef CONFIG_HOLES_IN_ZONE
108 if (!pfn_valid(page_to_pfn(page)))
109 return 0;
110#endif
111 if (zone != page_zone(page))
112 return 0;
113
114 return 1;
115}
116/*
117 * Temporary debugging check for pages not lying within a given zone.
118 */
119static int bad_range(struct zone *zone, struct page *page)
120{
121 if (page_outside_zone_boundaries(zone, page))
122 return 1;
123 if (!page_is_consistent(zone, page))
124 return 1;
125
126 return 0;
127}
128
129#else
130static inline int bad_range(struct zone *zone, struct page *page)
131{
132 return 0;
133}
134#endif
135
136static void bad_page(struct page *page)
137{
138 printk(KERN_EMERG "Bad page state in process '%s'\n"
139 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
140 "Trying to fix it up, but a reboot is needed\n"
141 "Backtrace:\n",
142 current->comm, page, (int)(2*sizeof(unsigned long)),
143 (unsigned long)page->flags, page->mapping,
144 page_mapcount(page), page_count(page));
145 dump_stack();
146 page->flags &= ~(1 << PG_lru |
147 1 << PG_private |
148 1 << PG_locked |
149 1 << PG_active |
150 1 << PG_dirty |
151 1 << PG_reclaim |
152 1 << PG_slab |
153 1 << PG_swapcache |
154 1 << PG_writeback );
155 set_page_count(page, 0);
156 reset_page_mapcount(page);
157 page->mapping = NULL;
158 add_taint(TAINT_BAD_PAGE);
159}
160
161/*
162 * Higher-order pages are called "compound pages". They are structured thusly:
163 *
164 * The first PAGE_SIZE page is called the "head page".
165 *
166 * The remaining PAGE_SIZE pages are called "tail pages".
167 *
168 * All pages have PG_compound set. All pages have their ->private pointing at
169 * the head page (even the head page has this).
170 *
171 * The first tail page's ->mapping, if non-zero, holds the address of the
172 * compound page's put_page() function.
173 *
174 * The order of the allocation is stored in the first tail page's ->index
175 * This is only for debug at present. This usage means that zero-order pages
176 * may not be compound.
177 */
178static void prep_compound_page(struct page *page, unsigned long order)
179{
180 int i;
181 int nr_pages = 1 << order;
182
183 page[1].mapping = NULL;
184 page[1].index = order;
185 for (i = 0; i < nr_pages; i++) {
186 struct page *p = page + i;
187
188 SetPageCompound(p);
189 set_page_private(p, (unsigned long)page);
190 }
191}
192
193static void destroy_compound_page(struct page *page, unsigned long order)
194{
195 int i;
196 int nr_pages = 1 << order;
197
198 if (unlikely(page[1].index != order))
199 bad_page(page);
200
201 for (i = 0; i < nr_pages; i++) {
202 struct page *p = page + i;
203
204 if (unlikely(!PageCompound(p) |
205 (page_private(p) != (unsigned long)page)))
206 bad_page(page);
207 ClearPageCompound(p);
208 }
209}
210
211/*
212 * function for dealing with page's order in buddy system.
213 * zone->lock is already acquired when we use these.
214 * So, we don't need atomic page->flags operations here.
215 */
216static inline unsigned long page_order(struct page *page) {
217 return page_private(page);
218}
219
220static inline void set_page_order(struct page *page, int order) {
221 set_page_private(page, order);
222 __SetPagePrivate(page);
223}
224
225static inline void rmv_page_order(struct page *page)
226{
227 __ClearPagePrivate(page);
228 set_page_private(page, 0);
229}
230
231/*
232 * Locate the struct page for both the matching buddy in our
233 * pair (buddy1) and the combined O(n+1) page they form (page).
234 *
235 * 1) Any buddy B1 will have an order O twin B2 which satisfies
236 * the following equation:
237 * B2 = B1 ^ (1 << O)
238 * For example, if the starting buddy (buddy2) is #8 its order
239 * 1 buddy is #10:
240 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
241 *
242 * 2) Any buddy B will have an order O+1 parent P which
243 * satisfies the following equation:
244 * P = B & ~(1 << O)
245 *
246 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
247 */
248static inline struct page *
249__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
250{
251 unsigned long buddy_idx = page_idx ^ (1 << order);
252
253 return page + (buddy_idx - page_idx);
254}
255
256static inline unsigned long
257__find_combined_index(unsigned long page_idx, unsigned int order)
258{
259 return (page_idx & ~(1 << order));
260}
261
262/*
263 * This function checks whether a page is free && is the buddy
264 * we can do coalesce a page and its buddy if
265 * (a) the buddy is not in a hole &&
266 * (b) the buddy is free &&
267 * (c) the buddy is on the buddy system &&
268 * (d) a page and its buddy have the same order.
269 * for recording page's order, we use page_private(page) and PG_private.
270 *
271 */
272static inline int page_is_buddy(struct page *page, int order)
273{
274#ifdef CONFIG_HOLES_IN_ZONE
275 if (!pfn_valid(page_to_pfn(page)))
276 return 0;
277#endif
278
279 if (PagePrivate(page) &&
280 (page_order(page) == order) &&
281 page_count(page) == 0)
282 return 1;
283 return 0;
284}
285
286/*
287 * Freeing function for a buddy system allocator.
288 *
289 * The concept of a buddy system is to maintain direct-mapped table
290 * (containing bit values) for memory blocks of various "orders".
291 * The bottom level table contains the map for the smallest allocatable
292 * units of memory (here, pages), and each level above it describes
293 * pairs of units from the levels below, hence, "buddies".
294 * At a high level, all that happens here is marking the table entry
295 * at the bottom level available, and propagating the changes upward
296 * as necessary, plus some accounting needed to play nicely with other
297 * parts of the VM system.
298 * At each level, we keep a list of pages, which are heads of continuous
299 * free pages of length of (1 << order) and marked with PG_Private.Page's
300 * order is recorded in page_private(page) field.
301 * So when we are allocating or freeing one, we can derive the state of the
302 * other. That is, if we allocate a small block, and both were
303 * free, the remainder of the region must be split into blocks.
304 * If a block is freed, and its buddy is also free, then this
305 * triggers coalescing into a block of larger size.
306 *
307 * -- wli
308 */
309
310static inline void __free_pages_bulk (struct page *page,
311 struct zone *zone, unsigned int order)
312{
313 unsigned long page_idx;
314 int order_size = 1 << order;
315
316 if (unlikely(PageCompound(page)))
317 destroy_compound_page(page, order);
318
319 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
320
321 BUG_ON(page_idx & (order_size - 1));
322 BUG_ON(bad_range(zone, page));
323
324 zone->free_pages += order_size;
325 while (order < MAX_ORDER-1) {
326 unsigned long combined_idx;
327 struct free_area *area;
328 struct page *buddy;
329
330 buddy = __page_find_buddy(page, page_idx, order);
331 if (!page_is_buddy(buddy, order))
332 break; /* Move the buddy up one level. */
333
334 list_del(&buddy->lru);
335 area = zone->free_area + order;
336 area->nr_free--;
337 rmv_page_order(buddy);
338 combined_idx = __find_combined_index(page_idx, order);
339 page = page + (combined_idx - page_idx);
340 page_idx = combined_idx;
341 order++;
342 }
343 set_page_order(page, order);
344 list_add(&page->lru, &zone->free_area[order].free_list);
345 zone->free_area[order].nr_free++;
346}
347
348static inline int free_pages_check(struct page *page)
349{
350 if (unlikely(page_mapcount(page) |
351 (page->mapping != NULL) |
352 (page_count(page) != 0) |
353 (page->flags & (
354 1 << PG_lru |
355 1 << PG_private |
356 1 << PG_locked |
357 1 << PG_active |
358 1 << PG_reclaim |
359 1 << PG_slab |
360 1 << PG_swapcache |
361 1 << PG_writeback |
362 1 << PG_reserved ))))
363 bad_page(page);
364 if (PageDirty(page))
365 __ClearPageDirty(page);
366 /*
367 * For now, we report if PG_reserved was found set, but do not
368 * clear it, and do not free the page. But we shall soon need
369 * to do more, for when the ZERO_PAGE count wraps negative.
370 */
371 return PageReserved(page);
372}
373
374/*
375 * Frees a list of pages.
376 * Assumes all pages on list are in same zone, and of same order.
377 * count is the number of pages to free.
378 *
379 * If the zone was previously in an "all pages pinned" state then look to
380 * see if this freeing clears that state.
381 *
382 * And clear the zone's pages_scanned counter, to hold off the "all pages are
383 * pinned" detection logic.
