Merge tag 'soc-ep93xx-dt-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-block.git] / mm / mm_init.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm_init.c - Memory initialisation verification and debugging
4 *
5 * Copyright 2008 IBM Corporation, 2008
6 * Author Mel Gorman <mel@csn.ul.ie>
7 *
8 */
9#include <linux/kernel.h>
10#include <linux/init.h>
11#include <linux/kobject.h>
12#include <linux/export.h>
13#include <linux/memory.h>
14#include <linux/notifier.h>
15#include <linux/sched.h>
16#include <linux/mman.h>
17#include <linux/memblock.h>
18#include <linux/page-isolation.h>
19#include <linux/padata.h>
20#include <linux/nmi.h>
21#include <linux/buffer_head.h>
22#include <linux/kmemleak.h>
23#include <linux/kfence.h>
24#include <linux/page_ext.h>
25#include <linux/pti.h>
26#include <linux/pgtable.h>
27#include <linux/stackdepot.h>
28#include <linux/swap.h>
29#include <linux/cma.h>
30#include <linux/crash_dump.h>
31#include <linux/execmem.h>
32#include <linux/vmstat.h>
33#include "internal.h"
34#include "slab.h"
35#include "shuffle.h"
36
37#include <asm/setup.h>
38
39#ifdef CONFIG_DEBUG_MEMORY_INIT
40int __meminitdata mminit_loglevel;
41
42/* The zonelists are simply reported, validation is manual. */
43void __init mminit_verify_zonelist(void)
44{
45 int nid;
46
47 if (mminit_loglevel < MMINIT_VERIFY)
48 return;
49
50 for_each_online_node(nid) {
51 pg_data_t *pgdat = NODE_DATA(nid);
52 struct zone *zone;
53 struct zoneref *z;
54 struct zonelist *zonelist;
55 int i, listid, zoneid;
56
57 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
58
59 /* Identify the zone and nodelist */
60 zoneid = i % MAX_NR_ZONES;
61 listid = i / MAX_NR_ZONES;
62 zonelist = &pgdat->node_zonelists[listid];
63 zone = &pgdat->node_zones[zoneid];
64 if (!populated_zone(zone))
65 continue;
66
67 /* Print information about the zonelist */
68 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
69 listid > 0 ? "thisnode" : "general", nid,
70 zone->name);
71
72 /* Iterate the zonelist */
73 for_each_zone_zonelist(zone, z, zonelist, zoneid)
74 pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
75 pr_cont("\n");
76 }
77 }
78}
79
80void __init mminit_verify_pageflags_layout(void)
81{
82 int shift, width;
83 unsigned long or_mask, add_mask;
84
85 shift = BITS_PER_LONG;
86 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
87 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
88 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
89 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
90 SECTIONS_WIDTH,
91 NODES_WIDTH,
92 ZONES_WIDTH,
93 LAST_CPUPID_WIDTH,
94 KASAN_TAG_WIDTH,
95 LRU_GEN_WIDTH,
96 LRU_REFS_WIDTH,
97 NR_PAGEFLAGS);
98 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
99 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
100 SECTIONS_SHIFT,
101 NODES_SHIFT,
102 ZONES_SHIFT,
103 LAST_CPUPID_SHIFT,
104 KASAN_TAG_WIDTH);
105 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
106 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
107 (unsigned long)SECTIONS_PGSHIFT,
108 (unsigned long)NODES_PGSHIFT,
109 (unsigned long)ZONES_PGSHIFT,
110 (unsigned long)LAST_CPUPID_PGSHIFT,
111 (unsigned long)KASAN_TAG_PGSHIFT);
112 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
113 "Node/Zone ID: %lu -> %lu\n",
114 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
115 (unsigned long)ZONEID_PGOFF);
116 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
117 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
118 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
119#ifdef NODE_NOT_IN_PAGE_FLAGS
120 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
121 "Node not in page flags");
122#endif
123#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
124 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
125 "Last cpupid not in page flags");
126#endif
127
128 if (SECTIONS_WIDTH) {
129 shift -= SECTIONS_WIDTH;
130 BUG_ON(shift != SECTIONS_PGSHIFT);
131 }
132 if (NODES_WIDTH) {
133 shift -= NODES_WIDTH;
134 BUG_ON(shift != NODES_PGSHIFT);
135 }
136 if (ZONES_WIDTH) {
137 shift -= ZONES_WIDTH;
138 BUG_ON(shift != ZONES_PGSHIFT);
139 }
140
141 /* Check for bitmask overlaps */
142 or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
143 (NODES_MASK << NODES_PGSHIFT) |
144 (SECTIONS_MASK << SECTIONS_PGSHIFT);
145 add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
146 (NODES_MASK << NODES_PGSHIFT) +
147 (SECTIONS_MASK << SECTIONS_PGSHIFT);
148 BUG_ON(or_mask != add_mask);
149}
150
151static __init int set_mminit_loglevel(char *str)
152{
153 get_option(&str, &mminit_loglevel);
154 return 0;
155}
156early_param("mminit_loglevel", set_mminit_loglevel);
157#endif /* CONFIG_DEBUG_MEMORY_INIT */
158
159struct kobject *mm_kobj;
160
161#ifdef CONFIG_SMP
162s32 vm_committed_as_batch = 32;
163
164void mm_compute_batch(int overcommit_policy)
165{
166 u64 memsized_batch;
167 s32 nr = num_present_cpus();
168 s32 batch = max_t(s32, nr*2, 32);
169 unsigned long ram_pages = totalram_pages();
170
171 /*
172 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
173 * (total memory/#cpus), and lift it to 25% for other policies
174 * to easy the possible lock contention for percpu_counter
175 * vm_committed_as, while the max limit is INT_MAX
176 */
177 if (overcommit_policy == OVERCOMMIT_NEVER)
178 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
179 else
180 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
181
182 vm_committed_as_batch = max_t(s32, memsized_batch, batch);
183}
184
185static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
186 unsigned long action, void *arg)
187{
188 switch (action) {
189 case MEM_ONLINE:
190 case MEM_OFFLINE:
191 mm_compute_batch(sysctl_overcommit_memory);
192 break;
193 default:
194 break;
195 }
196 return NOTIFY_OK;
197}
198
199static int __init mm_compute_batch_init(void)
200{
201 mm_compute_batch(sysctl_overcommit_memory);
202 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
203 return 0;
204}
205
206__initcall(mm_compute_batch_init);
207
208#endif
209
210static int __init mm_sysfs_init(void)
211{
212 mm_kobj = kobject_create_and_add("mm", kernel_kobj);
213 if (!mm_kobj)
214 return -ENOMEM;
215
216 return 0;
217}
218postcore_initcall(mm_sysfs_init);
219
220static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
221static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
222static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
223
224static unsigned long required_kernelcore __initdata;
225static unsigned long required_kernelcore_percent __initdata;
226static unsigned long required_movablecore __initdata;
227static unsigned long required_movablecore_percent __initdata;
228
229static unsigned long nr_kernel_pages __initdata;
230static unsigned long nr_all_pages __initdata;
231
232static bool deferred_struct_pages __meminitdata;
233
234static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
235
236static int __init cmdline_parse_core(char *p, unsigned long *core,
237 unsigned long *percent)
238{
239 unsigned long long coremem;
240 char *endptr;
241
242 if (!p)
243 return -EINVAL;
244
245 /* Value may be a percentage of total memory, otherwise bytes */
246 coremem = simple_strtoull(p, &endptr, 0);
247 if (*endptr == '%') {
248 /* Paranoid check for percent values greater than 100 */
249 WARN_ON(coremem > 100);
250
251 *percent = coremem;
252 } else {
253 coremem = memparse(p, &p);
254 /* Paranoid check that UL is enough for the coremem value */
255 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
256
257 *core = coremem >> PAGE_SHIFT;
258 *percent = 0UL;
259 }
260 return 0;
261}
262
263bool mirrored_kernelcore __initdata_memblock;
264
265/*
266 * kernelcore=size sets the amount of memory for use for allocations that
267 * cannot be reclaimed or migrated.
268 */
269static int __init cmdline_parse_kernelcore(char *p)
270{
271 /* parse kernelcore=mirror */
272 if (parse_option_str(p, "mirror")) {
273 mirrored_kernelcore = true;
274 return 0;
275 }
276
277 return cmdline_parse_core(p, &required_kernelcore,
278 &required_kernelcore_percent);
279}
280early_param("kernelcore", cmdline_parse_kernelcore);
281
282/*
283 * movablecore=size sets the amount of memory for use for allocations that
284 * can be reclaimed or migrated.
285 */
286static int __init cmdline_parse_movablecore(char *p)
287{
288 return cmdline_parse_core(p, &required_movablecore,
289 &required_movablecore_percent);
290}
291early_param("movablecore", cmdline_parse_movablecore);
292
293/*
294 * early_calculate_totalpages()
295 * Sum pages in active regions for movable zone.
296 * Populate N_MEMORY for calculating usable_nodes.
297 */
298static unsigned long __init early_calculate_totalpages(void)
299{
300 unsigned long totalpages = 0;
301 unsigned long start_pfn, end_pfn;
302 int i, nid;
303
304 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
305 unsigned long pages = end_pfn - start_pfn;
306
307 totalpages += pages;
308 if (pages)
309 node_set_state(nid, N_MEMORY);
310 }
311 return totalpages;
312}
313
314/*
315 * This finds a zone that can be used for ZONE_MOVABLE pages. The
316 * assumption is made that zones within a node are ordered in monotonic
317 * increasing memory addresses so that the "highest" populated zone is used
318 */
319static void __init find_usable_zone_for_movable(void)
320{
321 int zone_index;
322 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
323 if (zone_index == ZONE_MOVABLE)
324 continue;
325
326 if (arch_zone_highest_possible_pfn[zone_index] >
327 arch_zone_lowest_possible_pfn[zone_index])
328 break;
329 }
330
331 VM_BUG_ON(zone_index == -1);
332 movable_zone = zone_index;
333}
334
335/*
336 * Find the PFN the Movable zone begins in each node. Kernel memory
337 * is spread evenly between nodes as long as the nodes have enough
338 * memory. When they don't, some nodes will have more kernelcore than
339 * others
340 */
341static void __init find_zone_movable_pfns_for_nodes(void)
342{
343 int i, nid;
344 unsigned long usable_startpfn;
345 unsigned long kernelcore_node, kernelcore_remaining;
346 /* save the state before borrow the nodemask */
347 nodemask_t saved_node_state = node_states[N_MEMORY];
348 unsigned long totalpages = early_calculate_totalpages();
349 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
350 struct memblock_region *r;
351
352 /* Need to find movable_zone earlier when movable_node is specified. */
353 find_usable_zone_for_movable();
354
355 /*
356 * If movable_node is specified, ignore kernelcore and movablecore
357 * options.
