mm/huge_memory: Avoid calling pmd_page() on a non-leaf PMD
[linux-block.git] / mm / migrate.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16#include <linux/migrate.h>
17#include <linux/export.h>
18#include <linux/swap.h>
19#include <linux/swapops.h>
20#include <linux/pagemap.h>
21#include <linux/buffer_head.h>
22#include <linux/mm_inline.h>
23#include <linux/nsproxy.h>
24#include <linux/pagevec.h>
25#include <linux/ksm.h>
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
30#include <linux/writeback.h>
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
33#include <linux/security.h>
34#include <linux/backing-dev.h>
35#include <linux/compaction.h>
36#include <linux/syscalls.h>
37#include <linux/compat.h>
38#include <linux/hugetlb.h>
39#include <linux/hugetlb_cgroup.h>
40#include <linux/gfp.h>
41#include <linux/pfn_t.h>
42#include <linux/memremap.h>
43#include <linux/userfaultfd_k.h>
44#include <linux/balloon_compaction.h>
45#include <linux/page_idle.h>
46#include <linux/page_owner.h>
47#include <linux/sched/mm.h>
48#include <linux/ptrace.h>
49#include <linux/oom.h>
50#include <linux/memory.h>
51#include <linux/random.h>
52#include <linux/sched/sysctl.h>
53
54#include <asm/tlbflush.h>
55
56#include <trace/events/migrate.h>
57
58#include "internal.h"
59
60int isolate_movable_page(struct page *page, isolate_mode_t mode)
61{
62 struct address_space *mapping;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
102
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 SetPageIsolated(page);
109 unlock_page(page);
110
111 return 0;
112
113out_no_isolated:
114 unlock_page(page);
115out_putpage:
116 put_page(page);
117out:
118 return -EBUSY;
119}
120
121static void putback_movable_page(struct page *page)
122{
123 struct address_space *mapping;
124
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 ClearPageIsolated(page);
128}
129
130/*
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
133 *
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
137 */
138void putback_movable_pages(struct list_head *l)
139{
140 struct page *page;
141 struct page *page2;
142
143 list_for_each_entry_safe(page, page2, l, lru) {
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
146 continue;
147 }
148 list_del(&page->lru);
149 /*
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
153 */
154 if (unlikely(__PageMovable(page))) {
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 lock_page(page);
157 if (PageMovable(page))
158 putback_movable_page(page);
159 else
160 ClearPageIsolated(page);
161 unlock_page(page);
162 put_page(page);
163 } else {
164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 page_is_file_lru(page), -thp_nr_pages(page));
166 putback_lru_page(page);
167 }
168 }
169}
170
171/*
172 * Restore a potential migration pte to a working pte entry
173 */
174static bool remove_migration_pte(struct folio *folio,
175 struct vm_area_struct *vma, unsigned long addr, void *old)
176{
177 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
178
179 while (page_vma_mapped_walk(&pvmw)) {
180 pte_t pte;
181 swp_entry_t entry;
182 struct page *new;
183 unsigned long idx = 0;
184
185 /* pgoff is invalid for ksm pages, but they are never large */
186 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
187 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
188 new = folio_page(folio, idx);
189
190#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
191 /* PMD-mapped THP migration entry */
192 if (!pvmw.pte) {
193 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
194 !folio_test_pmd_mappable(folio), folio);
195 remove_migration_pmd(&pvmw, new);
196 continue;
197 }
198#endif
199
200 folio_get(folio);
201 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
202 if (pte_swp_soft_dirty(*pvmw.pte))
203 pte = pte_mksoft_dirty(pte);
204
205 /*
206 * Recheck VMA as permissions can change since migration started
207 */
208 entry = pte_to_swp_entry(*pvmw.pte);
209 if (is_writable_migration_entry(entry))
210 pte = maybe_mkwrite(pte, vma);
211 else if (pte_swp_uffd_wp(*pvmw.pte))
212 pte = pte_mkuffd_wp(pte);
213
214 if (unlikely(is_device_private_page(new))) {
215 if (pte_write(pte))
216 entry = make_writable_device_private_entry(
217 page_to_pfn(new));
218 else
219 entry = make_readable_device_private_entry(
220 page_to_pfn(new));
221 pte = swp_entry_to_pte(entry);
222 if (pte_swp_soft_dirty(*pvmw.pte))
223 pte = pte_swp_mksoft_dirty(pte);
224 if (pte_swp_uffd_wp(*pvmw.pte))
225 pte = pte_swp_mkuffd_wp(pte);
226 }
227
228#ifdef CONFIG_HUGETLB_PAGE
229 if (folio_test_hugetlb(folio)) {
230 unsigned int shift = huge_page_shift(hstate_vma(vma));
231
232 pte = pte_mkhuge(pte);
233 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
234 if (folio_test_anon(folio))
235 hugepage_add_anon_rmap(new, vma, pvmw.address);
236 else
237 page_dup_rmap(new, true);
238 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239 } else
240#endif
241 {
242 if (folio_test_anon(folio))
243 page_add_anon_rmap(new, vma, pvmw.address, false);
244 else
245 page_add_file_rmap(new, vma, false);
246 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247 }
248 if (vma->vm_flags & VM_LOCKED)
249 mlock_page_drain_local();
250
251 trace_remove_migration_pte(pvmw.address, pte_val(pte),
252 compound_order(new));
253
254 /* No need to invalidate - it was non-present before */
255 update_mmu_cache(vma, pvmw.address, pvmw.pte);
256 }
257
258 return true;
259}
260
261/*
262 * Get rid of all migration entries and replace them by
263 * references to the indicated page.
264 */
265void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
266{
267 struct rmap_walk_control rwc = {
268 .rmap_one = remove_migration_pte,
269 .arg = src,
270 };
271
272 if (locked)
273 rmap_walk_locked(dst, &rwc);
274 else
275 rmap_walk(dst, &rwc);
276}
277
278/*
279 * Something used the pte of a page under migration. We need to
280 * get to the page and wait until migration is finished.
281 * When we return from this function the fault will be retried.
282 */
283void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
284 spinlock_t *ptl)
285{
286 pte_t pte;
287 swp_entry_t entry;
288
289 spin_lock(ptl);
290 pte = *ptep;
291 if (!is_swap_pte(pte))
292 goto out;
293
294 entry = pte_to_swp_entry(pte);
295 if (!is_migration_entry(entry))
296 goto out;
297
298 migration_entry_wait_on_locked(entry, ptep, ptl);
299 return;
300out:
301 pte_unmap_unlock(ptep, ptl);
302}
303
304void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
305 unsigned long address)
306{
307 spinlock_t *ptl = pte_lockptr(mm, pmd);
308 pte_t *ptep = pte_offset_map(pmd, address);
309 __migration_entry_wait(mm, ptep, ptl);
310}
311
312void migration_entry_wait_huge(struct vm_area_struct *vma,
313 struct mm_struct *mm, pte_t *pte)
314{
315 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
316 __migration_entry_wait(mm, pte, ptl);
317}
318
319#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
320void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
321{
322 spinlock_t *ptl;
323
324 ptl = pmd_lock(mm, pmd);
325 if (!is_pmd_migration_entry(*pmd))
326 goto unlock;
327 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
328 return;
329unlock:
330 spin_unlock(ptl);
331}
332#endif
333
334static int expected_page_refs(struct address_space *mapping, struct page *page)
335{
336 int expected_count = 1;
337
338 if (mapping)
339 expected_count += compound_nr(page) + page_has_private(page);
340 return expected_count;
341}
342
343/*
344 * Replace the page in the mapping.
345 *
346 * The number of remaining references must be:
347 * 1 for anonymous pages without a mapping
348 * 2 for pages with a mapping
349 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
350 */
351int folio_migrate_mapping(struct address_space *mapping,
352 struct folio *newfolio, struct folio *folio, int extra_count)
353{
354 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
355 struct zone *oldzone, *newzone;
356 int dirty;
357 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
358 long nr = folio_nr_pages(folio);
359
360 if (!mapping) {
361 /* Anonymous page without mapping */
362 if (folio_ref_count(folio) != expected_count)
363 return -EAGAIN;
364
365 /* No turning back from here */
366 newfolio->index = folio->index;
367 newfolio->mapping = folio->mapping;
368 if (folio_test_swapbacked(folio))
369 __folio_set_swapbacked(newfolio);
370
371 return MIGRATEPAGE_SUCCESS;
372 }
373
374 oldzone = folio_zone(folio);
375 newzone = folio_zone(newfolio);
376
377 xas_lock_irq(&xas);
378 if (!folio_ref_freeze(folio, expected_count)) {
379 xas_unlock_irq(&xas);
380 return -EAGAIN;
381 }
382
383 /*
384 * Now we know that no one else is looking at the folio:
385 * no turning back from here.
386 */
387 newfolio->index = folio->index;
388 newfolio->mapping = folio->mapping;
389 folio_ref_add(newfolio, nr); /* add cache reference */
390 if (folio_test_swapbacked(folio)) {
391 __folio_set_swapbacked(newfolio);
392 if (folio_test_swapcache(folio)) {
393 folio_set_swapcache(newfolio);
394 newfolio->private = folio_get_private(folio);
395 }
396 } else {
397 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
398 }
399
400 /* Move dirty while page refs frozen and newpage not yet exposed */
401 dirty = folio_test_dirty(folio);
402 if (dirty) {
403 folio_clear_dirty(folio);
404 folio_set_dirty(newfolio);
405 }
406
407 xas_store(&xas, newfolio);
408
409 /*
410 * Drop cache reference from old page by unfreezing
411 * to one less reference.
