Merge branch 'kvm-updates/2.6.38' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-block.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/oom.h>
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
39#include <linux/memory_hotplug.h>
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
42#include <linux/mempolicy.h>
43#include <linux/stop_machine.h>
44#include <linux/sort.h>
45#include <linux/pfn.h>
46#include <linux/backing-dev.h>
47#include <linux/fault-inject.h>
48#include <linux/page-isolation.h>
49#include <linux/page_cgroup.h>
50#include <linux/debugobjects.h>
51#include <linux/kmemleak.h>
52#include <linux/memory.h>
53#include <linux/compaction.h>
54#include <trace/events/kmem.h>
55#include <linux/ftrace_event.h>
56
57#include <asm/tlbflush.h>
58#include <asm/div64.h>
59#include "internal.h"
60
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
77/*
78 * Array of node states.
79 */
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
93unsigned long totalram_pages __read_mostly;
94unsigned long totalreserve_pages __read_mostly;
95int percpu_pagelist_fraction;
96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
107
108static gfp_t saved_gfp_mask;
109
110void pm_restore_gfp_mask(void)
111{
112 WARN_ON(!mutex_is_locked(&pm_mutex));
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
117}
118
119void pm_restrict_gfp_mask(void)
120{
121 WARN_ON(!mutex_is_locked(&pm_mutex));
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
125}
126#endif /* CONFIG_PM_SLEEP */
127
128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129int pageblock_order __read_mostly;
130#endif
131
132static void __free_pages_ok(struct page *page, unsigned int order);
133
134/*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
144 */
145int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146#ifdef CONFIG_ZONE_DMA
147 256,
148#endif
149#ifdef CONFIG_ZONE_DMA32
150 256,
151#endif
152#ifdef CONFIG_HIGHMEM
153 32,
154#endif
155 32,
156};
157
158EXPORT_SYMBOL(totalram_pages);
159
160static char * const zone_names[MAX_NR_ZONES] = {
161#ifdef CONFIG_ZONE_DMA
162 "DMA",
163#endif
164#ifdef CONFIG_ZONE_DMA32
165 "DMA32",
166#endif
167 "Normal",
168#ifdef CONFIG_HIGHMEM
169 "HighMem",
170#endif
171 "Movable",
172};
173
174int min_free_kbytes = 1024;
175
176static unsigned long __meminitdata nr_kernel_pages;
177static unsigned long __meminitdata nr_all_pages;
178static unsigned long __meminitdata dma_reserve;
179
180#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __initdata required_kernelcore;
206 static unsigned long __initdata required_movablecore;
207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
212#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
214#if MAX_NUMNODES > 1
215int nr_node_ids __read_mostly = MAX_NUMNODES;
216int nr_online_nodes __read_mostly = 1;
217EXPORT_SYMBOL(nr_node_ids);
218EXPORT_SYMBOL(nr_online_nodes);
219#endif
220
221int page_group_by_mobility_disabled __read_mostly;
222
223static void set_pageblock_migratetype(struct page *page, int migratetype)
224{
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231}
232
233bool oom_killer_disabled __read_mostly;
234
235#ifdef CONFIG_DEBUG_VM
236static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237{
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
241
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
251}
252
253static int page_is_consistent(struct zone *zone, struct page *page)
254{
255 if (!pfn_valid_within(page_to_pfn(page)))
256 return 0;
257 if (zone != page_zone(page))
258 return 0;
259
260 return 1;
261}
262/*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265static int bad_range(struct zone *zone, struct page *page)
266{
267 if (page_outside_zone_boundaries(zone, page))
268 return 1;
269 if (!page_is_consistent(zone, page))
270 return 1;
271
272 return 0;
273}
274#else
275static inline int bad_range(struct zone *zone, struct page *page)
276{
277 return 0;
278}
279#endif
280
281static void bad_page(struct page *page)
282{
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
291 }
292
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
314 current->comm, page_to_pfn(page));
315 dump_page(page);
316
317 dump_stack();
318out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
321 add_taint(TAINT_BAD_PAGE);
322}
323
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
337 */
338
339static void free_compound_page(struct page *page)
340{
341 __free_pages_ok(page, compound_order(page));
342}
343
344void prep_compound_page(struct page *page, unsigned long order)
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358}
359
360/* update __split_huge_page_refcount if you change this function */
361static int destroy_compound_page(struct page *page, unsigned long order)
362{
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
366
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
371 }
372
373 __ClearPageHead(page);
374
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
377
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
381 }
382 __ClearPageTail(p);
383 }
384
385 return bad;
386}
387
388static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389{
390 int i;
391
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399}
400
401static inline void set_page_order(struct page *page, int order)
402{
403 set_page_private(page, order);
404 __SetPageBuddy(page);
405}
406
407static inline void rmv_page_order(struct page *page)
408{
409 __ClearPageBuddy(page);
410 set_page_private(page, 0);
411}
412
413/*
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
416 *
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 *
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
427 *
428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429 */
430static inline unsigned long
431__find_buddy_index(unsigned long page_idx, unsigned int order)
432{
433 return page_idx ^ (1 << order);
434}
435
436/*
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
439 * (a) the buddy is not in a hole &&
440 * (b) the buddy is in the buddy system &&
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
443 *
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
446 *
447 * For recording page's order, we use page_private(page).
448 */
449static inline int page_is_buddy(struct page *page, struct page *buddy,
450 int order)
451{
452 if (!pfn_valid_within(page_to_pfn(buddy)))
453 return 0;
454
455 if (page_zone_id(page) != page_zone_id(buddy))
456 return 0;
457
458 if (PageBuddy(buddy) && page_order(buddy) == order) {
459 VM_BUG_ON(page_count(buddy) != 0);
460 return 1;
461 }
462 return 0;
463}
464
465/*
466 * Freeing function for a buddy system allocator.
467 *
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479 * order is recorded in page_private(page) field.
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
485 *
486 * -- wli
487 */
488
489static inline void __free_one_page(struct page *page,
490 struct zone *zone, unsigned int order,
491 int migratetype)
492{
493 unsigned long page_idx;
494 unsigned long combined_idx;
495 unsigned long uninitialized_var(buddy_idx);
496 struct page *buddy;
497
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
501
502 VM_BUG_ON(migratetype == -1);
503
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
508
509 while (order < MAX_ORDER-1) {
510 buddy_idx = __find_buddy_index(page_idx, order);
511 buddy = page + (buddy_idx - page_idx);
512 if (!page_is_buddy(page, buddy, order))
513 break;
514
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy->lru);
517 zone->free_area[order].nr_free--;
518 rmv_page_order(buddy);
519 combined_idx = buddy_idx & page_idx;
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
523 }
524 set_page_order(page, order);
525
526 /*
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
533 */
534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
535 struct page *higher_page, *higher_buddy;
536 combined_idx = buddy_idx & page_idx;
537 higher_page = page + (combined_idx - page_idx);
538 buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 higher_buddy = page + (buddy_idx - combined_idx);
540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 list_add_tail(&page->lru,
542 &zone->free_area[order].free_list[migratetype]);
543 goto out;
544 }
545 }
546
547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548out:
549 zone->free_area[order].nr_free++;
550}
551
552/*
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
556 */
557static inline void free_page_mlock(struct page *page)
558{
559 __dec_zone_page_state(page, NR_MLOCK);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED);
561}
562
563static inline int free_pages_check(struct page *page)
564{
565 if (unlikely(page_mapcount(page) |
566 (page->mapping != NULL) |
567 (atomic_read(&page->_count) != 0) |
568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
569 bad_page(page);
570 return 1;
571 }
572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 return 0;
575}
576
577/*
578 * Frees a number of pages from the PCP lists
579 * Assumes all pages on list are in same zone, and of same order.
580 * count is the number of pages to free.
581 *
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
584 *
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
587 */
588static void free_pcppages_bulk(struct zone *zone, int count,
589 struct per_cpu_pages *pcp)
590{
591 int migratetype = 0;
592 int batch_free = 0;
593 int to_free = count;
594
595 spin_lock(&zone->lock);
596 zone->all_unreclaimable = 0;
597 zone->pages_scanned = 0;
598
599 while (to_free) {
600 struct page *page;
601 struct list_head *list;
602
603 /*
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
608 * lists
609 */
610 do {
611 batch_free++;
612 if (++migratetype == MIGRATE_PCPTYPES)
613 migratetype = 0;
614 list = &pcp->lists[migratetype];
615 } while (list_empty(list));
616
617 do {
618 page = list_entry(list->prev, struct page, lru);
619 /* must delete as __free_one_page list manipulates */
620 list_del(&page->lru);
621 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 __free_one_page(page, zone, 0, page_private(page));
623 trace_mm_page_pcpu_drain(page, 0, page_private(page));
624 } while (--to_free && --batch_free && !list_empty(list));
625 }
626 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
627 spin_unlock(&zone->lock);
628}
629
630static void free_one_page(struct zone *zone, struct page *page, int order,
631 int migratetype)
632{
633 spin_lock(&zone->lock);
634 zone->all_unreclaimable = 0;
635 zone->pages_scanned = 0;
636
637 __free_one_page(page, zone, order, migratetype);
638 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
639 spin_unlock(&zone->lock);
640}
641
642static bool free_pages_prepare(struct page *page, unsigned int order)
643{
644 int i;
645 int bad = 0;
646
647 trace_mm_page_free_direct(page, order);
648 kmemcheck_free_shadow(page, order);
649
650 if (PageAnon(page))
651 page->mapping = NULL;
652 for (i = 0; i < (1 << order); i++)
653 bad += free_pages_check(page + i);
654 if (bad)
655 return false;
656
657 if (!PageHighMem(page)) {
658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
661 }
662 arch_free_page(page, order);
663 kernel_map_pages(page, 1 << order, 0);
664
665 return true;
666}
667
668static void __free_pages_ok(struct page *page, unsigned int order)
669{
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
672
673 if (!free_pages_prepare(page, order))
674 return;
675
676 local_irq_save(flags);
677 if (unlikely(wasMlocked))
678 free_page_mlock(page);
679 __count_vm_events(PGFREE, 1 << order);
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
682 local_irq_restore(flags);
683}
684
685/*
686 * permit the bootmem allocator to evade page validation on high-order frees
687 */
688void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
689{
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
693 set_page_refcounted(page);
694 __free_page(page);
695 } else {
696 int loop;
697
698 prefetchw(page);
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
701
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
706 }
707
708 set_page_refcounted(page);
709 __free_pages(page, order);
710 }
711}
712
713
714/*
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
725 *
726 * -- wli
727 */
728static inline void expand(struct zone *zone, struct page *page,
729 int low, int high, struct free_area *area,
730 int migratetype)
731{
732 unsigned long size = 1 << high;
733
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
738 VM_BUG_ON(bad_range(zone, &page[size]));
739 list_add(&page[size].lru, &area->free_list[migratetype]);
740 area->nr_free++;
741 set_page_order(&page[size], high);
742 }
743}
744
745/*
746 * This page is about to be returned from the page allocator
747 */
748static inline int check_new_page(struct page *page)
749{
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
752 (atomic_read(&page->_count) != 0) |
753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 bad_page(page);
755 return 1;
756 }
757 return 0;
758}
759
760static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761{
762 int i;
763
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
768 }
769
770 set_page_private(page, 0);
771 set_page_refcounted(page);
772
773 arch_alloc_page(page, order);
774 kernel_map_pages(page, 1 << order, 1);
775
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
778
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
781
782 return 0;
783}
784
785/*
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
788 */
789static inline
790struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 int migratetype)
792{
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
796
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
802
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
810 }
811
812 return NULL;
813}
814
815
816/*
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
819 */
820static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
825};
826
827/*
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
831 */
832static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
835{
836 struct page *page;
837 unsigned long order;
838 int pages_moved = 0;
839
840#ifndef CONFIG_HOLES_IN_ZONE
841 /*
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
847 */
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849#endif
850
851 for (page = start_page; page <= end_page;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
858 }
859
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
863 }
864
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
870 pages_moved += 1 << order;
871 }
872
873 return pages_moved;
874}
875
876static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
878{
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
881
882 start_pfn = page_to_pfn(page);
883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 start_page = pfn_to_page(start_pfn);
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
887
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
893
894 return move_freepages(zone, start_page, end_page, migratetype);
895}
896
897static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
899{
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
901
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
905 }
906}
907
908/* Remove an element from the buddy allocator from the fallback list */
909static inline struct page *
910__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
911{
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
916
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
922
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
926
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
930
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
934
935 /*
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
940 */
941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
947
948 /* Claim the whole block if over half of it is free */
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
951 set_pageblock_migratetype(page,
952 start_migratetype);
953
954 migratetype = start_migratetype;
955 }
956
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
960
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
964 start_migratetype);
965
966 expand(zone, page, order, current_order, area, migratetype);
967
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
970
971 return page;
972 }
973 }
974
975 return NULL;
976}
977
978/*
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
981 */
982static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
984{
985 struct page *page;
986
987retry_reserve:
988 page = __rmqueue_smallest(zone, order, migratetype);
989
990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 page = __rmqueue_fallback(zone, order, migratetype);
992
993 /*
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
997 */
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1001 }
1002 }
1003
1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 return page;
1006}
1007
1008/*
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1012 */
1013static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 unsigned long count, struct list_head *list,
1015 int migratetype, int cold)
1016{
1017 int i;
1018
1019 spin_lock(&zone->lock);
1020 for (i = 0; i < count; ++i) {
1021 struct page *page = __rmqueue(zone, order, migratetype);
1022 if (unlikely(page == NULL))
1023 break;
1024
1025 /*
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1033 */
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
1038 set_page_private(page, migratetype);
1039 list = &page->lru;
1040 }
1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 spin_unlock(&zone->lock);
1043 return i;
1044}
1045
1046#ifdef CONFIG_NUMA
1047/*
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1051 *
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1054 */
1055void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1056{
1057 unsigned long flags;
1058 int to_drain;
1059
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
1065 free_pcppages_bulk(zone, to_drain, pcp);
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
1068}
1069#endif
1070
1071/*
1072 * Drain pages of the indicated processor.
1073 *
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1077 */
1078static void drain_pages(unsigned int cpu)
1079{
1080 unsigned long flags;
1081 struct zone *zone;
1082
1083 for_each_populated_zone(zone) {
1084 struct per_cpu_pageset *pset;
1085 struct per_cpu_pages *pcp;
1086
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
1089
1090 pcp = &pset->pcp;
1091 if (pcp->count) {
1092 free_pcppages_bulk(zone, pcp->count, pcp);
1093 pcp->count = 0;
1094 }
1095 local_irq_restore(flags);
1096 }
1097}
1098
1099/*
1100 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1101 */
1102void drain_local_pages(void *arg)
1103{
1104 drain_pages(smp_processor_id());
1105}
1106
1107/*
1108 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1109 */
1110void drain_all_pages(void)
1111{
1112 on_each_cpu(drain_local_pages, NULL, 1);
1113}
1114
1115#ifdef CONFIG_HIBERNATION
1116
1117void mark_free_pages(struct zone *zone)
1118{
1119 unsigned long pfn, max_zone_pfn;
1120 unsigned long flags;
1121 int order, t;
1122 struct list_head *curr;
1123
1124 if (!zone->spanned_pages)
1125 return;
1126
1127 spin_lock_irqsave(&zone->lock, flags);
1128
1129 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1130 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1131 if (pfn_valid(pfn)) {
1132 struct page *page = pfn_to_page(pfn);
1133
1134 if (!swsusp_page_is_forbidden(page))
1135 swsusp_unset_page_free(page);
1136 }
1137
1138 for_each_migratetype_order(order, t) {
1139 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1140 unsigned long i;
1141
1142 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1143 for (i = 0; i < (1UL << order); i++)
1144 swsusp_set_page_free(pfn_to_page(pfn + i));
1145 }
1146 }
1147 spin_unlock_irqrestore(&zone->lock, flags);
1148}
1149#endif /* CONFIG_PM */
1150
1151/*
1152 * Free a 0-order page
1153 * cold == 1 ? free a cold page : free a hot page
1154 */
1155void free_hot_cold_page(struct page *page, int cold)
1156{
1157 struct zone *zone = page_zone(page);
1158 struct per_cpu_pages *pcp;
1159 unsigned long flags;
1160 int migratetype;
1161 int wasMlocked = __TestClearPageMlocked(page);
1162
1163 if (!free_pages_prepare(page, 0))
1164 return;
1165
1166 migratetype = get_pageblock_migratetype(page);
1167 set_page_private(page, migratetype);
1168 local_irq_save(flags);
1169 if (unlikely(wasMlocked))
1170 free_page_mlock(page);
1171 __count_vm_event(PGFREE);
1172
1173 /*
1174 * We only track unmovable, reclaimable and movable on pcp lists.
1175 * Free ISOLATE pages back to the allocator because they are being
1176 * offlined but treat RESERVE as movable pages so we can get those
1177 * areas back if necessary. Otherwise, we may have to free
1178 * excessively into the page allocator
1179 */
1180 if (migratetype >= MIGRATE_PCPTYPES) {
1181 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1182 free_one_page(zone, page, 0, migratetype);
1183 goto out;
1184 }
1185 migratetype = MIGRATE_MOVABLE;
1186 }
1187
1188 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1189 if (cold)
1190 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1191 else
1192 list_add(&page->lru, &pcp->lists[migratetype]);
1193 pcp->count++;
1194 if (pcp->count >= pcp->high) {
1195 free_pcppages_bulk(zone, pcp->batch, pcp);
1196 pcp->count -= pcp->batch;
1197 }
1198
1199out:
1200 local_irq_restore(flags);
1201}
1202
1203/*
1204 * split_page takes a non-compound higher-order page, and splits it into
1205 * n (1<<order) sub-pages: page[0..n]
1206 * Each sub-page must be freed individually.
1207 *
1208 * Note: this is probably too low level an operation for use in drivers.
1209 * Please consult with lkml before using this in your driver.
1210 */
1211void split_page(struct page *page, unsigned int order)
1212{
1213 int i;
1214
1215 VM_BUG_ON(PageCompound(page));
1216 VM_BUG_ON(!page_count(page));
1217
1218#ifdef CONFIG_KMEMCHECK
1219 /*
1220 * Split shadow pages too, because free(page[0]) would
1221 * otherwise free the whole shadow.
1222 */
1223 if (kmemcheck_page_is_tracked(page))
1224 split_page(virt_to_page(page[0].shadow), order);
1225#endif
1226
1227 for (i = 1; i < (1 << order); i++)
1228 set_page_refcounted(page + i);
1229}
1230
1231/*
1232 * Similar to split_page except the page is already free. As this is only
1233 * being used for migration, the migratetype of the block also changes.
1234 * As this is called with interrupts disabled, the caller is responsible
1235 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1236 * are enabled.
1237 *
1238 * Note: this is probably too low level an operation for use in drivers.
1239 * Please consult with lkml before using this in your driver.
1240 */
1241int split_free_page(struct page *page)
1242{
1243 unsigned int order;
1244 unsigned long watermark;
1245 struct zone *zone;
1246
1247 BUG_ON(!PageBuddy(page));
1248
1249 zone = page_zone(page);
1250 order = page_order(page);
1251
1252 /* Obey watermarks as if the page was being allocated */
1253 watermark = low_wmark_pages(zone) + (1 << order);
1254 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1255 return 0;
1256
1257 /* Remove page from free list */
1258 list_del(&page->lru);
1259 zone->free_area[order].nr_free--;
1260 rmv_page_order(page);
1261 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1262
1263 /* Split into individual pages */
1264 set_page_refcounted(page);
1265 split_page(page, order);
1266
1267 if (order >= pageblock_order - 1) {
1268 struct page *endpage = page + (1 << order) - 1;
1269 for (; page < endpage; page += pageblock_nr_pages)
1270 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1271 }
1272
1273 return 1 << order;
1274}
1275
1276/*
1277 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1278 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1279 * or two.