358 */
359 if (movable_node_is_enabled()) {
360 for_each_mem_region(r) {
361 if (!memblock_is_hotpluggable(r))
362 continue;
363
364 nid = memblock_get_region_node(r);
365
366 usable_startpfn = memblock_region_memory_base_pfn(r);
367 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
368 min(usable_startpfn, zone_movable_pfn[nid]) :
369 usable_startpfn;
370 }
371
372 goto out2;
373 }
374
375 /*
376 * If kernelcore=mirror is specified, ignore movablecore option
377 */
378 if (mirrored_kernelcore) {
379 bool mem_below_4gb_not_mirrored = false;
380
381 if (!memblock_has_mirror()) {
382 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
383 goto out;
384 }
385
386 if (is_kdump_kernel()) {
387 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
388 goto out;
389 }
390
391 for_each_mem_region(r) {
392 if (memblock_is_mirror(r))
393 continue;
394
395 nid = memblock_get_region_node(r);
396
397 usable_startpfn = memblock_region_memory_base_pfn(r);
398
399 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
400 mem_below_4gb_not_mirrored = true;
401 continue;
402 }
403
404 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
405 min(usable_startpfn, zone_movable_pfn[nid]) :
406 usable_startpfn;
407 }
408
409 if (mem_below_4gb_not_mirrored)
410 pr_warn("This configuration results in unmirrored kernel memory.\n");
411
412 goto out2;
413 }
414
415 /*
416 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
417 * amount of necessary memory.
418 */
419 if (required_kernelcore_percent)
420 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
421 10000UL;
422 if (required_movablecore_percent)
423 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
424 10000UL;
425
426 /*
427 * If movablecore= was specified, calculate what size of
428 * kernelcore that corresponds so that memory usable for
429 * any allocation type is evenly spread. If both kernelcore
430 * and movablecore are specified, then the value of kernelcore
431 * will be used for required_kernelcore if it's greater than
432 * what movablecore would have allowed.
433 */
434 if (required_movablecore) {
435 unsigned long corepages;
436
437 /*
438 * Round-up so that ZONE_MOVABLE is at least as large as what
439 * was requested by the user
440 */
441 required_movablecore =
442 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
443 required_movablecore = min(totalpages, required_movablecore);
444 corepages = totalpages - required_movablecore;
445
446 required_kernelcore = max(required_kernelcore, corepages);
447 }
448
449 /*
450 * If kernelcore was not specified or kernelcore size is larger
451 * than totalpages, there is no ZONE_MOVABLE.
452 */
453 if (!required_kernelcore || required_kernelcore >= totalpages)
454 goto out;
455
456 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
458
459restart:
460 /* Spread kernelcore memory as evenly as possible throughout nodes */
461 kernelcore_node = required_kernelcore / usable_nodes;
462 for_each_node_state(nid, N_MEMORY) {
463 unsigned long start_pfn, end_pfn;
464
465 /*
466 * Recalculate kernelcore_node if the division per node
467 * now exceeds what is necessary to satisfy the requested
468 * amount of memory for the kernel
469 */
470 if (required_kernelcore < kernelcore_node)
471 kernelcore_node = required_kernelcore / usable_nodes;
472
473 /*
474 * As the map is walked, we track how much memory is usable
475 * by the kernel using kernelcore_remaining. When it is
476 * 0, the rest of the node is usable by ZONE_MOVABLE
477 */
478 kernelcore_remaining = kernelcore_node;
479
480 /* Go through each range of PFNs within this node */
481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
482 unsigned long size_pages;
483
484 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
485 if (start_pfn >= end_pfn)
486 continue;
487
488 /* Account for what is only usable for kernelcore */
489 if (start_pfn < usable_startpfn) {
490 unsigned long kernel_pages;
491 kernel_pages = min(end_pfn, usable_startpfn)
492 - start_pfn;
493
494 kernelcore_remaining -= min(kernel_pages,
495 kernelcore_remaining);
496 required_kernelcore -= min(kernel_pages,
497 required_kernelcore);
498
499 /* Continue if range is now fully accounted */
500 if (end_pfn <= usable_startpfn) {
501
502 /*
503 * Push zone_movable_pfn to the end so
504 * that if we have to rebalance
505 * kernelcore across nodes, we will
506 * not double account here
507 */
508 zone_movable_pfn[nid] = end_pfn;
509 continue;
510 }
511 start_pfn = usable_startpfn;
512 }
513
514 /*
515 * The usable PFN range for ZONE_MOVABLE is from
516 * start_pfn->end_pfn. Calculate size_pages as the
517 * number of pages used as kernelcore
518 */
519 size_pages = end_pfn - start_pfn;
520 if (size_pages > kernelcore_remaining)
521 size_pages = kernelcore_remaining;
522 zone_movable_pfn[nid] = start_pfn + size_pages;
523
524 /*
525 * Some kernelcore has been met, update counts and
526 * break if the kernelcore for this node has been
527 * satisfied
528 */
529 required_kernelcore -= min(required_kernelcore,
530 size_pages);
531 kernelcore_remaining -= size_pages;
532 if (!kernelcore_remaining)
533 break;
534 }
535 }
536
537 /*
538 * If there is still required_kernelcore, we do another pass with one
539 * less node in the count. This will push zone_movable_pfn[nid] further
540 * along on the nodes that still have memory until kernelcore is
541 * satisfied
542 */
543 usable_nodes--;
544 if (usable_nodes && required_kernelcore > usable_nodes)
545 goto restart;
546
547out2:
548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
549 for (nid = 0; nid < MAX_NUMNODES; nid++) {
550 unsigned long start_pfn, end_pfn;
551
552 zone_movable_pfn[nid] =
553 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
554
555 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
556 if (zone_movable_pfn[nid] >= end_pfn)
557 zone_movable_pfn[nid] = 0;
558 }
559
560out:
561 /* restore the node_state */
562 node_states[N_MEMORY] = saved_node_state;
563}
564
565void __meminit __init_single_page(struct page *page, unsigned long pfn,
566 unsigned long zone, int nid)
567{
568 mm_zero_struct_page(page);
569 set_page_links(page, zone, nid, pfn);
570 init_page_count(page);
571 atomic_set(&page->_mapcount, -1);
572 page_cpupid_reset_last(page);
573 page_kasan_tag_reset(page);
574
575 INIT_LIST_HEAD(&page->lru);
576#ifdef WANT_PAGE_VIRTUAL
577 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
578 if (!is_highmem_idx(zone))
579 set_page_address(page, __va(pfn << PAGE_SHIFT));
580#endif
581}
582
583#ifdef CONFIG_NUMA
584/*
585 * During memory init memblocks map pfns to nids. The search is expensive and
586 * this caches recent lookups. The implementation of __early_pfn_to_nid
587 * treats start/end as pfns.
588 */
589struct mminit_pfnnid_cache {
590 unsigned long last_start;
591 unsigned long last_end;
592 int last_nid;
593};
594
595static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
596
597/*
598 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
599 */
600static int __meminit __early_pfn_to_nid(unsigned long pfn,
601 struct mminit_pfnnid_cache *state)
602{
603 unsigned long start_pfn, end_pfn;
604 int nid;
605
606 if (state->last_start <= pfn && pfn < state->last_end)
607 return state->last_nid;
608
609 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
610 if (nid != NUMA_NO_NODE) {
611 state->last_start = start_pfn;
612 state->last_end = end_pfn;
613 state->last_nid = nid;
614 }
615
616 return nid;
617}
618
619int __meminit early_pfn_to_nid(unsigned long pfn)
620{
621 static DEFINE_SPINLOCK(early_pfn_lock);
622 int nid;
623
624 spin_lock(&early_pfn_lock);
625 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
626 if (nid < 0)
627 nid = first_online_node;
628 spin_unlock(&early_pfn_lock);
629
630 return nid;
631}
632
633int hashdist = HASHDIST_DEFAULT;
634
635static int __init set_hashdist(char *str)
636{
637 if (!str)
638 return 0;
639 hashdist = simple_strtoul(str, &str, 0);
640 return 1;
641}
642__setup("hashdist=", set_hashdist);
643
644static inline void fixup_hashdist(void)
645{
646 if (num_node_state(N_MEMORY) == 1)
647 hashdist = 0;
648}
649#else
650static inline void fixup_hashdist(void) {}
651#endif /* CONFIG_NUMA */
652
653#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
654static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
655{
656 pgdat->first_deferred_pfn = ULONG_MAX;
657}
658
659/* Returns true if the struct page for the pfn is initialised */
660static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
661{
662 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
663 return false;
664
665 return true;
666}
667
668/*
669 * Returns true when the remaining initialisation should be deferred until
670 * later in the boot cycle when it can be parallelised.
671 */
672static bool __meminit
673defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
674{
675 static unsigned long prev_end_pfn, nr_initialised;
676
677 if (early_page_ext_enabled())
678 return false;
679
680 /* Always populate low zones for address-constrained allocations */
681 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
682 return false;
683
684 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
685 return true;
686
687 /*
688 * prev_end_pfn static that contains the end of previous zone
689 * No need to protect because called very early in boot before smp_init.
690 */
691 if (prev_end_pfn != end_pfn) {
692 prev_end_pfn = end_pfn;
693 nr_initialised = 0;
694 }
695
696 /*
697 * We start only with one section of pages, more pages are added as
698 * needed until the rest of deferred pages are initialized.
