| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * mm/page-writeback.c |
| 4 | * |
| 5 | * Copyright (C) 2002, Linus Torvalds. |
| 6 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
| 7 | * |
| 8 | * Contains functions related to writing back dirty pages at the |
| 9 | * address_space level. |
| 10 | * |
| 11 | * 10Apr2002 Andrew Morton |
| 12 | * Initial version |
| 13 | */ |
| 14 | |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/math64.h> |
| 17 | #include <linux/export.h> |
| 18 | #include <linux/spinlock.h> |
| 19 | #include <linux/fs.h> |
| 20 | #include <linux/mm.h> |
| 21 | #include <linux/swap.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/pagemap.h> |
| 24 | #include <linux/writeback.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/backing-dev.h> |
| 27 | #include <linux/task_io_accounting_ops.h> |
| 28 | #include <linux/blkdev.h> |
| 29 | #include <linux/mpage.h> |
| 30 | #include <linux/rmap.h> |
| 31 | #include <linux/percpu.h> |
| 32 | #include <linux/smp.h> |
| 33 | #include <linux/sysctl.h> |
| 34 | #include <linux/cpu.h> |
| 35 | #include <linux/syscalls.h> |
| 36 | #include <linux/pagevec.h> |
| 37 | #include <linux/timer.h> |
| 38 | #include <linux/sched/rt.h> |
| 39 | #include <linux/sched/signal.h> |
| 40 | #include <linux/mm_inline.h> |
| 41 | #include <trace/events/writeback.h> |
| 42 | |
| 43 | #include "internal.h" |
| 44 | #include "swap.h" |
| 45 | |
| 46 | /* |
| 47 | * Sleep at most 200ms at a time in balance_dirty_pages(). |
| 48 | */ |
| 49 | #define MAX_PAUSE max(HZ/5, 1) |
| 50 | |
| 51 | /* |
| 52 | * Try to keep balance_dirty_pages() call intervals higher than this many pages |
| 53 | * by raising pause time to max_pause when falls below it. |
| 54 | */ |
| 55 | #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) |
| 56 | |
| 57 | /* |
| 58 | * Estimate write bandwidth or update dirty limit at 200ms intervals. |
| 59 | */ |
| 60 | #define BANDWIDTH_INTERVAL max(HZ/5, 1) |
| 61 | |
| 62 | #define RATELIMIT_CALC_SHIFT 10 |
| 63 | |
| 64 | /* |
| 65 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited |
| 66 | * will look to see if it needs to force writeback or throttling. |
| 67 | */ |
| 68 | static long ratelimit_pages = 32; |
| 69 | |
| 70 | /* The following parameters are exported via /proc/sys/vm */ |
| 71 | |
| 72 | /* |
| 73 | * Start background writeback (via writeback threads) at this percentage |
| 74 | */ |
| 75 | static int dirty_background_ratio = 10; |
| 76 | |
| 77 | /* |
| 78 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of |
| 79 | * dirty_background_ratio * the amount of dirtyable memory |
| 80 | */ |
| 81 | static unsigned long dirty_background_bytes; |
| 82 | |
| 83 | /* |
| 84 | * free highmem will not be subtracted from the total free memory |
| 85 | * for calculating free ratios if vm_highmem_is_dirtyable is true |
| 86 | */ |
| 87 | static int vm_highmem_is_dirtyable; |
| 88 | |
| 89 | /* |
| 90 | * The generator of dirty data starts writeback at this percentage |
| 91 | */ |
| 92 | static int vm_dirty_ratio = 20; |
| 93 | |
| 94 | /* |
| 95 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of |
| 96 | * vm_dirty_ratio * the amount of dirtyable memory |
| 97 | */ |
| 98 | static unsigned long vm_dirty_bytes; |
| 99 | |
| 100 | /* |
| 101 | * The interval between `kupdate'-style writebacks |
| 102 | */ |
| 103 | unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ |
| 104 | |
| 105 | EXPORT_SYMBOL_GPL(dirty_writeback_interval); |
| 106 | |
| 107 | /* |
| 108 | * The longest time for which data is allowed to remain dirty |
| 109 | */ |
| 110 | unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ |
| 111 | |
| 112 | /* |
| 113 | * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: |
| 114 | * a full sync is triggered after this time elapses without any disk activity. |
| 115 | */ |
| 116 | int laptop_mode; |
| 117 | |
| 118 | EXPORT_SYMBOL(laptop_mode); |
| 119 | |
| 120 | /* End of sysctl-exported parameters */ |
| 121 | |
| 122 | struct wb_domain global_wb_domain; |
| 123 | |
| 124 | /* |
| 125 | * Length of period for aging writeout fractions of bdis. This is an |
| 126 | * arbitrarily chosen number. The longer the period, the slower fractions will |
| 127 | * reflect changes in current writeout rate. |
| 128 | */ |
| 129 | #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) |
| 130 | |
| 131 | #ifdef CONFIG_CGROUP_WRITEBACK |
| 132 | |
| 133 | #define GDTC_INIT(__wb) .wb = (__wb), \ |
| 134 | .dom = &global_wb_domain, \ |
| 135 | .wb_completions = &(__wb)->completions |
| 136 | |
| 137 | #define GDTC_INIT_NO_WB .dom = &global_wb_domain |
| 138 | |
| 139 | #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ |
| 140 | .dom = mem_cgroup_wb_domain(__wb), \ |
| 141 | .wb_completions = &(__wb)->memcg_completions, \ |
| 142 | .gdtc = __gdtc |
| 143 | |
| 144 | static bool mdtc_valid(struct dirty_throttle_control *dtc) |
| 145 | { |
| 146 | return dtc->dom; |
| 147 | } |
| 148 | |
| 149 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) |
| 150 | { |
| 151 | return dtc->dom; |
| 152 | } |
| 153 | |
| 154 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) |
| 155 | { |
| 156 | return mdtc->gdtc; |
| 157 | } |
| 158 | |
| 159 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) |
| 160 | { |
| 161 | return &wb->memcg_completions; |
| 162 | } |
| 163 | |
| 164 | static void wb_min_max_ratio(struct bdi_writeback *wb, |
| 165 | unsigned long *minp, unsigned long *maxp) |
| 166 | { |
| 167 | unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); |
| 168 | unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); |
| 169 | unsigned long long min = wb->bdi->min_ratio; |
| 170 | unsigned long long max = wb->bdi->max_ratio; |
| 171 | |
| 172 | /* |
| 173 | * @wb may already be clean by the time control reaches here and |
| 174 | * the total may not include its bw. |
| 175 | */ |
| 176 | if (this_bw < tot_bw) { |
| 177 | if (min) { |
| 178 | min *= this_bw; |
| 179 | min = div64_ul(min, tot_bw); |
| 180 | } |
| 181 | if (max < 100 * BDI_RATIO_SCALE) { |
| 182 | max *= this_bw; |
| 183 | max = div64_ul(max, tot_bw); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | *minp = min; |
| 188 | *maxp = max; |
| 189 | } |
| 190 | |
| 191 | #else /* CONFIG_CGROUP_WRITEBACK */ |
| 192 | |
| 193 | #define GDTC_INIT(__wb) .wb = (__wb), \ |
| 194 | .wb_completions = &(__wb)->completions |
| 195 | #define GDTC_INIT_NO_WB |
| 196 | #define MDTC_INIT(__wb, __gdtc) |
| 197 | |
| 198 | static bool mdtc_valid(struct dirty_throttle_control *dtc) |
| 199 | { |
| 200 | return false; |
| 201 | } |
| 202 | |
| 203 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) |
| 204 | { |
| 205 | return &global_wb_domain; |
| 206 | } |
| 207 | |
| 208 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) |
| 209 | { |
| 210 | return NULL; |
| 211 | } |
| 212 | |
| 213 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) |
| 214 | { |
| 215 | return NULL; |
| 216 | } |
| 217 | |
| 218 | static void wb_min_max_ratio(struct bdi_writeback *wb, |
| 219 | unsigned long *minp, unsigned long *maxp) |
| 220 | { |
| 221 | *minp = wb->bdi->min_ratio; |
| 222 | *maxp = wb->bdi->max_ratio; |
| 223 | } |
| 224 | |
| 225 | #endif /* CONFIG_CGROUP_WRITEBACK */ |
| 226 | |
| 227 | /* |
| 228 | * In a memory zone, there is a certain amount of pages we consider |
| 229 | * available for the page cache, which is essentially the number of |
| 230 | * free and reclaimable pages, minus some zone reserves to protect |
| 231 | * lowmem and the ability to uphold the zone's watermarks without |
| 232 | * requiring writeback. |
| 233 | * |
| 234 | * This number of dirtyable pages is the base value of which the |
| 235 | * user-configurable dirty ratio is the effective number of pages that |
| 236 | * are allowed to be actually dirtied. Per individual zone, or |
| 237 | * globally by using the sum of dirtyable pages over all zones. |
| 238 | * |
| 239 | * Because the user is allowed to specify the dirty limit globally as |
| 240 | * absolute number of bytes, calculating the per-zone dirty limit can |
| 241 | * require translating the configured limit into a percentage of |
| 242 | * global dirtyable memory first. |
| 243 | */ |
| 244 | |
| 245 | /** |
| 246 | * node_dirtyable_memory - number of dirtyable pages in a node |
| 247 | * @pgdat: the node |
| 248 | * |
| 249 | * Return: the node's number of pages potentially available for dirty |
| 250 | * page cache. This is the base value for the per-node dirty limits. |
| 251 | */ |
| 252 | static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) |
| 253 | { |
| 254 | unsigned long nr_pages = 0; |
| 255 | int z; |
| 256 | |
| 257 | for (z = 0; z < MAX_NR_ZONES; z++) { |
| 258 | struct zone *zone = pgdat->node_zones + z; |
| 259 | |
| 260 | if (!populated_zone(zone)) |
| 261 | continue; |
| 262 | |
| 263 | nr_pages += zone_page_state(zone, NR_FREE_PAGES); |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * Pages reserved for the kernel should not be considered |
| 268 | * dirtyable, to prevent a situation where reclaim has to |
| 269 | * clean pages in order to balance the zones. |
| 270 | */ |
| 271 | nr_pages -= min(nr_pages, pgdat->totalreserve_pages); |
| 272 | |
| 273 | nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); |
| 274 | nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); |
| 275 | |
| 276 | return nr_pages; |
| 277 | } |
| 278 | |
| 279 | static unsigned long highmem_dirtyable_memory(unsigned long total) |
| 280 | { |
| 281 | #ifdef CONFIG_HIGHMEM |
| 282 | int node; |
| 283 | unsigned long x = 0; |
| 284 | int i; |
| 285 | |
| 286 | for_each_node_state(node, N_HIGH_MEMORY) { |
| 287 | for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { |
| 288 | struct zone *z; |
| 289 | unsigned long nr_pages; |
| 290 | |
| 291 | if (!is_highmem_idx(i)) |
| 292 | continue; |
| 293 | |
| 294 | z = &NODE_DATA(node)->node_zones[i]; |
| 295 | if (!populated_zone(z)) |
| 296 | continue; |
| 297 | |
| 298 | nr_pages = zone_page_state(z, NR_FREE_PAGES); |
| 299 | /* watch for underflows */ |
| 300 | nr_pages -= min(nr_pages, high_wmark_pages(z)); |
| 301 | nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); |
| 302 | nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); |
| 303 | x += nr_pages; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Make sure that the number of highmem pages is never larger |
| 309 | * than the number of the total dirtyable memory. This can only |
| 310 | * occur in very strange VM situations but we want to make sure |
| 311 | * that this does not occur. |
| 312 | */ |
| 313 | return min(x, total); |
| 314 | #else |
| 315 | return 0; |
| 316 | #endif |
| 317 | } |
| 318 | |
| 319 | /** |
| 320 | * global_dirtyable_memory - number of globally dirtyable pages |
| 321 | * |
| 322 | * Return: the global number of pages potentially available for dirty |
| 323 | * page cache. This is the base value for the global dirty limits. |
| 324 | */ |
| 325 | static unsigned long global_dirtyable_memory(void) |
| 326 | { |
| 327 | unsigned long x; |
| 328 | |
| 329 | x = global_zone_page_state(NR_FREE_PAGES); |
| 330 | /* |
| 331 | * Pages reserved for the kernel should not be considered |
| 332 | * dirtyable, to prevent a situation where reclaim has to |
| 333 | * clean pages in order to balance the zones. |
| 334 | */ |
| 335 | x -= min(x, totalreserve_pages); |
| 336 | |
| 337 | x += global_node_page_state(NR_INACTIVE_FILE); |
| 338 | x += global_node_page_state(NR_ACTIVE_FILE); |
| 339 | |
| 340 | if (!vm_highmem_is_dirtyable) |
| 341 | x -= highmem_dirtyable_memory(x); |
| 342 | |
| 343 | return x + 1; /* Ensure that we never return 0 */ |
| 344 | } |
| 345 | |
| 346 | /** |
| 347 | * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain |
| 348 | * @dtc: dirty_throttle_control of interest |
| 349 | * |
| 350 | * Calculate @dtc->thresh and ->bg_thresh considering |
| 351 | * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller |
| 352 | * must ensure that @dtc->avail is set before calling this function. The |
| 353 | * dirty limits will be lifted by 1/4 for real-time tasks. |
| 354 | */ |
| 355 | static void domain_dirty_limits(struct dirty_throttle_control *dtc) |
| 356 | { |
| 357 | const unsigned long available_memory = dtc->avail; |
| 358 | struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); |
| 359 | unsigned long bytes = vm_dirty_bytes; |
| 360 | unsigned long bg_bytes = dirty_background_bytes; |
| 361 | /* convert ratios to per-PAGE_SIZE for higher precision */ |
| 362 | unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; |
| 363 | unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; |
| 364 | unsigned long thresh; |
| 365 | unsigned long bg_thresh; |
| 366 | struct task_struct *tsk; |
| 367 | |
| 368 | /* gdtc is !NULL iff @dtc is for memcg domain */ |
| 369 | if (gdtc) { |
| 370 | unsigned long global_avail = gdtc->avail; |
| 371 | |
| 372 | /* |
| 373 | * The byte settings can't be applied directly to memcg |
| 374 | * domains. Convert them to ratios by scaling against |
| 375 | * globally available memory. As the ratios are in |
| 376 | * per-PAGE_SIZE, they can be obtained by dividing bytes by |
| 377 | * number of pages. |
| 378 | */ |
| 379 | if (bytes) |
| 380 | ratio = min(DIV_ROUND_UP(bytes, global_avail), |
| 381 | PAGE_SIZE); |
| 382 | if (bg_bytes) |
| 383 | bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), |
| 384 | PAGE_SIZE); |
| 385 | bytes = bg_bytes = 0; |
| 386 | } |
| 387 | |
| 388 | if (bytes) |
| 389 | thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); |
| 390 | else |
| 391 | thresh = (ratio * available_memory) / PAGE_SIZE; |
| 392 | |
| 393 | if (bg_bytes) |
| 394 | bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); |
| 395 | else |
| 396 | bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; |
| 397 | |
| 398 | tsk = current; |
| 399 | if (rt_or_dl_task(tsk)) { |
| 400 | bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; |
| 401 | thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; |
| 402 | } |
| 403 | /* |
| 404 | * Dirty throttling logic assumes the limits in page units fit into |
| 405 | * 32-bits. This gives 16TB dirty limits max which is hopefully enough. |
| 406 | */ |
| 407 | if (thresh > UINT_MAX) |
| 408 | thresh = UINT_MAX; |
| 409 | /* This makes sure bg_thresh is within 32-bits as well */ |
| 410 | if (bg_thresh >= thresh) |
| 411 | bg_thresh = thresh / 2; |
| 412 | dtc->thresh = thresh; |
| 413 | dtc->bg_thresh = bg_thresh; |
| 414 | |
| 415 | /* we should eventually report the domain in the TP */ |
| 416 | if (!gdtc) |
| 417 | trace_global_dirty_state(bg_thresh, thresh); |
| 418 | } |
| 419 | |
| 420 | /** |
| 421 | * global_dirty_limits - background-writeback and dirty-throttling thresholds |
| 422 | * @pbackground: out parameter for bg_thresh |
| 423 | * @pdirty: out parameter for thresh |
| 424 | * |
| 425 | * Calculate bg_thresh and thresh for global_wb_domain. See |
| 426 | * domain_dirty_limits() for details. |
| 427 | */ |
| 428 | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) |
| 429 | { |
| 430 | struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; |
| 431 | |
| 432 | gdtc.avail = global_dirtyable_memory(); |
| 433 | domain_dirty_limits(&gdtc); |
| 434 | |
| 435 | *pbackground = gdtc.bg_thresh; |
