| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * mm/mmap.c |
| 4 | * |
| 5 | * Written by obz. |
| 6 | * |
| 7 | * Address space accounting code <alan@lxorguk.ukuu.org.uk> |
| 8 | */ |
| 9 | |
| 10 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 11 | |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/backing-dev.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/mm_inline.h> |
| 17 | #include <linux/shm.h> |
| 18 | #include <linux/mman.h> |
| 19 | #include <linux/pagemap.h> |
| 20 | #include <linux/swap.h> |
| 21 | #include <linux/syscalls.h> |
| 22 | #include <linux/capability.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/file.h> |
| 25 | #include <linux/fs.h> |
| 26 | #include <linux/personality.h> |
| 27 | #include <linux/security.h> |
| 28 | #include <linux/hugetlb.h> |
| 29 | #include <linux/shmem_fs.h> |
| 30 | #include <linux/profile.h> |
| 31 | #include <linux/export.h> |
| 32 | #include <linux/mount.h> |
| 33 | #include <linux/mempolicy.h> |
| 34 | #include <linux/rmap.h> |
| 35 | #include <linux/mmu_notifier.h> |
| 36 | #include <linux/mmdebug.h> |
| 37 | #include <linux/perf_event.h> |
| 38 | #include <linux/audit.h> |
| 39 | #include <linux/khugepaged.h> |
| 40 | #include <linux/uprobes.h> |
| 41 | #include <linux/notifier.h> |
| 42 | #include <linux/memory.h> |
| 43 | #include <linux/printk.h> |
| 44 | #include <linux/userfaultfd_k.h> |
| 45 | #include <linux/moduleparam.h> |
| 46 | #include <linux/pkeys.h> |
| 47 | #include <linux/oom.h> |
| 48 | #include <linux/sched/mm.h> |
| 49 | #include <linux/ksm.h> |
| 50 | #include <linux/memfd.h> |
| 51 | |
| 52 | #include <linux/uaccess.h> |
| 53 | #include <asm/cacheflush.h> |
| 54 | #include <asm/tlb.h> |
| 55 | #include <asm/mmu_context.h> |
| 56 | |
| 57 | #define CREATE_TRACE_POINTS |
| 58 | #include <trace/events/mmap.h> |
| 59 | |
| 60 | #include "internal.h" |
| 61 | |
| 62 | #ifndef arch_mmap_check |
| 63 | #define arch_mmap_check(addr, len, flags) (0) |
| 64 | #endif |
| 65 | |
| 66 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS |
| 67 | const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; |
| 68 | int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX; |
| 69 | int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; |
| 70 | #endif |
| 71 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS |
| 72 | const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; |
| 73 | const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; |
| 74 | int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; |
| 75 | #endif |
| 76 | |
| 77 | static bool ignore_rlimit_data; |
| 78 | core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); |
| 79 | |
| 80 | /* Update vma->vm_page_prot to reflect vma->vm_flags. */ |
| 81 | void vma_set_page_prot(struct vm_area_struct *vma) |
| 82 | { |
| 83 | unsigned long vm_flags = vma->vm_flags; |
| 84 | pgprot_t vm_page_prot; |
| 85 | |
| 86 | vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); |
| 87 | if (vma_wants_writenotify(vma, vm_page_prot)) { |
| 88 | vm_flags &= ~VM_SHARED; |
| 89 | vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); |
| 90 | } |
| 91 | /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ |
| 92 | WRITE_ONCE(vma->vm_page_prot, vm_page_prot); |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | * check_brk_limits() - Use platform specific check of range & verify mlock |
| 97 | * limits. |
| 98 | * @addr: The address to check |
| 99 | * @len: The size of increase. |
| 100 | * |
| 101 | * Return: 0 on success. |
| 102 | */ |
| 103 | static int check_brk_limits(unsigned long addr, unsigned long len) |
| 104 | { |
| 105 | unsigned long mapped_addr; |
| 106 | |
| 107 | mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); |
| 108 | if (IS_ERR_VALUE(mapped_addr)) |
| 109 | return mapped_addr; |
| 110 | |
| 111 | return mlock_future_ok(current->mm, current->mm->def_flags, len) |
| 112 | ? 0 : -EAGAIN; |
| 113 | } |
| 114 | |
| 115 | SYSCALL_DEFINE1(brk, unsigned long, brk) |
| 116 | { |
| 117 | unsigned long newbrk, oldbrk, origbrk; |
| 118 | struct mm_struct *mm = current->mm; |
| 119 | struct vm_area_struct *brkvma, *next = NULL; |
| 120 | unsigned long min_brk; |
| 121 | bool populate = false; |
| 122 | LIST_HEAD(uf); |
| 123 | struct vma_iterator vmi; |
| 124 | |
| 125 | if (mmap_write_lock_killable(mm)) |
| 126 | return -EINTR; |
| 127 | |
| 128 | origbrk = mm->brk; |
| 129 | |
| 130 | #ifdef CONFIG_COMPAT_BRK |
| 131 | /* |
| 132 | * CONFIG_COMPAT_BRK can still be overridden by setting |
| 133 | * randomize_va_space to 2, which will still cause mm->start_brk |
| 134 | * to be arbitrarily shifted |
| 135 | */ |
| 136 | if (current->brk_randomized) |
| 137 | min_brk = mm->start_brk; |
| 138 | else |
| 139 | min_brk = mm->end_data; |
| 140 | #else |
| 141 | min_brk = mm->start_brk; |
| 142 | #endif |
| 143 | if (brk < min_brk) |
| 144 | goto out; |
| 145 | |
| 146 | /* |
| 147 | * Check against rlimit here. If this check is done later after the test |
| 148 | * of oldbrk with newbrk then it can escape the test and let the data |
| 149 | * segment grow beyond its set limit the in case where the limit is |
| 150 | * not page aligned -Ram Gupta |
| 151 | */ |
| 152 | if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, |
| 153 | mm->end_data, mm->start_data)) |
| 154 | goto out; |
| 155 | |
| 156 | newbrk = PAGE_ALIGN(brk); |
| 157 | oldbrk = PAGE_ALIGN(mm->brk); |
| 158 | if (oldbrk == newbrk) { |
| 159 | mm->brk = brk; |
| 160 | goto success; |
| 161 | } |
| 162 | |
| 163 | /* Always allow shrinking brk. */ |
| 164 | if (brk <= mm->brk) { |
| 165 | /* Search one past newbrk */ |
| 166 | vma_iter_init(&vmi, mm, newbrk); |
| 167 | brkvma = vma_find(&vmi, oldbrk); |
| 168 | if (!brkvma || brkvma->vm_start >= oldbrk) |
| 169 | goto out; /* mapping intersects with an existing non-brk vma. */ |
| 170 | /* |
| 171 | * mm->brk must be protected by write mmap_lock. |
| 172 | * do_vmi_align_munmap() will drop the lock on success, so |
| 173 | * update it before calling do_vma_munmap(). |
| 174 | */ |
| 175 | mm->brk = brk; |
| 176 | if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf, |
| 177 | /* unlock = */ true)) |
| 178 | goto out; |
| 179 | |
| 180 | goto success_unlocked; |
| 181 | } |
| 182 | |
| 183 | if (check_brk_limits(oldbrk, newbrk - oldbrk)) |
| 184 | goto out; |
| 185 | |
| 186 | /* |
| 187 | * Only check if the next VMA is within the stack_guard_gap of the |
| 188 | * expansion area |
| 189 | */ |
| 190 | vma_iter_init(&vmi, mm, oldbrk); |
| 191 | next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap); |
| 192 | if (next && newbrk + PAGE_SIZE > vm_start_gap(next)) |
| 193 | goto out; |
| 194 | |
| 195 | brkvma = vma_prev_limit(&vmi, mm->start_brk); |
| 196 | /* Ok, looks good - let it rip. */ |
| 197 | if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0) |
| 198 | goto out; |
| 199 | |
| 200 | mm->brk = brk; |
| 201 | if (mm->def_flags & VM_LOCKED) |
| 202 | populate = true; |
| 203 | |
| 204 | success: |
| 205 | mmap_write_unlock(mm); |
| 206 | success_unlocked: |
| 207 | userfaultfd_unmap_complete(mm, &uf); |
| 208 | if (populate) |
| 209 | mm_populate(oldbrk, newbrk - oldbrk); |
| 210 | return brk; |
| 211 | |
| 212 | out: |
| 213 | mm->brk = origbrk; |
| 214 | mmap_write_unlock(mm); |
| 215 | return origbrk; |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * If a hint addr is less than mmap_min_addr change hint to be as |
| 220 | * low as possible but still greater than mmap_min_addr |
| 221 | */ |
| 222 | static inline unsigned long round_hint_to_min(unsigned long hint) |
| 223 | { |
| 224 | hint &= PAGE_MASK; |
| 225 | if (((void *)hint != NULL) && |
| 226 | (hint < mmap_min_addr)) |
| 227 | return PAGE_ALIGN(mmap_min_addr); |
| 228 | return hint; |
| 229 | } |
| 230 | |
| 231 | bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, |
| 232 | unsigned long bytes) |
| 233 | { |
| 234 | unsigned long locked_pages, limit_pages; |
| 235 | |
| 236 | if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK)) |
| 237 | return true; |
| 238 | |
| 239 | locked_pages = bytes >> PAGE_SHIFT; |
| 240 | locked_pages += mm->locked_vm; |
| 241 | |
| 242 | limit_pages = rlimit(RLIMIT_MEMLOCK); |
| 243 | limit_pages >>= PAGE_SHIFT; |
| 244 | |
| 245 | return locked_pages <= limit_pages; |
