Merge tag 'perf-urgent-2024-05-18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / mempolicy.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * weighted interleave
23 * Allocate memory interleaved over a set of nodes based on
24 * a set of weights (per-node), with normal fallback if it
25 * fails. Otherwise operates the same as interleave.
26 * Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27 * on node 0 for every 1 page allocated on node 1.
28 *
29 * bind Only allocate memory on a specific set of nodes,
30 * no fallback.
31 * FIXME: memory is allocated starting with the first node
32 * to the last. It would be better if bind would truly restrict
33 * the allocation to memory nodes instead
34 *
35 * preferred Try a specific node first before normal fallback.
36 * As a special case NUMA_NO_NODE here means do the allocation
37 * on the local CPU. This is normally identical to default,
38 * but useful to set in a VMA when you have a non default
39 * process policy.
40 *
41 * preferred many Try a set of nodes first before normal fallback. This is
42 * similar to preferred without the special case.
43 *
44 * default Allocate on the local node first, or when on a VMA
45 * use the process policy. This is what Linux always did
46 * in a NUMA aware kernel and still does by, ahem, default.
47 *
48 * The process policy is applied for most non interrupt memory allocations
49 * in that process' context. Interrupts ignore the policies and always
50 * try to allocate on the local CPU. The VMA policy is only applied for memory
51 * allocations for a VMA in the VM.
52 *
53 * Currently there are a few corner cases in swapping where the policy
54 * is not applied, but the majority should be handled. When process policy
55 * is used it is not remembered over swap outs/swap ins.
56 *
57 * Only the highest zone in the zone hierarchy gets policied. Allocations
58 * requesting a lower zone just use default policy. This implies that
59 * on systems with highmem kernel lowmem allocation don't get policied.
60 * Same with GFP_DMA allocations.
61 *
62 * For shmem/tmpfs shared memory the policy is shared between
63 * all users and remembered even when nobody has memory mapped.
64 */
65
66/* Notebook:
67 fix mmap readahead to honour policy and enable policy for any page cache
68 object
69 statistics for bigpages
70 global policy for page cache? currently it uses process policy. Requires
71 first item above.
72 handle mremap for shared memory (currently ignored for the policy)
73 grows down?
74 make bind policy root only? It can trigger oom much faster and the
75 kernel is not always grateful with that.
76*/
77
78#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79
80#include <linux/mempolicy.h>
81#include <linux/pagewalk.h>
82#include <linux/highmem.h>
83#include <linux/hugetlb.h>
84#include <linux/kernel.h>
85#include <linux/sched.h>
86#include <linux/sched/mm.h>
87#include <linux/sched/numa_balancing.h>
88#include <linux/sched/task.h>
89#include <linux/nodemask.h>
90#include <linux/cpuset.h>
91#include <linux/slab.h>
92#include <linux/string.h>
93#include <linux/export.h>
94#include <linux/nsproxy.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compat.h>
98#include <linux/ptrace.h>
99#include <linux/swap.h>
100#include <linux/seq_file.h>
101#include <linux/proc_fs.h>
102#include <linux/migrate.h>
103#include <linux/ksm.h>
104#include <linux/rmap.h>
105#include <linux/security.h>
106#include <linux/syscalls.h>
107#include <linux/ctype.h>
108#include <linux/mm_inline.h>
109#include <linux/mmu_notifier.h>
110#include <linux/printk.h>
111#include <linux/swapops.h>
112
113#include <asm/tlbflush.h>
114#include <asm/tlb.h>
115#include <linux/uaccess.h>
116
117#include "internal.h"
118
119/* Internal flags */
120#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
121#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
122#define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */
123
124static struct kmem_cache *policy_cache;
125static struct kmem_cache *sn_cache;
126
127/* Highest zone. An specific allocation for a zone below that is not
128 policied. */
129enum zone_type policy_zone = 0;
130
131/*
132 * run-time system-wide default policy => local allocation
133 */
134static struct mempolicy default_policy = {
135 .refcnt = ATOMIC_INIT(1), /* never free it */
136 .mode = MPOL_LOCAL,
137};
138
139static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140
141/*
142 * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143 * system-default value should be used. A NULL iw_table also denotes that
144 * system-default values should be used. Until the system-default table
145 * is implemented, the system-default is always 1.