| 436 | *pdirty = gdtc.thresh; |
| 437 | } |
| 438 | |
| 439 | /** |
| 440 | * node_dirty_limit - maximum number of dirty pages allowed in a node |
| 441 | * @pgdat: the node |
| 442 | * |
| 443 | * Return: the maximum number of dirty pages allowed in a node, based |
| 444 | * on the node's dirtyable memory. |
| 445 | */ |
| 446 | static unsigned long node_dirty_limit(struct pglist_data *pgdat) |
| 447 | { |
| 448 | unsigned long node_memory = node_dirtyable_memory(pgdat); |
| 449 | struct task_struct *tsk = current; |
| 450 | unsigned long dirty; |
| 451 | |
| 452 | if (vm_dirty_bytes) |
| 453 | dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * |
| 454 | node_memory / global_dirtyable_memory(); |
| 455 | else |
| 456 | dirty = vm_dirty_ratio * node_memory / 100; |
| 457 | |
| 458 | if (rt_or_dl_task(tsk)) |
| 459 | dirty += dirty / 4; |
| 460 | |
| 461 | /* |
| 462 | * Dirty throttling logic assumes the limits in page units fit into |
| 463 | * 32-bits. This gives 16TB dirty limits max which is hopefully enough. |
| 464 | */ |
| 465 | return min_t(unsigned long, dirty, UINT_MAX); |
| 466 | } |
| 467 | |
| 468 | /** |
| 469 | * node_dirty_ok - tells whether a node is within its dirty limits |
| 470 | * @pgdat: the node to check |
| 471 | * |
| 472 | * Return: %true when the dirty pages in @pgdat are within the node's |
| 473 | * dirty limit, %false if the limit is exceeded. |
| 474 | */ |
| 475 | bool node_dirty_ok(struct pglist_data *pgdat) |
| 476 | { |
| 477 | unsigned long limit = node_dirty_limit(pgdat); |
| 478 | unsigned long nr_pages = 0; |
| 479 | |
| 480 | nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); |
| 481 | nr_pages += node_page_state(pgdat, NR_WRITEBACK); |
| 482 | |
| 483 | return nr_pages <= limit; |
| 484 | } |
| 485 | |
| 486 | #ifdef CONFIG_SYSCTL |
| 487 | static int dirty_background_ratio_handler(const struct ctl_table *table, int write, |
| 488 | void *buffer, size_t *lenp, loff_t *ppos) |
| 489 | { |
| 490 | int ret; |
| 491 | |
| 492 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 493 | if (ret == 0 && write) |
| 494 | dirty_background_bytes = 0; |
| 495 | return ret; |
| 496 | } |
| 497 | |
| 498 | static int dirty_background_bytes_handler(const struct ctl_table *table, int write, |
| 499 | void *buffer, size_t *lenp, loff_t *ppos) |
| 500 | { |
| 501 | int ret; |
| 502 | unsigned long old_bytes = dirty_background_bytes; |
| 503 | |
| 504 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
| 505 | if (ret == 0 && write) { |
| 506 | if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > |
| 507 | UINT_MAX) { |
| 508 | dirty_background_bytes = old_bytes; |
| 509 | return -ERANGE; |
| 510 | } |
| 511 | dirty_background_ratio = 0; |
| 512 | } |
| 513 | return ret; |
| 514 | } |
| 515 | |
| 516 | static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer, |
| 517 | size_t *lenp, loff_t *ppos) |
| 518 | { |
| 519 | int old_ratio = vm_dirty_ratio; |
| 520 | int ret; |
| 521 | |
| 522 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 523 | if (ret == 0 && write && vm_dirty_ratio != old_ratio) { |
| 524 | vm_dirty_bytes = 0; |
| 525 | writeback_set_ratelimit(); |
| 526 | } |
| 527 | return ret; |
| 528 | } |
| 529 | |
| 530 | static int dirty_bytes_handler(const struct ctl_table *table, int write, |
| 531 | void *buffer, size_t *lenp, loff_t *ppos) |
| 532 | { |
| 533 | unsigned long old_bytes = vm_dirty_bytes; |
| 534 | int ret; |
| 535 | |
| 536 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
| 537 | if (ret == 0 && write && vm_dirty_bytes != old_bytes) { |
| 538 | if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { |
| 539 | vm_dirty_bytes = old_bytes; |
| 540 | return -ERANGE; |
| 541 | } |
| 542 | writeback_set_ratelimit(); |
| 543 | vm_dirty_ratio = 0; |
| 544 | } |
| 545 | return ret; |
| 546 | } |
| 547 | #endif |
| 548 | |
| 549 | static unsigned long wp_next_time(unsigned long cur_time) |
| 550 | { |
| 551 | cur_time += VM_COMPLETIONS_PERIOD_LEN; |
| 552 | /* 0 has a special meaning... */ |
| 553 | if (!cur_time) |
| 554 | return 1; |
| 555 | return cur_time; |
| 556 | } |
| 557 | |
| 558 | static void wb_domain_writeout_add(struct wb_domain *dom, |
| 559 | struct fprop_local_percpu *completions, |
| 560 | unsigned int max_prop_frac, long nr) |
| 561 | { |
| 562 | __fprop_add_percpu_max(&dom->completions, completions, |
| 563 | max_prop_frac, nr); |
| 564 | /* First event after period switching was turned off? */ |
| 565 | if (unlikely(!dom->period_time)) { |
| 566 | /* |
| 567 | * We can race with other wb_domain_writeout_add calls here but |
| 568 | * it does not cause any harm since the resulting time when |
| 569 | * timer will fire and what is in writeout_period_time will be |
| 570 | * roughly the same. |
| 571 | */ |
| 572 | dom->period_time = wp_next_time(jiffies); |
| 573 | mod_timer(&dom->period_timer, dom->period_time); |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | * Increment @wb's writeout completion count and the global writeout |
| 579 | * completion count. Called from __folio_end_writeback(). |
| 580 | */ |
| 581 | static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) |
| 582 | { |
| 583 | struct wb_domain *cgdom; |
| 584 | |
| 585 | wb_stat_mod(wb, WB_WRITTEN, nr); |
| 586 | wb_domain_writeout_add(&global_wb_domain, &wb->completions, |
| 587 | wb->bdi->max_prop_frac, nr); |
| 588 | |
| 589 | cgdom = mem_cgroup_wb_domain(wb); |
| 590 | if (cgdom) |
| 591 | wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), |
| 592 | wb->bdi->max_prop_frac, nr); |
| 593 | } |
| 594 | |
| 595 | void wb_writeout_inc(struct bdi_writeback *wb) |
| 596 | { |
| 597 | unsigned long flags; |
| 598 | |
| 599 | local_irq_save(flags); |
| 600 | __wb_writeout_add(wb, 1); |
| 601 | local_irq_restore(flags); |
| 602 | } |
| 603 | EXPORT_SYMBOL_GPL(wb_writeout_inc); |
| 604 | |
| 605 | /* |
| 606 | * On idle system, we can be called long after we scheduled because we use |
| 607 | * deferred timers so count with missed periods. |
| 608 | */ |
| 609 | static void writeout_period(struct timer_list *t) |
| 610 | { |
| 611 | struct wb_domain *dom = timer_container_of(dom, t, period_timer); |
| 612 | int miss_periods = (jiffies - dom->period_time) / |
| 613 | VM_COMPLETIONS_PERIOD_LEN; |
| 614 | |
| 615 | if (fprop_new_period(&dom->completions, miss_periods + 1)) { |
| 616 | dom->period_time = wp_next_time(dom->period_time + |
| 617 | miss_periods * VM_COMPLETIONS_PERIOD_LEN); |
| 618 | mod_timer(&dom->period_timer, dom->period_time); |
| 619 | } else { |
| 620 | /* |
| 621 | * Aging has zeroed all fractions. Stop wasting CPU on period |
| 622 | * updates. |
| 623 | */ |
| 624 | dom->period_time = 0; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | int wb_domain_init(struct wb_domain *dom, gfp_t gfp) |
| 629 | { |
| 630 | memset(dom, 0, sizeof(*dom)); |
| 631 | |
| 632 | spin_lock_init(&dom->lock); |
| 633 | |
| 634 | timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); |
| 635 | |
| 636 | dom->dirty_limit_tstamp = jiffies; |
| 637 | |
| 638 | return fprop_global_init(&dom->completions, gfp); |
| 639 | } |
| 640 | |
| 641 | #ifdef CONFIG_CGROUP_WRITEBACK |
| 642 | void wb_domain_exit(struct wb_domain *dom) |
| 643 | { |
| 644 | timer_delete_sync(&dom->period_timer); |
| 645 | fprop_global_destroy(&dom->completions); |
| 646 | } |
| 647 | #endif |
| 648 | |
| 649 | /* |
| 650 | * bdi_min_ratio keeps the sum of the minimum dirty shares of all |
| 651 | * registered backing devices, which, for obvious reasons, can not |
| 652 | * exceed 100%. |
| 653 | */ |
| 654 | static unsigned int bdi_min_ratio; |
| 655 | |
| 656 | static int bdi_check_pages_limit(unsigned long pages) |
| 657 | { |
| 658 | unsigned long max_dirty_pages = global_dirtyable_memory(); |
| 659 | |
| 660 | if (pages > max_dirty_pages) |
| 661 | return -EINVAL; |
| 662 | |
| 663 | return 0; |
| 664 | } |
| 665 | |
| 666 | static unsigned long bdi_ratio_from_pages(unsigned long pages) |
| 667 | { |
| 668 | unsigned long background_thresh; |
| 669 | unsigned long dirty_thresh; |
| 670 | unsigned long ratio; |
| 671 | |
| 672 | global_dirty_limits(&background_thresh, &dirty_thresh); |
| 673 | if (!dirty_thresh) |
| 674 | return -EINVAL; |
| 675 | ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); |
| 676 | |
| 677 | return ratio; |
| 678 | } |
| 679 | |
| 680 | static u64 bdi_get_bytes(unsigned int ratio) |
| 681 | { |
| 682 | unsigned long background_thresh; |
| 683 | unsigned long dirty_thresh; |
| 684 | u64 bytes; |
| 685 | |
| 686 | global_dirty_limits(&background_thresh, &dirty_thresh); |
| 687 | bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; |
| 688 | |
| 689 | return bytes; |
| 690 | } |
| 691 | |
| 692 | static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) |
| 693 | { |
| 694 | unsigned int delta; |
| 695 | int ret = 0; |
| 696 | |
| 697 | if (min_ratio > 100 * BDI_RATIO_SCALE) |
| 698 | return -EINVAL; |
| 699 | |
| 700 | spin_lock_bh(&bdi_lock); |
| 701 | if (min_ratio > bdi->max_ratio) { |
| 702 | ret = -EINVAL; |
| 703 | } else { |
| 704 | if (min_ratio < bdi->min_ratio) { |
| 705 | delta = bdi->min_ratio - min_ratio; |
| 706 | bdi_min_ratio -= delta; |
| 707 | bdi->min_ratio = min_ratio; |
| 708 | } else { |
| 709 | delta = min_ratio - bdi->min_ratio; |
| 710 | if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { |
| 711 | bdi_min_ratio += delta; |
| 712 | bdi->min_ratio = min_ratio; |
| 713 | } else { |
| 714 | ret = -EINVAL; |
| 715 | } |
| 716 | } |
| 717 | } |
| 718 | spin_unlock_bh(&bdi_lock); |
| 719 | |
| 720 | return ret; |
| 721 | } |
| 722 | |
| 723 | static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) |
| 724 | { |
| 725 | int ret = 0; |
| 726 | |
| 727 | if (max_ratio > 100 * BDI_RATIO_SCALE) |
| 728 | return -EINVAL; |
| 729 | |
| 730 | spin_lock_bh(&bdi_lock); |
| 731 | if (bdi->min_ratio > max_ratio) { |
| 732 | ret = -EINVAL; |
| 733 | } else { |
| 734 | bdi->max_ratio = max_ratio; |
| 735 | bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / |
| 736 | (100 * BDI_RATIO_SCALE); |
| 737 | } |
| 738 | spin_unlock_bh(&bdi_lock); |
| 739 | |
| 740 | return ret; |
| 741 | } |
| 742 | |
| 743 | int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) |
| 744 | { |
| 745 | return __bdi_set_min_ratio(bdi, min_ratio); |
| 746 | } |
| 747 | |
| 748 | int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) |
| 749 | { |
| 750 | return __bdi_set_max_ratio(bdi, max_ratio); |
| 751 | } |
| 752 | |
| 753 | int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) |
| 754 | { |
| 755 | return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); |
| 756 | } |
| 757 | |
| 758 | int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) |
| 759 | { |
| 760 | return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); |
| 761 | } |
| 762 | EXPORT_SYMBOL(bdi_set_max_ratio); |
| 763 | |
| 764 | u64 bdi_get_min_bytes(struct backing_dev_info *bdi) |
| 765 | { |
| 766 | return bdi_get_bytes(bdi->min_ratio); |
| 767 | } |
| 768 | |
| 769 | int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) |
| 770 | { |
| 771 | int ret; |
| 772 | unsigned long pages = min_bytes >> PAGE_SHIFT; |
| 773 | long min_ratio; |
| 774 | |
| 775 | ret = bdi_check_pages_limit(pages); |
| 776 | if (ret) |
| 777 | return ret; |
| 778 | |
| 779 | min_ratio = bdi_ratio_from_pages(pages); |
| 780 | if (min_ratio < 0) |
| 781 | return min_ratio; |
| 782 | return __bdi_set_min_ratio(bdi, min_ratio); |
| 783 | } |
| 784 | |
| 785 | u64 bdi_get_max_bytes(struct backing_dev_info *bdi) |
| 786 | { |
| 787 | return bdi_get_bytes(bdi->max_ratio); |
| 788 | } |
| 789 | |
| 790 | int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) |
| 791 | { |
| 792 | int ret; |
| 793 | unsigned long pages = max_bytes >> PAGE_SHIFT; |
| 794 | long max_ratio; |
| 795 | |
| 796 | ret = bdi_check_pages_limit(pages); |
| 797 | if (ret) |
| 798 | return ret; |
| 799 | |
| 800 | max_ratio = bdi_ratio_from_pages(pages); |
| 801 | if (max_ratio < 0) |
| 802 | return max_ratio; |
| 803 | return __bdi_set_max_ratio(bdi, max_ratio); |
| 804 | } |
| 805 | |
| 806 | int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) |
| 807 | { |
| 808 | if (strict_limit > 1) |
| 809 | return -EINVAL; |
| 810 | |
| 811 | spin_lock_bh(&bdi_lock); |
| 812 | if (strict_limit) |
| 813 | bdi->capabilities |= BDI_CAP_STRICTLIMIT; |
| 814 | else |
| 815 | bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; |
| 816 | spin_unlock_bh(&bdi_lock); |
| 817 | |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | static unsigned long dirty_freerun_ceiling(unsigned long thresh, |
| 822 | unsigned long bg_thresh) |
| 823 | { |
| 824 | return (thresh + bg_thresh) / 2; |
| 825 | } |
| 826 | |
| 827 | static unsigned long hard_dirty_limit(struct wb_domain *dom, |
| 828 | unsigned long thresh) |
| 829 | { |
| 830 | return max(thresh, dom->dirty_limit); |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * Memory which can be further allocated to a memcg domain is capped by |
| 835 | * system-wide clean memory excluding the amount being used in the domain. |
| 836 | */ |
| 837 | static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, |
| 838 | unsigned long filepages, unsigned long headroom) |
| 839 | { |
| 840 | struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); |
| 841 | unsigned long clean = filepages - min(filepages, mdtc->dirty); |
| 842 | unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); |
| 843 | unsigned long other_clean = global_clean - min(global_clean, clean); |
| 844 | |
| 845 | mdtc->avail = filepages + min(headroom, other_clean); |
| 846 | } |
| 847 | |
| 848 | static inline bool dtc_is_global(struct dirty_throttle_control *dtc) |
| 849 | { |
| 850 | return mdtc_gdtc(dtc) == NULL; |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | * Dirty background will ignore pages being written as we're trying to |
| 855 | * decide whether to put more under writeback. |
| 856 | */ |
| 857 | static void domain_dirty_avail(struct dirty_throttle_control *dtc, |
| 858 | bool include_writeback) |
| 859 | { |
| 860 | if (dtc_is_global(dtc)) { |
| 861 | dtc->avail = global_dirtyable_memory(); |
| 862 | dtc->dirty = global_node_page_state(NR_FILE_DIRTY); |
| 863 | if (include_writeback) |
| 864 | dtc->dirty += global_node_page_state(NR_WRITEBACK); |
| 865 | } else { |
| 866 | unsigned long filepages = 0, headroom = 0, writeback = 0; |
| 867 | |
| 868 | mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty, |
| 869 | &writeback); |
| 870 | if (include_writeback) |
| 871 | dtc->dirty += writeback; |
| 872 | mdtc_calc_avail(dtc, filepages, headroom); |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | /** |
| 877 | * __wb_calc_thresh - @wb's share of dirty threshold |
| 878 | * @dtc: dirty_throttle_context of interest |
| 879 | * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc |
| 880 | * |
| 881 | * Note that balance_dirty_pages() will only seriously take dirty throttling |
| 882 | * threshold as a hard limit when sleeping max_pause per page is not enough |
| 883 | * to keep the dirty pages under control. For example, when the device is |
| 884 | * completely stalled due to some error conditions, or when there are 1000 |
| 885 | * dd tasks writing to a slow 10MB/s USB key. |
| 886 | * In the other normal situations, it acts more gently by throttling the tasks |