| 246 | } |
| 247 | |
| 248 | static inline u64 file_mmap_size_max(struct file *file, struct inode *inode) |
| 249 | { |
| 250 | if (S_ISREG(inode->i_mode)) |
| 251 | return MAX_LFS_FILESIZE; |
| 252 | |
| 253 | if (S_ISBLK(inode->i_mode)) |
| 254 | return MAX_LFS_FILESIZE; |
| 255 | |
| 256 | if (S_ISSOCK(inode->i_mode)) |
| 257 | return MAX_LFS_FILESIZE; |
| 258 | |
| 259 | /* Special "we do even unsigned file positions" case */ |
| 260 | if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET) |
| 261 | return 0; |
| 262 | |
| 263 | /* Yes, random drivers might want more. But I'm tired of buggy drivers */ |
| 264 | return ULONG_MAX; |
| 265 | } |
| 266 | |
| 267 | static inline bool file_mmap_ok(struct file *file, struct inode *inode, |
| 268 | unsigned long pgoff, unsigned long len) |
| 269 | { |
| 270 | u64 maxsize = file_mmap_size_max(file, inode); |
| 271 | |
| 272 | if (maxsize && len > maxsize) |
| 273 | return false; |
| 274 | maxsize -= len; |
| 275 | if (pgoff > maxsize >> PAGE_SHIFT) |
| 276 | return false; |
| 277 | return true; |
| 278 | } |
| 279 | |
| 280 | /** |
| 281 | * do_mmap() - Perform a userland memory mapping into the current process |
| 282 | * address space of length @len with protection bits @prot, mmap flags @flags |
| 283 | * (from which VMA flags will be inferred), and any additional VMA flags to |
| 284 | * apply @vm_flags. If this is a file-backed mapping then the file is specified |
| 285 | * in @file and page offset into the file via @pgoff. |
| 286 | * |
| 287 | * This function does not perform security checks on the file and assumes, if |
| 288 | * @uf is non-NULL, the caller has provided a list head to track unmap events |
| 289 | * for userfaultfd @uf. |
| 290 | * |
| 291 | * It also simply indicates whether memory population is required by setting |
| 292 | * @populate, which must be non-NULL, expecting the caller to actually perform |
| 293 | * this task itself if appropriate. |
| 294 | * |
| 295 | * This function will invoke architecture-specific (and if provided and |
| 296 | * relevant, file system-specific) logic to determine the most appropriate |
| 297 | * unmapped area in which to place the mapping if not MAP_FIXED. |
| 298 | * |
| 299 | * Callers which require userland mmap() behaviour should invoke vm_mmap(), |
| 300 | * which is also exported for module use. |
| 301 | * |
| 302 | * Those which require this behaviour less security checks, userfaultfd and |
| 303 | * populate behaviour, and who handle the mmap write lock themselves, should |
| 304 | * call this function. |
| 305 | * |
| 306 | * Note that the returned address may reside within a merged VMA if an |
| 307 | * appropriate merge were to take place, so it doesn't necessarily specify the |
| 308 | * start of a VMA, rather only the start of a valid mapped range of length |
| 309 | * @len bytes, rounded down to the nearest page size. |
| 310 | * |
| 311 | * The caller must write-lock current->mm->mmap_lock. |
| 312 | * |
| 313 | * @file: An optional struct file pointer describing the file which is to be |
| 314 | * mapped, if a file-backed mapping. |
| 315 | * @addr: If non-zero, hints at (or if @flags has MAP_FIXED set, specifies) the |
| 316 | * address at which to perform this mapping. See mmap (2) for details. Must be |
| 317 | * page-aligned. |
| 318 | * @len: The length of the mapping. Will be page-aligned and must be at least 1 |
| 319 | * page in size. |
| 320 | * @prot: Protection bits describing access required to the mapping. See mmap |
| 321 | * (2) for details. |
| 322 | * @flags: Flags specifying how the mapping should be performed, see mmap (2) |
| 323 | * for details. |
| 324 | * @vm_flags: VMA flags which should be set by default, or 0 otherwise. |
| 325 | * @pgoff: Page offset into the @file if file-backed, should be 0 otherwise. |
| 326 | * @populate: A pointer to a value which will be set to 0 if no population of |
| 327 | * the range is required, or the number of bytes to populate if it is. Must be |
| 328 | * non-NULL. See mmap (2) for details as to under what circumstances population |
| 329 | * of the range occurs. |
| 330 | * @uf: An optional pointer to a list head to track userfaultfd unmap events |
| 331 | * should unmapping events arise. If provided, it is up to the caller to manage |
| 332 | * this. |
| 333 | * |
| 334 | * Returns: Either an error, or the address at which the requested mapping has |
| 335 | * been performed. |
| 336 | */ |
| 337 | unsigned long do_mmap(struct file *file, unsigned long addr, |
| 338 | unsigned long len, unsigned long prot, |
| 339 | unsigned long flags, vm_flags_t vm_flags, |
| 340 | unsigned long pgoff, unsigned long *populate, |
| 341 | struct list_head *uf) |
| 342 | { |
| 343 | struct mm_struct *mm = current->mm; |
| 344 | int pkey = 0; |
| 345 | |
| 346 | *populate = 0; |
| 347 | |
| 348 | mmap_assert_write_locked(mm); |
| 349 | |
| 350 | if (!len) |
| 351 | return -EINVAL; |
| 352 | |
| 353 | /* |
| 354 | * Does the application expect PROT_READ to imply PROT_EXEC? |
| 355 | * |
| 356 | * (the exception is when the underlying filesystem is noexec |
| 357 | * mounted, in which case we don't add PROT_EXEC.) |
| 358 | */ |
| 359 | if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) |
| 360 | if (!(file && path_noexec(&file->f_path))) |
| 361 | prot |= PROT_EXEC; |
| 362 | |
| 363 | /* force arch specific MAP_FIXED handling in get_unmapped_area */ |
| 364 | if (flags & MAP_FIXED_NOREPLACE) |
| 365 | flags |= MAP_FIXED; |
| 366 | |
| 367 | if (!(flags & MAP_FIXED)) |
| 368 | addr = round_hint_to_min(addr); |
| 369 | |
| 370 | /* Careful about overflows.. */ |
| 371 | len = PAGE_ALIGN(len); |
| 372 | if (!len) |
| 373 | return -ENOMEM; |
| 374 | |
| 375 | /* offset overflow? */ |
| 376 | if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) |
| 377 | return -EOVERFLOW; |
| 378 | |
| 379 | /* Too many mappings? */ |
| 380 | if (mm->map_count > sysctl_max_map_count) |
| 381 | return -ENOMEM; |
| 382 | |
| 383 | /* |
| 384 | * addr is returned from get_unmapped_area, |
| 385 | * There are two cases: |
| 386 | * 1> MAP_FIXED == false |
| 387 | * unallocated memory, no need to check sealing. |
| 388 | * 1> MAP_FIXED == true |
| 389 | * sealing is checked inside mmap_region when |
| 390 | * do_vmi_munmap is called. |
| 391 | */ |
| 392 | |
| 393 | if (prot == PROT_EXEC) { |
| 394 | pkey = execute_only_pkey(mm); |
| 395 | if (pkey < 0) |
| 396 | pkey = 0; |
| 397 | } |
| 398 | |
| 399 | /* Do simple checking here so the lower-level routines won't have |
| 400 | * to. we assume access permissions have been handled by the open |
| 401 | * of the memory object, so we don't do any here. |
| 402 | */ |
| 403 | vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) | |
| 404 | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; |
| 405 | |
| 406 | /* Obtain the address to map to. we verify (or select) it and ensure |
| 407 | * that it represents a valid section of the address space. |
| 408 | */ |
| 409 | addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags); |
| 410 | if (IS_ERR_VALUE(addr)) |
| 411 | return addr; |
| 412 | |
| 413 | if (flags & MAP_FIXED_NOREPLACE) { |
| 414 | if (find_vma_intersection(mm, addr, addr + len)) |
| 415 | return -EEXIST; |
| 416 | } |
| 417 | |
| 418 | if (flags & MAP_LOCKED) |
| 419 | if (!can_do_mlock()) |
| 420 | return -EPERM; |
| 421 | |
| 422 | if (!mlock_future_ok(mm, vm_flags, len)) |
| 423 | return -EAGAIN; |
| 424 | |
| 425 | if (file) { |
| 426 | struct inode *inode = file_inode(file); |
| 427 | unsigned long flags_mask; |
| 428 | int err; |
| 429 | |
| 430 | if (!file_mmap_ok(file, inode, pgoff, len)) |
| 431 | return -EOVERFLOW; |
| 432 | |
| 433 | flags_mask = LEGACY_MAP_MASK; |
| 434 | if (file->f_op->fop_flags & FOP_MMAP_SYNC) |
| 435 | flags_mask |= MAP_SYNC; |
| 436 | |
| 437 | switch (flags & MAP_TYPE) { |
| 438 | case MAP_SHARED: |
| 439 | /* |
| 440 | * Force use of MAP_SHARED_VALIDATE with non-legacy |
| 441 | * flags. E.g. MAP_SYNC is dangerous to use with |
| 442 | * MAP_SHARED as you don't know which consistency model |
| 443 | * you will get. We silently ignore unsupported flags |
| 444 | * with MAP_SHARED to preserve backward compatibility. |
| 445 | */ |
| 446 | flags &= LEGACY_MAP_MASK; |
| 447 | fallthrough; |
| 448 | case MAP_SHARED_VALIDATE: |