1280 */
1281static inline
1282struct page *buffered_rmqueue(struct zone *preferred_zone,
1283 struct zone *zone, int order, gfp_t gfp_flags,
1284 int migratetype)
1285{
1286 unsigned long flags;
1287 struct page *page;
1288 int cold = !!(gfp_flags & __GFP_COLD);
1289
1290again:
1291 if (likely(order == 0)) {
1292 struct per_cpu_pages *pcp;
1293 struct list_head *list;
1294
1295 local_irq_save(flags);
1296 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1297 list = &pcp->lists[migratetype];
1298 if (list_empty(list)) {
1299 pcp->count += rmqueue_bulk(zone, 0,
1300 pcp->batch, list,
1301 migratetype, cold);
1302 if (unlikely(list_empty(list)))
1303 goto failed;
1304 }
1305
1306 if (cold)
1307 page = list_entry(list->prev, struct page, lru);
1308 else
1309 page = list_entry(list->next, struct page, lru);
1310
1311 list_del(&page->lru);
1312 pcp->count--;
1313 } else {
1314 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1315 /*
1316 * __GFP_NOFAIL is not to be used in new code.
1317 *
1318 * All __GFP_NOFAIL callers should be fixed so that they
1319 * properly detect and handle allocation failures.
1320 *
1321 * We most definitely don't want callers attempting to
1322 * allocate greater than order-1 page units with
1323 * __GFP_NOFAIL.
1324 */
1325 WARN_ON_ONCE(order > 1);
1326 }
1327 spin_lock_irqsave(&zone->lock, flags);
1328 page = __rmqueue(zone, order, migratetype);
1329 spin_unlock(&zone->lock);
1330 if (!page)
1331 goto failed;
1332 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1333 }
1334
1335 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1336 zone_statistics(preferred_zone, zone);
1337 local_irq_restore(flags);
1338
1339 VM_BUG_ON(bad_range(zone, page));
1340 if (prep_new_page(page, order, gfp_flags))
1341 goto again;
1342 return page;
1343
1344failed:
1345 local_irq_restore(flags);
1346 return NULL;
1347}
1348
1349/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1350#define ALLOC_WMARK_MIN WMARK_MIN
1351#define ALLOC_WMARK_LOW WMARK_LOW
1352#define ALLOC_WMARK_HIGH WMARK_HIGH
1353#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1354
1355/* Mask to get the watermark bits */
1356#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1357
1358#define ALLOC_HARDER 0x10 /* try to alloc harder */
1359#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1360#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1361
1362#ifdef CONFIG_FAIL_PAGE_ALLOC
1363
1364static struct fail_page_alloc_attr {
1365 struct fault_attr attr;
1366
1367 u32 ignore_gfp_highmem;
1368 u32 ignore_gfp_wait;
1369 u32 min_order;
1370
1371#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1372
1373 struct dentry *ignore_gfp_highmem_file;
1374 struct dentry *ignore_gfp_wait_file;
1375 struct dentry *min_order_file;
1376
1377#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1378
1379} fail_page_alloc = {
1380 .attr = FAULT_ATTR_INITIALIZER,
1381 .ignore_gfp_wait = 1,
1382 .ignore_gfp_highmem = 1,
1383 .min_order = 1,
1384};
1385
1386static int __init setup_fail_page_alloc(char *str)
1387{
1388 return setup_fault_attr(&fail_page_alloc.attr, str);
1389}
1390__setup("fail_page_alloc=", setup_fail_page_alloc);
1391
1392static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393{
1394 if (order < fail_page_alloc.min_order)
1395 return 0;
1396 if (gfp_mask & __GFP_NOFAIL)
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399 return 0;
1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401 return 0;
1402
1403 return should_fail(&fail_page_alloc.attr, 1 << order);
1404}
1405
1406#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407
1408static int __init fail_page_alloc_debugfs(void)
1409{
1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411 struct dentry *dir;
1412 int err;
1413
1414 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1415 "fail_page_alloc");
1416 if (err)
1417 return err;
1418 dir = fail_page_alloc.attr.dentries.dir;
1419
1420 fail_page_alloc.ignore_gfp_wait_file =
1421 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1422 &fail_page_alloc.ignore_gfp_wait);
1423
1424 fail_page_alloc.ignore_gfp_highmem_file =
1425 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1426 &fail_page_alloc.ignore_gfp_highmem);
1427 fail_page_alloc.min_order_file =
1428 debugfs_create_u32("min-order", mode, dir,
1429 &fail_page_alloc.min_order);
1430
1431 if (!fail_page_alloc.ignore_gfp_wait_file ||
1432 !fail_page_alloc.ignore_gfp_highmem_file ||
1433 !fail_page_alloc.min_order_file) {
1434 err = -ENOMEM;
1435 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1436 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1437 debugfs_remove(fail_page_alloc.min_order_file);
1438 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1439 }
1440
1441 return err;
1442}
1443
1444late_initcall(fail_page_alloc_debugfs);
1445
1446#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1447
1448#else /* CONFIG_FAIL_PAGE_ALLOC */
1449
1450static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1451{
1452 return 0;
1453}
1454
1455#endif /* CONFIG_FAIL_PAGE_ALLOC */
1456
1457/*
1458 * Return true if free pages are above 'mark'. This takes into account the order
1459 * of the allocation.
1460 */
1461static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1462 int classzone_idx, int alloc_flags, long free_pages)
1463{
1464 /* free_pages my go negative - that's OK */
1465 long min = mark;
1466 int o;
1467
1468 free_pages -= (1 << order) + 1;
1469 if (alloc_flags & ALLOC_HIGH)
1470 min -= min / 2;
1471 if (alloc_flags & ALLOC_HARDER)
1472 min -= min / 4;
1473
1474 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1475 return false;
1476 for (o = 0; o < order; o++) {
1477 /* At the next order, this order's pages become unavailable */
1478 free_pages -= z->free_area[o].nr_free << o;
1479
1480 /* Require fewer higher order pages to be free */
1481 min >>= 1;
1482
1483 if (free_pages <= min)
1484 return false;
1485 }
1486 return true;
1487}
1488
1489bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1490 int classzone_idx, int alloc_flags)
1491{
1492 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1493 zone_page_state(z, NR_FREE_PAGES));
1494}
1495
1496bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1497 int classzone_idx, int alloc_flags)
1498{
1499 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1500
1501 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1502 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1503
1504 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1505 free_pages);
1506}
1507
1508#ifdef CONFIG_NUMA
1509/*
1510 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1511 * skip over zones that are not allowed by the cpuset, or that have
1512 * been recently (in last second) found to be nearly full. See further
1513 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1514 * that have to skip over a lot of full or unallowed zones.
1515 *
1516 * If the zonelist cache is present in the passed in zonelist, then
1517 * returns a pointer to the allowed node mask (either the current
1518 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1519 *
1520 * If the zonelist cache is not available for this zonelist, does
1521 * nothing and returns NULL.
1522 *
1523 * If the fullzones BITMAP in the zonelist cache is stale (more than
1524 * a second since last zap'd) then we zap it out (clear its bits.)
1525 *
1526 * We hold off even calling zlc_setup, until after we've checked the
1527 * first zone in the zonelist, on the theory that most allocations will
1528 * be satisfied from that first zone, so best to examine that zone as
1529 * quickly as we can.
1530 */
1531static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1532{
1533 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1534 nodemask_t *allowednodes; /* zonelist_cache approximation */
1535
1536 zlc = zonelist->zlcache_ptr;
1537 if (!zlc)
1538 return NULL;
1539
1540 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1541 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1542 zlc->last_full_zap = jiffies;
1543 }
1544
1545 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1546 &cpuset_current_mems_allowed :
1547 &node_states[N_HIGH_MEMORY];
1548 return allowednodes;
1549}
1550
1551/*
1552 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1553 * if it is worth looking at further for free memory:
1554 * 1) Check that the zone isn't thought to be full (doesn't have its
1555 * bit set in the zonelist_cache fullzones BITMAP).
1556 * 2) Check that the zones node (obtained from the zonelist_cache
1557 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1558 * Return true (non-zero) if zone is worth looking at further, or
1559 * else return false (zero) if it is not.
1560 *
1561 * This check -ignores- the distinction between various watermarks,
1562 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1563 * found to be full for any variation of these watermarks, it will
1564 * be considered full for up to one second by all requests, unless
1565 * we are so low on memory on all allowed nodes that we are forced
1566 * into the second scan of the zonelist.
1567 *
1568 * In the second scan we ignore this zonelist cache and exactly
1569 * apply the watermarks to all zones, even it is slower to do so.
1570 * We are low on memory in the second scan, and should leave no stone
1571 * unturned looking for a free page.
1572 */
1573static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1574 nodemask_t *allowednodes)
1575{
1576 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1577 int i; /* index of *z in zonelist zones */
1578 int n; /* node that zone *z is on */
1579
1580 zlc = zonelist->zlcache_ptr;
1581 if (!zlc)
1582 return 1;
1583
1584 i = z - zonelist->_zonerefs;
1585 n = zlc->z_to_n[i];
1586
1587 /* This zone is worth trying if it is allowed but not full */
1588 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1589}
1590
1591/*
1592 * Given 'z' scanning a zonelist, set the corresponding bit in
1593 * zlc->fullzones, so that subsequent attempts to allocate a page
1594 * from that zone don't waste time re-examining it.
1595 */
1596static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1597{
1598 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1599 int i; /* index of *z in zonelist zones */
1600
1601 zlc = zonelist->zlcache_ptr;
1602 if (!zlc)
1603 return;
1604
1605 i = z - zonelist->_zonerefs;
1606
1607 set_bit(i, zlc->fullzones);
1608}
1609
1610#else /* CONFIG_NUMA */
1611
1612static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1613{
1614 return NULL;
1615}
1616
1617static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1618 nodemask_t *allowednodes)
1619{
1620 return 1;
1621}
1622
1623static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1624{
1625}
1626#endif /* CONFIG_NUMA */
1627
1628/*
1629 * get_page_from_freelist goes through the zonelist trying to allocate
1630 * a page.
1631 */
1632static struct page *
1633get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1634 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1635 struct zone *preferred_zone, int migratetype)
1636{
1637 struct zoneref *z;
1638 struct page *page = NULL;
1639 int classzone_idx;
1640 struct zone *zone;
1641 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1642 int zlc_active = 0; /* set if using zonelist_cache */
1643 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1644
1645 classzone_idx = zone_idx(preferred_zone);
1646zonelist_scan:
1647 /*
1648 * Scan zonelist, looking for a zone with enough free.
1649 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1650 */
1651 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1652 high_zoneidx, nodemask) {
1653 if (NUMA_BUILD && zlc_active &&
1654 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1655 continue;
1656 if ((alloc_flags & ALLOC_CPUSET) &&
1657 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1658 goto try_next_zone;
1659
1660 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1661 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1662 unsigned long mark;
1663 int ret;
1664
1665 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1666 if (zone_watermark_ok(zone, order, mark,
1667 classzone_idx, alloc_flags))
1668 goto try_this_zone;
1669
1670 if (zone_reclaim_mode == 0)
1671 goto this_zone_full;
1672
1673 ret = zone_reclaim(zone, gfp_mask, order);
1674 switch (ret) {
1675 case ZONE_RECLAIM_NOSCAN:
1676 /* did not scan */
1677 goto try_next_zone;
1678 case ZONE_RECLAIM_FULL:
1679 /* scanned but unreclaimable */
1680 goto this_zone_full;
1681 default:
1682 /* did we reclaim enough */
1683 if (!zone_watermark_ok(zone, order, mark,
1684 classzone_idx, alloc_flags))
1685 goto this_zone_full;
1686 }
1687 }
1688
1689try_this_zone:
1690 page = buffered_rmqueue(preferred_zone, zone, order,
1691 gfp_mask, migratetype);
1692 if (page)
1693 break;
1694this_zone_full:
1695 if (NUMA_BUILD)
1696 zlc_mark_zone_full(zonelist, z);
1697try_next_zone:
1698 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1699 /*
1700 * we do zlc_setup after the first zone is tried but only
1701 * if there are multiple nodes make it worthwhile
1702 */
1703 allowednodes = zlc_setup(zonelist, alloc_flags);
1704 zlc_active = 1;
1705 did_zlc_setup = 1;
1706 }
1707 }
1708
1709 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1710 /* Disable zlc cache for second zonelist scan */
1711 zlc_active = 0;
1712 goto zonelist_scan;
1713 }
1714 return page;
1715}
1716
1717static inline int
1718should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1719 unsigned long pages_reclaimed)
1720{
1721 /* Do not loop if specifically requested */
1722 if (gfp_mask & __GFP_NORETRY)
1723 return 0;
1724
1725 /*
1726 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1727 * means __GFP_NOFAIL, but that may not be true in other
1728 * implementations.
1729 */
1730 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1731 return 1;
1732
1733 /*
1734 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1735 * specified, then we retry until we no longer reclaim any pages
1736 * (above), or we've reclaimed an order of pages at least as
1737 * large as the allocation's order. In both cases, if the
1738 * allocation still fails, we stop retrying.
1739 */
1740 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1741 return 1;
1742
1743 /*
1744 * Don't let big-order allocations loop unless the caller
1745 * explicitly requests that.
1746 */
1747 if (gfp_mask & __GFP_NOFAIL)
1748 return 1;
1749
1750 return 0;
1751}
1752
1753static inline struct page *
1754__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1755 struct zonelist *zonelist, enum zone_type high_zoneidx,
1756 nodemask_t *nodemask, struct zone *preferred_zone,
1757 int migratetype)
1758{
1759 struct page *page;
1760
1761 /* Acquire the OOM killer lock for the zones in zonelist */
1762 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1763 schedule_timeout_uninterruptible(1);
1764 return NULL;
1765 }
1766
1767 /*
1768 * Go through the zonelist yet one more time, keep very high watermark
1769 * here, this is only to catch a parallel oom killing, we must fail if
1770 * we're still under heavy pressure.
1771 */
1772 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1773 order, zonelist, high_zoneidx,
1774 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1775 preferred_zone, migratetype);
1776 if (page)
1777 goto out;
1778
1779 if (!(gfp_mask & __GFP_NOFAIL)) {
1780 /* The OOM killer will not help higher order allocs */
1781 if (order > PAGE_ALLOC_COSTLY_ORDER)
1782 goto out;
1783 /* The OOM killer does not needlessly kill tasks for lowmem */
1784 if (high_zoneidx < ZONE_NORMAL)
1785 goto out;
1786 /*
1787 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1788 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1789 * The caller should handle page allocation failure by itself if
1790 * it specifies __GFP_THISNODE.
1791 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1792 */
1793 if (gfp_mask & __GFP_THISNODE)
1794 goto out;
1795 }
1796 /* Exhausted what can be done so it's blamo time */
1797 out_of_memory(zonelist, gfp_mask, order, nodemask);
1798
1799out:
1800 clear_zonelist_oom(zonelist, gfp_mask);
1801 return page;
1802}
1803
1804#ifdef CONFIG_COMPACTION
1805/* Try memory compaction for high-order allocations before reclaim */
1806static struct page *
1807__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1808 struct zonelist *zonelist, enum zone_type high_zoneidx,
1809 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1810 int migratetype, unsigned long *did_some_progress,
1811 bool sync_migration)
1812{
1813 struct page *page;
1814
1815 if (!order || compaction_deferred(preferred_zone))
1816 return NULL;
1817
1818 current->flags |= PF_MEMALLOC;
1819 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1820 nodemask, sync_migration);
1821 current->flags &= ~PF_MEMALLOC;
1822 if (*did_some_progress != COMPACT_SKIPPED) {
1823
1824 /* Page migration frees to the PCP lists but we want merging */
1825 drain_pages(get_cpu());
1826 put_cpu();
1827
1828 page = get_page_from_freelist(gfp_mask, nodemask,
1829 order, zonelist, high_zoneidx,
1830 alloc_flags, preferred_zone,
1831 migratetype);
1832 if (page) {
1833 preferred_zone->compact_considered = 0;
1834 preferred_zone->compact_defer_shift = 0;
1835 count_vm_event(COMPACTSUCCESS);
1836 return page;
1837 }
1838
1839 /*
1840 * It's bad if compaction run occurs and fails.
1841 * The most likely reason is that pages exist,
1842 * but not enough to satisfy watermarks.
1843 */
1844 count_vm_event(COMPACTFAIL);
1845 defer_compaction(preferred_zone);
1846
1847 cond_resched();
1848 }
1849
1850 return NULL;
1851}
1852#else
1853static inline struct page *
1854__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1855 struct zonelist *zonelist, enum zone_type high_zoneidx,
1856 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1857 int migratetype, unsigned long *did_some_progress,
1858 bool sync_migration)
1859{
1860 return NULL;
1861}
1862#endif /* CONFIG_COMPACTION */
1863
1864/* The really slow allocator path where we enter direct reclaim */
1865static inline struct page *
1866__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1867 struct zonelist *zonelist, enum zone_type high_zoneidx,
1868 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1869 int migratetype, unsigned long *did_some_progress)
1870{
1871 struct page *page = NULL;
1872 struct reclaim_state reclaim_state;
1873 bool drained = false;
1874
1875 cond_resched();
1876
1877 /* We now go into synchronous reclaim */
1878 cpuset_memory_pressure_bump();
1879 current->flags |= PF_MEMALLOC;
1880 lockdep_set_current_reclaim_state(gfp_mask);
1881 reclaim_state.reclaimed_slab = 0;
1882 current->reclaim_state = &reclaim_state;
1883
1884 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1885
1886 current->reclaim_state = NULL;
1887 lockdep_clear_current_reclaim_state();
1888 current->flags &= ~PF_MEMALLOC;
1889
1890 cond_resched();
1891
1892 if (unlikely(!(*did_some_progress)))
1893 return NULL;
1894
1895retry:
1896 page = get_page_from_freelist(gfp_mask, nodemask, order,
1897 zonelist, high_zoneidx,
1898 alloc_flags, preferred_zone,
1899 migratetype);
1900
1901 /*
1902 * If an allocation failed after direct reclaim, it could be because
1903 * pages are pinned on the per-cpu lists. Drain them and try again
1904 */
1905 if (!page && !drained) {
1906 drain_all_pages();
1907 drained = true;
1908 goto retry;
1909 }
1910
1911 return page;
1912}
1913
1914/*
1915 * This is called in the allocator slow-path if the allocation request is of
1916 * sufficient urgency to ignore watermarks and take other desperate measures
1917 */
1918static inline struct page *
1919__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1920 struct zonelist *zonelist, enum zone_type high_zoneidx,
1921 nodemask_t *nodemask, struct zone *preferred_zone,
1922 int migratetype)
1923{
1924 struct page *page;
1925
1926 do {
1927 page = get_page_from_freelist(gfp_mask, nodemask, order,
1928 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1929 preferred_zone, migratetype);
1930
1931 if (!page && gfp_mask & __GFP_NOFAIL)
1932 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1933 } while (!page && (gfp_mask & __GFP_NOFAIL));
1934
1935 return page;
1936}
1937
1938static inline
1939void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1940 enum zone_type high_zoneidx,
1941 enum zone_type classzone_idx)
1942{
1943 struct zoneref *z;
1944 struct zone *zone;
1945
1946 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1947 wakeup_kswapd(zone, order, classzone_idx);
1948}
1949
1950static inline int
1951gfp_to_alloc_flags(gfp_t gfp_mask)
1952{
1953 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1954 const gfp_t wait = gfp_mask & __GFP_WAIT;
1955
1956 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1957 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1958
1959 /*
1960 * The caller may dip into page reserves a bit more if the caller
1961 * cannot run direct reclaim, or if the caller has realtime scheduling
1962 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1963 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1964 */
1965 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1966
1967 if (!wait) {
1968 /*
1969 * Not worth trying to allocate harder for
1970 * __GFP_NOMEMALLOC even if it can't schedule.