| 887 | * more (rather than completely block them) when the wb dirty pages go high. |
| 888 | * |
| 889 | * It allocates high/low dirty limits to fast/slow devices, in order to prevent |
| 890 | * - starving fast devices |
| 891 | * - piling up dirty pages (that will take long time to sync) on slow devices |
| 892 | * |
| 893 | * The wb's share of dirty limit will be adapting to its throughput and |
| 894 | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. |
| 895 | * |
| 896 | * Return: @wb's dirty limit in pages. For dirty throttling limit, the term |
| 897 | * "dirty" in the context of dirty balancing includes all PG_dirty and |
| 898 | * PG_writeback pages. |
| 899 | */ |
| 900 | static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, |
| 901 | unsigned long thresh) |
| 902 | { |
| 903 | struct wb_domain *dom = dtc_dom(dtc); |
| 904 | struct bdi_writeback *wb = dtc->wb; |
| 905 | u64 wb_thresh; |
| 906 | u64 wb_max_thresh; |
| 907 | unsigned long numerator, denominator; |
| 908 | unsigned long wb_min_ratio, wb_max_ratio; |
| 909 | |
| 910 | /* |
| 911 | * Calculate this wb's share of the thresh ratio. |
| 912 | */ |
| 913 | fprop_fraction_percpu(&dom->completions, dtc->wb_completions, |
| 914 | &numerator, &denominator); |
| 915 | |
| 916 | wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); |
| 917 | wb_thresh *= numerator; |
| 918 | wb_thresh = div64_ul(wb_thresh, denominator); |
| 919 | |
| 920 | wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio); |
| 921 | |
| 922 | wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); |
| 923 | |
| 924 | /* |
| 925 | * It's very possible that wb_thresh is close to 0 not because the |
| 926 | * device is slow, but that it has remained inactive for long time. |
| 927 | * Honour such devices a reasonable good (hopefully IO efficient) |
| 928 | * threshold, so that the occasional writes won't be blocked and active |
| 929 | * writes can rampup the threshold quickly. |
| 930 | */ |
| 931 | if (thresh > dtc->dirty) { |
| 932 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) |
| 933 | wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100); |
| 934 | else |
| 935 | wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8); |
| 936 | } |
| 937 | |
| 938 | wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); |
| 939 | if (wb_thresh > wb_max_thresh) |
| 940 | wb_thresh = wb_max_thresh; |
| 941 | |
| 942 | return wb_thresh; |
| 943 | } |
| 944 | |
| 945 | unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) |
| 946 | { |
| 947 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; |
| 948 | |
| 949 | domain_dirty_avail(&gdtc, true); |
| 950 | return __wb_calc_thresh(&gdtc, thresh); |
| 951 | } |
| 952 | |
| 953 | unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) |
| 954 | { |
| 955 | struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; |
| 956 | struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; |
| 957 | |
| 958 | domain_dirty_avail(&gdtc, true); |
| 959 | domain_dirty_avail(&mdtc, true); |
| 960 | domain_dirty_limits(&mdtc); |
| 961 | |
| 962 | return __wb_calc_thresh(&mdtc, mdtc.thresh); |
| 963 | } |
| 964 | |
| 965 | /* |
| 966 | * setpoint - dirty 3 |
| 967 | * f(dirty) := 1.0 + (----------------) |
| 968 | * limit - setpoint |
| 969 | * |
| 970 | * it's a 3rd order polynomial that subjects to |
| 971 | * |
| 972 | * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast |
| 973 | * (2) f(setpoint) = 1.0 => the balance point |
| 974 | * (3) f(limit) = 0 => the hard limit |
| 975 | * (4) df/dx <= 0 => negative feedback control |
| 976 | * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) |
| 977 | * => fast response on large errors; small oscillation near setpoint |
| 978 | */ |
| 979 | static long long pos_ratio_polynom(unsigned long setpoint, |
| 980 | unsigned long dirty, |
| 981 | unsigned long limit) |
| 982 | { |
| 983 | long long pos_ratio; |
| 984 | long x; |
| 985 | |
| 986 | x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, |
| 987 | (limit - setpoint) | 1); |
| 988 | pos_ratio = x; |
| 989 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; |
| 990 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; |
| 991 | pos_ratio += 1 << RATELIMIT_CALC_SHIFT; |
| 992 | |
| 993 | return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); |
| 994 | } |
| 995 | |
| 996 | /* |
| 997 | * Dirty position control. |
| 998 | * |
| 999 | * (o) global/bdi setpoints |
| 1000 | * |
| 1001 | * We want the dirty pages be balanced around the global/wb setpoints. |
| 1002 | * When the number of dirty pages is higher/lower than the setpoint, the |
| 1003 | * dirty position control ratio (and hence task dirty ratelimit) will be |
| 1004 | * decreased/increased to bring the dirty pages back to the setpoint. |
| 1005 | * |
| 1006 | * pos_ratio = 1 << RATELIMIT_CALC_SHIFT |
| 1007 | * |
| 1008 | * if (dirty < setpoint) scale up pos_ratio |
| 1009 | * if (dirty > setpoint) scale down pos_ratio |
| 1010 | * |
| 1011 | * if (wb_dirty < wb_setpoint) scale up pos_ratio |
| 1012 | * if (wb_dirty > wb_setpoint) scale down pos_ratio |
| 1013 | * |
| 1014 | * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT |
| 1015 | * |
| 1016 | * (o) global control line |
| 1017 | * |
| 1018 | * ^ pos_ratio |
| 1019 | * | |
| 1020 | * | |<===== global dirty control scope ======>| |
| 1021 | * 2.0 * * * * * * * |
| 1022 | * | .* |
| 1023 | * | . * |
| 1024 | * | . * |
| 1025 | * | . * |
| 1026 | * | . * |
| 1027 | * | . * |
| 1028 | * 1.0 ................................* |
| 1029 | * | . . * |
| 1030 | * | . . * |
| 1031 | * | . . * |
| 1032 | * | . . * |
| 1033 | * | . . * |
| 1034 | * 0 +------------.------------------.----------------------*-------------> |
| 1035 | * freerun^ setpoint^ limit^ dirty pages |
| 1036 | * |
| 1037 | * (o) wb control line |
| 1038 | * |
| 1039 | * ^ pos_ratio |
| 1040 | * | |
| 1041 | * | * |
| 1042 | * | * |
| 1043 | * | * |
| 1044 | * | * |
| 1045 | * | * |<=========== span ============>| |
| 1046 | * 1.0 .......................* |
| 1047 | * | . * |
| 1048 | * | . * |
| 1049 | * | . * |
| 1050 | * | . * |
| 1051 | * | . * |
| 1052 | * | . * |
| 1053 | * | . * |
| 1054 | * | . * |
| 1055 | * | . * |
| 1056 | * | . * |
| 1057 | * | . * |
| 1058 | * 1/4 ...............................................* * * * * * * * * * * * |
| 1059 | * | . . |
| 1060 | * | . . |
| 1061 | * | . . |
| 1062 | * 0 +----------------------.-------------------------------.-------------> |
| 1063 | * wb_setpoint^ x_intercept^ |
| 1064 | * |
| 1065 | * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can |
| 1066 | * be smoothly throttled down to normal if it starts high in situations like |
| 1067 | * - start writing to a slow SD card and a fast disk at the same time. The SD |
| 1068 | * card's wb_dirty may rush to many times higher than wb_setpoint. |
| 1069 | * - the wb dirty thresh drops quickly due to change of JBOD workload |
| 1070 | */ |
| 1071 | static void wb_position_ratio(struct dirty_throttle_control *dtc) |
| 1072 | { |
| 1073 | struct bdi_writeback *wb = dtc->wb; |
| 1074 | unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); |
| 1075 | unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); |
| 1076 | unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); |
| 1077 | unsigned long wb_thresh = dtc->wb_thresh; |
| 1078 | unsigned long x_intercept; |
| 1079 | unsigned long setpoint; /* dirty pages' target balance point */ |
| 1080 | unsigned long wb_setpoint; |
| 1081 | unsigned long span; |
| 1082 | long long pos_ratio; /* for scaling up/down the rate limit */ |
| 1083 | long x; |
| 1084 | |
| 1085 | dtc->pos_ratio = 0; |
| 1086 | |
| 1087 | if (unlikely(dtc->dirty >= limit)) |
| 1088 | return; |
| 1089 | |
| 1090 | /* |
| 1091 | * global setpoint |
| 1092 | * |
| 1093 | * See comment for pos_ratio_polynom(). |
| 1094 | */ |
| 1095 | setpoint = (freerun + limit) / 2; |
| 1096 | pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); |
| 1097 | |
| 1098 | /* |
| 1099 | * The strictlimit feature is a tool preventing mistrusted filesystems |
| 1100 | * from growing a large number of dirty pages before throttling. For |
| 1101 | * such filesystems balance_dirty_pages always checks wb counters |
| 1102 | * against wb limits. Even if global "nr_dirty" is under "freerun". |
| 1103 | * This is especially important for fuse which sets bdi->max_ratio to |
| 1104 | * 1% by default. Without strictlimit feature, fuse writeback may |
| 1105 | * consume arbitrary amount of RAM because it is accounted in |
| 1106 | * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". |
| 1107 | * |
| 1108 | * Here, in wb_position_ratio(), we calculate pos_ratio based on |
| 1109 | * two values: wb_dirty and wb_thresh. Let's consider an example: |
| 1110 | * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global |
| 1111 | * limits are set by default to 10% and 20% (background and throttle). |
| 1112 | * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. |
| 1113 | * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is |
| 1114 | * about ~6K pages (as the average of background and throttle wb |
| 1115 | * limits). The 3rd order polynomial will provide positive feedback if |
| 1116 | * wb_dirty is under wb_setpoint and vice versa. |
| 1117 | * |
| 1118 | * Note, that we cannot use global counters in these calculations |
| 1119 | * because we want to throttle process writing to a strictlimit wb |
| 1120 | * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB |
| 1121 | * in the example above). |
| 1122 | */ |
| 1123 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { |
| 1124 | long long wb_pos_ratio; |
| 1125 | |
| 1126 | if (dtc->wb_dirty >= wb_thresh) |
| 1127 | return; |
| 1128 | |
| 1129 | wb_setpoint = dirty_freerun_ceiling(wb_thresh, |
| 1130 | dtc->wb_bg_thresh); |
| 1131 | |
| 1132 | if (wb_setpoint == 0 || wb_setpoint == wb_thresh) |
| 1133 | return; |
| 1134 | |
| 1135 | wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, |
| 1136 | wb_thresh); |
| 1137 | |
| 1138 | /* |
| 1139 | * Typically, for strictlimit case, wb_setpoint << setpoint |
| 1140 | * and pos_ratio >> wb_pos_ratio. In the other words global |
| 1141 | * state ("dirty") is not limiting factor and we have to |
| 1142 | * make decision based on wb counters. But there is an |
| 1143 | * important case when global pos_ratio should get precedence: |
| 1144 | * global limits are exceeded (e.g. due to activities on other |
| 1145 | * wb's) while given strictlimit wb is below limit. |
| 1146 | * |
| 1147 | * "pos_ratio * wb_pos_ratio" would work for the case above, |
| 1148 | * but it would look too non-natural for the case of all |
| 1149 | * activity in the system coming from a single strictlimit wb |
| 1150 | * with bdi->max_ratio == 100%. |
| 1151 | * |
| 1152 | * Note that min() below somewhat changes the dynamics of the |
| 1153 | * control system. Normally, pos_ratio value can be well over 3 |
| 1154 | * (when globally we are at freerun and wb is well below wb |
| 1155 | * setpoint). Now the maximum pos_ratio in the same situation |
| 1156 | * is 2. We might want to tweak this if we observe the control |
| 1157 | * system is too slow to adapt. |
| 1158 | */ |
| 1159 | dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); |
| 1160 | return; |
| 1161 | } |
| 1162 | |
| 1163 | /* |
| 1164 | * We have computed basic pos_ratio above based on global situation. If |
| 1165 | * the wb is over/under its share of dirty pages, we want to scale |
| 1166 | * pos_ratio further down/up. That is done by the following mechanism. |
| 1167 | */ |
| 1168 | |
| 1169 | /* |
| 1170 | * wb setpoint |
| 1171 | * |
| 1172 | * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) |
| 1173 | * |
| 1174 | * x_intercept - wb_dirty |
| 1175 | * := -------------------------- |
| 1176 | * x_intercept - wb_setpoint |
| 1177 | * |
| 1178 | * The main wb control line is a linear function that subjects to |
| 1179 | * |
| 1180 | * (1) f(wb_setpoint) = 1.0 |
| 1181 | * (2) k = - 1 / (8 * write_bw) (in single wb case) |
| 1182 | * or equally: x_intercept = wb_setpoint + 8 * write_bw |
| 1183 | * |
| 1184 | * For single wb case, the dirty pages are observed to fluctuate |
| 1185 | * regularly within range |
| 1186 | * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] |
| 1187 | * for various filesystems, where (2) can yield in a reasonable 12.5% |
| 1188 | * fluctuation range for pos_ratio. |
| 1189 | * |
| 1190 | * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its |
| 1191 | * own size, so move the slope over accordingly and choose a slope that |
| 1192 | * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. |
| 1193 | */ |
| 1194 | if (unlikely(wb_thresh > dtc->thresh)) |
| 1195 | wb_thresh = dtc->thresh; |
| 1196 | /* |
| 1197 | * scale global setpoint to wb's: |
| 1198 | * wb_setpoint = setpoint * wb_thresh / thresh |
| 1199 | */ |
| 1200 | x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); |
| 1201 | wb_setpoint = setpoint * (u64)x >> 16; |
| 1202 | /* |
| 1203 | * Use span=(8*write_bw) in single wb case as indicated by |
| 1204 | * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. |
| 1205 | * |
| 1206 | * wb_thresh thresh - wb_thresh |
| 1207 | * span = --------- * (8 * write_bw) + ------------------ * wb_thresh |
| 1208 | * thresh thresh |
| 1209 | */ |
| 1210 | span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; |
| 1211 | x_intercept = wb_setpoint + span; |
| 1212 | |
| 1213 | if (dtc->wb_dirty < x_intercept - span / 4) { |
| 1214 | pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), |
| 1215 | (x_intercept - wb_setpoint) | 1); |
| 1216 | } else |
| 1217 | pos_ratio /= 4; |
| 1218 | |
| 1219 | /* |
| 1220 | * wb reserve area, safeguard against dirty pool underrun and disk idle |
| 1221 | * It may push the desired control point of global dirty pages higher |
| 1222 | * than setpoint. |
| 1223 | */ |
| 1224 | x_intercept = wb_thresh / 2; |
| 1225 | if (dtc->wb_dirty < x_intercept) { |
| 1226 | if (dtc->wb_dirty > x_intercept / 8) |
| 1227 | pos_ratio = div_u64(pos_ratio * x_intercept, |
| 1228 | dtc->wb_dirty); |
| 1229 | else |
| 1230 | pos_ratio *= 8; |
| 1231 | } |
| 1232 | |
| 1233 | dtc->pos_ratio = pos_ratio; |
| 1234 | } |
| 1235 | |
| 1236 | static void wb_update_write_bandwidth(struct bdi_writeback *wb, |
| 1237 | unsigned long elapsed, |
| 1238 | unsigned long written) |
| 1239 | { |
| 1240 | const unsigned long period = roundup_pow_of_two(3 * HZ); |
| 1241 | unsigned long avg = wb->avg_write_bandwidth; |
| 1242 | unsigned long old = wb->write_bandwidth; |
| 1243 | u64 bw; |
| 1244 | |
| 1245 | /* |
| 1246 | * bw = written * HZ / elapsed |
| 1247 | * |
| 1248 | * bw * elapsed + write_bandwidth * (period - elapsed) |
| 1249 | * write_bandwidth = --------------------------------------------------- |
| 1250 | * period |
| 1251 | * |
| 1252 | * @written may have decreased due to folio_redirty_for_writepage(). |
| 1253 | * Avoid underflowing @bw calculation. |
| 1254 | */ |
| 1255 | bw = written - min(written, wb->written_stamp); |
| 1256 | bw *= HZ; |
| 1257 | if (unlikely(elapsed > period)) { |
| 1258 | bw = div64_ul(bw, elapsed); |
| 1259 | avg = bw; |
| 1260 | goto out; |
| 1261 | } |
| 1262 | bw += (u64)wb->write_bandwidth * (period - elapsed); |
| 1263 | bw >>= ilog2(period); |
| 1264 | |
| 1265 | /* |