699 */
700 nr_initialised++;
701 if ((nr_initialised > PAGES_PER_SECTION) &&
702 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
703 NODE_DATA(nid)->first_deferred_pfn = pfn;
704 return true;
705 }
706 return false;
707}
708
709static void __meminit init_reserved_page(unsigned long pfn, int nid)
710{
711 pg_data_t *pgdat;
712 int zid;
713
714 if (early_page_initialised(pfn, nid))
715 return;
716
717 pgdat = NODE_DATA(nid);
718
719 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
720 struct zone *zone = &pgdat->node_zones[zid];
721
722 if (zone_spans_pfn(zone, pfn))
723 break;
724 }
725 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
726}
727#else
728static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
729
730static inline bool early_page_initialised(unsigned long pfn, int nid)
731{
732 return true;
733}
734
735static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
736{
737 return false;
738}
739
740static inline void init_reserved_page(unsigned long pfn, int nid)
741{
742}
743#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
744
745/*
746 * Initialised pages do not have PageReserved set. This function is
747 * called for each range allocated by the bootmem allocator and
748 * marks the pages PageReserved. The remaining valid pages are later
749 * sent to the buddy page allocator.
750 */
751void __meminit reserve_bootmem_region(phys_addr_t start,
752 phys_addr_t end, int nid)
753{
754 unsigned long start_pfn = PFN_DOWN(start);
755 unsigned long end_pfn = PFN_UP(end);
756
757 for (; start_pfn < end_pfn; start_pfn++) {
758 if (pfn_valid(start_pfn)) {
759 struct page *page = pfn_to_page(start_pfn);
760
761 init_reserved_page(start_pfn, nid);
762
763 /*
764 * no need for atomic set_bit because the struct
765 * page is not visible yet so nobody should
766 * access it yet.
767 */
768 __SetPageReserved(page);
769 }
770 }
771}
772
773/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
774static bool __meminit
775overlap_memmap_init(unsigned long zone, unsigned long *pfn)
776{
777 static struct memblock_region *r;
778
779 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
780 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
781 for_each_mem_region(r) {
782 if (*pfn < memblock_region_memory_end_pfn(r))
783 break;
784 }
785 }
786 if (*pfn >= memblock_region_memory_base_pfn(r) &&
787 memblock_is_mirror(r)) {
788 *pfn = memblock_region_memory_end_pfn(r);
789 return true;
790 }
791 }
792 return false;
793}
794
795/*
796 * Only struct pages that correspond to ranges defined by memblock.memory
797 * are zeroed and initialized by going through __init_single_page() during
798 * memmap_init_zone_range().
799 *
800 * But, there could be struct pages that correspond to holes in
801 * memblock.memory. This can happen because of the following reasons:
802 * - physical memory bank size is not necessarily the exact multiple of the
803 * arbitrary section size
804 * - early reserved memory may not be listed in memblock.memory
805 * - non-memory regions covered by the contigious flatmem mapping
806 * - memory layouts defined with memmap= kernel parameter may not align
807 * nicely with memmap sections
808 *
809 * Explicitly initialize those struct pages so that:
810 * - PG_Reserved is set
811 * - zone and node links point to zone and node that span the page if the
812 * hole is in the middle of a zone
813 * - zone and node links point to adjacent zone/node if the hole falls on
814 * the zone boundary; the pages in such holes will be prepended to the
815 * zone/node above the hole except for the trailing pages in the last
816 * section that will be appended to the zone/node below.
817 */
818static void __init init_unavailable_range(unsigned long spfn,
819 unsigned long epfn,
820 int zone, int node)
821{
822 unsigned long pfn;
823 u64 pgcnt = 0;
824
825 for (pfn = spfn; pfn < epfn; pfn++) {
826 if (!pfn_valid(pageblock_start_pfn(pfn))) {
827 pfn = pageblock_end_pfn(pfn) - 1;
828 continue;
829 }
830 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
831 __SetPageReserved(pfn_to_page(pfn));
832 pgcnt++;
833 }
834
835 if (pgcnt)
836 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
837 node, zone_names[zone], pgcnt);
838}
839
840/*
841 * Initially all pages are reserved - free ones are freed
842 * up by memblock_free_all() once the early boot process is
843 * done. Non-atomic initialization, single-pass.
844 *
845 * All aligned pageblocks are initialized to the specified migratetype
846 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
847 * zone stats (e.g., nr_isolate_pageblock) are touched.
848 */
849void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
850 unsigned long start_pfn, unsigned long zone_end_pfn,
851 enum meminit_context context,
852 struct vmem_altmap *altmap, int migratetype)
853{
854 unsigned long pfn, end_pfn = start_pfn + size;
855 struct page *page;
856
857 if (highest_memmap_pfn < end_pfn - 1)
858 highest_memmap_pfn = end_pfn - 1;
859
860#ifdef CONFIG_ZONE_DEVICE
861 /*
862 * Honor reservation requested by the driver for this ZONE_DEVICE
863 * memory. We limit the total number of pages to initialize to just
864 * those that might contain the memory mapping. We will defer the
865 * ZONE_DEVICE page initialization until after we have released
866 * the hotplug lock.
867 */
868 if (zone == ZONE_DEVICE) {
869 if (!altmap)
870 return;
871
872 if (start_pfn == altmap->base_pfn)
873 start_pfn += altmap->reserve;
874 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
875 }
876#endif
877
878 for (pfn = start_pfn; pfn < end_pfn; ) {
879 /*
880 * There can be holes in boot-time mem_map[]s handed to this
881 * function. They do not exist on hotplugged memory.
882 */
883 if (context == MEMINIT_EARLY) {
884 if (overlap_memmap_init(zone, &pfn))
885 continue;
886 if (defer_init(nid, pfn, zone_end_pfn)) {
887 deferred_struct_pages = true;
888 break;
889 }
890 }
891
892 page = pfn_to_page(pfn);
893 __init_single_page(page, pfn, zone, nid);
894 if (context == MEMINIT_HOTPLUG) {
895#ifdef CONFIG_ZONE_DEVICE
896 if (zone == ZONE_DEVICE)
897 __SetPageReserved(page);
898 else
899#endif
900 __SetPageOffline(page);
901 }
902
903 /*
904 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
905 * such that unmovable allocations won't be scattered all
906 * over the place during system boot.
907 */
908 if (pageblock_aligned(pfn)) {
909 set_pageblock_migratetype(page, migratetype);
910 cond_resched();
911 }
912 pfn++;
913 }
914}
915
916static void __init memmap_init_zone_range(struct zone *zone,
917 unsigned long start_pfn,
918 unsigned long end_pfn,
919 unsigned long *hole_pfn)
920{
921 unsigned long zone_start_pfn = zone->zone_start_pfn;
922 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
923 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
924
925 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
926 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
927
928 if (start_pfn >= end_pfn)
929 return;
930
931 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
932 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
933
934 if (*hole_pfn < start_pfn)
935 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
936
937 *hole_pfn = end_pfn;
938}
939
940static void __init memmap_init(void)
941{
942 unsigned long start_pfn, end_pfn;
943 unsigned long hole_pfn = 0;
944 int i, j, zone_id = 0, nid;
945
946 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
947 struct pglist_data *node = NODE_DATA(nid);
948
949 for (j = 0; j < MAX_NR_ZONES; j++) {
950 struct zone *zone = node->node_zones + j;
951
952 if (!populated_zone(zone))
953 continue;
954
955 memmap_init_zone_range(zone, start_pfn, end_pfn,
956 &hole_pfn);
957 zone_id = j;
958 }
959 }
960
961#ifdef CONFIG_SPARSEMEM
962 /*
963 * Initialize the memory map for hole in the range [memory_end,
964 * section_end].
965 * Append the pages in this hole to the highest zone in the last
966 * node.
967 * The call to init_unavailable_range() is outside the ifdef to
968 * silence the compiler warining about zone_id set but not used;
969 * for FLATMEM it is a nop anyway
970 */
971 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
972 if (hole_pfn < end_pfn)
973#endif
974 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
975}
976
977#ifdef CONFIG_ZONE_DEVICE
978static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
979 unsigned long zone_idx, int nid,
980 struct dev_pagemap *pgmap)
981{
982
983 __init_single_page(page, pfn, zone_idx, nid);
984
985 /*
986 * Mark page reserved as it will need to wait for onlining
987 * phase for it to be fully associated with a zone.
988 *
989 * We can use the non-atomic __set_bit operation for setting
990 * the flag as we are still initializing the pages.
991 */
992 __SetPageReserved(page);
993
994 /*
995 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
996 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
997 * ever freed or placed on a driver-private list.
998 */
999 page->pgmap = pgmap;
1000 page->zone_device_data = NULL;
1001
1002 /*
1003 * Mark the block movable so that blocks are reserved for
1004 * movable at startup. This will force kernel allocations
1005 * to reserve their blocks rather than leaking throughout
1006 * the address space during boot when many long-lived
1007 * kernel allocations are made.
1008 *
1009 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1010 * because this is done early in section_activate()
1011 */
1012 if (pageblock_aligned(pfn)) {
1013 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1014 cond_resched();
1015 }
1016
1017 /*
1018 * ZONE_DEVICE pages are released directly to the driver page allocator
1019 * which will set the page count to 1 when allocating the page.
1020 */
1021 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1022 pgmap->type == MEMORY_DEVICE_COHERENT)
1023 set_page_count(page, 0);
1024}
1025
1026/*
1027 * With compound page geometry and when struct pages are stored in ram most
1028 * tail pages are reused. Consequently, the amount of unique struct pages to
1029 * initialize is a lot smaller that the total amount of struct pages being
1030 * mapped. This is a paired / mild layering violation with explicit knowledge
1031 * of how the sparse_vmemmap internals handle compound pages in the lack
1032 * of an altmap. See vmemmap_populate_compound_pages().
1033 */
1034static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1035 struct dev_pagemap *pgmap)
1036{
1037 if (!vmemmap_can_optimize(altmap, pgmap))
1038 return pgmap_vmemmap_nr(pgmap);
1039
1040 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1041}
1042
1043static void __ref memmap_init_compound(struct page *head,
1044 unsigned long head_pfn,
1045 unsigned long zone_idx, int nid,
1046 struct dev_pagemap *pgmap,
1047 unsigned long nr_pages)
1048{
1049 unsigned long pfn, end_pfn = head_pfn + nr_pages;
1050 unsigned int order = pgmap->vmemmap_shift;
1051
1052 __SetPageHead(head);
1053 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1054 struct page *page = pfn_to_page(pfn);
1055
1056 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1057 prep_compound_tail(head, pfn - head_pfn);
1058 set_page_count(page, 0);
1059
1060 /*
1061 * The first tail page stores important compound page info.