384 */
385static int
386free_pages_bulk(struct zone *zone, int count,
387 struct list_head *list, unsigned int order)
388{
389 struct page *page = NULL;
390 int ret = 0;
391
392 spin_lock(&zone->lock);
393 zone->all_unreclaimable = 0;
394 zone->pages_scanned = 0;
395 while (!list_empty(list) && count--) {
396 page = list_entry(list->prev, struct page, lru);
397 /* have to delete it as __free_pages_bulk list manipulates */
398 list_del(&page->lru);
399 __free_pages_bulk(page, zone, order);
400 ret++;
401 }
402 spin_unlock(&zone->lock);
403 return ret;
404}
405
406void __free_pages_ok(struct page *page, unsigned int order)
407{
408 unsigned long flags;
409 LIST_HEAD(list);
410 int i;
411 int reserved = 0;
412
413 arch_free_page(page, order);
414
415#ifndef CONFIG_MMU
416 if (order > 0)
417 for (i = 1 ; i < (1 << order) ; ++i)
418 __put_page(page + i);
419#endif
420
421 for (i = 0 ; i < (1 << order) ; ++i)
422 reserved += free_pages_check(page + i);
423 if (reserved)
424 return;
425
426 list_add(&page->lru, &list);
427 mod_page_state(pgfree, 1 << order);
428 kernel_map_pages(page, 1<<order, 0);
429 local_irq_save(flags);
430 free_pages_bulk(page_zone(page), 1, &list, order);
431 local_irq_restore(flags);
432}
433
434/*
435 * permit the bootmem allocator to evade page validation on high-order frees
436 */
437void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
438{
439 if (order == 0) {
440 __ClearPageReserved(page);
441 set_page_count(page, 0);
442
443 free_hot_cold_page(page, 0);
444 } else {
445 LIST_HEAD(list);
446 int loop;
447
448 for (loop = 0; loop < BITS_PER_LONG; loop++) {
449 struct page *p = &page[loop];
450
451 if (loop + 16 < BITS_PER_LONG)
452 prefetchw(p + 16);
453 __ClearPageReserved(p);
454 set_page_count(p, 0);
455 }
456
457 arch_free_page(page, order);
458
459 mod_page_state(pgfree, 1 << order);
460
461 list_add(&page->lru, &list);
462 kernel_map_pages(page, 1 << order, 0);
463 free_pages_bulk(page_zone(page), 1, &list, order);
464 }
465}
466
467
468/*
469 * The order of subdivision here is critical for the IO subsystem.
470 * Please do not alter this order without good reasons and regression
471 * testing. Specifically, as large blocks of memory are subdivided,
472 * the order in which smaller blocks are delivered depends on the order
473 * they're subdivided in this function. This is the primary factor
474 * influencing the order in which pages are delivered to the IO
475 * subsystem according to empirical testing, and this is also justified
476 * by considering the behavior of a buddy system containing a single
477 * large block of memory acted on by a series of small allocations.
478 * This behavior is a critical factor in sglist merging's success.
479 *
480 * -- wli
481 */
482static inline void expand(struct zone *zone, struct page *page,
483 int low, int high, struct free_area *area)
484{
485 unsigned long size = 1 << high;
486
487 while (high > low) {
488 area--;
489 high--;
490 size >>= 1;
491 BUG_ON(bad_range(zone, &page[size]));
492 list_add(&page[size].lru, &area->free_list);
493 area->nr_free++;
494 set_page_order(&page[size], high);
495 }
496}
497
498/*
499 * This page is about to be returned from the page allocator
500 */
501static int prep_new_page(struct page *page, int order)
502{
503 if (unlikely(page_mapcount(page) |
504 (page->mapping != NULL) |
505 (page_count(page) != 0) |
506 (page->flags & (
507 1 << PG_lru |
508 1 << PG_private |
509 1 << PG_locked |
510 1 << PG_active |
511 1 << PG_dirty |
512 1 << PG_reclaim |
513 1 << PG_slab |
514 1 << PG_swapcache |
515 1 << PG_writeback |
516 1 << PG_reserved ))))
517 bad_page(page);
518
519 /*
520 * For now, we report if PG_reserved was found set, but do not
521 * clear it, and do not allocate the page: as a safety net.
522 */
523 if (PageReserved(page))
524 return 1;
525
526 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
527 1 << PG_referenced | 1 << PG_arch_1 |
528 1 << PG_checked | 1 << PG_mappedtodisk);
529 set_page_private(page, 0);
530 set_page_refs(page, order);
531 kernel_map_pages(page, 1 << order, 1);
532 return 0;
533}
534
535/*
536 * Do the hard work of removing an element from the buddy allocator.
537 * Call me with the zone->lock already held.
538 */
539static struct page *__rmqueue(struct zone *zone, unsigned int order)
540{
541 struct free_area * area;
542 unsigned int current_order;
543 struct page *page;
544
545 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
546 area = zone->free_area + current_order;
547 if (list_empty(&area->free_list))
548 continue;
549
550 page = list_entry(area->free_list.next, struct page, lru);
551 list_del(&page->lru);
552 rmv_page_order(page);
553 area->nr_free--;
554 zone->free_pages -= 1UL << order;
555 expand(zone, page, order, current_order, area);
556 return page;
557 }
558
559 return NULL;
560}
561
562/*
563 * Obtain a specified number of elements from the buddy allocator, all under
564 * a single hold of the lock, for efficiency. Add them to the supplied list.
565 * Returns the number of new pages which were placed at *list.
566 */
567static int rmqueue_bulk(struct zone *zone, unsigned int order,
568 unsigned long count, struct list_head *list)
569{
570 int i;
571
572 spin_lock(&zone->lock);
573 for (i = 0; i < count; ++i) {
574 struct page *page = __rmqueue(zone, order);
575 if (unlikely(page == NULL))
576 break;
577 list_add_tail(&page->lru, list);
578 }
579 spin_unlock(&zone->lock);
580 return i;
581}
582
583#ifdef CONFIG_NUMA
584/* Called from the slab reaper to drain remote pagesets */
585void drain_remote_pages(void)
586{
587 struct zone *zone;
588 int i;
589 unsigned long flags;
590
591 local_irq_save(flags);
592 for_each_zone(zone) {
593 struct per_cpu_pageset *pset;
594
595 /* Do not drain local pagesets */
596 if (zone->zone_pgdat->node_id == numa_node_id())
597 continue;
598
599 pset = zone->pageset[smp_processor_id()];
600 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
601 struct per_cpu_pages *pcp;
602
603 pcp = &pset->pcp[i];
604 if (pcp->count)
605 pcp->count -= free_pages_bulk(zone, pcp->count,
606 &pcp->list, 0);
607 }
608 }
609 local_irq_restore(flags);
610}
611#endif
612
613#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
614static void __drain_pages(unsigned int cpu)
615{
616 unsigned long flags;
617 struct zone *zone;
618 int i;
619
620 for_each_zone(zone) {
621 struct per_cpu_pageset *pset;
622
623 pset = zone_pcp(zone, cpu);
624 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
625 struct per_cpu_pages *pcp;
626
627 pcp = &pset->pcp[i];
628 local_irq_save(flags);
629 pcp->count -= free_pages_bulk(zone, pcp->count,
630 &pcp->list, 0);
631 local_irq_restore(flags);
632 }
633 }
634}
635#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
636
637#ifdef CONFIG_PM
638
639void mark_free_pages(struct zone *zone)
640{
641 unsigned long zone_pfn, flags;
642 int order;
643 struct list_head *curr;
644
645 if (!zone->spanned_pages)
646 return;
647
648 spin_lock_irqsave(&zone->lock, flags);
649 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
650 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
651
652 for (order = MAX_ORDER - 1; order >= 0; --order)
653 list_for_each(curr, &zone->free_area[order].free_list) {
654 unsigned long start_pfn, i;
655
656 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
657
658 for (i=0; i < (1<<order); i++)
659 SetPageNosaveFree(pfn_to_page(start_pfn+i));
660 }
661 spin_unlock_irqrestore(&zone->lock, flags);
662}
663
664/*
665 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
666 */
667void drain_local_pages(void)
668{
669 unsigned long flags;
670
671 local_irq_save(flags);
672 __drain_pages(smp_processor_id());
673 local_irq_restore(flags);
674}
675#endif /* CONFIG_PM */
676
677static void zone_statistics(struct zonelist *zonelist, struct zone *z)
678{
679#ifdef CONFIG_NUMA
680 unsigned long flags;
681 int cpu;
682 pg_data_t *pg = z->zone_pgdat;
683 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
684 struct per_cpu_pageset *p;
685
686 local_irq_save(flags);
687 cpu = smp_processor_id();
688 p = zone_pcp(z,cpu);
689 if (pg == orig) {
690 p->numa_hit++;
691 } else {
692 p->numa_miss++;
693 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
694 }
695 if (pg == NODE_DATA(numa_node_id()))
696 p->local_node++;
697 else
698 p->other_node++;
699 local_irq_restore(flags);
700#endif
701}
702
703/*
704 * Free a 0-order page
705 */
706static void fastcall free_hot_cold_page(struct page *page, int cold)
707{
708 struct zone *zone = page_zone(page);
709 struct per_cpu_pages *pcp;
710 unsigned long flags;
711
712 arch_free_page(page, 0);
713
714 if (PageAnon(page))
715 page->mapping = NULL;
716 if (free_pages_check(page))
717 return;
718
719 inc_page_state(pgfree);
720 kernel_map_pages(page, 1, 0);
721
722 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
723 local_irq_save(flags);
724 list_add(&page->lru, &pcp->list);
725 pcp->count++;
726 if (pcp->count >= pcp->high)
727 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
728 local_irq_restore(flags);
729 put_cpu();
730}
731
732void fastcall free_hot_page(struct page *page)
733{
734 free_hot_cold_page(page, 0);
735}
736
737void fastcall free_cold_page(struct page *page)
738{
739 free_hot_cold_page(page, 1);
740}
741
742static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
743{
744 int i;
745
746 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
747 for(i = 0; i < (1 << order); i++)
748 clear_highpage(page + i);
749}
750
751/*
752 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
753 * we cheat by calling it from here, in the order > 0 path. Saves a branch
754 * or two.