146 *
147 * iw_table is RCU protected
148 */
149static u8 __rcu *iw_table;
150static DEFINE_MUTEX(iw_table_lock);
151
152static u8 get_il_weight(int node)
153{
154 u8 *table;
155 u8 weight;
156
157 rcu_read_lock();
158 table = rcu_dereference(iw_table);
159 /* if no iw_table, use system default */
160 weight = table ? table[node] : 1;
161 /* if value in iw_table is 0, use system default */
162 weight = weight ? weight : 1;
163 rcu_read_unlock();
164 return weight;
165}
166
167/**
168 * numa_nearest_node - Find nearest node by state
169 * @node: Node id to start the search
170 * @state: State to filter the search
171 *
172 * Lookup the closest node by distance if @nid is not in state.
173 *
174 * Return: this @node if it is in state, otherwise the closest node by distance
175 */
176int numa_nearest_node(int node, unsigned int state)
177{
178 int min_dist = INT_MAX, dist, n, min_node;
179
180 if (state >= NR_NODE_STATES)
181 return -EINVAL;
182
183 if (node == NUMA_NO_NODE || node_state(node, state))
184 return node;
185
186 min_node = node;
187 for_each_node_state(n, state) {
188 dist = node_distance(node, n);
189 if (dist < min_dist) {
190 min_dist = dist;
191 min_node = n;
192 }
193 }
194
195 return min_node;
196}
197EXPORT_SYMBOL_GPL(numa_nearest_node);
198
199struct mempolicy *get_task_policy(struct task_struct *p)
200{
201 struct mempolicy *pol = p->mempolicy;
202 int node;
203
204 if (pol)
205 return pol;
206
207 node = numa_node_id();
208 if (node != NUMA_NO_NODE) {
209 pol = &preferred_node_policy[node];
210 /* preferred_node_policy is not initialised early in boot */
211 if (pol->mode)
212 return pol;
213 }
214
215 return &default_policy;
216}
217
218static const struct mempolicy_operations {
219 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221} mpol_ops[MPOL_MAX];
222
223static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224{
225 return pol->flags & MPOL_MODE_FLAGS;
226}
227
228static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 const nodemask_t *rel)
230{
231 nodemask_t tmp;
232 nodes_fold(tmp, *orig, nodes_weight(*rel));
233 nodes_onto(*ret, tmp, *rel);
234}
235
236static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237{
238 if (nodes_empty(*nodes))
239 return -EINVAL;
240 pol->nodes = *nodes;
241 return 0;
242}
243
244static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245{
246 if (nodes_empty(*nodes))
247 return -EINVAL;
248
249 nodes_clear(pol->nodes);
250 node_set(first_node(*nodes), pol->nodes);
251 return 0;
252}
253
254/*
255 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256 * any, for the new policy. mpol_new() has already validated the nodes
257 * parameter with respect to the policy mode and flags.
258 *
259 * Must be called holding task's alloc_lock to protect task's mems_allowed
260 * and mempolicy. May also be called holding the mmap_lock for write.
261 */
262static int mpol_set_nodemask(struct mempolicy *pol,
263 const nodemask_t *nodes, struct nodemask_scratch *nsc)
264{
265 int ret;
266
267 /*
268 * Default (pol==NULL) resp. local memory policies are not a
269 * subject of any remapping. They also do not need any special
270 * constructor.
271 */
272 if (!pol || pol->mode == MPOL_LOCAL)
273 return 0;
274
275 /* Check N_MEMORY */
276 nodes_and(nsc->mask1,
277 cpuset_current_mems_allowed, node_states[N_MEMORY]);
278
279 VM_BUG_ON(!nodes);
280
281 if (pol->flags & MPOL_F_RELATIVE_NODES)
282 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 else
284 nodes_and(nsc->mask2, *nodes, nsc->mask1);
285
286 if (mpol_store_user_nodemask(pol))
287 pol->w.user_nodemask = *nodes;
288 else
289 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290
291 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 return ret;
293}
294
295/*
296 * This function just creates a new policy, does some check and simple
297 * initialization. You must invoke mpol_set_nodemask() to set nodes.
298 */
299static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 nodemask_t *nodes)
301{
302 struct mempolicy *policy;
303
304 if (mode == MPOL_DEFAULT) {
305 if (nodes && !nodes_empty(*nodes))
306 return ERR_PTR(-EINVAL);
307 return NULL;
308 }
309 VM_BUG_ON(!nodes);
310
311 /*
312 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 * All other modes require a valid pointer to a non-empty nodemask.