1971 */
1972 if (!(gfp_mask & __GFP_NOMEMALLOC))
1973 alloc_flags |= ALLOC_HARDER;
1974 /*
1975 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1976 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1977 */
1978 alloc_flags &= ~ALLOC_CPUSET;
1979 } else if (unlikely(rt_task(current)) && !in_interrupt())
1980 alloc_flags |= ALLOC_HARDER;
1981
1982 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1983 if (!in_interrupt() &&
1984 ((current->flags & PF_MEMALLOC) ||
1985 unlikely(test_thread_flag(TIF_MEMDIE))))
1986 alloc_flags |= ALLOC_NO_WATERMARKS;
1987 }
1988
1989 return alloc_flags;
1990}
1991
1992static inline struct page *
1993__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1994 struct zonelist *zonelist, enum zone_type high_zoneidx,
1995 nodemask_t *nodemask, struct zone *preferred_zone,
1996 int migratetype)
1997{
1998 const gfp_t wait = gfp_mask & __GFP_WAIT;
1999 struct page *page = NULL;
2000 int alloc_flags;
2001 unsigned long pages_reclaimed = 0;
2002 unsigned long did_some_progress;
2003 bool sync_migration = false;
2004
2005 /*
2006 * In the slowpath, we sanity check order to avoid ever trying to
2007 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2008 * be using allocators in order of preference for an area that is
2009 * too large.
2010 */
2011 if (order >= MAX_ORDER) {
2012 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2013 return NULL;
2014 }
2015
2016 /*
2017 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2018 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2019 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2020 * using a larger set of nodes after it has established that the
2021 * allowed per node queues are empty and that nodes are
2022 * over allocated.
2023 */
2024 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2025 goto nopage;
2026
2027restart:
2028 if (!(gfp_mask & __GFP_NO_KSWAPD))
2029 wake_all_kswapd(order, zonelist, high_zoneidx,
2030 zone_idx(preferred_zone));
2031
2032 /*
2033 * OK, we're below the kswapd watermark and have kicked background
2034 * reclaim. Now things get more complex, so set up alloc_flags according
2035 * to how we want to proceed.
2036 */
2037 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2038
2039 /*
2040 * Find the true preferred zone if the allocation is unconstrained by
2041 * cpusets.
2042 */
2043 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2044 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2045 &preferred_zone);
2046
2047 /* This is the last chance, in general, before the goto nopage. */
2048 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2049 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2050 preferred_zone, migratetype);
2051 if (page)
2052 goto got_pg;
2053
2054rebalance:
2055 /* Allocate without watermarks if the context allows */
2056 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2057 page = __alloc_pages_high_priority(gfp_mask, order,
2058 zonelist, high_zoneidx, nodemask,
2059 preferred_zone, migratetype);
2060 if (page)
2061 goto got_pg;
2062 }
2063
2064 /* Atomic allocations - we can't balance anything */
2065 if (!wait)
2066 goto nopage;
2067
2068 /* Avoid recursion of direct reclaim */
2069 if (current->flags & PF_MEMALLOC)
2070 goto nopage;
2071
2072 /* Avoid allocations with no watermarks from looping endlessly */
2073 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2074 goto nopage;
2075
2076 /*
2077 * Try direct compaction. The first pass is asynchronous. Subsequent
2078 * attempts after direct reclaim are synchronous
2079 */
2080 page = __alloc_pages_direct_compact(gfp_mask, order,
2081 zonelist, high_zoneidx,
2082 nodemask,
2083 alloc_flags, preferred_zone,
2084 migratetype, &did_some_progress,
2085 sync_migration);
2086 if (page)
2087 goto got_pg;
2088 sync_migration = true;
2089
2090 /* Try direct reclaim and then allocating */
2091 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2092 zonelist, high_zoneidx,
2093 nodemask,
2094 alloc_flags, preferred_zone,
2095 migratetype, &did_some_progress);
2096 if (page)
2097 goto got_pg;
2098
2099 /*
2100 * If we failed to make any progress reclaiming, then we are
2101 * running out of options and have to consider going OOM
2102 */
2103 if (!did_some_progress) {
2104 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2105 if (oom_killer_disabled)
2106 goto nopage;
2107 page = __alloc_pages_may_oom(gfp_mask, order,
2108 zonelist, high_zoneidx,
2109 nodemask, preferred_zone,
2110 migratetype);
2111 if (page)
2112 goto got_pg;
2113
2114 if (!(gfp_mask & __GFP_NOFAIL)) {
2115 /*
2116 * The oom killer is not called for high-order
2117 * allocations that may fail, so if no progress
2118 * is being made, there are no other options and
2119 * retrying is unlikely to help.
2120 */
2121 if (order > PAGE_ALLOC_COSTLY_ORDER)
2122 goto nopage;
2123 /*
2124 * The oom killer is not called for lowmem
2125 * allocations to prevent needlessly killing
2126 * innocent tasks.
2127 */
2128 if (high_zoneidx < ZONE_NORMAL)
2129 goto nopage;
2130 }
2131
2132 goto restart;
2133 }
2134 }
2135
2136 /* Check if we should retry the allocation */
2137 pages_reclaimed += did_some_progress;
2138 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2139 /* Wait for some write requests to complete then retry */
2140 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2141 goto rebalance;
2142 } else {
2143 /*
2144 * High-order allocations do not necessarily loop after
2145 * direct reclaim and reclaim/compaction depends on compaction
2146 * being called after reclaim so call directly if necessary
2147 */
2148 page = __alloc_pages_direct_compact(gfp_mask, order,
2149 zonelist, high_zoneidx,
2150 nodemask,
2151 alloc_flags, preferred_zone,
2152 migratetype, &did_some_progress,
2153 sync_migration);
2154 if (page)
2155 goto got_pg;
2156 }
2157
2158nopage:
2159 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2160 printk(KERN_WARNING "%s: page allocation failure."
2161 " order:%d, mode:0x%x\n",
2162 current->comm, order, gfp_mask);
2163 dump_stack();
2164 show_mem();
2165 }
2166 return page;
2167got_pg:
2168 if (kmemcheck_enabled)
2169 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2170 return page;
2171
2172}
2173
2174/*
2175 * This is the 'heart' of the zoned buddy allocator.
2176 */
2177struct page *
2178__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2179 struct zonelist *zonelist, nodemask_t *nodemask)
2180{
2181 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2182 struct zone *preferred_zone;
2183 struct page *page;
2184 int migratetype = allocflags_to_migratetype(gfp_mask);
2185
2186 gfp_mask &= gfp_allowed_mask;
2187
2188 lockdep_trace_alloc(gfp_mask);
2189
2190 might_sleep_if(gfp_mask & __GFP_WAIT);
2191
2192 if (should_fail_alloc_page(gfp_mask, order))
2193 return NULL;
2194
2195 /*
2196 * Check the zones suitable for the gfp_mask contain at least one
2197 * valid zone. It's possible to have an empty zonelist as a result
2198 * of GFP_THISNODE and a memoryless node
2199 */
2200 if (unlikely(!zonelist->_zonerefs->zone))
2201 return NULL;
2202
2203 get_mems_allowed();
2204 /* The preferred zone is used for statistics later */
2205 first_zones_zonelist(zonelist, high_zoneidx,
2206 nodemask ? : &cpuset_current_mems_allowed,
2207 &preferred_zone);
2208 if (!preferred_zone) {
2209 put_mems_allowed();
2210 return NULL;
2211 }
2212
2213 /* First allocation attempt */
2214 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2215 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2216 preferred_zone, migratetype);
2217 if (unlikely(!page))
2218 page = __alloc_pages_slowpath(gfp_mask, order,
2219 zonelist, high_zoneidx, nodemask,
2220 preferred_zone, migratetype);
2221 put_mems_allowed();
2222
2223 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2224 return page;
2225}
2226EXPORT_SYMBOL(__alloc_pages_nodemask);
2227
2228/*
2229 * Common helper functions.
2230 */
2231unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2232{
2233 struct page *page;
2234
2235 /*
2236 * __get_free_pages() returns a 32-bit address, which cannot represent
2237 * a highmem page
2238 */
2239 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2240
2241 page = alloc_pages(gfp_mask, order);
2242 if (!page)
2243 return 0;
2244 return (unsigned long) page_address(page);
2245}
2246EXPORT_SYMBOL(__get_free_pages);
2247
2248unsigned long get_zeroed_page(gfp_t gfp_mask)
2249{
2250 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2251}
2252EXPORT_SYMBOL(get_zeroed_page);
2253
2254void __pagevec_free(struct pagevec *pvec)
2255{
2256 int i = pagevec_count(pvec);
2257
2258 while (--i >= 0) {
2259 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2260 free_hot_cold_page(pvec->pages[i], pvec->cold);
2261 }
2262}
2263
2264void __free_pages(struct page *page, unsigned int order)
2265{
2266 if (put_page_testzero(page)) {
2267 if (order == 0)
2268 free_hot_cold_page(page, 0);
2269 else
2270 __free_pages_ok(page, order);
2271 }
2272}
2273
2274EXPORT_SYMBOL(__free_pages);
2275
2276void free_pages(unsigned long addr, unsigned int order)
2277{
2278 if (addr != 0) {
2279 VM_BUG_ON(!virt_addr_valid((void *)addr));
2280 __free_pages(virt_to_page((void *)addr), order);
2281 }
2282}
2283
2284EXPORT_SYMBOL(free_pages);
2285
2286/**
2287 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2288 * @size: the number of bytes to allocate
2289 * @gfp_mask: GFP flags for the allocation
2290 *
2291 * This function is similar to alloc_pages(), except that it allocates the
2292 * minimum number of pages to satisfy the request. alloc_pages() can only
2293 * allocate memory in power-of-two pages.
2294 *
2295 * This function is also limited by MAX_ORDER.
2296 *
2297 * Memory allocated by this function must be released by free_pages_exact().
2298 */
2299void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2300{
2301 unsigned int order = get_order(size);
2302 unsigned long addr;
2303
2304 addr = __get_free_pages(gfp_mask, order);
2305 if (addr) {
2306 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2307 unsigned long used = addr + PAGE_ALIGN(size);
2308
2309 split_page(virt_to_page((void *)addr), order);
2310 while (used < alloc_end) {
2311 free_page(used);
2312 used += PAGE_SIZE;
2313 }
2314 }
2315
2316 return (void *)addr;
2317}
2318EXPORT_SYMBOL(alloc_pages_exact);
2319
2320/**
2321 * free_pages_exact - release memory allocated via alloc_pages_exact()
2322 * @virt: the value returned by alloc_pages_exact.
2323 * @size: size of allocation, same value as passed to alloc_pages_exact().
2324 *
2325 * Release the memory allocated by a previous call to alloc_pages_exact.
2326 */
2327void free_pages_exact(void *virt, size_t size)
2328{
2329 unsigned long addr = (unsigned long)virt;
2330 unsigned long end = addr + PAGE_ALIGN(size);
2331
2332 while (addr < end) {
2333 free_page(addr);
2334 addr += PAGE_SIZE;
2335 }
2336}
2337EXPORT_SYMBOL(free_pages_exact);
2338
2339static unsigned int nr_free_zone_pages(int offset)
2340{
2341 struct zoneref *z;
2342 struct zone *zone;
2343
2344 /* Just pick one node, since fallback list is circular */
2345 unsigned int sum = 0;
2346
2347 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2348
2349 for_each_zone_zonelist(zone, z, zonelist, offset) {
2350 unsigned long size = zone->present_pages;
2351 unsigned long high = high_wmark_pages(zone);
2352 if (size > high)
2353 sum += size - high;
2354 }
2355
2356 return sum;
2357}
2358
2359/*
2360 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2361 */
2362unsigned int nr_free_buffer_pages(void)
2363{
2364 return nr_free_zone_pages(gfp_zone(GFP_USER));
2365}
2366EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2367
2368/*
2369 * Amount of free RAM allocatable within all zones
2370 */
2371unsigned int nr_free_pagecache_pages(void)
2372{
2373 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2374}
2375
2376static inline void show_node(struct zone *zone)
2377{
2378 if (NUMA_BUILD)
2379 printk("Node %d ", zone_to_nid(zone));
2380}
2381
2382void si_meminfo(struct sysinfo *val)
2383{
2384 val->totalram = totalram_pages;
2385 val->sharedram = 0;
2386 val->freeram = global_page_state(NR_FREE_PAGES);
2387 val->bufferram = nr_blockdev_pages();
2388 val->totalhigh = totalhigh_pages;
2389 val->freehigh = nr_free_highpages();
2390 val->mem_unit = PAGE_SIZE;
2391}
2392
2393EXPORT_SYMBOL(si_meminfo);
2394
2395#ifdef CONFIG_NUMA
2396void si_meminfo_node(struct sysinfo *val, int nid)
2397{
2398 pg_data_t *pgdat = NODE_DATA(nid);
2399
2400 val->totalram = pgdat->node_present_pages;
2401 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2402#ifdef CONFIG_HIGHMEM
2403 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2404 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2405 NR_FREE_PAGES);
2406#else
2407 val->totalhigh = 0;
2408 val->freehigh = 0;
2409#endif
2410 val->mem_unit = PAGE_SIZE;
2411}
2412#endif
2413
2414#define K(x) ((x) << (PAGE_SHIFT-10))
2415
2416/*
2417 * Show free area list (used inside shift_scroll-lock stuff)
2418 * We also calculate the percentage fragmentation. We do this by counting the
2419 * memory on each free list with the exception of the first item on the list.
2420 */
2421void show_free_areas(void)
2422{
2423 int cpu;
2424 struct zone *zone;
2425
2426 for_each_populated_zone(zone) {
2427 show_node(zone);
2428 printk("%s per-cpu:\n", zone->name);
2429
2430 for_each_online_cpu(cpu) {
2431 struct per_cpu_pageset *pageset;
2432
2433 pageset = per_cpu_ptr(zone->pageset, cpu);
2434
2435 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2436 cpu, pageset->pcp.high,
2437 pageset->pcp.batch, pageset->pcp.count);
2438 }
2439 }
2440
2441 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2442 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2443 " unevictable:%lu"
2444 " dirty:%lu writeback:%lu unstable:%lu\n"
2445 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2446 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2447 global_page_state(NR_ACTIVE_ANON),
2448 global_page_state(NR_INACTIVE_ANON),
2449 global_page_state(NR_ISOLATED_ANON),
2450 global_page_state(NR_ACTIVE_FILE),
2451 global_page_state(NR_INACTIVE_FILE),
2452 global_page_state(NR_ISOLATED_FILE),
2453 global_page_state(NR_UNEVICTABLE),
2454 global_page_state(NR_FILE_DIRTY),
2455 global_page_state(NR_WRITEBACK),
2456 global_page_state(NR_UNSTABLE_NFS),
2457 global_page_state(NR_FREE_PAGES),
2458 global_page_state(NR_SLAB_RECLAIMABLE),
2459 global_page_state(NR_SLAB_UNRECLAIMABLE),
2460 global_page_state(NR_FILE_MAPPED),
2461 global_page_state(NR_SHMEM),
2462 global_page_state(NR_PAGETABLE),
2463 global_page_state(NR_BOUNCE));
2464
2465 for_each_populated_zone(zone) {
2466 int i;
2467
2468 show_node(zone);
2469 printk("%s"
2470 " free:%lukB"
2471 " min:%lukB"
2472 " low:%lukB"
2473 " high:%lukB"
2474 " active_anon:%lukB"
2475 " inactive_anon:%lukB"
2476 " active_file:%lukB"
2477 " inactive_file:%lukB"
2478 " unevictable:%lukB"
2479 " isolated(anon):%lukB"
2480 " isolated(file):%lukB"
2481 " present:%lukB"
2482 " mlocked:%lukB"
2483 " dirty:%lukB"
2484 " writeback:%lukB"
2485 " mapped:%lukB"
2486 " shmem:%lukB"
2487 " slab_reclaimable:%lukB"
2488 " slab_unreclaimable:%lukB"
2489 " kernel_stack:%lukB"
2490 " pagetables:%lukB"
2491 " unstable:%lukB"
2492 " bounce:%lukB"
2493 " writeback_tmp:%lukB"
2494 " pages_scanned:%lu"
2495 " all_unreclaimable? %s"
2496 "\n",
2497 zone->name,
2498 K(zone_page_state(zone, NR_FREE_PAGES)),
2499 K(min_wmark_pages(zone)),
2500 K(low_wmark_pages(zone)),
2501 K(high_wmark_pages(zone)),
2502 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2503 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2504 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2505 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2506 K(zone_page_state(zone, NR_UNEVICTABLE)),
2507 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2508 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2509 K(zone->present_pages),
2510 K(zone_page_state(zone, NR_MLOCK)),
2511 K(zone_page_state(zone, NR_FILE_DIRTY)),
2512 K(zone_page_state(zone, NR_WRITEBACK)),
2513 K(zone_page_state(zone, NR_FILE_MAPPED)),
2514 K(zone_page_state(zone, NR_SHMEM)),
2515 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2516 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2517 zone_page_state(zone, NR_KERNEL_STACK) *
2518 THREAD_SIZE / 1024,
2519 K(zone_page_state(zone, NR_PAGETABLE)),
2520 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2521 K(zone_page_state(zone, NR_BOUNCE)),
2522 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2523 zone->pages_scanned,
2524 (zone->all_unreclaimable ? "yes" : "no")
2525 );
2526 printk("lowmem_reserve[]:");
2527 for (i = 0; i < MAX_NR_ZONES; i++)
2528 printk(" %lu", zone->lowmem_reserve[i]);
2529 printk("\n");
2530 }
2531
2532 for_each_populated_zone(zone) {
2533 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2534
2535 show_node(zone);
2536 printk("%s: ", zone->name);
2537
2538 spin_lock_irqsave(&zone->lock, flags);
2539 for (order = 0; order < MAX_ORDER; order++) {
2540 nr[order] = zone->free_area[order].nr_free;
2541 total += nr[order] << order;
2542 }
2543 spin_unlock_irqrestore(&zone->lock, flags);
2544 for (order = 0; order < MAX_ORDER; order++)
2545 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2546 printk("= %lukB\n", K(total));
2547 }
2548
2549 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2550
2551 show_swap_cache_info();
2552}
2553
2554static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2555{
2556 zoneref->zone = zone;
2557 zoneref->zone_idx = zone_idx(zone);
2558}
2559
2560/*
2561 * Builds allocation fallback zone lists.
2562 *
2563 * Add all populated zones of a node to the zonelist.