755 */
756static struct page *
757buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
758{
759 unsigned long flags;
760 struct page *page;
761 int cold = !!(gfp_flags & __GFP_COLD);
762
763again:
764 if (order == 0) {
765 struct per_cpu_pages *pcp;
766
767 page = NULL;
768 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
769 local_irq_save(flags);
770 if (!pcp->count)
771 pcp->count += rmqueue_bulk(zone, 0,
772 pcp->batch, &pcp->list);
773 if (likely(pcp->count)) {
774 page = list_entry(pcp->list.next, struct page, lru);
775 list_del(&page->lru);
776 pcp->count--;
777 }
778 local_irq_restore(flags);
779 put_cpu();
780 } else {
781 spin_lock_irqsave(&zone->lock, flags);
782 page = __rmqueue(zone, order);
783 spin_unlock_irqrestore(&zone->lock, flags);
784 }
785
786 if (page != NULL) {
787 BUG_ON(bad_range(zone, page));
788 mod_page_state_zone(zone, pgalloc, 1 << order);
789 if (prep_new_page(page, order))
790 goto again;
791
792 if (gfp_flags & __GFP_ZERO)
793 prep_zero_page(page, order, gfp_flags);
794
795 if (order && (gfp_flags & __GFP_COMP))
796 prep_compound_page(page, order);
797 }
798 return page;
799}
800
801#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
802#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
803#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
804#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
805#define ALLOC_HARDER 0x10 /* try to alloc harder */
806#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
807#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
808
809/*
810 * Return 1 if free pages are above 'mark'. This takes into account the order
811 * of the allocation.
812 */
813int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
814 int classzone_idx, int alloc_flags)
815{
816 /* free_pages my go negative - that's OK */
817 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
818 int o;
819
820 if (alloc_flags & ALLOC_HIGH)
821 min -= min / 2;
822 if (alloc_flags & ALLOC_HARDER)
823 min -= min / 4;
824
825 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
826 return 0;
827 for (o = 0; o < order; o++) {
828 /* At the next order, this order's pages become unavailable */
829 free_pages -= z->free_area[o].nr_free << o;
830
831 /* Require fewer higher order pages to be free */
832 min >>= 1;
833
834 if (free_pages <= min)
835 return 0;
836 }
837 return 1;
838}
839
840/*
841 * get_page_from_freeliest goes through the zonelist trying to allocate
842 * a page.
843 */
844static struct page *
845get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
846 struct zonelist *zonelist, int alloc_flags)
847{
848 struct zone **z = zonelist->zones;
849 struct page *page = NULL;
850 int classzone_idx = zone_idx(*z);
851
852 /*
853 * Go through the zonelist once, looking for a zone with enough free.
854 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
855 */
856 do {
857 if ((alloc_flags & ALLOC_CPUSET) &&
858 !cpuset_zone_allowed(*z, gfp_mask))
859 continue;
860
861 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
862 unsigned long mark;
863 if (alloc_flags & ALLOC_WMARK_MIN)
864 mark = (*z)->pages_min;
865 else if (alloc_flags & ALLOC_WMARK_LOW)
866 mark = (*z)->pages_low;
867 else
868 mark = (*z)->pages_high;
869 if (!zone_watermark_ok(*z, order, mark,
870 classzone_idx, alloc_flags))
871 continue;
872 }
873
874 page = buffered_rmqueue(*z, order, gfp_mask);
875 if (page) {
876 zone_statistics(zonelist, *z);
877 break;
878 }
879 } while (*(++z) != NULL);
880 return page;
881}
882
883/*
884 * This is the 'heart' of the zoned buddy allocator.
885 */
886struct page * fastcall
887__alloc_pages(gfp_t gfp_mask, unsigned int order,
888 struct zonelist *zonelist)
889{
890 const gfp_t wait = gfp_mask & __GFP_WAIT;
891 struct zone **z;
892 struct page *page;
893 struct reclaim_state reclaim_state;
894 struct task_struct *p = current;
895 int do_retry;
896 int alloc_flags;
897 int did_some_progress;
898
899 might_sleep_if(wait);
900
901restart:
902 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
903
904 if (unlikely(*z == NULL)) {
905 /* Should this ever happen?? */
906 return NULL;
907 }
908
909 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
910 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
911 if (page)
912 goto got_pg;
913
914 do {
915 wakeup_kswapd(*z, order);
916 } while (*(++z));
917
918 /*
919 * OK, we're below the kswapd watermark and have kicked background
920 * reclaim. Now things get more complex, so set up alloc_flags according
921 * to how we want to proceed.
922 *
923 * The caller may dip into page reserves a bit more if the caller
924 * cannot run direct reclaim, or if the caller has realtime scheduling
925 * policy.
926 */
927 alloc_flags = ALLOC_WMARK_MIN;
928 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
929 alloc_flags |= ALLOC_HARDER;
930 if (gfp_mask & __GFP_HIGH)
931 alloc_flags |= ALLOC_HIGH;
932 alloc_flags |= ALLOC_CPUSET;
933
934 /*
935 * Go through the zonelist again. Let __GFP_HIGH and allocations
936 * coming from realtime tasks go deeper into reserves.
937 *
938 * This is the last chance, in general, before the goto nopage.
939 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
940 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
941 */
942 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
943 if (page)
944 goto got_pg;
945
946 /* This allocation should allow future memory freeing. */
947
948 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
949 && !in_interrupt()) {
950 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
951nofail_alloc:
952 /* go through the zonelist yet again, ignoring mins */
953 page = get_page_from_freelist(gfp_mask, order,
954 zonelist, ALLOC_NO_WATERMARKS);
955 if (page)
956 goto got_pg;
957 if (gfp_mask & __GFP_NOFAIL) {
958 blk_congestion_wait(WRITE, HZ/50);
959 goto nofail_alloc;
960 }
961 }
962 goto nopage;
963 }
964
965 /* Atomic allocations - we can't balance anything */
966 if (!wait)
967 goto nopage;
968
969rebalance:
970 cond_resched();
971
972 /* We now go into synchronous reclaim */
973 p->flags |= PF_MEMALLOC;
974 reclaim_state.reclaimed_slab = 0;
975 p->reclaim_state = &reclaim_state;
976
977 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
978
979 p->reclaim_state = NULL;
980 p->flags &= ~PF_MEMALLOC;
981
982 cond_resched();
983
984 if (likely(did_some_progress)) {
985 page = get_page_from_freelist(gfp_mask, order,
986 zonelist, alloc_flags);
987 if (page)
988 goto got_pg;
989 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
990 /*
991 * Go through the zonelist yet one more time, keep
992 * very high watermark here, this is only to catch
993 * a parallel oom killing, we must fail if we're still
994 * under heavy pressure.
995 */
996 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
997 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
998 if (page)
999 goto got_pg;
1000
1001 out_of_memory(gfp_mask, order);
1002 goto restart;
1003 }
1004
1005 /*
1006 * Don't let big-order allocations loop unless the caller explicitly
1007 * requests that. Wait for some write requests to complete then retry.
1008 *
1009 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1010 * <= 3, but that may not be true in other implementations.
1011 */
1012 do_retry = 0;
1013 if (!(gfp_mask & __GFP_NORETRY)) {
1014 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1015 do_retry = 1;
1016 if (gfp_mask & __GFP_NOFAIL)
1017 do_retry = 1;
1018 }
1019 if (do_retry) {
1020 blk_congestion_wait(WRITE, HZ/50);
1021 goto rebalance;
1022 }
1023
1024nopage:
1025 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1026 printk(KERN_WARNING "%s: page allocation failure."
1027 " order:%d, mode:0x%x\n",
1028 p->comm, order, gfp_mask);
1029 dump_stack();
1030 show_mem();
1031 }
1032got_pg:
1033 return page;
1034}
1035
1036EXPORT_SYMBOL(__alloc_pages);
1037
1038/*
1039 * Common helper functions.