412 * We know this isn't the last reference.
413 */
414 folio_ref_unfreeze(folio, expected_count - nr);
415
416 xas_unlock(&xas);
417 /* Leave irq disabled to prevent preemption while updating stats */
418
419 /*
420 * If moved to a different zone then also account
421 * the page for that zone. Other VM counters will be
422 * taken care of when we establish references to the
423 * new page and drop references to the old page.
424 *
425 * Note that anonymous pages are accounted for
426 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
427 * are mapped to swap space.
428 */
429 if (newzone != oldzone) {
430 struct lruvec *old_lruvec, *new_lruvec;
431 struct mem_cgroup *memcg;
432
433 memcg = folio_memcg(folio);
434 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
435 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
436
437 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
438 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
439 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
440 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
441 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
442 }
443#ifdef CONFIG_SWAP
444 if (folio_test_swapcache(folio)) {
445 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
446 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
447 }
448#endif
449 if (dirty && mapping_can_writeback(mapping)) {
450 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
451 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
452 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
453 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
454 }
455 }
456 local_irq_enable();
457
458 return MIGRATEPAGE_SUCCESS;
459}
460EXPORT_SYMBOL(folio_migrate_mapping);
461
462/*
463 * The expected number of remaining references is the same as that
464 * of folio_migrate_mapping().
465 */
466int migrate_huge_page_move_mapping(struct address_space *mapping,
467 struct page *newpage, struct page *page)
468{
469 XA_STATE(xas, &mapping->i_pages, page_index(page));
470 int expected_count;
471
472 xas_lock_irq(&xas);
473 expected_count = 2 + page_has_private(page);
474 if (page_count(page) != expected_count || xas_load(&xas) != page) {
475 xas_unlock_irq(&xas);
476 return -EAGAIN;
477 }
478
479 if (!page_ref_freeze(page, expected_count)) {
480 xas_unlock_irq(&xas);
481 return -EAGAIN;
482 }
483
484 newpage->index = page->index;
485 newpage->mapping = page->mapping;
486
487 get_page(newpage);
488
489 xas_store(&xas, newpage);
490
491 page_ref_unfreeze(page, expected_count - 1);
492
493 xas_unlock_irq(&xas);
494
495 return MIGRATEPAGE_SUCCESS;
496}
497
498/*
499 * Copy the flags and some other ancillary information
500 */
501void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
502{
503 int cpupid;
504
505 if (folio_test_error(folio))
506 folio_set_error(newfolio);
507 if (folio_test_referenced(folio))
508 folio_set_referenced(newfolio);
509 if (folio_test_uptodate(folio))
510 folio_mark_uptodate(newfolio);
511 if (folio_test_clear_active(folio)) {
512 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
513 folio_set_active(newfolio);
514 } else if (folio_test_clear_unevictable(folio))
515 folio_set_unevictable(newfolio);
516 if (folio_test_workingset(folio))
517 folio_set_workingset(newfolio);
518 if (folio_test_checked(folio))
519 folio_set_checked(newfolio);
520 if (folio_test_mappedtodisk(folio))
521 folio_set_mappedtodisk(newfolio);
522
523 /* Move dirty on pages not done by folio_migrate_mapping() */
524 if (folio_test_dirty(folio))
525 folio_set_dirty(newfolio);
526
527 if (folio_test_young(folio))
528 folio_set_young(newfolio);
529 if (folio_test_idle(folio))
530 folio_set_idle(newfolio);
531
532 /*
533 * Copy NUMA information to the new page, to prevent over-eager
534 * future migrations of this same page.
535 */
536 cpupid = page_cpupid_xchg_last(&folio->page, -1);
537 page_cpupid_xchg_last(&newfolio->page, cpupid);
538
539 folio_migrate_ksm(newfolio, folio);
540 /*
541 * Please do not reorder this without considering how mm/ksm.c's
542 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
543 */
544 if (folio_test_swapcache(folio))
545 folio_clear_swapcache(folio);
546 folio_clear_private(folio);
547
548 /* page->private contains hugetlb specific flags */
549 if (!folio_test_hugetlb(folio))
550 folio->private = NULL;
551
552 /*
553 * If any waiters have accumulated on the new page then
554 * wake them up.
555 */
556 if (folio_test_writeback(newfolio))
557 folio_end_writeback(newfolio);
558
559 /*
560 * PG_readahead shares the same bit with PG_reclaim. The above
561 * end_page_writeback() may clear PG_readahead mistakenly, so set the
562 * bit after that.
563 */
564 if (folio_test_readahead(folio))
565 folio_set_readahead(newfolio);
566
567 folio_copy_owner(newfolio, folio);
568
569 if (!folio_test_hugetlb(folio))
570 mem_cgroup_migrate(folio, newfolio);
571}
572EXPORT_SYMBOL(folio_migrate_flags);
573
574void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
575{
576 folio_copy(newfolio, folio);
577 folio_migrate_flags(newfolio, folio);
578}
579EXPORT_SYMBOL(folio_migrate_copy);
580
581/************************************************************
582 * Migration functions
583 ***********************************************************/
584
585/*
586 * Common logic to directly migrate a single LRU page suitable for
587 * pages that do not use PagePrivate/PagePrivate2.
588 *
589 * Pages are locked upon entry and exit.
590 */
591int migrate_page(struct address_space *mapping,
592 struct page *newpage, struct page *page,
593 enum migrate_mode mode)
594{
595 struct folio *newfolio = page_folio(newpage);
596 struct folio *folio = page_folio(page);
597 int rc;
598
599 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */
600
601 rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
602
603 if (rc != MIGRATEPAGE_SUCCESS)
604 return rc;
605
606 if (mode != MIGRATE_SYNC_NO_COPY)
607 folio_migrate_copy(newfolio, folio);
608 else
609 folio_migrate_flags(newfolio, folio);
610 return MIGRATEPAGE_SUCCESS;
611}
612EXPORT_SYMBOL(migrate_page);
613
614#ifdef CONFIG_BLOCK
615/* Returns true if all buffers are successfully locked */
616static bool buffer_migrate_lock_buffers(struct buffer_head *head,
617 enum migrate_mode mode)
618{
619 struct buffer_head *bh = head;
620
621 /* Simple case, sync compaction */
622 if (mode != MIGRATE_ASYNC) {
623 do {
624 lock_buffer(bh);
625 bh = bh->b_this_page;
626
627 } while (bh != head);
628
629 return true;
630 }
631
632 /* async case, we cannot block on lock_buffer so use trylock_buffer */
633 do {
634 if (!trylock_buffer(bh)) {
635 /*
636 * We failed to lock the buffer and cannot stall in
637 * async migration. Release the taken locks
638 */
639 struct buffer_head *failed_bh = bh;
640 bh = head;
641 while (bh != failed_bh) {
642 unlock_buffer(bh);
643 bh = bh->b_this_page;
644 }
645 return false;
646 }
647
648 bh = bh->b_this_page;
649 } while (bh != head);
650 return true;
651}
652
653static int __buffer_migrate_page(struct address_space *mapping,
654 struct page *newpage, struct page *page, enum migrate_mode mode,
655 bool check_refs)
656{
657 struct buffer_head *bh, *head;
658 int rc;
659 int expected_count;
660
661 if (!page_has_buffers(page))
662 return migrate_page(mapping, newpage, page, mode);
663
664 /* Check whether page does not have extra refs before we do more work */
665 expected_count = expected_page_refs(mapping, page);
666 if (page_count(page) != expected_count)
667 return -EAGAIN;
668
669 head = page_buffers(page);
670 if (!buffer_migrate_lock_buffers(head, mode))
671 return -EAGAIN;
672
673 if (check_refs) {
674 bool busy;
675 bool invalidated = false;
676
677recheck_buffers:
678 busy = false;
679 spin_lock(&mapping->private_lock);
680 bh = head;
681 do {
682 if (atomic_read(&bh->b_count)) {
683 busy = true;
684 break;
685 }
686 bh = bh->b_this_page;
687 } while (bh != head);
688 if (busy) {
689 if (invalidated) {
690 rc = -EAGAIN;
691 goto unlock_buffers;
692 }
693 spin_unlock(&mapping->private_lock);
694 invalidate_bh_lrus();
695 invalidated = true;
696 goto recheck_buffers;
697 }
698 }
699
700 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
701 if (rc != MIGRATEPAGE_SUCCESS)
702 goto unlock_buffers;
703
704 attach_page_private(newpage, detach_page_private(page));
705
706 bh = head;
707 do {
708 set_bh_page(bh, newpage, bh_offset(bh));
709 bh = bh->b_this_page;
710
711 } while (bh != head);
712
713 if (mode != MIGRATE_SYNC_NO_COPY)
714 migrate_page_copy(newpage, page);
715 else
716 migrate_page_states(newpage, page);
717
718 rc = MIGRATEPAGE_SUCCESS;
719unlock_buffers:
720 if (check_refs)
721 spin_unlock(&mapping->private_lock);
722 bh = head;
723 do {
724 unlock_buffer(bh);
725 bh = bh->b_this_page;
726
727 } while (bh != head);
728
729 return rc;
730}
731
732/*
733 * Migration function for pages with buffers. This function can only be used
734 * if the underlying filesystem guarantees that no other references to "page"
735 * exist. For example attached buffer heads are accessed only under page lock.
