Merge tag 'input-for-v6.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / mmap.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/backing-dev.h>
15#include <linux/mm.h>
16#include <linux/mm_inline.h>
17#include <linux/shm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/syscalls.h>
22#include <linux/capability.h>
23#include <linux/init.h>
24#include <linux/file.h>
25#include <linux/fs.h>
26#include <linux/personality.h>
27#include <linux/security.h>
28#include <linux/hugetlb.h>
29#include <linux/shmem_fs.h>
30#include <linux/profile.h>
31#include <linux/export.h>
32#include <linux/mount.h>
33#include <linux/mempolicy.h>
34#include <linux/rmap.h>
35#include <linux/mmu_notifier.h>
36#include <linux/mmdebug.h>
37#include <linux/perf_event.h>
38#include <linux/audit.h>
39#include <linux/khugepaged.h>
40#include <linux/uprobes.h>
41#include <linux/notifier.h>
42#include <linux/memory.h>
43#include <linux/printk.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/moduleparam.h>
46#include <linux/pkeys.h>
47#include <linux/oom.h>
48#include <linux/sched/mm.h>
49#include <linux/ksm.h>
50
51#include <linux/uaccess.h>
52#include <asm/cacheflush.h>
53#include <asm/tlb.h>
54#include <asm/mmu_context.h>
55
56#define CREATE_TRACE_POINTS
57#include <trace/events/mmap.h>
58
59#include "internal.h"
60
61#ifndef arch_mmap_check
62#define arch_mmap_check(addr, len, flags) (0)
63#endif
64
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69#endif
70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74#endif
75
76static bool ignore_rlimit_data;
77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85{
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87}
88
89/* Update vma->vm_page_prot to reflect vma->vm_flags. */
90void vma_set_page_prot(struct vm_area_struct *vma)
91{
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
94
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 }
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102}
103
104/*
105 * Requires inode->i_mapping->i_mmap_rwsem
106 */
107static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct address_space *mapping)
109{
110 if (vma_is_shared_maywrite(vma))
111 mapping_unmap_writable(mapping);
112
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
116}
117
118/*
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
121 */
122void unlink_file_vma(struct vm_area_struct *vma)
123{
124 struct file *file = vma->vm_file;
125
126 if (file) {
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, mapping);
130 i_mmap_unlock_write(mapping);
131 }
132}
133
134/*
135 * Close a vm structure and free it.
136 */
137static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138{
139 might_sleep();
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
142 if (vma->vm_file)
143 fput(vma->vm_file);
144 mpol_put(vma_policy(vma));
145 if (unreachable)
146 __vm_area_free(vma);
147 else
148 vm_area_free(vma);
149}
150
151static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 unsigned long min)
153{
154 return mas_prev(&vmi->mas, min);
155}
156
157/*
158 * check_brk_limits() - Use platform specific check of range & verify mlock
159 * limits.
160 * @addr: The address to check
161 * @len: The size of increase.
162 *
163 * Return: 0 on success.
164 */
165static int check_brk_limits(unsigned long addr, unsigned long len)
166{
167 unsigned long mapped_addr;
168
169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 if (IS_ERR_VALUE(mapped_addr))
171 return mapped_addr;
172
173 return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 ? 0 : -EAGAIN;
175}
176static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 unsigned long addr, unsigned long request, unsigned long flags);
178SYSCALL_DEFINE1(brk, unsigned long, brk)
179{
180 unsigned long newbrk, oldbrk, origbrk;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *brkvma, *next = NULL;
183 unsigned long min_brk;
184 bool populate = false;
185 LIST_HEAD(uf);
186 struct vma_iterator vmi;
187
188 if (mmap_write_lock_killable(mm))
189 return -EINTR;
190
191 origbrk = mm->brk;
192
193#ifdef CONFIG_COMPAT_BRK
194 /*
195 * CONFIG_COMPAT_BRK can still be overridden by setting
196 * randomize_va_space to 2, which will still cause mm->start_brk
197 * to be arbitrarily shifted
198 */
199 if (current->brk_randomized)
200 min_brk = mm->start_brk;
201 else
202 min_brk = mm->end_data;
203#else
204 min_brk = mm->start_brk;
205#endif
206 if (brk < min_brk)
207 goto out;
208
209 /*
210 * Check against rlimit here. If this check is done later after the test
211 * of oldbrk with newbrk then it can escape the test and let the data
212 * segment grow beyond its set limit the in case where the limit is
213 * not page aligned -Ram Gupta
214 */
215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 mm->end_data, mm->start_data))
217 goto out;
218
219 newbrk = PAGE_ALIGN(brk);
220 oldbrk = PAGE_ALIGN(mm->brk);
221 if (oldbrk == newbrk) {
222 mm->brk = brk;
223 goto success;
224 }
225
226 /* Always allow shrinking brk. */
227 if (brk <= mm->brk) {
228 /* Search one past newbrk */
229 vma_iter_init(&vmi, mm, newbrk);
230 brkvma = vma_find(&vmi, oldbrk);
231 if (!brkvma || brkvma->vm_start >= oldbrk)
232 goto out; /* mapping intersects with an existing non-brk vma. */
233 /*
234 * mm->brk must be protected by write mmap_lock.
235 * do_vma_munmap() will drop the lock on success, so update it
236 * before calling do_vma_munmap().
237 */
238 mm->brk = brk;
239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 goto out;
241
242 goto success_unlocked;
243 }
244
245 if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 goto out;
247
248 /*
249 * Only check if the next VMA is within the stack_guard_gap of the
250 * expansion area
251 */
252 vma_iter_init(&vmi, mm, oldbrk);
253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 goto out;
256
257 brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 /* Ok, looks good - let it rip. */
259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 goto out;
261
262 mm->brk = brk;
263 if (mm->def_flags & VM_LOCKED)
264 populate = true;
265
266success:
267 mmap_write_unlock(mm);
268success_unlocked:
269 userfaultfd_unmap_complete(mm, &uf);
270 if (populate)
271 mm_populate(oldbrk, newbrk - oldbrk);
272 return brk;
273
274out:
275 mm->brk = origbrk;
276 mmap_write_unlock(mm);
277 return origbrk;
278}
279
280#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281static void validate_mm(struct mm_struct *mm)
282{
283 int bug = 0;
284 int i = 0;
285 struct vm_area_struct *vma;
286 VMA_ITERATOR(vmi, mm, 0);
287
288 mt_validate(&mm->mm_mt);
289 for_each_vma(vmi, vma) {
290#ifdef CONFIG_DEBUG_VM_RB
291 struct anon_vma *anon_vma = vma->anon_vma;
292 struct anon_vma_chain *avc;
293#endif
294 unsigned long vmi_start, vmi_end;
295 bool warn = 0;
296
297 vmi_start = vma_iter_addr(&vmi);
298 vmi_end = vma_iter_end(&vmi);
299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 warn = 1;
301
302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 warn = 1;
304
305 if (warn) {
306 pr_emerg("issue in %s\n", current->comm);
307 dump_stack();
308 dump_vma(vma);
309 pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 vmi_start, vmi_end - 1);
311 vma_iter_dump_tree(&vmi);
312 }
313
314#ifdef CONFIG_DEBUG_VM_RB
315 if (anon_vma) {
316 anon_vma_lock_read(anon_vma);
317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 anon_vma_interval_tree_verify(avc);
319 anon_vma_unlock_read(anon_vma);
320 }
321#endif
322 i++;
323 }
324 if (i != mm->map_count) {
325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 bug = 1;
327 }
328 VM_BUG_ON_MM(bug, mm);
329}
330
331#else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332#define validate_mm(mm) do { } while (0)
333#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335/*
336 * vma has some anon_vma assigned, and is already inserted on that
337 * anon_vma's interval trees.
338 *
339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340 * vma must be removed from the anon_vma's interval trees using
341 * anon_vma_interval_tree_pre_update_vma().
342 *
343 * After the update, the vma will be reinserted using
344 * anon_vma_interval_tree_post_update_vma().
345 *
346 * The entire update must be protected by exclusive mmap_lock and by
347 * the root anon_vma's mutex.
348 */
349static inline void
350anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351{
352 struct anon_vma_chain *avc;
353
354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356}
357
358static inline void
359anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360{
361 struct anon_vma_chain *avc;
362
363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365}
366
367static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 unsigned long addr, unsigned long end)
369{
370 VMA_ITERATOR(vmi, mm, addr);
371 struct vm_area_struct *vma;
372 unsigned long nr_pages = 0;
373
374 for_each_vma_range(vmi, vma, end) {
375 unsigned long vm_start = max(addr, vma->vm_start);
376 unsigned long vm_end = min(end, vma->vm_end);
377
378 nr_pages += PHYS_PFN(vm_end - vm_start);
379 }
380
381 return nr_pages;
382}
383
384static void __vma_link_file(struct vm_area_struct *vma,
385 struct address_space *mapping)
386{
387 if (vma_is_shared_maywrite(vma))
388 mapping_allow_writable(mapping);
389
390 flush_dcache_mmap_lock(mapping);
391 vma_interval_tree_insert(vma, &mapping->i_mmap);
392 flush_dcache_mmap_unlock(mapping);
393}
394
395static void vma_link_file(struct vm_area_struct *vma)
396{
397 struct file *file = vma->vm_file;
398 struct address_space *mapping;
399
400 if (file) {
401 mapping = file->f_mapping;
402 i_mmap_lock_write(mapping);
403 __vma_link_file(vma, mapping);
404 i_mmap_unlock_write(mapping);
405 }
406}
407
408static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409{
410 VMA_ITERATOR(vmi, mm, 0);
411
412 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413 if (vma_iter_prealloc(&vmi, vma))
414 return -ENOMEM;
415
416 vma_start_write(vma);
417 vma_iter_store(&vmi, vma);
418 vma_link_file(vma);
419 mm->map_count++;
420 validate_mm(mm);
421 return 0;
422}
423
424/*
425 * init_multi_vma_prep() - Initializer for struct vma_prepare
426 * @vp: The vma_prepare struct
427 * @vma: The vma that will be altered once locked
428 * @next: The next vma if it is to be adjusted
429 * @remove: The first vma to be removed
430 * @remove2: The second vma to be removed
431 */
432static inline void init_multi_vma_prep(struct vma_prepare *vp,
433 struct vm_area_struct *vma, struct vm_area_struct *next,
434 struct vm_area_struct *remove, struct vm_area_struct *remove2)
435{
436 memset(vp, 0, sizeof(struct vma_prepare));
437 vp->vma = vma;
438 vp->anon_vma = vma->anon_vma;
439 vp->remove = remove;
440 vp->remove2 = remove2;
441 vp->adj_next = next;
442 if (!vp->anon_vma && next)
443 vp->anon_vma = next->anon_vma;
444
445 vp->file = vma->vm_file;
446 if (vp->file)
447 vp->mapping = vma->vm_file->f_mapping;
448
449}
450
451/*
452 * init_vma_prep() - Initializer wrapper for vma_prepare struct
453 * @vp: The vma_prepare struct
454 * @vma: The vma that will be altered once locked
455 */
456static inline void init_vma_prep(struct vma_prepare *vp,
457 struct vm_area_struct *vma)
458{
459 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460}
461
462
463/*
464 * vma_prepare() - Helper function for handling locking VMAs prior to altering
465 * @vp: The initialized vma_prepare struct
466 */
467static inline void vma_prepare(struct vma_prepare *vp)
468{
469 if (vp->file) {
470 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471
472 if (vp->adj_next)
473 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474 vp->adj_next->vm_end);
475
476 i_mmap_lock_write(vp->mapping);
477 if (vp->insert && vp->insert->vm_file) {
478 /*
479 * Put into interval tree now, so instantiated pages
480 * are visible to arm/parisc __flush_dcache_page
481 * throughout; but we cannot insert into address
482 * space until vma start or end is updated.
483 */
484 __vma_link_file(vp->insert,
485 vp->insert->vm_file->f_mapping);
486 }
487 }
488
489 if (vp->anon_vma) {
490 anon_vma_lock_write(vp->anon_vma);
491 anon_vma_interval_tree_pre_update_vma(vp->vma);
492 if (vp->adj_next)
493 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494 }
495
496 if (vp->file) {
497 flush_dcache_mmap_lock(vp->mapping);
498 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499 if (vp->adj_next)
500 vma_interval_tree_remove(vp->adj_next,
501 &vp->mapping->i_mmap);
502 }
503
504}
505
506/*
507 * vma_complete- Helper function for handling the unlocking after altering VMAs,
508 * or for inserting a VMA.
509 *
510 * @vp: The vma_prepare struct
511 * @vmi: The vma iterator
512 * @mm: The mm_struct
513 */
514static inline void vma_complete(struct vma_prepare *vp,
515 struct vma_iterator *vmi, struct mm_struct *mm)
516{
517 if (vp->file) {
518 if (vp->adj_next)
519 vma_interval_tree_insert(vp->adj_next,
520 &vp->mapping->i_mmap);
521 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522 flush_dcache_mmap_unlock(vp->mapping);
523 }
524
525 if (vp->remove && vp->file) {
526 __remove_shared_vm_struct(vp->remove, vp->mapping);
527 if (vp->remove2)
528 __remove_shared_vm_struct(vp->remove2, vp->mapping);
529 } else if (vp->insert) {
530 /*
531 * split_vma has split insert from vma, and needs
532 * us to insert it before dropping the locks
533 * (it may either follow vma or precede it).
534 */
535 vma_iter_store(vmi, vp->insert);
536 mm->map_count++;
537 }
538
539 if (vp->anon_vma) {
540 anon_vma_interval_tree_post_update_vma(vp->vma);
541 if (vp->adj_next)
542 anon_vma_interval_tree_post_update_vma(vp->adj_next);
543 anon_vma_unlock_write(vp->anon_vma);
544 }
545
546 if (vp->file) {
547 i_mmap_unlock_write(vp->mapping);
548 uprobe_mmap(vp->vma);
549
550 if (vp->adj_next)
551 uprobe_mmap(vp->adj_next);
552 }
553
554 if (vp->remove) {
555again:
556 vma_mark_detached(vp->remove, true);
557 if (vp->file) {
558 uprobe_munmap(vp->remove, vp->remove->vm_start,
559 vp->remove->vm_end);
560 fput(vp->file);
561 }
562 if (vp->remove->anon_vma)
563 anon_vma_merge(vp->vma, vp->remove);
564 mm->map_count--;
565 mpol_put(vma_policy(vp->remove));
566 if (!vp->remove2)
567 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568 vm_area_free(vp->remove);
569
570 /*
571 * In mprotect's case 6 (see comments on vma_merge),
572 * we are removing both mid and next vmas
573 */
574 if (vp->remove2) {
575 vp->remove = vp->remove2;
576 vp->remove2 = NULL;
577 goto again;
578 }
579 }
580 if (vp->insert && vp->file)
581 uprobe_mmap(vp->insert);
582 validate_mm(mm);
583}
584
585/*
586 * dup_anon_vma() - Helper function to duplicate anon_vma
587 * @dst: The destination VMA
588 * @src: The source VMA
589 * @dup: Pointer to the destination VMA when successful.