1040 */
1041fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1042{
1043 struct page * page;
1044 page = alloc_pages(gfp_mask, order);
1045 if (!page)
1046 return 0;
1047 return (unsigned long) page_address(page);
1048}
1049
1050EXPORT_SYMBOL(__get_free_pages);
1051
1052fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1053{
1054 struct page * page;
1055
1056 /*
1057 * get_zeroed_page() returns a 32-bit address, which cannot represent
1058 * a highmem page
1059 */
1060 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1061
1062 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1063 if (page)
1064 return (unsigned long) page_address(page);
1065 return 0;
1066}
1067
1068EXPORT_SYMBOL(get_zeroed_page);
1069
1070void __pagevec_free(struct pagevec *pvec)
1071{
1072 int i = pagevec_count(pvec);
1073
1074 while (--i >= 0)
1075 free_hot_cold_page(pvec->pages[i], pvec->cold);
1076}
1077
1078fastcall void __free_pages(struct page *page, unsigned int order)
1079{
1080 if (put_page_testzero(page)) {
1081 if (order == 0)
1082 free_hot_page(page);
1083 else
1084 __free_pages_ok(page, order);
1085 }
1086}
1087
1088EXPORT_SYMBOL(__free_pages);
1089
1090fastcall void free_pages(unsigned long addr, unsigned int order)
1091{
1092 if (addr != 0) {
1093 BUG_ON(!virt_addr_valid((void *)addr));
1094 __free_pages(virt_to_page((void *)addr), order);
1095 }
1096}
1097
1098EXPORT_SYMBOL(free_pages);
1099
1100/*
1101 * Total amount of free (allocatable) RAM:
1102 */
1103unsigned int nr_free_pages(void)
1104{
1105 unsigned int sum = 0;
1106 struct zone *zone;
1107
1108 for_each_zone(zone)
1109 sum += zone->free_pages;
1110
1111 return sum;
1112}
1113
1114EXPORT_SYMBOL(nr_free_pages);
1115
1116#ifdef CONFIG_NUMA
1117unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1118{
1119 unsigned int i, sum = 0;
1120
1121 for (i = 0; i < MAX_NR_ZONES; i++)
1122 sum += pgdat->node_zones[i].free_pages;
1123
1124 return sum;
1125}
1126#endif
1127
1128static unsigned int nr_free_zone_pages(int offset)
1129{
1130 /* Just pick one node, since fallback list is circular */
1131 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1132 unsigned int sum = 0;
1133
1134 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1135 struct zone **zonep = zonelist->zones;
1136 struct zone *zone;
1137
1138 for (zone = *zonep++; zone; zone = *zonep++) {
1139 unsigned long size = zone->present_pages;
1140 unsigned long high = zone->pages_high;
1141 if (size > high)
1142 sum += size - high;
1143 }
1144
1145 return sum;
1146}
1147
1148/*
1149 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1150 */
1151unsigned int nr_free_buffer_pages(void)
1152{
1153 return nr_free_zone_pages(gfp_zone(GFP_USER));
1154}
1155
1156/*
1157 * Amount of free RAM allocatable within all zones
1158 */
1159unsigned int nr_free_pagecache_pages(void)
1160{
1161 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1162}
1163
1164#ifdef CONFIG_HIGHMEM
1165unsigned int nr_free_highpages (void)
1166{
1167 pg_data_t *pgdat;
1168 unsigned int pages = 0;
1169
1170 for_each_pgdat(pgdat)
1171 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1172
1173 return pages;
1174}
1175#endif
1176
1177#ifdef CONFIG_NUMA
1178static void show_node(struct zone *zone)
1179{
1180 printk("Node %d ", zone->zone_pgdat->node_id);
1181}
1182#else
1183#define show_node(zone) do { } while (0)
1184#endif
1185
1186/*
1187 * Accumulate the page_state information across all CPUs.
1188 * The result is unavoidably approximate - it can change
1189 * during and after execution of this function.
1190 */
1191static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1192
1193atomic_t nr_pagecache = ATOMIC_INIT(0);
1194EXPORT_SYMBOL(nr_pagecache);
1195#ifdef CONFIG_SMP
1196DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1197#endif
1198
1199static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1200{
1201 int cpu = 0;
1202
1203 memset(ret, 0, sizeof(*ret));
1204
1205 cpu = first_cpu(*cpumask);
1206 while (cpu < NR_CPUS) {
1207 unsigned long *in, *out, off;
1208
1209 in = (unsigned long *)&per_cpu(page_states, cpu);
1210
1211 cpu = next_cpu(cpu, *cpumask);
1212
1213 if (cpu < NR_CPUS)
1214 prefetch(&per_cpu(page_states, cpu));
1215
1216 out = (unsigned long *)ret;
1217 for (off = 0; off < nr; off++)
1218 *out++ += *in++;
1219 }
1220}
1221
1222void get_page_state_node(struct page_state *ret, int node)
1223{
1224 int nr;
1225 cpumask_t mask = node_to_cpumask(node);
1226
1227 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1228 nr /= sizeof(unsigned long);
1229
1230 __get_page_state(ret, nr+1, &mask);
1231}
1232
1233void get_page_state(struct page_state *ret)
1234{
1235 int nr;
1236 cpumask_t mask = CPU_MASK_ALL;
1237
1238 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1239 nr /= sizeof(unsigned long);
1240
1241 __get_page_state(ret, nr + 1, &mask);
1242}
1243
1244void get_full_page_state(struct page_state *ret)
1245{
1246 cpumask_t mask = CPU_MASK_ALL;
1247
1248 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1249}
1250
1251unsigned long __read_page_state(unsigned long offset)
1252{
1253 unsigned long ret = 0;
1254 int cpu;
1255
1256 for_each_cpu(cpu) {
1257 unsigned long in;
1258
1259 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1260 ret += *((unsigned long *)in);
1261 }
1262 return ret;
1263}
1264
1265void __mod_page_state(unsigned long offset, unsigned long delta)
1266{
1267 unsigned long flags;
1268 void* ptr;
1269
1270 local_irq_save(flags);
1271 ptr = &__get_cpu_var(page_states);
1272 *(unsigned long*)(ptr + offset) += delta;
1273 local_irq_restore(flags);
1274}
1275
1276EXPORT_SYMBOL(__mod_page_state);
1277
1278void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1279 unsigned long *free, struct pglist_data *pgdat)
1280{
1281 struct zone *zones = pgdat->node_zones;
1282 int i;
1283
1284 *active = 0;
1285 *inactive = 0;
1286 *free = 0;
1287 for (i = 0; i < MAX_NR_ZONES; i++) {
1288 *active += zones[i].nr_active;
1289 *inactive += zones[i].nr_inactive;
1290 *free += zones[i].free_pages;
1291 }
1292}
1293
1294void get_zone_counts(unsigned long *active,
1295 unsigned long *inactive, unsigned long *free)
1296{
1297 struct pglist_data *pgdat;
1298
1299 *active = 0;
1300 *inactive = 0;
1301 *free = 0;
1302 for_each_pgdat(pgdat) {
1303 unsigned long l, m, n;
1304 __get_zone_counts(&l, &m, &n, pgdat);
1305 *active += l;
1306 *inactive += m;
1307 *free += n;
1308 }
1309}
1310
1311void si_meminfo(struct sysinfo *val)
1312{
1313 val->totalram = totalram_pages;
1314 val->sharedram = 0;
1315 val->freeram = nr_free_pages();
1316 val->bufferram = nr_blockdev_pages();
1317#ifdef CONFIG_HIGHMEM
1318 val->totalhigh = totalhigh_pages;
1319 val->freehigh = nr_free_highpages();
1320#else
1321 val->totalhigh = 0;
1322 val->freehigh = 0;
1323#endif
1324 val->mem_unit = PAGE_SIZE;
1325}
1326
1327EXPORT_SYMBOL(si_meminfo);
1328
1329#ifdef CONFIG_NUMA
1330void si_meminfo_node(struct sysinfo *val, int nid)
1331{
1332 pg_data_t *pgdat = NODE_DATA(nid);
1333
1334 val->totalram = pgdat->node_present_pages;
1335 val->freeram = nr_free_pages_pgdat(pgdat);
1336 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1337 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1338 val->mem_unit = PAGE_SIZE;
1339}
1340#endif
1341
1342#define K(x) ((x) << (PAGE_SHIFT-10))
1343
1344/*
1345 * Show free area list (used inside shift_scroll-lock stuff)
1346 * We also calculate the percentage fragmentation. We do this by counting the
1347 * memory on each free list with the exception of the first item on the list.
1348 */
1349void show_free_areas(void)
1350{
1351 struct page_state ps;
1352 int cpu, temperature;
1353 unsigned long active;
1354 unsigned long inactive;
1355 unsigned long free;
1356 struct zone *zone;
1357
1358 for_each_zone(zone) {
1359 show_node(zone);
1360 printk("%s per-cpu:", zone->name);
1361
1362 if (!populated_zone(zone)) {
1363 printk(" empty\n");
1364 continue;
1365 } else
1366 printk("\n");
1367
1368 for_each_online_cpu(cpu) {
1369 struct per_cpu_pageset *pageset;
1370
1371 pageset = zone_pcp(zone, cpu);
1372
1373 for (temperature = 0; temperature < 2; temperature++)
1374 printk("cpu %d %s: high %d, batch %d used:%d\n",
1375 cpu,
1376 temperature ? "cold" : "hot",
1377 pageset->pcp[temperature].high,
1378 pageset->pcp[temperature].batch,
1379 pageset->pcp[temperature].count);
1380 }
1381 }
1382
1383 get_page_state(&ps);
1384 get_zone_counts(&active, &inactive, &free);
1385
1386 printk("Free pages: %11ukB (%ukB HighMem)\n",
1387 K(nr_free_pages()),
1388 K(nr_free_highpages()));
1389
1390 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1391 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1392 active,
1393 inactive,
1394 ps.nr_dirty,
1395 ps.nr_writeback,
1396 ps.nr_unstable,
1397 nr_free_pages(),
1398 ps.nr_slab,
1399 ps.nr_mapped,
1400 ps.nr_page_table_pages);
1401
1402 for_each_zone(zone) {
1403 int i;
1404
1405 show_node(zone);
1406 printk("%s"
1407 " free:%lukB"
1408 " min:%lukB"
1409 " low:%lukB"
1410 " high:%lukB"
1411 " active:%lukB"
1412 " inactive:%lukB"
1413 " present:%lukB"
1414 " pages_scanned:%lu"
1415 " all_unreclaimable? %s"
1416 "\n",
1417 zone->name,
1418 K(zone->free_pages),
1419 K(zone->pages_min),
1420 K(zone->pages_low),
1421 K(zone->pages_high),
1422 K(zone->nr_active),
1423 K(zone->nr_inactive),
1424 K(zone->present_pages),
1425 zone->pages_scanned,
1426 (zone->all_unreclaimable ? "yes" : "no")
1427 );
1428 printk("lowmem_reserve[]:");
1429 for (i = 0; i < MAX_NR_ZONES; i++)
1430 printk(" %lu", zone->lowmem_reserve[i]);
1431 printk("\n");
1432 }
1433
1434 for_each_zone(zone) {
1435 unsigned long nr, flags, order, total = 0;
1436
1437 show_node(zone);
1438 printk("%s: ", zone->name);
1439 if (!populated_zone(zone)) {
1440 printk("empty\n");
1441 continue;
1442 }
1443
1444 spin_lock_irqsave(&zone->lock, flags);
1445 for (order = 0; order < MAX_ORDER; order++) {
1446 nr = zone->free_area[order].nr_free;
1447 total += nr << order;
1448 printk("%lu*%lukB ", nr, K(1UL) << order);
1449 }
1450 spin_unlock_irqrestore(&zone->lock, flags);
1451 printk("= %lukB\n", K(total));
1452 }
1453
1454 show_swap_cache_info();
1455}
1456
1457/*
1458 * Builds allocation fallback zone lists.