| 449 | if (flags & ~flags_mask) |
| 450 | return -EOPNOTSUPP; |
| 451 | if (prot & PROT_WRITE) { |
| 452 | if (!(file->f_mode & FMODE_WRITE)) |
| 453 | return -EACCES; |
| 454 | if (IS_SWAPFILE(file->f_mapping->host)) |
| 455 | return -ETXTBSY; |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * Make sure we don't allow writing to an append-only |
| 460 | * file.. |
| 461 | */ |
| 462 | if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) |
| 463 | return -EACCES; |
| 464 | |
| 465 | vm_flags |= VM_SHARED | VM_MAYSHARE; |
| 466 | if (!(file->f_mode & FMODE_WRITE)) |
| 467 | vm_flags &= ~(VM_MAYWRITE | VM_SHARED); |
| 468 | fallthrough; |
| 469 | case MAP_PRIVATE: |
| 470 | if (!(file->f_mode & FMODE_READ)) |
| 471 | return -EACCES; |
| 472 | if (path_noexec(&file->f_path)) { |
| 473 | if (vm_flags & VM_EXEC) |
| 474 | return -EPERM; |
| 475 | vm_flags &= ~VM_MAYEXEC; |
| 476 | } |
| 477 | |
| 478 | if (!file_has_valid_mmap_hooks(file)) |
| 479 | return -ENODEV; |
| 480 | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) |
| 481 | return -EINVAL; |
| 482 | break; |
| 483 | |
| 484 | default: |
| 485 | return -EINVAL; |
| 486 | } |
| 487 | |
| 488 | /* |
| 489 | * Check to see if we are violating any seals and update VMA |
| 490 | * flags if necessary to avoid future seal violations. |
| 491 | */ |
| 492 | err = memfd_check_seals_mmap(file, &vm_flags); |
| 493 | if (err) |
| 494 | return (unsigned long)err; |
| 495 | } else { |
| 496 | switch (flags & MAP_TYPE) { |
| 497 | case MAP_SHARED: |
| 498 | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) |
| 499 | return -EINVAL; |
| 500 | /* |
| 501 | * Ignore pgoff. |
| 502 | */ |
| 503 | pgoff = 0; |
| 504 | vm_flags |= VM_SHARED | VM_MAYSHARE; |
| 505 | break; |
| 506 | case MAP_DROPPABLE: |
| 507 | if (VM_DROPPABLE == VM_NONE) |
| 508 | return -ENOTSUPP; |
| 509 | /* |
| 510 | * A locked or stack area makes no sense to be droppable. |
| 511 | * |
| 512 | * Also, since droppable pages can just go away at any time |
| 513 | * it makes no sense to copy them on fork or dump them. |
| 514 | * |
| 515 | * And don't attempt to combine with hugetlb for now. |
| 516 | */ |
| 517 | if (flags & (MAP_LOCKED | MAP_HUGETLB)) |
| 518 | return -EINVAL; |
| 519 | if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP)) |
| 520 | return -EINVAL; |
| 521 | |
| 522 | vm_flags |= VM_DROPPABLE; |
| 523 | |
| 524 | /* |
| 525 | * If the pages can be dropped, then it doesn't make |
| 526 | * sense to reserve them. |
| 527 | */ |
| 528 | vm_flags |= VM_NORESERVE; |
| 529 | |
| 530 | /* |
| 531 | * Likewise, they're volatile enough that they |
| 532 | * shouldn't survive forks or coredumps. |
| 533 | */ |
| 534 | vm_flags |= VM_WIPEONFORK | VM_DONTDUMP; |
| 535 | fallthrough; |
| 536 | case MAP_PRIVATE: |
| 537 | /* |
| 538 | * Set pgoff according to addr for anon_vma. |
| 539 | */ |
| 540 | pgoff = addr >> PAGE_SHIFT; |
| 541 | break; |
| 542 | default: |
| 543 | return -EINVAL; |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | /* |
| 548 | * Set 'VM_NORESERVE' if we should not account for the |
| 549 | * memory use of this mapping. |
| 550 | */ |
| 551 | if (flags & MAP_NORESERVE) { |
| 552 | /* We honor MAP_NORESERVE if allowed to overcommit */ |
| 553 | if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) |
| 554 | vm_flags |= VM_NORESERVE; |
| 555 | |
| 556 | /* hugetlb applies strict overcommit unless MAP_NORESERVE */ |
| 557 | if (file && is_file_hugepages(file)) |
| 558 | vm_flags |= VM_NORESERVE; |
| 559 | } |
| 560 | |
| 561 | addr = mmap_region(file, addr, len, vm_flags, pgoff, uf); |
| 562 | if (!IS_ERR_VALUE(addr) && |
| 563 | ((vm_flags & VM_LOCKED) || |
| 564 | (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) |
| 565 | *populate = len; |
| 566 | return addr; |
| 567 | } |
| 568 | |
| 569 | unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len, |
| 570 | unsigned long prot, unsigned long flags, |
| 571 | unsigned long fd, unsigned long pgoff) |
| 572 | { |
| 573 | struct file *file = NULL; |
| 574 | unsigned long retval; |
| 575 | |
| 576 | if (!(flags & MAP_ANONYMOUS)) { |
| 577 | audit_mmap_fd(fd, flags); |
| 578 | file = fget(fd); |
| 579 | if (!file) |
| 580 | return -EBADF; |
| 581 | if (is_file_hugepages(file)) { |
| 582 | len = ALIGN(len, huge_page_size(hstate_file(file))); |
| 583 | } else if (unlikely(flags & MAP_HUGETLB)) { |
| 584 | retval = -EINVAL; |
| 585 | goto out_fput; |
| 586 | } |
| 587 | } else if (flags & MAP_HUGETLB) { |
| 588 | struct hstate *hs; |
| 589 | |
| 590 | hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); |
| 591 | if (!hs) |
| 592 | return -EINVAL; |
| 593 | |
| 594 | len = ALIGN(len, huge_page_size(hs)); |
| 595 | /* |
| 596 | * VM_NORESERVE is used because the reservations will be |
| 597 | * taken when vm_ops->mmap() is called |
| 598 | */ |
| 599 | file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, |
| 600 | VM_NORESERVE, |
| 601 | HUGETLB_ANONHUGE_INODE, |
| 602 | (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); |
| 603 | if (IS_ERR(file)) |
| 604 | return PTR_ERR(file); |
| 605 | } |
| 606 | |
| 607 | retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); |
| 608 | out_fput: |
| 609 | if (file) |
| 610 | fput(file); |
| 611 | return retval; |
| 612 | } |
| 613 | |
| 614 | SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, |
| 615 | unsigned long, prot, unsigned long, flags, |
| 616 | unsigned long, fd, unsigned long, pgoff) |
| 617 | { |
| 618 | return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff); |
| 619 | } |
| 620 | |
| 621 | #ifdef __ARCH_WANT_SYS_OLD_MMAP |
| 622 | struct mmap_arg_struct { |
| 623 | unsigned long addr; |
| 624 | unsigned long len; |
| 625 | unsigned long prot; |
| 626 | unsigned long flags; |
| 627 | unsigned long fd; |
| 628 | unsigned long offset; |
| 629 | }; |
| 630 | |
| 631 | SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) |
| 632 | { |
| 633 | struct mmap_arg_struct a; |
| 634 | |
| 635 | if (copy_from_user(&a, arg, sizeof(a))) |
| 636 | return -EFAULT; |
| 637 | if (offset_in_page(a.offset)) |
| 638 | return -EINVAL; |
| 639 | |
| 640 | return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, |
| 641 | a.offset >> PAGE_SHIFT); |
| 642 | } |
| 643 | #endif /* __ARCH_WANT_SYS_OLD_MMAP */ |
| 644 | |
| 645 | /* |
| 646 | * Determine if the allocation needs to ensure that there is no |
| 647 | * existing mapping within it's guard gaps, for use as start_gap. |
| 648 | */ |
| 649 | static inline unsigned long stack_guard_placement(vm_flags_t vm_flags) |
| 650 | { |
| 651 | if (vm_flags & VM_SHADOW_STACK) |
| 652 | return PAGE_SIZE; |
| 653 | |
| 654 | return 0; |
| 655 | } |
| 656 | |
| 657 | /* |
| 658 | * Search for an unmapped address range. |
| 659 | * |
| 660 | * We are looking for a range that: |
| 661 | * - does not intersect with any VMA; |
| 662 | * - is contained within the [low_limit, high_limit) interval; |
| 663 | * - is at least the desired size. |
| 664 | * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) |
| 665 | */ |
| 666 | unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info) |
| 667 | { |
| 668 | unsigned long addr; |
| 669 | |
| 670 | if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) |
| 671 | addr = unmapped_area_topdown(info); |
| 672 | else |
| 673 | addr = unmapped_area(info); |
| 674 | |
| 675 | trace_vm_unmapped_area(addr, info); |
| 676 | return addr; |
| 677 | } |
| 678 | |
| 679 | /* Get an address range which is currently unmapped. |
| 680 | * For shmat() with addr=0. |
| 681 | * |
| 682 | * Ugly calling convention alert: |
| 683 | * Return value with the low bits set means error value, |
| 684 | * ie |
| 685 | * if (ret & ~PAGE_MASK) |
| 686 | * error = ret; |
| 687 | * |
| 688 | * This function "knows" that -ENOMEM has the bits set. |
| 689 | */ |
| 690 | unsigned long |
| 691 | generic_get_unmapped_area(struct file *filp, unsigned long addr, |
| 692 | unsigned long len, unsigned long pgoff, |
| 693 | unsigned long flags, vm_flags_t vm_flags) |
| 694 | { |
| 695 | struct mm_struct *mm = current->mm; |
| 696 | struct vm_area_struct *vma, *prev; |
| 697 | struct vm_unmapped_area_info info = {}; |
| 698 | const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); |
| 699 | |
| 700 | if (len > mmap_end - mmap_min_addr) |
| 701 | return -ENOMEM; |