590 *
591 * Returns: 0 on success.
592 */
593static inline int dup_anon_vma(struct vm_area_struct *dst,
594 struct vm_area_struct *src, struct vm_area_struct **dup)
595{
596 /*
597 * Easily overlooked: when mprotect shifts the boundary, make sure the
598 * expanding vma has anon_vma set if the shrinking vma had, to cover any
599 * anon pages imported.
600 */
601 if (src->anon_vma && !dst->anon_vma) {
602 int ret;
603
604 vma_assert_write_locked(dst);
605 dst->anon_vma = src->anon_vma;
606 ret = anon_vma_clone(dst, src);
607 if (ret)
608 return ret;
609
610 *dup = dst;
611 }
612
613 return 0;
614}
615
616/*
617 * vma_expand - Expand an existing VMA
618 *
619 * @vmi: The vma iterator
620 * @vma: The vma to expand
621 * @start: The start of the vma
622 * @end: The exclusive end of the vma
623 * @pgoff: The page offset of vma
624 * @next: The current of next vma.
625 *
626 * Expand @vma to @start and @end. Can expand off the start and end. Will
627 * expand over @next if it's different from @vma and @end == @next->vm_end.
628 * Checking if the @vma can expand and merge with @next needs to be handled by
629 * the caller.
630 *
631 * Returns: 0 on success
632 */
633int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634 unsigned long start, unsigned long end, pgoff_t pgoff,
635 struct vm_area_struct *next)
636{
637 struct vm_area_struct *anon_dup = NULL;
638 bool remove_next = false;
639 struct vma_prepare vp;
640
641 vma_start_write(vma);
642 if (next && (vma != next) && (end == next->vm_end)) {
643 int ret;
644
645 remove_next = true;
646 vma_start_write(next);
647 ret = dup_anon_vma(vma, next, &anon_dup);
648 if (ret)
649 return ret;
650 }
651
652 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653 /* Not merging but overwriting any part of next is not handled. */
654 VM_WARN_ON(next && !vp.remove &&
655 next != vma && end > next->vm_start);
656 /* Only handles expanding */
657 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658
659 /* Note: vma iterator must be pointing to 'start' */
660 vma_iter_config(vmi, start, end);
661 if (vma_iter_prealloc(vmi, vma))
662 goto nomem;
663
664 vma_prepare(&vp);
665 vma_adjust_trans_huge(vma, start, end, 0);
666 vma_set_range(vma, start, end, pgoff);
667 vma_iter_store(vmi, vma);
668
669 vma_complete(&vp, vmi, vma->vm_mm);
670 return 0;
671
672nomem:
673 if (anon_dup)
674 unlink_anon_vmas(anon_dup);
675 return -ENOMEM;
676}
677
678/*
679 * vma_shrink() - Reduce an existing VMAs memory area
680 * @vmi: The vma iterator
681 * @vma: The VMA to modify
682 * @start: The new start
683 * @end: The new end
684 *
685 * Returns: 0 on success, -ENOMEM otherwise
686 */
687int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688 unsigned long start, unsigned long end, pgoff_t pgoff)
689{
690 struct vma_prepare vp;
691
692 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693
694 if (vma->vm_start < start)
695 vma_iter_config(vmi, vma->vm_start, start);
696 else
697 vma_iter_config(vmi, end, vma->vm_end);
698
699 if (vma_iter_prealloc(vmi, NULL))
700 return -ENOMEM;
701
702 vma_start_write(vma);
703
704 init_vma_prep(&vp, vma);
705 vma_prepare(&vp);
706 vma_adjust_trans_huge(vma, start, end, 0);
707
708 vma_iter_clear(vmi);
709 vma_set_range(vma, start, end, pgoff);
710 vma_complete(&vp, vmi, vma->vm_mm);
711 return 0;
712}
713
714/*
715 * If the vma has a ->close operation then the driver probably needs to release
716 * per-vma resources, so we don't attempt to merge those if the caller indicates
717 * the current vma may be removed as part of the merge.
718 */
719static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720 struct file *file, unsigned long vm_flags,
721 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722 struct anon_vma_name *anon_name, bool may_remove_vma)
723{
724 /*
725 * VM_SOFTDIRTY should not prevent from VMA merging, if we
726 * match the flags but dirty bit -- the caller should mark
727 * merged VMA as dirty. If dirty bit won't be excluded from
728 * comparison, we increase pressure on the memory system forcing
729 * the kernel to generate new VMAs when old one could be
730 * extended instead.
731 */
732 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733 return false;
734 if (vma->vm_file != file)
735 return false;
736 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737 return false;
738 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739 return false;
740 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741 return false;
742 return true;
743}
744
745static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747{
748 /*
749 * The list_is_singular() test is to avoid merging VMA cloned from
750 * parents. This can improve scalability caused by anon_vma lock.
751 */
752 if ((!anon_vma1 || !anon_vma2) && (!vma ||
753 list_is_singular(&vma->anon_vma_chain)))
754 return true;
755 return anon_vma1 == anon_vma2;
756}
757
758/*
759 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760 * in front of (at a lower virtual address and file offset than) the vma.
761 *
762 * We cannot merge two vmas if they have differently assigned (non-NULL)
763 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764 *
765 * We don't check here for the merged mmap wrapping around the end of pagecache
766 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767 * wrap, nor mmaps which cover the final page at index -1UL.
768 *
769 * We assume the vma may be removed as part of the merge.
770 */
771static bool
772can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773 struct anon_vma *anon_vma, struct file *file,
774 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775 struct anon_vma_name *anon_name)
776{
777 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779 if (vma->vm_pgoff == vm_pgoff)
780 return true;
781 }
782 return false;
783}
784
785/*
786 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787 * beyond (at a higher virtual address and file offset than) the vma.
788 *
789 * We cannot merge two vmas if they have differently assigned (non-NULL)
790 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791 *
792 * We assume that vma is not removed as part of the merge.
793 */
794static bool
795can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796 struct anon_vma *anon_vma, struct file *file,
797 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798 struct anon_vma_name *anon_name)
799{
800 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802 pgoff_t vm_pglen;
803 vm_pglen = vma_pages(vma);
804 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805 return true;
806 }
807 return false;
808}
809
810/*
811 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812 * figure out whether that can be merged with its predecessor or its
813 * successor. Or both (it neatly fills a hole).
814 *
815 * In most cases - when called for mmap, brk or mremap - [addr,end) is
816 * certain not to be mapped by the time vma_merge is called; but when
817 * called for mprotect, it is certain to be already mapped (either at
818 * an offset within prev, or at the start of next), and the flags of
819 * this area are about to be changed to vm_flags - and the no-change
820 * case has already been eliminated.
821 *
822 * The following mprotect cases have to be considered, where **** is
823 * the area passed down from mprotect_fixup, never extending beyond one
824 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825 * at the same address as **** and is of the same or larger span, and
826 * NNNN the next vma after ****:
827 *
828 * **** **** ****
829 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
830 * cannot merge might become might become
831 * PPNNNNNNNNNN PPPPPPPPPPCC
832 * mmap, brk or case 4 below case 5 below
833 * mremap move:
834 * **** ****
835 * PPPP NNNN PPPPCCCCNNNN
836 * might become might become
837 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
838 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
839 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
840 *
841 * It is important for case 8 that the vma CCCC overlapping the
842 * region **** is never going to extended over NNNN. Instead NNNN must
843 * be extended in region **** and CCCC must be removed. This way in
844 * all cases where vma_merge succeeds, the moment vma_merge drops the
845 * rmap_locks, the properties of the merged vma will be already
846 * correct for the whole merged range. Some of those properties like
847 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848 * be correct for the whole merged range immediately after the
849 * rmap_locks are released. Otherwise if NNNN would be removed and
850 * CCCC would be extended over the NNNN range, remove_migration_ptes
851 * or other rmap walkers (if working on addresses beyond the "end"
852 * parameter) may establish ptes with the wrong permissions of CCCC
853 * instead of the right permissions of NNNN.
854 *
855 * In the code below:
856 * PPPP is represented by *prev
857 * CCCC is represented by *curr or not represented at all (NULL)
858 * NNNN is represented by *next or not represented at all (NULL)
859 * **** is not represented - it will be merged and the vma containing the
860 * area is returned, or the function will return NULL
861 */
862static struct vm_area_struct
863*vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864 struct vm_area_struct *src, unsigned long addr, unsigned long end,
865 unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867 struct anon_vma_name *anon_name)
868{
869 struct mm_struct *mm = src->vm_mm;
870 struct anon_vma *anon_vma = src->anon_vma;
871 struct file *file = src->vm_file;
872 struct vm_area_struct *curr, *next, *res;
873 struct vm_area_struct *vma, *adjust, *remove, *remove2;
874 struct vm_area_struct *anon_dup = NULL;
875 struct vma_prepare vp;
876 pgoff_t vma_pgoff;
877 int err = 0;
878 bool merge_prev = false;
879 bool merge_next = false;
880 bool vma_expanded = false;
881 unsigned long vma_start = addr;
882 unsigned long vma_end = end;
883 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884 long adj_start = 0;
885
886 /*
887 * We later require that vma->vm_flags == vm_flags,
888 * so this tests vma->vm_flags & VM_SPECIAL, too.
889 */
890 if (vm_flags & VM_SPECIAL)
891 return NULL;
892
893 /* Does the input range span an existing VMA? (cases 5 - 8) */
894 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895
896 if (!curr || /* cases 1 - 4 */
897 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
898 next = vma_lookup(mm, end);
899 else
900 next = NULL; /* case 5 */
901
902 if (prev) {
903 vma_start = prev->vm_start;
904 vma_pgoff = prev->vm_pgoff;
905
906 /* Can we merge the predecessor? */
907 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909 pgoff, vm_userfaultfd_ctx, anon_name)) {
910 merge_prev = true;
911 vma_prev(vmi);
912 }
913 }
914
915 /* Can we merge the successor? */
916 if (next && mpol_equal(policy, vma_policy(next)) &&
917 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918 vm_userfaultfd_ctx, anon_name)) {
919 merge_next = true;
920 }
921
922 /* Verify some invariant that must be enforced by the caller. */
923 VM_WARN_ON(prev && addr <= prev->vm_start);
924 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925 VM_WARN_ON(addr >= end);
926
927 if (!merge_prev && !merge_next)
928 return NULL; /* Not mergeable. */
929
930 if (merge_prev)
931 vma_start_write(prev);
932
933 res = vma = prev;
934 remove = remove2 = adjust = NULL;
935
936 /* Can we merge both the predecessor and the successor? */
937 if (merge_prev && merge_next &&
938 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939 vma_start_write(next);
940 remove = next; /* case 1 */
941 vma_end = next->vm_end;
942 err = dup_anon_vma(prev, next, &anon_dup);
943 if (curr) { /* case 6 */
944 vma_start_write(curr);
945 remove = curr;
946 remove2 = next;
947 /*
948 * Note that the dup_anon_vma below cannot overwrite err
949 * since the first caller would do nothing unless next
950 * has an anon_vma.
951 */
952 if (!next->anon_vma)
953 err = dup_anon_vma(prev, curr, &anon_dup);
954 }
955 } else if (merge_prev) { /* case 2 */
956 if (curr) {
957 vma_start_write(curr);
958 if (end == curr->vm_end) { /* case 7 */
959 /*
960 * can_vma_merge_after() assumed we would not be
961 * removing prev vma, so it skipped the check
962 * for vm_ops->close, but we are removing curr
963 */
964 if (curr->vm_ops && curr->vm_ops->close)
965 err = -EINVAL;
966 remove = curr;
967 } else { /* case 5 */
968 adjust = curr;
969 adj_start = (end - curr->vm_start);
970 }
971 if (!err)
972 err = dup_anon_vma(prev, curr, &anon_dup);
973 }
974 } else { /* merge_next */
975 vma_start_write(next);
976 res = next;
977 if (prev && addr < prev->vm_end) { /* case 4 */
978 vma_start_write(prev);
979 vma_end = addr;
980 adjust = next;
981 adj_start = -(prev->vm_end - addr);
982 err = dup_anon_vma(next, prev, &anon_dup);
983 } else {
984 /*
985 * Note that cases 3 and 8 are the ONLY ones where prev
986 * is permitted to be (but is not necessarily) NULL.
987 */
988 vma = next; /* case 3 */
989 vma_start = addr;
990 vma_end = next->vm_end;
991 vma_pgoff = next->vm_pgoff - pglen;
992 if (curr) { /* case 8 */
993 vma_pgoff = curr->vm_pgoff;
994 vma_start_write(curr);
995 remove = curr;
996 err = dup_anon_vma(next, curr, &anon_dup);
997 }
998 }
999 }
1000
1001 /* Error in anon_vma clone. */
1002 if (err)
1003 goto anon_vma_fail;
1004
1005 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006 vma_expanded = true;
1007
1008 if (vma_expanded) {
1009 vma_iter_config(vmi, vma_start, vma_end);
1010 } else {
1011 vma_iter_config(vmi, adjust->vm_start + adj_start,
1012 adjust->vm_end);
1013 }
1014
1015 if (vma_iter_prealloc(vmi, vma))
1016 goto prealloc_fail;
1017
1018 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020 vp.anon_vma != adjust->anon_vma);
1021
1022 vma_prepare(&vp);
1023 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024 vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025
1026 if (vma_expanded)
1027 vma_iter_store(vmi, vma);
1028
1029 if (adj_start) {
1030 adjust->vm_start += adj_start;
1031 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032 if (adj_start < 0) {
1033 WARN_ON(vma_expanded);
1034 vma_iter_store(vmi, next);
1035 }
1036 }
1037
1038 vma_complete(&vp, vmi, mm);
1039 khugepaged_enter_vma(res, vm_flags);
1040 return res;
1041
1042prealloc_fail:
1043 if (anon_dup)
1044 unlink_anon_vmas(anon_dup);
1045
1046anon_vma_fail:
1047 vma_iter_set(vmi, addr);
1048 vma_iter_load(vmi);
1049 return NULL;
1050}
1051
1052/*
1053 * Rough compatibility check to quickly see if it's even worth looking
1054 * at sharing an anon_vma.
1055 *
1056 * They need to have the same vm_file, and the flags can only differ
1057 * in things that mprotect may change.
1058 *
1059 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060 * we can merge the two vma's. For example, we refuse to merge a vma if
1061 * there is a vm_ops->close() function, because that indicates that the
1062 * driver is doing some kind of reference counting. But that doesn't
1063 * really matter for the anon_vma sharing case.
1064 */
1065static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066{
1067 return a->vm_end == b->vm_start &&
1068 mpol_equal(vma_policy(a), vma_policy(b)) &&
1069 a->vm_file == b->vm_file &&
1070 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072}
1073
1074/*
1075 * Do some basic sanity checking to see if we can re-use the anon_vma
1076 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077 * the same as 'old', the other will be the new one that is trying
1078 * to share the anon_vma.
1079 *
1080 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081 * the anon_vma of 'old' is concurrently in the process of being set up
1082 * by another page fault trying to merge _that_. But that's ok: if it
1083 * is being set up, that automatically means that it will be a singleton
1084 * acceptable for merging, so we can do all of this optimistically. But
1085 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086 *
1087 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089 * is to return an anon_vma that is "complex" due to having gone through
1090 * a fork).