| 1266 | * one more level of smoothing, for filtering out sudden spikes |
| 1267 | */ |
| 1268 | if (avg > old && old >= (unsigned long)bw) |
| 1269 | avg -= (avg - old) >> 3; |
| 1270 | |
| 1271 | if (avg < old && old <= (unsigned long)bw) |
| 1272 | avg += (old - avg) >> 3; |
| 1273 | |
| 1274 | out: |
| 1275 | /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ |
| 1276 | avg = max(avg, 1LU); |
| 1277 | if (wb_has_dirty_io(wb)) { |
| 1278 | long delta = avg - wb->avg_write_bandwidth; |
| 1279 | WARN_ON_ONCE(atomic_long_add_return(delta, |
| 1280 | &wb->bdi->tot_write_bandwidth) <= 0); |
| 1281 | } |
| 1282 | wb->write_bandwidth = bw; |
| 1283 | WRITE_ONCE(wb->avg_write_bandwidth, avg); |
| 1284 | } |
| 1285 | |
| 1286 | static void update_dirty_limit(struct dirty_throttle_control *dtc) |
| 1287 | { |
| 1288 | struct wb_domain *dom = dtc_dom(dtc); |
| 1289 | unsigned long thresh = dtc->thresh; |
| 1290 | unsigned long limit = dom->dirty_limit; |
| 1291 | |
| 1292 | /* |
| 1293 | * Follow up in one step. |
| 1294 | */ |
| 1295 | if (limit < thresh) { |
| 1296 | limit = thresh; |
| 1297 | goto update; |
| 1298 | } |
| 1299 | |
| 1300 | /* |
| 1301 | * Follow down slowly. Use the higher one as the target, because thresh |
| 1302 | * may drop below dirty. This is exactly the reason to introduce |
| 1303 | * dom->dirty_limit which is guaranteed to lie above the dirty pages. |
| 1304 | */ |
| 1305 | thresh = max(thresh, dtc->dirty); |
| 1306 | if (limit > thresh) { |
| 1307 | limit -= (limit - thresh) >> 5; |
| 1308 | goto update; |
| 1309 | } |
| 1310 | return; |
| 1311 | update: |
| 1312 | dom->dirty_limit = limit; |
| 1313 | } |
| 1314 | |
| 1315 | static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, |
| 1316 | unsigned long now) |
| 1317 | { |
| 1318 | struct wb_domain *dom = dtc_dom(dtc); |
| 1319 | |
| 1320 | /* |
| 1321 | * check locklessly first to optimize away locking for the most time |
| 1322 | */ |
| 1323 | if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) |
| 1324 | return; |
| 1325 | |
| 1326 | spin_lock(&dom->lock); |
| 1327 | if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { |
| 1328 | update_dirty_limit(dtc); |
| 1329 | dom->dirty_limit_tstamp = now; |
| 1330 | } |
| 1331 | spin_unlock(&dom->lock); |
| 1332 | } |
| 1333 | |
| 1334 | /* |
| 1335 | * Maintain wb->dirty_ratelimit, the base dirty throttle rate. |
| 1336 | * |
| 1337 | * Normal wb tasks will be curbed at or below it in long term. |
| 1338 | * Obviously it should be around (write_bw / N) when there are N dd tasks. |
| 1339 | */ |
| 1340 | static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, |
| 1341 | unsigned long dirtied, |
| 1342 | unsigned long elapsed) |
| 1343 | { |
| 1344 | struct bdi_writeback *wb = dtc->wb; |
| 1345 | unsigned long dirty = dtc->dirty; |
| 1346 | unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); |
| 1347 | unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); |
| 1348 | unsigned long setpoint = (freerun + limit) / 2; |
| 1349 | unsigned long write_bw = wb->avg_write_bandwidth; |
| 1350 | unsigned long dirty_ratelimit = wb->dirty_ratelimit; |
| 1351 | unsigned long dirty_rate; |
| 1352 | unsigned long task_ratelimit; |
| 1353 | unsigned long balanced_dirty_ratelimit; |
| 1354 | unsigned long step; |
| 1355 | unsigned long x; |
| 1356 | unsigned long shift; |
| 1357 | |
| 1358 | /* |
| 1359 | * The dirty rate will match the writeout rate in long term, except |
| 1360 | * when dirty pages are truncated by userspace or re-dirtied by FS. |
| 1361 | */ |
| 1362 | dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; |
| 1363 | |
| 1364 | /* |
| 1365 | * task_ratelimit reflects each dd's dirty rate for the past 200ms. |
| 1366 | */ |
| 1367 | task_ratelimit = (u64)dirty_ratelimit * |
| 1368 | dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; |
| 1369 | task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ |
| 1370 | |
| 1371 | /* |
| 1372 | * A linear estimation of the "balanced" throttle rate. The theory is, |
| 1373 | * if there are N dd tasks, each throttled at task_ratelimit, the wb's |
| 1374 | * dirty_rate will be measured to be (N * task_ratelimit). So the below |
| 1375 | * formula will yield the balanced rate limit (write_bw / N). |
| 1376 | * |
| 1377 | * Note that the expanded form is not a pure rate feedback: |
| 1378 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) |
| 1379 | * but also takes pos_ratio into account: |
| 1380 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) |
| 1381 | * |
| 1382 | * (1) is not realistic because pos_ratio also takes part in balancing |
| 1383 | * the dirty rate. Consider the state |
| 1384 | * pos_ratio = 0.5 (3) |
| 1385 | * rate = 2 * (write_bw / N) (4) |
| 1386 | * If (1) is used, it will stuck in that state! Because each dd will |
| 1387 | * be throttled at |
| 1388 | * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) |
| 1389 | * yielding |
| 1390 | * dirty_rate = N * task_ratelimit = write_bw (6) |
| 1391 | * put (6) into (1) we get |
| 1392 | * rate_(i+1) = rate_(i) (7) |
| 1393 | * |
| 1394 | * So we end up using (2) to always keep |
| 1395 | * rate_(i+1) ~= (write_bw / N) (8) |
| 1396 | * regardless of the value of pos_ratio. As long as (8) is satisfied, |
| 1397 | * pos_ratio is able to drive itself to 1.0, which is not only where |
| 1398 | * the dirty count meet the setpoint, but also where the slope of |
| 1399 | * pos_ratio is most flat and hence task_ratelimit is least fluctuated. |
| 1400 | */ |
| 1401 | balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, |
| 1402 | dirty_rate | 1); |
| 1403 | /* |
| 1404 | * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw |
| 1405 | */ |
| 1406 | if (unlikely(balanced_dirty_ratelimit > write_bw)) |
| 1407 | balanced_dirty_ratelimit = write_bw; |
| 1408 | |
| 1409 | /* |
| 1410 | * We could safely do this and return immediately: |
| 1411 | * |
| 1412 | * wb->dirty_ratelimit = balanced_dirty_ratelimit; |
| 1413 | * |
| 1414 | * However to get a more stable dirty_ratelimit, the below elaborated |
| 1415 | * code makes use of task_ratelimit to filter out singular points and |
| 1416 | * limit the step size. |
| 1417 | * |
| 1418 | * The below code essentially only uses the relative value of |
| 1419 | * |
| 1420 | * task_ratelimit - dirty_ratelimit |
| 1421 | * = (pos_ratio - 1) * dirty_ratelimit |
| 1422 | * |
| 1423 | * which reflects the direction and size of dirty position error. |
| 1424 | */ |
| 1425 | |
| 1426 | /* |
| 1427 | * dirty_ratelimit will follow balanced_dirty_ratelimit iff |
| 1428 | * task_ratelimit is on the same side of dirty_ratelimit, too. |
| 1429 | * For example, when |
| 1430 | * - dirty_ratelimit > balanced_dirty_ratelimit |
| 1431 | * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) |
| 1432 | * lowering dirty_ratelimit will help meet both the position and rate |
| 1433 | * control targets. Otherwise, don't update dirty_ratelimit if it will |
| 1434 | * only help meet the rate target. After all, what the users ultimately |
| 1435 | * feel and care are stable dirty rate and small position error. |
| 1436 | * |
| 1437 | * |task_ratelimit - dirty_ratelimit| is used to limit the step size |
| 1438 | * and filter out the singular points of balanced_dirty_ratelimit. Which |
| 1439 | * keeps jumping around randomly and can even leap far away at times |
| 1440 | * due to the small 200ms estimation period of dirty_rate (we want to |
| 1441 | * keep that period small to reduce time lags). |
| 1442 | */ |
| 1443 | step = 0; |
| 1444 | |
| 1445 | /* |
| 1446 | * For strictlimit case, calculations above were based on wb counters |
| 1447 | * and limits (starting from pos_ratio = wb_position_ratio() and up to |
| 1448 | * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). |
| 1449 | * Hence, to calculate "step" properly, we have to use wb_dirty as |
| 1450 | * "dirty" and wb_setpoint as "setpoint". |
| 1451 | */ |
| 1452 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { |
| 1453 | dirty = dtc->wb_dirty; |
| 1454 | setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; |
| 1455 | } |
| 1456 | |
| 1457 | if (dirty < setpoint) { |
| 1458 | x = min3(wb->balanced_dirty_ratelimit, |
| 1459 | balanced_dirty_ratelimit, task_ratelimit); |
| 1460 | if (dirty_ratelimit < x) |
| 1461 | step = x - dirty_ratelimit; |
| 1462 | } else { |
| 1463 | x = max3(wb->balanced_dirty_ratelimit, |
| 1464 | balanced_dirty_ratelimit, task_ratelimit); |
| 1465 | if (dirty_ratelimit > x) |
| 1466 | step = dirty_ratelimit - x; |
| 1467 | } |
| 1468 | |
| 1469 | /* |
| 1470 | * Don't pursue 100% rate matching. It's impossible since the balanced |
| 1471 | * rate itself is constantly fluctuating. So decrease the track speed |
| 1472 | * when it gets close to the target. Helps eliminate pointless tremors. |
| 1473 | */ |
| 1474 | shift = dirty_ratelimit / (2 * step + 1); |
| 1475 | if (shift < BITS_PER_LONG) |
| 1476 | step = DIV_ROUND_UP(step >> shift, 8); |
| 1477 | else |
| 1478 | step = 0; |
| 1479 | |
| 1480 | if (dirty_ratelimit < balanced_dirty_ratelimit) |
| 1481 | dirty_ratelimit += step; |
| 1482 | else |
| 1483 | dirty_ratelimit -= step; |
| 1484 | |
| 1485 | WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); |
| 1486 | wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; |
| 1487 | |
| 1488 | trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); |
| 1489 | } |
| 1490 | |
| 1491 | static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, |
| 1492 | struct dirty_throttle_control *mdtc, |
| 1493 | bool update_ratelimit) |
| 1494 | { |
| 1495 | struct bdi_writeback *wb = gdtc->wb; |
| 1496 | unsigned long now = jiffies; |
| 1497 | unsigned long elapsed; |
| 1498 | unsigned long dirtied; |
| 1499 | unsigned long written; |
| 1500 | |
| 1501 | spin_lock(&wb->list_lock); |
| 1502 | |
| 1503 | /* |
| 1504 | * Lockless checks for elapsed time are racy and delayed update after |
| 1505 | * IO completion doesn't do it at all (to make sure written pages are |
| 1506 | * accounted reasonably quickly). Make sure elapsed >= 1 to avoid |
| 1507 | * division errors. |
| 1508 | */ |
| 1509 | elapsed = max(now - wb->bw_time_stamp, 1UL); |
| 1510 | dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); |
| 1511 | written = percpu_counter_read(&wb->stat[WB_WRITTEN]); |
| 1512 | |
| 1513 | if (update_ratelimit) { |
| 1514 | domain_update_dirty_limit(gdtc, now); |
| 1515 | wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); |
| 1516 | |
| 1517 | /* |
| 1518 | * @mdtc is always NULL if !CGROUP_WRITEBACK but the |
| 1519 | * compiler has no way to figure that out. Help it. |
| 1520 | */ |
| 1521 | if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { |
| 1522 | domain_update_dirty_limit(mdtc, now); |
| 1523 | wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); |
| 1524 | } |
| 1525 | } |
| 1526 | wb_update_write_bandwidth(wb, elapsed, written); |
| 1527 | |
| 1528 | wb->dirtied_stamp = dirtied; |
| 1529 | wb->written_stamp = written; |
| 1530 | WRITE_ONCE(wb->bw_time_stamp, now); |
| 1531 | spin_unlock(&wb->list_lock); |
| 1532 | } |
| 1533 | |
| 1534 | void wb_update_bandwidth(struct bdi_writeback *wb) |
| 1535 | { |
| 1536 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; |
| 1537 | |
| 1538 | __wb_update_bandwidth(&gdtc, NULL, false); |
| 1539 | } |
| 1540 | |
| 1541 | /* Interval after which we consider wb idle and don't estimate bandwidth */ |
| 1542 | #define WB_BANDWIDTH_IDLE_JIF (HZ) |
| 1543 | |
| 1544 | static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) |
| 1545 | { |
| 1546 | unsigned long now = jiffies; |
| 1547 | unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); |
| 1548 | |
| 1549 | if (elapsed > WB_BANDWIDTH_IDLE_JIF && |
| 1550 | !atomic_read(&wb->writeback_inodes)) { |
| 1551 | spin_lock(&wb->list_lock); |
| 1552 | wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); |
| 1553 | wb->written_stamp = wb_stat(wb, WB_WRITTEN); |
| 1554 | WRITE_ONCE(wb->bw_time_stamp, now); |
| 1555 | spin_unlock(&wb->list_lock); |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | /* |
| 1560 | * After a task dirtied this many pages, balance_dirty_pages_ratelimited() |
| 1561 | * will look to see if it needs to start dirty throttling. |
| 1562 | * |
| 1563 | * If dirty_poll_interval is too low, big NUMA machines will call the expensive |
| 1564 | * global_zone_page_state() too often. So scale it near-sqrt to the safety margin |
| 1565 | * (the number of pages we may dirty without exceeding the dirty limits). |
| 1566 | */ |
| 1567 | static unsigned long dirty_poll_interval(unsigned long dirty, |
| 1568 | unsigned long thresh) |
| 1569 | { |
| 1570 | if (thresh > dirty) |
| 1571 | return 1UL << (ilog2(thresh - dirty) >> 1); |
| 1572 | |
| 1573 | return 1; |
| 1574 | } |
| 1575 | |
| 1576 | static unsigned long wb_max_pause(struct bdi_writeback *wb, |
| 1577 | unsigned long wb_dirty) |
| 1578 | { |
| 1579 | unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); |
| 1580 | unsigned long t; |
| 1581 | |
| 1582 | /* |
| 1583 | * Limit pause time for small memory systems. If sleeping for too long |
| 1584 | * time, a small pool of dirty/writeback pages may go empty and disk go |
| 1585 | * idle. |
| 1586 | * |
| 1587 | * 8 serves as the safety ratio. |
| 1588 | */ |
| 1589 | t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); |
| 1590 | t++; |
| 1591 | |
| 1592 | return min_t(unsigned long, t, MAX_PAUSE); |
| 1593 | } |
| 1594 | |
| 1595 | static long wb_min_pause(struct bdi_writeback *wb, |
| 1596 | long max_pause, |
| 1597 | unsigned long task_ratelimit, |
| 1598 | unsigned long dirty_ratelimit, |
| 1599 | int *nr_dirtied_pause) |
| 1600 | { |
| 1601 | long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); |
| 1602 | long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); |
| 1603 | long t; /* target pause */ |
| 1604 | long pause; /* estimated next pause */ |
| 1605 | int pages; /* target nr_dirtied_pause */ |
| 1606 | |
| 1607 | /* target for 10ms pause on 1-dd case */ |
| 1608 | t = max(1, HZ / 100); |
| 1609 | |
| 1610 | /* |
| 1611 | * Scale up pause time for concurrent dirtiers in order to reduce CPU |
| 1612 | * overheads. |
| 1613 | * |
| 1614 | * (N * 10ms) on 2^N concurrent tasks. |
| 1615 | */ |
| 1616 | if (hi > lo) |
| 1617 | t += (hi - lo) * (10 * HZ) / 1024; |
| 1618 | |
| 1619 | /* |
| 1620 | * This is a bit convoluted. We try to base the next nr_dirtied_pause |
| 1621 | * on the much more stable dirty_ratelimit. However the next pause time |
| 1622 | * will be computed based on task_ratelimit and the two rate limits may |
| 1623 | * depart considerably at some time. Especially if task_ratelimit goes |
| 1624 | * below dirty_ratelimit/2 and the target pause is max_pause, the next |
| 1625 | * pause time will be max_pause*2 _trimmed down_ to max_pause. As a |
| 1626 | * result task_ratelimit won't be executed faithfully, which could |
| 1627 | * eventually bring down dirty_ratelimit. |
| 1628 | * |
| 1629 | * We apply two rules to fix it up: |
| 1630 | * 1) try to estimate the next pause time and if necessary, use a lower |
| 1631 | * nr_dirtied_pause so as not to exceed max_pause. When this happens, |
| 1632 | * nr_dirtied_pause will be "dancing" with task_ratelimit. |
| 1633 | * 2) limit the target pause time to max_pause/2, so that the normal |