1062 * Call prep_compound_head() after the first tail page has
1063 * been initialized, to not have the data overwritten.
1064 */
1065 if (pfn == head_pfn + 1)
1066 prep_compound_head(head, order);
1067 }
1068}
1069
1070void __ref memmap_init_zone_device(struct zone *zone,
1071 unsigned long start_pfn,
1072 unsigned long nr_pages,
1073 struct dev_pagemap *pgmap)
1074{
1075 unsigned long pfn, end_pfn = start_pfn + nr_pages;
1076 struct pglist_data *pgdat = zone->zone_pgdat;
1077 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1078 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1079 unsigned long zone_idx = zone_idx(zone);
1080 unsigned long start = jiffies;
1081 int nid = pgdat->node_id;
1082
1083 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1084 return;
1085
1086 /*
1087 * The call to memmap_init should have already taken care
1088 * of the pages reserved for the memmap, so we can just jump to
1089 * the end of that region and start processing the device pages.
1090 */
1091 if (altmap) {
1092 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1093 nr_pages = end_pfn - start_pfn;
1094 }
1095
1096 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1097 struct page *page = pfn_to_page(pfn);
1098
1099 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1100
1101 if (pfns_per_compound == 1)
1102 continue;
1103
1104 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1105 compound_nr_pages(altmap, pgmap));
1106 }
1107
1108 pr_debug("%s initialised %lu pages in %ums\n", __func__,
1109 nr_pages, jiffies_to_msecs(jiffies - start));
1110}
1111#endif
1112
1113/*
1114 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1115 * because it is sized independent of architecture. Unlike the other zones,
1116 * the starting point for ZONE_MOVABLE is not fixed. It may be different
1117 * in each node depending on the size of each node and how evenly kernelcore
1118 * is distributed. This helper function adjusts the zone ranges
1119 * provided by the architecture for a given node by using the end of the
1120 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1121 * zones within a node are in order of monotonic increases memory addresses
1122 */
1123static void __init adjust_zone_range_for_zone_movable(int nid,
1124 unsigned long zone_type,
1125 unsigned long node_end_pfn,
1126 unsigned long *zone_start_pfn,
1127 unsigned long *zone_end_pfn)
1128{
1129 /* Only adjust if ZONE_MOVABLE is on this node */
1130 if (zone_movable_pfn[nid]) {
1131 /* Size ZONE_MOVABLE */
1132 if (zone_type == ZONE_MOVABLE) {
1133 *zone_start_pfn = zone_movable_pfn[nid];
1134 *zone_end_pfn = min(node_end_pfn,
1135 arch_zone_highest_possible_pfn[movable_zone]);
1136
1137 /* Adjust for ZONE_MOVABLE starting within this range */
1138 } else if (!mirrored_kernelcore &&
1139 *zone_start_pfn < zone_movable_pfn[nid] &&
1140 *zone_end_pfn > zone_movable_pfn[nid]) {
1141 *zone_end_pfn = zone_movable_pfn[nid];
1142
1143 /* Check if this whole range is within ZONE_MOVABLE */
1144 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
1145 *zone_start_pfn = *zone_end_pfn;
1146 }
1147}
1148
1149/*
1150 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1151 * then all holes in the requested range will be accounted for.
1152 */
1153static unsigned long __init __absent_pages_in_range(int nid,
1154 unsigned long range_start_pfn,
1155 unsigned long range_end_pfn)
1156{
1157 unsigned long nr_absent = range_end_pfn - range_start_pfn;
1158 unsigned long start_pfn, end_pfn;
1159 int i;
1160
1161 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1162 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1163 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1164 nr_absent -= end_pfn - start_pfn;
1165 }
1166 return nr_absent;
1167}
1168
1169/**
1170 * absent_pages_in_range - Return number of page frames in holes within a range
1171 * @start_pfn: The start PFN to start searching for holes
1172 * @end_pfn: The end PFN to stop searching for holes
1173 *
1174 * Return: the number of pages frames in memory holes within a range.
1175 */
1176unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1177 unsigned long end_pfn)
1178{
1179 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1180}
1181
1182/* Return the number of page frames in holes in a zone on a node */
1183static unsigned long __init zone_absent_pages_in_node(int nid,
1184 unsigned long zone_type,
1185 unsigned long zone_start_pfn,
1186 unsigned long zone_end_pfn)
1187{
1188 unsigned long nr_absent;
1189
1190 /* zone is empty, we don't have any absent pages */
1191 if (zone_start_pfn == zone_end_pfn)
1192 return 0;
1193
1194 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1195
1196 /*
1197 * ZONE_MOVABLE handling.
1198 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1199 * and vice versa.
1200 */
1201 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1202 unsigned long start_pfn, end_pfn;
1203 struct memblock_region *r;
1204
1205 for_each_mem_region(r) {
1206 start_pfn = clamp(memblock_region_memory_base_pfn(r),
1207 zone_start_pfn, zone_end_pfn);
1208 end_pfn = clamp(memblock_region_memory_end_pfn(r),
1209 zone_start_pfn, zone_end_pfn);
1210
1211 if (zone_type == ZONE_MOVABLE &&
1212 memblock_is_mirror(r))
1213 nr_absent += end_pfn - start_pfn;
1214
1215 if (zone_type == ZONE_NORMAL &&
1216 !memblock_is_mirror(r))
1217 nr_absent += end_pfn - start_pfn;
1218 }
1219 }
1220
1221 return nr_absent;
1222}
1223
1224/*
1225 * Return the number of pages a zone spans in a node, including holes
1226 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1227 */
1228static unsigned long __init zone_spanned_pages_in_node(int nid,
1229 unsigned long zone_type,
1230 unsigned long node_start_pfn,
1231 unsigned long node_end_pfn,
1232 unsigned long *zone_start_pfn,
1233 unsigned long *zone_end_pfn)
1234{
1235 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1236 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1237
1238 /* Get the start and end of the zone */
1239 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1240 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1241 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1242 zone_start_pfn, zone_end_pfn);
1243
1244 /* Check that this node has pages within the zone's required range */
1245 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1246 return 0;
1247
1248 /* Move the zone boundaries inside the node if necessary */
1249 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1250 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1251
1252 /* Return the spanned pages */
1253 return *zone_end_pfn - *zone_start_pfn;
1254}
1255
1256static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1257{
1258 struct zone *z;
1259
1260 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1261 z->zone_start_pfn = 0;
1262 z->spanned_pages = 0;
1263 z->present_pages = 0;
1264#if defined(CONFIG_MEMORY_HOTPLUG)
1265 z->present_early_pages = 0;
1266#endif
1267 }
1268
1269 pgdat->node_spanned_pages = 0;
1270 pgdat->node_present_pages = 0;
1271 pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1272}
1273
1274static void __init calc_nr_kernel_pages(void)
1275{
1276 unsigned long start_pfn, end_pfn;
1277 phys_addr_t start_addr, end_addr;
1278 u64 u;
1279#ifdef CONFIG_HIGHMEM
1280 unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1281#endif
1282
1283 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1284 start_pfn = PFN_UP(start_addr);
1285 end_pfn = PFN_DOWN(end_addr);
1286
1287 if (start_pfn < end_pfn) {
1288 nr_all_pages += end_pfn - start_pfn;
1289#ifdef CONFIG_HIGHMEM
1290 start_pfn = clamp(start_pfn, 0, high_zone_low);
1291 end_pfn = clamp(end_pfn, 0, high_zone_low);
1292#endif
1293 nr_kernel_pages += end_pfn - start_pfn;
1294 }
1295 }
1296}
1297
1298static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1299 unsigned long node_start_pfn,
1300 unsigned long node_end_pfn)
1301{
1302 unsigned long realtotalpages = 0, totalpages = 0;
1303 enum zone_type i;
1304
1305 for (i = 0; i < MAX_NR_ZONES; i++) {
1306 struct zone *zone = pgdat->node_zones + i;
1307 unsigned long zone_start_pfn, zone_end_pfn;
1308 unsigned long spanned, absent;
1309 unsigned long real_size;
1310
1311 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1312 node_start_pfn,
1313 node_end_pfn,
1314 &zone_start_pfn,
1315 &zone_end_pfn);
1316 absent = zone_absent_pages_in_node(pgdat->node_id, i,
1317 zone_start_pfn,
1318 zone_end_pfn);
1319
1320 real_size = spanned - absent;
1321
1322 if (spanned)
1323 zone->zone_start_pfn = zone_start_pfn;
1324 else
1325 zone->zone_start_pfn = 0;
1326 zone->spanned_pages = spanned;
1327 zone->present_pages = real_size;
1328#if defined(CONFIG_MEMORY_HOTPLUG)
1329 zone->present_early_pages = real_size;
1330#endif
1331
1332 totalpages += spanned;
1333 realtotalpages += real_size;
1334 }
1335
1336 pgdat->node_spanned_pages = totalpages;
1337 pgdat->node_present_pages = realtotalpages;
1338 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1339}
1340
1341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1342static void pgdat_init_split_queue(struct pglist_data *pgdat)
1343{
1344 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1345
1346 spin_lock_init(&ds_queue->split_queue_lock);
1347 INIT_LIST_HEAD(&ds_queue->split_queue);
1348 ds_queue->split_queue_len = 0;
1349}
1350#else
1351static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1352#endif
1353
1354#ifdef CONFIG_COMPACTION
1355static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1356{
1357 init_waitqueue_head(&pgdat->kcompactd_wait);
1358}
1359#else
1360static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1361#endif
1362
1363static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1364{
1365 int i;
1366
1367 pgdat_resize_init(pgdat);
1368 pgdat_kswapd_lock_init(pgdat);
1369
1370 pgdat_init_split_queue(pgdat);
1371 pgdat_init_kcompactd(pgdat);
1372
1373 init_waitqueue_head(&pgdat->kswapd_wait);
1374 init_waitqueue_head(&pgdat->pfmemalloc_wait);
1375
1376 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1377 init_waitqueue_head(&pgdat->reclaim_wait[i]);
1378
1379 pgdat_page_ext_init(pgdat);
1380 lruvec_init(&pgdat->__lruvec);
1381}
1382
1383static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1384 unsigned long remaining_pages)
1385{
1386 atomic_long_set(&zone->managed_pages, remaining_pages);
1387 zone_set_nid(zone, nid);
1388 zone->name = zone_names[idx];
1389 zone->zone_pgdat = NODE_DATA(nid);
1390 spin_lock_init(&zone->lock);
1391 zone_seqlock_init(zone);
1392 zone_pcp_init(zone);
1393}
1394
1395static void __meminit zone_init_free_lists(struct zone *zone)
1396{
1397 unsigned int order, t;
1398 for_each_migratetype_order(order, t) {
1399 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1400 zone->free_area[order].nr_free = 0;
1401 }
1402
1403#ifdef CONFIG_UNACCEPTED_MEMORY
1404 INIT_LIST_HEAD(&zone->unaccepted_pages);
1405#endif
1406}
1407
1408void __meminit init_currently_empty_zone(struct zone *zone,
1409 unsigned long zone_start_pfn,
1410 unsigned long size)
1411{
1412 struct pglist_data *pgdat = zone->zone_pgdat;
1413 int zone_idx = zone_idx(zone) + 1;
1414
1415 if (zone_idx > pgdat->nr_zones)
1416 pgdat->nr_zones = zone_idx;
1417
1418 zone->zone_start_pfn = zone_start_pfn;
1419
1420 mminit_dprintk(MMINIT_TRACE, "memmap_init",
1421 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
1422 pgdat->node_id,
1423 (unsigned long)zone_idx(zone),
1424 zone_start_pfn, (zone_start_pfn + size));
1425
1426 zone_init_free_lists(zone);
1427 zone->initialized = 1;
1428}
1429
1430#ifndef CONFIG_SPARSEMEM
1431/*
1432 * Calculate the size of the zone->blockflags rounded to an unsigned long
1433 * Start by making sure zonesize is a multiple of pageblock_order by rounding
1434 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1435 * round what is now in bits to nearest long in bits, then return it in
1436 * bytes.