315 */
316 if (mode == MPOL_PREFERRED) {
317 if (nodes_empty(*nodes)) {
318 if (((flags & MPOL_F_STATIC_NODES) ||
319 (flags & MPOL_F_RELATIVE_NODES)))
320 return ERR_PTR(-EINVAL);
321
322 mode = MPOL_LOCAL;
323 }
324 } else if (mode == MPOL_LOCAL) {
325 if (!nodes_empty(*nodes) ||
326 (flags & MPOL_F_STATIC_NODES) ||
327 (flags & MPOL_F_RELATIVE_NODES))
328 return ERR_PTR(-EINVAL);
329 } else if (nodes_empty(*nodes))
330 return ERR_PTR(-EINVAL);
331
332 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 if (!policy)
334 return ERR_PTR(-ENOMEM);
335 atomic_set(&policy->refcnt, 1);
336 policy->mode = mode;
337 policy->flags = flags;
338 policy->home_node = NUMA_NO_NODE;
339
340 return policy;
341}
342
343/* Slow path of a mpol destructor. */
344void __mpol_put(struct mempolicy *pol)
345{
346 if (!atomic_dec_and_test(&pol->refcnt))
347 return;
348 kmem_cache_free(policy_cache, pol);
349}
350
351static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352{
353}
354
355static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356{
357 nodemask_t tmp;
358
359 if (pol->flags & MPOL_F_STATIC_NODES)
360 nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 else {
364 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 *nodes);
366 pol->w.cpuset_mems_allowed = *nodes;
367 }
368
369 if (nodes_empty(tmp))
370 tmp = *nodes;
371
372 pol->nodes = tmp;
373}
374
375static void mpol_rebind_preferred(struct mempolicy *pol,
376 const nodemask_t *nodes)
377{
378 pol->w.cpuset_mems_allowed = *nodes;
379}
380
381/*
382 * mpol_rebind_policy - Migrate a policy to a different set of nodes
383 *
384 * Per-vma policies are protected by mmap_lock. Allocations using per-task
385 * policies are protected by task->mems_allowed_seq to prevent a premature
386 * OOM/allocation failure due to parallel nodemask modification.
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389{
390 if (!pol || pol->mode == MPOL_LOCAL)
391 return;
392 if (!mpol_store_user_nodemask(pol) &&
393 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 return;
395
396 mpol_ops[pol->mode].rebind(pol, newmask);
397}
398
399/*
400 * Wrapper for mpol_rebind_policy() that just requires task
401 * pointer, and updates task mempolicy.
402 *
403 * Called with task's alloc_lock held.
404 */
405void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406{
407 mpol_rebind_policy(tsk->mempolicy, new);
408}
409
410/*
411 * Rebind each vma in mm to new nodemask.
412 *
413 * Call holding a reference to mm. Takes mm->mmap_lock during call.
414 */
415void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416{
417 struct vm_area_struct *vma;
418 VMA_ITERATOR(vmi, mm, 0);
419
420 mmap_write_lock(mm);
421 for_each_vma(vmi, vma) {
422 vma_start_write(vma);
423 mpol_rebind_policy(vma->vm_policy, new);
424 }
425 mmap_write_unlock(mm);
426}
427
428static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 [MPOL_DEFAULT] = {
430 .rebind = mpol_rebind_default,
431 },
432 [MPOL_INTERLEAVE] = {
433 .create = mpol_new_nodemask,
434 .rebind = mpol_rebind_nodemask,
435 },
436 [MPOL_PREFERRED] = {
437 .create = mpol_new_preferred,
438 .rebind = mpol_rebind_preferred,
439 },
440 [MPOL_BIND] = {
441 .create = mpol_new_nodemask,
442 .rebind = mpol_rebind_nodemask,
443 },
444 [MPOL_LOCAL] = {
445 .rebind = mpol_rebind_default,
446 },
447 [MPOL_PREFERRED_MANY] = {
448 .create = mpol_new_nodemask,
449 .rebind = mpol_rebind_preferred,
450 },
451 [MPOL_WEIGHTED_INTERLEAVE] = {
452 .create = mpol_new_nodemask,
453 .rebind = mpol_rebind_nodemask,
454 },
455};
456
457static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 unsigned long flags);
459static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 pgoff_t ilx, int *nid);
461
462static bool strictly_unmovable(unsigned long flags)
463{
464 /*
465 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 * if any misplaced page is found.