1459 *
1460 * Add all populated zones of a node to the zonelist.
1461 */
1462static int __init build_zonelists_node(pg_data_t *pgdat,
1463 struct zonelist *zonelist, int j, int k)
1464{
1465 struct zone *zone;
1466
1467 BUG_ON(k > ZONE_HIGHMEM);
1468 for (zone = pgdat->node_zones + k; zone >= pgdat->node_zones; zone--) {
1469 if (populated_zone(zone)) {
1470#ifndef CONFIG_HIGHMEM
1471 BUG_ON(zone - pgdat->node_zones > ZONE_NORMAL);
1472#endif
1473 zonelist->zones[j++] = zone;
1474 check_highest_zone(k);
1475 }
1476 }
1477 return j;
1478}
1479
1480static inline int highest_zone(int zone_bits)
1481{
1482 int res = ZONE_NORMAL;
1483 if (zone_bits & (__force int)__GFP_HIGHMEM)
1484 res = ZONE_HIGHMEM;
1485 if (zone_bits & (__force int)__GFP_DMA32)
1486 res = ZONE_DMA32;
1487 if (zone_bits & (__force int)__GFP_DMA)
1488 res = ZONE_DMA;
1489 return res;
1490}
1491
1492#ifdef CONFIG_NUMA
1493#define MAX_NODE_LOAD (num_online_nodes())
1494static int __initdata node_load[MAX_NUMNODES];
1495/**
1496 * find_next_best_node - find the next node that should appear in a given node's fallback list
1497 * @node: node whose fallback list we're appending
1498 * @used_node_mask: nodemask_t of already used nodes
1499 *
1500 * We use a number of factors to determine which is the next node that should
1501 * appear on a given node's fallback list. The node should not have appeared
1502 * already in @node's fallback list, and it should be the next closest node
1503 * according to the distance array (which contains arbitrary distance values
1504 * from each node to each node in the system), and should also prefer nodes
1505 * with no CPUs, since presumably they'll have very little allocation pressure
1506 * on them otherwise.
1507 * It returns -1 if no node is found.
1508 */
1509static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1510{
1511 int i, n, val;
1512 int min_val = INT_MAX;
1513 int best_node = -1;
1514
1515 for_each_online_node(i) {
1516 cpumask_t tmp;
1517
1518 /* Start from local node */
1519 n = (node+i) % num_online_nodes();
1520
1521 /* Don't want a node to appear more than once */
1522 if (node_isset(n, *used_node_mask))
1523 continue;
1524
1525 /* Use the local node if we haven't already */
1526 if (!node_isset(node, *used_node_mask)) {
1527 best_node = node;
1528 break;
1529 }
1530
1531 /* Use the distance array to find the distance */
1532 val = node_distance(node, n);
1533
1534 /* Give preference to headless and unused nodes */
1535 tmp = node_to_cpumask(n);
1536 if (!cpus_empty(tmp))
1537 val += PENALTY_FOR_NODE_WITH_CPUS;
1538
1539 /* Slight preference for less loaded node */
1540 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1541 val += node_load[n];
1542
1543 if (val < min_val) {
1544 min_val = val;
1545 best_node = n;
1546 }
1547 }
1548
1549 if (best_node >= 0)
1550 node_set(best_node, *used_node_mask);
1551
1552 return best_node;
1553}
1554
1555static void __init build_zonelists(pg_data_t *pgdat)
1556{
1557 int i, j, k, node, local_node;
1558 int prev_node, load;
1559 struct zonelist *zonelist;
1560 nodemask_t used_mask;
1561
1562 /* initialize zonelists */
1563 for (i = 0; i < GFP_ZONETYPES; i++) {
1564 zonelist = pgdat->node_zonelists + i;
1565 zonelist->zones[0] = NULL;
1566 }
1567
1568 /* NUMA-aware ordering of nodes */
1569 local_node = pgdat->node_id;
1570 load = num_online_nodes();
1571 prev_node = local_node;
1572 nodes_clear(used_mask);
1573 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1574 /*
1575 * We don't want to pressure a particular node.
1576 * So adding penalty to the first node in same
1577 * distance group to make it round-robin.
1578 */
1579 if (node_distance(local_node, node) !=
1580 node_distance(local_node, prev_node))
1581 node_load[node] += load;
1582 prev_node = node;
1583 load--;
1584 for (i = 0; i < GFP_ZONETYPES; i++) {
1585 zonelist = pgdat->node_zonelists + i;
1586 for (j = 0; zonelist->zones[j] != NULL; j++);
1587
1588 k = highest_zone(i);
1589
1590 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1591 zonelist->zones[j] = NULL;
1592 }
1593 }
1594}
1595
1596#else /* CONFIG_NUMA */
1597
1598static void __init build_zonelists(pg_data_t *pgdat)
1599{
1600 int i, j, k, node, local_node;
1601
1602 local_node = pgdat->node_id;
1603 for (i = 0; i < GFP_ZONETYPES; i++) {
1604 struct zonelist *zonelist;
1605
1606 zonelist = pgdat->node_zonelists + i;
1607
1608 j = 0;
1609 k = highest_zone(i);
1610 j = build_zonelists_node(pgdat, zonelist, j, k);
1611 /*
1612 * Now we build the zonelist so that it contains the zones
1613 * of all the other nodes.
1614 * We don't want to pressure a particular node, so when
1615 * building the zones for node N, we make sure that the
1616 * zones coming right after the local ones are those from
1617 * node N+1 (modulo N)
1618 */
1619 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1620 if (!node_online(node))
1621 continue;
1622 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1623 }
1624 for (node = 0; node < local_node; node++) {
1625 if (!node_online(node))
1626 continue;
1627 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1628 }
1629
1630 zonelist->zones[j] = NULL;
1631 }
1632}
1633
1634#endif /* CONFIG_NUMA */
1635
1636void __init build_all_zonelists(void)
1637{
1638 int i;
1639
1640 for_each_online_node(i)
1641 build_zonelists(NODE_DATA(i));
1642 printk("Built %i zonelists\n", num_online_nodes());
1643 cpuset_init_current_mems_allowed();
1644}
1645
1646/*
1647 * Helper functions to size the waitqueue hash table.
1648 * Essentially these want to choose hash table sizes sufficiently
1649 * large so that collisions trying to wait on pages are rare.
1650 * But in fact, the number of active page waitqueues on typical
1651 * systems is ridiculously low, less than 200. So this is even
1652 * conservative, even though it seems large.
1653 *
1654 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1655 * waitqueues, i.e. the size of the waitq table given the number of pages.
1656 */
1657#define PAGES_PER_WAITQUEUE 256
1658
1659static inline unsigned long wait_table_size(unsigned long pages)
1660{
1661 unsigned long size = 1;
1662
1663 pages /= PAGES_PER_WAITQUEUE;
1664
1665 while (size < pages)
1666 size <<= 1;
1667
1668 /*
1669 * Once we have dozens or even hundreds of threads sleeping
1670 * on IO we've got bigger problems than wait queue collision.
1671 * Limit the size of the wait table to a reasonable size.
1672 */
1673 size = min(size, 4096UL);
1674
1675 return max(size, 4UL);
1676}
1677
1678/*
1679 * This is an integer logarithm so that shifts can be used later
1680 * to extract the more random high bits from the multiplicative
1681 * hash function before the remainder is taken.
1682 */
1683static inline unsigned long wait_table_bits(unsigned long size)
1684{
1685 return ffz(~size);
1686}
1687
1688#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1689
1690static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1691 unsigned long *zones_size, unsigned long *zholes_size)
1692{
1693 unsigned long realtotalpages, totalpages = 0;
1694 int i;
1695
1696 for (i = 0; i < MAX_NR_ZONES; i++)
1697 totalpages += zones_size[i];
1698 pgdat->node_spanned_pages = totalpages;
1699
1700 realtotalpages = totalpages;
1701 if (zholes_size)
1702 for (i = 0; i < MAX_NR_ZONES; i++)
1703 realtotalpages -= zholes_size[i];
1704 pgdat->node_present_pages = realtotalpages;
1705 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1706}
1707
1708
1709/*
1710 * Initially all pages are reserved - free ones are freed
1711 * up by free_all_bootmem() once the early boot process is
1712 * done. Non-atomic initialization, single-pass.