1437 */
1438static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1439{
1440 unsigned long usemapsize;
1441
1442 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1443 usemapsize = roundup(zonesize, pageblock_nr_pages);
1444 usemapsize = usemapsize >> pageblock_order;
1445 usemapsize *= NR_PAGEBLOCK_BITS;
1446 usemapsize = roundup(usemapsize, BITS_PER_LONG);
1447
1448 return usemapsize / BITS_PER_BYTE;
1449}
1450
1451static void __ref setup_usemap(struct zone *zone)
1452{
1453 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1454 zone->spanned_pages);
1455 zone->pageblock_flags = NULL;
1456 if (usemapsize) {
1457 zone->pageblock_flags =
1458 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1459 zone_to_nid(zone));
1460 if (!zone->pageblock_flags)
1461 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1462 usemapsize, zone->name, zone_to_nid(zone));
1463 }
1464}
1465#else
1466static inline void setup_usemap(struct zone *zone) {}
1467#endif /* CONFIG_SPARSEMEM */
1468
1469#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1470
1471/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1472void __init set_pageblock_order(void)
1473{
1474 unsigned int order = MAX_PAGE_ORDER;
1475
1476 /* Check that pageblock_nr_pages has not already been setup */
1477 if (pageblock_order)
1478 return;
1479
1480 /* Don't let pageblocks exceed the maximum allocation granularity. */
1481 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1482 order = HUGETLB_PAGE_ORDER;
1483
1484 /*
1485 * Assume the largest contiguous order of interest is a huge page.
1486 * This value may be variable depending on boot parameters on powerpc.
1487 */
1488 pageblock_order = order;
1489}
1490#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1491
1492/*
1493 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1494 * is unused as pageblock_order is set at compile-time. See
1495 * include/linux/pageblock-flags.h for the values of pageblock_order based on
1496 * the kernel config
1497 */
1498void __init set_pageblock_order(void)
1499{
1500}
1501
1502#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1503
1504/*
1505 * Set up the zone data structures
1506 * - init pgdat internals
1507 * - init all zones belonging to this node
1508 *
1509 * NOTE: this function is only called during memory hotplug
1510 */
1511#ifdef CONFIG_MEMORY_HOTPLUG
1512void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1513{
1514 int nid = pgdat->node_id;
1515 enum zone_type z;
1516 int cpu;
1517
1518 pgdat_init_internals(pgdat);
1519
1520 if (pgdat->per_cpu_nodestats == &boot_nodestats)
1521 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1522
1523 /*
1524 * Reset the nr_zones, order and highest_zoneidx before reuse.
1525 * Note that kswapd will init kswapd_highest_zoneidx properly
1526 * when it starts in the near future.
1527 */
1528 pgdat->nr_zones = 0;
1529 pgdat->kswapd_order = 0;
1530 pgdat->kswapd_highest_zoneidx = 0;
1531 pgdat->node_start_pfn = 0;
1532 pgdat->node_present_pages = 0;
1533
1534 for_each_online_cpu(cpu) {
1535 struct per_cpu_nodestat *p;
1536
1537 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1538 memset(p, 0, sizeof(*p));
1539 }
1540
1541 /*
1542 * When memory is hot-added, all the memory is in offline state. So
1543 * clear all zones' present_pages and managed_pages because they will
1544 * be updated in online_pages() and offline_pages().
1545 */
1546 for (z = 0; z < MAX_NR_ZONES; z++) {
1547 struct zone *zone = pgdat->node_zones + z;
1548
1549 zone->present_pages = 0;
1550 zone_init_internals(zone, z, nid, 0);
1551 }
1552}
1553#endif
1554
1555static void __init free_area_init_core(struct pglist_data *pgdat)
1556{
1557 enum zone_type j;
1558 int nid = pgdat->node_id;
1559
1560 pgdat_init_internals(pgdat);
1561 pgdat->per_cpu_nodestats = &boot_nodestats;
1562
1563 for (j = 0; j < MAX_NR_ZONES; j++) {
1564 struct zone *zone = pgdat->node_zones + j;
1565 unsigned long size = zone->spanned_pages;
1566
1567 /*
1568 * Initialize zone->managed_pages as 0 , it will be reset
1569 * when memblock allocator frees pages into buddy system.
1570 */
1571 zone_init_internals(zone, j, nid, zone->present_pages);
1572
1573 if (!size)
1574 continue;
1575
1576 setup_usemap(zone);
1577 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1578 }
1579}
1580
1581void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1582 phys_addr_t min_addr, int nid, bool exact_nid)
1583{
1584 void *ptr;
1585
1586 if (exact_nid)
1587 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1588 MEMBLOCK_ALLOC_ACCESSIBLE,
1589 nid);
1590 else
1591 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1592 MEMBLOCK_ALLOC_ACCESSIBLE,
1593 nid);
1594
1595 if (ptr && size > 0)
1596 page_init_poison(ptr, size);
1597
1598 return ptr;
1599}
1600
1601#ifdef CONFIG_FLATMEM
1602static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1603{
1604 unsigned long start, offset, size, end;
1605 struct page *map;
1606
1607 /* Skip empty nodes */
1608 if (!pgdat->node_spanned_pages)
1609 return;
1610
1611 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1612 offset = pgdat->node_start_pfn - start;
1613 /*
1614 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1615 * aligned but the node_mem_map endpoints must be in order
1616 * for the buddy allocator to function correctly.
1617 */
1618 end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1619 size = (end - start) * sizeof(struct page);
1620 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1621 pgdat->node_id, false);
1622 if (!map)
1623 panic("Failed to allocate %ld bytes for node %d memory map\n",
1624 size, pgdat->node_id);
1625 pgdat->node_mem_map = map + offset;
1626 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1627 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1628 __func__, pgdat->node_id, (unsigned long)pgdat,
1629 (unsigned long)pgdat->node_mem_map);
1630#ifndef CONFIG_NUMA
1631 /* the global mem_map is just set as node 0's */
1632 if (pgdat == NODE_DATA(0)) {
1633 mem_map = NODE_DATA(0)->node_mem_map;
1634 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1635 mem_map -= offset;
1636 }
1637#endif
1638}
1639#else
1640static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1641#endif /* CONFIG_FLATMEM */
1642
1643/**
1644 * get_pfn_range_for_nid - Return the start and end page frames for a node
1645 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1646 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1647 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1648 *
1649 * It returns the start and end page frame of a node based on information
1650 * provided by memblock_set_node(). If called for a node
1651 * with no available memory, the start and end PFNs will be 0.
1652 */
1653void __init get_pfn_range_for_nid(unsigned int nid,
1654 unsigned long *start_pfn, unsigned long *end_pfn)
1655{
1656 unsigned long this_start_pfn, this_end_pfn;
1657 int i;
1658
1659 *start_pfn = -1UL;
1660 *end_pfn = 0;
1661
1662 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1663 *start_pfn = min(*start_pfn, this_start_pfn);
1664 *end_pfn = max(*end_pfn, this_end_pfn);
1665 }
1666
1667 if (*start_pfn == -1UL)
1668 *start_pfn = 0;
1669}
1670
1671static void __init free_area_init_node(int nid)
1672{
1673 pg_data_t *pgdat = NODE_DATA(nid);
1674 unsigned long start_pfn = 0;
1675 unsigned long end_pfn = 0;
1676
1677 /* pg_data_t should be reset to zero when it's allocated */
1678 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1679
1680 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1681
1682 pgdat->node_id = nid;
1683 pgdat->node_start_pfn = start_pfn;
1684 pgdat->per_cpu_nodestats = NULL;
1685
1686 if (start_pfn != end_pfn) {
1687 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1688 (u64)start_pfn << PAGE_SHIFT,
1689 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1690
1691 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1692 } else {
1693 pr_info("Initmem setup node %d as memoryless\n", nid);
1694
1695 reset_memoryless_node_totalpages(pgdat);
1696 }
1697
1698 alloc_node_mem_map(pgdat);
1699 pgdat_set_deferred_range(pgdat);
1700
1701 free_area_init_core(pgdat);
1702 lru_gen_init_pgdat(pgdat);
1703}
1704
1705/* Any regular or high memory on that node ? */
1706static void __init check_for_memory(pg_data_t *pgdat)
1707{
1708 enum zone_type zone_type;
1709
1710 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1711 struct zone *zone = &pgdat->node_zones[zone_type];
1712 if (populated_zone(zone)) {
1713 if (IS_ENABLED(CONFIG_HIGHMEM))
1714 node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1715 if (zone_type <= ZONE_NORMAL)
1716 node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1717 break;
1718 }
1719 }
1720}
1721
1722#if MAX_NUMNODES > 1
1723/*
1724 * Figure out the number of possible node ids.