2564 */
2565static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2566 int nr_zones, enum zone_type zone_type)
2567{
2568 struct zone *zone;
2569
2570 BUG_ON(zone_type >= MAX_NR_ZONES);
2571 zone_type++;
2572
2573 do {
2574 zone_type--;
2575 zone = pgdat->node_zones + zone_type;
2576 if (populated_zone(zone)) {
2577 zoneref_set_zone(zone,
2578 &zonelist->_zonerefs[nr_zones++]);
2579 check_highest_zone(zone_type);
2580 }
2581
2582 } while (zone_type);
2583 return nr_zones;
2584}
2585
2586
2587/*
2588 * zonelist_order:
2589 * 0 = automatic detection of better ordering.
2590 * 1 = order by ([node] distance, -zonetype)
2591 * 2 = order by (-zonetype, [node] distance)
2592 *
2593 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2594 * the same zonelist. So only NUMA can configure this param.
2595 */
2596#define ZONELIST_ORDER_DEFAULT 0
2597#define ZONELIST_ORDER_NODE 1
2598#define ZONELIST_ORDER_ZONE 2
2599
2600/* zonelist order in the kernel.
2601 * set_zonelist_order() will set this to NODE or ZONE.
2602 */
2603static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2604static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2605
2606
2607#ifdef CONFIG_NUMA
2608/* The value user specified ....changed by config */
2609static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2610/* string for sysctl */
2611#define NUMA_ZONELIST_ORDER_LEN 16
2612char numa_zonelist_order[16] = "default";
2613
2614/*
2615 * interface for configure zonelist ordering.
2616 * command line option "numa_zonelist_order"
2617 * = "[dD]efault - default, automatic configuration.
2618 * = "[nN]ode - order by node locality, then by zone within node
2619 * = "[zZ]one - order by zone, then by locality within zone
2620 */
2621
2622static int __parse_numa_zonelist_order(char *s)
2623{
2624 if (*s == 'd' || *s == 'D') {
2625 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2626 } else if (*s == 'n' || *s == 'N') {
2627 user_zonelist_order = ZONELIST_ORDER_NODE;
2628 } else if (*s == 'z' || *s == 'Z') {
2629 user_zonelist_order = ZONELIST_ORDER_ZONE;
2630 } else {
2631 printk(KERN_WARNING
2632 "Ignoring invalid numa_zonelist_order value: "
2633 "%s\n", s);
2634 return -EINVAL;
2635 }
2636 return 0;
2637}
2638
2639static __init int setup_numa_zonelist_order(char *s)
2640{
2641 int ret;
2642
2643 if (!s)
2644 return 0;
2645
2646 ret = __parse_numa_zonelist_order(s);
2647 if (ret == 0)
2648 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2649
2650 return ret;
2651}
2652early_param("numa_zonelist_order", setup_numa_zonelist_order);
2653
2654/*
2655 * sysctl handler for numa_zonelist_order
2656 */
2657int numa_zonelist_order_handler(ctl_table *table, int write,
2658 void __user *buffer, size_t *length,
2659 loff_t *ppos)
2660{
2661 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2662 int ret;
2663 static DEFINE_MUTEX(zl_order_mutex);
2664
2665 mutex_lock(&zl_order_mutex);
2666 if (write)
2667 strcpy(saved_string, (char*)table->data);
2668 ret = proc_dostring(table, write, buffer, length, ppos);
2669 if (ret)
2670 goto out;
2671 if (write) {
2672 int oldval = user_zonelist_order;
2673 if (__parse_numa_zonelist_order((char*)table->data)) {
2674 /*
2675 * bogus value. restore saved string
2676 */
2677 strncpy((char*)table->data, saved_string,
2678 NUMA_ZONELIST_ORDER_LEN);
2679 user_zonelist_order = oldval;
2680 } else if (oldval != user_zonelist_order) {
2681 mutex_lock(&zonelists_mutex);
2682 build_all_zonelists(NULL);
2683 mutex_unlock(&zonelists_mutex);
2684 }
2685 }
2686out:
2687 mutex_unlock(&zl_order_mutex);
2688 return ret;
2689}
2690
2691
2692#define MAX_NODE_LOAD (nr_online_nodes)
2693static int node_load[MAX_NUMNODES];
2694
2695/**
2696 * find_next_best_node - find the next node that should appear in a given node's fallback list
2697 * @node: node whose fallback list we're appending
2698 * @used_node_mask: nodemask_t of already used nodes
2699 *
2700 * We use a number of factors to determine which is the next node that should
2701 * appear on a given node's fallback list. The node should not have appeared
2702 * already in @node's fallback list, and it should be the next closest node
2703 * according to the distance array (which contains arbitrary distance values
2704 * from each node to each node in the system), and should also prefer nodes
2705 * with no CPUs, since presumably they'll have very little allocation pressure
2706 * on them otherwise.
2707 * It returns -1 if no node is found.
2708 */
2709static int find_next_best_node(int node, nodemask_t *used_node_mask)
2710{
2711 int n, val;
2712 int min_val = INT_MAX;
2713 int best_node = -1;
2714 const struct cpumask *tmp = cpumask_of_node(0);
2715
2716 /* Use the local node if we haven't already */
2717 if (!node_isset(node, *used_node_mask)) {
2718 node_set(node, *used_node_mask);
2719 return node;
2720 }
2721
2722 for_each_node_state(n, N_HIGH_MEMORY) {
2723
2724 /* Don't want a node to appear more than once */
2725 if (node_isset(n, *used_node_mask))
2726 continue;
2727
2728 /* Use the distance array to find the distance */
2729 val = node_distance(node, n);
2730
2731 /* Penalize nodes under us ("prefer the next node") */
2732 val += (n < node);
2733
2734 /* Give preference to headless and unused nodes */
2735 tmp = cpumask_of_node(n);
2736 if (!cpumask_empty(tmp))
2737 val += PENALTY_FOR_NODE_WITH_CPUS;
2738
2739 /* Slight preference for less loaded node */
2740 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2741 val += node_load[n];
2742
2743 if (val < min_val) {
2744 min_val = val;
2745 best_node = n;
2746 }
2747 }
2748
2749 if (best_node >= 0)
2750 node_set(best_node, *used_node_mask);
2751
2752 return best_node;
2753}
2754
2755
2756/*
2757 * Build zonelists ordered by node and zones within node.
2758 * This results in maximum locality--normal zone overflows into local
2759 * DMA zone, if any--but risks exhausting DMA zone.
2760 */
2761static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2762{
2763 int j;
2764 struct zonelist *zonelist;
2765
2766 zonelist = &pgdat->node_zonelists[0];
2767 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2768 ;
2769 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2770 MAX_NR_ZONES - 1);
2771 zonelist->_zonerefs[j].zone = NULL;
2772 zonelist->_zonerefs[j].zone_idx = 0;
2773}
2774
2775/*
2776 * Build gfp_thisnode zonelists
2777 */
2778static void build_thisnode_zonelists(pg_data_t *pgdat)
2779{
2780 int j;
2781 struct zonelist *zonelist;
2782
2783 zonelist = &pgdat->node_zonelists[1];
2784 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2785 zonelist->_zonerefs[j].zone = NULL;
2786 zonelist->_zonerefs[j].zone_idx = 0;
2787}
2788
2789/*
2790 * Build zonelists ordered by zone and nodes within zones.
2791 * This results in conserving DMA zone[s] until all Normal memory is
2792 * exhausted, but results in overflowing to remote node while memory
2793 * may still exist in local DMA zone.
2794 */
2795static int node_order[MAX_NUMNODES];
2796
2797static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2798{
2799 int pos, j, node;
2800 int zone_type; /* needs to be signed */
2801 struct zone *z;
2802 struct zonelist *zonelist;
2803
2804 zonelist = &pgdat->node_zonelists[0];
2805 pos = 0;
2806 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2807 for (j = 0; j < nr_nodes; j++) {
2808 node = node_order[j];
2809 z = &NODE_DATA(node)->node_zones[zone_type];
2810 if (populated_zone(z)) {
2811 zoneref_set_zone(z,
2812 &zonelist->_zonerefs[pos++]);
2813 check_highest_zone(zone_type);
2814 }
2815 }
2816 }
2817 zonelist->_zonerefs[pos].zone = NULL;
2818 zonelist->_zonerefs[pos].zone_idx = 0;
2819}
2820
2821static int default_zonelist_order(void)
2822{
2823 int nid, zone_type;
2824 unsigned long low_kmem_size,total_size;
2825 struct zone *z;
2826 int average_size;
2827 /*
2828 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2829 * If they are really small and used heavily, the system can fall
2830 * into OOM very easily.
2831 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2832 */
2833 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2834 low_kmem_size = 0;
2835 total_size = 0;
2836 for_each_online_node(nid) {
2837 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2838 z = &NODE_DATA(nid)->node_zones[zone_type];
2839 if (populated_zone(z)) {
2840 if (zone_type < ZONE_NORMAL)
2841 low_kmem_size += z->present_pages;
2842 total_size += z->present_pages;
2843 } else if (zone_type == ZONE_NORMAL) {
2844 /*
2845 * If any node has only lowmem, then node order
2846 * is preferred to allow kernel allocations
2847 * locally; otherwise, they can easily infringe
2848 * on other nodes when there is an abundance of
2849 * lowmem available to allocate from.
2850 */
2851 return ZONELIST_ORDER_NODE;
2852 }
2853 }
2854 }
2855 if (!low_kmem_size || /* there are no DMA area. */
2856 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2857 return ZONELIST_ORDER_NODE;
2858 /*
2859 * look into each node's config.
2860 * If there is a node whose DMA/DMA32 memory is very big area on
2861 * local memory, NODE_ORDER may be suitable.
2862 */
2863 average_size = total_size /
2864 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2865 for_each_online_node(nid) {
2866 low_kmem_size = 0;
2867 total_size = 0;
2868 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2869 z = &NODE_DATA(nid)->node_zones[zone_type];
2870 if (populated_zone(z)) {
2871 if (zone_type < ZONE_NORMAL)
2872 low_kmem_size += z->present_pages;
2873 total_size += z->present_pages;
2874 }
2875 }
2876 if (low_kmem_size &&
2877 total_size > average_size && /* ignore small node */
2878 low_kmem_size > total_size * 70/100)
2879 return ZONELIST_ORDER_NODE;
2880 }
2881 return ZONELIST_ORDER_ZONE;
2882}
2883
2884static void set_zonelist_order(void)
2885{
2886 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2887 current_zonelist_order = default_zonelist_order();
2888 else
2889 current_zonelist_order = user_zonelist_order;
2890}
2891
2892static void build_zonelists(pg_data_t *pgdat)
2893{
2894 int j, node, load;
2895 enum zone_type i;
2896 nodemask_t used_mask;
2897 int local_node, prev_node;
2898 struct zonelist *zonelist;
2899 int order = current_zonelist_order;
2900
2901 /* initialize zonelists */
2902 for (i = 0; i < MAX_ZONELISTS; i++) {
2903 zonelist = pgdat->node_zonelists + i;
2904 zonelist->_zonerefs[0].zone = NULL;
2905 zonelist->_zonerefs[0].zone_idx = 0;
2906 }
2907
2908 /* NUMA-aware ordering of nodes */
2909 local_node = pgdat->node_id;
2910 load = nr_online_nodes;
2911 prev_node = local_node;
2912 nodes_clear(used_mask);
2913
2914 memset(node_order, 0, sizeof(node_order));
2915 j = 0;
2916
2917 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2918 int distance = node_distance(local_node, node);
2919
2920 /*
2921 * If another node is sufficiently far away then it is better
2922 * to reclaim pages in a zone before going off node.
2923 */
2924 if (distance > RECLAIM_DISTANCE)
2925 zone_reclaim_mode = 1;
2926
2927 /*
2928 * We don't want to pressure a particular node.
2929 * So adding penalty to the first node in same
2930 * distance group to make it round-robin.
2931 */
2932 if (distance != node_distance(local_node, prev_node))
2933 node_load[node] = load;
2934
2935 prev_node = node;
2936 load--;
2937 if (order == ZONELIST_ORDER_NODE)
2938 build_zonelists_in_node_order(pgdat, node);
2939 else
2940 node_order[j++] = node; /* remember order */
2941 }
2942
2943 if (order == ZONELIST_ORDER_ZONE) {
2944 /* calculate node order -- i.e., DMA last! */
2945 build_zonelists_in_zone_order(pgdat, j);
2946 }
2947
2948 build_thisnode_zonelists(pgdat);
2949}
2950
2951/* Construct the zonelist performance cache - see further mmzone.h */
2952static void build_zonelist_cache(pg_data_t *pgdat)
2953{
2954 struct zonelist *zonelist;
2955 struct zonelist_cache *zlc;
2956 struct zoneref *z;
2957
2958 zonelist = &pgdat->node_zonelists[0];
2959 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2960 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2961 for (z = zonelist->_zonerefs; z->zone; z++)
2962 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2963}
2964
2965#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2966/*
2967 * Return node id of node used for "local" allocations.
2968 * I.e., first node id of first zone in arg node's generic zonelist.
2969 * Used for initializing percpu 'numa_mem', which is used primarily
2970 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2971 */
2972int local_memory_node(int node)
2973{
2974 struct zone *zone;
2975
2976 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2977 gfp_zone(GFP_KERNEL),
2978 NULL,
2979 &zone);
2980 return zone->node;
2981}
2982#endif
2983
2984#else /* CONFIG_NUMA */
2985
2986static void set_zonelist_order(void)
2987{
2988 current_zonelist_order = ZONELIST_ORDER_ZONE;
2989}
2990
2991static void build_zonelists(pg_data_t *pgdat)
2992{
2993 int node, local_node;
2994 enum zone_type j;
2995 struct zonelist *zonelist;
2996
2997 local_node = pgdat->node_id;
2998
2999 zonelist = &pgdat->node_zonelists[0];
3000 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3001
3002 /*
3003 * Now we build the zonelist so that it contains the zones
3004 * of all the other nodes.
3005 * We don't want to pressure a particular node, so when
3006 * building the zones for node N, we make sure that the
3007 * zones coming right after the local ones are those from
3008 * node N+1 (modulo N)
3009 */
3010 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3011 if (!node_online(node))
3012 continue;
3013 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3014 MAX_NR_ZONES - 1);
3015 }
3016 for (node = 0; node < local_node; node++) {
3017 if (!node_online(node))
3018 continue;
3019 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3020 MAX_NR_ZONES - 1);
3021 }
3022
3023 zonelist->_zonerefs[j].zone = NULL;
3024 zonelist->_zonerefs[j].zone_idx = 0;
3025}
3026
3027/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3028static void build_zonelist_cache(pg_data_t *pgdat)
3029{
3030 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3031}
3032
3033#endif /* CONFIG_NUMA */
3034
3035/*
3036 * Boot pageset table. One per cpu which is going to be used for all
3037 * zones and all nodes. The parameters will be set in such a way
3038 * that an item put on a list will immediately be handed over to
3039 * the buddy list. This is safe since pageset manipulation is done
3040 * with interrupts disabled.
3041 *
3042 * The boot_pagesets must be kept even after bootup is complete for
3043 * unused processors and/or zones. They do play a role for bootstrapping
3044 * hotplugged processors.
3045 *
3046 * zoneinfo_show() and maybe other functions do
3047 * not check if the processor is online before following the pageset pointer.
3048 * Other parts of the kernel may not check if the zone is available.
3049 */
3050static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3051static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3052static void setup_zone_pageset(struct zone *zone);
3053
3054/*
3055 * Global mutex to protect against size modification of zonelists
3056 * as well as to serialize pageset setup for the new populated zone.
3057 */
3058DEFINE_MUTEX(zonelists_mutex);
3059
3060/* return values int ....just for stop_machine() */
3061static __init_refok int __build_all_zonelists(void *data)
3062{
3063 int nid;
3064 int cpu;
3065
3066#ifdef CONFIG_NUMA
3067 memset(node_load, 0, sizeof(node_load));
3068#endif
3069 for_each_online_node(nid) {
3070 pg_data_t *pgdat = NODE_DATA(nid);
3071
3072 build_zonelists(pgdat);
3073 build_zonelist_cache(pgdat);
3074 }
3075
3076 /*
3077 * Initialize the boot_pagesets that are going to be used
3078 * for bootstrapping processors. The real pagesets for
3079 * each zone will be allocated later when the per cpu
3080 * allocator is available.
3081 *
3082 * boot_pagesets are used also for bootstrapping offline
3083 * cpus if the system is already booted because the pagesets
3084 * are needed to initialize allocators on a specific cpu too.
3085 * F.e. the percpu allocator needs the page allocator which
3086 * needs the percpu allocator in order to allocate its pagesets
3087 * (a chicken-egg dilemma).
3088 */
3089 for_each_possible_cpu(cpu) {
3090 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3091
3092#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3093 /*
3094 * We now know the "local memory node" for each node--
3095 * i.e., the node of the first zone in the generic zonelist.
3096 * Set up numa_mem percpu variable for on-line cpus. During
3097 * boot, only the boot cpu should be on-line; we'll init the
3098 * secondary cpus' numa_mem as they come on-line. During
3099 * node/memory hotplug, we'll fixup all on-line cpus.
3100 */
3101 if (cpu_online(cpu))
3102 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3103#endif
3104 }
3105
3106 return 0;
3107}
3108
3109/*
3110 * Called with zonelists_mutex held always
3111 * unless system_state == SYSTEM_BOOTING.
3112 */
3113void build_all_zonelists(void *data)
3114{
3115 set_zonelist_order();
3116
3117 if (system_state == SYSTEM_BOOTING) {
3118 __build_all_zonelists(NULL);
3119 mminit_verify_zonelist();
3120 cpuset_init_current_mems_allowed();
3121 } else {
3122 /* we have to stop all cpus to guarantee there is no user
3123 of zonelist */
3124#ifdef CONFIG_MEMORY_HOTPLUG
3125 if (data)
3126 setup_zone_pageset((struct zone *)data);
3127#endif
3128 stop_machine(__build_all_zonelists, NULL, NULL);
3129 /* cpuset refresh routine should be here */
3130 }
3131 vm_total_pages = nr_free_pagecache_pages();
3132 /*
3133 * Disable grouping by mobility if the number of pages in the
3134 * system is too low to allow the mechanism to work. It would be
3135 * more accurate, but expensive to check per-zone. This check is
3136 * made on memory-hotadd so a system can start with mobility
3137 * disabled and enable it later
3138 */
3139 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3140 page_group_by_mobility_disabled = 1;
3141 else
3142 page_group_by_mobility_disabled = 0;
3143
3144 printk("Built %i zonelists in %s order, mobility grouping %s. "
3145 "Total pages: %ld\n",
3146 nr_online_nodes,
3147 zonelist_order_name[current_zonelist_order],
3148 page_group_by_mobility_disabled ? "off" : "on",
3149 vm_total_pages);
3150#ifdef CONFIG_NUMA
3151 printk("Policy zone: %s\n", zone_names[policy_zone]);
3152#endif
3153}
3154
3155/*
3156 * Helper functions to size the waitqueue hash table.
3157 * Essentially these want to choose hash table sizes sufficiently
3158 * large so that collisions trying to wait on pages are rare.
3159 * But in fact, the number of active page waitqueues on typical
3160 * systems is ridiculously low, less than 200. So this is even
3161 * conservative, even though it seems large.
3162 *
3163 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3164 * waitqueues, i.e. the size of the waitq table given the number of pages.