1713 */
1714void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1715 unsigned long start_pfn)
1716{
1717 struct page *page;
1718 unsigned long end_pfn = start_pfn + size;
1719 unsigned long pfn;
1720
1721 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1722 if (!early_pfn_valid(pfn))
1723 continue;
1724 page = pfn_to_page(pfn);
1725 set_page_links(page, zone, nid, pfn);
1726 set_page_count(page, 1);
1727 reset_page_mapcount(page);
1728 SetPageReserved(page);
1729 INIT_LIST_HEAD(&page->lru);
1730#ifdef WANT_PAGE_VIRTUAL
1731 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1732 if (!is_highmem_idx(zone))
1733 set_page_address(page, __va(pfn << PAGE_SHIFT));
1734#endif
1735 }
1736}
1737
1738void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1739 unsigned long size)
1740{
1741 int order;
1742 for (order = 0; order < MAX_ORDER ; order++) {
1743 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1744 zone->free_area[order].nr_free = 0;
1745 }
1746}
1747
1748#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1749void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1750 unsigned long size)
1751{
1752 unsigned long snum = pfn_to_section_nr(pfn);
1753 unsigned long end = pfn_to_section_nr(pfn + size);
1754
1755 if (FLAGS_HAS_NODE)
1756 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1757 else
1758 for (; snum <= end; snum++)
1759 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1760}
1761
1762#ifndef __HAVE_ARCH_MEMMAP_INIT
1763#define memmap_init(size, nid, zone, start_pfn) \
1764 memmap_init_zone((size), (nid), (zone), (start_pfn))
1765#endif
1766
1767static int __devinit zone_batchsize(struct zone *zone)
1768{
1769 int batch;
1770
1771 /*
1772 * The per-cpu-pages pools are set to around 1000th of the
1773 * size of the zone. But no more than 1/2 of a meg.
1774 *
1775 * OK, so we don't know how big the cache is. So guess.
1776 */
1777 batch = zone->present_pages / 1024;
1778 if (batch * PAGE_SIZE > 512 * 1024)
1779 batch = (512 * 1024) / PAGE_SIZE;
1780 batch /= 4; /* We effectively *= 4 below */
1781 if (batch < 1)
1782 batch = 1;
1783
1784 /*
1785 * Clamp the batch to a 2^n - 1 value. Having a power
1786 * of 2 value was found to be more likely to have
1787 * suboptimal cache aliasing properties in some cases.
1788 *
1789 * For example if 2 tasks are alternately allocating
1790 * batches of pages, one task can end up with a lot
1791 * of pages of one half of the possible page colors
1792 * and the other with pages of the other colors.
1793 */
1794 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1795
1796 return batch;
1797}
1798
1799inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1800{
1801 struct per_cpu_pages *pcp;
1802
1803 memset(p, 0, sizeof(*p));
1804
1805 pcp = &p->pcp[0]; /* hot */
1806 pcp->count = 0;
1807 pcp->high = 6 * batch;
1808 pcp->batch = max(1UL, 1 * batch);
1809 INIT_LIST_HEAD(&pcp->list);
1810
1811 pcp = &p->pcp[1]; /* cold*/
1812 pcp->count = 0;
1813 pcp->high = 2 * batch;
1814 pcp->batch = max(1UL, batch/2);
1815 INIT_LIST_HEAD(&pcp->list);
1816}
1817
1818#ifdef CONFIG_NUMA
1819/*
1820 * Boot pageset table. One per cpu which is going to be used for all
1821 * zones and all nodes. The parameters will be set in such a way
1822 * that an item put on a list will immediately be handed over to
1823 * the buddy list. This is safe since pageset manipulation is done
1824 * with interrupts disabled.
1825 *
1826 * Some NUMA counter updates may also be caught by the boot pagesets.
1827 *
1828 * The boot_pagesets must be kept even after bootup is complete for
1829 * unused processors and/or zones. They do play a role for bootstrapping
1830 * hotplugged processors.
1831 *
1832 * zoneinfo_show() and maybe other functions do
1833 * not check if the processor is online before following the pageset pointer.
1834 * Other parts of the kernel may not check if the zone is available.
1835 */
1836static struct per_cpu_pageset
1837 boot_pageset[NR_CPUS];
1838
1839/*
1840 * Dynamically allocate memory for the
1841 * per cpu pageset array in struct zone.
1842 */
1843static int __devinit process_zones(int cpu)
1844{
1845 struct zone *zone, *dzone;
1846
1847 for_each_zone(zone) {
1848
1849 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1850 GFP_KERNEL, cpu_to_node(cpu));
1851 if (!zone->pageset[cpu])
1852 goto bad;
1853
1854 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1855 }
1856
1857 return 0;
1858bad:
1859 for_each_zone(dzone) {
1860 if (dzone == zone)
1861 break;
1862 kfree(dzone->pageset[cpu]);
1863 dzone->pageset[cpu] = NULL;
1864 }
1865 return -ENOMEM;
1866}
1867
1868static inline void free_zone_pagesets(int cpu)
1869{
1870#ifdef CONFIG_NUMA
1871 struct zone *zone;
1872
1873 for_each_zone(zone) {
1874 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1875
1876 zone_pcp(zone, cpu) = NULL;
1877 kfree(pset);
1878 }
1879#endif
1880}
1881
1882static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1883 unsigned long action,
1884 void *hcpu)
1885{
1886 int cpu = (long)hcpu;
1887 int ret = NOTIFY_OK;
1888
1889 switch (action) {
1890 case CPU_UP_PREPARE:
1891 if (process_zones(cpu))
1892 ret = NOTIFY_BAD;
1893 break;
1894 case CPU_UP_CANCELED:
1895 case CPU_DEAD:
1896 free_zone_pagesets(cpu);
1897 break;
1898 default:
1899 break;
1900 }
1901 return ret;
1902}
1903
1904static struct notifier_block pageset_notifier =
1905 { &pageset_cpuup_callback, NULL, 0 };
1906
1907void __init setup_per_cpu_pageset(void)
1908{
1909 int err;
1910
1911 /* Initialize per_cpu_pageset for cpu 0.
1912 * A cpuup callback will do this for every cpu
1913 * as it comes online
1914 */
1915 err = process_zones(smp_processor_id());
1916 BUG_ON(err);
1917 register_cpu_notifier(&pageset_notifier);
1918}
1919
1920#endif
1921
1922static __devinit
1923void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1924{
1925 int i;
1926 struct pglist_data *pgdat = zone->zone_pgdat;
1927
1928 /*
1929 * The per-page waitqueue mechanism uses hashed waitqueues
1930 * per zone.
1931 */
1932 zone->wait_table_size = wait_table_size(zone_size_pages);
1933 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1934 zone->wait_table = (wait_queue_head_t *)
1935 alloc_bootmem_node(pgdat, zone->wait_table_size
1936 * sizeof(wait_queue_head_t));
1937
1938 for(i = 0; i < zone->wait_table_size; ++i)
1939 init_waitqueue_head(zone->wait_table + i);
1940}
1941
1942static __devinit void zone_pcp_init(struct zone *zone)
1943{
1944 int cpu;
1945 unsigned long batch = zone_batchsize(zone);
1946
1947 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1948#ifdef CONFIG_NUMA
1949 /* Early boot. Slab allocator not functional yet */
1950 zone->pageset[cpu] = &boot_pageset[cpu];
1951 setup_pageset(&boot_pageset[cpu],0);
1952#else
1953 setup_pageset(zone_pcp(zone,cpu), batch);
1954#endif
1955 }
1956 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1957 zone->name, zone->present_pages, batch);
1958}
1959
1960static __devinit void init_currently_empty_zone(struct zone *zone,
1961 unsigned long zone_start_pfn, unsigned long size)
1962{
1963 struct pglist_data *pgdat = zone->zone_pgdat;
1964
1965 zone_wait_table_init(zone, size);
1966 pgdat->nr_zones = zone_idx(zone) + 1;
1967
1968 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1969 zone->zone_start_pfn = zone_start_pfn;
1970
1971 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1972
1973 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1974}
1975
1976/*
1977 * Set up the zone data structures:
1978 * - mark all pages reserved
1979 * - mark all memory queues empty
1980 * - clear the memory bitmaps
1981 */
1982static void __init free_area_init_core(struct pglist_data *pgdat,
1983 unsigned long *zones_size, unsigned long *zholes_size)
1984{
1985 unsigned long j;
1986 int nid = pgdat->node_id;
1987 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1988
1989 pgdat_resize_init(pgdat);
1990 pgdat->nr_zones = 0;
1991 init_waitqueue_head(&pgdat->kswapd_wait);
1992 pgdat->kswapd_max_order = 0;
1993
1994 for (j = 0; j < MAX_NR_ZONES; j++) {
1995 struct zone *zone = pgdat->node_zones + j;
1996 unsigned long size, realsize;
1997
1998 realsize = size = zones_size[j];
1999 if (zholes_size)
2000 realsize -= zholes_size[j];
2001
2002 if (j < ZONE_HIGHMEM)
2003 nr_kernel_pages += realsize;
2004 nr_all_pages += realsize;
2005
2006 zone->spanned_pages = size;
2007 zone->present_pages = realsize;
2008 zone->name = zone_names[j];
2009 spin_lock_init(&zone->lock);
2010 spin_lock_init(&zone->lru_lock);
2011 zone_seqlock_init(zone);
2012 zone->zone_pgdat = pgdat;
2013 zone->free_pages = 0;
2014
2015 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2016
2017 zone_pcp_init(zone);
2018 INIT_LIST_HEAD(&zone->active_list);
2019 INIT_LIST_HEAD(&zone->inactive_list);
2020 zone->nr_scan_active = 0;
2021 zone->nr_scan_inactive = 0;
2022 zone->nr_active = 0;
2023 zone->nr_inactive = 0;
2024 atomic_set(&zone->reclaim_in_progress, 0);
2025 if (!size)
2026 continue;
2027
2028 zonetable_add(zone, nid, j, zone_start_pfn, size);
2029 init_currently_empty_zone(zone, zone_start_pfn, size);
2030 zone_start_pfn += size;
2031 }
2032}
2033
2034static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2035{
2036 /* Skip empty nodes */
2037 if (!pgdat->node_spanned_pages)
2038 return;
2039
2040#ifdef CONFIG_FLAT_NODE_MEM_MAP
2041 /* ia64 gets its own node_mem_map, before this, without bootmem */
2042 if (!pgdat->node_mem_map) {
2043 unsigned long size;
2044 struct page *map;
2045
2046 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2047 map = alloc_remap(pgdat->node_id, size);
2048 if (!map)
2049 map = alloc_bootmem_node(pgdat, size);
2050 pgdat->node_mem_map = map;
2051 }
2052#ifdef CONFIG_FLATMEM
2053 /*
2054 * With no DISCONTIG, the global mem_map is just set as node 0's
2055 */
2056 if (pgdat == NODE_DATA(0))
2057 mem_map = NODE_DATA(0)->node_mem_map;
2058#endif
2059#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2060}
2061
2062void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2063 unsigned long *zones_size, unsigned long node_start_pfn,
2064 unsigned long *zholes_size)
2065{
2066 pgdat->node_id = nid;
2067 pgdat->node_start_pfn = node_start_pfn;
2068 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2069
2070 alloc_node_mem_map(pgdat);
2071
2072 free_area_init_core(pgdat, zones_size, zholes_size);
2073}
2074
2075#ifndef CONFIG_NEED_MULTIPLE_NODES
2076static bootmem_data_t contig_bootmem_data;
2077struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2078
2079EXPORT_SYMBOL(contig_page_data);
2080#endif
2081
2082void __init free_area_init(unsigned long *zones_size)
2083{
2084 free_area_init_node(0, NODE_DATA(0), zones_size,
2085 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2086}
2087
2088#ifdef CONFIG_PROC_FS
2089
2090#include <linux/seq_file.h>
2091
2092static void *frag_start(struct seq_file *m, loff_t *pos)
2093{
2094 pg_data_t *pgdat;
2095 loff_t node = *pos;
2096
2097 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2098 --node;
2099
2100 return pgdat;
2101}
2102
2103static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2104{
2105 pg_data_t *pgdat = (pg_data_t *)arg;
2106
2107 (*pos)++;
2108 return pgdat->pgdat_next;
2109}
2110
2111static void frag_stop(struct seq_file *m, void *arg)
2112{
2113}
2114
2115/*
2116 * This walks the free areas for each zone.