467 */
468 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 MPOL_MF_STRICT;
470}
471
472struct migration_mpol { /* for alloc_migration_target_by_mpol() */
473 struct mempolicy *pol;
474 pgoff_t ilx;
475};
476
477struct queue_pages {
478 struct list_head *pagelist;
479 unsigned long flags;
480 nodemask_t *nmask;
481 unsigned long start;
482 unsigned long end;
483 struct vm_area_struct *first;
484 struct folio *large; /* note last large folio encountered */
485 long nr_failed; /* could not be isolated at this time */
486};
487
488/*
489 * Check if the folio's nid is in qp->nmask.
490 *
491 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492 * in the invert of qp->nmask.
493 */
494static inline bool queue_folio_required(struct folio *folio,
495 struct queue_pages *qp)
496{
497 int nid = folio_nid(folio);
498 unsigned long flags = qp->flags;
499
500 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501}
502
503static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504{
505 struct folio *folio;
506 struct queue_pages *qp = walk->private;
507
508 if (unlikely(is_pmd_migration_entry(*pmd))) {
509 qp->nr_failed++;
510 return;
511 }
512 folio = pmd_folio(*pmd);
513 if (is_huge_zero_folio(folio)) {
514 walk->action = ACTION_CONTINUE;
515 return;
516 }
517 if (!queue_folio_required(folio, qp))
518 return;
519 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 !vma_migratable(walk->vma) ||
521 !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 qp->nr_failed++;
523}
524
525/*
526 * Scan through folios, checking if they satisfy the required conditions,
527 * moving them from LRU to local pagelist for migration if they do (or not).
528 *
529 * queue_folios_pte_range() has two possible return values:
530 * 0 - continue walking to scan for more, even if an existing folio on the
531 * wrong node could not be isolated and queued for migration.
532 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533 * and an existing folio was on a node that does not follow the policy.
534 */
535static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 unsigned long end, struct mm_walk *walk)
537{
538 struct vm_area_struct *vma = walk->vma;
539 struct folio *folio;
540 struct queue_pages *qp = walk->private;
541 unsigned long flags = qp->flags;
542 pte_t *pte, *mapped_pte;
543 pte_t ptent;
544 spinlock_t *ptl;
545
546 ptl = pmd_trans_huge_lock(pmd, vma);
547 if (ptl) {
548 queue_folios_pmd(pmd, walk);
549 spin_unlock(ptl);
550 goto out;
551 }
552
553 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 if (!pte) {
555 walk->action = ACTION_AGAIN;
556 return 0;
557 }
558 for (; addr != end; pte++, addr += PAGE_SIZE) {
559 ptent = ptep_get(pte);
560 if (pte_none(ptent))
561 continue;
562 if (!pte_present(ptent)) {
563 if (is_migration_entry(pte_to_swp_entry(ptent)))
564 qp->nr_failed++;
565 continue;
566 }
567 folio = vm_normal_folio(vma, addr, ptent);
568 if (!folio || folio_is_zone_device(folio))
569 continue;
570 /*
571 * vm_normal_folio() filters out zero pages, but there might
572 * still be reserved folios to skip, perhaps in a VDSO.
573 */
574 if (folio_test_reserved(folio))
575 continue;
576 if (!queue_folio_required(folio, qp))
577 continue;
578 if (folio_test_large(folio)) {
579 /*
580 * A large folio can only be isolated from LRU once,
581 * but may be mapped by many PTEs (and Copy-On-Write may
582 * intersperse PTEs of other, order 0, folios). This is
583 * a common case, so don't mistake it for failure (but
584 * there can be other cases of multi-mapped pages which
585 * this quick check does not help to filter out - and a
586 * search of the pagelist might grow to be prohibitive).
587 *
588 * migrate_pages(&pagelist) returns nr_failed folios, so
589 * check "large" now so that queue_pages_range() returns
590 * a comparable nr_failed folios. This does imply that
591 * if folio could not be isolated for some racy reason
592 * at its first PTE, later PTEs will not give it another
593 * chance of isolation; but keeps the accounting simple.
594 */
595 if (folio == qp->large)
596 continue;
597 qp->large = folio;
598 }
599 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 !vma_migratable(vma) ||
601 !migrate_folio_add(folio, qp->pagelist, flags)) {
602 qp->nr_failed++;
603 if (strictly_unmovable(flags))
604 break;
605 }
606 }
607 pte_unmap_unlock(mapped_pte, ptl);
608 cond_resched();
609out:
610 if (qp->nr_failed && strictly_unmovable(flags))
611 return -EIO;
612 return 0;
613}
614
615static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 unsigned long addr, unsigned long end,
617 struct mm_walk *walk)
618{
619#ifdef CONFIG_HUGETLB_PAGE
620 struct queue_pages *qp = walk->private;
621 unsigned long flags = qp->flags;
622 struct folio *folio;
623 spinlock_t *ptl;
624 pte_t entry;
625
626 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 entry = huge_ptep_get(pte);
628 if (!pte_present(entry)) {
629 if (unlikely(is_hugetlb_entry_migration(entry)))
630 qp->nr_failed++;
631 goto unlock;
632 }
633 folio = pfn_folio(pte_pfn(entry));
634 if (!queue_folio_required(folio, qp))
635 goto unlock;
636 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 !vma_migratable(walk->vma)) {
638 qp->nr_failed++;
639 goto unlock;
640 }
641 /*
642 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 * Choosing not to migrate a shared folio is not counted as a failure.