3165 */
3166#define PAGES_PER_WAITQUEUE 256
3167
3168#ifndef CONFIG_MEMORY_HOTPLUG
3169static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3170{
3171 unsigned long size = 1;
3172
3173 pages /= PAGES_PER_WAITQUEUE;
3174
3175 while (size < pages)
3176 size <<= 1;
3177
3178 /*
3179 * Once we have dozens or even hundreds of threads sleeping
3180 * on IO we've got bigger problems than wait queue collision.
3181 * Limit the size of the wait table to a reasonable size.
3182 */
3183 size = min(size, 4096UL);
3184
3185 return max(size, 4UL);
3186}
3187#else
3188/*
3189 * A zone's size might be changed by hot-add, so it is not possible to determine
3190 * a suitable size for its wait_table. So we use the maximum size now.
3191 *
3192 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3193 *
3194 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3195 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3196 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3197 *
3198 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3199 * or more by the traditional way. (See above). It equals:
3200 *
3201 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3202 * ia64(16K page size) : = ( 8G + 4M)byte.
3203 * powerpc (64K page size) : = (32G +16M)byte.
3204 */
3205static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3206{
3207 return 4096UL;
3208}
3209#endif
3210
3211/*
3212 * This is an integer logarithm so that shifts can be used later
3213 * to extract the more random high bits from the multiplicative
3214 * hash function before the remainder is taken.
3215 */
3216static inline unsigned long wait_table_bits(unsigned long size)
3217{
3218 return ffz(~size);
3219}
3220
3221#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3222
3223/*
3224 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3225 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3226 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3227 * higher will lead to a bigger reserve which will get freed as contiguous
3228 * blocks as reclaim kicks in
3229 */
3230static void setup_zone_migrate_reserve(struct zone *zone)
3231{
3232 unsigned long start_pfn, pfn, end_pfn;
3233 struct page *page;
3234 unsigned long block_migratetype;
3235 int reserve;
3236
3237 /* Get the start pfn, end pfn and the number of blocks to reserve */
3238 start_pfn = zone->zone_start_pfn;
3239 end_pfn = start_pfn + zone->spanned_pages;
3240 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3241 pageblock_order;
3242
3243 /*
3244 * Reserve blocks are generally in place to help high-order atomic
3245 * allocations that are short-lived. A min_free_kbytes value that
3246 * would result in more than 2 reserve blocks for atomic allocations
3247 * is assumed to be in place to help anti-fragmentation for the
3248 * future allocation of hugepages at runtime.
3249 */
3250 reserve = min(2, reserve);
3251
3252 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3253 if (!pfn_valid(pfn))
3254 continue;
3255 page = pfn_to_page(pfn);
3256
3257 /* Watch out for overlapping nodes */
3258 if (page_to_nid(page) != zone_to_nid(zone))
3259 continue;
3260
3261 /* Blocks with reserved pages will never free, skip them. */
3262 if (PageReserved(page))
3263 continue;
3264
3265 block_migratetype = get_pageblock_migratetype(page);
3266
3267 /* If this block is reserved, account for it */
3268 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3269 reserve--;
3270 continue;
3271 }
3272
3273 /* Suitable for reserving if this block is movable */
3274 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3275 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3276 move_freepages_block(zone, page, MIGRATE_RESERVE);
3277 reserve--;
3278 continue;
3279 }
3280
3281 /*
3282 * If the reserve is met and this is a previous reserved block,
3283 * take it back
3284 */
3285 if (block_migratetype == MIGRATE_RESERVE) {
3286 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3287 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3288 }
3289 }
3290}
3291
3292/*
3293 * Initially all pages are reserved - free ones are freed
3294 * up by free_all_bootmem() once the early boot process is
3295 * done. Non-atomic initialization, single-pass.
3296 */
3297void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3298 unsigned long start_pfn, enum memmap_context context)
3299{
3300 struct page *page;
3301 unsigned long end_pfn = start_pfn + size;
3302 unsigned long pfn;
3303 struct zone *z;
3304
3305 if (highest_memmap_pfn < end_pfn - 1)
3306 highest_memmap_pfn = end_pfn - 1;
3307
3308 z = &NODE_DATA(nid)->node_zones[zone];
3309 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3310 /*
3311 * There can be holes in boot-time mem_map[]s
3312 * handed to this function. They do not
3313 * exist on hotplugged memory.
3314 */
3315 if (context == MEMMAP_EARLY) {
3316 if (!early_pfn_valid(pfn))
3317 continue;
3318 if (!early_pfn_in_nid(pfn, nid))
3319 continue;
3320 }
3321 page = pfn_to_page(pfn);
3322 set_page_links(page, zone, nid, pfn);
3323 mminit_verify_page_links(page, zone, nid, pfn);
3324 init_page_count(page);
3325 reset_page_mapcount(page);
3326 SetPageReserved(page);
3327 /*
3328 * Mark the block movable so that blocks are reserved for
3329 * movable at startup. This will force kernel allocations
3330 * to reserve their blocks rather than leaking throughout
3331 * the address space during boot when many long-lived
3332 * kernel allocations are made. Later some blocks near
3333 * the start are marked MIGRATE_RESERVE by
3334 * setup_zone_migrate_reserve()
3335 *
3336 * bitmap is created for zone's valid pfn range. but memmap
3337 * can be created for invalid pages (for alignment)
3338 * check here not to call set_pageblock_migratetype() against
3339 * pfn out of zone.
3340 */
3341 if ((z->zone_start_pfn <= pfn)
3342 && (pfn < z->zone_start_pfn + z->spanned_pages)
3343 && !(pfn & (pageblock_nr_pages - 1)))
3344 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3345
3346 INIT_LIST_HEAD(&page->lru);
3347#ifdef WANT_PAGE_VIRTUAL
3348 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3349 if (!is_highmem_idx(zone))
3350 set_page_address(page, __va(pfn << PAGE_SHIFT));
3351#endif
3352 }
3353}
3354
3355static void __meminit zone_init_free_lists(struct zone *zone)
3356{
3357 int order, t;
3358 for_each_migratetype_order(order, t) {
3359 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3360 zone->free_area[order].nr_free = 0;
3361 }
3362}
3363
3364#ifndef __HAVE_ARCH_MEMMAP_INIT
3365#define memmap_init(size, nid, zone, start_pfn) \
3366 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3367#endif
3368
3369static int zone_batchsize(struct zone *zone)
3370{
3371#ifdef CONFIG_MMU
3372 int batch;
3373
3374 /*
3375 * The per-cpu-pages pools are set to around 1000th of the
3376 * size of the zone. But no more than 1/2 of a meg.
3377 *
3378 * OK, so we don't know how big the cache is. So guess.
3379 */
3380 batch = zone->present_pages / 1024;
3381 if (batch * PAGE_SIZE > 512 * 1024)
3382 batch = (512 * 1024) / PAGE_SIZE;
3383 batch /= 4; /* We effectively *= 4 below */
3384 if (batch < 1)
3385 batch = 1;
3386
3387 /*
3388 * Clamp the batch to a 2^n - 1 value. Having a power
3389 * of 2 value was found to be more likely to have
3390 * suboptimal cache aliasing properties in some cases.
3391 *
3392 * For example if 2 tasks are alternately allocating
3393 * batches of pages, one task can end up with a lot
3394 * of pages of one half of the possible page colors
3395 * and the other with pages of the other colors.
3396 */
3397 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3398
3399 return batch;
3400
3401#else
3402 /* The deferral and batching of frees should be suppressed under NOMMU
3403 * conditions.
3404 *
3405 * The problem is that NOMMU needs to be able to allocate large chunks
3406 * of contiguous memory as there's no hardware page translation to
3407 * assemble apparent contiguous memory from discontiguous pages.
3408 *
3409 * Queueing large contiguous runs of pages for batching, however,
3410 * causes the pages to actually be freed in smaller chunks. As there
3411 * can be a significant delay between the individual batches being
3412 * recycled, this leads to the once large chunks of space being
3413 * fragmented and becoming unavailable for high-order allocations.
3414 */
3415 return 0;
3416#endif
3417}
3418
3419static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3420{
3421 struct per_cpu_pages *pcp;
3422 int migratetype;
3423
3424 memset(p, 0, sizeof(*p));
3425
3426 pcp = &p->pcp;
3427 pcp->count = 0;
3428 pcp->high = 6 * batch;
3429 pcp->batch = max(1UL, 1 * batch);
3430 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3431 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3432}
3433
3434/*
3435 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3436 * to the value high for the pageset p.
3437 */
3438
3439static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3440 unsigned long high)
3441{
3442 struct per_cpu_pages *pcp;
3443
3444 pcp = &p->pcp;
3445 pcp->high = high;
3446 pcp->batch = max(1UL, high/4);
3447 if ((high/4) > (PAGE_SHIFT * 8))
3448 pcp->batch = PAGE_SHIFT * 8;
3449}
3450
3451static __meminit void setup_zone_pageset(struct zone *zone)
3452{
3453 int cpu;
3454
3455 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3456
3457 for_each_possible_cpu(cpu) {
3458 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3459
3460 setup_pageset(pcp, zone_batchsize(zone));
3461
3462 if (percpu_pagelist_fraction)
3463 setup_pagelist_highmark(pcp,
3464 (zone->present_pages /
3465 percpu_pagelist_fraction));
3466 }
3467}
3468
3469/*
3470 * Allocate per cpu pagesets and initialize them.
3471 * Before this call only boot pagesets were available.
3472 */
3473void __init setup_per_cpu_pageset(void)
3474{
3475 struct zone *zone;
3476
3477 for_each_populated_zone(zone)
3478 setup_zone_pageset(zone);
3479}
3480
3481static noinline __init_refok
3482int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3483{
3484 int i;
3485 struct pglist_data *pgdat = zone->zone_pgdat;
3486 size_t alloc_size;
3487
3488 /*
3489 * The per-page waitqueue mechanism uses hashed waitqueues
3490 * per zone.
3491 */
3492 zone->wait_table_hash_nr_entries =
3493 wait_table_hash_nr_entries(zone_size_pages);
3494 zone->wait_table_bits =
3495 wait_table_bits(zone->wait_table_hash_nr_entries);
3496 alloc_size = zone->wait_table_hash_nr_entries
3497 * sizeof(wait_queue_head_t);
3498
3499 if (!slab_is_available()) {
3500 zone->wait_table = (wait_queue_head_t *)
3501 alloc_bootmem_node(pgdat, alloc_size);
3502 } else {
3503 /*
3504 * This case means that a zone whose size was 0 gets new memory
3505 * via memory hot-add.
3506 * But it may be the case that a new node was hot-added. In
3507 * this case vmalloc() will not be able to use this new node's
3508 * memory - this wait_table must be initialized to use this new
3509 * node itself as well.
3510 * To use this new node's memory, further consideration will be
3511 * necessary.
3512 */
3513 zone->wait_table = vmalloc(alloc_size);
3514 }
3515 if (!zone->wait_table)
3516 return -ENOMEM;
3517
3518 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3519 init_waitqueue_head(zone->wait_table + i);
3520
3521 return 0;
3522}
3523
3524static int __zone_pcp_update(void *data)
3525{
3526 struct zone *zone = data;
3527 int cpu;
3528 unsigned long batch = zone_batchsize(zone), flags;
3529
3530 for_each_possible_cpu(cpu) {
3531 struct per_cpu_pageset *pset;
3532 struct per_cpu_pages *pcp;
3533
3534 pset = per_cpu_ptr(zone->pageset, cpu);
3535 pcp = &pset->pcp;
3536
3537 local_irq_save(flags);
3538 free_pcppages_bulk(zone, pcp->count, pcp);
3539 setup_pageset(pset, batch);
3540 local_irq_restore(flags);
3541 }
3542 return 0;
3543}
3544
3545void zone_pcp_update(struct zone *zone)
3546{
3547 stop_machine(__zone_pcp_update, zone, NULL);
3548}
3549
3550static __meminit void zone_pcp_init(struct zone *zone)
3551{
3552 /*
3553 * per cpu subsystem is not up at this point. The following code
3554 * relies on the ability of the linker to provide the
3555 * offset of a (static) per cpu variable into the per cpu area.
3556 */
3557 zone->pageset = &boot_pageset;
3558
3559 if (zone->present_pages)
3560 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3561 zone->name, zone->present_pages,
3562 zone_batchsize(zone));
3563}
3564
3565__meminit int init_currently_empty_zone(struct zone *zone,
3566 unsigned long zone_start_pfn,
3567 unsigned long size,
3568 enum memmap_context context)
3569{
3570 struct pglist_data *pgdat = zone->zone_pgdat;
3571 int ret;
3572 ret = zone_wait_table_init(zone, size);
3573 if (ret)
3574 return ret;
3575 pgdat->nr_zones = zone_idx(zone) + 1;
3576
3577 zone->zone_start_pfn = zone_start_pfn;
3578
3579 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3580 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3581 pgdat->node_id,
3582 (unsigned long)zone_idx(zone),
3583 zone_start_pfn, (zone_start_pfn + size));
3584
3585 zone_init_free_lists(zone);
3586
3587 return 0;
3588}
3589
3590#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3591/*
3592 * Basic iterator support. Return the first range of PFNs for a node
3593 * Note: nid == MAX_NUMNODES returns first region regardless of node
3594 */
3595static int __meminit first_active_region_index_in_nid(int nid)
3596{
3597 int i;
3598
3599 for (i = 0; i < nr_nodemap_entries; i++)
3600 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3601 return i;
3602
3603 return -1;
3604}
3605
3606/*
3607 * Basic iterator support. Return the next active range of PFNs for a node
3608 * Note: nid == MAX_NUMNODES returns next region regardless of node
3609 */
3610static int __meminit next_active_region_index_in_nid(int index, int nid)
3611{
3612 for (index = index + 1; index < nr_nodemap_entries; index++)
3613 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3614 return index;
3615
3616 return -1;
3617}
3618
3619#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3620/*
3621 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3622 * Architectures may implement their own version but if add_active_range()
3623 * was used and there are no special requirements, this is a convenient
3624 * alternative
3625 */
3626int __meminit __early_pfn_to_nid(unsigned long pfn)
3627{
3628 int i;
3629
3630 for (i = 0; i < nr_nodemap_entries; i++) {
3631 unsigned long start_pfn = early_node_map[i].start_pfn;
3632 unsigned long end_pfn = early_node_map[i].end_pfn;
3633
3634 if (start_pfn <= pfn && pfn < end_pfn)
3635 return early_node_map[i].nid;
3636 }
3637 /* This is a memory hole */
3638 return -1;
3639}
3640#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3641
3642int __meminit early_pfn_to_nid(unsigned long pfn)
3643{
3644 int nid;
3645
3646 nid = __early_pfn_to_nid(pfn);
3647 if (nid >= 0)
3648 return nid;
3649 /* just returns 0 */
3650 return 0;
3651}
3652
3653#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3654bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3655{
3656 int nid;
3657
3658 nid = __early_pfn_to_nid(pfn);
3659 if (nid >= 0 && nid != node)
3660 return false;
3661 return true;
3662}
3663#endif
3664
3665/* Basic iterator support to walk early_node_map[] */
3666#define for_each_active_range_index_in_nid(i, nid) \
3667 for (i = first_active_region_index_in_nid(nid); i != -1; \
3668 i = next_active_region_index_in_nid(i, nid))
3669
3670/**
3671 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3672 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3673 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3674 *
3675 * If an architecture guarantees that all ranges registered with
3676 * add_active_ranges() contain no holes and may be freed, this
3677 * this function may be used instead of calling free_bootmem() manually.
3678 */
3679void __init free_bootmem_with_active_regions(int nid,
3680 unsigned long max_low_pfn)
3681{
3682 int i;
3683
3684 for_each_active_range_index_in_nid(i, nid) {
3685 unsigned long size_pages = 0;
3686 unsigned long end_pfn = early_node_map[i].end_pfn;
3687
3688 if (early_node_map[i].start_pfn >= max_low_pfn)
3689 continue;
3690
3691 if (end_pfn > max_low_pfn)
3692 end_pfn = max_low_pfn;
3693
3694 size_pages = end_pfn - early_node_map[i].start_pfn;
3695 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3696 PFN_PHYS(early_node_map[i].start_pfn),
3697 size_pages << PAGE_SHIFT);
3698 }
3699}
3700
3701#ifdef CONFIG_HAVE_MEMBLOCK
3702u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3703 u64 goal, u64 limit)
3704{
3705 int i;
3706
3707 /* Need to go over early_node_map to find out good range for node */
3708 for_each_active_range_index_in_nid(i, nid) {
3709 u64 addr;
3710 u64 ei_start, ei_last;
3711 u64 final_start, final_end;
3712
3713 ei_last = early_node_map[i].end_pfn;
3714 ei_last <<= PAGE_SHIFT;
3715 ei_start = early_node_map[i].start_pfn;
3716 ei_start <<= PAGE_SHIFT;
3717
3718 final_start = max(ei_start, goal);
3719 final_end = min(ei_last, limit);
3720
3721 if (final_start >= final_end)
3722 continue;
3723
3724 addr = memblock_find_in_range(final_start, final_end, size, align);
3725
3726 if (addr == MEMBLOCK_ERROR)
3727 continue;
3728
3729 return addr;
3730 }
3731
3732 return MEMBLOCK_ERROR;
3733}
3734#endif
3735
3736int __init add_from_early_node_map(struct range *range, int az,
3737 int nr_range, int nid)
3738{
3739 int i;
3740 u64 start, end;
3741
3742 /* need to go over early_node_map to find out good range for node */
3743 for_each_active_range_index_in_nid(i, nid) {
3744 start = early_node_map[i].start_pfn;
3745 end = early_node_map[i].end_pfn;
3746 nr_range = add_range(range, az, nr_range, start, end);
3747 }
3748 return nr_range;
3749}
3750
3751#ifdef CONFIG_NO_BOOTMEM
3752void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3753 u64 goal, u64 limit)
3754{
3755 void *ptr;
3756 u64 addr;
3757
3758 if (limit > memblock.current_limit)
3759 limit = memblock.current_limit;
3760
3761 addr = find_memory_core_early(nid, size, align, goal, limit);
3762
3763 if (addr == MEMBLOCK_ERROR)
3764 return NULL;
3765
3766 ptr = phys_to_virt(addr);
3767 memset(ptr, 0, size);
3768 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3769 /*
3770 * The min_count is set to 0 so that bootmem allocated blocks
3771 * are never reported as leaks.
3772 */
3773 kmemleak_alloc(ptr, size, 0, 0);
3774 return ptr;
3775}
3776#endif
3777
3778
3779void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3780{
3781 int i;
3782 int ret;
3783
3784 for_each_active_range_index_in_nid(i, nid) {
3785 ret = work_fn(early_node_map[i].start_pfn,
3786 early_node_map[i].end_pfn, data);
3787 if (ret)
3788 break;
3789 }
3790}
3791/**
3792 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3793 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3794 *
3795 * If an architecture guarantees that all ranges registered with
3796 * add_active_ranges() contain no holes and may be freed, this
3797 * function may be used instead of calling memory_present() manually.
3798 */
3799void __init sparse_memory_present_with_active_regions(int nid)
3800{
3801 int i;
3802
3803 for_each_active_range_index_in_nid(i, nid)
3804 memory_present(early_node_map[i].nid,
3805 early_node_map[i].start_pfn,
3806 early_node_map[i].end_pfn);
3807}
3808
3809/**
3810 * get_pfn_range_for_nid - Return the start and end page frames for a node
3811 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3812 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3813 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3814 *
3815 * It returns the start and end page frame of a node based on information
3816 * provided by an arch calling add_active_range(). If called for a node
3817 * with no available memory, a warning is printed and the start and end
3818 * PFNs will be 0.