2117 */
2118static int frag_show(struct seq_file *m, void *arg)
2119{
2120 pg_data_t *pgdat = (pg_data_t *)arg;
2121 struct zone *zone;
2122 struct zone *node_zones = pgdat->node_zones;
2123 unsigned long flags;
2124 int order;
2125
2126 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2127 if (!populated_zone(zone))
2128 continue;
2129
2130 spin_lock_irqsave(&zone->lock, flags);
2131 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2132 for (order = 0; order < MAX_ORDER; ++order)
2133 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2134 spin_unlock_irqrestore(&zone->lock, flags);
2135 seq_putc(m, '\n');
2136 }
2137 return 0;
2138}
2139
2140struct seq_operations fragmentation_op = {
2141 .start = frag_start,
2142 .next = frag_next,
2143 .stop = frag_stop,
2144 .show = frag_show,
2145};
2146
2147/*
2148 * Output information about zones in @pgdat.
2149 */
2150static int zoneinfo_show(struct seq_file *m, void *arg)
2151{
2152 pg_data_t *pgdat = arg;
2153 struct zone *zone;
2154 struct zone *node_zones = pgdat->node_zones;
2155 unsigned long flags;
2156
2157 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2158 int i;
2159
2160 if (!populated_zone(zone))
2161 continue;
2162
2163 spin_lock_irqsave(&zone->lock, flags);
2164 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2165 seq_printf(m,
2166 "\n pages free %lu"
2167 "\n min %lu"
2168 "\n low %lu"
2169 "\n high %lu"
2170 "\n active %lu"
2171 "\n inactive %lu"
2172 "\n scanned %lu (a: %lu i: %lu)"
2173 "\n spanned %lu"
2174 "\n present %lu",
2175 zone->free_pages,
2176 zone->pages_min,
2177 zone->pages_low,
2178 zone->pages_high,
2179 zone->nr_active,
2180 zone->nr_inactive,
2181 zone->pages_scanned,
2182 zone->nr_scan_active, zone->nr_scan_inactive,
2183 zone->spanned_pages,
2184 zone->present_pages);
2185 seq_printf(m,
2186 "\n protection: (%lu",
2187 zone->lowmem_reserve[0]);
2188 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2189 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2190 seq_printf(m,
2191 ")"
2192 "\n pagesets");
2193 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2194 struct per_cpu_pageset *pageset;
2195 int j;
2196
2197 pageset = zone_pcp(zone, i);
2198 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2199 if (pageset->pcp[j].count)
2200 break;
2201 }
2202 if (j == ARRAY_SIZE(pageset->pcp))
2203 continue;
2204 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2205 seq_printf(m,
2206 "\n cpu: %i pcp: %i"
2207 "\n count: %i"
2208 "\n high: %i"
2209 "\n batch: %i",
2210 i, j,
2211 pageset->pcp[j].count,
2212 pageset->pcp[j].high,
2213 pageset->pcp[j].batch);
2214 }
2215#ifdef CONFIG_NUMA
2216 seq_printf(m,
2217 "\n numa_hit: %lu"
2218 "\n numa_miss: %lu"
2219 "\n numa_foreign: %lu"
2220 "\n interleave_hit: %lu"
2221 "\n local_node: %lu"
2222 "\n other_node: %lu",
2223 pageset->numa_hit,
2224 pageset->numa_miss,
2225 pageset->numa_foreign,
2226 pageset->interleave_hit,
2227 pageset->local_node,
2228 pageset->other_node);
2229#endif
2230 }
2231 seq_printf(m,
2232 "\n all_unreclaimable: %u"
2233 "\n prev_priority: %i"
2234 "\n temp_priority: %i"
2235 "\n start_pfn: %lu",
2236 zone->all_unreclaimable,
2237 zone->prev_priority,
2238 zone->temp_priority,
2239 zone->zone_start_pfn);
2240 spin_unlock_irqrestore(&zone->lock, flags);
2241 seq_putc(m, '\n');
2242 }
2243 return 0;
2244}
2245
2246struct seq_operations zoneinfo_op = {
2247 .start = frag_start, /* iterate over all zones. The same as in
2248 * fragmentation. */
2249 .next = frag_next,
2250 .stop = frag_stop,
2251 .show = zoneinfo_show,
2252};
2253
2254static char *vmstat_text[] = {
2255 "nr_dirty",
2256 "nr_writeback",
2257 "nr_unstable",
2258 "nr_page_table_pages",
2259 "nr_mapped",
2260 "nr_slab",
2261
2262 "pgpgin",
2263 "pgpgout",
2264 "pswpin",
2265 "pswpout",
2266
2267 "pgalloc_high",
2268 "pgalloc_normal",
2269 "pgalloc_dma32",
2270 "pgalloc_dma",
2271
2272 "pgfree",
2273 "pgactivate",
2274 "pgdeactivate",
2275
2276 "pgfault",
2277 "pgmajfault",
2278
2279 "pgrefill_high",
2280 "pgrefill_normal",
2281 "pgrefill_dma32",
2282 "pgrefill_dma",
2283
2284 "pgsteal_high",
2285 "pgsteal_normal",
2286 "pgsteal_dma32",
2287 "pgsteal_dma",
2288
2289 "pgscan_kswapd_high",
2290 "pgscan_kswapd_normal",
2291 "pgscan_kswapd_dma32",
2292 "pgscan_kswapd_dma",
2293
2294 "pgscan_direct_high",
2295 "pgscan_direct_normal",
2296 "pgscan_direct_dma32",
2297 "pgscan_direct_dma",
2298
2299 "pginodesteal",
2300 "slabs_scanned",
2301 "kswapd_steal",
2302 "kswapd_inodesteal",
2303 "pageoutrun",
2304 "allocstall",
2305
2306 "pgrotated",
2307 "nr_bounce",
2308};
2309
2310static void *vmstat_start(struct seq_file *m, loff_t *pos)
2311{
2312 struct page_state *ps;
2313
2314 if (*pos >= ARRAY_SIZE(vmstat_text))
2315 return NULL;
2316
2317 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2318 m->private = ps;
2319 if (!ps)
2320 return ERR_PTR(-ENOMEM);
2321 get_full_page_state(ps);
2322 ps->pgpgin /= 2; /* sectors -> kbytes */
2323 ps->pgpgout /= 2;
2324 return (unsigned long *)ps + *pos;
2325}
2326
2327static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2328{
2329 (*pos)++;
2330 if (*pos >= ARRAY_SIZE(vmstat_text))
2331 return NULL;
2332 return (unsigned long *)m->private + *pos;
2333}
2334
2335static int vmstat_show(struct seq_file *m, void *arg)
2336{
2337 unsigned long *l = arg;
2338 unsigned long off = l - (unsigned long *)m->private;
2339
2340 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2341 return 0;
2342}
2343
2344static void vmstat_stop(struct seq_file *m, void *arg)
2345{
2346 kfree(m->private);
2347 m->private = NULL;
2348}
2349
2350struct seq_operations vmstat_op = {
2351 .start = vmstat_start,
2352 .next = vmstat_next,
2353 .stop = vmstat_stop,
2354 .show = vmstat_show,
2355};
2356
2357#endif /* CONFIG_PROC_FS */
2358
2359#ifdef CONFIG_HOTPLUG_CPU
2360static int page_alloc_cpu_notify(struct notifier_block *self,
2361 unsigned long action, void *hcpu)
2362{
2363 int cpu = (unsigned long)hcpu;
2364 long *count;
2365 unsigned long *src, *dest;
2366
2367 if (action == CPU_DEAD) {
2368 int i;
2369
2370 /* Drain local pagecache count. */
2371 count = &per_cpu(nr_pagecache_local, cpu);
2372 atomic_add(*count, &nr_pagecache);
2373 *count = 0;
2374 local_irq_disable();
2375 __drain_pages(cpu);
2376
2377 /* Add dead cpu's page_states to our own. */
2378 dest = (unsigned long *)&__get_cpu_var(page_states);
2379 src = (unsigned long *)&per_cpu(page_states, cpu);
2380
2381 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2382 i++) {
2383 dest[i] += src[i];
2384 src[i] = 0;
2385 }
2386
2387 local_irq_enable();
2388 }
2389 return NOTIFY_OK;
2390}
2391#endif /* CONFIG_HOTPLUG_CPU */
2392
2393void __init page_alloc_init(void)
2394{
2395 hotcpu_notifier(page_alloc_cpu_notify, 0);
2396}
2397
2398/*
2399 * setup_per_zone_lowmem_reserve - called whenever
2400 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2401 * has a correct pages reserved value, so an adequate number of
2402 * pages are left in the zone after a successful __alloc_pages().