| 702 | |
| 703 | if (flags & MAP_FIXED) |
| 704 | return addr; |
| 705 | |
| 706 | if (addr) { |
| 707 | addr = PAGE_ALIGN(addr); |
| 708 | vma = find_vma_prev(mm, addr, &prev); |
| 709 | if (mmap_end - len >= addr && addr >= mmap_min_addr && |
| 710 | (!vma || addr + len <= vm_start_gap(vma)) && |
| 711 | (!prev || addr >= vm_end_gap(prev))) |
| 712 | return addr; |
| 713 | } |
| 714 | |
| 715 | info.length = len; |
| 716 | info.low_limit = mm->mmap_base; |
| 717 | info.high_limit = mmap_end; |
| 718 | info.start_gap = stack_guard_placement(vm_flags); |
| 719 | if (filp && is_file_hugepages(filp)) |
| 720 | info.align_mask = huge_page_mask_align(filp); |
| 721 | return vm_unmapped_area(&info); |
| 722 | } |
| 723 | |
| 724 | #ifndef HAVE_ARCH_UNMAPPED_AREA |
| 725 | unsigned long |
| 726 | arch_get_unmapped_area(struct file *filp, unsigned long addr, |
| 727 | unsigned long len, unsigned long pgoff, |
| 728 | unsigned long flags, vm_flags_t vm_flags) |
| 729 | { |
| 730 | return generic_get_unmapped_area(filp, addr, len, pgoff, flags, |
| 731 | vm_flags); |
| 732 | } |
| 733 | #endif |
| 734 | |
| 735 | /* |
| 736 | * This mmap-allocator allocates new areas top-down from below the |
| 737 | * stack's low limit (the base): |
| 738 | */ |
| 739 | unsigned long |
| 740 | generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
| 741 | unsigned long len, unsigned long pgoff, |
| 742 | unsigned long flags, vm_flags_t vm_flags) |
| 743 | { |
| 744 | struct vm_area_struct *vma, *prev; |
| 745 | struct mm_struct *mm = current->mm; |
| 746 | struct vm_unmapped_area_info info = {}; |
| 747 | const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); |
| 748 | |
| 749 | /* requested length too big for entire address space */ |
| 750 | if (len > mmap_end - mmap_min_addr) |
| 751 | return -ENOMEM; |
| 752 | |
| 753 | if (flags & MAP_FIXED) |
| 754 | return addr; |
| 755 | |
| 756 | /* requesting a specific address */ |
| 757 | if (addr) { |
| 758 | addr = PAGE_ALIGN(addr); |
| 759 | vma = find_vma_prev(mm, addr, &prev); |
| 760 | if (mmap_end - len >= addr && addr >= mmap_min_addr && |
| 761 | (!vma || addr + len <= vm_start_gap(vma)) && |
| 762 | (!prev || addr >= vm_end_gap(prev))) |
| 763 | return addr; |
| 764 | } |
| 765 | |
| 766 | info.flags = VM_UNMAPPED_AREA_TOPDOWN; |
| 767 | info.length = len; |
| 768 | info.low_limit = PAGE_SIZE; |
| 769 | info.high_limit = arch_get_mmap_base(addr, mm->mmap_base); |
| 770 | info.start_gap = stack_guard_placement(vm_flags); |
| 771 | if (filp && is_file_hugepages(filp)) |
| 772 | info.align_mask = huge_page_mask_align(filp); |
| 773 | addr = vm_unmapped_area(&info); |
| 774 | |
| 775 | /* |
| 776 | * A failed mmap() very likely causes application failure, |
| 777 | * so fall back to the bottom-up function here. This scenario |
| 778 | * can happen with large stack limits and large mmap() |
| 779 | * allocations. |
| 780 | */ |
| 781 | if (offset_in_page(addr)) { |
| 782 | VM_BUG_ON(addr != -ENOMEM); |
| 783 | info.flags = 0; |
| 784 | info.low_limit = TASK_UNMAPPED_BASE; |
| 785 | info.high_limit = mmap_end; |
| 786 | addr = vm_unmapped_area(&info); |
| 787 | } |
| 788 | |
| 789 | return addr; |
| 790 | } |
| 791 | |
| 792 | #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN |
| 793 | unsigned long |
| 794 | arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
| 795 | unsigned long len, unsigned long pgoff, |
| 796 | unsigned long flags, vm_flags_t vm_flags) |
| 797 | { |
| 798 | return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags, |
| 799 | vm_flags); |
| 800 | } |
| 801 | #endif |
| 802 | |
| 803 | unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp, |
| 804 | unsigned long addr, unsigned long len, |
| 805 | unsigned long pgoff, unsigned long flags, |
| 806 | vm_flags_t vm_flags) |
| 807 | { |
| 808 | if (test_bit(MMF_TOPDOWN, &mm->flags)) |
| 809 | return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, |
| 810 | flags, vm_flags); |
| 811 | return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags); |
| 812 | } |
| 813 | |
| 814 | unsigned long |
| 815 | __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, |
| 816 | unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags) |
| 817 | { |
| 818 | unsigned long (*get_area)(struct file *, unsigned long, |
| 819 | unsigned long, unsigned long, unsigned long) |
| 820 | = NULL; |
| 821 | |
| 822 | unsigned long error = arch_mmap_check(addr, len, flags); |
| 823 | if (error) |
| 824 | return error; |
| 825 | |
| 826 | /* Careful about overflows.. */ |
| 827 | if (len > TASK_SIZE) |
| 828 | return -ENOMEM; |
| 829 | |
| 830 | if (file) { |
| 831 | if (file->f_op->get_unmapped_area) |
| 832 | get_area = file->f_op->get_unmapped_area; |
| 833 | } else if (flags & MAP_SHARED) { |
| 834 | /* |
| 835 | * mmap_region() will call shmem_zero_setup() to create a file, |
| 836 | * so use shmem's get_unmapped_area in case it can be huge. |
| 837 | */ |
| 838 | get_area = shmem_get_unmapped_area; |
| 839 | } |
| 840 | |
| 841 | /* Always treat pgoff as zero for anonymous memory. */ |
| 842 | if (!file) |
| 843 | pgoff = 0; |
| 844 | |
| 845 | if (get_area) { |
| 846 | addr = get_area(file, addr, len, pgoff, flags); |
| 847 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file |
| 848 | && !addr /* no hint */ |
| 849 | && IS_ALIGNED(len, PMD_SIZE)) { |
| 850 | /* Ensures that larger anonymous mappings are THP aligned. */ |
| 851 | addr = thp_get_unmapped_area_vmflags(file, addr, len, |
| 852 | pgoff, flags, vm_flags); |
| 853 | } else { |
| 854 | addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len, |
| 855 | pgoff, flags, vm_flags); |
| 856 | } |
| 857 | if (IS_ERR_VALUE(addr)) |
| 858 | return addr; |
| 859 | |
| 860 | if (addr > TASK_SIZE - len) |
| 861 | return -ENOMEM; |
| 862 | if (offset_in_page(addr)) |
| 863 | return -EINVAL; |
| 864 | |
| 865 | error = security_mmap_addr(addr); |
| 866 | return error ? error : addr; |
| 867 | } |
| 868 | |
| 869 | unsigned long |
| 870 | mm_get_unmapped_area(struct mm_struct *mm, struct file *file, |
| 871 | unsigned long addr, unsigned long len, |
| 872 | unsigned long pgoff, unsigned long flags) |
| 873 | { |
| 874 | if (test_bit(MMF_TOPDOWN, &mm->flags)) |
| 875 | return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0); |
| 876 | return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0); |
| 877 | } |
| 878 | EXPORT_SYMBOL(mm_get_unmapped_area); |
| 879 | |
| 880 | /** |
| 881 | * find_vma_intersection() - Look up the first VMA which intersects the interval |
| 882 | * @mm: The process address space. |
| 883 | * @start_addr: The inclusive start user address. |
| 884 | * @end_addr: The exclusive end user address. |
| 885 | * |
| 886 | * Returns: The first VMA within the provided range, %NULL otherwise. Assumes |
| 887 | * start_addr < end_addr. |
| 888 | */ |
| 889 | struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, |
| 890 | unsigned long start_addr, |
| 891 | unsigned long end_addr) |
| 892 | { |
| 893 | unsigned long index = start_addr; |
| 894 | |
| 895 | mmap_assert_locked(mm); |
| 896 | return mt_find(&mm->mm_mt, &index, end_addr - 1); |
| 897 | } |
| 898 | EXPORT_SYMBOL(find_vma_intersection); |
| 899 | |
| 900 | /** |
| 901 | * find_vma() - Find the VMA for a given address, or the next VMA. |
| 902 | * @mm: The mm_struct to check |
| 903 | * @addr: The address |
| 904 | * |
| 905 | * Returns: The VMA associated with addr, or the next VMA. |
| 906 | * May return %NULL in the case of no VMA at addr or above. |
| 907 | */ |
| 908 | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) |
| 909 | { |
| 910 | unsigned long index = addr; |
| 911 | |
| 912 | mmap_assert_locked(mm); |
| 913 | return mt_find(&mm->mm_mt, &index, ULONG_MAX); |
| 914 | } |
| 915 | EXPORT_SYMBOL(find_vma); |
| 916 | |
| 917 | /** |
| 918 | * find_vma_prev() - Find the VMA for a given address, or the next vma and |
| 919 | * set %pprev to the previous VMA, if any. |
| 920 | * @mm: The mm_struct to check |
| 921 | * @addr: The address |
| 922 | * @pprev: The pointer to set to the previous VMA |
| 923 | * |
| 924 | * Note that RCU lock is missing here since the external mmap_lock() is used |
| 925 | * instead. |
| 926 | * |
| 927 | * Returns: The VMA associated with @addr, or the next vma. |