1091 *
1092 * We also make sure that the two vma's are compatible (adjacent,
1093 * and with the same memory policies). That's all stable, even with just
1094 * a read lock on the mmap_lock.
1095 */
1096static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097{
1098 if (anon_vma_compatible(a, b)) {
1099 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100
1101 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102 return anon_vma;
1103 }
1104 return NULL;
1105}
1106
1107/*
1108 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109 * neighbouring vmas for a suitable anon_vma, before it goes off
1110 * to allocate a new anon_vma. It checks because a repetitive
1111 * sequence of mprotects and faults may otherwise lead to distinct
1112 * anon_vmas being allocated, preventing vma merge in subsequent
1113 * mprotect.
1114 */
1115struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116{
1117 struct anon_vma *anon_vma = NULL;
1118 struct vm_area_struct *prev, *next;
1119 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1120
1121 /* Try next first. */
1122 next = vma_iter_load(&vmi);
1123 if (next) {
1124 anon_vma = reusable_anon_vma(next, vma, next);
1125 if (anon_vma)
1126 return anon_vma;
1127 }
1128
1129 prev = vma_prev(&vmi);
1130 VM_BUG_ON_VMA(prev != vma, vma);
1131 prev = vma_prev(&vmi);
1132 /* Try prev next. */
1133 if (prev)
1134 anon_vma = reusable_anon_vma(prev, prev, vma);
1135
1136 /*
1137 * We might reach here with anon_vma == NULL if we can't find
1138 * any reusable anon_vma.
1139 * There's no absolute need to look only at touching neighbours:
1140 * we could search further afield for "compatible" anon_vmas.
1141 * But it would probably just be a waste of time searching,
1142 * or lead to too many vmas hanging off the same anon_vma.
1143 * We're trying to allow mprotect remerging later on,
1144 * not trying to minimize memory used for anon_vmas.
1145 */
1146 return anon_vma;
1147}
1148
1149/*
1150 * If a hint addr is less than mmap_min_addr change hint to be as
1151 * low as possible but still greater than mmap_min_addr
1152 */
1153static inline unsigned long round_hint_to_min(unsigned long hint)
1154{
1155 hint &= PAGE_MASK;
1156 if (((void *)hint != NULL) &&
1157 (hint < mmap_min_addr))
1158 return PAGE_ALIGN(mmap_min_addr);
1159 return hint;
1160}
1161
1162bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163 unsigned long bytes)
1164{
1165 unsigned long locked_pages, limit_pages;
1166
1167 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168 return true;
1169
1170 locked_pages = bytes >> PAGE_SHIFT;
1171 locked_pages += mm->locked_vm;
1172
1173 limit_pages = rlimit(RLIMIT_MEMLOCK);
1174 limit_pages >>= PAGE_SHIFT;
1175
1176 return locked_pages <= limit_pages;
1177}
1178
1179static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180{
1181 if (S_ISREG(inode->i_mode))
1182 return MAX_LFS_FILESIZE;
1183
1184 if (S_ISBLK(inode->i_mode))
1185 return MAX_LFS_FILESIZE;
1186
1187 if (S_ISSOCK(inode->i_mode))
1188 return MAX_LFS_FILESIZE;
1189
1190 /* Special "we do even unsigned file positions" case */
1191 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192 return 0;
1193
1194 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195 return ULONG_MAX;
1196}
1197
1198static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199 unsigned long pgoff, unsigned long len)
1200{
1201 u64 maxsize = file_mmap_size_max(file, inode);
1202
1203 if (maxsize && len > maxsize)
1204 return false;
1205 maxsize -= len;
1206 if (pgoff > maxsize >> PAGE_SHIFT)
1207 return false;
1208 return true;
1209}
1210
1211/*
1212 * The caller must write-lock current->mm->mmap_lock.
1213 */
1214unsigned long do_mmap(struct file *file, unsigned long addr,
1215 unsigned long len, unsigned long prot,
1216 unsigned long flags, vm_flags_t vm_flags,
1217 unsigned long pgoff, unsigned long *populate,
1218 struct list_head *uf)
1219{
1220 struct mm_struct *mm = current->mm;
1221 int pkey = 0;
1222
1223 *populate = 0;
1224
1225 if (!len)
1226 return -EINVAL;
1227
1228 /*
1229 * Does the application expect PROT_READ to imply PROT_EXEC?
1230 *
1231 * (the exception is when the underlying filesystem is noexec
1232 * mounted, in which case we don't add PROT_EXEC.)
1233 */
1234 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235 if (!(file && path_noexec(&file->f_path)))
1236 prot |= PROT_EXEC;
1237
1238 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1239 if (flags & MAP_FIXED_NOREPLACE)
1240 flags |= MAP_FIXED;
1241
1242 if (!(flags & MAP_FIXED))
1243 addr = round_hint_to_min(addr);
1244
1245 /* Careful about overflows.. */
1246 len = PAGE_ALIGN(len);
1247 if (!len)
1248 return -ENOMEM;
1249
1250 /* offset overflow? */
1251 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252 return -EOVERFLOW;
1253
1254 /* Too many mappings? */
1255 if (mm->map_count > sysctl_max_map_count)
1256 return -ENOMEM;
1257
1258 /*
1259 * addr is returned from get_unmapped_area,
1260 * There are two cases:
1261 * 1> MAP_FIXED == false
1262 * unallocated memory, no need to check sealing.
1263 * 1> MAP_FIXED == true
1264 * sealing is checked inside mmap_region when
1265 * do_vmi_munmap is called.
1266 */
1267
1268 if (prot == PROT_EXEC) {
1269 pkey = execute_only_pkey(mm);
1270 if (pkey < 0)
1271 pkey = 0;
1272 }
1273
1274 /* Do simple checking here so the lower-level routines won't have
1275 * to. we assume access permissions have been handled by the open
1276 * of the memory object, so we don't do any here.
1277 */
1278 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1279 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1280
1281 /* Obtain the address to map to. we verify (or select) it and ensure
1282 * that it represents a valid section of the address space.
1283 */
1284 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1285 if (IS_ERR_VALUE(addr))
1286 return addr;
1287
1288 if (flags & MAP_FIXED_NOREPLACE) {
1289 if (find_vma_intersection(mm, addr, addr + len))
1290 return -EEXIST;
1291 }
1292
1293 if (flags & MAP_LOCKED)
1294 if (!can_do_mlock())
1295 return -EPERM;
1296
1297 if (!mlock_future_ok(mm, vm_flags, len))
1298 return -EAGAIN;
1299
1300 if (file) {
1301 struct inode *inode = file_inode(file);
1302 unsigned long flags_mask;
1303
1304 if (!file_mmap_ok(file, inode, pgoff, len))
1305 return -EOVERFLOW;
1306
1307 flags_mask = LEGACY_MAP_MASK;
1308 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1309 flags_mask |= MAP_SYNC;
1310
1311 switch (flags & MAP_TYPE) {
1312 case MAP_SHARED:
1313 /*
1314 * Force use of MAP_SHARED_VALIDATE with non-legacy
1315 * flags. E.g. MAP_SYNC is dangerous to use with
1316 * MAP_SHARED as you don't know which consistency model
1317 * you will get. We silently ignore unsupported flags
1318 * with MAP_SHARED to preserve backward compatibility.
1319 */
1320 flags &= LEGACY_MAP_MASK;
1321 fallthrough;
1322 case MAP_SHARED_VALIDATE:
1323 if (flags & ~flags_mask)
1324 return -EOPNOTSUPP;
1325 if (prot & PROT_WRITE) {
1326 if (!(file->f_mode & FMODE_WRITE))
1327 return -EACCES;
1328 if (IS_SWAPFILE(file->f_mapping->host))
1329 return -ETXTBSY;
1330 }
1331
1332 /*
1333 * Make sure we don't allow writing to an append-only
1334 * file..
1335 */
1336 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1337 return -EACCES;
1338
1339 vm_flags |= VM_SHARED | VM_MAYSHARE;
1340 if (!(file->f_mode & FMODE_WRITE))
1341 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1342 fallthrough;
1343 case MAP_PRIVATE:
1344 if (!(file->f_mode & FMODE_READ))
1345 return -EACCES;
1346 if (path_noexec(&file->f_path)) {
1347 if (vm_flags & VM_EXEC)
1348 return -EPERM;
1349 vm_flags &= ~VM_MAYEXEC;
1350 }
1351
1352 if (!file->f_op->mmap)
1353 return -ENODEV;
1354 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355 return -EINVAL;
1356 break;
1357
1358 default:
1359 return -EINVAL;
1360 }
1361 } else {
1362 switch (flags & MAP_TYPE) {
1363 case MAP_SHARED:
1364 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1365 return -EINVAL;
1366 /*
1367 * Ignore pgoff.
1368 */
1369 pgoff = 0;
1370 vm_flags |= VM_SHARED | VM_MAYSHARE;
1371 break;
1372 case MAP_PRIVATE:
1373 /*
1374 * Set pgoff according to addr for anon_vma.
1375 */
1376 pgoff = addr >> PAGE_SHIFT;
1377 break;
1378 default:
1379 return -EINVAL;
1380 }
1381 }
1382
1383 /*
1384 * Set 'VM_NORESERVE' if we should not account for the
1385 * memory use of this mapping.
1386 */
1387 if (flags & MAP_NORESERVE) {
1388 /* We honor MAP_NORESERVE if allowed to overcommit */
1389 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1390 vm_flags |= VM_NORESERVE;
1391
1392 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1393 if (file && is_file_hugepages(file))
1394 vm_flags |= VM_NORESERVE;
1395 }
1396
1397 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1398 if (!IS_ERR_VALUE(addr) &&
1399 ((vm_flags & VM_LOCKED) ||
1400 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1401 *populate = len;
1402 return addr;
1403}
1404
1405unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1406 unsigned long prot, unsigned long flags,
1407 unsigned long fd, unsigned long pgoff)
1408{
1409 struct file *file = NULL;
1410 unsigned long retval;
1411
1412 if (!(flags & MAP_ANONYMOUS)) {
1413 audit_mmap_fd(fd, flags);
1414 file = fget(fd);
1415 if (!file)
1416 return -EBADF;
1417 if (is_file_hugepages(file)) {
1418 len = ALIGN(len, huge_page_size(hstate_file(file)));
1419 } else if (unlikely(flags & MAP_HUGETLB)) {
1420 retval = -EINVAL;
1421 goto out_fput;
1422 }
1423 } else if (flags & MAP_HUGETLB) {
1424 struct hstate *hs;
1425
1426 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427 if (!hs)
1428 return -EINVAL;
1429
1430 len = ALIGN(len, huge_page_size(hs));
1431 /*
1432 * VM_NORESERVE is used because the reservations will be
1433 * taken when vm_ops->mmap() is called
1434 */
1435 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1436 VM_NORESERVE,
1437 HUGETLB_ANONHUGE_INODE,
1438 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1439 if (IS_ERR(file))
1440 return PTR_ERR(file);
1441 }
1442
1443 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1444out_fput:
1445 if (file)
1446 fput(file);
1447 return retval;
1448}
1449
1450SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1451 unsigned long, prot, unsigned long, flags,
1452 unsigned long, fd, unsigned long, pgoff)
1453{
1454 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1455}
1456
1457#ifdef __ARCH_WANT_SYS_OLD_MMAP
1458struct mmap_arg_struct {
1459 unsigned long addr;
1460 unsigned long len;
1461 unsigned long prot;
1462 unsigned long flags;
1463 unsigned long fd;
1464 unsigned long offset;
1465};
1466
1467SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1468{
1469 struct mmap_arg_struct a;
1470
1471 if (copy_from_user(&a, arg, sizeof(a)))
1472 return -EFAULT;
1473 if (offset_in_page(a.offset))
1474 return -EINVAL;
1475
1476 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1477 a.offset >> PAGE_SHIFT);
1478}
1479#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1480
1481static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1482{
1483 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1484}
1485
1486static bool vma_is_shared_writable(struct vm_area_struct *vma)
1487{
1488 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1489 (VM_WRITE | VM_SHARED);
1490}
1491
1492static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1493{
1494 /* No managed pages to writeback. */
1495 if (vma->vm_flags & VM_PFNMAP)
1496 return false;
1497
1498 return vma->vm_file && vma->vm_file->f_mapping &&
1499 mapping_can_writeback(vma->vm_file->f_mapping);
1500}
1501
1502/*
1503 * Does this VMA require the underlying folios to have their dirty state
1504 * tracked?
1505 */
1506bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1507{
1508 /* Only shared, writable VMAs require dirty tracking. */
1509 if (!vma_is_shared_writable(vma))
1510 return false;
1511
1512 /* Does the filesystem need to be notified? */
1513 if (vm_ops_needs_writenotify(vma->vm_ops))
1514 return true;
1515
1516 /*
1517 * Even if the filesystem doesn't indicate a need for writenotify, if it
1518 * can writeback, dirty tracking is still required.
1519 */
1520 return vma_fs_can_writeback(vma);
1521}
1522
1523/*
1524 * Some shared mappings will want the pages marked read-only
1525 * to track write events. If so, we'll downgrade vm_page_prot
1526 * to the private version (using protection_map[] without the
1527 * VM_SHARED bit).
1528 */
1529bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1530{
1531 /* If it was private or non-writable, the write bit is already clear */
1532 if (!vma_is_shared_writable(vma))
1533 return false;
1534
1535 /* The backer wishes to know when pages are first written to? */
1536 if (vm_ops_needs_writenotify(vma->vm_ops))
1537 return true;
1538
1539 /* The open routine did something to the protections that pgprot_modify
1540 * won't preserve? */
1541 if (pgprot_val(vm_page_prot) !=
1542 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1543 return false;
1544
1545 /*
1546 * Do we need to track softdirty? hugetlb does not support softdirty
1547 * tracking yet.
1548 */
1549 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1550 return true;
1551
1552 /* Do we need write faults for uffd-wp tracking? */
1553 if (userfaultfd_wp(vma))
1554 return true;
1555
1556 /* Can the mapping track the dirty pages? */
1557 return vma_fs_can_writeback(vma);
1558}
1559
1560/*
1561 * We account for memory if it's a private writeable mapping,
1562 * not hugepages and VM_NORESERVE wasn't set.
1563 */
1564static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1565{
1566 /*
1567 * hugetlb has its own accounting separate from the core VM
1568 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1569 */
1570 if (file && is_file_hugepages(file))
1571 return false;
1572
1573 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1574}
1575
1576/**
1577 * unmapped_area() - Find an area between the low_limit and the high_limit with
1578 * the correct alignment and offset, all from @info. Note: current->mm is used
1579 * for the search.
1580 *
1581 * @info: The unmapped area information including the range [low_limit -
1582 * high_limit), the alignment offset and mask.
1583 *
1584 * Return: A memory address or -ENOMEM.