3819 */
3820void __meminit get_pfn_range_for_nid(unsigned int nid,
3821 unsigned long *start_pfn, unsigned long *end_pfn)
3822{
3823 int i;
3824 *start_pfn = -1UL;
3825 *end_pfn = 0;
3826
3827 for_each_active_range_index_in_nid(i, nid) {
3828 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3829 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3830 }
3831
3832 if (*start_pfn == -1UL)
3833 *start_pfn = 0;
3834}
3835
3836/*
3837 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3838 * assumption is made that zones within a node are ordered in monotonic
3839 * increasing memory addresses so that the "highest" populated zone is used
3840 */
3841static void __init find_usable_zone_for_movable(void)
3842{
3843 int zone_index;
3844 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3845 if (zone_index == ZONE_MOVABLE)
3846 continue;
3847
3848 if (arch_zone_highest_possible_pfn[zone_index] >
3849 arch_zone_lowest_possible_pfn[zone_index])
3850 break;
3851 }
3852
3853 VM_BUG_ON(zone_index == -1);
3854 movable_zone = zone_index;
3855}
3856
3857/*
3858 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3859 * because it is sized independant of architecture. Unlike the other zones,
3860 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3861 * in each node depending on the size of each node and how evenly kernelcore
3862 * is distributed. This helper function adjusts the zone ranges
3863 * provided by the architecture for a given node by using the end of the
3864 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3865 * zones within a node are in order of monotonic increases memory addresses
3866 */
3867static void __meminit adjust_zone_range_for_zone_movable(int nid,
3868 unsigned long zone_type,
3869 unsigned long node_start_pfn,
3870 unsigned long node_end_pfn,
3871 unsigned long *zone_start_pfn,
3872 unsigned long *zone_end_pfn)
3873{
3874 /* Only adjust if ZONE_MOVABLE is on this node */
3875 if (zone_movable_pfn[nid]) {
3876 /* Size ZONE_MOVABLE */
3877 if (zone_type == ZONE_MOVABLE) {
3878 *zone_start_pfn = zone_movable_pfn[nid];
3879 *zone_end_pfn = min(node_end_pfn,
3880 arch_zone_highest_possible_pfn[movable_zone]);
3881
3882 /* Adjust for ZONE_MOVABLE starting within this range */
3883 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3884 *zone_end_pfn > zone_movable_pfn[nid]) {
3885 *zone_end_pfn = zone_movable_pfn[nid];
3886
3887 /* Check if this whole range is within ZONE_MOVABLE */
3888 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3889 *zone_start_pfn = *zone_end_pfn;
3890 }
3891}
3892
3893/*
3894 * Return the number of pages a zone spans in a node, including holes
3895 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3896 */
3897static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3898 unsigned long zone_type,
3899 unsigned long *ignored)
3900{
3901 unsigned long node_start_pfn, node_end_pfn;
3902 unsigned long zone_start_pfn, zone_end_pfn;
3903
3904 /* Get the start and end of the node and zone */
3905 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3906 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3907 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3908 adjust_zone_range_for_zone_movable(nid, zone_type,
3909 node_start_pfn, node_end_pfn,
3910 &zone_start_pfn, &zone_end_pfn);
3911
3912 /* Check that this node has pages within the zone's required range */
3913 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3914 return 0;
3915
3916 /* Move the zone boundaries inside the node if necessary */
3917 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3918 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3919
3920 /* Return the spanned pages */
3921 return zone_end_pfn - zone_start_pfn;
3922}
3923
3924/*
3925 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3926 * then all holes in the requested range will be accounted for.
3927 */
3928unsigned long __meminit __absent_pages_in_range(int nid,
3929 unsigned long range_start_pfn,
3930 unsigned long range_end_pfn)
3931{
3932 int i = 0;
3933 unsigned long prev_end_pfn = 0, hole_pages = 0;
3934 unsigned long start_pfn;
3935
3936 /* Find the end_pfn of the first active range of pfns in the node */
3937 i = first_active_region_index_in_nid(nid);
3938 if (i == -1)
3939 return 0;
3940
3941 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3942
3943 /* Account for ranges before physical memory on this node */
3944 if (early_node_map[i].start_pfn > range_start_pfn)
3945 hole_pages = prev_end_pfn - range_start_pfn;
3946
3947 /* Find all holes for the zone within the node */
3948 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3949
3950 /* No need to continue if prev_end_pfn is outside the zone */
3951 if (prev_end_pfn >= range_end_pfn)
3952 break;
3953
3954 /* Make sure the end of the zone is not within the hole */
3955 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3956 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3957
3958 /* Update the hole size cound and move on */
3959 if (start_pfn > range_start_pfn) {
3960 BUG_ON(prev_end_pfn > start_pfn);
3961 hole_pages += start_pfn - prev_end_pfn;
3962 }
3963 prev_end_pfn = early_node_map[i].end_pfn;
3964 }
3965
3966 /* Account for ranges past physical memory on this node */
3967 if (range_end_pfn > prev_end_pfn)
3968 hole_pages += range_end_pfn -
3969 max(range_start_pfn, prev_end_pfn);
3970
3971 return hole_pages;
3972}
3973
3974/**
3975 * absent_pages_in_range - Return number of page frames in holes within a range
3976 * @start_pfn: The start PFN to start searching for holes
3977 * @end_pfn: The end PFN to stop searching for holes
3978 *
3979 * It returns the number of pages frames in memory holes within a range.
3980 */
3981unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3982 unsigned long end_pfn)
3983{
3984 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3985}
3986
3987/* Return the number of page frames in holes in a zone on a node */
3988static unsigned long __meminit zone_absent_pages_in_node(int nid,
3989 unsigned long zone_type,
3990 unsigned long *ignored)
3991{
3992 unsigned long node_start_pfn, node_end_pfn;
3993 unsigned long zone_start_pfn, zone_end_pfn;
3994
3995 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3996 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3997 node_start_pfn);
3998 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3999 node_end_pfn);
4000
4001 adjust_zone_range_for_zone_movable(nid, zone_type,
4002 node_start_pfn, node_end_pfn,
4003 &zone_start_pfn, &zone_end_pfn);
4004 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4005}
4006
4007#else
4008static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4009 unsigned long zone_type,
4010 unsigned long *zones_size)
4011{
4012 return zones_size[zone_type];
4013}
4014
4015static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4016 unsigned long zone_type,
4017 unsigned long *zholes_size)
4018{
4019 if (!zholes_size)
4020 return 0;
4021
4022 return zholes_size[zone_type];
4023}
4024
4025#endif
4026
4027static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4028 unsigned long *zones_size, unsigned long *zholes_size)
4029{
4030 unsigned long realtotalpages, totalpages = 0;
4031 enum zone_type i;
4032
4033 for (i = 0; i < MAX_NR_ZONES; i++)
4034 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4035 zones_size);
4036 pgdat->node_spanned_pages = totalpages;
4037
4038 realtotalpages = totalpages;
4039 for (i = 0; i < MAX_NR_ZONES; i++)
4040 realtotalpages -=
4041 zone_absent_pages_in_node(pgdat->node_id, i,
4042 zholes_size);
4043 pgdat->node_present_pages = realtotalpages;
4044 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4045 realtotalpages);
4046}
4047
4048#ifndef CONFIG_SPARSEMEM
4049/*
4050 * Calculate the size of the zone->blockflags rounded to an unsigned long
4051 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4052 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4053 * round what is now in bits to nearest long in bits, then return it in
4054 * bytes.
4055 */
4056static unsigned long __init usemap_size(unsigned long zonesize)
4057{
4058 unsigned long usemapsize;
4059
4060 usemapsize = roundup(zonesize, pageblock_nr_pages);
4061 usemapsize = usemapsize >> pageblock_order;
4062 usemapsize *= NR_PAGEBLOCK_BITS;
4063 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4064
4065 return usemapsize / 8;
4066}
4067
4068static void __init setup_usemap(struct pglist_data *pgdat,
4069 struct zone *zone, unsigned long zonesize)
4070{
4071 unsigned long usemapsize = usemap_size(zonesize);
4072 zone->pageblock_flags = NULL;
4073 if (usemapsize)
4074 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4075}
4076#else
4077static inline void setup_usemap(struct pglist_data *pgdat,
4078 struct zone *zone, unsigned long zonesize) {}
4079#endif /* CONFIG_SPARSEMEM */
4080
4081#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4082
4083/* Return a sensible default order for the pageblock size. */
4084static inline int pageblock_default_order(void)
4085{
4086 if (HPAGE_SHIFT > PAGE_SHIFT)
4087 return HUGETLB_PAGE_ORDER;
4088
4089 return MAX_ORDER-1;
4090}
4091
4092/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4093static inline void __init set_pageblock_order(unsigned int order)
4094{
4095 /* Check that pageblock_nr_pages has not already been setup */
4096 if (pageblock_order)
4097 return;
4098
4099 /*
4100 * Assume the largest contiguous order of interest is a huge page.
4101 * This value may be variable depending on boot parameters on IA64
4102 */
4103 pageblock_order = order;
4104}
4105#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4106
4107/*
4108 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4109 * and pageblock_default_order() are unused as pageblock_order is set
4110 * at compile-time. See include/linux/pageblock-flags.h for the values of
4111 * pageblock_order based on the kernel config
4112 */
4113static inline int pageblock_default_order(unsigned int order)
4114{
4115 return MAX_ORDER-1;
4116}
4117#define set_pageblock_order(x) do {} while (0)
4118
4119#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4120
4121/*
4122 * Set up the zone data structures:
4123 * - mark all pages reserved
4124 * - mark all memory queues empty
4125 * - clear the memory bitmaps
4126 */
4127static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4128 unsigned long *zones_size, unsigned long *zholes_size)
4129{
4130 enum zone_type j;
4131 int nid = pgdat->node_id;
4132 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4133 int ret;
4134
4135 pgdat_resize_init(pgdat);
4136 pgdat->nr_zones = 0;
4137 init_waitqueue_head(&pgdat->kswapd_wait);
4138 pgdat->kswapd_max_order = 0;
4139 pgdat_page_cgroup_init(pgdat);
4140
4141 for (j = 0; j < MAX_NR_ZONES; j++) {
4142 struct zone *zone = pgdat->node_zones + j;
4143 unsigned long size, realsize, memmap_pages;
4144 enum lru_list l;
4145
4146 size = zone_spanned_pages_in_node(nid, j, zones_size);
4147 realsize = size - zone_absent_pages_in_node(nid, j,
4148 zholes_size);
4149
4150 /*
4151 * Adjust realsize so that it accounts for how much memory
4152 * is used by this zone for memmap. This affects the watermark
4153 * and per-cpu initialisations
4154 */
4155 memmap_pages =
4156 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4157 if (realsize >= memmap_pages) {
4158 realsize -= memmap_pages;
4159 if (memmap_pages)
4160 printk(KERN_DEBUG
4161 " %s zone: %lu pages used for memmap\n",
4162 zone_names[j], memmap_pages);
4163 } else
4164 printk(KERN_WARNING
4165 " %s zone: %lu pages exceeds realsize %lu\n",
4166 zone_names[j], memmap_pages, realsize);
4167
4168 /* Account for reserved pages */
4169 if (j == 0 && realsize > dma_reserve) {
4170 realsize -= dma_reserve;
4171 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4172 zone_names[0], dma_reserve);
4173 }
4174
4175 if (!is_highmem_idx(j))
4176 nr_kernel_pages += realsize;
4177 nr_all_pages += realsize;
4178
4179 zone->spanned_pages = size;
4180 zone->present_pages = realsize;
4181#ifdef CONFIG_NUMA
4182 zone->node = nid;
4183 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4184 / 100;
4185 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4186#endif
4187 zone->name = zone_names[j];
4188 spin_lock_init(&zone->lock);
4189 spin_lock_init(&zone->lru_lock);
4190 zone_seqlock_init(zone);
4191 zone->zone_pgdat = pgdat;
4192
4193 zone_pcp_init(zone);
4194 for_each_lru(l) {
4195 INIT_LIST_HEAD(&zone->lru[l].list);
4196 zone->reclaim_stat.nr_saved_scan[l] = 0;
4197 }
4198 zone->reclaim_stat.recent_rotated[0] = 0;
4199 zone->reclaim_stat.recent_rotated[1] = 0;
4200 zone->reclaim_stat.recent_scanned[0] = 0;
4201 zone->reclaim_stat.recent_scanned[1] = 0;
4202 zap_zone_vm_stats(zone);
4203 zone->flags = 0;
4204 if (!size)
4205 continue;
4206
4207 set_pageblock_order(pageblock_default_order());
4208 setup_usemap(pgdat, zone, size);
4209 ret = init_currently_empty_zone(zone, zone_start_pfn,
4210 size, MEMMAP_EARLY);
4211 BUG_ON(ret);
4212 memmap_init(size, nid, j, zone_start_pfn);
4213 zone_start_pfn += size;
4214 }
4215}
4216
4217static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4218{
4219 /* Skip empty nodes */
4220 if (!pgdat->node_spanned_pages)
4221 return;
4222
4223#ifdef CONFIG_FLAT_NODE_MEM_MAP
4224 /* ia64 gets its own node_mem_map, before this, without bootmem */
4225 if (!pgdat->node_mem_map) {
4226 unsigned long size, start, end;
4227 struct page *map;
4228
4229 /*
4230 * The zone's endpoints aren't required to be MAX_ORDER
4231 * aligned but the node_mem_map endpoints must be in order
4232 * for the buddy allocator to function correctly.
4233 */
4234 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4235 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4236 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4237 size = (end - start) * sizeof(struct page);
4238 map = alloc_remap(pgdat->node_id, size);
4239 if (!map)
4240 map = alloc_bootmem_node(pgdat, size);
4241 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4242 }
4243#ifndef CONFIG_NEED_MULTIPLE_NODES
4244 /*
4245 * With no DISCONTIG, the global mem_map is just set as node 0's
4246 */
4247 if (pgdat == NODE_DATA(0)) {
4248 mem_map = NODE_DATA(0)->node_mem_map;
4249#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4250 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4251 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4252#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4253 }
4254#endif
4255#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4256}
4257
4258void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4259 unsigned long node_start_pfn, unsigned long *zholes_size)
4260{
4261 pg_data_t *pgdat = NODE_DATA(nid);
4262
4263 pgdat->node_id = nid;
4264 pgdat->node_start_pfn = node_start_pfn;
4265 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4266
4267 alloc_node_mem_map(pgdat);
4268#ifdef CONFIG_FLAT_NODE_MEM_MAP
4269 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4270 nid, (unsigned long)pgdat,
4271 (unsigned long)pgdat->node_mem_map);
4272#endif
4273
4274 free_area_init_core(pgdat, zones_size, zholes_size);
4275}
4276
4277#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4278
4279#if MAX_NUMNODES > 1
4280/*
4281 * Figure out the number of possible node ids.
4282 */
4283static void __init setup_nr_node_ids(void)
4284{
4285 unsigned int node;
4286 unsigned int highest = 0;
4287
4288 for_each_node_mask(node, node_possible_map)
4289 highest = node;
4290 nr_node_ids = highest + 1;
4291}
4292#else
4293static inline void setup_nr_node_ids(void)
4294{
4295}
4296#endif
4297
4298/**
4299 * add_active_range - Register a range of PFNs backed by physical memory
4300 * @nid: The node ID the range resides on
4301 * @start_pfn: The start PFN of the available physical memory
4302 * @end_pfn: The end PFN of the available physical memory
4303 *
4304 * These ranges are stored in an early_node_map[] and later used by
4305 * free_area_init_nodes() to calculate zone sizes and holes. If the
4306 * range spans a memory hole, it is up to the architecture to ensure
4307 * the memory is not freed by the bootmem allocator. If possible
4308 * the range being registered will be merged with existing ranges.
4309 */
4310void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4311 unsigned long end_pfn)
4312{
4313 int i;
4314
4315 mminit_dprintk(MMINIT_TRACE, "memory_register",
4316 "Entering add_active_range(%d, %#lx, %#lx) "
4317 "%d entries of %d used\n",
4318 nid, start_pfn, end_pfn,
4319 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4320
4321 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4322
4323 /* Merge with existing active regions if possible */
4324 for (i = 0; i < nr_nodemap_entries; i++) {
4325 if (early_node_map[i].nid != nid)
4326 continue;
4327
4328 /* Skip if an existing region covers this new one */
4329 if (start_pfn >= early_node_map[i].start_pfn &&
4330 end_pfn <= early_node_map[i].end_pfn)
4331 return;
4332
4333 /* Merge forward if suitable */
4334 if (start_pfn <= early_node_map[i].end_pfn &&
4335 end_pfn > early_node_map[i].end_pfn) {
4336 early_node_map[i].end_pfn = end_pfn;
4337 return;
4338 }
4339
4340 /* Merge backward if suitable */
4341 if (start_pfn < early_node_map[i].start_pfn &&
4342 end_pfn >= early_node_map[i].start_pfn) {
4343 early_node_map[i].start_pfn = start_pfn;
4344 return;
4345 }
4346 }
4347
4348 /* Check that early_node_map is large enough */
4349 if (i >= MAX_ACTIVE_REGIONS) {
4350 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4351 MAX_ACTIVE_REGIONS);
4352 return;
4353 }
4354
4355 early_node_map[i].nid = nid;
4356 early_node_map[i].start_pfn = start_pfn;
4357 early_node_map[i].end_pfn = end_pfn;
4358 nr_nodemap_entries = i + 1;
4359}
4360
4361/**
4362 * remove_active_range - Shrink an existing registered range of PFNs
4363 * @nid: The node id the range is on that should be shrunk
4364 * @start_pfn: The new PFN of the range
4365 * @end_pfn: The new PFN of the range
4366 *
4367 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4368 * The map is kept near the end physical page range that has already been
4369 * registered. This function allows an arch to shrink an existing registered
4370 * range.
4371 */
4372void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4373 unsigned long end_pfn)
4374{
4375 int i, j;
4376 int removed = 0;
4377
4378 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4379 nid, start_pfn, end_pfn);
4380
4381 /* Find the old active region end and shrink */
4382 for_each_active_range_index_in_nid(i, nid) {
4383 if (early_node_map[i].start_pfn >= start_pfn &&
4384 early_node_map[i].end_pfn <= end_pfn) {
4385 /* clear it */
4386 early_node_map[i].start_pfn = 0;
4387 early_node_map[i].end_pfn = 0;
4388 removed = 1;
4389 continue;
4390 }
4391 if (early_node_map[i].start_pfn < start_pfn &&
4392 early_node_map[i].end_pfn > start_pfn) {
4393 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4394 early_node_map[i].end_pfn = start_pfn;
4395 if (temp_end_pfn > end_pfn)
4396 add_active_range(nid, end_pfn, temp_end_pfn);
4397 continue;
4398 }
4399 if (early_node_map[i].start_pfn >= start_pfn &&
4400 early_node_map[i].end_pfn > end_pfn &&
4401 early_node_map[i].start_pfn < end_pfn) {
4402 early_node_map[i].start_pfn = end_pfn;
4403 continue;
4404 }
4405 }
4406
4407 if (!removed)
4408 return;
4409
4410 /* remove the blank ones */
4411 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4412 if (early_node_map[i].nid != nid)
4413 continue;
4414 if (early_node_map[i].end_pfn)
4415 continue;
4416 /* we found it, get rid of it */
4417 for (j = i; j < nr_nodemap_entries - 1; j++)
4418 memcpy(&early_node_map[j], &early_node_map[j+1],
4419 sizeof(early_node_map[j]));
4420 j = nr_nodemap_entries - 1;
4421 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4422 nr_nodemap_entries--;
4423 }
4424}
4425
4426/**
4427 * remove_all_active_ranges - Remove all currently registered regions
4428 *
4429 * During discovery, it may be found that a table like SRAT is invalid
4430 * and an alternative discovery method must be used. This function removes
4431 * all currently registered regions.