| 1634 | * small fluctuations of task_ratelimit won't trigger rule (1) and |
| 1635 | * nr_dirtied_pause will remain as stable as dirty_ratelimit. |
| 1636 | */ |
| 1637 | t = min(t, 1 + max_pause / 2); |
| 1638 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); |
| 1639 | |
| 1640 | /* |
| 1641 | * Tiny nr_dirtied_pause is found to hurt I/O performance in the test |
| 1642 | * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. |
| 1643 | * When the 16 consecutive reads are often interrupted by some dirty |
| 1644 | * throttling pause during the async writes, cfq will go into idles |
| 1645 | * (deadline is fine). So push nr_dirtied_pause as high as possible |
| 1646 | * until reaches DIRTY_POLL_THRESH=32 pages. |
| 1647 | */ |
| 1648 | if (pages < DIRTY_POLL_THRESH) { |
| 1649 | t = max_pause; |
| 1650 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); |
| 1651 | if (pages > DIRTY_POLL_THRESH) { |
| 1652 | pages = DIRTY_POLL_THRESH; |
| 1653 | t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | pause = HZ * pages / (task_ratelimit + 1); |
| 1658 | if (pause > max_pause) { |
| 1659 | t = max_pause; |
| 1660 | pages = task_ratelimit * t / roundup_pow_of_two(HZ); |
| 1661 | } |
| 1662 | |
| 1663 | *nr_dirtied_pause = pages; |
| 1664 | /* |
| 1665 | * The minimal pause time will normally be half the target pause time. |
| 1666 | */ |
| 1667 | return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; |
| 1668 | } |
| 1669 | |
| 1670 | static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) |
| 1671 | { |
| 1672 | struct bdi_writeback *wb = dtc->wb; |
| 1673 | unsigned long wb_reclaimable; |
| 1674 | |
| 1675 | /* |
| 1676 | * wb_thresh is not treated as some limiting factor as |
| 1677 | * dirty_thresh, due to reasons |
| 1678 | * - in JBOD setup, wb_thresh can fluctuate a lot |
| 1679 | * - in a system with HDD and USB key, the USB key may somehow |
| 1680 | * go into state (wb_dirty >> wb_thresh) either because |
| 1681 | * wb_dirty starts high, or because wb_thresh drops low. |
| 1682 | * In this case we don't want to hard throttle the USB key |
| 1683 | * dirtiers for 100 seconds until wb_dirty drops under |
| 1684 | * wb_thresh. Instead the auxiliary wb control line in |
| 1685 | * wb_position_ratio() will let the dirtier task progress |
| 1686 | * at some rate <= (write_bw / 2) for bringing down wb_dirty. |
| 1687 | */ |
| 1688 | dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); |
| 1689 | dtc->wb_bg_thresh = dtc->thresh ? |
| 1690 | div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; |
| 1691 | |
| 1692 | /* |
| 1693 | * In order to avoid the stacked BDI deadlock we need |
| 1694 | * to ensure we accurately count the 'dirty' pages when |
| 1695 | * the threshold is low. |
| 1696 | * |
| 1697 | * Otherwise it would be possible to get thresh+n pages |
| 1698 | * reported dirty, even though there are thresh-m pages |
| 1699 | * actually dirty; with m+n sitting in the percpu |
| 1700 | * deltas. |
| 1701 | */ |
| 1702 | if (dtc->wb_thresh < 2 * wb_stat_error()) { |
| 1703 | wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); |
| 1704 | dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); |
| 1705 | } else { |
| 1706 | wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); |
| 1707 | dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, |
| 1712 | bool strictlimit) |
| 1713 | { |
| 1714 | unsigned long dirty, thresh; |
| 1715 | |
| 1716 | if (strictlimit) { |
| 1717 | dirty = dtc->wb_dirty; |
| 1718 | thresh = dtc->wb_thresh; |
| 1719 | } else { |
| 1720 | dirty = dtc->dirty; |
| 1721 | thresh = dtc->thresh; |
| 1722 | } |
| 1723 | |
| 1724 | return dirty_poll_interval(dirty, thresh); |
| 1725 | } |
| 1726 | |
| 1727 | /* |
| 1728 | * Throttle it only when the background writeback cannot catch-up. This avoids |
| 1729 | * (excessively) small writeouts when the wb limits are ramping up in case of |
| 1730 | * !strictlimit. |
| 1731 | * |
| 1732 | * In strictlimit case make decision based on the wb counters and limits. Small |
| 1733 | * writeouts when the wb limits are ramping up are the price we consciously pay |
| 1734 | * for strictlimit-ing. |
| 1735 | */ |
| 1736 | static void domain_dirty_freerun(struct dirty_throttle_control *dtc, |
| 1737 | bool strictlimit) |
| 1738 | { |
| 1739 | unsigned long dirty, thresh, bg_thresh; |
| 1740 | |
| 1741 | if (unlikely(strictlimit)) { |
| 1742 | wb_dirty_limits(dtc); |
| 1743 | dirty = dtc->wb_dirty; |
| 1744 | thresh = dtc->wb_thresh; |
| 1745 | bg_thresh = dtc->wb_bg_thresh; |
| 1746 | } else { |
| 1747 | dirty = dtc->dirty; |
| 1748 | thresh = dtc->thresh; |
| 1749 | bg_thresh = dtc->bg_thresh; |
| 1750 | } |
| 1751 | dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); |
| 1752 | } |
| 1753 | |
| 1754 | static void balance_domain_limits(struct dirty_throttle_control *dtc, |
| 1755 | bool strictlimit) |
| 1756 | { |
| 1757 | domain_dirty_avail(dtc, true); |
| 1758 | domain_dirty_limits(dtc); |
| 1759 | domain_dirty_freerun(dtc, strictlimit); |
| 1760 | } |
| 1761 | |
| 1762 | static void wb_dirty_freerun(struct dirty_throttle_control *dtc, |
| 1763 | bool strictlimit) |
| 1764 | { |
| 1765 | dtc->freerun = false; |
| 1766 | |
| 1767 | /* was already handled in domain_dirty_freerun */ |
| 1768 | if (strictlimit) |
| 1769 | return; |
| 1770 | |
| 1771 | wb_dirty_limits(dtc); |
| 1772 | /* |
| 1773 | * LOCAL_THROTTLE tasks must not be throttled when below the per-wb |
| 1774 | * freerun ceiling. |
| 1775 | */ |
| 1776 | if (!(current->flags & PF_LOCAL_THROTTLE)) |
| 1777 | return; |
| 1778 | |
| 1779 | dtc->freerun = dtc->wb_dirty < |
| 1780 | dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh); |
| 1781 | } |
| 1782 | |
| 1783 | static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, |
| 1784 | bool strictlimit) |
| 1785 | { |
| 1786 | dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && |
| 1787 | ((dtc->dirty > dtc->thresh) || strictlimit); |
| 1788 | } |
| 1789 | |
| 1790 | /* |
| 1791 | * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is |
| 1792 | * in freerun state. Please don't use these invalid fields in freerun case. |
| 1793 | */ |
| 1794 | static void balance_wb_limits(struct dirty_throttle_control *dtc, |
| 1795 | bool strictlimit) |
| 1796 | { |
| 1797 | wb_dirty_freerun(dtc, strictlimit); |
| 1798 | if (dtc->freerun) |
| 1799 | return; |
| 1800 | |
| 1801 | wb_dirty_exceeded(dtc, strictlimit); |
| 1802 | wb_position_ratio(dtc); |
| 1803 | } |
| 1804 | |
| 1805 | /* |
| 1806 | * balance_dirty_pages() must be called by processes which are generating dirty |
| 1807 | * data. It looks at the number of dirty pages in the machine and will force |
| 1808 | * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. |
| 1809 | * If we're over `background_thresh' then the writeback threads are woken to |
| 1810 | * perform some writeout. |
| 1811 | */ |
| 1812 | static int balance_dirty_pages(struct bdi_writeback *wb, |
| 1813 | unsigned long pages_dirtied, unsigned int flags) |
| 1814 | { |
| 1815 | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; |
| 1816 | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; |
| 1817 | struct dirty_throttle_control * const gdtc = &gdtc_stor; |
| 1818 | struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? |
| 1819 | &mdtc_stor : NULL; |
| 1820 | struct dirty_throttle_control *sdtc; |
| 1821 | unsigned long nr_dirty; |
| 1822 | long period; |
| 1823 | long pause; |
| 1824 | long max_pause; |
| 1825 | long min_pause; |
| 1826 | int nr_dirtied_pause; |
| 1827 | unsigned long task_ratelimit; |
| 1828 | unsigned long dirty_ratelimit; |
| 1829 | struct backing_dev_info *bdi = wb->bdi; |
| 1830 | bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; |
| 1831 | unsigned long start_time = jiffies; |
| 1832 | int ret = 0; |
| 1833 | |
| 1834 | for (;;) { |
| 1835 | unsigned long now = jiffies; |
| 1836 | |
| 1837 | nr_dirty = global_node_page_state(NR_FILE_DIRTY); |
| 1838 | |
| 1839 | balance_domain_limits(gdtc, strictlimit); |
| 1840 | if (mdtc) { |
| 1841 | /* |
| 1842 | * If @wb belongs to !root memcg, repeat the same |
| 1843 | * basic calculations for the memcg domain. |
| 1844 | */ |
| 1845 | balance_domain_limits(mdtc, strictlimit); |
| 1846 | } |
| 1847 | |
| 1848 | /* |
| 1849 | * In laptop mode, we wait until hitting the higher threshold |
| 1850 | * before starting background writeout, and then write out all |
| 1851 | * the way down to the lower threshold. So slow writers cause |
| 1852 | * minimal disk activity. |
| 1853 | * |
| 1854 | * In normal mode, we start background writeout at the lower |
| 1855 | * background_thresh, to keep the amount of dirty memory low. |
| 1856 | */ |
| 1857 | if (!laptop_mode && nr_dirty > gdtc->bg_thresh && |
| 1858 | !writeback_in_progress(wb)) |
| 1859 | wb_start_background_writeback(wb); |
| 1860 | |
| 1861 | /* |
| 1862 | * If memcg domain is in effect, @dirty should be under |
| 1863 | * both global and memcg freerun ceilings. |
| 1864 | */ |
| 1865 | if (gdtc->freerun && (!mdtc || mdtc->freerun)) { |
| 1866 | unsigned long intv; |
| 1867 | unsigned long m_intv; |
| 1868 | |
| 1869 | free_running: |
| 1870 | intv = domain_poll_intv(gdtc, strictlimit); |
| 1871 | m_intv = ULONG_MAX; |
| 1872 | |
| 1873 | current->dirty_paused_when = now; |
| 1874 | current->nr_dirtied = 0; |
| 1875 | if (mdtc) |
| 1876 | m_intv = domain_poll_intv(mdtc, strictlimit); |
| 1877 | current->nr_dirtied_pause = min(intv, m_intv); |
| 1878 | break; |
| 1879 | } |
| 1880 | |
| 1881 | /* Start writeback even when in laptop mode */ |
| 1882 | if (unlikely(!writeback_in_progress(wb))) |
| 1883 | wb_start_background_writeback(wb); |
| 1884 | |
| 1885 | mem_cgroup_flush_foreign(wb); |
| 1886 | |
| 1887 | /* |
| 1888 | * Calculate global domain's pos_ratio and select the |
| 1889 | * global dtc by default. |
| 1890 | */ |
| 1891 | balance_wb_limits(gdtc, strictlimit); |
| 1892 | if (gdtc->freerun) |
| 1893 | goto free_running; |
| 1894 | sdtc = gdtc; |
| 1895 | |
| 1896 | if (mdtc) { |
| 1897 | /* |
| 1898 | * If memcg domain is in effect, calculate its |
| 1899 | * pos_ratio. @wb should satisfy constraints from |
| 1900 | * both global and memcg domains. Choose the one |
| 1901 | * w/ lower pos_ratio. |
| 1902 | */ |
| 1903 | balance_wb_limits(mdtc, strictlimit); |
| 1904 | if (mdtc->freerun) |
| 1905 | goto free_running; |
| 1906 | if (mdtc->pos_ratio < gdtc->pos_ratio) |
| 1907 | sdtc = mdtc; |
| 1908 | } |
| 1909 | |
| 1910 | wb->dirty_exceeded = gdtc->dirty_exceeded || |
| 1911 | (mdtc && mdtc->dirty_exceeded); |
| 1912 | if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + |
| 1913 | BANDWIDTH_INTERVAL)) |
| 1914 | __wb_update_bandwidth(gdtc, mdtc, true); |
| 1915 | |
| 1916 | /* throttle according to the chosen dtc */ |
| 1917 | dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); |
| 1918 | task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> |
| 1919 | RATELIMIT_CALC_SHIFT; |
| 1920 | max_pause = wb_max_pause(wb, sdtc->wb_dirty); |
| 1921 | min_pause = wb_min_pause(wb, max_pause, |
| 1922 | task_ratelimit, dirty_ratelimit, |
| 1923 | &nr_dirtied_pause); |
| 1924 | |
| 1925 | if (unlikely(task_ratelimit == 0)) { |
| 1926 | period = max_pause; |
| 1927 | pause = max_pause; |
| 1928 | goto pause; |
| 1929 | } |
| 1930 | period = HZ * pages_dirtied / task_ratelimit; |
| 1931 | pause = period; |
| 1932 | if (current->dirty_paused_when) |
| 1933 | pause -= now - current->dirty_paused_when; |
| 1934 | /* |
| 1935 | * For less than 1s think time (ext3/4 may block the dirtier |
| 1936 | * for up to 800ms from time to time on 1-HDD; so does xfs, |
| 1937 | * however at much less frequency), try to compensate it in |
| 1938 | * future periods by updating the virtual time; otherwise just |
| 1939 | * do a reset, as it may be a light dirtier. |
| 1940 | */ |
| 1941 | if (pause < min_pause) { |
| 1942 | trace_balance_dirty_pages(wb, |
| 1943 | sdtc, |
| 1944 | dirty_ratelimit, |
| 1945 | task_ratelimit, |
| 1946 | pages_dirtied, |
| 1947 | period, |
| 1948 | min(pause, 0L), |
| 1949 | start_time); |
| 1950 | if (pause < -HZ) { |
| 1951 | current->dirty_paused_when = now; |
| 1952 | current->nr_dirtied = 0; |
| 1953 | } else if (period) { |
| 1954 | current->dirty_paused_when += period; |
| 1955 | current->nr_dirtied = 0; |
| 1956 | } else if (current->nr_dirtied_pause <= pages_dirtied) |
| 1957 | current->nr_dirtied_pause += pages_dirtied; |
| 1958 | break; |
| 1959 | } |
| 1960 | if (unlikely(pause > max_pause)) { |
| 1961 | /* for occasional dropped task_ratelimit */ |
| 1962 | now += min(pause - max_pause, max_pause); |
| 1963 | pause = max_pause; |
| 1964 | } |
| 1965 | |
| 1966 | pause: |
| 1967 | trace_balance_dirty_pages(wb, |
| 1968 | sdtc, |
| 1969 | dirty_ratelimit, |
| 1970 | task_ratelimit, |
| 1971 | pages_dirtied, |
| 1972 | period, |
| 1973 | pause, |
| 1974 | start_time); |
| 1975 | if (flags & BDP_ASYNC) { |
| 1976 | ret = -EAGAIN; |
| 1977 | break; |
| 1978 | } |
| 1979 | __set_current_state(TASK_KILLABLE); |
| 1980 | bdi->last_bdp_sleep = jiffies; |
| 1981 | io_schedule_timeout(pause); |
| 1982 | |
| 1983 | current->dirty_paused_when = now + pause; |
| 1984 | current->nr_dirtied = 0; |
| 1985 | current->nr_dirtied_pause = nr_dirtied_pause; |
| 1986 | |
| 1987 | /* |
| 1988 | * This is typically equal to (dirty < thresh) and can also |
| 1989 | * keep "1000+ dd on a slow USB stick" under control. |
| 1990 | */ |
| 1991 | if (task_ratelimit) |
| 1992 | break; |
| 1993 | |
| 1994 | /* |
| 1995 | * In the case of an unresponsive NFS server and the NFS dirty |
| 1996 | * pages exceeds dirty_thresh, give the other good wb's a pipe |
| 1997 | * to go through, so that tasks on them still remain responsive. |
| 1998 | * |
| 1999 | * In theory 1 page is enough to keep the consumer-producer |
| 2000 | * pipe going: the flusher cleans 1 page => the task dirties 1 |
| 2001 | * more page. However wb_dirty has accounting errors. So use |
| 2002 | * the larger and more IO friendly wb_stat_error. |
| 2003 | */ |
| 2004 | if (sdtc->wb_dirty <= wb_stat_error()) |
| 2005 | break; |
| 2006 | |
| 2007 | if (fatal_signal_pending(current)) |
| 2008 | break; |
| 2009 | } |
| 2010 | return ret; |
| 2011 | } |
| 2012 | |
| 2013 | static DEFINE_PER_CPU(int, bdp_ratelimits); |
| 2014 | |
| 2015 | /* |
| 2016 | * Normal tasks are throttled by |
| 2017 | * loop { |
| 2018 | * dirty tsk->nr_dirtied_pause pages; |
| 2019 | * take a snap in balance_dirty_pages(); |
| 2020 | * } |
| 2021 | * However there is a worst case. If every task exit immediately when dirtied |
| 2022 | * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be |
| 2023 | * called to throttle the page dirties. The solution is to save the not yet |
| 2024 | * throttled page dirties in dirty_throttle_leaks on task exit and charge them |
| 2025 | * randomly into the running tasks. This works well for the above worst case, |
| 2026 | * as the new task will pick up and accumulate the old task's leaked dirty |
| 2027 | * count and eventually get throttled. |
| 2028 | */ |
| 2029 | DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; |
| 2030 | |
| 2031 | /** |
| 2032 | * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. |
| 2033 | * @mapping: address_space which was dirtied. |
| 2034 | * @flags: BDP flags. |
| 2035 | * |