644 *
645 * See folio_likely_mapped_shared() on possible imprecision when we
646 * cannot easily detect if a folio is shared.
647 */
648 if ((flags & MPOL_MF_MOVE_ALL) ||
649 (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 if (!isolate_hugetlb(folio, qp->pagelist))
651 qp->nr_failed++;
652unlock:
653 spin_unlock(ptl);
654 if (qp->nr_failed && strictly_unmovable(flags))
655 return -EIO;
656#endif
657 return 0;
658}
659
660#ifdef CONFIG_NUMA_BALANCING
661/*
662 * This is used to mark a range of virtual addresses to be inaccessible.
663 * These are later cleared by a NUMA hinting fault. Depending on these
664 * faults, pages may be migrated for better NUMA placement.
665 *
666 * This is assuming that NUMA faults are handled using PROT_NONE. If
667 * an architecture makes a different choice, it will need further
668 * changes to the core.
669 */
670unsigned long change_prot_numa(struct vm_area_struct *vma,
671 unsigned long addr, unsigned long end)
672{
673 struct mmu_gather tlb;
674 long nr_updated;
675
676 tlb_gather_mmu(&tlb, vma->vm_mm);
677
678 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 if (nr_updated > 0)
680 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681
682 tlb_finish_mmu(&tlb);
683
684 return nr_updated;
685}
686#endif /* CONFIG_NUMA_BALANCING */
687
688static int queue_pages_test_walk(unsigned long start, unsigned long end,
689 struct mm_walk *walk)
690{
691 struct vm_area_struct *next, *vma = walk->vma;
692 struct queue_pages *qp = walk->private;
693 unsigned long flags = qp->flags;
694
695 /* range check first */
696 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
697
698 if (!qp->first) {
699 qp->first = vma;
700 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
701 (qp->start < vma->vm_start))
702 /* hole at head side of range */
703 return -EFAULT;
704 }
705 next = find_vma(vma->vm_mm, vma->vm_end);
706 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
707 ((vma->vm_end < qp->end) &&
708 (!next || vma->vm_end < next->vm_start)))
709 /* hole at middle or tail of range */
710 return -EFAULT;
711
712 /*
713 * Need check MPOL_MF_STRICT to return -EIO if possible
714 * regardless of vma_migratable
715 */
716 if (!vma_migratable(vma) &&
717 !(flags & MPOL_MF_STRICT))
718 return 1;
719
720 /*
721 * Check page nodes, and queue pages to move, in the current vma.
722 * But if no moving, and no strict checking, the scan can be skipped.
723 */
724 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
725 return 0;
726 return 1;
727}
728
729static const struct mm_walk_ops queue_pages_walk_ops = {
730 .hugetlb_entry = queue_folios_hugetlb,
731 .pmd_entry = queue_folios_pte_range,
732 .test_walk = queue_pages_test_walk,
733 .walk_lock = PGWALK_RDLOCK,
734};
735
736static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
737 .hugetlb_entry = queue_folios_hugetlb,
738 .pmd_entry = queue_folios_pte_range,
739 .test_walk = queue_pages_test_walk,
740 .walk_lock = PGWALK_WRLOCK,
741};
742
743/*
744 * Walk through page tables and collect pages to be migrated.
745 *
746 * If pages found in a given range are not on the required set of @nodes,
747 * and migration is allowed, they are isolated and queued to @pagelist.
748 *
749 * queue_pages_range() may return:
750 * 0 - all pages already on the right node, or successfully queued for moving
751 * (or neither strict checking nor moving requested: only range checking).
752 * >0 - this number of misplaced folios could not be queued for moving
753 * (a hugetlbfs page or a transparent huge page being counted as 1).