736 */
737int buffer_migrate_page(struct address_space *mapping,
738 struct page *newpage, struct page *page, enum migrate_mode mode)
739{
740 return __buffer_migrate_page(mapping, newpage, page, mode, false);
741}
742EXPORT_SYMBOL(buffer_migrate_page);
743
744/*
745 * Same as above except that this variant is more careful and checks that there
746 * are also no buffer head references. This function is the right one for
747 * mappings where buffer heads are directly looked up and referenced (such as
748 * block device mappings).
749 */
750int buffer_migrate_page_norefs(struct address_space *mapping,
751 struct page *newpage, struct page *page, enum migrate_mode mode)
752{
753 return __buffer_migrate_page(mapping, newpage, page, mode, true);
754}
755#endif
756
757/*
758 * Writeback a page to clean the dirty state
759 */
760static int writeout(struct address_space *mapping, struct page *page)
761{
762 struct folio *folio = page_folio(page);
763 struct writeback_control wbc = {
764 .sync_mode = WB_SYNC_NONE,
765 .nr_to_write = 1,
766 .range_start = 0,
767 .range_end = LLONG_MAX,
768 .for_reclaim = 1
769 };
770 int rc;
771
772 if (!mapping->a_ops->writepage)
773 /* No write method for the address space */
774 return -EINVAL;
775
776 if (!clear_page_dirty_for_io(page))
777 /* Someone else already triggered a write */
778 return -EAGAIN;
779
780 /*
781 * A dirty page may imply that the underlying filesystem has
782 * the page on some queue. So the page must be clean for
783 * migration. Writeout may mean we loose the lock and the
784 * page state is no longer what we checked for earlier.
785 * At this point we know that the migration attempt cannot
786 * be successful.
787 */
788 remove_migration_ptes(folio, folio, false);
789
790 rc = mapping->a_ops->writepage(page, &wbc);
791
792 if (rc != AOP_WRITEPAGE_ACTIVATE)
793 /* unlocked. Relock */
794 lock_page(page);
795
796 return (rc < 0) ? -EIO : -EAGAIN;
797}
798
799/*
800 * Default handling if a filesystem does not provide a migration function.
801 */
802static int fallback_migrate_page(struct address_space *mapping,
803 struct page *newpage, struct page *page, enum migrate_mode mode)
804{
805 if (PageDirty(page)) {
806 /* Only writeback pages in full synchronous migration */
807 switch (mode) {
808 case MIGRATE_SYNC:
809 case MIGRATE_SYNC_NO_COPY:
810 break;
811 default:
812 return -EBUSY;
813 }
814 return writeout(mapping, page);
815 }
816
817 /*
818 * Buffers may be managed in a filesystem specific way.
819 * We must have no buffers or drop them.
820 */
821 if (page_has_private(page) &&
822 !try_to_release_page(page, GFP_KERNEL))
823 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
824
825 return migrate_page(mapping, newpage, page, mode);
826}
827
828/*
829 * Move a page to a newly allocated page
830 * The page is locked and all ptes have been successfully removed.
831 *
832 * The new page will have replaced the old page if this function
833 * is successful.
834 *
835 * Return value:
836 * < 0 - error code
837 * MIGRATEPAGE_SUCCESS - success
838 */
839static int move_to_new_page(struct page *newpage, struct page *page,
840 enum migrate_mode mode)
841{
842 struct address_space *mapping;
843 int rc = -EAGAIN;
844 bool is_lru = !__PageMovable(page);
845
846 VM_BUG_ON_PAGE(!PageLocked(page), page);
847 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
848
849 mapping = page_mapping(page);
850
851 if (likely(is_lru)) {
852 if (!mapping)
853 rc = migrate_page(mapping, newpage, page, mode);
854 else if (mapping->a_ops->migratepage)
855 /*
856 * Most pages have a mapping and most filesystems
857 * provide a migratepage callback. Anonymous pages
858 * are part of swap space which also has its own
859 * migratepage callback. This is the most common path
860 * for page migration.
861 */
862 rc = mapping->a_ops->migratepage(mapping, newpage,
863 page, mode);
864 else
865 rc = fallback_migrate_page(mapping, newpage,
866 page, mode);
867 } else {
868 /*
869 * In case of non-lru page, it could be released after
870 * isolation step. In that case, we shouldn't try migration.
871 */
872 VM_BUG_ON_PAGE(!PageIsolated(page), page);
873 if (!PageMovable(page)) {
874 rc = MIGRATEPAGE_SUCCESS;
875 ClearPageIsolated(page);
876 goto out;
877 }
878
879 rc = mapping->a_ops->migratepage(mapping, newpage,
880 page, mode);
881 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
882 !PageIsolated(page));
883 }
884
885 /*
886 * When successful, old pagecache page->mapping must be cleared before
887 * page is freed; but stats require that PageAnon be left as PageAnon.
888 */
889 if (rc == MIGRATEPAGE_SUCCESS) {
890 if (__PageMovable(page)) {
891 VM_BUG_ON_PAGE(!PageIsolated(page), page);
892
893 /*
894 * We clear PG_movable under page_lock so any compactor
895 * cannot try to migrate this page.
896 */
897 ClearPageIsolated(page);
898 }
899
900 /*
901 * Anonymous and movable page->mapping will be cleared by
902 * free_pages_prepare so don't reset it here for keeping
903 * the type to work PageAnon, for example.
904 */
905 if (!PageMappingFlags(page))
906 page->mapping = NULL;
907
908 if (likely(!is_zone_device_page(newpage)))
909 flush_dcache_folio(page_folio(newpage));
910 }
911out:
912 return rc;
913}
914
915static int __unmap_and_move(struct page *page, struct page *newpage,
916 int force, enum migrate_mode mode)
917{
918 struct folio *folio = page_folio(page);
919 struct folio *dst = page_folio(newpage);
920 int rc = -EAGAIN;
921 bool page_was_mapped = false;
922 struct anon_vma *anon_vma = NULL;
923 bool is_lru = !__PageMovable(page);
924
925 if (!trylock_page(page)) {
926 if (!force || mode == MIGRATE_ASYNC)
927 goto out;
928
929 /*
930 * It's not safe for direct compaction to call lock_page.
931 * For example, during page readahead pages are added locked
932 * to the LRU. Later, when the IO completes the pages are
933 * marked uptodate and unlocked. However, the queueing
934 * could be merging multiple pages for one bio (e.g.
935 * mpage_readahead). If an allocation happens for the
936 * second or third page, the process can end up locking
937 * the same page twice and deadlocking. Rather than
938 * trying to be clever about what pages can be locked,
939 * avoid the use of lock_page for direct compaction
940 * altogether.
941 */
942 if (current->flags & PF_MEMALLOC)
943 goto out;
944
945 lock_page(page);
946 }
947
948 if (PageWriteback(page)) {
949 /*
950 * Only in the case of a full synchronous migration is it
951 * necessary to wait for PageWriteback. In the async case,
952 * the retry loop is too short and in the sync-light case,
953 * the overhead of stalling is too much
954 */
955 switch (mode) {
956 case MIGRATE_SYNC:
957 case MIGRATE_SYNC_NO_COPY:
958 break;
959 default:
960 rc = -EBUSY;
961 goto out_unlock;
962 }
963 if (!force)
964 goto out_unlock;
965 wait_on_page_writeback(page);
966 }
967
968 /*
969 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
970 * we cannot notice that anon_vma is freed while we migrates a page.
971 * This get_anon_vma() delays freeing anon_vma pointer until the end
972 * of migration. File cache pages are no problem because of page_lock()
973 * File Caches may use write_page() or lock_page() in migration, then,
974 * just care Anon page here.
975 *
976 * Only page_get_anon_vma() understands the subtleties of
977 * getting a hold on an anon_vma from outside one of its mms.
978 * But if we cannot get anon_vma, then we won't need it anyway,
979 * because that implies that the anon page is no longer mapped
980 * (and cannot be remapped so long as we hold the page lock).
981 */
982 if (PageAnon(page) && !PageKsm(page))
983 anon_vma = page_get_anon_vma(page);
984
985 /*
986 * Block others from accessing the new page when we get around to
987 * establishing additional references. We are usually the only one
988 * holding a reference to newpage at this point. We used to have a BUG
989 * here if trylock_page(newpage) fails, but would like to allow for
990 * cases where there might be a race with the previous use of newpage.
991 * This is much like races on refcount of oldpage: just don't BUG().
992 */
993 if (unlikely(!trylock_page(newpage)))
994 goto out_unlock;
995
996 if (unlikely(!is_lru)) {
997 rc = move_to_new_page(newpage, page, mode);
998 goto out_unlock_both;
999 }
1000
1001 /*
1002 * Corner case handling:
1003 * 1. When a new swap-cache page is read into, it is added to the LRU
1004 * and treated as swapcache but it has no rmap yet.
1005 * Calling try_to_unmap() against a page->mapping==NULL page will
1006 * trigger a BUG. So handle it here.
1007 * 2. An orphaned page (see truncate_cleanup_page) might have
1008 * fs-private metadata. The page can be picked up due to memory
1009 * offlining. Everywhere else except page reclaim, the page is
1010 * invisible to the vm, so the page can not be migrated. So try to
1011 * free the metadata, so the page can be freed.
1012 */
1013 if (!page->mapping) {
1014 VM_BUG_ON_PAGE(PageAnon(page), page);
1015 if (page_has_private(page)) {
1016 try_to_free_buffers(page);
1017 goto out_unlock_both;
1018 }
1019 } else if (page_mapped(page)) {
1020 /* Establish migration ptes */
1021 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1022 page);
1023 try_to_migrate(folio, 0);
1024 page_was_mapped = true;
1025 }
1026
1027 if (!page_mapped(page))
1028 rc = move_to_new_page(newpage, page, mode);
1029
1030 /*
1031 * When successful, push newpage to LRU immediately: so that if it
1032 * turns out to be an mlocked page, remove_migration_ptes() will
1033 * automatically build up the correct newpage->mlock_count for it.