| 2036 | * Processes which are dirtying memory should call in here once for each page |
| 2037 | * which was newly dirtied. The function will periodically check the system's |
| 2038 | * dirty state and will initiate writeback if needed. |
| 2039 | * |
| 2040 | * See balance_dirty_pages_ratelimited() for details. |
| 2041 | * |
| 2042 | * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to |
| 2043 | * indicate that memory is out of balance and the caller must wait |
| 2044 | * for I/O to complete. Otherwise, it will return 0 to indicate |
| 2045 | * that either memory was already in balance, or it was able to sleep |
| 2046 | * until the amount of dirty memory returned to balance. |
| 2047 | */ |
| 2048 | int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, |
| 2049 | unsigned int flags) |
| 2050 | { |
| 2051 | struct inode *inode = mapping->host; |
| 2052 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
| 2053 | struct bdi_writeback *wb = NULL; |
| 2054 | int ratelimit; |
| 2055 | int ret = 0; |
| 2056 | int *p; |
| 2057 | |
| 2058 | if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) |
| 2059 | return ret; |
| 2060 | |
| 2061 | if (inode_cgwb_enabled(inode)) |
| 2062 | wb = wb_get_create_current(bdi, GFP_KERNEL); |
| 2063 | if (!wb) |
| 2064 | wb = &bdi->wb; |
| 2065 | |
| 2066 | ratelimit = current->nr_dirtied_pause; |
| 2067 | if (wb->dirty_exceeded) |
| 2068 | ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); |
| 2069 | |
| 2070 | preempt_disable(); |
| 2071 | /* |
| 2072 | * This prevents one CPU to accumulate too many dirtied pages without |
| 2073 | * calling into balance_dirty_pages(), which can happen when there are |
| 2074 | * 1000+ tasks, all of them start dirtying pages at exactly the same |
| 2075 | * time, hence all honoured too large initial task->nr_dirtied_pause. |
| 2076 | */ |
| 2077 | p = this_cpu_ptr(&bdp_ratelimits); |
| 2078 | if (unlikely(current->nr_dirtied >= ratelimit)) |
| 2079 | *p = 0; |
| 2080 | else if (unlikely(*p >= ratelimit_pages)) { |
| 2081 | *p = 0; |
| 2082 | ratelimit = 0; |
| 2083 | } |
| 2084 | /* |
| 2085 | * Pick up the dirtied pages by the exited tasks. This avoids lots of |
| 2086 | * short-lived tasks (eg. gcc invocations in a kernel build) escaping |
| 2087 | * the dirty throttling and livelock other long-run dirtiers. |
| 2088 | */ |
| 2089 | p = this_cpu_ptr(&dirty_throttle_leaks); |
| 2090 | if (*p > 0 && current->nr_dirtied < ratelimit) { |
| 2091 | unsigned long nr_pages_dirtied; |
| 2092 | nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); |
| 2093 | *p -= nr_pages_dirtied; |
| 2094 | current->nr_dirtied += nr_pages_dirtied; |
| 2095 | } |
| 2096 | preempt_enable(); |
| 2097 | |
| 2098 | if (unlikely(current->nr_dirtied >= ratelimit)) |
| 2099 | ret = balance_dirty_pages(wb, current->nr_dirtied, flags); |
| 2100 | |
| 2101 | wb_put(wb); |
| 2102 | return ret; |
| 2103 | } |
| 2104 | EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); |
| 2105 | |
| 2106 | /** |
| 2107 | * balance_dirty_pages_ratelimited - balance dirty memory state. |
| 2108 | * @mapping: address_space which was dirtied. |
| 2109 | * |
| 2110 | * Processes which are dirtying memory should call in here once for each page |
| 2111 | * which was newly dirtied. The function will periodically check the system's |
| 2112 | * dirty state and will initiate writeback if needed. |
| 2113 | * |
| 2114 | * Once we're over the dirty memory limit we decrease the ratelimiting |
| 2115 | * by a lot, to prevent individual processes from overshooting the limit |
| 2116 | * by (ratelimit_pages) each. |
| 2117 | */ |
| 2118 | void balance_dirty_pages_ratelimited(struct address_space *mapping) |
| 2119 | { |
| 2120 | balance_dirty_pages_ratelimited_flags(mapping, 0); |
| 2121 | } |
| 2122 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited); |
| 2123 | |
| 2124 | /* |
| 2125 | * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty |
| 2126 | * and thresh, but it's for background writeback. |
| 2127 | */ |
| 2128 | static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) |
| 2129 | { |
| 2130 | struct bdi_writeback *wb = dtc->wb; |
| 2131 | |
| 2132 | dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh); |
| 2133 | if (dtc->wb_bg_thresh < 2 * wb_stat_error()) |
| 2134 | dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE); |
| 2135 | else |
| 2136 | dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE); |
| 2137 | } |
| 2138 | |
| 2139 | static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) |
| 2140 | { |
| 2141 | domain_dirty_avail(dtc, false); |
| 2142 | domain_dirty_limits(dtc); |
| 2143 | if (dtc->dirty > dtc->bg_thresh) |
| 2144 | return true; |
| 2145 | |
| 2146 | wb_bg_dirty_limits(dtc); |
| 2147 | if (dtc->wb_dirty > dtc->wb_bg_thresh) |
| 2148 | return true; |
| 2149 | |
| 2150 | return false; |
| 2151 | } |
| 2152 | |
| 2153 | /** |
| 2154 | * wb_over_bg_thresh - does @wb need to be written back? |
| 2155 | * @wb: bdi_writeback of interest |
| 2156 | * |
| 2157 | * Determines whether background writeback should keep writing @wb or it's |
| 2158 | * clean enough. |
| 2159 | * |
| 2160 | * Return: %true if writeback should continue. |
| 2161 | */ |
| 2162 | bool wb_over_bg_thresh(struct bdi_writeback *wb) |
| 2163 | { |
| 2164 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; |
| 2165 | struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; |
| 2166 | |
| 2167 | if (domain_over_bg_thresh(&gdtc)) |
| 2168 | return true; |
| 2169 | |
| 2170 | if (mdtc_valid(&mdtc)) |
| 2171 | return domain_over_bg_thresh(&mdtc); |
| 2172 | |
| 2173 | return false; |
| 2174 | } |
| 2175 | |
| 2176 | #ifdef CONFIG_SYSCTL |
| 2177 | /* |
| 2178 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs |
| 2179 | */ |
| 2180 | static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write, |
| 2181 | void *buffer, size_t *length, loff_t *ppos) |
| 2182 | { |
| 2183 | unsigned int old_interval = dirty_writeback_interval; |
| 2184 | int ret; |
| 2185 | |
| 2186 | ret = proc_dointvec(table, write, buffer, length, ppos); |
| 2187 | |
| 2188 | /* |
| 2189 | * Writing 0 to dirty_writeback_interval will disable periodic writeback |
| 2190 | * and a different non-zero value will wakeup the writeback threads. |
| 2191 | * wb_wakeup_delayed() would be more appropriate, but it's a pain to |
| 2192 | * iterate over all bdis and wbs. |
| 2193 | * The reason we do this is to make the change take effect immediately. |
| 2194 | */ |
| 2195 | if (!ret && write && dirty_writeback_interval && |
| 2196 | dirty_writeback_interval != old_interval) |
| 2197 | wakeup_flusher_threads(WB_REASON_PERIODIC); |
| 2198 | |
| 2199 | return ret; |
| 2200 | } |
| 2201 | #endif |
| 2202 | |
| 2203 | void laptop_mode_timer_fn(struct timer_list *t) |
| 2204 | { |
| 2205 | struct backing_dev_info *backing_dev_info = |
| 2206 | timer_container_of(backing_dev_info, t, laptop_mode_wb_timer); |
| 2207 | |
| 2208 | wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); |
| 2209 | } |
| 2210 | |
| 2211 | /* |
| 2212 | * We've spun up the disk and we're in laptop mode: schedule writeback |
| 2213 | * of all dirty data a few seconds from now. If the flush is already scheduled |
| 2214 | * then push it back - the user is still using the disk. |
| 2215 | */ |
| 2216 | void laptop_io_completion(struct backing_dev_info *info) |
| 2217 | { |
| 2218 | mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); |
| 2219 | } |
| 2220 | |
| 2221 | /* |
| 2222 | * We're in laptop mode and we've just synced. The sync's writes will have |
| 2223 | * caused another writeback to be scheduled by laptop_io_completion. |
| 2224 | * Nothing needs to be written back anymore, so we unschedule the writeback. |
| 2225 | */ |
| 2226 | void laptop_sync_completion(void) |
| 2227 | { |
| 2228 | struct backing_dev_info *bdi; |
| 2229 | |
| 2230 | rcu_read_lock(); |
| 2231 | |
| 2232 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) |
| 2233 | timer_delete(&bdi->laptop_mode_wb_timer); |
| 2234 | |
| 2235 | rcu_read_unlock(); |
| 2236 | } |
| 2237 | |
| 2238 | /* |
| 2239 | * If ratelimit_pages is too high then we can get into dirty-data overload |
| 2240 | * if a large number of processes all perform writes at the same time. |
| 2241 | * |
| 2242 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are |
| 2243 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory |
| 2244 | * thresholds. |
| 2245 | */ |
| 2246 | |
| 2247 | void writeback_set_ratelimit(void) |
| 2248 | { |
| 2249 | struct wb_domain *dom = &global_wb_domain; |
| 2250 | unsigned long background_thresh; |
| 2251 | unsigned long dirty_thresh; |
| 2252 | |
| 2253 | global_dirty_limits(&background_thresh, &dirty_thresh); |
| 2254 | dom->dirty_limit = dirty_thresh; |
| 2255 | ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); |
| 2256 | if (ratelimit_pages < 16) |
| 2257 | ratelimit_pages = 16; |
| 2258 | } |
| 2259 | |
| 2260 | static int page_writeback_cpu_online(unsigned int cpu) |
| 2261 | { |
| 2262 | writeback_set_ratelimit(); |
| 2263 | return 0; |
| 2264 | } |
| 2265 | |
| 2266 | #ifdef CONFIG_SYSCTL |
| 2267 | |
| 2268 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
| 2269 | static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
| 2270 | |
| 2271 | static const struct ctl_table vm_page_writeback_sysctls[] = { |
| 2272 | { |
| 2273 | .procname = "dirty_background_ratio", |
| 2274 | .data = &dirty_background_ratio, |
| 2275 | .maxlen = sizeof(dirty_background_ratio), |
| 2276 | .mode = 0644, |
| 2277 | .proc_handler = dirty_background_ratio_handler, |
| 2278 | .extra1 = SYSCTL_ZERO, |
| 2279 | .extra2 = SYSCTL_ONE_HUNDRED, |
| 2280 | }, |
| 2281 | { |
| 2282 | .procname = "dirty_background_bytes", |
| 2283 | .data = &dirty_background_bytes, |
| 2284 | .maxlen = sizeof(dirty_background_bytes), |
| 2285 | .mode = 0644, |
| 2286 | .proc_handler = dirty_background_bytes_handler, |
| 2287 | .extra1 = SYSCTL_LONG_ONE, |
| 2288 | }, |
| 2289 | { |
| 2290 | .procname = "dirty_ratio", |
| 2291 | .data = &vm_dirty_ratio, |
| 2292 | .maxlen = sizeof(vm_dirty_ratio), |
| 2293 | .mode = 0644, |
| 2294 | .proc_handler = dirty_ratio_handler, |
| 2295 | .extra1 = SYSCTL_ZERO, |
| 2296 | .extra2 = SYSCTL_ONE_HUNDRED, |
| 2297 | }, |
| 2298 | { |
| 2299 | .procname = "dirty_bytes", |
| 2300 | .data = &vm_dirty_bytes, |
| 2301 | .maxlen = sizeof(vm_dirty_bytes), |
| 2302 | .mode = 0644, |
| 2303 | .proc_handler = dirty_bytes_handler, |
| 2304 | .extra1 = (void *)&dirty_bytes_min, |
| 2305 | }, |
| 2306 | { |
| 2307 | .procname = "dirty_writeback_centisecs", |
| 2308 | .data = &dirty_writeback_interval, |
| 2309 | .maxlen = sizeof(dirty_writeback_interval), |
| 2310 | .mode = 0644, |
| 2311 | .proc_handler = dirty_writeback_centisecs_handler, |
| 2312 | }, |
| 2313 | { |
| 2314 | .procname = "dirty_expire_centisecs", |
| 2315 | .data = &dirty_expire_interval, |
| 2316 | .maxlen = sizeof(dirty_expire_interval), |
| 2317 | .mode = 0644, |
| 2318 | .proc_handler = proc_dointvec_minmax, |
| 2319 | .extra1 = SYSCTL_ZERO, |
| 2320 | }, |
| 2321 | #ifdef CONFIG_HIGHMEM |
| 2322 | { |
| 2323 | .procname = "highmem_is_dirtyable", |
| 2324 | .data = &vm_highmem_is_dirtyable, |
| 2325 | .maxlen = sizeof(vm_highmem_is_dirtyable), |
| 2326 | .mode = 0644, |
| 2327 | .proc_handler = proc_dointvec_minmax, |
| 2328 | .extra1 = SYSCTL_ZERO, |
| 2329 | .extra2 = SYSCTL_ONE, |
| 2330 | }, |
| 2331 | #endif |
| 2332 | { |
| 2333 | .procname = "laptop_mode", |
| 2334 | .data = &laptop_mode, |
| 2335 | .maxlen = sizeof(laptop_mode), |
| 2336 | .mode = 0644, |
| 2337 | .proc_handler = proc_dointvec_jiffies, |
| 2338 | }, |
| 2339 | }; |
| 2340 | #endif |
| 2341 | |
| 2342 | /* |
| 2343 | * Called early on to tune the page writeback dirty limits. |
| 2344 | * |
| 2345 | * We used to scale dirty pages according to how total memory |
| 2346 | * related to pages that could be allocated for buffers. |
| 2347 | * |
| 2348 | * However, that was when we used "dirty_ratio" to scale with |
| 2349 | * all memory, and we don't do that any more. "dirty_ratio" |
| 2350 | * is now applied to total non-HIGHPAGE memory, and as such we can't |
| 2351 | * get into the old insane situation any more where we had |
| 2352 | * large amounts of dirty pages compared to a small amount of |
| 2353 | * non-HIGHMEM memory. |
| 2354 | * |
| 2355 | * But we might still want to scale the dirty_ratio by how |
| 2356 | * much memory the box has.. |
| 2357 | */ |
| 2358 | void __init page_writeback_init(void) |
| 2359 | { |
| 2360 | BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); |
| 2361 | |
| 2362 | cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", |
| 2363 | page_writeback_cpu_online, NULL); |
| 2364 | cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, |
| 2365 | page_writeback_cpu_online); |
| 2366 | #ifdef CONFIG_SYSCTL |
| 2367 | register_sysctl_init("vm", vm_page_writeback_sysctls); |
| 2368 | #endif |
| 2369 | } |
| 2370 | |
| 2371 | /** |
| 2372 | * tag_pages_for_writeback - tag pages to be written by writeback |
| 2373 | * @mapping: address space structure to write |
| 2374 | * @start: starting page index |
| 2375 | * @end: ending page index (inclusive) |
| 2376 | * |
| 2377 | * This function scans the page range from @start to @end (inclusive) and tags |
| 2378 | * all pages that have DIRTY tag set with a special TOWRITE tag. The caller |
| 2379 | * can then use the TOWRITE tag to identify pages eligible for writeback. |
| 2380 | * This mechanism is used to avoid livelocking of writeback by a process |
| 2381 | * steadily creating new dirty pages in the file (thus it is important for this |
| 2382 | * function to be quick so that it can tag pages faster than a dirtying process |
| 2383 | * can create them). |
| 2384 | */ |
| 2385 | void tag_pages_for_writeback(struct address_space *mapping, |
| 2386 | pgoff_t start, pgoff_t end) |
| 2387 | { |
| 2388 | XA_STATE(xas, &mapping->i_pages, start); |
| 2389 | unsigned int tagged = 0; |
| 2390 | void *page; |
| 2391 | |
| 2392 | xas_lock_irq(&xas); |
| 2393 | xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { |
| 2394 | xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); |
| 2395 | if (++tagged % XA_CHECK_SCHED) |
| 2396 | continue; |
| 2397 | |
| 2398 | xas_pause(&xas); |
| 2399 | xas_unlock_irq(&xas); |
| 2400 | cond_resched(); |
| 2401 | xas_lock_irq(&xas); |
| 2402 | } |
| 2403 | xas_unlock_irq(&xas); |
| 2404 | } |
| 2405 | EXPORT_SYMBOL(tag_pages_for_writeback); |
| 2406 | |
| 2407 | static bool folio_prepare_writeback(struct address_space *mapping, |
| 2408 | struct writeback_control *wbc, struct folio *folio) |
| 2409 | { |
| 2410 | /* |
| 2411 | * Folio truncated or invalidated. We can freely skip it then, |
| 2412 | * even for data integrity operations: the folio has disappeared |
| 2413 | * concurrently, so there could be no real expectation of this |
| 2414 | * data integrity operation even if there is now a new, dirty |
| 2415 | * folio at the same pagecache index. |
| 2416 | */ |
| 2417 | if (unlikely(folio->mapping != mapping)) |
| 2418 | return false; |
| 2419 | |
| 2420 | /* |
| 2421 | * Did somebody else write it for us? |
| 2422 | */ |
| 2423 | if (!folio_test_dirty(folio)) |
| 2424 | return false; |
| 2425 | |
| 2426 | if (folio_test_writeback(folio)) { |
| 2427 | if (wbc->sync_mode == WB_SYNC_NONE) |