| 928 | * May return %NULL in the case of no vma at addr or above. |
| 929 | */ |
| 930 | struct vm_area_struct * |
| 931 | find_vma_prev(struct mm_struct *mm, unsigned long addr, |
| 932 | struct vm_area_struct **pprev) |
| 933 | { |
| 934 | struct vm_area_struct *vma; |
| 935 | VMA_ITERATOR(vmi, mm, addr); |
| 936 | |
| 937 | vma = vma_iter_load(&vmi); |
| 938 | *pprev = vma_prev(&vmi); |
| 939 | if (!vma) |
| 940 | vma = vma_next(&vmi); |
| 941 | return vma; |
| 942 | } |
| 943 | |
| 944 | /* enforced gap between the expanding stack and other mappings. */ |
| 945 | unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT; |
| 946 | |
| 947 | static int __init cmdline_parse_stack_guard_gap(char *p) |
| 948 | { |
| 949 | unsigned long val; |
| 950 | char *endptr; |
| 951 | |
| 952 | val = simple_strtoul(p, &endptr, 10); |
| 953 | if (!*endptr) |
| 954 | stack_guard_gap = val << PAGE_SHIFT; |
| 955 | |
| 956 | return 1; |
| 957 | } |
| 958 | __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap); |
| 959 | |
| 960 | #ifdef CONFIG_STACK_GROWSUP |
| 961 | int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) |
| 962 | { |
| 963 | return expand_upwards(vma, address); |
| 964 | } |
| 965 | |
| 966 | struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) |
| 967 | { |
| 968 | struct vm_area_struct *vma, *prev; |
| 969 | |
| 970 | addr &= PAGE_MASK; |
| 971 | vma = find_vma_prev(mm, addr, &prev); |
| 972 | if (vma && (vma->vm_start <= addr)) |
| 973 | return vma; |
| 974 | if (!prev) |
| 975 | return NULL; |
| 976 | if (expand_stack_locked(prev, addr)) |
| 977 | return NULL; |
| 978 | if (prev->vm_flags & VM_LOCKED) |
| 979 | populate_vma_page_range(prev, addr, prev->vm_end, NULL); |
| 980 | return prev; |
| 981 | } |
| 982 | #else |
| 983 | int expand_stack_locked(struct vm_area_struct *vma, unsigned long address) |
| 984 | { |
| 985 | return expand_downwards(vma, address); |
| 986 | } |
| 987 | |
| 988 | struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr) |
| 989 | { |
| 990 | struct vm_area_struct *vma; |
| 991 | unsigned long start; |
| 992 | |
| 993 | addr &= PAGE_MASK; |
| 994 | vma = find_vma(mm, addr); |
| 995 | if (!vma) |
| 996 | return NULL; |
| 997 | if (vma->vm_start <= addr) |
| 998 | return vma; |
| 999 | start = vma->vm_start; |
| 1000 | if (expand_stack_locked(vma, addr)) |
| 1001 | return NULL; |
| 1002 | if (vma->vm_flags & VM_LOCKED) |
| 1003 | populate_vma_page_range(vma, addr, start, NULL); |
| 1004 | return vma; |
| 1005 | } |
| 1006 | #endif |
| 1007 | |
| 1008 | #if defined(CONFIG_STACK_GROWSUP) |
| 1009 | |
| 1010 | #define vma_expand_up(vma,addr) expand_upwards(vma, addr) |
| 1011 | #define vma_expand_down(vma, addr) (-EFAULT) |
| 1012 | |
| 1013 | #else |
| 1014 | |
| 1015 | #define vma_expand_up(vma,addr) (-EFAULT) |
| 1016 | #define vma_expand_down(vma, addr) expand_downwards(vma, addr) |
| 1017 | |
| 1018 | #endif |
| 1019 | |
| 1020 | /* |
| 1021 | * expand_stack(): legacy interface for page faulting. Don't use unless |
| 1022 | * you have to. |
| 1023 | * |
| 1024 | * This is called with the mm locked for reading, drops the lock, takes |
| 1025 | * the lock for writing, tries to look up a vma again, expands it if |
| 1026 | * necessary, and downgrades the lock to reading again. |
| 1027 | * |
| 1028 | * If no vma is found or it can't be expanded, it returns NULL and has |
| 1029 | * dropped the lock. |
| 1030 | */ |
| 1031 | struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr) |
| 1032 | { |
| 1033 | struct vm_area_struct *vma, *prev; |
| 1034 | |
| 1035 | mmap_read_unlock(mm); |
| 1036 | if (mmap_write_lock_killable(mm)) |
| 1037 | return NULL; |
| 1038 | |
| 1039 | vma = find_vma_prev(mm, addr, &prev); |
| 1040 | if (vma && vma->vm_start <= addr) |
| 1041 | goto success; |
| 1042 | |
| 1043 | if (prev && !vma_expand_up(prev, addr)) { |
| 1044 | vma = prev; |
| 1045 | goto success; |
| 1046 | } |
| 1047 | |
| 1048 | if (vma && !vma_expand_down(vma, addr)) |
| 1049 | goto success; |
| 1050 | |
| 1051 | mmap_write_unlock(mm); |
| 1052 | return NULL; |
| 1053 | |
| 1054 | success: |
| 1055 | mmap_write_downgrade(mm); |
| 1056 | return vma; |
| 1057 | } |
| 1058 | |
| 1059 | /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. |
| 1060 | * @mm: The mm_struct |
| 1061 | * @start: The start address to munmap |
| 1062 | * @len: The length to be munmapped. |
| 1063 | * @uf: The userfaultfd list_head |
| 1064 | * |
| 1065 | * Return: 0 on success, error otherwise. |
| 1066 | */ |
| 1067 | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, |
| 1068 | struct list_head *uf) |
| 1069 | { |
| 1070 | VMA_ITERATOR(vmi, mm, start); |
| 1071 | |
| 1072 | return do_vmi_munmap(&vmi, mm, start, len, uf, false); |
| 1073 | } |
| 1074 | |
| 1075 | int vm_munmap(unsigned long start, size_t len) |
| 1076 | { |
| 1077 | return __vm_munmap(start, len, false); |
| 1078 | } |
| 1079 | EXPORT_SYMBOL(vm_munmap); |
| 1080 | |
| 1081 | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) |
| 1082 | { |
| 1083 | addr = untagged_addr(addr); |
| 1084 | return __vm_munmap(addr, len, true); |
| 1085 | } |
| 1086 | |
| 1087 | |
| 1088 | /* |
| 1089 | * Emulation of deprecated remap_file_pages() syscall. |
| 1090 | */ |
| 1091 | SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, |
| 1092 | unsigned long, prot, unsigned long, pgoff, unsigned long, flags) |
| 1093 | { |
| 1094 | |
| 1095 | struct mm_struct *mm = current->mm; |
| 1096 | struct vm_area_struct *vma; |
| 1097 | unsigned long populate = 0; |
| 1098 | unsigned long ret = -EINVAL; |
| 1099 | struct file *file; |
| 1100 | vm_flags_t vm_flags; |
| 1101 | |
| 1102 | pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n", |
| 1103 | current->comm, current->pid); |
| 1104 | |
| 1105 | if (prot) |
| 1106 | return ret; |
| 1107 | start = start & PAGE_MASK; |
| 1108 | size = size & PAGE_MASK; |
| 1109 | |
| 1110 | if (start + size <= start) |
| 1111 | return ret; |
| 1112 | |
| 1113 | /* Does pgoff wrap? */ |
| 1114 | if (pgoff + (size >> PAGE_SHIFT) < pgoff) |
| 1115 | return ret; |
| 1116 | |
| 1117 | if (mmap_read_lock_killable(mm)) |
| 1118 | return -EINTR; |
| 1119 | |
| 1120 | /* |
| 1121 | * Look up VMA under read lock first so we can perform the security |
| 1122 | * without holding locks (which can be problematic). We reacquire a |
| 1123 | * write lock later and check nothing changed underneath us. |
| 1124 | */ |
| 1125 | vma = vma_lookup(mm, start); |
| 1126 | |
| 1127 | if (!vma || !(vma->vm_flags & VM_SHARED)) { |
| 1128 | mmap_read_unlock(mm); |
| 1129 | return -EINVAL; |
| 1130 | } |
| 1131 | |
| 1132 | prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; |
| 1133 | prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; |
| 1134 | prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; |
| 1135 | |
| 1136 | flags &= MAP_NONBLOCK; |
| 1137 | flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; |
| 1138 | if (vma->vm_flags & VM_LOCKED) |
| 1139 | flags |= MAP_LOCKED; |
| 1140 | |
| 1141 | /* Save vm_flags used to calculate prot and flags, and recheck later. */ |
| 1142 | vm_flags = vma->vm_flags; |
| 1143 | file = get_file(vma->vm_file); |
| 1144 | |
| 1145 | mmap_read_unlock(mm); |
| 1146 | |
| 1147 | /* Call outside mmap_lock to be consistent with other callers. */ |
| 1148 | ret = security_mmap_file(file, prot, flags); |
| 1149 | if (ret) { |
| 1150 | fput(file); |
| 1151 | return ret; |
| 1152 | } |
| 1153 | |
| 1154 | ret = -EINVAL; |
| 1155 | |
| 1156 | /* OK security check passed, take write lock + let it rip. */ |
| 1157 | if (mmap_write_lock_killable(mm)) { |
| 1158 | fput(file); |
| 1159 | return -EINTR; |
| 1160 | } |
| 1161 | |
| 1162 | vma = vma_lookup(mm, start); |
| 1163 | |
| 1164 | if (!vma) |
| 1165 | goto out; |
| 1166 | |
| 1167 | /* Make sure things didn't change under us. */ |
| 1168 | if (vma->vm_flags != vm_flags) |
| 1169 | goto out; |
| 1170 | if (vma->vm_file != file) |
| 1171 | goto out; |
| 1172 | |
| 1173 | if (start + size > vma->vm_end) { |
| 1174 | VMA_ITERATOR(vmi, mm, vma->vm_end); |
| 1175 | struct vm_area_struct *next, *prev = vma; |
| 1176 | |
| 1177 | for_each_vma_range(vmi, next, start + size) { |
| 1178 | /* hole between vmas ? */ |
| 1179 | if (next->vm_start != prev->vm_end) |
| 1180 | goto out; |
| 1181 | |
| 1182 | if (next->vm_file != vma->vm_file) |