1034 *
1035 * We would like to do something similar for the old page, when
1036 * unsuccessful, and other cases when a page has been temporarily
1037 * isolated from the unevictable LRU: but this case is the easiest.
1038 */
1039 if (rc == MIGRATEPAGE_SUCCESS) {
1040 lru_cache_add(newpage);
1041 if (page_was_mapped)
1042 lru_add_drain();
1043 }
1044
1045 if (page_was_mapped)
1046 remove_migration_ptes(folio,
1047 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1048
1049out_unlock_both:
1050 unlock_page(newpage);
1051out_unlock:
1052 /* Drop an anon_vma reference if we took one */
1053 if (anon_vma)
1054 put_anon_vma(anon_vma);
1055 unlock_page(page);
1056out:
1057 /*
1058 * If migration is successful, decrease refcount of the newpage,
1059 * which will not free the page because new page owner increased
1060 * refcounter.
1061 */
1062 if (rc == MIGRATEPAGE_SUCCESS)
1063 put_page(newpage);
1064
1065 return rc;
1066}
1067
1068/*
1069 * Obtain the lock on page, remove all ptes and migrate the page
1070 * to the newly allocated page in newpage.
1071 */
1072static int unmap_and_move(new_page_t get_new_page,
1073 free_page_t put_new_page,
1074 unsigned long private, struct page *page,
1075 int force, enum migrate_mode mode,
1076 enum migrate_reason reason,
1077 struct list_head *ret)
1078{
1079 int rc = MIGRATEPAGE_SUCCESS;
1080 struct page *newpage = NULL;
1081
1082 if (!thp_migration_supported() && PageTransHuge(page))
1083 return -ENOSYS;
1084
1085 if (page_count(page) == 1) {
1086 /* page was freed from under us. So we are done. */
1087 ClearPageActive(page);
1088 ClearPageUnevictable(page);
1089 if (unlikely(__PageMovable(page))) {
1090 lock_page(page);
1091 if (!PageMovable(page))
1092 ClearPageIsolated(page);
1093 unlock_page(page);
1094 }
1095 goto out;
1096 }
1097
1098 newpage = get_new_page(page, private);
1099 if (!newpage)
1100 return -ENOMEM;
1101
1102 rc = __unmap_and_move(page, newpage, force, mode);
1103 if (rc == MIGRATEPAGE_SUCCESS)
1104 set_page_owner_migrate_reason(newpage, reason);
1105
1106out:
1107 if (rc != -EAGAIN) {
1108 /*
1109 * A page that has been migrated has all references
1110 * removed and will be freed. A page that has not been
1111 * migrated will have kept its references and be restored.
1112 */
1113 list_del(&page->lru);
1114 }
1115
1116 /*
1117 * If migration is successful, releases reference grabbed during
1118 * isolation. Otherwise, restore the page to right list unless
1119 * we want to retry.
1120 */
1121 if (rc == MIGRATEPAGE_SUCCESS) {
1122 /*
1123 * Compaction can migrate also non-LRU pages which are
1124 * not accounted to NR_ISOLATED_*. They can be recognized
1125 * as __PageMovable
1126 */
1127 if (likely(!__PageMovable(page)))
1128 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1129 page_is_file_lru(page), -thp_nr_pages(page));
1130
1131 if (reason != MR_MEMORY_FAILURE)
1132 /*
1133 * We release the page in page_handle_poison.
1134 */
1135 put_page(page);
1136 } else {
1137 if (rc != -EAGAIN)
1138 list_add_tail(&page->lru, ret);
1139
1140 if (put_new_page)
1141 put_new_page(newpage, private);
1142 else
1143 put_page(newpage);
1144 }
1145
1146 return rc;
1147}
1148
1149/*
1150 * Counterpart of unmap_and_move_page() for hugepage migration.
1151 *
1152 * This function doesn't wait the completion of hugepage I/O
1153 * because there is no race between I/O and migration for hugepage.
1154 * Note that currently hugepage I/O occurs only in direct I/O
1155 * where no lock is held and PG_writeback is irrelevant,
1156 * and writeback status of all subpages are counted in the reference
1157 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1158 * under direct I/O, the reference of the head page is 512 and a bit more.)
1159 * This means that when we try to migrate hugepage whose subpages are
1160 * doing direct I/O, some references remain after try_to_unmap() and
1161 * hugepage migration fails without data corruption.
1162 *
1163 * There is also no race when direct I/O is issued on the page under migration,
1164 * because then pte is replaced with migration swap entry and direct I/O code
1165 * will wait in the page fault for migration to complete.
1166 */
1167static int unmap_and_move_huge_page(new_page_t get_new_page,
1168 free_page_t put_new_page, unsigned long private,
1169 struct page *hpage, int force,
1170 enum migrate_mode mode, int reason,
1171 struct list_head *ret)
1172{
1173 struct folio *dst, *src = page_folio(hpage);
1174 int rc = -EAGAIN;
1175 int page_was_mapped = 0;
1176 struct page *new_hpage;
1177 struct anon_vma *anon_vma = NULL;
1178 struct address_space *mapping = NULL;
1179
1180 /*
1181 * Migratability of hugepages depends on architectures and their size.
1182 * This check is necessary because some callers of hugepage migration
1183 * like soft offline and memory hotremove don't walk through page
1184 * tables or check whether the hugepage is pmd-based or not before
1185 * kicking migration.
1186 */
1187 if (!hugepage_migration_supported(page_hstate(hpage))) {
1188 list_move_tail(&hpage->lru, ret);
1189 return -ENOSYS;
1190 }
1191
1192 if (page_count(hpage) == 1) {
1193 /* page was freed from under us. So we are done. */
1194 putback_active_hugepage(hpage);
1195 return MIGRATEPAGE_SUCCESS;
1196 }
1197
1198 new_hpage = get_new_page(hpage, private);
1199 if (!new_hpage)
1200 return -ENOMEM;
1201 dst = page_folio(new_hpage);
1202
1203 if (!trylock_page(hpage)) {
1204 if (!force)
1205 goto out;
1206 switch (mode) {
1207 case MIGRATE_SYNC:
1208 case MIGRATE_SYNC_NO_COPY:
1209 break;
1210 default:
1211 goto out;
1212 }
1213 lock_page(hpage);
1214 }
1215
1216 /*
1217 * Check for pages which are in the process of being freed. Without
1218 * page_mapping() set, hugetlbfs specific move page routine will not
1219 * be called and we could leak usage counts for subpools.
1220 */
1221 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1222 rc = -EBUSY;
1223 goto out_unlock;
1224 }
1225
1226 if (PageAnon(hpage))
1227 anon_vma = page_get_anon_vma(hpage);
1228
1229 if (unlikely(!trylock_page(new_hpage)))
1230 goto put_anon;
1231
1232 if (page_mapped(hpage)) {
1233 bool mapping_locked = false;
1234 enum ttu_flags ttu = 0;
1235
1236 if (!PageAnon(hpage)) {
1237 /*
1238 * In shared mappings, try_to_unmap could potentially
1239 * call huge_pmd_unshare. Because of this, take
1240 * semaphore in write mode here and set TTU_RMAP_LOCKED
1241 * to let lower levels know we have taken the lock.
1242 */
1243 mapping = hugetlb_page_mapping_lock_write(hpage);
1244 if (unlikely(!mapping))
1245 goto unlock_put_anon;
1246
1247 mapping_locked = true;
1248 ttu |= TTU_RMAP_LOCKED;
1249 }
1250
1251 try_to_migrate(src, ttu);
1252 page_was_mapped = 1;
1253
1254 if (mapping_locked)
1255 i_mmap_unlock_write(mapping);
1256 }
1257
1258 if (!page_mapped(hpage))
1259 rc = move_to_new_page(new_hpage, hpage, mode);
1260
1261 if (page_was_mapped)
1262 remove_migration_ptes(src,
1263 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1264
1265unlock_put_anon:
1266 unlock_page(new_hpage);
1267
1268put_anon:
1269 if (anon_vma)
1270 put_anon_vma(anon_vma);
1271
1272 if (rc == MIGRATEPAGE_SUCCESS) {
1273 move_hugetlb_state(hpage, new_hpage, reason);
1274 put_new_page = NULL;
1275 }
1276
1277out_unlock:
1278 unlock_page(hpage);
1279out:
1280 if (rc == MIGRATEPAGE_SUCCESS)
1281 putback_active_hugepage(hpage);
1282 else if (rc != -EAGAIN)
1283 list_move_tail(&hpage->lru, ret);
1284
1285 /*
1286 * If migration was not successful and there's a freeing callback, use
1287 * it. Otherwise, put_page() will drop the reference grabbed during
1288 * isolation.
1289 */
1290 if (put_new_page)
1291 put_new_page(new_hpage, private);
1292 else
1293 putback_active_hugepage(new_hpage);
1294
1295 return rc;
1296}
1297
1298static inline int try_split_thp(struct page *page, struct page **page2,
1299 struct list_head *from)
1300{
1301 int rc = 0;
1302
1303 lock_page(page);
1304 rc = split_huge_page_to_list(page, from);
1305 unlock_page(page);
1306 if (!rc)
1307 list_safe_reset_next(page, *page2, lru);
1308
1309 return rc;
1310}
1311
1312/*
1313 * migrate_pages - migrate the pages specified in a list, to the free pages
1314 * supplied as the target for the page migration
1315 *
1316 * @from: The list of pages to be migrated.