| 2428 | return false; |
| 2429 | folio_wait_writeback(folio); |
| 2430 | } |
| 2431 | BUG_ON(folio_test_writeback(folio)); |
| 2432 | |
| 2433 | if (!folio_clear_dirty_for_io(folio)) |
| 2434 | return false; |
| 2435 | |
| 2436 | return true; |
| 2437 | } |
| 2438 | |
| 2439 | static xa_mark_t wbc_to_tag(struct writeback_control *wbc) |
| 2440 | { |
| 2441 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
| 2442 | return PAGECACHE_TAG_TOWRITE; |
| 2443 | return PAGECACHE_TAG_DIRTY; |
| 2444 | } |
| 2445 | |
| 2446 | static pgoff_t wbc_end(struct writeback_control *wbc) |
| 2447 | { |
| 2448 | if (wbc->range_cyclic) |
| 2449 | return -1; |
| 2450 | return wbc->range_end >> PAGE_SHIFT; |
| 2451 | } |
| 2452 | |
| 2453 | static struct folio *writeback_get_folio(struct address_space *mapping, |
| 2454 | struct writeback_control *wbc) |
| 2455 | { |
| 2456 | struct folio *folio; |
| 2457 | |
| 2458 | retry: |
| 2459 | folio = folio_batch_next(&wbc->fbatch); |
| 2460 | if (!folio) { |
| 2461 | folio_batch_release(&wbc->fbatch); |
| 2462 | cond_resched(); |
| 2463 | filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), |
| 2464 | wbc_to_tag(wbc), &wbc->fbatch); |
| 2465 | folio = folio_batch_next(&wbc->fbatch); |
| 2466 | if (!folio) |
| 2467 | return NULL; |
| 2468 | } |
| 2469 | |
| 2470 | folio_lock(folio); |
| 2471 | if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { |
| 2472 | folio_unlock(folio); |
| 2473 | goto retry; |
| 2474 | } |
| 2475 | |
| 2476 | trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); |
| 2477 | return folio; |
| 2478 | } |
| 2479 | |
| 2480 | /** |
| 2481 | * writeback_iter - iterate folio of a mapping for writeback |
| 2482 | * @mapping: address space structure to write |
| 2483 | * @wbc: writeback context |
| 2484 | * @folio: previously iterated folio (%NULL to start) |
| 2485 | * @error: in-out pointer for writeback errors (see below) |
| 2486 | * |
| 2487 | * This function returns the next folio for the writeback operation described by |
| 2488 | * @wbc on @mapping and should be called in a while loop in the ->writepages |
| 2489 | * implementation. |
| 2490 | * |
| 2491 | * To start the writeback operation, %NULL is passed in the @folio argument, and |
| 2492 | * for every subsequent iteration the folio returned previously should be passed |
| 2493 | * back in. |
| 2494 | * |
| 2495 | * If there was an error in the per-folio writeback inside the writeback_iter() |
| 2496 | * loop, @error should be set to the error value. |
| 2497 | * |
| 2498 | * Once the writeback described in @wbc has finished, this function will return |
| 2499 | * %NULL and if there was an error in any iteration restore it to @error. |
| 2500 | * |
| 2501 | * Note: callers should not manually break out of the loop using break or goto |
| 2502 | * but must keep calling writeback_iter() until it returns %NULL. |
| 2503 | * |
| 2504 | * Return: the folio to write or %NULL if the loop is done. |
| 2505 | */ |
| 2506 | struct folio *writeback_iter(struct address_space *mapping, |
| 2507 | struct writeback_control *wbc, struct folio *folio, int *error) |
| 2508 | { |
| 2509 | if (!folio) { |
| 2510 | folio_batch_init(&wbc->fbatch); |
| 2511 | wbc->saved_err = *error = 0; |
| 2512 | |
| 2513 | /* |
| 2514 | * For range cyclic writeback we remember where we stopped so |
| 2515 | * that we can continue where we stopped. |
| 2516 | * |
| 2517 | * For non-cyclic writeback we always start at the beginning of |
| 2518 | * the passed in range. |
| 2519 | */ |
| 2520 | if (wbc->range_cyclic) |
| 2521 | wbc->index = mapping->writeback_index; |
| 2522 | else |
| 2523 | wbc->index = wbc->range_start >> PAGE_SHIFT; |
| 2524 | |
| 2525 | /* |
| 2526 | * To avoid livelocks when other processes dirty new pages, we |
| 2527 | * first tag pages which should be written back and only then |
| 2528 | * start writing them. |
| 2529 | * |
| 2530 | * For data-integrity writeback we have to be careful so that we |
| 2531 | * do not miss some pages (e.g., because some other process has |
| 2532 | * cleared the TOWRITE tag we set). The rule we follow is that |
| 2533 | * TOWRITE tag can be cleared only by the process clearing the |
| 2534 | * DIRTY tag (and submitting the page for I/O). |
| 2535 | */ |
| 2536 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
| 2537 | tag_pages_for_writeback(mapping, wbc->index, |
| 2538 | wbc_end(wbc)); |
| 2539 | } else { |
| 2540 | wbc->nr_to_write -= folio_nr_pages(folio); |
| 2541 | |
| 2542 | WARN_ON_ONCE(*error > 0); |
| 2543 | |
| 2544 | /* |
| 2545 | * For integrity writeback we have to keep going until we have |
| 2546 | * written all the folios we tagged for writeback above, even if |
| 2547 | * we run past wbc->nr_to_write or encounter errors. |
| 2548 | * We stash away the first error we encounter in wbc->saved_err |
| 2549 | * so that it can be retrieved when we're done. This is because |
| 2550 | * the file system may still have state to clear for each folio. |
| 2551 | * |
| 2552 | * For background writeback we exit as soon as we run past |
| 2553 | * wbc->nr_to_write or encounter the first error. |
| 2554 | */ |
| 2555 | if (wbc->sync_mode == WB_SYNC_ALL) { |
| 2556 | if (*error && !wbc->saved_err) |
| 2557 | wbc->saved_err = *error; |
| 2558 | } else { |
| 2559 | if (*error || wbc->nr_to_write <= 0) |
| 2560 | goto done; |
| 2561 | } |
| 2562 | } |
| 2563 | |
| 2564 | folio = writeback_get_folio(mapping, wbc); |
| 2565 | if (!folio) { |
| 2566 | /* |
| 2567 | * To avoid deadlocks between range_cyclic writeback and callers |
| 2568 | * that hold folios in writeback to aggregate I/O until |
| 2569 | * the writeback iteration finishes, we do not loop back to the |
| 2570 | * start of the file. Doing so causes a folio lock/folio |
| 2571 | * writeback access order inversion - we should only ever lock |
| 2572 | * multiple folios in ascending folio->index order, and looping |
| 2573 | * back to the start of the file violates that rule and causes |
| 2574 | * deadlocks. |
| 2575 | */ |
| 2576 | if (wbc->range_cyclic) |
| 2577 | mapping->writeback_index = 0; |
| 2578 | |
| 2579 | /* |
| 2580 | * Return the first error we encountered (if there was any) to |
| 2581 | * the caller. |
| 2582 | */ |
| 2583 | *error = wbc->saved_err; |
| 2584 | } |
| 2585 | return folio; |
| 2586 | |
| 2587 | done: |
| 2588 | if (wbc->range_cyclic) |
| 2589 | mapping->writeback_index = folio_next_index(folio); |
| 2590 | folio_batch_release(&wbc->fbatch); |
| 2591 | return NULL; |
| 2592 | } |
| 2593 | EXPORT_SYMBOL_GPL(writeback_iter); |
| 2594 | |
| 2595 | /** |
| 2596 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. |
| 2597 | * @mapping: address space structure to write |
| 2598 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write |
| 2599 | * @writepage: function called for each page |
| 2600 | * @data: data passed to writepage function |
| 2601 | * |
| 2602 | * Return: %0 on success, negative error code otherwise |
| 2603 | * |
| 2604 | * Note: please use writeback_iter() instead. |
| 2605 | */ |
| 2606 | int write_cache_pages(struct address_space *mapping, |
| 2607 | struct writeback_control *wbc, writepage_t writepage, |
| 2608 | void *data) |
| 2609 | { |
| 2610 | struct folio *folio = NULL; |
| 2611 | int error; |
| 2612 | |
| 2613 | while ((folio = writeback_iter(mapping, wbc, folio, &error))) { |
| 2614 | error = writepage(folio, wbc, data); |
| 2615 | if (error == AOP_WRITEPAGE_ACTIVATE) { |
| 2616 | folio_unlock(folio); |
| 2617 | error = 0; |
| 2618 | } |
| 2619 | } |
| 2620 | |
| 2621 | return error; |
| 2622 | } |
| 2623 | EXPORT_SYMBOL(write_cache_pages); |
| 2624 | |
| 2625 | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) |
| 2626 | { |
| 2627 | int ret; |
| 2628 | struct bdi_writeback *wb; |
| 2629 | |
| 2630 | if (wbc->nr_to_write <= 0) |
| 2631 | return 0; |
| 2632 | wb = inode_to_wb_wbc(mapping->host, wbc); |
| 2633 | wb_bandwidth_estimate_start(wb); |
| 2634 | while (1) { |
| 2635 | if (mapping->a_ops->writepages) |
| 2636 | ret = mapping->a_ops->writepages(mapping, wbc); |
| 2637 | else |
| 2638 | /* deal with chardevs and other special files */ |
| 2639 | ret = 0; |
| 2640 | if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) |
| 2641 | break; |
| 2642 | |
| 2643 | /* |
| 2644 | * Lacking an allocation context or the locality or writeback |
| 2645 | * state of any of the inode's pages, throttle based on |
| 2646 | * writeback activity on the local node. It's as good a |
| 2647 | * guess as any. |
| 2648 | */ |
| 2649 | reclaim_throttle(NODE_DATA(numa_node_id()), |
| 2650 | VMSCAN_THROTTLE_WRITEBACK); |
| 2651 | } |
| 2652 | /* |
| 2653 | * Usually few pages are written by now from those we've just submitted |
| 2654 | * but if there's constant writeback being submitted, this makes sure |
| 2655 | * writeback bandwidth is updated once in a while. |
| 2656 | */ |
| 2657 | if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + |
| 2658 | BANDWIDTH_INTERVAL)) |
| 2659 | wb_update_bandwidth(wb); |
| 2660 | return ret; |
| 2661 | } |
| 2662 | |
| 2663 | /* |
| 2664 | * For address_spaces which do not use buffers nor write back. |
| 2665 | */ |
| 2666 | bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) |
| 2667 | { |
| 2668 | if (!folio_test_dirty(folio)) |
| 2669 | return !folio_test_set_dirty(folio); |
| 2670 | return false; |
| 2671 | } |
| 2672 | EXPORT_SYMBOL(noop_dirty_folio); |
| 2673 | |
| 2674 | /* |
| 2675 | * Helper function for set_page_dirty family. |
| 2676 | * |
| 2677 | * NOTE: This relies on being atomic wrt interrupts. |
| 2678 | */ |
| 2679 | static void folio_account_dirtied(struct folio *folio, |
| 2680 | struct address_space *mapping) |
| 2681 | { |
| 2682 | struct inode *inode = mapping->host; |
| 2683 | |
| 2684 | trace_writeback_dirty_folio(folio, mapping); |
| 2685 | |
| 2686 | if (mapping_can_writeback(mapping)) { |
| 2687 | struct bdi_writeback *wb; |
| 2688 | long nr = folio_nr_pages(folio); |
| 2689 | |
| 2690 | inode_attach_wb(inode, folio); |
| 2691 | wb = inode_to_wb(inode); |
| 2692 | |
| 2693 | __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); |
| 2694 | __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); |
| 2695 | __node_stat_mod_folio(folio, NR_DIRTIED, nr); |
| 2696 | wb_stat_mod(wb, WB_RECLAIMABLE, nr); |
| 2697 | wb_stat_mod(wb, WB_DIRTIED, nr); |
| 2698 | task_io_account_write(nr * PAGE_SIZE); |
| 2699 | current->nr_dirtied += nr; |
| 2700 | __this_cpu_add(bdp_ratelimits, nr); |
| 2701 | |
| 2702 | mem_cgroup_track_foreign_dirty(folio, wb); |
| 2703 | } |
| 2704 | } |
| 2705 | |
| 2706 | /* |
| 2707 | * Helper function for deaccounting dirty page without writeback. |
| 2708 | * |
| 2709 | */ |
| 2710 | void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) |
| 2711 | { |
| 2712 | long nr = folio_nr_pages(folio); |
| 2713 | |
| 2714 | lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); |
| 2715 | zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); |
| 2716 | wb_stat_mod(wb, WB_RECLAIMABLE, -nr); |
| 2717 | task_io_account_cancelled_write(nr * PAGE_SIZE); |
| 2718 | } |
| 2719 | |
| 2720 | /* |
| 2721 | * Mark the folio dirty, and set it dirty in the page cache. |
| 2722 | * |
| 2723 | * If warn is true, then emit a warning if the folio is not uptodate and has |
| 2724 | * not been truncated. |
| 2725 | * |
| 2726 | * It is the caller's responsibility to prevent the folio from being truncated |
| 2727 | * while this function is in progress, although it may have been truncated |
| 2728 | * before this function is called. Most callers have the folio locked. |
| 2729 | * A few have the folio blocked from truncation through other means (e.g. |
| 2730 | * zap_vma_pages() has it mapped and is holding the page table lock). |
| 2731 | * When called from mark_buffer_dirty(), the filesystem should hold a |
| 2732 | * reference to the buffer_head that is being marked dirty, which causes |
| 2733 | * try_to_free_buffers() to fail. |
| 2734 | */ |
| 2735 | void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, |
| 2736 | int warn) |
| 2737 | { |
| 2738 | unsigned long flags; |
| 2739 | |
| 2740 | xa_lock_irqsave(&mapping->i_pages, flags); |
| 2741 | if (folio->mapping) { /* Race with truncate? */ |
| 2742 | WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); |
| 2743 | folio_account_dirtied(folio, mapping); |
| 2744 | __xa_set_mark(&mapping->i_pages, folio_index(folio), |
| 2745 | PAGECACHE_TAG_DIRTY); |
| 2746 | } |
| 2747 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
| 2748 | } |
| 2749 | |
| 2750 | /** |
| 2751 | * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. |
| 2752 | * @mapping: Address space this folio belongs to. |
| 2753 | * @folio: Folio to be marked as dirty. |
| 2754 | * |
| 2755 | * Filesystems which do not use buffer heads should call this function |
| 2756 | * from their dirty_folio address space operation. It ignores the |
| 2757 | * contents of folio_get_private(), so if the filesystem marks individual |
| 2758 | * blocks as dirty, the filesystem should handle that itself. |
| 2759 | * |
| 2760 | * This is also sometimes used by filesystems which use buffer_heads when |
| 2761 | * a single buffer is being dirtied: we want to set the folio dirty in |
| 2762 | * that case, but not all the buffers. This is a "bottom-up" dirtying, |
| 2763 | * whereas block_dirty_folio() is a "top-down" dirtying. |
| 2764 | * |
| 2765 | * The caller must ensure this doesn't race with truncation. Most will |
| 2766 | * simply hold the folio lock, but e.g. zap_pte_range() calls with the |
| 2767 | * folio mapped and the pte lock held, which also locks out truncation. |
| 2768 | */ |
| 2769 | bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) |
| 2770 | { |
| 2771 | if (folio_test_set_dirty(folio)) |
| 2772 | return false; |
| 2773 | |
| 2774 | __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); |
| 2775 | |
| 2776 | if (mapping->host) { |
| 2777 | /* !PageAnon && !swapper_space */ |
| 2778 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
| 2779 | } |
| 2780 | return true; |
| 2781 | } |
| 2782 | EXPORT_SYMBOL(filemap_dirty_folio); |
| 2783 | |
| 2784 | /** |
| 2785 | * folio_redirty_for_writepage - Decline to write a dirty folio. |
| 2786 | * @wbc: The writeback control. |
| 2787 | * @folio: The folio. |
| 2788 | * |
| 2789 | * When a writepage implementation decides that it doesn't want to write |
| 2790 | * @folio for some reason, it should call this function, unlock @folio and |
| 2791 | * return 0. |
| 2792 | * |
| 2793 | * Return: True if we redirtied the folio. False if someone else dirtied |
| 2794 | * it first. |
| 2795 | */ |
| 2796 | bool folio_redirty_for_writepage(struct writeback_control *wbc, |
| 2797 | struct folio *folio) |
| 2798 | { |
| 2799 | struct address_space *mapping = folio->mapping; |
| 2800 | long nr = folio_nr_pages(folio); |
| 2801 | bool ret; |
| 2802 | |
| 2803 | wbc->pages_skipped += nr; |
| 2804 | ret = filemap_dirty_folio(mapping, folio); |
| 2805 | if (mapping && mapping_can_writeback(mapping)) { |
| 2806 | struct inode *inode = mapping->host; |
| 2807 | struct bdi_writeback *wb; |
| 2808 | struct wb_lock_cookie cookie = {}; |
| 2809 | |
| 2810 | wb = unlocked_inode_to_wb_begin(inode, &cookie); |
| 2811 | current->nr_dirtied -= nr; |
| 2812 | node_stat_mod_folio(folio, NR_DIRTIED, -nr); |