1725 */
1726void __init setup_nr_node_ids(void)
1727{
1728 unsigned int highest;
1729
1730 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1731 nr_node_ids = highest + 1;
1732}
1733#endif
1734
1735/*
1736 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1737 * such cases we allow max_zone_pfn sorted in the descending order
1738 */
1739static bool arch_has_descending_max_zone_pfns(void)
1740{
1741 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1742}
1743
1744/**
1745 * free_area_init - Initialise all pg_data_t and zone data
1746 * @max_zone_pfn: an array of max PFNs for each zone
1747 *
1748 * This will call free_area_init_node() for each active node in the system.
1749 * Using the page ranges provided by memblock_set_node(), the size of each
1750 * zone in each node and their holes is calculated. If the maximum PFN
1751 * between two adjacent zones match, it is assumed that the zone is empty.
1752 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1753 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1754 * starts where the previous one ended. For example, ZONE_DMA32 starts
1755 * at arch_max_dma_pfn.
1756 */
1757void __init free_area_init(unsigned long *max_zone_pfn)
1758{
1759 unsigned long start_pfn, end_pfn;
1760 int i, nid, zone;
1761 bool descending;
1762
1763 /* Record where the zone boundaries are */
1764 memset(arch_zone_lowest_possible_pfn, 0,
1765 sizeof(arch_zone_lowest_possible_pfn));
1766 memset(arch_zone_highest_possible_pfn, 0,
1767 sizeof(arch_zone_highest_possible_pfn));
1768
1769 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1770 descending = arch_has_descending_max_zone_pfns();
1771
1772 for (i = 0; i < MAX_NR_ZONES; i++) {
1773 if (descending)
1774 zone = MAX_NR_ZONES - i - 1;
1775 else
1776 zone = i;
1777
1778 if (zone == ZONE_MOVABLE)
1779 continue;
1780
1781 end_pfn = max(max_zone_pfn[zone], start_pfn);
1782 arch_zone_lowest_possible_pfn[zone] = start_pfn;
1783 arch_zone_highest_possible_pfn[zone] = end_pfn;
1784
1785 start_pfn = end_pfn;
1786 }
1787
1788 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
1789 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1790 find_zone_movable_pfns_for_nodes();
1791
1792 /* Print out the zone ranges */
1793 pr_info("Zone ranges:\n");
1794 for (i = 0; i < MAX_NR_ZONES; i++) {
1795 if (i == ZONE_MOVABLE)
1796 continue;
1797 pr_info(" %-8s ", zone_names[i]);
1798 if (arch_zone_lowest_possible_pfn[i] ==
1799 arch_zone_highest_possible_pfn[i])
1800 pr_cont("empty\n");
1801 else
1802 pr_cont("[mem %#018Lx-%#018Lx]\n",
1803 (u64)arch_zone_lowest_possible_pfn[i]
1804 << PAGE_SHIFT,
1805 ((u64)arch_zone_highest_possible_pfn[i]
1806 << PAGE_SHIFT) - 1);
1807 }
1808
1809 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
1810 pr_info("Movable zone start for each node\n");
1811 for (i = 0; i < MAX_NUMNODES; i++) {
1812 if (zone_movable_pfn[i])
1813 pr_info(" Node %d: %#018Lx\n", i,
1814 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1815 }
1816
1817 /*
1818 * Print out the early node map, and initialize the
1819 * subsection-map relative to active online memory ranges to
1820 * enable future "sub-section" extensions of the memory map.
1821 */
1822 pr_info("Early memory node ranges\n");
1823 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1824 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1825 (u64)start_pfn << PAGE_SHIFT,
1826 ((u64)end_pfn << PAGE_SHIFT) - 1);
1827 subsection_map_init(start_pfn, end_pfn - start_pfn);
1828 }
1829
1830 /* Initialise every node */
1831 mminit_verify_pageflags_layout();
1832 setup_nr_node_ids();
1833 set_pageblock_order();
1834
1835 for_each_node(nid) {
1836 pg_data_t *pgdat;
1837
1838 if (!node_online(nid))
1839 alloc_offline_node_data(nid);
1840
1841 pgdat = NODE_DATA(nid);
1842 free_area_init_node(nid);
1843
1844 /*
1845 * No sysfs hierarcy will be created via register_one_node()
1846 *for memory-less node because here it's not marked as N_MEMORY
1847 *and won't be set online later. The benefit is userspace
1848 *program won't be confused by sysfs files/directories of
1849 *memory-less node. The pgdat will get fully initialized by
1850 *hotadd_init_pgdat() when memory is hotplugged into this node.
1851 */
1852 if (pgdat->node_present_pages) {
1853 node_set_state(nid, N_MEMORY);
1854 check_for_memory(pgdat);
1855 }
1856 }
1857
1858 calc_nr_kernel_pages();
1859 memmap_init();
1860
1861 /* disable hash distribution for systems with a single node */
1862 fixup_hashdist();
1863}
1864
1865/**
1866 * node_map_pfn_alignment - determine the maximum internode alignment
1867 *
1868 * This function should be called after node map is populated and sorted.
1869 * It calculates the maximum power of two alignment which can distinguish
1870 * all the nodes.
1871 *
1872 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1873 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
1874 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
1875 * shifted, 1GiB is enough and this function will indicate so.
1876 *
1877 * This is used to test whether pfn -> nid mapping of the chosen memory
1878 * model has fine enough granularity to avoid incorrect mapping for the
1879 * populated node map.
1880 *
1881 * Return: the determined alignment in pfn's. 0 if there is no alignment
1882 * requirement (single node).
1883 */
1884unsigned long __init node_map_pfn_alignment(void)
1885{
1886 unsigned long accl_mask = 0, last_end = 0;
1887 unsigned long start, end, mask;
1888 int last_nid = NUMA_NO_NODE;
1889 int i, nid;
1890
1891 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1892 if (!start || last_nid < 0 || last_nid == nid) {
1893 last_nid = nid;
1894 last_end = end;
1895 continue;
1896 }
1897
1898 /*
1899 * Start with a mask granular enough to pin-point to the
1900 * start pfn and tick off bits one-by-one until it becomes
1901 * too coarse to separate the current node from the last.
1902 */
1903 mask = ~((1 << __ffs(start)) - 1);
1904 while (mask && last_end <= (start & (mask << 1)))
1905 mask <<= 1;
1906
1907 /* accumulate all internode masks */
1908 accl_mask |= mask;
1909 }
1910
1911 /* convert mask to number of pages */
1912 return ~accl_mask + 1;
1913}
1914
1915#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1916static void __init deferred_free_pages(unsigned long pfn,
1917 unsigned long nr_pages)
1918{
1919 struct page *page;
1920 unsigned long i;
1921
1922 if (!nr_pages)
1923 return;
1924
1925 page = pfn_to_page(pfn);
1926
1927 /* Free a large naturally-aligned chunk if possible */
1928 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1929 for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1930 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1931 __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
1932 return;
1933 }
1934
1935 /* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1936 accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
1937
1938 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1939 if (pageblock_aligned(pfn))
1940 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1941 __free_pages_core(page, 0, MEMINIT_EARLY);
1942 }
1943}
1944
1945/* Completion tracking for deferred_init_memmap() threads */
1946static atomic_t pgdat_init_n_undone __initdata;
1947static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1948
1949static inline void __init pgdat_init_report_one_done(void)
1950{
1951 if (atomic_dec_and_test(&pgdat_init_n_undone))
1952 complete(&pgdat_init_all_done_comp);
1953}
1954
1955/*
1956 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1957 * by performing it only once every MAX_ORDER_NR_PAGES.
1958 * Return number of pages initialized.
1959 */
1960static unsigned long __init deferred_init_pages(struct zone *zone,
1961 unsigned long pfn, unsigned long end_pfn)
1962{
1963 int nid = zone_to_nid(zone);
1964 unsigned long nr_pages = end_pfn - pfn;
1965 int zid = zone_idx(zone);
1966 struct page *page = pfn_to_page(pfn);
1967
1968 for (; pfn < end_pfn; pfn++, page++)
1969 __init_single_page(page, pfn, zid, nid);
1970 return nr_pages;
1971}
1972
1973/*
1974 * This function is meant to pre-load the iterator for the zone init from
1975 * a given point.
1976 * Specifically it walks through the ranges starting with initial index
1977 * passed to it until we are caught up to the first_init_pfn value and
1978 * exits there. If we never encounter the value we return false indicating
1979 * there are no valid ranges left.
1980 */
1981static bool __init
1982deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1983 unsigned long *spfn, unsigned long *epfn,
1984 unsigned long first_init_pfn)
1985{
1986 u64 j = *i;
1987
1988 if (j == 0)
1989 __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
1990
1991 /*
1992 * Start out by walking through the ranges in this zone that have
1993 * already been initialized. We don't need to do anything with them
1994 * so we just need to flush them out of the system.
1995 */
1996 for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
1997 if (*epfn <= first_init_pfn)
1998 continue;
1999 if (*spfn < first_init_pfn)
2000 *spfn = first_init_pfn;
2001 *i = j;
2002 return true;
2003 }
2004
2005 return false;
2006}
2007
2008/*
2009 * Initialize and free pages. We do it in two loops: first we initialize
2010 * struct page, then free to buddy allocator, because while we are
2011 * freeing pages we can access pages that are ahead (computing buddy
2012 * page in __free_one_page()).