1585 */
1586static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1587{
1588 unsigned long length, gap;
1589 unsigned long low_limit, high_limit;
1590 struct vm_area_struct *tmp;
1591 VMA_ITERATOR(vmi, current->mm, 0);
1592
1593 /* Adjust search length to account for worst case alignment overhead */
1594 length = info->length + info->align_mask + info->start_gap;
1595 if (length < info->length)
1596 return -ENOMEM;
1597
1598 low_limit = info->low_limit;
1599 if (low_limit < mmap_min_addr)
1600 low_limit = mmap_min_addr;
1601 high_limit = info->high_limit;
1602retry:
1603 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1604 return -ENOMEM;
1605
1606 /*
1607 * Adjust for the gap first so it doesn't interfere with the
1608 * later alignment. The first step is the minimum needed to
1609 * fulill the start gap, the next steps is the minimum to align
1610 * that. It is the minimum needed to fulill both.
1611 */
1612 gap = vma_iter_addr(&vmi) + info->start_gap;
1613 gap += (info->align_offset - gap) & info->align_mask;
1614 tmp = vma_next(&vmi);
1615 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1616 if (vm_start_gap(tmp) < gap + length - 1) {
1617 low_limit = tmp->vm_end;
1618 vma_iter_reset(&vmi);
1619 goto retry;
1620 }
1621 } else {
1622 tmp = vma_prev(&vmi);
1623 if (tmp && vm_end_gap(tmp) > gap) {
1624 low_limit = vm_end_gap(tmp);
1625 vma_iter_reset(&vmi);
1626 goto retry;
1627 }
1628 }
1629
1630 return gap;
1631}
1632
1633/**
1634 * unmapped_area_topdown() - Find an area between the low_limit and the
1635 * high_limit with the correct alignment and offset at the highest available
1636 * address, all from @info. Note: current->mm is used for the search.
1637 *
1638 * @info: The unmapped area information including the range [low_limit -
1639 * high_limit), the alignment offset and mask.
1640 *
1641 * Return: A memory address or -ENOMEM.
1642 */
1643static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1644{
1645 unsigned long length, gap, gap_end;
1646 unsigned long low_limit, high_limit;
1647 struct vm_area_struct *tmp;
1648 VMA_ITERATOR(vmi, current->mm, 0);
1649
1650 /* Adjust search length to account for worst case alignment overhead */
1651 length = info->length + info->align_mask + info->start_gap;
1652 if (length < info->length)
1653 return -ENOMEM;
1654
1655 low_limit = info->low_limit;
1656 if (low_limit < mmap_min_addr)
1657 low_limit = mmap_min_addr;
1658 high_limit = info->high_limit;
1659retry:
1660 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1661 return -ENOMEM;
1662
1663 gap = vma_iter_end(&vmi) - info->length;
1664 gap -= (gap - info->align_offset) & info->align_mask;
1665 gap_end = vma_iter_end(&vmi);
1666 tmp = vma_next(&vmi);
1667 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1668 if (vm_start_gap(tmp) < gap_end) {
1669 high_limit = vm_start_gap(tmp);
1670 vma_iter_reset(&vmi);
1671 goto retry;
1672 }
1673 } else {
1674 tmp = vma_prev(&vmi);
1675 if (tmp && vm_end_gap(tmp) > gap) {
1676 high_limit = tmp->vm_start;
1677 vma_iter_reset(&vmi);
1678 goto retry;
1679 }
1680 }
1681
1682 return gap;
1683}
1684
1685/*
1686 * Search for an unmapped address range.
1687 *
1688 * We are looking for a range that:
1689 * - does not intersect with any VMA;
1690 * - is contained within the [low_limit, high_limit) interval;
1691 * - is at least the desired size.
1692 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1693 */
1694unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1695{
1696 unsigned long addr;
1697
1698 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1699 addr = unmapped_area_topdown(info);
1700 else
1701 addr = unmapped_area(info);
1702
1703 trace_vm_unmapped_area(addr, info);
1704 return addr;
1705}
1706
1707/* Get an address range which is currently unmapped.
1708 * For shmat() with addr=0.
1709 *
1710 * Ugly calling convention alert:
1711 * Return value with the low bits set means error value,
1712 * ie
1713 * if (ret & ~PAGE_MASK)
1714 * error = ret;
1715 *
1716 * This function "knows" that -ENOMEM has the bits set.
1717 */
1718unsigned long
1719generic_get_unmapped_area(struct file *filp, unsigned long addr,
1720 unsigned long len, unsigned long pgoff,
1721 unsigned long flags)
1722{
1723 struct mm_struct *mm = current->mm;
1724 struct vm_area_struct *vma, *prev;
1725 struct vm_unmapped_area_info info = {};
1726 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1727
1728 if (len > mmap_end - mmap_min_addr)
1729 return -ENOMEM;
1730
1731 if (flags & MAP_FIXED)
1732 return addr;
1733
1734 if (addr) {
1735 addr = PAGE_ALIGN(addr);
1736 vma = find_vma_prev(mm, addr, &prev);
1737 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1738 (!vma || addr + len <= vm_start_gap(vma)) &&
1739 (!prev || addr >= vm_end_gap(prev)))
1740 return addr;
1741 }
1742
1743 info.length = len;
1744 info.low_limit = mm->mmap_base;
1745 info.high_limit = mmap_end;
1746 return vm_unmapped_area(&info);
1747}
1748
1749#ifndef HAVE_ARCH_UNMAPPED_AREA
1750unsigned long
1751arch_get_unmapped_area(struct file *filp, unsigned long addr,
1752 unsigned long len, unsigned long pgoff,
1753 unsigned long flags)
1754{
1755 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1756}
1757#endif
1758
1759/*
1760 * This mmap-allocator allocates new areas top-down from below the
1761 * stack's low limit (the base):
1762 */
1763unsigned long
1764generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1765 unsigned long len, unsigned long pgoff,
1766 unsigned long flags)
1767{
1768 struct vm_area_struct *vma, *prev;
1769 struct mm_struct *mm = current->mm;
1770 struct vm_unmapped_area_info info = {};
1771 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1772
1773 /* requested length too big for entire address space */
1774 if (len > mmap_end - mmap_min_addr)
1775 return -ENOMEM;
1776
1777 if (flags & MAP_FIXED)
1778 return addr;
1779
1780 /* requesting a specific address */
1781 if (addr) {
1782 addr = PAGE_ALIGN(addr);
1783 vma = find_vma_prev(mm, addr, &prev);
1784 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1785 (!vma || addr + len <= vm_start_gap(vma)) &&
1786 (!prev || addr >= vm_end_gap(prev)))
1787 return addr;
1788 }
1789
1790 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1791 info.length = len;
1792 info.low_limit = PAGE_SIZE;
1793 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1794 addr = vm_unmapped_area(&info);
1795
1796 /*
1797 * A failed mmap() very likely causes application failure,
1798 * so fall back to the bottom-up function here. This scenario
1799 * can happen with large stack limits and large mmap()
1800 * allocations.
1801 */
1802 if (offset_in_page(addr)) {
1803 VM_BUG_ON(addr != -ENOMEM);
1804 info.flags = 0;
1805 info.low_limit = TASK_UNMAPPED_BASE;
1806 info.high_limit = mmap_end;
1807 addr = vm_unmapped_area(&info);
1808 }
1809
1810 return addr;
1811}
1812
1813#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1814unsigned long
1815arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1816 unsigned long len, unsigned long pgoff,
1817 unsigned long flags)
1818{
1819 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1820}
1821#endif
1822
1823#ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1824unsigned long
1825arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1826 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1827{
1828 return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1829}
1830
1831unsigned long
1832arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1833 unsigned long len, unsigned long pgoff,
1834 unsigned long flags, vm_flags_t vm_flags)
1835{
1836 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1837}
1838#endif
1839
1840unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1841 unsigned long addr, unsigned long len,
1842 unsigned long pgoff, unsigned long flags,
1843 vm_flags_t vm_flags)
1844{
1845 if (test_bit(MMF_TOPDOWN, &mm->flags))
1846 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1847 flags, vm_flags);
1848 return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1849}
1850
1851unsigned long
1852__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1853 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1854{
1855 unsigned long (*get_area)(struct file *, unsigned long,
1856 unsigned long, unsigned long, unsigned long)
1857 = NULL;
1858
1859 unsigned long error = arch_mmap_check(addr, len, flags);
1860 if (error)
1861 return error;
1862
1863 /* Careful about overflows.. */
1864 if (len > TASK_SIZE)
1865 return -ENOMEM;
1866
1867 if (file) {
1868 if (file->f_op->get_unmapped_area)
1869 get_area = file->f_op->get_unmapped_area;
1870 } else if (flags & MAP_SHARED) {
1871 /*
1872 * mmap_region() will call shmem_zero_setup() to create a file,
1873 * so use shmem's get_unmapped_area in case it can be huge.
1874 */
1875 get_area = shmem_get_unmapped_area;
1876 }
1877
1878 /* Always treat pgoff as zero for anonymous memory. */
1879 if (!file)
1880 pgoff = 0;
1881
1882 if (get_area) {
1883 addr = get_area(file, addr, len, pgoff, flags);
1884 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1885 /* Ensures that larger anonymous mappings are THP aligned. */
1886 addr = thp_get_unmapped_area_vmflags(file, addr, len,
1887 pgoff, flags, vm_flags);
1888 } else {
1889 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1890 pgoff, flags, vm_flags);
1891 }
1892 if (IS_ERR_VALUE(addr))
1893 return addr;
1894
1895 if (addr > TASK_SIZE - len)
1896 return -ENOMEM;
1897 if (offset_in_page(addr))
1898 return -EINVAL;
1899
1900 error = security_mmap_addr(addr);
1901 return error ? error : addr;
1902}
1903
1904unsigned long
1905mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1906 unsigned long addr, unsigned long len,
1907 unsigned long pgoff, unsigned long flags)
1908{
1909 if (test_bit(MMF_TOPDOWN, &mm->flags))
1910 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1911 return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1912}
1913EXPORT_SYMBOL(mm_get_unmapped_area);
1914
1915/**
1916 * find_vma_intersection() - Look up the first VMA which intersects the interval
1917 * @mm: The process address space.
1918 * @start_addr: The inclusive start user address.
1919 * @end_addr: The exclusive end user address.
1920 *
1921 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1922 * start_addr < end_addr.
1923 */
1924struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1925 unsigned long start_addr,
1926 unsigned long end_addr)
1927{
1928 unsigned long index = start_addr;
1929
1930 mmap_assert_locked(mm);
1931 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1932}
1933EXPORT_SYMBOL(find_vma_intersection);
1934
1935/**
1936 * find_vma() - Find the VMA for a given address, or the next VMA.
1937 * @mm: The mm_struct to check
1938 * @addr: The address
1939 *
1940 * Returns: The VMA associated with addr, or the next VMA.
1941 * May return %NULL in the case of no VMA at addr or above.
1942 */
1943struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1944{
1945 unsigned long index = addr;
1946
1947 mmap_assert_locked(mm);
1948 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1949}
1950EXPORT_SYMBOL(find_vma);
1951
1952/**
1953 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1954 * set %pprev to the previous VMA, if any.
1955 * @mm: The mm_struct to check
1956 * @addr: The address
1957 * @pprev: The pointer to set to the previous VMA
1958 *
1959 * Note that RCU lock is missing here since the external mmap_lock() is used
1960 * instead.
1961 *
1962 * Returns: The VMA associated with @addr, or the next vma.
1963 * May return %NULL in the case of no vma at addr or above.
1964 */
1965struct vm_area_struct *
1966find_vma_prev(struct mm_struct *mm, unsigned long addr,
1967 struct vm_area_struct **pprev)
1968{
1969 struct vm_area_struct *vma;
1970 VMA_ITERATOR(vmi, mm, addr);
1971
1972 vma = vma_iter_load(&vmi);
1973 *pprev = vma_prev(&vmi);
1974 if (!vma)
1975 vma = vma_next(&vmi);
1976 return vma;
1977}
1978
1979/*
1980 * Verify that the stack growth is acceptable and
1981 * update accounting. This is shared with both the
1982 * grow-up and grow-down cases.
1983 */
1984static int acct_stack_growth(struct vm_area_struct *vma,
1985 unsigned long size, unsigned long grow)
1986{
1987 struct mm_struct *mm = vma->vm_mm;
1988 unsigned long new_start;
1989
1990 /* address space limit tests */
1991 if (!may_expand_vm(mm, vma->vm_flags, grow))
1992 return -ENOMEM;
1993
1994 /* Stack limit test */
1995 if (size > rlimit(RLIMIT_STACK))
1996 return -ENOMEM;
1997
1998 /* mlock limit tests */
1999 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2000 return -ENOMEM;
2001
2002 /* Check to ensure the stack will not grow into a hugetlb-only region */
2003 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2004 vma->vm_end - size;
2005 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2006 return -EFAULT;
2007
2008 /*
2009 * Overcommit.. This must be the final test, as it will
2010 * update security statistics.
2011 */
2012 if (security_vm_enough_memory_mm(mm, grow))
2013 return -ENOMEM;
2014
2015 return 0;
2016}
2017
2018#if defined(CONFIG_STACK_GROWSUP)
2019/*
2020 * PA-RISC uses this for its stack.
2021 * vma is the last one with address > vma->vm_end. Have to extend vma.
2022 */
2023static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2024{
2025 struct mm_struct *mm = vma->vm_mm;
2026 struct vm_area_struct *next;
2027 unsigned long gap_addr;
2028 int error = 0;
2029 VMA_ITERATOR(vmi, mm, vma->vm_start);
2030
2031 if (!(vma->vm_flags & VM_GROWSUP))
2032 return -EFAULT;
2033
2034 /* Guard against exceeding limits of the address space. */
2035 address &= PAGE_MASK;
2036 if (address >= (TASK_SIZE & PAGE_MASK))
2037 return -ENOMEM;
2038 address += PAGE_SIZE;
2039
2040 /* Enforce stack_guard_gap */
2041 gap_addr = address + stack_guard_gap;
2042
2043 /* Guard against overflow */
2044 if (gap_addr < address || gap_addr > TASK_SIZE)
2045 gap_addr = TASK_SIZE;
2046
2047 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2048 if (next && vma_is_accessible(next)) {
2049 if (!(next->vm_flags & VM_GROWSUP))
2050 return -ENOMEM;
2051 /* Check that both stack segments have the same anon_vma? */
2052 }
2053
2054 if (next)
2055 vma_iter_prev_range_limit(&vmi, address);
2056
2057 vma_iter_config(&vmi, vma->vm_start, address);
2058 if (vma_iter_prealloc(&vmi, vma))
2059 return -ENOMEM;
2060
2061 /* We must make sure the anon_vma is allocated. */
2062 if (unlikely(anon_vma_prepare(vma))) {
2063 vma_iter_free(&vmi);
2064 return -ENOMEM;
2065 }
2066
2067 /* Lock the VMA before expanding to prevent concurrent page faults */
2068 vma_start_write(vma);
2069 /*
2070 * vma->vm_start/vm_end cannot change under us because the caller
2071 * is required to hold the mmap_lock in read mode. We need the
2072 * anon_vma lock to serialize against concurrent expand_stacks.