1317 * @get_new_page: The function used to allocate free pages to be used
1318 * as the target of the page migration.
1319 * @put_new_page: The function used to free target pages if migration
1320 * fails, or NULL if no special handling is necessary.
1321 * @private: Private data to be passed on to get_new_page()
1322 * @mode: The migration mode that specifies the constraints for
1323 * page migration, if any.
1324 * @reason: The reason for page migration.
1325 * @ret_succeeded: Set to the number of normal pages migrated successfully if
1326 * the caller passes a non-NULL pointer.
1327 *
1328 * The function returns after 10 attempts or if no pages are movable any more
1329 * because the list has become empty or no retryable pages exist any more.
1330 * It is caller's responsibility to call putback_movable_pages() to return pages
1331 * to the LRU or free list only if ret != 0.
1332 *
1333 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1334 * an error code. The number of THP splits will be considered as the number of
1335 * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1336 */
1337int migrate_pages(struct list_head *from, new_page_t get_new_page,
1338 free_page_t put_new_page, unsigned long private,
1339 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1340{
1341 int retry = 1;
1342 int thp_retry = 1;
1343 int nr_failed = 0;
1344 int nr_failed_pages = 0;
1345 int nr_succeeded = 0;
1346 int nr_thp_succeeded = 0;
1347 int nr_thp_failed = 0;
1348 int nr_thp_split = 0;
1349 int pass = 0;
1350 bool is_thp = false;
1351 struct page *page;
1352 struct page *page2;
1353 int rc, nr_subpages;
1354 LIST_HEAD(ret_pages);
1355 LIST_HEAD(thp_split_pages);
1356 bool nosplit = (reason == MR_NUMA_MISPLACED);
1357 bool no_subpage_counting = false;
1358
1359 trace_mm_migrate_pages_start(mode, reason);
1360
1361thp_subpage_migration:
1362 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1363 retry = 0;
1364 thp_retry = 0;
1365
1366 list_for_each_entry_safe(page, page2, from, lru) {
1367retry:
1368 /*
1369 * THP statistics is based on the source huge page.
1370 * Capture required information that might get lost
1371 * during migration.
1372 */
1373 is_thp = PageTransHuge(page) && !PageHuge(page);
1374 nr_subpages = compound_nr(page);
1375 cond_resched();
1376
1377 if (PageHuge(page))
1378 rc = unmap_and_move_huge_page(get_new_page,
1379 put_new_page, private, page,
1380 pass > 2, mode, reason,
1381 &ret_pages);
1382 else
1383 rc = unmap_and_move(get_new_page, put_new_page,
1384 private, page, pass > 2, mode,
1385 reason, &ret_pages);
1386 /*
1387 * The rules are:
1388 * Success: non hugetlb page will be freed, hugetlb
1389 * page will be put back
1390 * -EAGAIN: stay on the from list
1391 * -ENOMEM: stay on the from list
1392 * Other errno: put on ret_pages list then splice to
1393 * from list
1394 */
1395 switch(rc) {
1396 /*
1397 * THP migration might be unsupported or the
1398 * allocation could've failed so we should
1399 * retry on the same page with the THP split
1400 * to base pages.
1401 *
1402 * Head page is retried immediately and tail
1403 * pages are added to the tail of the list so
1404 * we encounter them after the rest of the list
1405 * is processed.
1406 */
1407 case -ENOSYS:
1408 /* THP migration is unsupported */
1409 if (is_thp) {
1410 nr_thp_failed++;
1411 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1412 nr_thp_split++;
1413 goto retry;
1414 }
1415
1416 nr_failed_pages += nr_subpages;
1417 break;
1418 }
1419
1420 /* Hugetlb migration is unsupported */
1421 if (!no_subpage_counting)
1422 nr_failed++;
1423 nr_failed_pages += nr_subpages;
1424 break;
1425 case -ENOMEM:
1426 /*
1427 * When memory is low, don't bother to try to migrate
1428 * other pages, just exit.
1429 * THP NUMA faulting doesn't split THP to retry.
1430 */
1431 if (is_thp && !nosplit) {
1432 nr_thp_failed++;
1433 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1434 nr_thp_split++;
1435 goto retry;
1436 }
1437
1438 nr_failed_pages += nr_subpages;
1439 goto out;
1440 }
1441
1442 if (!no_subpage_counting)
1443 nr_failed++;
1444 nr_failed_pages += nr_subpages;
1445 goto out;
1446 case -EAGAIN:
1447 if (is_thp) {
1448 thp_retry++;
1449 break;
1450 }
1451 retry++;
1452 break;
1453 case MIGRATEPAGE_SUCCESS:
1454 nr_succeeded += nr_subpages;
1455 if (is_thp) {
1456 nr_thp_succeeded++;
1457 break;
1458 }
1459 break;
1460 default:
1461 /*
1462 * Permanent failure (-EBUSY, etc.):
1463 * unlike -EAGAIN case, the failed page is
1464 * removed from migration page list and not
1465 * retried in the next outer loop.
1466 */
1467 if (is_thp) {
1468 nr_thp_failed++;
1469 nr_failed_pages += nr_subpages;
1470 break;
1471 }
1472
1473 if (!no_subpage_counting)
1474 nr_failed++;
1475 nr_failed_pages += nr_subpages;
1476 break;
1477 }
1478 }
1479 }
1480 nr_failed += retry;
1481 nr_thp_failed += thp_retry;
1482 /*
1483 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1484 * counting in this round, since all subpages of a THP is counted
1485 * as 1 failure in the first round.
1486 */
1487 if (!list_empty(&thp_split_pages)) {
1488 /*
1489 * Move non-migrated pages (after 10 retries) to ret_pages
1490 * to avoid migrating them again.
1491 */
1492 list_splice_init(from, &ret_pages);
1493 list_splice_init(&thp_split_pages, from);
1494 no_subpage_counting = true;
1495 retry = 1;
1496 goto thp_subpage_migration;
1497 }
1498
1499 rc = nr_failed + nr_thp_failed;
1500out:
1501 /*
1502 * Put the permanent failure page back to migration list, they
1503 * will be put back to the right list by the caller.
1504 */
1505 list_splice(&ret_pages, from);
1506
1507 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1508 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1509 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1510 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1511 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1512 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1513 nr_thp_failed, nr_thp_split, mode, reason);
1514
1515 if (ret_succeeded)
1516 *ret_succeeded = nr_succeeded;
1517
1518 return rc;
1519}
1520
1521struct page *alloc_migration_target(struct page *page, unsigned long private)
1522{
1523 struct migration_target_control *mtc;
1524 gfp_t gfp_mask;
1525 unsigned int order = 0;
1526 struct page *new_page = NULL;
1527 int nid;
1528 int zidx;
1529
1530 mtc = (struct migration_target_control *)private;
1531 gfp_mask = mtc->gfp_mask;
1532 nid = mtc->nid;
1533 if (nid == NUMA_NO_NODE)
1534 nid = page_to_nid(page);
1535
1536 if (PageHuge(page)) {
1537 struct hstate *h = page_hstate(compound_head(page));
1538
1539 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1540 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1541 }
1542
1543 if (PageTransHuge(page)) {
1544 /*
1545 * clear __GFP_RECLAIM to make the migration callback
1546 * consistent with regular THP allocations.
1547 */
1548 gfp_mask &= ~__GFP_RECLAIM;
1549 gfp_mask |= GFP_TRANSHUGE;
1550 order = HPAGE_PMD_ORDER;
1551 }
1552 zidx = zone_idx(page_zone(page));
1553 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1554 gfp_mask |= __GFP_HIGHMEM;
1555
1556 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1557
1558 if (new_page && PageTransHuge(new_page))
1559 prep_transhuge_page(new_page);
1560
1561 return new_page;
1562}
1563
1564#ifdef CONFIG_NUMA
1565
1566static int store_status(int __user *status, int start, int value, int nr)
1567{
1568 while (nr-- > 0) {
1569 if (put_user(value, status + start))
1570 return -EFAULT;
1571 start++;
1572 }
1573
1574 return 0;
1575}
1576
1577static int do_move_pages_to_node(struct mm_struct *mm,
1578 struct list_head *pagelist, int node)
1579{
1580 int err;
1581 struct migration_target_control mtc = {
1582 .nid = node,
1583 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1584 };
1585
1586 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1587 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1588 if (err)
1589 putback_movable_pages(pagelist);
1590 return err;
1591}
1592
1593/*
1594 * Resolves the given address to a struct page, isolates it from the LRU and
1595 * puts it to the given pagelist.