2013 *
2014 * In order to try and keep some memory in the cache we have the loop
2015 * broken along max page order boundaries. This way we will not cause
2016 * any issues with the buddy page computation.
2017 */
2018static unsigned long __init
2019deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2020 unsigned long *end_pfn)
2021{
2022 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2023 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2024 unsigned long nr_pages = 0;
2025 u64 j = *i;
2026
2027 /* First we loop through and initialize the page values */
2028 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2029 unsigned long t;
2030
2031 if (mo_pfn <= *start_pfn)
2032 break;
2033
2034 t = min(mo_pfn, *end_pfn);
2035 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2036
2037 if (mo_pfn < *end_pfn) {
2038 *start_pfn = mo_pfn;
2039 break;
2040 }
2041 }
2042
2043 /* Reset values and now loop through freeing pages as needed */
2044 swap(j, *i);
2045
2046 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2047 unsigned long t;
2048
2049 if (mo_pfn <= spfn)
2050 break;
2051
2052 t = min(mo_pfn, epfn);
2053 deferred_free_pages(spfn, t - spfn);
2054
2055 if (mo_pfn <= epfn)
2056 break;
2057 }
2058
2059 return nr_pages;
2060}
2061
2062static void __init
2063deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2064 void *arg)
2065{
2066 unsigned long spfn, epfn;
2067 struct zone *zone = arg;
2068 u64 i = 0;
2069
2070 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2071
2072 /*
2073 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2074 * we can avoid introducing any issues with the buddy allocator.
2075 */
2076 while (spfn < end_pfn) {
2077 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2078 cond_resched();
2079 }
2080}
2081
2082static unsigned int __init
2083deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2084{
2085 return max(cpumask_weight(node_cpumask), 1U);
2086}
2087
2088/* Initialise remaining memory on a node */
2089static int __init deferred_init_memmap(void *data)
2090{
2091 pg_data_t *pgdat = data;
2092 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2093 unsigned long spfn = 0, epfn = 0;
2094 unsigned long first_init_pfn, flags;
2095 unsigned long start = jiffies;
2096 struct zone *zone;
2097 int max_threads;
2098 u64 i = 0;
2099
2100 /* Bind memory initialisation thread to a local node if possible */
2101 if (!cpumask_empty(cpumask))
2102 set_cpus_allowed_ptr(current, cpumask);
2103
2104 pgdat_resize_lock(pgdat, &flags);
2105 first_init_pfn = pgdat->first_deferred_pfn;
2106 if (first_init_pfn == ULONG_MAX) {
2107 pgdat_resize_unlock(pgdat, &flags);
2108 pgdat_init_report_one_done();
2109 return 0;
2110 }
2111
2112 /* Sanity check boundaries */
2113 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2114 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2115 pgdat->first_deferred_pfn = ULONG_MAX;
2116
2117 /*
2118 * Once we unlock here, the zone cannot be grown anymore, thus if an
2119 * interrupt thread must allocate this early in boot, zone must be
2120 * pre-grown prior to start of deferred page initialization.
2121 */
2122 pgdat_resize_unlock(pgdat, &flags);
2123
2124 /* Only the highest zone is deferred */
2125 zone = pgdat->node_zones + pgdat->nr_zones - 1;
2126
2127 max_threads = deferred_page_init_max_threads(cpumask);
2128
2129 while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2130 first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2131 struct padata_mt_job job = {
2132 .thread_fn = deferred_init_memmap_chunk,
2133 .fn_arg = zone,
2134 .start = spfn,
2135 .size = first_init_pfn - spfn,
2136 .align = PAGES_PER_SECTION,
2137 .min_chunk = PAGES_PER_SECTION,
2138 .max_threads = max_threads,
2139 .numa_aware = false,
2140 };
2141
2142 padata_do_multithreaded(&job);
2143 }
2144
2145 /* Sanity check that the next zone really is unpopulated */
2146 WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2147
2148 pr_info("node %d deferred pages initialised in %ums\n",
2149 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2150
2151 pgdat_init_report_one_done();
2152 return 0;
2153}
2154
2155/*
2156 * If this zone has deferred pages, try to grow it by initializing enough
2157 * deferred pages to satisfy the allocation specified by order, rounded up to
2158 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2159 * of SECTION_SIZE bytes by initializing struct pages in increments of
2160 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2161 *
2162 * Return true when zone was grown, otherwise return false. We return true even
2163 * when we grow less than requested, to let the caller decide if there are
2164 * enough pages to satisfy the allocation.
2165 */
2166bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2167{
2168 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2169 pg_data_t *pgdat = zone->zone_pgdat;
2170 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2171 unsigned long spfn, epfn, flags;
2172 unsigned long nr_pages = 0;
2173 u64 i = 0;
2174
2175 /* Only the last zone may have deferred pages */
2176 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2177 return false;
2178
2179 pgdat_resize_lock(pgdat, &flags);
2180
2181 /*
2182 * If someone grew this zone while we were waiting for spinlock, return
2183 * true, as there might be enough pages already.
2184 */
2185 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2186 pgdat_resize_unlock(pgdat, &flags);
2187 return true;
2188 }
2189
2190 /* If the zone is empty somebody else may have cleared out the zone */
2191 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2192 first_deferred_pfn)) {
2193 pgdat->first_deferred_pfn = ULONG_MAX;
2194 pgdat_resize_unlock(pgdat, &flags);
2195 /* Retry only once. */
2196 return first_deferred_pfn != ULONG_MAX;
2197 }
2198
2199 /*
2200 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2201 * that we can avoid introducing any issues with the buddy
2202 * allocator.
2203 */
2204 while (spfn < epfn) {
2205 /* update our first deferred PFN for this section */
2206 first_deferred_pfn = spfn;
2207
2208 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2209 touch_nmi_watchdog();
2210
2211 /* We should only stop along section boundaries */
2212 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2213 continue;
2214
2215 /* If our quota has been met we can stop here */
2216 if (nr_pages >= nr_pages_needed)
2217 break;
2218 }
2219
2220 pgdat->first_deferred_pfn = spfn;
2221 pgdat_resize_unlock(pgdat, &flags);
2222
2223 return nr_pages > 0;
2224}
2225
2226#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2227
2228#ifdef CONFIG_CMA
2229void __init init_cma_reserved_pageblock(struct page *page)
2230{
2231 unsigned i = pageblock_nr_pages;
2232 struct page *p = page;
2233
2234 do {
2235 __ClearPageReserved(p);
2236 set_page_count(p, 0);
2237 } while (++p, --i);
2238
2239 set_pageblock_migratetype(page, MIGRATE_CMA);
2240 set_page_refcounted(page);
2241 /* pages were reserved and not allocated */
2242 clear_page_tag_ref(page);
2243 __free_pages(page, pageblock_order);
2244
2245 adjust_managed_page_count(page, pageblock_nr_pages);
2246 page_zone(page)->cma_pages += pageblock_nr_pages;
2247}
2248#endif
2249
2250void set_zone_contiguous(struct zone *zone)
2251{
2252 unsigned long block_start_pfn = zone->zone_start_pfn;
2253 unsigned long block_end_pfn;
2254
2255 block_end_pfn = pageblock_end_pfn(block_start_pfn);
2256 for (; block_start_pfn < zone_end_pfn(zone);
2257 block_start_pfn = block_end_pfn,
2258 block_end_pfn += pageblock_nr_pages) {
2259
2260 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2261
2262 if (!__pageblock_pfn_to_page(block_start_pfn,
2263 block_end_pfn, zone))
2264 return;
2265 cond_resched();
2266 }
2267
2268 /* We confirm that there is no hole */
2269 zone->contiguous = true;
2270}
2271
2272static void __init mem_init_print_info(void);
2273void __init page_alloc_init_late(void)
2274{
2275 struct zone *zone;
2276 int nid;
2277
2278#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2279
2280 /* There will be num_node_state(N_MEMORY) threads */
2281 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282 for_each_node_state(nid, N_MEMORY) {
2283 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 }
2285
2286 /* Block until all are initialised */
2287 wait_for_completion(&pgdat_init_all_done_comp);
2288
2289 /*
2290 * We initialized the rest of the deferred pages. Permanently disable
2291 * on-demand struct page initialization.
2292 */
2293 static_branch_disable(&deferred_pages);
2294
2295 /* Reinit limits that are based on free pages after the kernel is up */
2296 files_maxfiles_init();
2297#endif
2298
2299 /* Accounting of total+free memory is stable at this point. */
2300 mem_init_print_info();
2301 buffer_init();
2302
2303 /* Discard memblock private memory */
2304 memblock_discard();
2305
2306 for_each_node_state(nid, N_MEMORY)
2307 shuffle_free_memory(NODE_DATA(nid));
2308
2309 for_each_populated_zone(zone)
2310 set_zone_contiguous(zone);
2311
2312 /* Initialize page ext after all struct pages are initialized. */
2313 if (deferred_struct_pages)
2314 page_ext_init();
2315
2316 page_alloc_sysctl_init();
2317}
2318
2319/*
2320 * Adaptive scale is meant to reduce sizes of hash tables on large memory
2321 * machines. As memory size is increased the scale is also increased but at
2322 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
2323 * quadruples the scale is increased by one, which means the size of hash table
2324 * only doubles, instead of quadrupling as well.
2325 * Because 32-bit systems cannot have large physical memory, where this scaling
2326 * makes sense, it is disabled on such platforms.