| 1183 | goto out; |
| 1184 | |
| 1185 | if (next->vm_flags != vma->vm_flags) |
| 1186 | goto out; |
| 1187 | |
| 1188 | if (start + size <= next->vm_end) |
| 1189 | break; |
| 1190 | |
| 1191 | prev = next; |
| 1192 | } |
| 1193 | |
| 1194 | if (!next) |
| 1195 | goto out; |
| 1196 | } |
| 1197 | |
| 1198 | ret = do_mmap(vma->vm_file, start, size, |
| 1199 | prot, flags, 0, pgoff, &populate, NULL); |
| 1200 | out: |
| 1201 | mmap_write_unlock(mm); |
| 1202 | fput(file); |
| 1203 | if (populate) |
| 1204 | mm_populate(ret, populate); |
| 1205 | if (!IS_ERR_VALUE(ret)) |
| 1206 | ret = 0; |
| 1207 | return ret; |
| 1208 | } |
| 1209 | |
| 1210 | int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags) |
| 1211 | { |
| 1212 | struct mm_struct *mm = current->mm; |
| 1213 | struct vm_area_struct *vma = NULL; |
| 1214 | unsigned long len; |
| 1215 | int ret; |
| 1216 | bool populate; |
| 1217 | LIST_HEAD(uf); |
| 1218 | VMA_ITERATOR(vmi, mm, addr); |
| 1219 | |
| 1220 | len = PAGE_ALIGN(request); |
| 1221 | if (len < request) |
| 1222 | return -ENOMEM; |
| 1223 | if (!len) |
| 1224 | return 0; |
| 1225 | |
| 1226 | /* Until we need other flags, refuse anything except VM_EXEC. */ |
| 1227 | if ((flags & (~VM_EXEC)) != 0) |
| 1228 | return -EINVAL; |
| 1229 | |
| 1230 | if (mmap_write_lock_killable(mm)) |
| 1231 | return -EINTR; |
| 1232 | |
| 1233 | ret = check_brk_limits(addr, len); |
| 1234 | if (ret) |
| 1235 | goto limits_failed; |
| 1236 | |
| 1237 | ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0); |
| 1238 | if (ret) |
| 1239 | goto munmap_failed; |
| 1240 | |
| 1241 | vma = vma_prev(&vmi); |
| 1242 | ret = do_brk_flags(&vmi, vma, addr, len, flags); |
| 1243 | populate = ((mm->def_flags & VM_LOCKED) != 0); |
| 1244 | mmap_write_unlock(mm); |
| 1245 | userfaultfd_unmap_complete(mm, &uf); |
| 1246 | if (populate && !ret) |
| 1247 | mm_populate(addr, len); |
| 1248 | return ret; |
| 1249 | |
| 1250 | munmap_failed: |
| 1251 | limits_failed: |
| 1252 | mmap_write_unlock(mm); |
| 1253 | return ret; |
| 1254 | } |
| 1255 | EXPORT_SYMBOL(vm_brk_flags); |
| 1256 | |
| 1257 | /* Release all mmaps. */ |
| 1258 | void exit_mmap(struct mm_struct *mm) |
| 1259 | { |
| 1260 | struct mmu_gather tlb; |
| 1261 | struct vm_area_struct *vma; |
| 1262 | unsigned long nr_accounted = 0; |
| 1263 | VMA_ITERATOR(vmi, mm, 0); |
| 1264 | int count = 0; |
| 1265 | |
| 1266 | /* mm's last user has gone, and its about to be pulled down */ |
| 1267 | mmu_notifier_release(mm); |
| 1268 | |
| 1269 | mmap_read_lock(mm); |
| 1270 | arch_exit_mmap(mm); |
| 1271 | |
| 1272 | vma = vma_next(&vmi); |
| 1273 | if (!vma || unlikely(xa_is_zero(vma))) { |
| 1274 | /* Can happen if dup_mmap() received an OOM */ |
| 1275 | mmap_read_unlock(mm); |
| 1276 | mmap_write_lock(mm); |
| 1277 | goto destroy; |
| 1278 | } |
| 1279 | |
| 1280 | flush_cache_mm(mm); |
| 1281 | tlb_gather_mmu_fullmm(&tlb, mm); |
| 1282 | /* update_hiwater_rss(mm) here? but nobody should be looking */ |
| 1283 | /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */ |
| 1284 | unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false); |
| 1285 | mmap_read_unlock(mm); |
| 1286 | |
| 1287 | /* |
| 1288 | * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper |
| 1289 | * because the memory has been already freed. |
| 1290 | */ |
| 1291 | set_bit(MMF_OOM_SKIP, &mm->flags); |
| 1292 | mmap_write_lock(mm); |
| 1293 | mt_clear_in_rcu(&mm->mm_mt); |
| 1294 | vma_iter_set(&vmi, vma->vm_end); |
| 1295 | free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS, |
| 1296 | USER_PGTABLES_CEILING, true); |
| 1297 | tlb_finish_mmu(&tlb); |
| 1298 | |
| 1299 | /* |
| 1300 | * Walk the list again, actually closing and freeing it, with preemption |
| 1301 | * enabled, without holding any MM locks besides the unreachable |
| 1302 | * mmap_write_lock. |
| 1303 | */ |
| 1304 | vma_iter_set(&vmi, vma->vm_end); |
| 1305 | do { |
| 1306 | if (vma->vm_flags & VM_ACCOUNT) |
| 1307 | nr_accounted += vma_pages(vma); |
| 1308 | vma_mark_detached(vma); |
| 1309 | remove_vma(vma); |
| 1310 | count++; |
| 1311 | cond_resched(); |
| 1312 | vma = vma_next(&vmi); |
| 1313 | } while (vma && likely(!xa_is_zero(vma))); |
| 1314 | |
| 1315 | BUG_ON(count != mm->map_count); |
| 1316 | |
| 1317 | trace_exit_mmap(mm); |
| 1318 | destroy: |
| 1319 | __mt_destroy(&mm->mm_mt); |
| 1320 | mmap_write_unlock(mm); |
| 1321 | vm_unacct_memory(nr_accounted); |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * Return true if the calling process may expand its vm space by the passed |
| 1326 | * number of pages |
| 1327 | */ |
| 1328 | bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) |
| 1329 | { |
| 1330 | if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) |
| 1331 | return false; |
| 1332 | |
| 1333 | if (is_data_mapping(flags) && |
| 1334 | mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { |
| 1335 | /* Workaround for Valgrind */ |
| 1336 | if (rlimit(RLIMIT_DATA) == 0 && |
| 1337 | mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT) |
| 1338 | return true; |
| 1339 | |
| 1340 | pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n", |
| 1341 | current->comm, current->pid, |
| 1342 | (mm->data_vm + npages) << PAGE_SHIFT, |
| 1343 | rlimit(RLIMIT_DATA), |
| 1344 | ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data"); |
| 1345 | |
| 1346 | if (!ignore_rlimit_data) |
| 1347 | return false; |
| 1348 | } |
| 1349 | |
| 1350 | return true; |
| 1351 | } |
| 1352 | |
| 1353 | void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) |
| 1354 | { |
| 1355 | WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages); |
| 1356 | |
| 1357 | if (is_exec_mapping(flags)) |
| 1358 | mm->exec_vm += npages; |
| 1359 | else if (is_stack_mapping(flags)) |
| 1360 | mm->stack_vm += npages; |
| 1361 | else if (is_data_mapping(flags)) |
| 1362 | mm->data_vm += npages; |
| 1363 | } |
| 1364 | |
| 1365 | static vm_fault_t special_mapping_fault(struct vm_fault *vmf); |
| 1366 | |
| 1367 | /* |
| 1368 | * Close hook, called for unmap() and on the old vma for mremap(). |
| 1369 | * |
| 1370 | * Having a close hook prevents vma merging regardless of flags. |
| 1371 | */ |
| 1372 | static void special_mapping_close(struct vm_area_struct *vma) |
| 1373 | { |
| 1374 | const struct vm_special_mapping *sm = vma->vm_private_data; |
| 1375 | |
| 1376 | if (sm->close) |
| 1377 | sm->close(sm, vma); |
| 1378 | } |
| 1379 | |
| 1380 | static const char *special_mapping_name(struct vm_area_struct *vma) |
| 1381 | { |
| 1382 | return ((struct vm_special_mapping *)vma->vm_private_data)->name; |
| 1383 | } |
| 1384 | |
| 1385 | static int special_mapping_mremap(struct vm_area_struct *new_vma) |
| 1386 | { |
| 1387 | struct vm_special_mapping *sm = new_vma->vm_private_data; |
| 1388 | |
| 1389 | if (WARN_ON_ONCE(current->mm != new_vma->vm_mm)) |
| 1390 | return -EFAULT; |
| 1391 | |
| 1392 | if (sm->mremap) |
| 1393 | return sm->mremap(sm, new_vma); |
| 1394 | |
| 1395 | return 0; |
| 1396 | } |
| 1397 | |
| 1398 | static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr) |
| 1399 | { |
| 1400 | /* |
| 1401 | * Forbid splitting special mappings - kernel has expectations over |
| 1402 | * the number of pages in mapping. Together with VM_DONTEXPAND |
| 1403 | * the size of vma should stay the same over the special mapping's |
| 1404 | * lifetime. |
| 1405 | */ |
| 1406 | return -EINVAL; |
| 1407 | } |
| 1408 | |
| 1409 | static const struct vm_operations_struct special_mapping_vmops = { |
| 1410 | .close = special_mapping_close, |
| 1411 | .fault = special_mapping_fault, |
| 1412 | .mremap = special_mapping_mremap, |
| 1413 | .name = special_mapping_name, |
| 1414 | /* vDSO code relies that VVAR can't be accessed remotely */ |
| 1415 | .access = NULL, |
| 1416 | .may_split = special_mapping_split, |
| 1417 | }; |
| 1418 | |
| 1419 | static vm_fault_t special_mapping_fault(struct vm_fault *vmf) |
| 1420 | { |
| 1421 | struct vm_area_struct *vma = vmf->vma; |
| 1422 | pgoff_t pgoff; |
| 1423 | struct page **pages; |
| 1424 | struct vm_special_mapping *sm = vma->vm_private_data; |
| 1425 | |
| 1426 | if (sm->fault) |
| 1427 | return sm->fault(sm, vmf->vma, vmf); |
| 1428 | |
| 1429 | pages = sm->pages; |
| 1430 | |
| 1431 | for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) |