2403 */
2404static void setup_per_zone_lowmem_reserve(void)
2405{
2406 struct pglist_data *pgdat;
2407 int j, idx;
2408
2409 for_each_pgdat(pgdat) {
2410 for (j = 0; j < MAX_NR_ZONES; j++) {
2411 struct zone *zone = pgdat->node_zones + j;
2412 unsigned long present_pages = zone->present_pages;
2413
2414 zone->lowmem_reserve[j] = 0;
2415
2416 for (idx = j-1; idx >= 0; idx--) {
2417 struct zone *lower_zone;
2418
2419 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2420 sysctl_lowmem_reserve_ratio[idx] = 1;
2421
2422 lower_zone = pgdat->node_zones + idx;
2423 lower_zone->lowmem_reserve[j] = present_pages /
2424 sysctl_lowmem_reserve_ratio[idx];
2425 present_pages += lower_zone->present_pages;
2426 }
2427 }
2428 }
2429}
2430
2431/*
2432 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2433 * that the pages_{min,low,high} values for each zone are set correctly
2434 * with respect to min_free_kbytes.
2435 */
2436void setup_per_zone_pages_min(void)
2437{
2438 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2439 unsigned long lowmem_pages = 0;
2440 struct zone *zone;
2441 unsigned long flags;
2442
2443 /* Calculate total number of !ZONE_HIGHMEM pages */
2444 for_each_zone(zone) {
2445 if (!is_highmem(zone))
2446 lowmem_pages += zone->present_pages;
2447 }
2448
2449 for_each_zone(zone) {
2450 unsigned long tmp;
2451 spin_lock_irqsave(&zone->lru_lock, flags);
2452 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2453 if (is_highmem(zone)) {
2454 /*
2455 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2456 * need highmem pages, so cap pages_min to a small
2457 * value here.
2458 *
2459 * The (pages_high-pages_low) and (pages_low-pages_min)
2460 * deltas controls asynch page reclaim, and so should
2461 * not be capped for highmem.
2462 */
2463 int min_pages;
2464
2465 min_pages = zone->present_pages / 1024;
2466 if (min_pages < SWAP_CLUSTER_MAX)
2467 min_pages = SWAP_CLUSTER_MAX;
2468 if (min_pages > 128)
2469 min_pages = 128;
2470 zone->pages_min = min_pages;
2471 } else {
2472 /*
2473 * If it's a lowmem zone, reserve a number of pages
2474 * proportionate to the zone's size.
2475 */
2476 zone->pages_min = tmp;
2477 }
2478
2479 zone->pages_low = zone->pages_min + tmp / 4;
2480 zone->pages_high = zone->pages_min + tmp / 2;
2481 spin_unlock_irqrestore(&zone->lru_lock, flags);
2482 }
2483}
2484
2485/*
2486 * Initialise min_free_kbytes.
2487 *
2488 * For small machines we want it small (128k min). For large machines
2489 * we want it large (64MB max). But it is not linear, because network
2490 * bandwidth does not increase linearly with machine size. We use
2491 *
2492 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2493 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2494 *
2495 * which yields
2496 *
2497 * 16MB: 512k
2498 * 32MB: 724k
2499 * 64MB: 1024k
2500 * 128MB: 1448k
2501 * 256MB: 2048k
2502 * 512MB: 2896k
2503 * 1024MB: 4096k
2504 * 2048MB: 5792k
2505 * 4096MB: 8192k
2506 * 8192MB: 11584k
2507 * 16384MB: 16384k
2508 */
2509static int __init init_per_zone_pages_min(void)
2510{
2511 unsigned long lowmem_kbytes;
2512
2513 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2514
2515 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2516 if (min_free_kbytes < 128)
2517 min_free_kbytes = 128;
2518 if (min_free_kbytes > 65536)
2519 min_free_kbytes = 65536;
2520 setup_per_zone_pages_min();
2521 setup_per_zone_lowmem_reserve();
2522 return 0;
2523}
2524module_init(init_per_zone_pages_min)
2525
2526/*
2527 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2528 * that we can call two helper functions whenever min_free_kbytes
2529 * changes.
2530 */
2531int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2532 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2533{
2534 proc_dointvec(table, write, file, buffer, length, ppos);
2535 setup_per_zone_pages_min();
2536 return 0;
2537}
2538
2539/*
2540 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2541 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2542 * whenever sysctl_lowmem_reserve_ratio changes.
2543 *
2544 * The reserve ratio obviously has absolutely no relation with the
2545 * pages_min watermarks. The lowmem reserve ratio can only make sense
2546 * if in function of the boot time zone sizes.
2547 */
2548int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2549 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2550{
2551 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2552 setup_per_zone_lowmem_reserve();
2553 return 0;
2554}
2555
2556__initdata int hashdist = HASHDIST_DEFAULT;
2557
2558#ifdef CONFIG_NUMA
2559static int __init set_hashdist(char *str)
2560{
2561 if (!str)
2562 return 0;
2563 hashdist = simple_strtoul(str, &str, 0);
2564 return 1;
2565}
2566__setup("hashdist=", set_hashdist);
2567#endif
2568
2569/*
2570 * allocate a large system hash table from bootmem
2571 * - it is assumed that the hash table must contain an exact power-of-2
2572 * quantity of entries
2573 * - limit is the number of hash buckets, not the total allocation size
2574 */
2575void *__init alloc_large_system_hash(const char *tablename,
2576 unsigned long bucketsize,
2577 unsigned long numentries,
2578 int scale,
2579 int flags,
2580 unsigned int *_hash_shift,
2581 unsigned int *_hash_mask,
2582 unsigned long limit)
2583{
2584 unsigned long long max = limit;
2585 unsigned long log2qty, size;
2586 void *table = NULL;
2587
2588 /* allow the kernel cmdline to have a say */
2589 if (!numentries) {
2590 /* round applicable memory size up to nearest megabyte */
2591 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2592 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2593 numentries >>= 20 - PAGE_SHIFT;
2594 numentries <<= 20 - PAGE_SHIFT;
2595
2596 /* limit to 1 bucket per 2^scale bytes of low memory */
2597 if (scale > PAGE_SHIFT)
2598 numentries >>= (scale - PAGE_SHIFT);
2599 else
2600 numentries <<= (PAGE_SHIFT - scale);
2601 }
2602 /* rounded up to nearest power of 2 in size */
2603 numentries = 1UL << (long_log2(numentries) + 1);
2604
2605 /* limit allocation size to 1/16 total memory by default */
2606 if (max == 0) {
2607 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2608 do_div(max, bucketsize);
2609 }
2610
2611 if (numentries > max)
2612 numentries = max;
2613
2614 log2qty = long_log2(numentries);
2615
2616 do {
2617 size = bucketsize << log2qty;
2618 if (flags & HASH_EARLY)
2619 table = alloc_bootmem(size);
2620 else if (hashdist)
2621 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2622 else {
2623 unsigned long order;
2624 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2625 ;
2626 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2627 }
2628 } while (!table && size > PAGE_SIZE && --log2qty);
2629
2630 if (!table)
2631 panic("Failed to allocate %s hash table\n", tablename);
2632
2633 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2634 tablename,
2635 (1U << log2qty),
2636 long_log2(size) - PAGE_SHIFT,
2637 size);
2638
2639 if (_hash_shift)
2640 *_hash_shift = log2qty;
2641 if (_hash_mask)
2642 *_hash_mask = (1 << log2qty) - 1;
2643
2644 return table;
2645}