2327 */
2328#if __BITS_PER_LONG > 32
2329#define ADAPT_SCALE_BASE (64ul << 30)
2330#define ADAPT_SCALE_SHIFT 2
2331#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
2332#endif
2333
2334/*
2335 * allocate a large system hash table from bootmem
2336 * - it is assumed that the hash table must contain an exact power-of-2
2337 * quantity of entries
2338 * - limit is the number of hash buckets, not the total allocation size
2339 */
2340void *__init alloc_large_system_hash(const char *tablename,
2341 unsigned long bucketsize,
2342 unsigned long numentries,
2343 int scale,
2344 int flags,
2345 unsigned int *_hash_shift,
2346 unsigned int *_hash_mask,
2347 unsigned long low_limit,
2348 unsigned long high_limit)
2349{
2350 unsigned long long max = high_limit;
2351 unsigned long log2qty, size;
2352 void *table;
2353 gfp_t gfp_flags;
2354 bool virt;
2355 bool huge;
2356
2357 /* allow the kernel cmdline to have a say */
2358 if (!numentries) {
2359 /* round applicable memory size up to nearest megabyte */
2360 numentries = nr_kernel_pages;
2361
2362 /* It isn't necessary when PAGE_SIZE >= 1MB */
2363 if (PAGE_SIZE < SZ_1M)
2364 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2365
2366#if __BITS_PER_LONG > 32
2367 if (!high_limit) {
2368 unsigned long adapt;
2369
2370 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2371 adapt <<= ADAPT_SCALE_SHIFT)
2372 scale++;
2373 }
2374#endif
2375
2376 /* limit to 1 bucket per 2^scale bytes of low memory */
2377 if (scale > PAGE_SHIFT)
2378 numentries >>= (scale - PAGE_SHIFT);
2379 else
2380 numentries <<= (PAGE_SHIFT - scale);
2381
2382 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2383 numentries = PAGE_SIZE / bucketsize;
2384 }
2385 numentries = roundup_pow_of_two(numentries);
2386
2387 /* limit allocation size to 1/16 total memory by default */
2388 if (max == 0) {
2389 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2390 do_div(max, bucketsize);
2391 }
2392 max = min(max, 0x80000000ULL);
2393
2394 if (numentries < low_limit)
2395 numentries = low_limit;
2396 if (numentries > max)
2397 numentries = max;
2398
2399 log2qty = ilog2(numentries);
2400
2401 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2402 do {
2403 virt = false;
2404 size = bucketsize << log2qty;
2405 if (flags & HASH_EARLY) {
2406 if (flags & HASH_ZERO)
2407 table = memblock_alloc(size, SMP_CACHE_BYTES);
2408 else
2409 table = memblock_alloc_raw(size,
2410 SMP_CACHE_BYTES);
2411 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2412 table = vmalloc_huge(size, gfp_flags);
2413 virt = true;
2414 if (table)
2415 huge = is_vm_area_hugepages(table);
2416 } else {
2417 /*
2418 * If bucketsize is not a power-of-two, we may free
2419 * some pages at the end of hash table which
2420 * alloc_pages_exact() automatically does
2421 */
2422 table = alloc_pages_exact(size, gfp_flags);
2423 kmemleak_alloc(table, size, 1, gfp_flags);
2424 }
2425 } while (!table && size > PAGE_SIZE && --log2qty);
2426
2427 if (!table)
2428 panic("Failed to allocate %s hash table\n", tablename);
2429
2430 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2431 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2432 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2433
2434 if (_hash_shift)
2435 *_hash_shift = log2qty;
2436 if (_hash_mask)
2437 *_hash_mask = (1 << log2qty) - 1;
2438
2439 return table;
2440}
2441
2442void __init memblock_free_pages(struct page *page, unsigned long pfn,
2443 unsigned int order)
2444{
2445 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2446 int nid = early_pfn_to_nid(pfn);
2447
2448 if (!early_page_initialised(pfn, nid))
2449 return;
2450 }
2451
2452 if (!kmsan_memblock_free_pages(page, order)) {
2453 /* KMSAN will take care of these pages. */
2454 return;
2455 }
2456
2457 /* pages were reserved and not allocated */
2458 clear_page_tag_ref(page);
2459 __free_pages_core(page, order, MEMINIT_EARLY);
2460}
2461
2462DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2463EXPORT_SYMBOL(init_on_alloc);
2464
2465DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2466EXPORT_SYMBOL(init_on_free);
2467
2468static bool _init_on_alloc_enabled_early __read_mostly
2469 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2470static int __init early_init_on_alloc(char *buf)
2471{
2472
2473 return kstrtobool(buf, &_init_on_alloc_enabled_early);
2474}
2475early_param("init_on_alloc", early_init_on_alloc);
2476
2477static bool _init_on_free_enabled_early __read_mostly
2478 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2479static int __init early_init_on_free(char *buf)
2480{
2481 return kstrtobool(buf, &_init_on_free_enabled_early);
2482}
2483early_param("init_on_free", early_init_on_free);
2484
2485DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2486
2487/*
2488 * Enable static keys related to various memory debugging and hardening options.
2489 * Some override others, and depend on early params that are evaluated in the
2490 * order of appearance. So we need to first gather the full picture of what was
2491 * enabled, and then make decisions.
2492 */
2493static void __init mem_debugging_and_hardening_init(void)
2494{
2495 bool page_poisoning_requested = false;
2496 bool want_check_pages = false;
2497
2498#ifdef CONFIG_PAGE_POISONING
2499 /*
2500 * Page poisoning is debug page alloc for some arches. If
2501 * either of those options are enabled, enable poisoning.
2502 */
2503 if (page_poisoning_enabled() ||
2504 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2505 debug_pagealloc_enabled())) {
2506 static_branch_enable(&_page_poisoning_enabled);
2507 page_poisoning_requested = true;
2508 want_check_pages = true;
2509 }
2510#endif
2511
2512 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2513 page_poisoning_requested) {
2514 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2515 "will take precedence over init_on_alloc and init_on_free\n");
2516 _init_on_alloc_enabled_early = false;
2517 _init_on_free_enabled_early = false;
2518 }
2519
2520 if (_init_on_alloc_enabled_early) {
2521 want_check_pages = true;
2522 static_branch_enable(&init_on_alloc);
2523 } else {
2524 static_branch_disable(&init_on_alloc);
2525 }
2526
2527 if (_init_on_free_enabled_early) {
2528 want_check_pages = true;
2529 static_branch_enable(&init_on_free);
2530 } else {
2531 static_branch_disable(&init_on_free);
2532 }
2533
2534 if (IS_ENABLED(CONFIG_KMSAN) &&
2535 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2536 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2537
2538#ifdef CONFIG_DEBUG_PAGEALLOC
2539 if (debug_pagealloc_enabled()) {
2540 want_check_pages = true;
2541 static_branch_enable(&_debug_pagealloc_enabled);
2542
2543 if (debug_guardpage_minorder())
2544 static_branch_enable(&_debug_guardpage_enabled);
2545 }
2546#endif
2547
2548 /*
2549 * Any page debugging or hardening option also enables sanity checking
2550 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2551 * enabled already.
2552 */
2553 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2554 static_branch_enable(&check_pages_enabled);
2555}
2556
2557/* Report memory auto-initialization states for this boot. */
2558static void __init report_meminit(void)
2559{
2560 const char *stack;
2561
2562 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2563 stack = "all(pattern)";
2564 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2565 stack = "all(zero)";
2566 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2567 stack = "byref_all(zero)";
2568 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2569 stack = "byref(zero)";
2570 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2571 stack = "__user(zero)";
2572 else
2573 stack = "off";
2574
2575 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2576 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2577 want_init_on_free() ? "on" : "off");
2578 if (want_init_on_free())
2579 pr_info("mem auto-init: clearing system memory may take some time...\n");
2580}
2581
2582static void __init mem_init_print_info(void)
2583{
2584 unsigned long physpages, codesize, datasize, rosize, bss_size;
2585 unsigned long init_code_size, init_data_size;
2586
2587 physpages = get_num_physpages();
2588 codesize = _etext - _stext;
2589 datasize = _edata - _sdata;
2590 rosize = __end_rodata - __start_rodata;
2591 bss_size = __bss_stop - __bss_start;
2592 init_data_size = __init_end - __init_begin;
2593 init_code_size = _einittext - _sinittext;
2594
2595 /*
2596 * Detect special cases and adjust section sizes accordingly:
2597 * 1) .init.* may be embedded into .data sections
2598 * 2) .init.text.* may be out of [__init_begin, __init_end],
2599 * please refer to arch/tile/kernel/vmlinux.lds.S.
2600 * 3) .rodata.* may be embedded into .text or .data sections.
2601 */
2602#define adj_init_size(start, end, size, pos, adj) \
2603 do { \
2604 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2605 size -= adj; \
2606 } while (0)
2607
2608 adj_init_size(__init_begin, __init_end, init_data_size,
2609 _sinittext, init_code_size);
2610 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2611 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2612 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2613 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2614
2615#undef adj_init_size
2616
2617 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2618#ifdef CONFIG_HIGHMEM
2619 ", %luK highmem"
2620#endif
2621 ")\n",
2622 K(nr_free_pages()), K(physpages),
2623 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2624 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2625 K(physpages - totalram_pages() - totalcma_pages),
2626 K(totalcma_pages)
2627#ifdef CONFIG_HIGHMEM
2628 , K(totalhigh_pages())
2629#endif
2630 );
2631}
2632
2633/*
2634 * Set up kernel memory allocators
2635 */
2636void __init mm_core_init(void)
2637{
2638 /* Initializations relying on SMP setup */
2639 BUILD_BUG_ON(MAX_ZONELISTS > 2);
2640 build_all_zonelists(NULL);
2641 page_alloc_init_cpuhp();
2642
2643 /*
2644 * page_ext requires contiguous pages,
2645 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2646 */
2647 page_ext_init_flatmem();
2648 mem_debugging_and_hardening_init();
2649 kfence_alloc_pool_and_metadata();
2650 report_meminit();
2651 kmsan_init_shadow();
2652 stack_depot_early_init();
2653 mem_init();
2654 kmem_cache_init();
2655 /*
2656 * page_owner must be initialized after buddy is ready, and also after
2657 * slab is ready so that stack_depot_init() works properly
2658 */
2659 page_ext_init_flatmem_late();
2660 kmemleak_init();
2661 ptlock_cache_init();
2662 pgtable_cache_init();
2663 debug_objects_mem_init();
2664 vmalloc_init();
2665 /* If no deferred init page_ext now, as vmap is fully initialized */
2666 if (!deferred_struct_pages)
2667 page_ext_init();
2668 /* Should be run before the first non-init thread is created */
2669 init_espfix_bsp();
2670 /* Should be run after espfix64 is set up. */
2671 pti_init();
2672 kmsan_init_runtime();
2673 mm_cache_init();
2674 execmem_init();
2675}