2073 */
2074 anon_vma_lock_write(vma->anon_vma);
2075
2076 /* Somebody else might have raced and expanded it already */
2077 if (address > vma->vm_end) {
2078 unsigned long size, grow;
2079
2080 size = address - vma->vm_start;
2081 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2082
2083 error = -ENOMEM;
2084 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2085 error = acct_stack_growth(vma, size, grow);
2086 if (!error) {
2087 /*
2088 * We only hold a shared mmap_lock lock here, so
2089 * we need to protect against concurrent vma
2090 * expansions. anon_vma_lock_write() doesn't
2091 * help here, as we don't guarantee that all
2092 * growable vmas in a mm share the same root
2093 * anon vma. So, we reuse mm->page_table_lock
2094 * to guard against concurrent vma expansions.
2095 */
2096 spin_lock(&mm->page_table_lock);
2097 if (vma->vm_flags & VM_LOCKED)
2098 mm->locked_vm += grow;
2099 vm_stat_account(mm, vma->vm_flags, grow);
2100 anon_vma_interval_tree_pre_update_vma(vma);
2101 vma->vm_end = address;
2102 /* Overwrite old entry in mtree. */
2103 vma_iter_store(&vmi, vma);
2104 anon_vma_interval_tree_post_update_vma(vma);
2105 spin_unlock(&mm->page_table_lock);
2106
2107 perf_event_mmap(vma);
2108 }
2109 }
2110 }
2111 anon_vma_unlock_write(vma->anon_vma);
2112 vma_iter_free(&vmi);
2113 validate_mm(mm);
2114 return error;
2115}
2116#endif /* CONFIG_STACK_GROWSUP */
2117
2118/*
2119 * vma is the first one with address < vma->vm_start. Have to extend vma.
2120 * mmap_lock held for writing.
2121 */
2122int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2123{
2124 struct mm_struct *mm = vma->vm_mm;
2125 struct vm_area_struct *prev;
2126 int error = 0;
2127 VMA_ITERATOR(vmi, mm, vma->vm_start);
2128
2129 if (!(vma->vm_flags & VM_GROWSDOWN))
2130 return -EFAULT;
2131
2132 address &= PAGE_MASK;
2133 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2134 return -EPERM;
2135
2136 /* Enforce stack_guard_gap */
2137 prev = vma_prev(&vmi);
2138 /* Check that both stack segments have the same anon_vma? */
2139 if (prev) {
2140 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2141 vma_is_accessible(prev) &&
2142 (address - prev->vm_end < stack_guard_gap))
2143 return -ENOMEM;
2144 }
2145
2146 if (prev)
2147 vma_iter_next_range_limit(&vmi, vma->vm_start);
2148
2149 vma_iter_config(&vmi, address, vma->vm_end);
2150 if (vma_iter_prealloc(&vmi, vma))
2151 return -ENOMEM;
2152
2153 /* We must make sure the anon_vma is allocated. */
2154 if (unlikely(anon_vma_prepare(vma))) {
2155 vma_iter_free(&vmi);
2156 return -ENOMEM;
2157 }
2158
2159 /* Lock the VMA before expanding to prevent concurrent page faults */
2160 vma_start_write(vma);
2161 /*
2162 * vma->vm_start/vm_end cannot change under us because the caller
2163 * is required to hold the mmap_lock in read mode. We need the
2164 * anon_vma lock to serialize against concurrent expand_stacks.
2165 */
2166 anon_vma_lock_write(vma->anon_vma);
2167
2168 /* Somebody else might have raced and expanded it already */
2169 if (address < vma->vm_start) {
2170 unsigned long size, grow;
2171
2172 size = vma->vm_end - address;
2173 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2174
2175 error = -ENOMEM;
2176 if (grow <= vma->vm_pgoff) {
2177 error = acct_stack_growth(vma, size, grow);
2178 if (!error) {
2179 /*
2180 * We only hold a shared mmap_lock lock here, so
2181 * we need to protect against concurrent vma
2182 * expansions. anon_vma_lock_write() doesn't
2183 * help here, as we don't guarantee that all
2184 * growable vmas in a mm share the same root
2185 * anon vma. So, we reuse mm->page_table_lock
2186 * to guard against concurrent vma expansions.
2187 */
2188 spin_lock(&mm->page_table_lock);
2189 if (vma->vm_flags & VM_LOCKED)
2190 mm->locked_vm += grow;
2191 vm_stat_account(mm, vma->vm_flags, grow);
2192 anon_vma_interval_tree_pre_update_vma(vma);
2193 vma->vm_start = address;
2194 vma->vm_pgoff -= grow;
2195 /* Overwrite old entry in mtree. */
2196 vma_iter_store(&vmi, vma);
2197 anon_vma_interval_tree_post_update_vma(vma);
2198 spin_unlock(&mm->page_table_lock);
2199
2200 perf_event_mmap(vma);
2201 }
2202 }
2203 }
2204 anon_vma_unlock_write(vma->anon_vma);
2205 vma_iter_free(&vmi);
2206 validate_mm(mm);
2207 return error;
2208}
2209
2210/* enforced gap between the expanding stack and other mappings. */
2211unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2212
2213static int __init cmdline_parse_stack_guard_gap(char *p)
2214{
2215 unsigned long val;
2216 char *endptr;
2217
2218 val = simple_strtoul(p, &endptr, 10);
2219 if (!*endptr)
2220 stack_guard_gap = val << PAGE_SHIFT;
2221
2222 return 1;
2223}
2224__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2225
2226#ifdef CONFIG_STACK_GROWSUP
2227int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2228{
2229 return expand_upwards(vma, address);
2230}
2231
2232struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2233{
2234 struct vm_area_struct *vma, *prev;
2235
2236 addr &= PAGE_MASK;
2237 vma = find_vma_prev(mm, addr, &prev);
2238 if (vma && (vma->vm_start <= addr))
2239 return vma;
2240 if (!prev)
2241 return NULL;
2242 if (expand_stack_locked(prev, addr))
2243 return NULL;
2244 if (prev->vm_flags & VM_LOCKED)
2245 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2246 return prev;
2247}
2248#else
2249int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2250{
2251 return expand_downwards(vma, address);
2252}
2253
2254struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2255{
2256 struct vm_area_struct *vma;
2257 unsigned long start;
2258
2259 addr &= PAGE_MASK;
2260 vma = find_vma(mm, addr);
2261 if (!vma)
2262 return NULL;
2263 if (vma->vm_start <= addr)
2264 return vma;
2265 start = vma->vm_start;
2266 if (expand_stack_locked(vma, addr))
2267 return NULL;
2268 if (vma->vm_flags & VM_LOCKED)
2269 populate_vma_page_range(vma, addr, start, NULL);
2270 return vma;
2271}
2272#endif
2273
2274#if defined(CONFIG_STACK_GROWSUP)
2275
2276#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2277#define vma_expand_down(vma, addr) (-EFAULT)
2278
2279#else
2280
2281#define vma_expand_up(vma,addr) (-EFAULT)
2282#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2283
2284#endif
2285
2286/*
2287 * expand_stack(): legacy interface for page faulting. Don't use unless
2288 * you have to.
2289 *
2290 * This is called with the mm locked for reading, drops the lock, takes
2291 * the lock for writing, tries to look up a vma again, expands it if
2292 * necessary, and downgrades the lock to reading again.
2293 *
2294 * If no vma is found or it can't be expanded, it returns NULL and has
2295 * dropped the lock.
2296 */
2297struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2298{
2299 struct vm_area_struct *vma, *prev;
2300
2301 mmap_read_unlock(mm);
2302 if (mmap_write_lock_killable(mm))
2303 return NULL;
2304
2305 vma = find_vma_prev(mm, addr, &prev);
2306 if (vma && vma->vm_start <= addr)
2307 goto success;
2308
2309 if (prev && !vma_expand_up(prev, addr)) {
2310 vma = prev;
2311 goto success;
2312 }
2313
2314 if (vma && !vma_expand_down(vma, addr))
2315 goto success;
2316
2317 mmap_write_unlock(mm);
2318 return NULL;
2319
2320success:
2321 mmap_write_downgrade(mm);
2322 return vma;
2323}
2324
2325/*
2326 * Ok - we have the memory areas we should free on a maple tree so release them,
2327 * and do the vma updates.
2328 *
2329 * Called with the mm semaphore held.
2330 */
2331static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2332{
2333 unsigned long nr_accounted = 0;
2334 struct vm_area_struct *vma;
2335
2336 /* Update high watermark before we lower total_vm */
2337 update_hiwater_vm(mm);
2338 mas_for_each(mas, vma, ULONG_MAX) {
2339 long nrpages = vma_pages(vma);
2340
2341 if (vma->vm_flags & VM_ACCOUNT)
2342 nr_accounted += nrpages;
2343 vm_stat_account(mm, vma->vm_flags, -nrpages);
2344 remove_vma(vma, false);
2345 }
2346 vm_unacct_memory(nr_accounted);
2347}
2348
2349/*
2350 * Get rid of page table information in the indicated region.
2351 *
2352 * Called with the mm semaphore held.
2353 */
2354static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2355 struct vm_area_struct *vma, struct vm_area_struct *prev,
2356 struct vm_area_struct *next, unsigned long start,
2357 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2358{
2359 struct mmu_gather tlb;
2360 unsigned long mt_start = mas->index;
2361
2362 lru_add_drain();
2363 tlb_gather_mmu(&tlb, mm);
2364 update_hiwater_rss(mm);
2365 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2366 mas_set(mas, mt_start);
2367 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2368 next ? next->vm_start : USER_PGTABLES_CEILING,
2369 mm_wr_locked);
2370 tlb_finish_mmu(&tlb);
2371}
2372
2373/*
2374 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2375 * has already been checked or doesn't make sense to fail.
2376 * VMA Iterator will point to the end VMA.
2377 */
2378static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2379 unsigned long addr, int new_below)
2380{
2381 struct vma_prepare vp;
2382 struct vm_area_struct *new;
2383 int err;
2384
2385 WARN_ON(vma->vm_start >= addr);
2386 WARN_ON(vma->vm_end <= addr);
2387
2388 if (vma->vm_ops && vma->vm_ops->may_split) {
2389 err = vma->vm_ops->may_split(vma, addr);
2390 if (err)
2391 return err;
2392 }
2393
2394 new = vm_area_dup(vma);
2395 if (!new)
2396 return -ENOMEM;
2397
2398 if (new_below) {
2399 new->vm_end = addr;
2400 } else {
2401 new->vm_start = addr;
2402 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2403 }
2404
2405 err = -ENOMEM;
2406 vma_iter_config(vmi, new->vm_start, new->vm_end);
2407 if (vma_iter_prealloc(vmi, new))
2408 goto out_free_vma;
2409
2410 err = vma_dup_policy(vma, new);
2411 if (err)
2412 goto out_free_vmi;
2413
2414 err = anon_vma_clone(new, vma);
2415 if (err)
2416 goto out_free_mpol;
2417
2418 if (new->vm_file)
2419 get_file(new->vm_file);
2420
2421 if (new->vm_ops && new->vm_ops->open)
2422 new->vm_ops->open(new);
2423
2424 vma_start_write(vma);
2425 vma_start_write(new);
2426
2427 init_vma_prep(&vp, vma);
2428 vp.insert = new;
2429 vma_prepare(&vp);
2430 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2431
2432 if (new_below) {
2433 vma->vm_start = addr;
2434 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2435 } else {
2436 vma->vm_end = addr;
2437 }
2438
2439 /* vma_complete stores the new vma */
2440 vma_complete(&vp, vmi, vma->vm_mm);
2441
2442 /* Success. */
2443 if (new_below)
2444 vma_next(vmi);
2445 return 0;
2446
2447out_free_mpol:
2448 mpol_put(vma_policy(new));
2449out_free_vmi:
2450 vma_iter_free(vmi);
2451out_free_vma:
2452 vm_area_free(new);
2453 return err;
2454}
2455
2456/*
2457 * Split a vma into two pieces at address 'addr', a new vma is allocated
2458 * either for the first part or the tail.
2459 */
2460static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2461 unsigned long addr, int new_below)
2462{
2463 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2464 return -ENOMEM;
2465
2466 return __split_vma(vmi, vma, addr, new_below);
2467}
2468
2469/*
2470 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2471 * context and anonymous VMA name within the range [start, end).
2472 *
2473 * As a result, we might be able to merge the newly modified VMA range with an
2474 * adjacent VMA with identical properties.
2475 *
2476 * If no merge is possible and the range does not span the entirety of the VMA,
2477 * we then need to split the VMA to accommodate the change.
2478 *
2479 * The function returns either the merged VMA, the original VMA if a split was
2480 * required instead, or an error if the split failed.
2481 */
2482struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2483 struct vm_area_struct *prev,
2484 struct vm_area_struct *vma,
2485 unsigned long start, unsigned long end,
2486 unsigned long vm_flags,
2487 struct mempolicy *policy,
2488 struct vm_userfaultfd_ctx uffd_ctx,
2489 struct anon_vma_name *anon_name)
2490{
2491 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2492 struct vm_area_struct *merged;
2493
2494 merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2495 pgoff, policy, uffd_ctx, anon_name);
2496 if (merged)
2497 return merged;
2498
2499 if (vma->vm_start < start) {
2500 int err = split_vma(vmi, vma, start, 1);
2501
2502 if (err)
2503 return ERR_PTR(err);
2504 }
2505
2506 if (vma->vm_end > end) {
2507 int err = split_vma(vmi, vma, end, 0);
2508
2509 if (err)
2510 return ERR_PTR(err);
2511 }
2512
2513 return vma;
2514}
2515
2516/*
2517 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2518 * must ensure that [start, end) does not overlap any existing VMA.
2519 */
2520static struct vm_area_struct
2521*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2522 struct vm_area_struct *vma, unsigned long start,
2523 unsigned long end, pgoff_t pgoff)
2524{
2525 return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2526 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2527}
2528
2529/*
2530 * Expand vma by delta bytes, potentially merging with an immediately adjacent
2531 * VMA with identical properties.
2532 */
2533struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2534 struct vm_area_struct *vma,
2535 unsigned long delta)
2536{
2537 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2538
2539 /* vma is specified as prev, so case 1 or 2 will apply. */
2540 return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2541 vma->vm_flags, pgoff, vma_policy(vma),
2542 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2543}
2544
2545/*
2546 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2547 * @vmi: The vma iterator
2548 * @vma: The starting vm_area_struct
2549 * @mm: The mm_struct
2550 * @start: The aligned start address to munmap.
2551 * @end: The aligned end address to munmap.
2552 * @uf: The userfaultfd list_head
2553 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2554 * success.
2555 *
2556 * Return: 0 on success and drops the lock if so directed, error and leaves the
2557 * lock held otherwise.
2558 */
2559static int
2560do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2561 struct mm_struct *mm, unsigned long start,
2562 unsigned long end, struct list_head *uf, bool unlock)
2563{
2564 struct vm_area_struct *prev, *next = NULL;
2565 struct maple_tree mt_detach;
2566 int count = 0;
2567 int error = -ENOMEM;
2568 unsigned long locked_vm = 0;
2569 MA_STATE(mas_detach, &mt_detach, 0, 0);
2570 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2571 mt_on_stack(mt_detach);
2572
2573 /*
2574 * If we need to split any vma, do it now to save pain later.