4432 */
4433void __init remove_all_active_ranges(void)
4434{
4435 memset(early_node_map, 0, sizeof(early_node_map));
4436 nr_nodemap_entries = 0;
4437}
4438
4439/* Compare two active node_active_regions */
4440static int __init cmp_node_active_region(const void *a, const void *b)
4441{
4442 struct node_active_region *arange = (struct node_active_region *)a;
4443 struct node_active_region *brange = (struct node_active_region *)b;
4444
4445 /* Done this way to avoid overflows */
4446 if (arange->start_pfn > brange->start_pfn)
4447 return 1;
4448 if (arange->start_pfn < brange->start_pfn)
4449 return -1;
4450
4451 return 0;
4452}
4453
4454/* sort the node_map by start_pfn */
4455void __init sort_node_map(void)
4456{
4457 sort(early_node_map, (size_t)nr_nodemap_entries,
4458 sizeof(struct node_active_region),
4459 cmp_node_active_region, NULL);
4460}
4461
4462/* Find the lowest pfn for a node */
4463static unsigned long __init find_min_pfn_for_node(int nid)
4464{
4465 int i;
4466 unsigned long min_pfn = ULONG_MAX;
4467
4468 /* Assuming a sorted map, the first range found has the starting pfn */
4469 for_each_active_range_index_in_nid(i, nid)
4470 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4471
4472 if (min_pfn == ULONG_MAX) {
4473 printk(KERN_WARNING
4474 "Could not find start_pfn for node %d\n", nid);
4475 return 0;
4476 }
4477
4478 return min_pfn;
4479}
4480
4481/**
4482 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4483 *
4484 * It returns the minimum PFN based on information provided via
4485 * add_active_range().
4486 */
4487unsigned long __init find_min_pfn_with_active_regions(void)
4488{
4489 return find_min_pfn_for_node(MAX_NUMNODES);
4490}
4491
4492/*
4493 * early_calculate_totalpages()
4494 * Sum pages in active regions for movable zone.
4495 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4496 */
4497static unsigned long __init early_calculate_totalpages(void)
4498{
4499 int i;
4500 unsigned long totalpages = 0;
4501
4502 for (i = 0; i < nr_nodemap_entries; i++) {
4503 unsigned long pages = early_node_map[i].end_pfn -
4504 early_node_map[i].start_pfn;
4505 totalpages += pages;
4506 if (pages)
4507 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4508 }
4509 return totalpages;
4510}
4511
4512/*
4513 * Find the PFN the Movable zone begins in each node. Kernel memory
4514 * is spread evenly between nodes as long as the nodes have enough
4515 * memory. When they don't, some nodes will have more kernelcore than
4516 * others
4517 */
4518static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4519{
4520 int i, nid;
4521 unsigned long usable_startpfn;
4522 unsigned long kernelcore_node, kernelcore_remaining;
4523 /* save the state before borrow the nodemask */
4524 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4525 unsigned long totalpages = early_calculate_totalpages();
4526 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4527
4528 /*
4529 * If movablecore was specified, calculate what size of
4530 * kernelcore that corresponds so that memory usable for
4531 * any allocation type is evenly spread. If both kernelcore
4532 * and movablecore are specified, then the value of kernelcore
4533 * will be used for required_kernelcore if it's greater than
4534 * what movablecore would have allowed.
4535 */
4536 if (required_movablecore) {
4537 unsigned long corepages;
4538
4539 /*
4540 * Round-up so that ZONE_MOVABLE is at least as large as what
4541 * was requested by the user
4542 */
4543 required_movablecore =
4544 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4545 corepages = totalpages - required_movablecore;
4546
4547 required_kernelcore = max(required_kernelcore, corepages);
4548 }
4549
4550 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4551 if (!required_kernelcore)
4552 goto out;
4553
4554 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4555 find_usable_zone_for_movable();
4556 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4557
4558restart:
4559 /* Spread kernelcore memory as evenly as possible throughout nodes */
4560 kernelcore_node = required_kernelcore / usable_nodes;
4561 for_each_node_state(nid, N_HIGH_MEMORY) {
4562 /*
4563 * Recalculate kernelcore_node if the division per node
4564 * now exceeds what is necessary to satisfy the requested
4565 * amount of memory for the kernel
4566 */
4567 if (required_kernelcore < kernelcore_node)
4568 kernelcore_node = required_kernelcore / usable_nodes;
4569
4570 /*
4571 * As the map is walked, we track how much memory is usable
4572 * by the kernel using kernelcore_remaining. When it is
4573 * 0, the rest of the node is usable by ZONE_MOVABLE
4574 */
4575 kernelcore_remaining = kernelcore_node;
4576
4577 /* Go through each range of PFNs within this node */
4578 for_each_active_range_index_in_nid(i, nid) {
4579 unsigned long start_pfn, end_pfn;
4580 unsigned long size_pages;
4581
4582 start_pfn = max(early_node_map[i].start_pfn,
4583 zone_movable_pfn[nid]);
4584 end_pfn = early_node_map[i].end_pfn;
4585 if (start_pfn >= end_pfn)
4586 continue;
4587
4588 /* Account for what is only usable for kernelcore */
4589 if (start_pfn < usable_startpfn) {
4590 unsigned long kernel_pages;
4591 kernel_pages = min(end_pfn, usable_startpfn)
4592 - start_pfn;
4593
4594 kernelcore_remaining -= min(kernel_pages,
4595 kernelcore_remaining);
4596 required_kernelcore -= min(kernel_pages,
4597 required_kernelcore);
4598
4599 /* Continue if range is now fully accounted */
4600 if (end_pfn <= usable_startpfn) {
4601
4602 /*
4603 * Push zone_movable_pfn to the end so
4604 * that if we have to rebalance
4605 * kernelcore across nodes, we will
4606 * not double account here
4607 */
4608 zone_movable_pfn[nid] = end_pfn;
4609 continue;
4610 }
4611 start_pfn = usable_startpfn;
4612 }
4613
4614 /*
4615 * The usable PFN range for ZONE_MOVABLE is from
4616 * start_pfn->end_pfn. Calculate size_pages as the
4617 * number of pages used as kernelcore
4618 */
4619 size_pages = end_pfn - start_pfn;
4620 if (size_pages > kernelcore_remaining)
4621 size_pages = kernelcore_remaining;
4622 zone_movable_pfn[nid] = start_pfn + size_pages;
4623
4624 /*
4625 * Some kernelcore has been met, update counts and
4626 * break if the kernelcore for this node has been
4627 * satisified
4628 */
4629 required_kernelcore -= min(required_kernelcore,
4630 size_pages);
4631 kernelcore_remaining -= size_pages;
4632 if (!kernelcore_remaining)
4633 break;
4634 }
4635 }
4636
4637 /*
4638 * If there is still required_kernelcore, we do another pass with one
4639 * less node in the count. This will push zone_movable_pfn[nid] further
4640 * along on the nodes that still have memory until kernelcore is
4641 * satisified
4642 */
4643 usable_nodes--;
4644 if (usable_nodes && required_kernelcore > usable_nodes)
4645 goto restart;
4646
4647 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4648 for (nid = 0; nid < MAX_NUMNODES; nid++)
4649 zone_movable_pfn[nid] =
4650 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4651
4652out:
4653 /* restore the node_state */
4654 node_states[N_HIGH_MEMORY] = saved_node_state;
4655}
4656
4657/* Any regular memory on that node ? */
4658static void check_for_regular_memory(pg_data_t *pgdat)
4659{
4660#ifdef CONFIG_HIGHMEM
4661 enum zone_type zone_type;
4662
4663 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4664 struct zone *zone = &pgdat->node_zones[zone_type];
4665 if (zone->present_pages)
4666 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4667 }
4668#endif
4669}
4670
4671/**
4672 * free_area_init_nodes - Initialise all pg_data_t and zone data
4673 * @max_zone_pfn: an array of max PFNs for each zone
4674 *
4675 * This will call free_area_init_node() for each active node in the system.
4676 * Using the page ranges provided by add_active_range(), the size of each
4677 * zone in each node and their holes is calculated. If the maximum PFN
4678 * between two adjacent zones match, it is assumed that the zone is empty.
4679 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4680 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4681 * starts where the previous one ended. For example, ZONE_DMA32 starts
4682 * at arch_max_dma_pfn.
4683 */
4684void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4685{
4686 unsigned long nid;
4687 int i;
4688
4689 /* Sort early_node_map as initialisation assumes it is sorted */
4690 sort_node_map();
4691
4692 /* Record where the zone boundaries are */
4693 memset(arch_zone_lowest_possible_pfn, 0,
4694 sizeof(arch_zone_lowest_possible_pfn));
4695 memset(arch_zone_highest_possible_pfn, 0,
4696 sizeof(arch_zone_highest_possible_pfn));
4697 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4698 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4699 for (i = 1; i < MAX_NR_ZONES; i++) {
4700 if (i == ZONE_MOVABLE)
4701 continue;
4702 arch_zone_lowest_possible_pfn[i] =
4703 arch_zone_highest_possible_pfn[i-1];
4704 arch_zone_highest_possible_pfn[i] =
4705 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4706 }
4707 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4708 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4709
4710 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4711 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4712 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4713
4714 /* Print out the zone ranges */
4715 printk("Zone PFN ranges:\n");
4716 for (i = 0; i < MAX_NR_ZONES; i++) {
4717 if (i == ZONE_MOVABLE)
4718 continue;
4719 printk(" %-8s ", zone_names[i]);
4720 if (arch_zone_lowest_possible_pfn[i] ==
4721 arch_zone_highest_possible_pfn[i])
4722 printk("empty\n");
4723 else
4724 printk("%0#10lx -> %0#10lx\n",
4725 arch_zone_lowest_possible_pfn[i],
4726 arch_zone_highest_possible_pfn[i]);
4727 }
4728
4729 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4730 printk("Movable zone start PFN for each node\n");
4731 for (i = 0; i < MAX_NUMNODES; i++) {
4732 if (zone_movable_pfn[i])
4733 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4734 }
4735
4736 /* Print out the early_node_map[] */
4737 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4738 for (i = 0; i < nr_nodemap_entries; i++)
4739 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4740 early_node_map[i].start_pfn,
4741 early_node_map[i].end_pfn);
4742
4743 /* Initialise every node */
4744 mminit_verify_pageflags_layout();
4745 setup_nr_node_ids();
4746 for_each_online_node(nid) {
4747 pg_data_t *pgdat = NODE_DATA(nid);
4748 free_area_init_node(nid, NULL,
4749 find_min_pfn_for_node(nid), NULL);
4750
4751 /* Any memory on that node */
4752 if (pgdat->node_present_pages)
4753 node_set_state(nid, N_HIGH_MEMORY);
4754 check_for_regular_memory(pgdat);
4755 }
4756}
4757
4758static int __init cmdline_parse_core(char *p, unsigned long *core)
4759{
4760 unsigned long long coremem;
4761 if (!p)
4762 return -EINVAL;
4763
4764 coremem = memparse(p, &p);
4765 *core = coremem >> PAGE_SHIFT;
4766
4767 /* Paranoid check that UL is enough for the coremem value */
4768 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4769
4770 return 0;
4771}
4772
4773/*
4774 * kernelcore=size sets the amount of memory for use for allocations that
4775 * cannot be reclaimed or migrated.
4776 */
4777static int __init cmdline_parse_kernelcore(char *p)
4778{
4779 return cmdline_parse_core(p, &required_kernelcore);
4780}
4781
4782/*
4783 * movablecore=size sets the amount of memory for use for allocations that
4784 * can be reclaimed or migrated.
4785 */
4786static int __init cmdline_parse_movablecore(char *p)
4787{
4788 return cmdline_parse_core(p, &required_movablecore);
4789}
4790
4791early_param("kernelcore", cmdline_parse_kernelcore);
4792early_param("movablecore", cmdline_parse_movablecore);
4793
4794#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4795
4796/**
4797 * set_dma_reserve - set the specified number of pages reserved in the first zone
4798 * @new_dma_reserve: The number of pages to mark reserved
4799 *
4800 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4801 * In the DMA zone, a significant percentage may be consumed by kernel image
4802 * and other unfreeable allocations which can skew the watermarks badly. This
4803 * function may optionally be used to account for unfreeable pages in the
4804 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4805 * smaller per-cpu batchsize.
4806 */
4807void __init set_dma_reserve(unsigned long new_dma_reserve)
4808{
4809 dma_reserve = new_dma_reserve;
4810}
4811
4812#ifndef CONFIG_NEED_MULTIPLE_NODES
4813struct pglist_data __refdata contig_page_data = {
4814#ifndef CONFIG_NO_BOOTMEM
4815 .bdata = &bootmem_node_data[0]
4816#endif
4817 };
4818EXPORT_SYMBOL(contig_page_data);
4819#endif
4820
4821void __init free_area_init(unsigned long *zones_size)
4822{
4823 free_area_init_node(0, zones_size,
4824 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4825}
4826
4827static int page_alloc_cpu_notify(struct notifier_block *self,
4828 unsigned long action, void *hcpu)
4829{
4830 int cpu = (unsigned long)hcpu;
4831
4832 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4833 drain_pages(cpu);
4834
4835 /*
4836 * Spill the event counters of the dead processor
4837 * into the current processors event counters.
4838 * This artificially elevates the count of the current
4839 * processor.
4840 */
4841 vm_events_fold_cpu(cpu);
4842
4843 /*
4844 * Zero the differential counters of the dead processor
4845 * so that the vm statistics are consistent.
4846 *
4847 * This is only okay since the processor is dead and cannot
4848 * race with what we are doing.
4849 */
4850 refresh_cpu_vm_stats(cpu);
4851 }
4852 return NOTIFY_OK;
4853}
4854
4855void __init page_alloc_init(void)
4856{
4857 hotcpu_notifier(page_alloc_cpu_notify, 0);
4858}
4859
4860/*
4861 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4862 * or min_free_kbytes changes.
4863 */
4864static void calculate_totalreserve_pages(void)
4865{
4866 struct pglist_data *pgdat;
4867 unsigned long reserve_pages = 0;
4868 enum zone_type i, j;
4869
4870 for_each_online_pgdat(pgdat) {
4871 for (i = 0; i < MAX_NR_ZONES; i++) {
4872 struct zone *zone = pgdat->node_zones + i;
4873 unsigned long max = 0;
4874
4875 /* Find valid and maximum lowmem_reserve in the zone */
4876 for (j = i; j < MAX_NR_ZONES; j++) {
4877 if (zone->lowmem_reserve[j] > max)
4878 max = zone->lowmem_reserve[j];
4879 }
4880
4881 /* we treat the high watermark as reserved pages. */
4882 max += high_wmark_pages(zone);
4883
4884 if (max > zone->present_pages)
4885 max = zone->present_pages;
4886 reserve_pages += max;
4887 }
4888 }
4889 totalreserve_pages = reserve_pages;
4890}
4891
4892/*
4893 * setup_per_zone_lowmem_reserve - called whenever
4894 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4895 * has a correct pages reserved value, so an adequate number of
4896 * pages are left in the zone after a successful __alloc_pages().
4897 */
4898static void setup_per_zone_lowmem_reserve(void)
4899{
4900 struct pglist_data *pgdat;
4901 enum zone_type j, idx;
4902
4903 for_each_online_pgdat(pgdat) {
4904 for (j = 0; j < MAX_NR_ZONES; j++) {
4905 struct zone *zone = pgdat->node_zones + j;
4906 unsigned long present_pages = zone->present_pages;
4907
4908 zone->lowmem_reserve[j] = 0;
4909
4910 idx = j;
4911 while (idx) {
4912 struct zone *lower_zone;
4913
4914 idx--;
4915
4916 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4917 sysctl_lowmem_reserve_ratio[idx] = 1;
4918
4919 lower_zone = pgdat->node_zones + idx;
4920 lower_zone->lowmem_reserve[j] = present_pages /
4921 sysctl_lowmem_reserve_ratio[idx];
4922 present_pages += lower_zone->present_pages;
4923 }
4924 }
4925 }
4926
4927 /* update totalreserve_pages */
4928 calculate_totalreserve_pages();
4929}
4930
4931/**
4932 * setup_per_zone_wmarks - called when min_free_kbytes changes
4933 * or when memory is hot-{added|removed}
4934 *
4935 * Ensures that the watermark[min,low,high] values for each zone are set
4936 * correctly with respect to min_free_kbytes.
4937 */
4938void setup_per_zone_wmarks(void)
4939{
4940 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4941 unsigned long lowmem_pages = 0;
4942 struct zone *zone;
4943 unsigned long flags;
4944
4945 /* Calculate total number of !ZONE_HIGHMEM pages */
4946 for_each_zone(zone) {
4947 if (!is_highmem(zone))
4948 lowmem_pages += zone->present_pages;
4949 }
4950
4951 for_each_zone(zone) {
4952 u64 tmp;
4953
4954 spin_lock_irqsave(&zone->lock, flags);
4955 tmp = (u64)pages_min * zone->present_pages;
4956 do_div(tmp, lowmem_pages);
4957 if (is_highmem(zone)) {
4958 /*
4959 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4960 * need highmem pages, so cap pages_min to a small
4961 * value here.
4962 *
4963 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4964 * deltas controls asynch page reclaim, and so should
4965 * not be capped for highmem.
4966 */
4967 int min_pages;
4968
4969 min_pages = zone->present_pages / 1024;
4970 if (min_pages < SWAP_CLUSTER_MAX)
4971 min_pages = SWAP_CLUSTER_MAX;
4972 if (min_pages > 128)
4973 min_pages = 128;
4974 zone->watermark[WMARK_MIN] = min_pages;
4975 } else {
4976 /*
4977 * If it's a lowmem zone, reserve a number of pages
4978 * proportionate to the zone's size.
4979 */
4980 zone->watermark[WMARK_MIN] = tmp;
4981 }
4982
4983 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4984 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4985 setup_zone_migrate_reserve(zone);
4986 spin_unlock_irqrestore(&zone->lock, flags);
4987 }
4988
4989 /* update totalreserve_pages */
4990 calculate_totalreserve_pages();
4991}
4992
4993/*
4994 * The inactive anon list should be small enough that the VM never has to
4995 * do too much work, but large enough that each inactive page has a chance
4996 * to be referenced again before it is swapped out.
4997 *
4998 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4999 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5000 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5001 * the anonymous pages are kept on the inactive list.