1596 * Returns:
1597 * errno - if the page cannot be found/isolated
1598 * 0 - when it doesn't have to be migrated because it is already on the
1599 * target node
1600 * 1 - when it has been queued
1601 */
1602static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1603 int node, struct list_head *pagelist, bool migrate_all)
1604{
1605 struct vm_area_struct *vma;
1606 struct page *page;
1607 int err;
1608
1609 mmap_read_lock(mm);
1610 err = -EFAULT;
1611 vma = find_vma(mm, addr);
1612 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1613 goto out;
1614
1615 /* FOLL_DUMP to ignore special (like zero) pages */
1616 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1617
1618 err = PTR_ERR(page);
1619 if (IS_ERR(page))
1620 goto out;
1621
1622 err = -ENOENT;
1623 if (!page)
1624 goto out;
1625
1626 err = 0;
1627 if (page_to_nid(page) == node)
1628 goto out_putpage;
1629
1630 err = -EACCES;
1631 if (page_mapcount(page) > 1 && !migrate_all)
1632 goto out_putpage;
1633
1634 if (PageHuge(page)) {
1635 if (PageHead(page)) {
1636 isolate_huge_page(page, pagelist);
1637 err = 1;
1638 }
1639 } else {
1640 struct page *head;
1641
1642 head = compound_head(page);
1643 err = isolate_lru_page(head);
1644 if (err)
1645 goto out_putpage;
1646
1647 err = 1;
1648 list_add_tail(&head->lru, pagelist);
1649 mod_node_page_state(page_pgdat(head),
1650 NR_ISOLATED_ANON + page_is_file_lru(head),
1651 thp_nr_pages(head));
1652 }
1653out_putpage:
1654 /*
1655 * Either remove the duplicate refcount from
1656 * isolate_lru_page() or drop the page ref if it was
1657 * not isolated.
1658 */
1659 put_page(page);
1660out:
1661 mmap_read_unlock(mm);
1662 return err;
1663}
1664
1665static int move_pages_and_store_status(struct mm_struct *mm, int node,
1666 struct list_head *pagelist, int __user *status,
1667 int start, int i, unsigned long nr_pages)
1668{
1669 int err;
1670
1671 if (list_empty(pagelist))
1672 return 0;
1673
1674 err = do_move_pages_to_node(mm, pagelist, node);
1675 if (err) {
1676 /*
1677 * Positive err means the number of failed
1678 * pages to migrate. Since we are going to
1679 * abort and return the number of non-migrated
1680 * pages, so need to include the rest of the
1681 * nr_pages that have not been attempted as
1682 * well.
1683 */
1684 if (err > 0)
1685 err += nr_pages - i - 1;
1686 return err;
1687 }
1688 return store_status(status, start, node, i - start);
1689}
1690
1691/*
1692 * Migrate an array of page address onto an array of nodes and fill
1693 * the corresponding array of status.
1694 */
1695static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1696 unsigned long nr_pages,
1697 const void __user * __user *pages,
1698 const int __user *nodes,
1699 int __user *status, int flags)
1700{
1701 int current_node = NUMA_NO_NODE;
1702 LIST_HEAD(pagelist);
1703 int start, i;
1704 int err = 0, err1;
1705
1706 lru_cache_disable();
1707
1708 for (i = start = 0; i < nr_pages; i++) {
1709 const void __user *p;
1710 unsigned long addr;
1711 int node;
1712
1713 err = -EFAULT;
1714 if (get_user(p, pages + i))
1715 goto out_flush;
1716 if (get_user(node, nodes + i))
1717 goto out_flush;
1718 addr = (unsigned long)untagged_addr(p);
1719
1720 err = -ENODEV;
1721 if (node < 0 || node >= MAX_NUMNODES)
1722 goto out_flush;
1723 if (!node_state(node, N_MEMORY))
1724 goto out_flush;
1725
1726 err = -EACCES;
1727 if (!node_isset(node, task_nodes))
1728 goto out_flush;
1729
1730 if (current_node == NUMA_NO_NODE) {
1731 current_node = node;
1732 start = i;
1733 } else if (node != current_node) {
1734 err = move_pages_and_store_status(mm, current_node,
1735 &pagelist, status, start, i, nr_pages);
1736 if (err)
1737 goto out;
1738 start = i;
1739 current_node = node;
1740 }
1741
1742 /*
1743 * Errors in the page lookup or isolation are not fatal and we simply
1744 * report them via status
1745 */
1746 err = add_page_for_migration(mm, addr, current_node,
1747 &pagelist, flags & MPOL_MF_MOVE_ALL);
1748
1749 if (err > 0) {
1750 /* The page is successfully queued for migration */
1751 continue;
1752 }
1753
1754 /*
1755 * The move_pages() man page does not have an -EEXIST choice, so
1756 * use -EFAULT instead.
1757 */
1758 if (err == -EEXIST)
1759 err = -EFAULT;
1760
1761 /*
1762 * If the page is already on the target node (!err), store the
1763 * node, otherwise, store the err.
1764 */
1765 err = store_status(status, i, err ? : current_node, 1);
1766 if (err)
1767 goto out_flush;
1768
1769 err = move_pages_and_store_status(mm, current_node, &pagelist,
1770 status, start, i, nr_pages);
1771 if (err)
1772 goto out;
1773 current_node = NUMA_NO_NODE;
1774 }
1775out_flush:
1776 /* Make sure we do not overwrite the existing error */
1777 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1778 status, start, i, nr_pages);
1779 if (err >= 0)
1780 err = err1;
1781out:
1782 lru_cache_enable();
1783 return err;
1784}
1785
1786/*
1787 * Determine the nodes of an array of pages and store it in an array of status.
1788 */
1789static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1790 const void __user **pages, int *status)
1791{
1792 unsigned long i;
1793
1794 mmap_read_lock(mm);
1795
1796 for (i = 0; i < nr_pages; i++) {
1797 unsigned long addr = (unsigned long)(*pages);
1798 struct vm_area_struct *vma;
1799 struct page *page;
1800 int err = -EFAULT;
1801
1802 vma = vma_lookup(mm, addr);
1803 if (!vma)
1804 goto set_status;
1805
1806 /* FOLL_DUMP to ignore special (like zero) pages */
1807 page = follow_page(vma, addr, FOLL_DUMP);
1808
1809 err = PTR_ERR(page);
1810 if (IS_ERR(page))
1811 goto set_status;
1812
1813 err = page ? page_to_nid(page) : -ENOENT;
1814set_status:
1815 *status = err;
1816
1817 pages++;
1818 status++;
1819 }
1820
1821 mmap_read_unlock(mm);
1822}
1823
1824static int get_compat_pages_array(const void __user *chunk_pages[],
1825 const void __user * __user *pages,
1826 unsigned long chunk_nr)
1827{
1828 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1829 compat_uptr_t p;
1830 int i;
1831
1832 for (i = 0; i < chunk_nr; i++) {
1833 if (get_user(p, pages32 + i))
1834 return -EFAULT;
1835 chunk_pages[i] = compat_ptr(p);
1836 }
1837
1838 return 0;
1839}
1840
1841/*
1842 * Determine the nodes of a user array of pages and store it in
1843 * a user array of status.
1844 */
1845static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1846 const void __user * __user *pages,
1847 int __user *status)
1848{
1849#define DO_PAGES_STAT_CHUNK_NR 16
1850 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1851 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1852
1853 while (nr_pages) {
1854 unsigned long chunk_nr;
1855
1856 chunk_nr = nr_pages;
1857 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1858 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1859
1860 if (in_compat_syscall()) {
1861 if (get_compat_pages_array(chunk_pages, pages,
1862 chunk_nr))
1863 break;
1864 } else {
1865 if (copy_from_user(chunk_pages, pages,
1866 chunk_nr * sizeof(*chunk_pages)))
1867 break;
1868 }
1869
1870 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1871
1872 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1873 break;
1874
1875 pages += chunk_nr;
1876 status += chunk_nr;
1877 nr_pages -= chunk_nr;
1878 }
1879 return nr_pages ? -EFAULT : 0;
1880}
1881
1882static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1883{
1884 struct task_struct *task;
1885 struct mm_struct *mm;
1886
1887 /*
1888 * There is no need to check if current process has the right to modify
1889 * the specified process when they are same.
1890 */
1891 if (!pid) {
1892 mmget(current->mm);
1893 *mem_nodes = cpuset_mems_allowed(current);
1894 return current->mm;
1895 }
1896
1897 /* Find the mm_struct */
1898 rcu_read_lock();
1899 task = find_task_by_vpid(pid);
1900 if (!task) {
1901 rcu_read_unlock();
1902 return ERR_PTR(-ESRCH);
1903 }
1904 get_task_struct(task);
1905
1906 /*
1907 * Check if this process has the right to modify the specified
1908 * process. Use the regular "ptrace_may_access()" checks.
1909 */
1910 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1911 rcu_read_unlock();
1912 mm = ERR_PTR(-EPERM);
1913 goto out;
1914 }
1915 rcu_read_unlock();
1916
1917 mm = ERR_PTR(security_task_movememory(task));
1918 if (IS_ERR(mm))
1919 goto out;
1920 *mem_nodes = cpuset_mems_allowed(task);
1921 mm = get_task_mm(task);
1922out:
1923 put_task_struct(task);
1924 if (!mm)
1925 mm = ERR_PTR(-EINVAL);
1926 return mm;
1927}
1928
1929/*
1930 * Move a list of pages in the address space of the currently executing
1931 * process.