2575 *
2576 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2577 * unmapped vm_area_struct will remain in use: so lower split_vma
2578 * places tmp vma above, and higher split_vma places tmp vma below.
2579 */
2580
2581 /* Does it split the first one? */
2582 if (start > vma->vm_start) {
2583
2584 /*
2585 * Make sure that map_count on return from munmap() will
2586 * not exceed its limit; but let map_count go just above
2587 * its limit temporarily, to help free resources as expected.
2588 */
2589 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2590 goto map_count_exceeded;
2591
2592 error = __split_vma(vmi, vma, start, 1);
2593 if (error)
2594 goto start_split_failed;
2595 }
2596
2597 /*
2598 * Detach a range of VMAs from the mm. Using next as a temp variable as
2599 * it is always overwritten.
2600 */
2601 next = vma;
2602 do {
2603 /* Does it split the end? */
2604 if (next->vm_end > end) {
2605 error = __split_vma(vmi, next, end, 0);
2606 if (error)
2607 goto end_split_failed;
2608 }
2609 vma_start_write(next);
2610 mas_set(&mas_detach, count);
2611 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2612 if (error)
2613 goto munmap_gather_failed;
2614 vma_mark_detached(next, true);
2615 if (next->vm_flags & VM_LOCKED)
2616 locked_vm += vma_pages(next);
2617
2618 count++;
2619 if (unlikely(uf)) {
2620 /*
2621 * If userfaultfd_unmap_prep returns an error the vmas
2622 * will remain split, but userland will get a
2623 * highly unexpected error anyway. This is no
2624 * different than the case where the first of the two
2625 * __split_vma fails, but we don't undo the first
2626 * split, despite we could. This is unlikely enough
2627 * failure that it's not worth optimizing it for.
2628 */
2629 error = userfaultfd_unmap_prep(next, start, end, uf);
2630
2631 if (error)
2632 goto userfaultfd_error;
2633 }
2634#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2635 BUG_ON(next->vm_start < start);
2636 BUG_ON(next->vm_start > end);
2637#endif
2638 } for_each_vma_range(*vmi, next, end);
2639
2640#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2641 /* Make sure no VMAs are about to be lost. */
2642 {
2643 MA_STATE(test, &mt_detach, 0, 0);
2644 struct vm_area_struct *vma_mas, *vma_test;
2645 int test_count = 0;
2646
2647 vma_iter_set(vmi, start);
2648 rcu_read_lock();
2649 vma_test = mas_find(&test, count - 1);
2650 for_each_vma_range(*vmi, vma_mas, end) {
2651 BUG_ON(vma_mas != vma_test);
2652 test_count++;
2653 vma_test = mas_next(&test, count - 1);
2654 }
2655 rcu_read_unlock();
2656 BUG_ON(count != test_count);
2657 }
2658#endif
2659
2660 while (vma_iter_addr(vmi) > start)
2661 vma_iter_prev_range(vmi);
2662
2663 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2664 if (error)
2665 goto clear_tree_failed;
2666
2667 /* Point of no return */
2668 mm->locked_vm -= locked_vm;
2669 mm->map_count -= count;
2670 if (unlock)
2671 mmap_write_downgrade(mm);
2672
2673 prev = vma_iter_prev_range(vmi);
2674 next = vma_next(vmi);
2675 if (next)
2676 vma_iter_prev_range(vmi);
2677
2678 /*
2679 * We can free page tables without write-locking mmap_lock because VMAs
2680 * were isolated before we downgraded mmap_lock.
2681 */
2682 mas_set(&mas_detach, 1);
2683 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2684 !unlock);
2685 /* Statistics and freeing VMAs */
2686 mas_set(&mas_detach, 0);
2687 remove_mt(mm, &mas_detach);
2688 validate_mm(mm);
2689 if (unlock)
2690 mmap_read_unlock(mm);
2691
2692 __mt_destroy(&mt_detach);
2693 return 0;
2694
2695clear_tree_failed:
2696userfaultfd_error:
2697munmap_gather_failed:
2698end_split_failed:
2699 mas_set(&mas_detach, 0);
2700 mas_for_each(&mas_detach, next, end)
2701 vma_mark_detached(next, false);
2702
2703 __mt_destroy(&mt_detach);
2704start_split_failed:
2705map_count_exceeded:
2706 validate_mm(mm);
2707 return error;
2708}
2709
2710/*
2711 * do_vmi_munmap() - munmap a given range.
2712 * @vmi: The vma iterator
2713 * @mm: The mm_struct
2714 * @start: The start address to munmap
2715 * @len: The length of the range to munmap
2716 * @uf: The userfaultfd list_head
2717 * @unlock: set to true if the user wants to drop the mmap_lock on success
2718 *
2719 * This function takes a @mas that is either pointing to the previous VMA or set
2720 * to MA_START and sets it up to remove the mapping(s). The @len will be
2721 * aligned and any arch_unmap work will be preformed.
2722 *
2723 * Return: 0 on success and drops the lock if so directed, error and leaves the
2724 * lock held otherwise.
2725 */
2726int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2727 unsigned long start, size_t len, struct list_head *uf,
2728 bool unlock)
2729{
2730 unsigned long end;
2731 struct vm_area_struct *vma;
2732
2733 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2734 return -EINVAL;
2735
2736 end = start + PAGE_ALIGN(len);
2737 if (end == start)
2738 return -EINVAL;
2739
2740 /*
2741 * Check if memory is sealed before arch_unmap.
2742 * Prevent unmapping a sealed VMA.
2743 * can_modify_mm assumes we have acquired the lock on MM.
2744 */
2745 if (unlikely(!can_modify_mm(mm, start, end)))
2746 return -EPERM;
2747
2748 /* arch_unmap() might do unmaps itself. */
2749 arch_unmap(mm, start, end);
2750
2751 /* Find the first overlapping VMA */
2752 vma = vma_find(vmi, end);
2753 if (!vma) {
2754 if (unlock)
2755 mmap_write_unlock(mm);
2756 return 0;
2757 }
2758
2759 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2760}
2761
2762/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2763 * @mm: The mm_struct
2764 * @start: The start address to munmap
2765 * @len: The length to be munmapped.
2766 * @uf: The userfaultfd list_head
2767 *
2768 * Return: 0 on success, error otherwise.
2769 */
2770int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2771 struct list_head *uf)
2772{
2773 VMA_ITERATOR(vmi, mm, start);
2774
2775 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2776}
2777
2778unsigned long mmap_region(struct file *file, unsigned long addr,
2779 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2780 struct list_head *uf)
2781{
2782 struct mm_struct *mm = current->mm;
2783 struct vm_area_struct *vma = NULL;
2784 struct vm_area_struct *next, *prev, *merge;
2785 pgoff_t pglen = len >> PAGE_SHIFT;
2786 unsigned long charged = 0;
2787 unsigned long end = addr + len;
2788 unsigned long merge_start = addr, merge_end = end;
2789 bool writable_file_mapping = false;
2790 pgoff_t vm_pgoff;
2791 int error;
2792 VMA_ITERATOR(vmi, mm, addr);
2793
2794 /* Check against address space limit. */
2795 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2796 unsigned long nr_pages;
2797
2798 /*
2799 * MAP_FIXED may remove pages of mappings that intersects with
2800 * requested mapping. Account for the pages it would unmap.
2801 */
2802 nr_pages = count_vma_pages_range(mm, addr, end);
2803
2804 if (!may_expand_vm(mm, vm_flags,
2805 (len >> PAGE_SHIFT) - nr_pages))
2806 return -ENOMEM;
2807 }
2808
2809 /* Unmap any existing mapping in the area */
2810 error = do_vmi_munmap(&vmi, mm, addr, len, uf, false);
2811 if (error == -EPERM)
2812 return error;
2813 else if (error)
2814 return -ENOMEM;
2815
2816 /*
2817 * Private writable mapping: check memory availability
2818 */
2819 if (accountable_mapping(file, vm_flags)) {
2820 charged = len >> PAGE_SHIFT;
2821 if (security_vm_enough_memory_mm(mm, charged))
2822 return -ENOMEM;
2823 vm_flags |= VM_ACCOUNT;
2824 }
2825
2826 next = vma_next(&vmi);
2827 prev = vma_prev(&vmi);
2828 if (vm_flags & VM_SPECIAL) {
2829 if (prev)
2830 vma_iter_next_range(&vmi);
2831 goto cannot_expand;
2832 }
2833
2834 /* Attempt to expand an old mapping */
2835 /* Check next */
2836 if (next && next->vm_start == end && !vma_policy(next) &&
2837 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2838 NULL_VM_UFFD_CTX, NULL)) {
2839 merge_end = next->vm_end;
2840 vma = next;
2841 vm_pgoff = next->vm_pgoff - pglen;
2842 }
2843
2844 /* Check prev */
2845 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2846 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2847 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2848 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2849 NULL_VM_UFFD_CTX, NULL))) {
2850 merge_start = prev->vm_start;
2851 vma = prev;
2852 vm_pgoff = prev->vm_pgoff;
2853 } else if (prev) {
2854 vma_iter_next_range(&vmi);
2855 }
2856
2857 /* Actually expand, if possible */
2858 if (vma &&
2859 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2860 khugepaged_enter_vma(vma, vm_flags);
2861 goto expanded;
2862 }
2863
2864 if (vma == prev)
2865 vma_iter_set(&vmi, addr);
2866cannot_expand:
2867
2868 /*
2869 * Determine the object being mapped and call the appropriate
2870 * specific mapper. the address has already been validated, but
2871 * not unmapped, but the maps are removed from the list.
2872 */
2873 vma = vm_area_alloc(mm);
2874 if (!vma) {
2875 error = -ENOMEM;
2876 goto unacct_error;
2877 }
2878
2879 vma_iter_config(&vmi, addr, end);
2880 vma_set_range(vma, addr, end, pgoff);
2881 vm_flags_init(vma, vm_flags);
2882 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2883
2884 if (file) {
2885 vma->vm_file = get_file(file);
2886 error = call_mmap(file, vma);
2887 if (error)
2888 goto unmap_and_free_vma;
2889
2890 if (vma_is_shared_maywrite(vma)) {
2891 error = mapping_map_writable(file->f_mapping);
2892 if (error)
2893 goto close_and_free_vma;
2894
2895 writable_file_mapping = true;
2896 }
2897
2898 /*
2899 * Expansion is handled above, merging is handled below.
2900 * Drivers should not alter the address of the VMA.
2901 */
2902 error = -EINVAL;
2903 if (WARN_ON((addr != vma->vm_start)))
2904 goto close_and_free_vma;
2905
2906 vma_iter_config(&vmi, addr, end);
2907 /*
2908 * If vm_flags changed after call_mmap(), we should try merge
2909 * vma again as we may succeed this time.
2910 */
2911 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2912 merge = vma_merge_new_vma(&vmi, prev, vma,
2913 vma->vm_start, vma->vm_end,
2914 vma->vm_pgoff);
2915 if (merge) {
2916 /*
2917 * ->mmap() can change vma->vm_file and fput
2918 * the original file. So fput the vma->vm_file
2919 * here or we would add an extra fput for file
2920 * and cause general protection fault
2921 * ultimately.
2922 */
2923 fput(vma->vm_file);
2924 vm_area_free(vma);
2925 vma = merge;
2926 /* Update vm_flags to pick up the change. */
2927 vm_flags = vma->vm_flags;
2928 goto unmap_writable;
2929 }
2930 }
2931
2932 vm_flags = vma->vm_flags;
2933 } else if (vm_flags & VM_SHARED) {
2934 error = shmem_zero_setup(vma);
2935 if (error)
2936 goto free_vma;
2937 } else {
2938 vma_set_anonymous(vma);
2939 }
2940
2941 if (map_deny_write_exec(vma, vma->vm_flags)) {
2942 error = -EACCES;
2943 goto close_and_free_vma;
2944 }
2945
2946 /* Allow architectures to sanity-check the vm_flags */
2947 error = -EINVAL;
2948 if (!arch_validate_flags(vma->vm_flags))
2949 goto close_and_free_vma;
2950
2951 error = -ENOMEM;
2952 if (vma_iter_prealloc(&vmi, vma))
2953 goto close_and_free_vma;
2954
2955 /* Lock the VMA since it is modified after insertion into VMA tree */
2956 vma_start_write(vma);
2957 vma_iter_store(&vmi, vma);
2958 mm->map_count++;
2959 vma_link_file(vma);
2960
2961 /*
2962 * vma_merge() calls khugepaged_enter_vma() either, the below
2963 * call covers the non-merge case.
2964 */
2965 khugepaged_enter_vma(vma, vma->vm_flags);
2966
2967 /* Once vma denies write, undo our temporary denial count */
2968unmap_writable:
2969 if (writable_file_mapping)
2970 mapping_unmap_writable(file->f_mapping);
2971 file = vma->vm_file;
2972 ksm_add_vma(vma);
2973expanded:
2974 perf_event_mmap(vma);
2975
2976 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2977 if (vm_flags & VM_LOCKED) {
2978 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2979 is_vm_hugetlb_page(vma) ||
2980 vma == get_gate_vma(current->mm))
2981 vm_flags_clear(vma, VM_LOCKED_MASK);
2982 else
2983 mm->locked_vm += (len >> PAGE_SHIFT);
2984 }
2985
2986 if (file)
2987 uprobe_mmap(vma);
2988
2989 /*
2990 * New (or expanded) vma always get soft dirty status.
2991 * Otherwise user-space soft-dirty page tracker won't
2992 * be able to distinguish situation when vma area unmapped,
2993 * then new mapped in-place (which must be aimed as
2994 * a completely new data area).
2995 */
2996 vm_flags_set(vma, VM_SOFTDIRTY);
2997
2998 vma_set_page_prot(vma);
2999
3000 validate_mm(mm);
3001 return addr;
3002
3003close_and_free_vma:
3004 if (file && vma->vm_ops && vma->vm_ops->close)
3005 vma->vm_ops->close(vma);
3006
3007 if (file || vma->vm_file) {
3008unmap_and_free_vma:
3009 fput(vma->vm_file);
3010 vma->vm_file = NULL;
3011
3012 vma_iter_set(&vmi, vma->vm_end);
3013 /* Undo any partial mapping done by a device driver. */
3014 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
3015 vma->vm_end, vma->vm_end, true);
3016 }
3017 if (writable_file_mapping)
3018 mapping_unmap_writable(file->f_mapping);
3019free_vma:
3020 vm_area_free(vma);
3021unacct_error:
3022 if (charged)
3023 vm_unacct_memory(charged);
3024 validate_mm(mm);
3025 return error;
3026}
3027
3028static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3029{
3030 int ret;
3031 struct mm_struct *mm = current->mm;
3032 LIST_HEAD(uf);
3033 VMA_ITERATOR(vmi, mm, start);
3034
3035 if (mmap_write_lock_killable(mm))
3036 return -EINTR;
3037
3038 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3039 if (ret || !unlock)
3040 mmap_write_unlock(mm);
3041
3042 userfaultfd_unmap_complete(mm, &uf);
3043 return ret;
3044}
3045
3046int vm_munmap(unsigned long start, size_t len)
3047{
3048 return __vm_munmap(start, len, false);
3049}
3050EXPORT_SYMBOL(vm_munmap);
3051
3052SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3053{
3054 addr = untagged_addr(addr);
3055 return __vm_munmap(addr, len, true);
3056}
3057
3058
3059/*
3060 * Emulation of deprecated remap_file_pages() syscall.