5002 *
5003 * total target max
5004 * memory ratio inactive anon
5005 * -------------------------------------
5006 * 10MB 1 5MB
5007 * 100MB 1 50MB
5008 * 1GB 3 250MB
5009 * 10GB 10 0.9GB
5010 * 100GB 31 3GB
5011 * 1TB 101 10GB
5012 * 10TB 320 32GB
5013 */
5014void calculate_zone_inactive_ratio(struct zone *zone)
5015{
5016 unsigned int gb, ratio;
5017
5018 /* Zone size in gigabytes */
5019 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5020 if (gb)
5021 ratio = int_sqrt(10 * gb);
5022 else
5023 ratio = 1;
5024
5025 zone->inactive_ratio = ratio;
5026}
5027
5028static void __init setup_per_zone_inactive_ratio(void)
5029{
5030 struct zone *zone;
5031
5032 for_each_zone(zone)
5033 calculate_zone_inactive_ratio(zone);
5034}
5035
5036/*
5037 * Initialise min_free_kbytes.
5038 *
5039 * For small machines we want it small (128k min). For large machines
5040 * we want it large (64MB max). But it is not linear, because network
5041 * bandwidth does not increase linearly with machine size. We use
5042 *
5043 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5044 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5045 *
5046 * which yields
5047 *
5048 * 16MB: 512k
5049 * 32MB: 724k
5050 * 64MB: 1024k
5051 * 128MB: 1448k
5052 * 256MB: 2048k
5053 * 512MB: 2896k
5054 * 1024MB: 4096k
5055 * 2048MB: 5792k
5056 * 4096MB: 8192k
5057 * 8192MB: 11584k
5058 * 16384MB: 16384k
5059 */
5060static int __init init_per_zone_wmark_min(void)
5061{
5062 unsigned long lowmem_kbytes;
5063
5064 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5065
5066 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5067 if (min_free_kbytes < 128)
5068 min_free_kbytes = 128;
5069 if (min_free_kbytes > 65536)
5070 min_free_kbytes = 65536;
5071 setup_per_zone_wmarks();
5072 setup_per_zone_lowmem_reserve();
5073 setup_per_zone_inactive_ratio();
5074 return 0;
5075}
5076module_init(init_per_zone_wmark_min)
5077
5078/*
5079 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5080 * that we can call two helper functions whenever min_free_kbytes
5081 * changes.
5082 */
5083int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5084 void __user *buffer, size_t *length, loff_t *ppos)
5085{
5086 proc_dointvec(table, write, buffer, length, ppos);
5087 if (write)
5088 setup_per_zone_wmarks();
5089 return 0;
5090}
5091
5092#ifdef CONFIG_NUMA
5093int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5094 void __user *buffer, size_t *length, loff_t *ppos)
5095{
5096 struct zone *zone;
5097 int rc;
5098
5099 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5100 if (rc)
5101 return rc;
5102
5103 for_each_zone(zone)
5104 zone->min_unmapped_pages = (zone->present_pages *
5105 sysctl_min_unmapped_ratio) / 100;
5106 return 0;
5107}
5108
5109int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5110 void __user *buffer, size_t *length, loff_t *ppos)
5111{
5112 struct zone *zone;
5113 int rc;
5114
5115 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5116 if (rc)
5117 return rc;
5118
5119 for_each_zone(zone)
5120 zone->min_slab_pages = (zone->present_pages *
5121 sysctl_min_slab_ratio) / 100;
5122 return 0;
5123}
5124#endif
5125
5126/*
5127 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5128 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5129 * whenever sysctl_lowmem_reserve_ratio changes.
5130 *
5131 * The reserve ratio obviously has absolutely no relation with the
5132 * minimum watermarks. The lowmem reserve ratio can only make sense
5133 * if in function of the boot time zone sizes.
5134 */
5135int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5136 void __user *buffer, size_t *length, loff_t *ppos)
5137{
5138 proc_dointvec_minmax(table, write, buffer, length, ppos);
5139 setup_per_zone_lowmem_reserve();
5140 return 0;
5141}
5142
5143/*
5144 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5145 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5146 * can have before it gets flushed back to buddy allocator.
5147 */
5148
5149int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5150 void __user *buffer, size_t *length, loff_t *ppos)
5151{
5152 struct zone *zone;
5153 unsigned int cpu;
5154 int ret;
5155
5156 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5157 if (!write || (ret == -EINVAL))
5158 return ret;
5159 for_each_populated_zone(zone) {
5160 for_each_possible_cpu(cpu) {
5161 unsigned long high;
5162 high = zone->present_pages / percpu_pagelist_fraction;
5163 setup_pagelist_highmark(
5164 per_cpu_ptr(zone->pageset, cpu), high);
5165 }
5166 }
5167 return 0;
5168}
5169
5170int hashdist = HASHDIST_DEFAULT;
5171
5172#ifdef CONFIG_NUMA
5173static int __init set_hashdist(char *str)
5174{
5175 if (!str)
5176 return 0;
5177 hashdist = simple_strtoul(str, &str, 0);
5178 return 1;
5179}
5180__setup("hashdist=", set_hashdist);
5181#endif
5182
5183/*
5184 * allocate a large system hash table from bootmem
5185 * - it is assumed that the hash table must contain an exact power-of-2
5186 * quantity of entries
5187 * - limit is the number of hash buckets, not the total allocation size
5188 */
5189void *__init alloc_large_system_hash(const char *tablename,
5190 unsigned long bucketsize,
5191 unsigned long numentries,
5192 int scale,
5193 int flags,
5194 unsigned int *_hash_shift,
5195 unsigned int *_hash_mask,
5196 unsigned long limit)
5197{
5198 unsigned long long max = limit;
5199 unsigned long log2qty, size;
5200 void *table = NULL;
5201
5202 /* allow the kernel cmdline to have a say */
5203 if (!numentries) {
5204 /* round applicable memory size up to nearest megabyte */
5205 numentries = nr_kernel_pages;
5206 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5207 numentries >>= 20 - PAGE_SHIFT;
5208 numentries <<= 20 - PAGE_SHIFT;
5209
5210 /* limit to 1 bucket per 2^scale bytes of low memory */
5211 if (scale > PAGE_SHIFT)
5212 numentries >>= (scale - PAGE_SHIFT);
5213 else
5214 numentries <<= (PAGE_SHIFT - scale);
5215
5216 /* Make sure we've got at least a 0-order allocation.. */
5217 if (unlikely(flags & HASH_SMALL)) {
5218 /* Makes no sense without HASH_EARLY */
5219 WARN_ON(!(flags & HASH_EARLY));
5220 if (!(numentries >> *_hash_shift)) {
5221 numentries = 1UL << *_hash_shift;
5222 BUG_ON(!numentries);
5223 }
5224 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5225 numentries = PAGE_SIZE / bucketsize;
5226 }
5227 numentries = roundup_pow_of_two(numentries);
5228
5229 /* limit allocation size to 1/16 total memory by default */
5230 if (max == 0) {
5231 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5232 do_div(max, bucketsize);
5233 }
5234
5235 if (numentries > max)
5236 numentries = max;
5237
5238 log2qty = ilog2(numentries);
5239
5240 do {
5241 size = bucketsize << log2qty;
5242 if (flags & HASH_EARLY)
5243 table = alloc_bootmem_nopanic(size);
5244 else if (hashdist)
5245 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5246 else {
5247 /*
5248 * If bucketsize is not a power-of-two, we may free
5249 * some pages at the end of hash table which
5250 * alloc_pages_exact() automatically does
5251 */
5252 if (get_order(size) < MAX_ORDER) {
5253 table = alloc_pages_exact(size, GFP_ATOMIC);
5254 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5255 }
5256 }
5257 } while (!table && size > PAGE_SIZE && --log2qty);
5258
5259 if (!table)
5260 panic("Failed to allocate %s hash table\n", tablename);
5261
5262 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5263 tablename,
5264 (1UL << log2qty),
5265 ilog2(size) - PAGE_SHIFT,
5266 size);
5267
5268 if (_hash_shift)
5269 *_hash_shift = log2qty;
5270 if (_hash_mask)
5271 *_hash_mask = (1 << log2qty) - 1;
5272
5273 return table;
5274}
5275
5276/* Return a pointer to the bitmap storing bits affecting a block of pages */
5277static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5278 unsigned long pfn)
5279{
5280#ifdef CONFIG_SPARSEMEM
5281 return __pfn_to_section(pfn)->pageblock_flags;
5282#else
5283 return zone->pageblock_flags;
5284#endif /* CONFIG_SPARSEMEM */
5285}
5286
5287static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5288{
5289#ifdef CONFIG_SPARSEMEM
5290 pfn &= (PAGES_PER_SECTION-1);
5291 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5292#else
5293 pfn = pfn - zone->zone_start_pfn;
5294 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5295#endif /* CONFIG_SPARSEMEM */
5296}
5297
5298/**
5299 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5300 * @page: The page within the block of interest
5301 * @start_bitidx: The first bit of interest to retrieve
5302 * @end_bitidx: The last bit of interest
5303 * returns pageblock_bits flags
5304 */
5305unsigned long get_pageblock_flags_group(struct page *page,
5306 int start_bitidx, int end_bitidx)
5307{
5308 struct zone *zone;
5309 unsigned long *bitmap;
5310 unsigned long pfn, bitidx;
5311 unsigned long flags = 0;
5312 unsigned long value = 1;
5313
5314 zone = page_zone(page);
5315 pfn = page_to_pfn(page);
5316 bitmap = get_pageblock_bitmap(zone, pfn);
5317 bitidx = pfn_to_bitidx(zone, pfn);
5318
5319 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5320 if (test_bit(bitidx + start_bitidx, bitmap))
5321 flags |= value;
5322
5323 return flags;
5324}
5325
5326/**
5327 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5328 * @page: The page within the block of interest
5329 * @start_bitidx: The first bit of interest
5330 * @end_bitidx: The last bit of interest
5331 * @flags: The flags to set
5332 */
5333void set_pageblock_flags_group(struct page *page, unsigned long flags,
5334 int start_bitidx, int end_bitidx)
5335{
5336 struct zone *zone;
5337 unsigned long *bitmap;
5338 unsigned long pfn, bitidx;
5339 unsigned long value = 1;
5340
5341 zone = page_zone(page);
5342 pfn = page_to_pfn(page);
5343 bitmap = get_pageblock_bitmap(zone, pfn);
5344 bitidx = pfn_to_bitidx(zone, pfn);
5345 VM_BUG_ON(pfn < zone->zone_start_pfn);
5346 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5347
5348 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5349 if (flags & value)
5350 __set_bit(bitidx + start_bitidx, bitmap);
5351 else
5352 __clear_bit(bitidx + start_bitidx, bitmap);
5353}
5354
5355/*
5356 * This is designed as sub function...plz see page_isolation.c also.
5357 * set/clear page block's type to be ISOLATE.
5358 * page allocater never alloc memory from ISOLATE block.
5359 */
5360
5361static int
5362__count_immobile_pages(struct zone *zone, struct page *page, int count)
5363{
5364 unsigned long pfn, iter, found;
5365 /*
5366 * For avoiding noise data, lru_add_drain_all() should be called
5367 * If ZONE_MOVABLE, the zone never contains immobile pages
5368 */
5369 if (zone_idx(zone) == ZONE_MOVABLE)
5370 return true;
5371
5372 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5373 return true;
5374
5375 pfn = page_to_pfn(page);
5376 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5377 unsigned long check = pfn + iter;
5378
5379 if (!pfn_valid_within(check)) {
5380 iter++;
5381 continue;
5382 }
5383 page = pfn_to_page(check);
5384 if (!page_count(page)) {
5385 if (PageBuddy(page))
5386 iter += (1 << page_order(page)) - 1;
5387 continue;
5388 }
5389 if (!PageLRU(page))
5390 found++;
5391 /*
5392 * If there are RECLAIMABLE pages, we need to check it.
5393 * But now, memory offline itself doesn't call shrink_slab()
5394 * and it still to be fixed.
5395 */
5396 /*
5397 * If the page is not RAM, page_count()should be 0.
5398 * we don't need more check. This is an _used_ not-movable page.
5399 *
5400 * The problematic thing here is PG_reserved pages. PG_reserved
5401 * is set to both of a memory hole page and a _used_ kernel
5402 * page at boot.
5403 */
5404 if (found > count)
5405 return false;
5406 }
5407 return true;
5408}
5409
5410bool is_pageblock_removable_nolock(struct page *page)
5411{
5412 struct zone *zone = page_zone(page);
5413 return __count_immobile_pages(zone, page, 0);
5414}
5415
5416int set_migratetype_isolate(struct page *page)
5417{
5418 struct zone *zone;
5419 unsigned long flags, pfn;
5420 struct memory_isolate_notify arg;
5421 int notifier_ret;
5422 int ret = -EBUSY;
5423 int zone_idx;
5424
5425 zone = page_zone(page);
5426 zone_idx = zone_idx(zone);
5427
5428 spin_lock_irqsave(&zone->lock, flags);
5429
5430 pfn = page_to_pfn(page);
5431 arg.start_pfn = pfn;
5432 arg.nr_pages = pageblock_nr_pages;
5433 arg.pages_found = 0;
5434
5435 /*
5436 * It may be possible to isolate a pageblock even if the
5437 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5438 * notifier chain is used by balloon drivers to return the
5439 * number of pages in a range that are held by the balloon
5440 * driver to shrink memory. If all the pages are accounted for
5441 * by balloons, are free, or on the LRU, isolation can continue.
5442 * Later, for example, when memory hotplug notifier runs, these
5443 * pages reported as "can be isolated" should be isolated(freed)
5444 * by the balloon driver through the memory notifier chain.
5445 */
5446 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5447 notifier_ret = notifier_to_errno(notifier_ret);
5448 if (notifier_ret)
5449 goto out;
5450 /*
5451 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5452 * We just check MOVABLE pages.
5453 */
5454 if (__count_immobile_pages(zone, page, arg.pages_found))
5455 ret = 0;
5456
5457 /*
5458 * immobile means "not-on-lru" paes. If immobile is larger than
5459 * removable-by-driver pages reported by notifier, we'll fail.
5460 */
5461
5462out:
5463 if (!ret) {
5464 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5465 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5466 }
5467
5468 spin_unlock_irqrestore(&zone->lock, flags);
5469 if (!ret)
5470 drain_all_pages();
5471 return ret;
5472}
5473
5474void unset_migratetype_isolate(struct page *page)
5475{
5476 struct zone *zone;
5477 unsigned long flags;
5478 zone = page_zone(page);
5479 spin_lock_irqsave(&zone->lock, flags);
5480 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5481 goto out;
5482 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5483 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5484out:
5485 spin_unlock_irqrestore(&zone->lock, flags);
5486}
5487
5488#ifdef CONFIG_MEMORY_HOTREMOVE
5489/*
5490 * All pages in the range must be isolated before calling this.
5491 */
5492void
5493__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5494{
5495 struct page *page;
5496 struct zone *zone;
5497 int order, i;
5498 unsigned long pfn;
5499 unsigned long flags;
5500 /* find the first valid pfn */
5501 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5502 if (pfn_valid(pfn))
5503 break;
5504 if (pfn == end_pfn)
5505 return;
5506 zone = page_zone(pfn_to_page(pfn));
5507 spin_lock_irqsave(&zone->lock, flags);
5508 pfn = start_pfn;
5509 while (pfn < end_pfn) {
5510 if (!pfn_valid(pfn)) {
5511 pfn++;
5512 continue;
5513 }
5514 page = pfn_to_page(pfn);
5515 BUG_ON(page_count(page));
5516 BUG_ON(!PageBuddy(page));
5517 order = page_order(page);
5518#ifdef CONFIG_DEBUG_VM
5519 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5520 pfn, 1 << order, end_pfn);
5521#endif
5522 list_del(&page->lru);
5523 rmv_page_order(page);
5524 zone->free_area[order].nr_free--;
5525 __mod_zone_page_state(zone, NR_FREE_PAGES,
5526 - (1UL << order));
5527 for (i = 0; i < (1 << order); i++)
5528 SetPageReserved((page+i));
5529 pfn += (1 << order);
5530 }
5531 spin_unlock_irqrestore(&zone->lock, flags);
5532}
5533#endif
5534
5535#ifdef CONFIG_MEMORY_FAILURE
5536bool is_free_buddy_page(struct page *page)
5537{
5538 struct zone *zone = page_zone(page);
5539 unsigned long pfn = page_to_pfn(page);
5540 unsigned long flags;
5541 int order;
5542
5543 spin_lock_irqsave(&zone->lock, flags);
5544 for (order = 0; order < MAX_ORDER; order++) {
5545 struct page *page_head = page - (pfn & ((1 << order) - 1));
5546
5547 if (PageBuddy(page_head) && page_order(page_head) >= order)
5548 break;
5549 }
5550 spin_unlock_irqrestore(&zone->lock, flags);
5551
5552 return order < MAX_ORDER;
5553}
5554#endif
5555
5556static struct trace_print_flags pageflag_names[] = {
5557 {1UL << PG_locked, "locked" },
5558 {1UL << PG_error, "error" },
5559 {1UL << PG_referenced, "referenced" },
5560 {1UL << PG_uptodate, "uptodate" },
5561 {1UL << PG_dirty, "dirty" },
5562 {1UL << PG_lru, "lru" },
5563 {1UL << PG_active, "active" },
5564 {1UL << PG_slab, "slab" },
5565 {1UL << PG_owner_priv_1, "owner_priv_1" },
5566 {1UL << PG_arch_1, "arch_1" },
5567 {1UL << PG_reserved, "reserved" },
5568 {1UL << PG_private, "private" },
5569 {1UL << PG_private_2, "private_2" },
5570 {1UL << PG_writeback, "writeback" },
5571#ifdef CONFIG_PAGEFLAGS_EXTENDED
5572 {1UL << PG_head, "head" },
5573 {1UL << PG_tail, "tail" },
5574#else
5575 {1UL << PG_compound, "compound" },
5576#endif
5577 {1UL << PG_swapcache, "swapcache" },
5578 {1UL << PG_mappedtodisk, "mappedtodisk" },
5579 {1UL << PG_reclaim, "reclaim" },
5580 {1UL << PG_swapbacked, "swapbacked" },
5581 {1UL << PG_unevictable, "unevictable" },
5582#ifdef CONFIG_MMU
5583 {1UL << PG_mlocked, "mlocked" },
5584#endif
5585#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5586 {1UL << PG_uncached, "uncached" },
5587#endif
5588#ifdef CONFIG_MEMORY_FAILURE
5589 {1UL << PG_hwpoison, "hwpoison" },
5590#endif
5591 {-1UL, NULL },
5592};
5593
5594static void dump_page_flags(unsigned long flags)
5595{
5596 const char *delim = "";
5597 unsigned long mask;
5598 int i;
5599
5600 printk(KERN_ALERT "page flags: %#lx(", flags);
5601
5602 /* remove zone id */
5603 flags &= (1UL << NR_PAGEFLAGS) - 1;
5604
5605 for (i = 0; pageflag_names[i].name && flags; i++) {
5606
5607 mask = pageflag_names[i].mask;
5608 if ((flags & mask) != mask)
5609 continue;
5610
5611 flags &= ~mask;
5612 printk("%s%s", delim, pageflag_names[i].name);
5613 delim = "|";
5614 }
5615
5616 /* check for left over flags */
5617 if (flags)
5618 printk("%s%#lx", delim, flags);
5619
5620 printk(")\n");
5621}
5622
5623void dump_page(struct page *page)
5624{
5625 printk(KERN_ALERT
5626 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5627 page, atomic_read(&page->_count), page_mapcount(page),
5628 page->mapping, page->index);
5629 dump_page_flags(page->flags);
5630}