1932 */
1933static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1934 const void __user * __user *pages,
1935 const int __user *nodes,
1936 int __user *status, int flags)
1937{
1938 struct mm_struct *mm;
1939 int err;
1940 nodemask_t task_nodes;
1941
1942 /* Check flags */
1943 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1944 return -EINVAL;
1945
1946 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1947 return -EPERM;
1948
1949 mm = find_mm_struct(pid, &task_nodes);
1950 if (IS_ERR(mm))
1951 return PTR_ERR(mm);
1952
1953 if (nodes)
1954 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1955 nodes, status, flags);
1956 else
1957 err = do_pages_stat(mm, nr_pages, pages, status);
1958
1959 mmput(mm);
1960 return err;
1961}
1962
1963SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1964 const void __user * __user *, pages,
1965 const int __user *, nodes,
1966 int __user *, status, int, flags)
1967{
1968 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1969}
1970
1971#ifdef CONFIG_NUMA_BALANCING
1972/*
1973 * Returns true if this is a safe migration target node for misplaced NUMA
1974 * pages. Currently it only checks the watermarks which crude
1975 */
1976static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1977 unsigned long nr_migrate_pages)
1978{
1979 int z;
1980
1981 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1982 struct zone *zone = pgdat->node_zones + z;
1983
1984 if (!populated_zone(zone))
1985 continue;
1986
1987 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1988 if (!zone_watermark_ok(zone, 0,
1989 high_wmark_pages(zone) +
1990 nr_migrate_pages,
1991 ZONE_MOVABLE, 0))
1992 continue;
1993 return true;
1994 }
1995 return false;
1996}
1997
1998static struct page *alloc_misplaced_dst_page(struct page *page,
1999 unsigned long data)
2000{
2001 int nid = (int) data;
2002 struct page *newpage;
2003
2004 newpage = __alloc_pages_node(nid,
2005 (GFP_HIGHUSER_MOVABLE |
2006 __GFP_THISNODE | __GFP_NOMEMALLOC |
2007 __GFP_NORETRY | __GFP_NOWARN) &
2008 ~__GFP_RECLAIM, 0);
2009
2010 return newpage;
2011}
2012
2013static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2014 unsigned long data)
2015{
2016 int nid = (int) data;
2017 struct page *newpage;
2018
2019 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2020 HPAGE_PMD_ORDER);
2021 if (!newpage)
2022 goto out;
2023
2024 prep_transhuge_page(newpage);
2025
2026out:
2027 return newpage;
2028}
2029
2030static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2031{
2032 int page_lru;
2033 int nr_pages = thp_nr_pages(page);
2034 int order = compound_order(page);
2035
2036 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2037
2038 /* Do not migrate THP mapped by multiple processes */
2039 if (PageTransHuge(page) && total_mapcount(page) > 1)
2040 return 0;
2041
2042 /* Avoid migrating to a node that is nearly full */
2043 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2044 int z;
2045
2046 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2047 return 0;
2048 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2049 if (populated_zone(pgdat->node_zones + z))
2050 break;
2051 }
2052 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2053 return 0;
2054 }
2055
2056 if (isolate_lru_page(page))
2057 return 0;
2058
2059 page_lru = page_is_file_lru(page);
2060 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2061 nr_pages);
2062
2063 /*
2064 * Isolating the page has taken another reference, so the
2065 * caller's reference can be safely dropped without the page
2066 * disappearing underneath us during migration.
2067 */
2068 put_page(page);
2069 return 1;
2070}
2071
2072/*
2073 * Attempt to migrate a misplaced page to the specified destination
2074 * node. Caller is expected to have an elevated reference count on
2075 * the page that will be dropped by this function before returning.
2076 */
2077int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2078 int node)
2079{
2080 pg_data_t *pgdat = NODE_DATA(node);
2081 int isolated;
2082 int nr_remaining;
2083 unsigned int nr_succeeded;
2084 LIST_HEAD(migratepages);
2085 new_page_t *new;
2086 bool compound;
2087 int nr_pages = thp_nr_pages(page);
2088
2089 /*
2090 * PTE mapped THP or HugeTLB page can't reach here so the page could
2091 * be either base page or THP. And it must be head page if it is
2092 * THP.
2093 */
2094 compound = PageTransHuge(page);
2095
2096 if (compound)
2097 new = alloc_misplaced_dst_page_thp;
2098 else
2099 new = alloc_misplaced_dst_page;
2100
2101 /*
2102 * Don't migrate file pages that are mapped in multiple processes
2103 * with execute permissions as they are probably shared libraries.
2104 */
2105 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2106 (vma->vm_flags & VM_EXEC))
2107 goto out;
2108
2109 /*
2110 * Also do not migrate dirty pages as not all filesystems can move
2111 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2112 */
2113 if (page_is_file_lru(page) && PageDirty(page))
2114 goto out;
2115
2116 isolated = numamigrate_isolate_page(pgdat, page);
2117 if (!isolated)
2118 goto out;
2119
2120 list_add(&page->lru, &migratepages);
2121 nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2122 MIGRATE_ASYNC, MR_NUMA_MISPLACED,
2123 &nr_succeeded);
2124 if (nr_remaining) {
2125 if (!list_empty(&migratepages)) {
2126 list_del(&page->lru);
2127 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2128 page_is_file_lru(page), -nr_pages);
2129 putback_lru_page(page);
2130 }
2131 isolated = 0;
2132 }
2133 if (nr_succeeded) {
2134 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2135 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2136 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2137 nr_succeeded);
2138 }
2139 BUG_ON(!list_empty(&migratepages));
2140 return isolated;
2141
2142out:
2143 put_page(page);
2144 return 0;
2145}
2146#endif /* CONFIG_NUMA_BALANCING */
2147#endif /* CONFIG_NUMA */
2148
2149/*
2150 * node_demotion[] example:
2151 *
2152 * Consider a system with two sockets. Each socket has
2153 * three classes of memory attached: fast, medium and slow.
2154 * Each memory class is placed in its own NUMA node. The
2155 * CPUs are placed in the node with the "fast" memory. The
2156 * 6 NUMA nodes (0-5) might be split among the sockets like
2157 * this:
2158 *
2159 * Socket A: 0, 1, 2
2160 * Socket B: 3, 4, 5
2161 *
2162 * When Node 0 fills up, its memory should be migrated to
2163 * Node 1. When Node 1 fills up, it should be migrated to
2164 * Node 2. The migration path start on the nodes with the
2165 * processors (since allocations default to this node) and
2166 * fast memory, progress through medium and end with the
2167 * slow memory:
2168 *
2169 * 0 -> 1 -> 2 -> stop
2170 * 3 -> 4 -> 5 -> stop
2171 *
2172 * This is represented in the node_demotion[] like this:
2173 *
2174 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2175 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2176 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2177 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2178 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2179 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2180 *
2181 * Moreover some systems may have multiple slow memory nodes.
2182 * Suppose a system has one socket with 3 memory nodes, node 0
2183 * is fast memory type, and node 1/2 both are slow memory
2184 * type, and the distance between fast memory node and slow
2185 * memory node is same. So the migration path should be:
2186 *
2187 * 0 -> 1/2 -> stop
2188 *
2189 * This is represented in the node_demotion[] like this:
2190 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2191 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2192 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2193 */
2194
2195/*
2196 * Writes to this array occur without locking. Cycles are
2197 * not allowed: Node X demotes to Y which demotes to X...
2198 *
2199 * If multiple reads are performed, a single rcu_read_lock()
2200 * must be held over all reads to ensure that no cycles are
2201 * observed.
2202 */
2203#define DEFAULT_DEMOTION_TARGET_NODES 15
2204
2205#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2206#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
2207#else
2208#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
2209#endif
2210
2211struct demotion_nodes {
2212 unsigned short nr;
2213 short nodes[DEMOTION_TARGET_NODES];
2214};
2215
2216static struct demotion_nodes *node_demotion __read_mostly;
2217
2218/**
2219 * next_demotion_node() - Get the next node in the demotion path
2220 * @node: The starting node to lookup the next node
2221 *
2222 * Return: node id for next memory node in the demotion path hierarchy
2223 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
2224 * @node online or guarantee that it *continues* to be the next demotion
2225 * target.
2226 */
2227int next_demotion_node(int node)
2228{
2229 struct demotion_nodes *nd;
2230 unsigned short target_nr, index;
2231 int target;
2232
2233 if (!node_demotion)
2234 return NUMA_NO_NODE;
2235
2236 nd = &node_demotion[node];
2237
2238 /*
2239 * node_demotion[] is updated without excluding this
2240 * function from running. RCU doesn't provide any
2241 * compiler barriers, so the READ_ONCE() is required
2242 * to avoid compiler reordering or read merging.
2243 *
2244 * Make sure to use RCU over entire code blocks if
2245 * node_demotion[] reads need to be consistent.
2246 */
2247 rcu_read_lock();
2248 target_nr = READ_ONCE(nd->nr);
2249
2250 switch (target_nr) {
2251 case 0:
2252 target = NUMA_NO_NODE;
2253 goto out;
2254 case 1:
2255 index = 0;
2256 break;
2257 default:
2258 /*
2259 * If there are multiple target nodes, just select one
2260 * target node randomly.
2261 *
2262 * In addition, we can also use round-robin to select
2263 * target node, but we should introduce another variable
2264 * for node_demotion[] to record last selected target node,
2265 * that may cause cache ping-pong due to the changing of
2266 * last target node. Or introducing per-cpu data to avoid
2267 * caching issue, which seems more complicated. So selecting
2268 * target node randomly seems better until now.
2269 */
2270 index = get_random_int() % target_nr;
2271 break;
2272 }
2273
2274 target = READ_ONCE(nd->nodes[index]);
2275
2276out:
2277 rcu_read_unlock();
2278 return target;
2279}
2280
2281#if defined(CONFIG_HOTPLUG_CPU)
2282/* Disable reclaim-based migration. */
2283static void __disable_all_migrate_targets(void)
2284{
2285 int node, i;
2286
2287 if (!node_demotion)
2288 return;
2289
2290 for_each_online_node(node) {
2291 node_demotion[node].nr = 0;
2292 for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2293 node_demotion[node].nodes[i] = NUMA_NO_NODE;
2294 }
2295}
2296
2297static void disable_all_migrate_targets(void)
2298{
2299 __disable_all_migrate_targets();
2300
2301 /*
2302 * Ensure that the "disable" is visible across the system.