3061 */
3062SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3063 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3064{
3065
3066 struct mm_struct *mm = current->mm;
3067 struct vm_area_struct *vma;
3068 unsigned long populate = 0;
3069 unsigned long ret = -EINVAL;
3070 struct file *file;
3071
3072 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3073 current->comm, current->pid);
3074
3075 if (prot)
3076 return ret;
3077 start = start & PAGE_MASK;
3078 size = size & PAGE_MASK;
3079
3080 if (start + size <= start)
3081 return ret;
3082
3083 /* Does pgoff wrap? */
3084 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3085 return ret;
3086
3087 if (mmap_write_lock_killable(mm))
3088 return -EINTR;
3089
3090 vma = vma_lookup(mm, start);
3091
3092 if (!vma || !(vma->vm_flags & VM_SHARED))
3093 goto out;
3094
3095 if (start + size > vma->vm_end) {
3096 VMA_ITERATOR(vmi, mm, vma->vm_end);
3097 struct vm_area_struct *next, *prev = vma;
3098
3099 for_each_vma_range(vmi, next, start + size) {
3100 /* hole between vmas ? */
3101 if (next->vm_start != prev->vm_end)
3102 goto out;
3103
3104 if (next->vm_file != vma->vm_file)
3105 goto out;
3106
3107 if (next->vm_flags != vma->vm_flags)
3108 goto out;
3109
3110 if (start + size <= next->vm_end)
3111 break;
3112
3113 prev = next;
3114 }
3115
3116 if (!next)
3117 goto out;
3118 }
3119
3120 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3121 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3122 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3123
3124 flags &= MAP_NONBLOCK;
3125 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3126 if (vma->vm_flags & VM_LOCKED)
3127 flags |= MAP_LOCKED;
3128
3129 file = get_file(vma->vm_file);
3130 ret = do_mmap(vma->vm_file, start, size,
3131 prot, flags, 0, pgoff, &populate, NULL);
3132 fput(file);
3133out:
3134 mmap_write_unlock(mm);
3135 if (populate)
3136 mm_populate(ret, populate);
3137 if (!IS_ERR_VALUE(ret))
3138 ret = 0;
3139 return ret;
3140}
3141
3142/*
3143 * do_vma_munmap() - Unmap a full or partial vma.
3144 * @vmi: The vma iterator pointing at the vma
3145 * @vma: The first vma to be munmapped
3146 * @start: the start of the address to unmap
3147 * @end: The end of the address to unmap
3148 * @uf: The userfaultfd list_head
3149 * @unlock: Drop the lock on success
3150 *
3151 * unmaps a VMA mapping when the vma iterator is already in position.
3152 * Does not handle alignment.
3153 *
3154 * Return: 0 on success drops the lock of so directed, error on failure and will
3155 * still hold the lock.
3156 */
3157int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3158 unsigned long start, unsigned long end, struct list_head *uf,
3159 bool unlock)
3160{
3161 struct mm_struct *mm = vma->vm_mm;
3162
3163 /*
3164 * Check if memory is sealed before arch_unmap.
3165 * Prevent unmapping a sealed VMA.
3166 * can_modify_mm assumes we have acquired the lock on MM.
3167 */
3168 if (unlikely(!can_modify_mm(mm, start, end)))
3169 return -EPERM;
3170
3171 arch_unmap(mm, start, end);
3172 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3173}
3174
3175/*
3176 * do_brk_flags() - Increase the brk vma if the flags match.
3177 * @vmi: The vma iterator
3178 * @addr: The start address
3179 * @len: The length of the increase
3180 * @vma: The vma,
3181 * @flags: The VMA Flags
3182 *
3183 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3184 * do not match then create a new anonymous VMA. Eventually we may be able to
3185 * do some brk-specific accounting here.
3186 */
3187static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3188 unsigned long addr, unsigned long len, unsigned long flags)
3189{
3190 struct mm_struct *mm = current->mm;
3191 struct vma_prepare vp;
3192
3193 /*
3194 * Check against address space limits by the changed size
3195 * Note: This happens *after* clearing old mappings in some code paths.
3196 */
3197 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3198 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3199 return -ENOMEM;
3200
3201 if (mm->map_count > sysctl_max_map_count)
3202 return -ENOMEM;
3203
3204 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3205 return -ENOMEM;
3206
3207 /*
3208 * Expand the existing vma if possible; Note that singular lists do not
3209 * occur after forking, so the expand will only happen on new VMAs.
3210 */
3211 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3212 can_vma_merge_after(vma, flags, NULL, NULL,
3213 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3214 vma_iter_config(vmi, vma->vm_start, addr + len);
3215 if (vma_iter_prealloc(vmi, vma))
3216 goto unacct_fail;
3217
3218 vma_start_write(vma);
3219
3220 init_vma_prep(&vp, vma);
3221 vma_prepare(&vp);
3222 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3223 vma->vm_end = addr + len;
3224 vm_flags_set(vma, VM_SOFTDIRTY);
3225 vma_iter_store(vmi, vma);
3226
3227 vma_complete(&vp, vmi, mm);
3228 khugepaged_enter_vma(vma, flags);
3229 goto out;
3230 }
3231
3232 if (vma)
3233 vma_iter_next_range(vmi);
3234 /* create a vma struct for an anonymous mapping */
3235 vma = vm_area_alloc(mm);
3236 if (!vma)
3237 goto unacct_fail;
3238
3239 vma_set_anonymous(vma);
3240 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3241 vm_flags_init(vma, flags);
3242 vma->vm_page_prot = vm_get_page_prot(flags);
3243 vma_start_write(vma);
3244 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3245 goto mas_store_fail;
3246
3247 mm->map_count++;
3248 validate_mm(mm);
3249 ksm_add_vma(vma);
3250out:
3251 perf_event_mmap(vma);
3252 mm->total_vm += len >> PAGE_SHIFT;
3253 mm->data_vm += len >> PAGE_SHIFT;
3254 if (flags & VM_LOCKED)
3255 mm->locked_vm += (len >> PAGE_SHIFT);
3256 vm_flags_set(vma, VM_SOFTDIRTY);
3257 return 0;
3258
3259mas_store_fail:
3260 vm_area_free(vma);
3261unacct_fail:
3262 vm_unacct_memory(len >> PAGE_SHIFT);
3263 return -ENOMEM;
3264}
3265
3266int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3267{
3268 struct mm_struct *mm = current->mm;
3269 struct vm_area_struct *vma = NULL;
3270 unsigned long len;
3271 int ret;
3272 bool populate;
3273 LIST_HEAD(uf);
3274 VMA_ITERATOR(vmi, mm, addr);
3275
3276 len = PAGE_ALIGN(request);
3277 if (len < request)
3278 return -ENOMEM;
3279 if (!len)
3280 return 0;
3281
3282 /* Until we need other flags, refuse anything except VM_EXEC. */
3283 if ((flags & (~VM_EXEC)) != 0)
3284 return -EINVAL;
3285
3286 if (mmap_write_lock_killable(mm))
3287 return -EINTR;
3288
3289 ret = check_brk_limits(addr, len);
3290 if (ret)
3291 goto limits_failed;
3292
3293 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3294 if (ret)
3295 goto munmap_failed;
3296
3297 vma = vma_prev(&vmi);
3298 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3299 populate = ((mm->def_flags & VM_LOCKED) != 0);
3300 mmap_write_unlock(mm);
3301 userfaultfd_unmap_complete(mm, &uf);
3302 if (populate && !ret)
3303 mm_populate(addr, len);
3304 return ret;
3305
3306munmap_failed:
3307limits_failed:
3308 mmap_write_unlock(mm);
3309 return ret;
3310}
3311EXPORT_SYMBOL(vm_brk_flags);
3312
3313/* Release all mmaps. */
3314void exit_mmap(struct mm_struct *mm)
3315{
3316 struct mmu_gather tlb;
3317 struct vm_area_struct *vma;
3318 unsigned long nr_accounted = 0;
3319 VMA_ITERATOR(vmi, mm, 0);
3320 int count = 0;
3321
3322 /* mm's last user has gone, and its about to be pulled down */
3323 mmu_notifier_release(mm);
3324
3325 mmap_read_lock(mm);
3326 arch_exit_mmap(mm);
3327
3328 vma = vma_next(&vmi);
3329 if (!vma || unlikely(xa_is_zero(vma))) {
3330 /* Can happen if dup_mmap() received an OOM */
3331 mmap_read_unlock(mm);
3332 mmap_write_lock(mm);
3333 goto destroy;
3334 }
3335
3336 lru_add_drain();
3337 flush_cache_mm(mm);
3338 tlb_gather_mmu_fullmm(&tlb, mm);
3339 /* update_hiwater_rss(mm) here? but nobody should be looking */
3340 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3341 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3342 mmap_read_unlock(mm);
3343
3344 /*
3345 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3346 * because the memory has been already freed.
3347 */
3348 set_bit(MMF_OOM_SKIP, &mm->flags);
3349 mmap_write_lock(mm);
3350 mt_clear_in_rcu(&mm->mm_mt);
3351 vma_iter_set(&vmi, vma->vm_end);
3352 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3353 USER_PGTABLES_CEILING, true);
3354 tlb_finish_mmu(&tlb);
3355
3356 /*
3357 * Walk the list again, actually closing and freeing it, with preemption
3358 * enabled, without holding any MM locks besides the unreachable
3359 * mmap_write_lock.
3360 */
3361 vma_iter_set(&vmi, vma->vm_end);
3362 do {
3363 if (vma->vm_flags & VM_ACCOUNT)
3364 nr_accounted += vma_pages(vma);
3365 remove_vma(vma, true);
3366 count++;
3367 cond_resched();
3368 vma = vma_next(&vmi);
3369 } while (vma && likely(!xa_is_zero(vma)));
3370
3371 BUG_ON(count != mm->map_count);
3372
3373 trace_exit_mmap(mm);
3374destroy:
3375 __mt_destroy(&mm->mm_mt);
3376 mmap_write_unlock(mm);
3377 vm_unacct_memory(nr_accounted);
3378}
3379
3380/* Insert vm structure into process list sorted by address
3381 * and into the inode's i_mmap tree. If vm_file is non-NULL
3382 * then i_mmap_rwsem is taken here.
3383 */
3384int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3385{
3386 unsigned long charged = vma_pages(vma);
3387
3388
3389 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3390 return -ENOMEM;
3391
3392 if ((vma->vm_flags & VM_ACCOUNT) &&
3393 security_vm_enough_memory_mm(mm, charged))
3394 return -ENOMEM;
3395
3396 /*
3397 * The vm_pgoff of a purely anonymous vma should be irrelevant
3398 * until its first write fault, when page's anon_vma and index
3399 * are set. But now set the vm_pgoff it will almost certainly
3400 * end up with (unless mremap moves it elsewhere before that
3401 * first wfault), so /proc/pid/maps tells a consistent story.
3402 *
3403 * By setting it to reflect the virtual start address of the
3404 * vma, merges and splits can happen in a seamless way, just
3405 * using the existing file pgoff checks and manipulations.
3406 * Similarly in do_mmap and in do_brk_flags.
3407 */
3408 if (vma_is_anonymous(vma)) {
3409 BUG_ON(vma->anon_vma);
3410 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3411 }
3412
3413 if (vma_link(mm, vma)) {
3414 if (vma->vm_flags & VM_ACCOUNT)
3415 vm_unacct_memory(charged);
3416 return -ENOMEM;
3417 }
3418
3419 return 0;
3420}
3421
3422/*
3423 * Copy the vma structure to a new location in the same mm,
3424 * prior to moving page table entries, to effect an mremap move.
3425 */
3426struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3427 unsigned long addr, unsigned long len, pgoff_t pgoff,
3428 bool *need_rmap_locks)
3429{
3430 struct vm_area_struct *vma = *vmap;
3431 unsigned long vma_start = vma->vm_start;
3432 struct mm_struct *mm = vma->vm_mm;
3433 struct vm_area_struct *new_vma, *prev;
3434 bool faulted_in_anon_vma = true;
3435 VMA_ITERATOR(vmi, mm, addr);
3436
3437 /*
3438 * If anonymous vma has not yet been faulted, update new pgoff
3439 * to match new location, to increase its chance of merging.
3440 */
3441 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3442 pgoff = addr >> PAGE_SHIFT;
3443 faulted_in_anon_vma = false;
3444 }
3445
3446 new_vma = find_vma_prev(mm, addr, &prev);
3447 if (new_vma && new_vma->vm_start < addr + len)
3448 return NULL; /* should never get here */
3449
3450 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3451 if (new_vma) {
3452 /*
3453 * Source vma may have been merged into new_vma
3454 */
3455 if (unlikely(vma_start >= new_vma->vm_start &&
3456 vma_start < new_vma->vm_end)) {
3457 /*
3458 * The only way we can get a vma_merge with
3459 * self during an mremap is if the vma hasn't
3460 * been faulted in yet and we were allowed to
3461 * reset the dst vma->vm_pgoff to the
3462 * destination address of the mremap to allow
3463 * the merge to happen. mremap must change the
3464 * vm_pgoff linearity between src and dst vmas
3465 * (in turn preventing a vma_merge) to be
3466 * safe. It is only safe to keep the vm_pgoff
3467 * linear if there are no pages mapped yet.
3468 */
3469 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3470 *vmap = vma = new_vma;
3471 }
3472 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3473 } else {
3474 new_vma = vm_area_dup(vma);
3475 if (!new_vma)
3476 goto out;
3477 vma_set_range(new_vma, addr, addr + len, pgoff);
3478 if (vma_dup_policy(vma, new_vma))
3479 goto out_free_vma;
3480 if (anon_vma_clone(new_vma, vma))
3481 goto out_free_mempol;
3482 if (new_vma->vm_file)
3483 get_file(new_vma->vm_file);
3484 if (new_vma->vm_ops && new_vma->vm_ops->open)
3485 new_vma->vm_ops->open(new_vma);
3486 if (vma_link(mm, new_vma))
3487 goto out_vma_link;
3488 *need_rmap_locks = false;
3489 }
3490 return new_vma;
3491
3492out_vma_link:
3493 if (new_vma->vm_ops && new_vma->vm_ops->close)
3494 new_vma->vm_ops->close(new_vma);
3495
3496 if (new_vma->vm_file)
3497 fput(new_vma->vm_file);
3498
3499 unlink_anon_vmas(new_vma);
3500out_free_mempol:
3501 mpol_put(vma_policy(new_vma));
3502out_free_vma:
3503 vm_area_free(new_vma);
3504out:
3505 return NULL;
3506}
3507
3508/*
3509 * Return true if the calling process may expand its vm space by the passed
3510 * number of pages
3511 */
3512bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3513{
3514 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3515 return false;
3516
3517 if (is_data_mapping(flags) &&
3518 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3519 /* Workaround for Valgrind */
3520 if (rlimit(RLIMIT_DATA) == 0 &&
3521 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3522 return true;
3523
3524 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3525 current->comm, current->pid,
3526 (mm->data_vm + npages) << PAGE_SHIFT,
3527 rlimit(RLIMIT_DATA),
3528 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3529
3530 if (!ignore_rlimit_data)
3531 return false;
3532 }
3533
3534 return true;
3535}
3536
3537void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3538{
3539 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3540
3541 if (is_exec_mapping(flags))
3542 mm->exec_vm += npages;
3543 else if (is_stack_mapping(flags))
3544 mm->stack_vm += npages;
3545 else if (is_data_mapping(flags))
3546 mm->data_vm += npages;
3547}
3548
3549static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3550
3551/*
3552 * Having a close hook prevents vma merging regardless of flags.