| 1432 | pgoff--; |
| 1433 | |
| 1434 | if (*pages) { |
| 1435 | struct page *page = *pages; |
| 1436 | get_page(page); |
| 1437 | vmf->page = page; |
| 1438 | return 0; |
| 1439 | } |
| 1440 | |
| 1441 | return VM_FAULT_SIGBUS; |
| 1442 | } |
| 1443 | |
| 1444 | static struct vm_area_struct *__install_special_mapping( |
| 1445 | struct mm_struct *mm, |
| 1446 | unsigned long addr, unsigned long len, |
| 1447 | unsigned long vm_flags, void *priv, |
| 1448 | const struct vm_operations_struct *ops) |
| 1449 | { |
| 1450 | int ret; |
| 1451 | struct vm_area_struct *vma; |
| 1452 | |
| 1453 | vma = vm_area_alloc(mm); |
| 1454 | if (unlikely(vma == NULL)) |
| 1455 | return ERR_PTR(-ENOMEM); |
| 1456 | |
| 1457 | vma_set_range(vma, addr, addr + len, 0); |
| 1458 | vm_flags_init(vma, (vm_flags | mm->def_flags | |
| 1459 | VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK); |
| 1460 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
| 1461 | |
| 1462 | vma->vm_ops = ops; |
| 1463 | vma->vm_private_data = priv; |
| 1464 | |
| 1465 | ret = insert_vm_struct(mm, vma); |
| 1466 | if (ret) |
| 1467 | goto out; |
| 1468 | |
| 1469 | vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); |
| 1470 | |
| 1471 | perf_event_mmap(vma); |
| 1472 | |
| 1473 | return vma; |
| 1474 | |
| 1475 | out: |
| 1476 | vm_area_free(vma); |
| 1477 | return ERR_PTR(ret); |
| 1478 | } |
| 1479 | |
| 1480 | bool vma_is_special_mapping(const struct vm_area_struct *vma, |
| 1481 | const struct vm_special_mapping *sm) |
| 1482 | { |
| 1483 | return vma->vm_private_data == sm && |
| 1484 | vma->vm_ops == &special_mapping_vmops; |
| 1485 | } |
| 1486 | |
| 1487 | /* |
| 1488 | * Called with mm->mmap_lock held for writing. |
| 1489 | * Insert a new vma covering the given region, with the given flags. |
| 1490 | * Its pages are supplied by the given array of struct page *. |
| 1491 | * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. |
| 1492 | * The region past the last page supplied will always produce SIGBUS. |
| 1493 | * The array pointer and the pages it points to are assumed to stay alive |
| 1494 | * for as long as this mapping might exist. |
| 1495 | */ |
| 1496 | struct vm_area_struct *_install_special_mapping( |
| 1497 | struct mm_struct *mm, |
| 1498 | unsigned long addr, unsigned long len, |
| 1499 | unsigned long vm_flags, const struct vm_special_mapping *spec) |
| 1500 | { |
| 1501 | return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, |
| 1502 | &special_mapping_vmops); |
| 1503 | } |
| 1504 | |
| 1505 | #ifdef CONFIG_SYSCTL |
| 1506 | #if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \ |
| 1507 | defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT) |
| 1508 | int sysctl_legacy_va_layout; |
| 1509 | #endif |
| 1510 | |
| 1511 | static const struct ctl_table mmap_table[] = { |
| 1512 | { |
| 1513 | .procname = "max_map_count", |
| 1514 | .data = &sysctl_max_map_count, |
| 1515 | .maxlen = sizeof(sysctl_max_map_count), |
| 1516 | .mode = 0644, |
| 1517 | .proc_handler = proc_dointvec_minmax, |
| 1518 | .extra1 = SYSCTL_ZERO, |
| 1519 | }, |
| 1520 | #if defined(HAVE_ARCH_PICK_MMAP_LAYOUT) || \ |
| 1521 | defined(CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT) |
| 1522 | { |
| 1523 | .procname = "legacy_va_layout", |
| 1524 | .data = &sysctl_legacy_va_layout, |
| 1525 | .maxlen = sizeof(sysctl_legacy_va_layout), |
| 1526 | .mode = 0644, |
| 1527 | .proc_handler = proc_dointvec_minmax, |
| 1528 | .extra1 = SYSCTL_ZERO, |
| 1529 | }, |
| 1530 | #endif |
| 1531 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS |
| 1532 | { |
| 1533 | .procname = "mmap_rnd_bits", |
| 1534 | .data = &mmap_rnd_bits, |
| 1535 | .maxlen = sizeof(mmap_rnd_bits), |
| 1536 | .mode = 0600, |
| 1537 | .proc_handler = proc_dointvec_minmax, |
| 1538 | .extra1 = (void *)&mmap_rnd_bits_min, |
| 1539 | .extra2 = (void *)&mmap_rnd_bits_max, |
| 1540 | }, |
| 1541 | #endif |
| 1542 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS |
| 1543 | { |
| 1544 | .procname = "mmap_rnd_compat_bits", |
| 1545 | .data = &mmap_rnd_compat_bits, |
| 1546 | .maxlen = sizeof(mmap_rnd_compat_bits), |
| 1547 | .mode = 0600, |
| 1548 | .proc_handler = proc_dointvec_minmax, |
| 1549 | .extra1 = (void *)&mmap_rnd_compat_bits_min, |
| 1550 | .extra2 = (void *)&mmap_rnd_compat_bits_max, |
| 1551 | }, |
| 1552 | #endif |
| 1553 | }; |
| 1554 | #endif /* CONFIG_SYSCTL */ |
| 1555 | |
| 1556 | /* |
| 1557 | * initialise the percpu counter for VM, initialise VMA state. |
| 1558 | */ |
| 1559 | void __init mmap_init(void) |
| 1560 | { |
| 1561 | int ret; |
| 1562 | |
| 1563 | ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); |
| 1564 | VM_BUG_ON(ret); |
| 1565 | #ifdef CONFIG_SYSCTL |
| 1566 | register_sysctl_init("vm", mmap_table); |
| 1567 | #endif |
| 1568 | vma_state_init(); |
| 1569 | } |
| 1570 | |
| 1571 | /* |
| 1572 | * Initialise sysctl_user_reserve_kbytes. |
| 1573 | * |
| 1574 | * This is intended to prevent a user from starting a single memory hogging |
| 1575 | * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER |
| 1576 | * mode. |
| 1577 | * |
| 1578 | * The default value is min(3% of free memory, 128MB) |
| 1579 | * 128MB is enough to recover with sshd/login, bash, and top/kill. |
| 1580 | */ |
| 1581 | static int init_user_reserve(void) |
| 1582 | { |
| 1583 | unsigned long free_kbytes; |
| 1584 | |
| 1585 | free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); |
| 1586 | |
| 1587 | sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K); |
| 1588 | return 0; |
| 1589 | } |
| 1590 | subsys_initcall(init_user_reserve); |
| 1591 | |
| 1592 | /* |
| 1593 | * Initialise sysctl_admin_reserve_kbytes. |
| 1594 | * |
| 1595 | * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin |
| 1596 | * to log in and kill a memory hogging process. |
| 1597 | * |
| 1598 | * Systems with more than 256MB will reserve 8MB, enough to recover |
| 1599 | * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will |
| 1600 | * only reserve 3% of free pages by default. |
| 1601 | */ |
| 1602 | static int init_admin_reserve(void) |
| 1603 | { |
| 1604 | unsigned long free_kbytes; |
| 1605 | |
| 1606 | free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); |
| 1607 | |
| 1608 | sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K); |
| 1609 | return 0; |
| 1610 | } |
| 1611 | subsys_initcall(init_admin_reserve); |
| 1612 | |
| 1613 | /* |
| 1614 | * Reinititalise user and admin reserves if memory is added or removed. |
| 1615 | * |
| 1616 | * The default user reserve max is 128MB, and the default max for the |
| 1617 | * admin reserve is 8MB. These are usually, but not always, enough to |
| 1618 | * enable recovery from a memory hogging process using login/sshd, a shell, |
| 1619 | * and tools like top. It may make sense to increase or even disable the |
| 1620 | * reserve depending on the existence of swap or variations in the recovery |
| 1621 | * tools. So, the admin may have changed them. |
| 1622 | * |
| 1623 | * If memory is added and the reserves have been eliminated or increased above |
| 1624 | * the default max, then we'll trust the admin. |
| 1625 | * |
| 1626 | * If memory is removed and there isn't enough free memory, then we |
| 1627 | * need to reset the reserves. |
| 1628 | * |
| 1629 | * Otherwise keep the reserve set by the admin. |
| 1630 | */ |
| 1631 | static int reserve_mem_notifier(struct notifier_block *nb, |
| 1632 | unsigned long action, void *data) |
| 1633 | { |
| 1634 | unsigned long tmp, free_kbytes; |
| 1635 | |
| 1636 | switch (action) { |
| 1637 | case MEM_ONLINE: |
| 1638 | /* Default max is 128MB. Leave alone if modified by operator. */ |
| 1639 | tmp = sysctl_user_reserve_kbytes; |
| 1640 | if (tmp > 0 && tmp < SZ_128K) |
| 1641 | init_user_reserve(); |
| 1642 | |
| 1643 | /* Default max is 8MB. Leave alone if modified by operator. */ |
| 1644 | tmp = sysctl_admin_reserve_kbytes; |
| 1645 | if (tmp > 0 && tmp < SZ_8K) |
| 1646 | init_admin_reserve(); |
| 1647 | |
| 1648 | break; |
| 1649 | case MEM_OFFLINE: |
| 1650 | free_kbytes = K(global_zone_page_state(NR_FREE_PAGES)); |
| 1651 | |
| 1652 | if (sysctl_user_reserve_kbytes > free_kbytes) { |
| 1653 | init_user_reserve(); |
| 1654 | pr_info("vm.user_reserve_kbytes reset to %lu\n", |
| 1655 | sysctl_user_reserve_kbytes); |
| 1656 | } |