| 2813 | wb_stat_mod(wb, WB_DIRTIED, -nr); |
| 2814 | unlocked_inode_to_wb_end(inode, &cookie); |
| 2815 | } |
| 2816 | return ret; |
| 2817 | } |
| 2818 | EXPORT_SYMBOL(folio_redirty_for_writepage); |
| 2819 | |
| 2820 | /** |
| 2821 | * folio_mark_dirty - Mark a folio as being modified. |
| 2822 | * @folio: The folio. |
| 2823 | * |
| 2824 | * The folio may not be truncated while this function is running. |
| 2825 | * Holding the folio lock is sufficient to prevent truncation, but some |
| 2826 | * callers cannot acquire a sleeping lock. These callers instead hold |
| 2827 | * the page table lock for a page table which contains at least one page |
| 2828 | * in this folio. Truncation will block on the page table lock as it |
| 2829 | * unmaps pages before removing the folio from its mapping. |
| 2830 | * |
| 2831 | * Return: True if the folio was newly dirtied, false if it was already dirty. |
| 2832 | */ |
| 2833 | bool folio_mark_dirty(struct folio *folio) |
| 2834 | { |
| 2835 | struct address_space *mapping = folio_mapping(folio); |
| 2836 | |
| 2837 | if (likely(mapping)) { |
| 2838 | /* |
| 2839 | * readahead/folio_deactivate could remain |
| 2840 | * PG_readahead/PG_reclaim due to race with folio_end_writeback |
| 2841 | * About readahead, if the folio is written, the flags would be |
| 2842 | * reset. So no problem. |
| 2843 | * About folio_deactivate, if the folio is redirtied, |
| 2844 | * the flag will be reset. So no problem. but if the |
| 2845 | * folio is used by readahead it will confuse readahead |
| 2846 | * and make it restart the size rampup process. But it's |
| 2847 | * a trivial problem. |
| 2848 | */ |
| 2849 | if (folio_test_reclaim(folio)) |
| 2850 | folio_clear_reclaim(folio); |
| 2851 | return mapping->a_ops->dirty_folio(mapping, folio); |
| 2852 | } |
| 2853 | |
| 2854 | return noop_dirty_folio(mapping, folio); |
| 2855 | } |
| 2856 | EXPORT_SYMBOL(folio_mark_dirty); |
| 2857 | |
| 2858 | /* |
| 2859 | * folio_mark_dirty() is racy if the caller has no reference against |
| 2860 | * folio->mapping->host, and if the folio is unlocked. This is because another |
| 2861 | * CPU could truncate the folio off the mapping and then free the mapping. |
| 2862 | * |
| 2863 | * Usually, the folio _is_ locked, or the caller is a user-space process which |
| 2864 | * holds a reference on the inode by having an open file. |
| 2865 | * |
| 2866 | * In other cases, the folio should be locked before running folio_mark_dirty(). |
| 2867 | */ |
| 2868 | bool folio_mark_dirty_lock(struct folio *folio) |
| 2869 | { |
| 2870 | bool ret; |
| 2871 | |
| 2872 | folio_lock(folio); |
| 2873 | ret = folio_mark_dirty(folio); |
| 2874 | folio_unlock(folio); |
| 2875 | return ret; |
| 2876 | } |
| 2877 | EXPORT_SYMBOL(folio_mark_dirty_lock); |
| 2878 | |
| 2879 | /* |
| 2880 | * This cancels just the dirty bit on the kernel page itself, it does NOT |
| 2881 | * actually remove dirty bits on any mmap's that may be around. It also |
| 2882 | * leaves the page tagged dirty, so any sync activity will still find it on |
| 2883 | * the dirty lists, and in particular, clear_page_dirty_for_io() will still |
| 2884 | * look at the dirty bits in the VM. |
| 2885 | * |
| 2886 | * Doing this should *normally* only ever be done when a page is truncated, |
| 2887 | * and is not actually mapped anywhere at all. However, fs/buffer.c does |
| 2888 | * this when it notices that somebody has cleaned out all the buffers on a |
| 2889 | * page without actually doing it through the VM. Can you say "ext3 is |
| 2890 | * horribly ugly"? Thought you could. |
| 2891 | */ |
| 2892 | void __folio_cancel_dirty(struct folio *folio) |
| 2893 | { |
| 2894 | struct address_space *mapping = folio_mapping(folio); |
| 2895 | |
| 2896 | if (mapping_can_writeback(mapping)) { |
| 2897 | struct inode *inode = mapping->host; |
| 2898 | struct bdi_writeback *wb; |
| 2899 | struct wb_lock_cookie cookie = {}; |
| 2900 | |
| 2901 | wb = unlocked_inode_to_wb_begin(inode, &cookie); |
| 2902 | |
| 2903 | if (folio_test_clear_dirty(folio)) |
| 2904 | folio_account_cleaned(folio, wb); |
| 2905 | |
| 2906 | unlocked_inode_to_wb_end(inode, &cookie); |
| 2907 | } else { |
| 2908 | folio_clear_dirty(folio); |
| 2909 | } |
| 2910 | } |
| 2911 | EXPORT_SYMBOL(__folio_cancel_dirty); |
| 2912 | |
| 2913 | /* |
| 2914 | * Clear a folio's dirty flag, while caring for dirty memory accounting. |
| 2915 | * Returns true if the folio was previously dirty. |
| 2916 | * |
| 2917 | * This is for preparing to put the folio under writeout. We leave |
| 2918 | * the folio tagged as dirty in the xarray so that a concurrent |
| 2919 | * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. |
| 2920 | * The ->writepage implementation will run either folio_start_writeback() |
| 2921 | * or folio_mark_dirty(), at which stage we bring the folio's dirty flag |
| 2922 | * and xarray dirty tag back into sync. |
| 2923 | * |
| 2924 | * This incoherency between the folio's dirty flag and xarray tag is |
| 2925 | * unfortunate, but it only exists while the folio is locked. |
| 2926 | */ |
| 2927 | bool folio_clear_dirty_for_io(struct folio *folio) |
| 2928 | { |
| 2929 | struct address_space *mapping = folio_mapping(folio); |
| 2930 | bool ret = false; |
| 2931 | |
| 2932 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
| 2933 | |
| 2934 | if (mapping && mapping_can_writeback(mapping)) { |
| 2935 | struct inode *inode = mapping->host; |
| 2936 | struct bdi_writeback *wb; |
| 2937 | struct wb_lock_cookie cookie = {}; |
| 2938 | |
| 2939 | /* |
| 2940 | * Yes, Virginia, this is indeed insane. |
| 2941 | * |
| 2942 | * We use this sequence to make sure that |
| 2943 | * (a) we account for dirty stats properly |
| 2944 | * (b) we tell the low-level filesystem to |
| 2945 | * mark the whole folio dirty if it was |
| 2946 | * dirty in a pagetable. Only to then |
| 2947 | * (c) clean the folio again and return 1 to |
| 2948 | * cause the writeback. |
| 2949 | * |
| 2950 | * This way we avoid all nasty races with the |
| 2951 | * dirty bit in multiple places and clearing |
| 2952 | * them concurrently from different threads. |
| 2953 | * |
| 2954 | * Note! Normally the "folio_mark_dirty(folio)" |
| 2955 | * has no effect on the actual dirty bit - since |
| 2956 | * that will already usually be set. But we |
| 2957 | * need the side effects, and it can help us |
| 2958 | * avoid races. |
| 2959 | * |
| 2960 | * We basically use the folio "master dirty bit" |
| 2961 | * as a serialization point for all the different |
| 2962 | * threads doing their things. |
| 2963 | */ |
| 2964 | if (folio_mkclean(folio)) |
| 2965 | folio_mark_dirty(folio); |
| 2966 | /* |
| 2967 | * We carefully synchronise fault handlers against |
| 2968 | * installing a dirty pte and marking the folio dirty |
| 2969 | * at this point. We do this by having them hold the |
| 2970 | * page lock while dirtying the folio, and folios are |
| 2971 | * always locked coming in here, so we get the desired |
| 2972 | * exclusion. |
| 2973 | */ |
| 2974 | wb = unlocked_inode_to_wb_begin(inode, &cookie); |
| 2975 | if (folio_test_clear_dirty(folio)) { |
| 2976 | long nr = folio_nr_pages(folio); |
| 2977 | lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); |
| 2978 | zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); |
| 2979 | wb_stat_mod(wb, WB_RECLAIMABLE, -nr); |
| 2980 | ret = true; |
| 2981 | } |
| 2982 | unlocked_inode_to_wb_end(inode, &cookie); |
| 2983 | return ret; |
| 2984 | } |
| 2985 | return folio_test_clear_dirty(folio); |
| 2986 | } |
| 2987 | EXPORT_SYMBOL(folio_clear_dirty_for_io); |
| 2988 | |
| 2989 | static void wb_inode_writeback_start(struct bdi_writeback *wb) |
| 2990 | { |
| 2991 | atomic_inc(&wb->writeback_inodes); |
| 2992 | } |
| 2993 | |
| 2994 | static void wb_inode_writeback_end(struct bdi_writeback *wb) |
| 2995 | { |
| 2996 | unsigned long flags; |
| 2997 | atomic_dec(&wb->writeback_inodes); |
| 2998 | /* |
| 2999 | * Make sure estimate of writeback throughput gets updated after |
| 3000 | * writeback completed. We delay the update by BANDWIDTH_INTERVAL |
| 3001 | * (which is the interval other bandwidth updates use for batching) so |
| 3002 | * that if multiple inodes end writeback at a similar time, they get |
| 3003 | * batched into one bandwidth update. |
| 3004 | */ |
| 3005 | spin_lock_irqsave(&wb->work_lock, flags); |
| 3006 | if (test_bit(WB_registered, &wb->state)) |
| 3007 | queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); |
| 3008 | spin_unlock_irqrestore(&wb->work_lock, flags); |
| 3009 | } |
| 3010 | |
| 3011 | bool __folio_end_writeback(struct folio *folio) |
| 3012 | { |
| 3013 | long nr = folio_nr_pages(folio); |
| 3014 | struct address_space *mapping = folio_mapping(folio); |
| 3015 | bool ret; |
| 3016 | |
| 3017 | if (mapping && mapping_use_writeback_tags(mapping)) { |
| 3018 | struct inode *inode = mapping->host; |
| 3019 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
| 3020 | unsigned long flags; |
| 3021 | |
| 3022 | xa_lock_irqsave(&mapping->i_pages, flags); |
| 3023 | ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); |
| 3024 | __xa_clear_mark(&mapping->i_pages, folio_index(folio), |
| 3025 | PAGECACHE_TAG_WRITEBACK); |
| 3026 | if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { |
| 3027 | struct bdi_writeback *wb = inode_to_wb(inode); |
| 3028 | |
| 3029 | wb_stat_mod(wb, WB_WRITEBACK, -nr); |
| 3030 | __wb_writeout_add(wb, nr); |
| 3031 | if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) |
| 3032 | wb_inode_writeback_end(wb); |
| 3033 | } |
| 3034 | |
| 3035 | if (mapping->host && !mapping_tagged(mapping, |
| 3036 | PAGECACHE_TAG_WRITEBACK)) |
| 3037 | sb_clear_inode_writeback(mapping->host); |
| 3038 | |
| 3039 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
| 3040 | } else { |
| 3041 | ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); |
| 3042 | } |
| 3043 | |
| 3044 | lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); |
| 3045 | zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); |
| 3046 | node_stat_mod_folio(folio, NR_WRITTEN, nr); |
| 3047 | |
| 3048 | return ret; |
| 3049 | } |
| 3050 | |
| 3051 | void __folio_start_writeback(struct folio *folio, bool keep_write) |
| 3052 | { |
| 3053 | long nr = folio_nr_pages(folio); |
| 3054 | struct address_space *mapping = folio_mapping(folio); |
| 3055 | int access_ret; |
| 3056 | |
| 3057 | VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); |
| 3058 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
| 3059 | |
| 3060 | if (mapping && mapping_use_writeback_tags(mapping)) { |
| 3061 | XA_STATE(xas, &mapping->i_pages, folio_index(folio)); |
| 3062 | struct inode *inode = mapping->host; |
| 3063 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
| 3064 | unsigned long flags; |
| 3065 | bool on_wblist; |
| 3066 | |
| 3067 | xas_lock_irqsave(&xas, flags); |
| 3068 | xas_load(&xas); |
| 3069 | folio_test_set_writeback(folio); |
| 3070 | |
| 3071 | on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); |
| 3072 | |
| 3073 | xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); |
| 3074 | if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { |
| 3075 | struct bdi_writeback *wb = inode_to_wb(inode); |
| 3076 | |
| 3077 | wb_stat_mod(wb, WB_WRITEBACK, nr); |
| 3078 | if (!on_wblist) |
| 3079 | wb_inode_writeback_start(wb); |
| 3080 | } |
| 3081 | |
| 3082 | /* |
| 3083 | * We can come through here when swapping anonymous |
| 3084 | * folios, so we don't necessarily have an inode to |
| 3085 | * track for sync. |
| 3086 | */ |
| 3087 | if (mapping->host && !on_wblist) |
| 3088 | sb_mark_inode_writeback(mapping->host); |
| 3089 | if (!folio_test_dirty(folio)) |
| 3090 | xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); |
| 3091 | if (!keep_write) |
| 3092 | xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); |
| 3093 | xas_unlock_irqrestore(&xas, flags); |
| 3094 | } else { |
| 3095 | folio_test_set_writeback(folio); |
| 3096 | } |
| 3097 | |
| 3098 | lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); |
| 3099 | zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); |
| 3100 | |
| 3101 | access_ret = arch_make_folio_accessible(folio); |
| 3102 | /* |
| 3103 | * If writeback has been triggered on a page that cannot be made |
| 3104 | * accessible, it is too late to recover here. |
| 3105 | */ |
| 3106 | VM_BUG_ON_FOLIO(access_ret != 0, folio); |
| 3107 | } |
| 3108 | EXPORT_SYMBOL(__folio_start_writeback); |
| 3109 | |
| 3110 | /** |
| 3111 | * folio_wait_writeback - Wait for a folio to finish writeback. |
| 3112 | * @folio: The folio to wait for. |
| 3113 | * |
| 3114 | * If the folio is currently being written back to storage, wait for the |
| 3115 | * I/O to complete. |
| 3116 | * |
| 3117 | * Context: Sleeps. Must be called in process context and with |
| 3118 | * no spinlocks held. Caller should hold a reference on the folio. |
| 3119 | * If the folio is not locked, writeback may start again after writeback |
| 3120 | * has finished. |
| 3121 | */ |
| 3122 | void folio_wait_writeback(struct folio *folio) |
| 3123 | { |
| 3124 | while (folio_test_writeback(folio)) { |
| 3125 | trace_folio_wait_writeback(folio, folio_mapping(folio)); |
| 3126 | folio_wait_bit(folio, PG_writeback); |
| 3127 | } |
| 3128 | } |
| 3129 | EXPORT_SYMBOL_GPL(folio_wait_writeback); |
| 3130 | |
| 3131 | /** |
| 3132 | * folio_wait_writeback_killable - Wait for a folio to finish writeback. |
| 3133 | * @folio: The folio to wait for. |
| 3134 | * |
| 3135 | * If the folio is currently being written back to storage, wait for the |
| 3136 | * I/O to complete or a fatal signal to arrive. |
| 3137 | * |
| 3138 | * Context: Sleeps. Must be called in process context and with |
| 3139 | * no spinlocks held. Caller should hold a reference on the folio. |
| 3140 | * If the folio is not locked, writeback may start again after writeback |
| 3141 | * has finished. |
| 3142 | * Return: 0 on success, -EINTR if we get a fatal signal while waiting. |
| 3143 | */ |
| 3144 | int folio_wait_writeback_killable(struct folio *folio) |
| 3145 | { |
| 3146 | while (folio_test_writeback(folio)) { |
| 3147 | trace_folio_wait_writeback(folio, folio_mapping(folio)); |
| 3148 | if (folio_wait_bit_killable(folio, PG_writeback)) |
| 3149 | return -EINTR; |
| 3150 | } |
| 3151 | |
| 3152 | return 0; |
| 3153 | } |
| 3154 | EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); |
| 3155 | |
| 3156 | /** |
| 3157 | * folio_wait_stable() - wait for writeback to finish, if necessary. |
| 3158 | * @folio: The folio to wait on. |
| 3159 | * |
| 3160 | * This function determines if the given folio is related to a backing |
| 3161 | * device that requires folio contents to be held stable during writeback. |
| 3162 | * If so, then it will wait for any pending writeback to complete. |
| 3163 | * |
| 3164 | * Context: Sleeps. Must be called in process context and with |
| 3165 | * no spinlocks held. Caller should hold a reference on the folio. |
| 3166 | * If the folio is not locked, writeback may start again after writeback |
| 3167 | * has finished. |
| 3168 | */ |
| 3169 | void folio_wait_stable(struct folio *folio) |
| 3170 | { |
| 3171 | if (mapping_stable_writes(folio_mapping(folio))) |
| 3172 | folio_wait_writeback(folio); |
| 3173 | } |
| 3174 | EXPORT_SYMBOL_GPL(folio_wait_stable); |