2303 * Readers will see either a combination of before+disable
2304 * state or disable+after. They will never see before and
2305 * after state together.
2306 *
2307 * The before+after state together might have cycles and
2308 * could cause readers to do things like loop until this
2309 * function finishes. This ensures they can only see a
2310 * single "bad" read and would, for instance, only loop
2311 * once.
2312 */
2313 synchronize_rcu();
2314}
2315
2316/*
2317 * Find an automatic demotion target for 'node'.
2318 * Failing here is OK. It might just indicate
2319 * being at the end of a chain.
2320 */
2321static int establish_migrate_target(int node, nodemask_t *used,
2322 int best_distance)
2323{
2324 int migration_target, index, val;
2325 struct demotion_nodes *nd;
2326
2327 if (!node_demotion)
2328 return NUMA_NO_NODE;
2329
2330 nd = &node_demotion[node];
2331
2332 migration_target = find_next_best_node(node, used);
2333 if (migration_target == NUMA_NO_NODE)
2334 return NUMA_NO_NODE;
2335
2336 /*
2337 * If the node has been set a migration target node before,
2338 * which means it's the best distance between them. Still
2339 * check if this node can be demoted to other target nodes
2340 * if they have a same best distance.
2341 */
2342 if (best_distance != -1) {
2343 val = node_distance(node, migration_target);
2344 if (val > best_distance)
2345 goto out_clear;
2346 }
2347
2348 index = nd->nr;
2349 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2350 "Exceeds maximum demotion target nodes\n"))
2351 goto out_clear;
2352
2353 nd->nodes[index] = migration_target;
2354 nd->nr++;
2355
2356 return migration_target;
2357out_clear:
2358 node_clear(migration_target, *used);
2359 return NUMA_NO_NODE;
2360}
2361
2362/*
2363 * When memory fills up on a node, memory contents can be
2364 * automatically migrated to another node instead of
2365 * discarded at reclaim.
2366 *
2367 * Establish a "migration path" which will start at nodes
2368 * with CPUs and will follow the priorities used to build the
2369 * page allocator zonelists.
2370 *
2371 * The difference here is that cycles must be avoided. If
2372 * node0 migrates to node1, then neither node1, nor anything
2373 * node1 migrates to can migrate to node0. Also one node can
2374 * be migrated to multiple nodes if the target nodes all have
2375 * a same best-distance against the source node.
2376 *
2377 * This function can run simultaneously with readers of
2378 * node_demotion[]. However, it can not run simultaneously
2379 * with itself. Exclusion is provided by memory hotplug events
2380 * being single-threaded.
2381 */
2382static void __set_migration_target_nodes(void)
2383{
2384 nodemask_t next_pass = NODE_MASK_NONE;
2385 nodemask_t this_pass = NODE_MASK_NONE;
2386 nodemask_t used_targets = NODE_MASK_NONE;
2387 int node, best_distance;
2388
2389 /*
2390 * Avoid any oddities like cycles that could occur
2391 * from changes in the topology. This will leave
2392 * a momentary gap when migration is disabled.
2393 */
2394 disable_all_migrate_targets();
2395
2396 /*
2397 * Allocations go close to CPUs, first. Assume that
2398 * the migration path starts at the nodes with CPUs.
2399 */
2400 next_pass = node_states[N_CPU];
2401again:
2402 this_pass = next_pass;
2403 next_pass = NODE_MASK_NONE;
2404 /*
2405 * To avoid cycles in the migration "graph", ensure
2406 * that migration sources are not future targets by
2407 * setting them in 'used_targets'. Do this only
2408 * once per pass so that multiple source nodes can
2409 * share a target node.
2410 *
2411 * 'used_targets' will become unavailable in future
2412 * passes. This limits some opportunities for
2413 * multiple source nodes to share a destination.
2414 */
2415 nodes_or(used_targets, used_targets, this_pass);
2416
2417 for_each_node_mask(node, this_pass) {
2418 best_distance = -1;
2419
2420 /*
2421 * Try to set up the migration path for the node, and the target
2422 * migration nodes can be multiple, so doing a loop to find all
2423 * the target nodes if they all have a best node distance.
2424 */
2425 do {
2426 int target_node =
2427 establish_migrate_target(node, &used_targets,
2428 best_distance);
2429
2430 if (target_node == NUMA_NO_NODE)
2431 break;
2432
2433 if (best_distance == -1)
2434 best_distance = node_distance(node, target_node);
2435
2436 /*
2437 * Visit targets from this pass in the next pass.
2438 * Eventually, every node will have been part of
2439 * a pass, and will become set in 'used_targets'.
2440 */
2441 node_set(target_node, next_pass);
2442 } while (1);
2443 }
2444 /*
2445 * 'next_pass' contains nodes which became migration
2446 * targets in this pass. Make additional passes until
2447 * no more migrations targets are available.
2448 */
2449 if (!nodes_empty(next_pass))
2450 goto again;
2451}
2452
2453/*
2454 * For callers that do not hold get_online_mems() already.
2455 */
2456void set_migration_target_nodes(void)
2457{
2458 get_online_mems();
2459 __set_migration_target_nodes();
2460 put_online_mems();
2461}
2462
2463/*
2464 * This leaves migrate-on-reclaim transiently disabled between
2465 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
2466 * whether reclaim-based migration is enabled or not, which
2467 * ensures that the user can turn reclaim-based migration at
2468 * any time without needing to recalculate migration targets.
2469 *
2470 * These callbacks already hold get_online_mems(). That is why
2471 * __set_migration_target_nodes() can be used as opposed to
2472 * set_migration_target_nodes().
2473 */
2474static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2475 unsigned long action, void *_arg)
2476{
2477 struct memory_notify *arg = _arg;
2478
2479 /*
2480 * Only update the node migration order when a node is
2481 * changing status, like online->offline. This avoids
2482 * the overhead of synchronize_rcu() in most cases.
2483 */
2484 if (arg->status_change_nid < 0)
2485 return notifier_from_errno(0);
2486
2487 switch (action) {
2488 case MEM_GOING_OFFLINE:
2489 /*
2490 * Make sure there are not transient states where
2491 * an offline node is a migration target. This
2492 * will leave migration disabled until the offline
2493 * completes and the MEM_OFFLINE case below runs.
2494 */
2495 disable_all_migrate_targets();
2496 break;
2497 case MEM_OFFLINE:
2498 case MEM_ONLINE:
2499 /*
2500 * Recalculate the target nodes once the node
2501 * reaches its final state (online or offline).
2502 */
2503 __set_migration_target_nodes();
2504 break;
2505 case MEM_CANCEL_OFFLINE:
2506 /*
2507 * MEM_GOING_OFFLINE disabled all the migration
2508 * targets. Reenable them.
2509 */
2510 __set_migration_target_nodes();
2511 break;
2512 case MEM_GOING_ONLINE:
2513 case MEM_CANCEL_ONLINE:
2514 break;
2515 }
2516
2517 return notifier_from_errno(0);
2518}
2519
2520void __init migrate_on_reclaim_init(void)
2521{
2522 node_demotion = kmalloc_array(nr_node_ids,
2523 sizeof(struct demotion_nodes),
2524 GFP_KERNEL);
2525 WARN_ON(!node_demotion);
2526
2527 hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2528 /*
2529 * At this point, all numa nodes with memory/CPus have their state
2530 * properly set, so we can build the demotion order now.
2531 * Let us hold the cpu_hotplug lock just, as we could possibily have
2532 * CPU hotplug events during boot.
2533 */
2534 cpus_read_lock();
2535 set_migration_target_nodes();
2536 cpus_read_unlock();
2537}
2538#endif /* CONFIG_HOTPLUG_CPU */
2539
2540bool numa_demotion_enabled = false;
2541
2542#ifdef CONFIG_SYSFS
2543static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2544 struct kobj_attribute *attr, char *buf)
2545{
2546 return sysfs_emit(buf, "%s\n",
2547 numa_demotion_enabled ? "true" : "false");
2548}
2549
2550static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2551 struct kobj_attribute *attr,
2552 const char *buf, size_t count)
2553{
2554 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
2555 numa_demotion_enabled = true;
2556 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
2557 numa_demotion_enabled = false;
2558 else
2559 return -EINVAL;
2560
2561 return count;
2562}
2563
2564static struct kobj_attribute numa_demotion_enabled_attr =
2565 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2566 numa_demotion_enabled_store);
2567
2568static struct attribute *numa_attrs[] = {
2569 &numa_demotion_enabled_attr.attr,
2570 NULL,
2571};
2572
2573static const struct attribute_group numa_attr_group = {
2574 .attrs = numa_attrs,
2575};
2576
2577static int __init numa_init_sysfs(void)
2578{
2579 int err;
2580 struct kobject *numa_kobj;
2581
2582 numa_kobj = kobject_create_and_add("numa", mm_kobj);
2583 if (!numa_kobj) {
2584 pr_err("failed to create numa kobject\n");
2585 return -ENOMEM;
2586 }
2587 err = sysfs_create_group(numa_kobj, &numa_attr_group);
2588 if (err) {
2589 pr_err("failed to register numa group\n");
2590 goto delete_obj;
2591 }
2592 return 0;
2593
2594delete_obj:
2595 kobject_put(numa_kobj);
2596 return err;
2597}
2598subsys_initcall(numa_init_sysfs);
2599#endif