| 1657 | |
| 1658 | if (sysctl_admin_reserve_kbytes > free_kbytes) { |
| 1659 | init_admin_reserve(); |
| 1660 | pr_info("vm.admin_reserve_kbytes reset to %lu\n", |
| 1661 | sysctl_admin_reserve_kbytes); |
| 1662 | } |
| 1663 | break; |
| 1664 | default: |
| 1665 | break; |
| 1666 | } |
| 1667 | return NOTIFY_OK; |
| 1668 | } |
| 1669 | |
| 1670 | static int __meminit init_reserve_notifier(void) |
| 1671 | { |
| 1672 | if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI)) |
| 1673 | pr_err("Failed registering memory add/remove notifier for admin reserve\n"); |
| 1674 | |
| 1675 | return 0; |
| 1676 | } |
| 1677 | subsys_initcall(init_reserve_notifier); |
| 1678 | |
| 1679 | /* |
| 1680 | * Obtain a read lock on mm->mmap_lock, if the specified address is below the |
| 1681 | * start of the VMA, the intent is to perform a write, and it is a |
| 1682 | * downward-growing stack, then attempt to expand the stack to contain it. |
| 1683 | * |
| 1684 | * This function is intended only for obtaining an argument page from an ELF |
| 1685 | * image, and is almost certainly NOT what you want to use for any other |
| 1686 | * purpose. |
| 1687 | * |
| 1688 | * IMPORTANT - VMA fields are accessed without an mmap lock being held, so the |
| 1689 | * VMA referenced must not be linked in any user-visible tree, i.e. it must be a |
| 1690 | * new VMA being mapped. |
| 1691 | * |
| 1692 | * The function assumes that addr is either contained within the VMA or below |
| 1693 | * it, and makes no attempt to validate this value beyond that. |
| 1694 | * |
| 1695 | * Returns true if the read lock was obtained and a stack was perhaps expanded, |
| 1696 | * false if the stack expansion failed. |
| 1697 | * |
| 1698 | * On stack expansion the function temporarily acquires an mmap write lock |
| 1699 | * before downgrading it. |
| 1700 | */ |
| 1701 | bool mmap_read_lock_maybe_expand(struct mm_struct *mm, |
| 1702 | struct vm_area_struct *new_vma, |
| 1703 | unsigned long addr, bool write) |
| 1704 | { |
| 1705 | if (!write || addr >= new_vma->vm_start) { |
| 1706 | mmap_read_lock(mm); |
| 1707 | return true; |
| 1708 | } |
| 1709 | |
| 1710 | if (!(new_vma->vm_flags & VM_GROWSDOWN)) |
| 1711 | return false; |
| 1712 | |
| 1713 | mmap_write_lock(mm); |
| 1714 | if (expand_downwards(new_vma, addr)) { |
| 1715 | mmap_write_unlock(mm); |
| 1716 | return false; |
| 1717 | } |
| 1718 | |
| 1719 | mmap_write_downgrade(mm); |
| 1720 | return true; |
| 1721 | } |
| 1722 | |
| 1723 | __latent_entropy int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) |
| 1724 | { |
| 1725 | struct vm_area_struct *mpnt, *tmp; |
| 1726 | int retval; |
| 1727 | unsigned long charge = 0; |
| 1728 | LIST_HEAD(uf); |
| 1729 | VMA_ITERATOR(vmi, mm, 0); |
| 1730 | |
| 1731 | if (mmap_write_lock_killable(oldmm)) |
| 1732 | return -EINTR; |
| 1733 | flush_cache_dup_mm(oldmm); |
| 1734 | uprobe_dup_mmap(oldmm, mm); |
| 1735 | /* |
| 1736 | * Not linked in yet - no deadlock potential: |
| 1737 | */ |
| 1738 | mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); |
| 1739 | |
| 1740 | /* No ordering required: file already has been exposed. */ |
| 1741 | dup_mm_exe_file(mm, oldmm); |
| 1742 | |
| 1743 | mm->total_vm = oldmm->total_vm; |
| 1744 | mm->data_vm = oldmm->data_vm; |
| 1745 | mm->exec_vm = oldmm->exec_vm; |
| 1746 | mm->stack_vm = oldmm->stack_vm; |
| 1747 | |
| 1748 | /* Use __mt_dup() to efficiently build an identical maple tree. */ |
| 1749 | retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); |
| 1750 | if (unlikely(retval)) |
| 1751 | goto out; |
| 1752 | |
| 1753 | mt_clear_in_rcu(vmi.mas.tree); |
| 1754 | for_each_vma(vmi, mpnt) { |
| 1755 | struct file *file; |
| 1756 | |
| 1757 | vma_start_write(mpnt); |
| 1758 | if (mpnt->vm_flags & VM_DONTCOPY) { |
| 1759 | retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, |
| 1760 | mpnt->vm_end, GFP_KERNEL); |
| 1761 | if (retval) |
| 1762 | goto loop_out; |
| 1763 | |
| 1764 | vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); |
| 1765 | continue; |
| 1766 | } |
| 1767 | charge = 0; |
| 1768 | /* |
| 1769 | * Don't duplicate many vmas if we've been oom-killed (for |
| 1770 | * example) |
| 1771 | */ |
| 1772 | if (fatal_signal_pending(current)) { |
| 1773 | retval = -EINTR; |
| 1774 | goto loop_out; |
| 1775 | } |
| 1776 | if (mpnt->vm_flags & VM_ACCOUNT) { |
| 1777 | unsigned long len = vma_pages(mpnt); |
| 1778 | |
| 1779 | if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ |
| 1780 | goto fail_nomem; |
| 1781 | charge = len; |
| 1782 | } |
| 1783 | |
| 1784 | tmp = vm_area_dup(mpnt); |
| 1785 | if (!tmp) |
| 1786 | goto fail_nomem; |
| 1787 | retval = vma_dup_policy(mpnt, tmp); |
| 1788 | if (retval) |
| 1789 | goto fail_nomem_policy; |
| 1790 | tmp->vm_mm = mm; |
| 1791 | retval = dup_userfaultfd(tmp, &uf); |
| 1792 | if (retval) |
| 1793 | goto fail_nomem_anon_vma_fork; |
| 1794 | if (tmp->vm_flags & VM_WIPEONFORK) { |
| 1795 | /* |
| 1796 | * VM_WIPEONFORK gets a clean slate in the child. |
| 1797 | * Don't prepare anon_vma until fault since we don't |
| 1798 | * copy page for current vma. |
| 1799 | */ |
| 1800 | tmp->anon_vma = NULL; |
| 1801 | } else if (anon_vma_fork(tmp, mpnt)) |
| 1802 | goto fail_nomem_anon_vma_fork; |
| 1803 | vm_flags_clear(tmp, VM_LOCKED_MASK); |
| 1804 | /* |
| 1805 | * Copy/update hugetlb private vma information. |
| 1806 | */ |
| 1807 | if (is_vm_hugetlb_page(tmp)) |
| 1808 | hugetlb_dup_vma_private(tmp); |
| 1809 | |
| 1810 | /* |
| 1811 | * Link the vma into the MT. After using __mt_dup(), memory |
| 1812 | * allocation is not necessary here, so it cannot fail. |
| 1813 | */ |
| 1814 | vma_iter_bulk_store(&vmi, tmp); |
| 1815 | |
| 1816 | mm->map_count++; |
| 1817 | |
| 1818 | if (tmp->vm_ops && tmp->vm_ops->open) |
| 1819 | tmp->vm_ops->open(tmp); |
| 1820 | |
| 1821 | file = tmp->vm_file; |
| 1822 | if (file) { |
| 1823 | struct address_space *mapping = file->f_mapping; |
| 1824 | |
| 1825 | get_file(file); |
| 1826 | i_mmap_lock_write(mapping); |
| 1827 | if (vma_is_shared_maywrite(tmp)) |
| 1828 | mapping_allow_writable(mapping); |
| 1829 | flush_dcache_mmap_lock(mapping); |
| 1830 | /* insert tmp into the share list, just after mpnt */ |
| 1831 | vma_interval_tree_insert_after(tmp, mpnt, |
| 1832 | &mapping->i_mmap); |
| 1833 | flush_dcache_mmap_unlock(mapping); |
| 1834 | i_mmap_unlock_write(mapping); |
| 1835 | } |
| 1836 | |
| 1837 | if (!(tmp->vm_flags & VM_WIPEONFORK)) |
| 1838 | retval = copy_page_range(tmp, mpnt); |
| 1839 | |
| 1840 | if (retval) { |
| 1841 | mpnt = vma_next(&vmi); |
| 1842 | goto loop_out; |
| 1843 | } |
| 1844 | } |
| 1845 | /* a new mm has just been created */ |
| 1846 | retval = arch_dup_mmap(oldmm, mm); |
| 1847 | loop_out: |
| 1848 | vma_iter_free(&vmi); |
| 1849 | if (!retval) { |
| 1850 | mt_set_in_rcu(vmi.mas.tree); |
| 1851 | ksm_fork(mm, oldmm); |
| 1852 | khugepaged_fork(mm, oldmm); |
| 1853 | } else { |
| 1854 | |
| 1855 | /* |
| 1856 | * The entire maple tree has already been duplicated. If the |
| 1857 | * mmap duplication fails, mark the failure point with |
| 1858 | * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, |
| 1859 | * stop releasing VMAs that have not been duplicated after this |
| 1860 | * point. |
| 1861 | */ |
| 1862 | if (mpnt) { |
| 1863 | mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); |
| 1864 | mas_store(&vmi.mas, XA_ZERO_ENTRY); |
| 1865 | /* Avoid OOM iterating a broken tree */ |
| 1866 | set_bit(MMF_OOM_SKIP, &mm->flags); |
| 1867 | } |
| 1868 | /* |
| 1869 | * The mm_struct is going to exit, but the locks will be dropped |
| 1870 | * first. Set the mm_struct as unstable is advisable as it is |
| 1871 | * not fully initialised. |
| 1872 | */ |
| 1873 | set_bit(MMF_UNSTABLE, &mm->flags); |
| 1874 | } |
| 1875 | out: |
| 1876 | mmap_write_unlock(mm); |
| 1877 | flush_tlb_mm(oldmm); |
| 1878 | mmap_write_unlock(oldmm); |
| 1879 | if (!retval) |
| 1880 | dup_userfaultfd_complete(&uf); |
| 1881 | else |
| 1882 | dup_userfaultfd_fail(&uf); |
| 1883 | return retval; |
| 1884 | |
| 1885 | fail_nomem_anon_vma_fork: |
| 1886 | mpol_put(vma_policy(tmp)); |
| 1887 | fail_nomem_policy: |
| 1888 | vm_area_free(tmp); |
| 1889 | fail_nomem: |
| 1890 | retval = -ENOMEM; |
| 1891 | vm_unacct_memory(charge); |
| 1892 | goto loop_out; |
| 1893 | } |