3553 */
3554static void special_mapping_close(struct vm_area_struct *vma)
3555{
3556}
3557
3558static const char *special_mapping_name(struct vm_area_struct *vma)
3559{
3560 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3561}
3562
3563static int special_mapping_mremap(struct vm_area_struct *new_vma)
3564{
3565 struct vm_special_mapping *sm = new_vma->vm_private_data;
3566
3567 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3568 return -EFAULT;
3569
3570 if (sm->mremap)
3571 return sm->mremap(sm, new_vma);
3572
3573 return 0;
3574}
3575
3576static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3577{
3578 /*
3579 * Forbid splitting special mappings - kernel has expectations over
3580 * the number of pages in mapping. Together with VM_DONTEXPAND
3581 * the size of vma should stay the same over the special mapping's
3582 * lifetime.
3583 */
3584 return -EINVAL;
3585}
3586
3587static const struct vm_operations_struct special_mapping_vmops = {
3588 .close = special_mapping_close,
3589 .fault = special_mapping_fault,
3590 .mremap = special_mapping_mremap,
3591 .name = special_mapping_name,
3592 /* vDSO code relies that VVAR can't be accessed remotely */
3593 .access = NULL,
3594 .may_split = special_mapping_split,
3595};
3596
3597static const struct vm_operations_struct legacy_special_mapping_vmops = {
3598 .close = special_mapping_close,
3599 .fault = special_mapping_fault,
3600};
3601
3602static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3603{
3604 struct vm_area_struct *vma = vmf->vma;
3605 pgoff_t pgoff;
3606 struct page **pages;
3607
3608 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3609 pages = vma->vm_private_data;
3610 } else {
3611 struct vm_special_mapping *sm = vma->vm_private_data;
3612
3613 if (sm->fault)
3614 return sm->fault(sm, vmf->vma, vmf);
3615
3616 pages = sm->pages;
3617 }
3618
3619 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3620 pgoff--;
3621
3622 if (*pages) {
3623 struct page *page = *pages;
3624 get_page(page);
3625 vmf->page = page;
3626 return 0;
3627 }
3628
3629 return VM_FAULT_SIGBUS;
3630}
3631
3632static struct vm_area_struct *__install_special_mapping(
3633 struct mm_struct *mm,
3634 unsigned long addr, unsigned long len,
3635 unsigned long vm_flags, void *priv,
3636 const struct vm_operations_struct *ops)
3637{
3638 int ret;
3639 struct vm_area_struct *vma;
3640
3641 vma = vm_area_alloc(mm);
3642 if (unlikely(vma == NULL))
3643 return ERR_PTR(-ENOMEM);
3644
3645 vma_set_range(vma, addr, addr + len, 0);
3646 vm_flags_init(vma, (vm_flags | mm->def_flags |
3647 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3648 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3649
3650 vma->vm_ops = ops;
3651 vma->vm_private_data = priv;
3652
3653 ret = insert_vm_struct(mm, vma);
3654 if (ret)
3655 goto out;
3656
3657 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3658
3659 perf_event_mmap(vma);
3660
3661 return vma;
3662
3663out:
3664 vm_area_free(vma);
3665 return ERR_PTR(ret);
3666}
3667
3668bool vma_is_special_mapping(const struct vm_area_struct *vma,
3669 const struct vm_special_mapping *sm)
3670{
3671 return vma->vm_private_data == sm &&
3672 (vma->vm_ops == &special_mapping_vmops ||
3673 vma->vm_ops == &legacy_special_mapping_vmops);
3674}
3675
3676/*
3677 * Called with mm->mmap_lock held for writing.
3678 * Insert a new vma covering the given region, with the given flags.
3679 * Its pages are supplied by the given array of struct page *.
3680 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3681 * The region past the last page supplied will always produce SIGBUS.
3682 * The array pointer and the pages it points to are assumed to stay alive
3683 * for as long as this mapping might exist.
3684 */
3685struct vm_area_struct *_install_special_mapping(
3686 struct mm_struct *mm,
3687 unsigned long addr, unsigned long len,
3688 unsigned long vm_flags, const struct vm_special_mapping *spec)
3689{
3690 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3691 &special_mapping_vmops);
3692}
3693
3694int install_special_mapping(struct mm_struct *mm,
3695 unsigned long addr, unsigned long len,
3696 unsigned long vm_flags, struct page **pages)
3697{
3698 struct vm_area_struct *vma = __install_special_mapping(
3699 mm, addr, len, vm_flags, (void *)pages,
3700 &legacy_special_mapping_vmops);
3701
3702 return PTR_ERR_OR_ZERO(vma);
3703}
3704
3705static DEFINE_MUTEX(mm_all_locks_mutex);
3706
3707static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3708{
3709 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3710 /*
3711 * The LSB of head.next can't change from under us
3712 * because we hold the mm_all_locks_mutex.
3713 */
3714 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3715 /*
3716 * We can safely modify head.next after taking the
3717 * anon_vma->root->rwsem. If some other vma in this mm shares
3718 * the same anon_vma we won't take it again.
3719 *
3720 * No need of atomic instructions here, head.next
3721 * can't change from under us thanks to the
3722 * anon_vma->root->rwsem.
3723 */
3724 if (__test_and_set_bit(0, (unsigned long *)
3725 &anon_vma->root->rb_root.rb_root.rb_node))
3726 BUG();
3727 }
3728}
3729
3730static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3731{
3732 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3733 /*
3734 * AS_MM_ALL_LOCKS can't change from under us because
3735 * we hold the mm_all_locks_mutex.
3736 *
3737 * Operations on ->flags have to be atomic because
3738 * even if AS_MM_ALL_LOCKS is stable thanks to the
3739 * mm_all_locks_mutex, there may be other cpus
3740 * changing other bitflags in parallel to us.
3741 */
3742 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3743 BUG();
3744 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3745 }
3746}
3747
3748/*
3749 * This operation locks against the VM for all pte/vma/mm related
3750 * operations that could ever happen on a certain mm. This includes
3751 * vmtruncate, try_to_unmap, and all page faults.
3752 *
3753 * The caller must take the mmap_lock in write mode before calling
3754 * mm_take_all_locks(). The caller isn't allowed to release the
3755 * mmap_lock until mm_drop_all_locks() returns.
3756 *
3757 * mmap_lock in write mode is required in order to block all operations
3758 * that could modify pagetables and free pages without need of
3759 * altering the vma layout. It's also needed in write mode to avoid new
3760 * anon_vmas to be associated with existing vmas.
3761 *
3762 * A single task can't take more than one mm_take_all_locks() in a row
3763 * or it would deadlock.
3764 *
3765 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3766 * mapping->flags avoid to take the same lock twice, if more than one
3767 * vma in this mm is backed by the same anon_vma or address_space.
3768 *
3769 * We take locks in following order, accordingly to comment at beginning
3770 * of mm/rmap.c:
3771 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3772 * hugetlb mapping);
3773 * - all vmas marked locked
3774 * - all i_mmap_rwsem locks;
3775 * - all anon_vma->rwseml
3776 *
3777 * We can take all locks within these types randomly because the VM code
3778 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3779 * mm_all_locks_mutex.
3780 *
3781 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3782 * that may have to take thousand of locks.
3783 *
3784 * mm_take_all_locks() can fail if it's interrupted by signals.
3785 */
3786int mm_take_all_locks(struct mm_struct *mm)
3787{
3788 struct vm_area_struct *vma;
3789 struct anon_vma_chain *avc;
3790 VMA_ITERATOR(vmi, mm, 0);
3791
3792 mmap_assert_write_locked(mm);
3793
3794 mutex_lock(&mm_all_locks_mutex);
3795
3796 /*
3797 * vma_start_write() does not have a complement in mm_drop_all_locks()
3798 * because vma_start_write() is always asymmetrical; it marks a VMA as
3799 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3800 * is reached.
3801 */
3802 for_each_vma(vmi, vma) {
3803 if (signal_pending(current))
3804 goto out_unlock;
3805 vma_start_write(vma);
3806 }
3807
3808 vma_iter_init(&vmi, mm, 0);
3809 for_each_vma(vmi, vma) {
3810 if (signal_pending(current))
3811 goto out_unlock;
3812 if (vma->vm_file && vma->vm_file->f_mapping &&
3813 is_vm_hugetlb_page(vma))
3814 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3815 }
3816
3817 vma_iter_init(&vmi, mm, 0);
3818 for_each_vma(vmi, vma) {
3819 if (signal_pending(current))
3820 goto out_unlock;
3821 if (vma->vm_file && vma->vm_file->f_mapping &&
3822 !is_vm_hugetlb_page(vma))
3823 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3824 }
3825
3826 vma_iter_init(&vmi, mm, 0);
3827 for_each_vma(vmi, vma) {
3828 if (signal_pending(current))
3829 goto out_unlock;
3830 if (vma->anon_vma)
3831 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3832 vm_lock_anon_vma(mm, avc->anon_vma);
3833 }
3834
3835 return 0;
3836
3837out_unlock:
3838 mm_drop_all_locks(mm);
3839 return -EINTR;
3840}
3841
3842static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3843{
3844 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3845 /*
3846 * The LSB of head.next can't change to 0 from under
3847 * us because we hold the mm_all_locks_mutex.
3848 *
3849 * We must however clear the bitflag before unlocking
3850 * the vma so the users using the anon_vma->rb_root will
3851 * never see our bitflag.
3852 *
3853 * No need of atomic instructions here, head.next
3854 * can't change from under us until we release the
3855 * anon_vma->root->rwsem.
3856 */
3857 if (!__test_and_clear_bit(0, (unsigned long *)
3858 &anon_vma->root->rb_root.rb_root.rb_node))
3859 BUG();
3860 anon_vma_unlock_write(anon_vma);
3861 }
3862}
3863
3864static void vm_unlock_mapping(struct address_space *mapping)
3865{
3866 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3867 /*
3868 * AS_MM_ALL_LOCKS can't change to 0 from under us
3869 * because we hold the mm_all_locks_mutex.
3870 */
3871 i_mmap_unlock_write(mapping);
3872 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3873 &mapping->flags))
3874 BUG();
3875 }
3876}
3877
3878/*
3879 * The mmap_lock cannot be released by the caller until
3880 * mm_drop_all_locks() returns.
3881 */
3882void mm_drop_all_locks(struct mm_struct *mm)
3883{
3884 struct vm_area_struct *vma;
3885 struct anon_vma_chain *avc;
3886 VMA_ITERATOR(vmi, mm, 0);
3887
3888 mmap_assert_write_locked(mm);
3889 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3890
3891 for_each_vma(vmi, vma) {
3892 if (vma->anon_vma)
3893 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3894 vm_unlock_anon_vma(avc->anon_vma);
3895 if (vma->vm_file && vma->vm_file->f_mapping)
3896 vm_unlock_mapping(vma->vm_file->f_mapping);
3897 }
3898
3899 mutex_unlock(&mm_all_locks_mutex);
3900}
3901
3902/*
3903 * initialise the percpu counter for VM
3904 */
3905void __init mmap_init(void)
3906{
3907 int ret;
3908
3909 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3910 VM_BUG_ON(ret);
3911}
3912
3913/*
3914 * Initialise sysctl_user_reserve_kbytes.
3915 *
3916 * This is intended to prevent a user from starting a single memory hogging
3917 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3918 * mode.
3919 *
3920 * The default value is min(3% of free memory, 128MB)
3921 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3922 */
3923static int init_user_reserve(void)
3924{
3925 unsigned long free_kbytes;
3926
3927 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3928
3929 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3930 return 0;
3931}
3932subsys_initcall(init_user_reserve);
3933
3934/*
3935 * Initialise sysctl_admin_reserve_kbytes.
3936 *
3937 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3938 * to log in and kill a memory hogging process.
3939 *
3940 * Systems with more than 256MB will reserve 8MB, enough to recover
3941 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3942 * only reserve 3% of free pages by default.
3943 */
3944static int init_admin_reserve(void)
3945{
3946 unsigned long free_kbytes;
3947
3948 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3949
3950 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3951 return 0;
3952}
3953subsys_initcall(init_admin_reserve);
3954
3955/*
3956 * Reinititalise user and admin reserves if memory is added or removed.
3957 *
3958 * The default user reserve max is 128MB, and the default max for the
3959 * admin reserve is 8MB. These are usually, but not always, enough to
3960 * enable recovery from a memory hogging process using login/sshd, a shell,
3961 * and tools like top. It may make sense to increase or even disable the
3962 * reserve depending on the existence of swap or variations in the recovery
3963 * tools. So, the admin may have changed them.
3964 *
3965 * If memory is added and the reserves have been eliminated or increased above
3966 * the default max, then we'll trust the admin.
3967 *
3968 * If memory is removed and there isn't enough free memory, then we
3969 * need to reset the reserves.
3970 *
3971 * Otherwise keep the reserve set by the admin.
3972 */
3973static int reserve_mem_notifier(struct notifier_block *nb,
3974 unsigned long action, void *data)
3975{
3976 unsigned long tmp, free_kbytes;
3977
3978 switch (action) {
3979 case MEM_ONLINE:
3980 /* Default max is 128MB. Leave alone if modified by operator. */
3981 tmp = sysctl_user_reserve_kbytes;
3982 if (tmp > 0 && tmp < SZ_128K)
3983 init_user_reserve();
3984
3985 /* Default max is 8MB. Leave alone if modified by operator. */
3986 tmp = sysctl_admin_reserve_kbytes;
3987 if (tmp > 0 && tmp < SZ_8K)
3988 init_admin_reserve();
3989
3990 break;
3991 case MEM_OFFLINE:
3992 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3993
3994 if (sysctl_user_reserve_kbytes > free_kbytes) {
3995 init_user_reserve();
3996 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3997 sysctl_user_reserve_kbytes);
3998 }
3999
4000 if (sysctl_admin_reserve_kbytes > free_kbytes) {
4001 init_admin_reserve();
4002 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
4003 sysctl_admin_reserve_kbytes);
4004 }
4005 break;
4006 default:
4007 break;
4008 }
4009 return NOTIFY_OK;
4010}
4011
4012static int __meminit init_reserve_notifier(void)
4013{
4014 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
4015 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
4016
4017 return 0;
4018}
4019subsys_initcall(init_reserve_notifier);