754 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
755 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
756 */
757static long
758queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
759 nodemask_t *nodes, unsigned long flags,
760 struct list_head *pagelist)
761{
762 int err;
763 struct queue_pages qp = {
764 .pagelist = pagelist,
765 .flags = flags,
766 .nmask = nodes,
767 .start = start,
768 .end = end,
769 .first = NULL,
770 };
771 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
772 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
773
774 err = walk_page_range(mm, start, end, ops, &qp);
775
776 if (!qp.first)
777 /* whole range in hole */
778 err = -EFAULT;
779
780 return err ? : qp.nr_failed;
781}
782
783/*
784 * Apply policy to a single VMA
785 * This must be called with the mmap_lock held for writing.
786 */
787static int vma_replace_policy(struct vm_area_struct *vma,
788 struct mempolicy *pol)
789{
790 int err;
791 struct mempolicy *old;
792 struct mempolicy *new;
793
794 vma_assert_write_locked(vma);
795
796 new = mpol_dup(pol);
797 if (IS_ERR(new))
798 return PTR_ERR(new);
799
800 if (vma->vm_ops && vma->vm_ops->set_policy) {
801 err = vma->vm_ops->set_policy(vma, new);
802 if (err)
803 goto err_out;
804 }
805
806 old = vma->vm_policy;
807 vma->vm_policy = new; /* protected by mmap_lock */
808 mpol_put(old);
809
810 return 0;
811 err_out:
812 mpol_put(new);
813 return err;
814}
815
816/* Split or merge the VMA (if required) and apply the new policy */
817static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
818 struct vm_area_struct **prev, unsigned long start,
819 unsigned long end, struct mempolicy *new_pol)
820{
821 unsigned long vmstart, vmend;
822
823 vmend = min(end, vma->vm_end);
824 if (start > vma->vm_start) {
825 *prev = vma;
826 vmstart = start;
827 } else {
828 vmstart = vma->vm_start;
829 }
830
831 if (mpol_equal(vma->vm_policy, new_pol)) {
832 *prev = vma;
833 return 0;
834 }
835
836 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
837 if (IS_ERR(vma))
838 return PTR_ERR(vma);
839
840 *prev = vma;
841 return vma_replace_policy(vma, new_pol);
842}
843
844/* Set the process memory policy */
845static long do_set_mempolicy(unsigned short mode, unsigned short flags,
846 nodemask_t *nodes)
847{
848 struct mempolicy *new, *old;
849 NODEMASK_SCRATCH(scratch);
850 int ret;
851
852 if (!scratch)
853 return -ENOMEM;
854
855 new = mpol_new(mode, flags, nodes);
856 if (IS_ERR(new)) {
857 ret = PTR_ERR(new);
858 goto out;
859 }
860
861 task_lock(current);
862 ret = mpol_set_nodemask(new, nodes, scratch);
863 if (ret) {
864 task_unlock(current);
865 mpol_put(new);
866 goto out;
867 }
868
869 old = current->mempolicy;
870 current->mempolicy = new;
871 if (new && (new->mode == MPOL_INTERLEAVE ||
872 new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
873 current->il_prev = MAX_NUMNODES-1;
874 current->il_weight = 0;
875 }
876 task_unlock(current);
877 mpol_put(old);
878 ret = 0;
879out:
880 NODEMASK_SCRATCH_FREE(scratch);
881 return ret;
882}
883
884/*
885 * Return nodemask for policy for get_mempolicy() query
886 *
887 * Called with task's alloc_lock held
888 */
889static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
890{
891 nodes_clear(*nodes);
892 if (pol == &default_policy)
893 return;
894
895 switch (pol->mode) {
896 case MPOL_BIND:
897 case MPOL_INTERLEAVE:
898 case MPOL_PREFERRED:
899 case MPOL_PREFERRED_MANY:
900 case MPOL_WEIGHTED_INTERLEAVE:
901 *nodes = pol->nodes;
902 break;
903 case MPOL_LOCAL:
904 /* return empty node mask for local allocation */
905 break;
906 default:
907 BUG();
908 }
909}
910
911static int lookup_node(struct mm_struct *mm, unsigned long addr)
912{
913 struct page *p = NULL;
914 int ret;
915
916 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
917 if (ret > 0) {
918 ret = page_to_nid(p);
919 put_page(p);
920 }
921 return ret;
922}
923
924/* Retrieve NUMA policy */
925static long do_get_mempolicy(int *policy, nodemask_t *nmask,
926 unsigned long addr, unsigned long flags)
927{
928 int err;
929 struct mm_struct *mm = current->mm;
930 struct vm_area_struct *vma = NULL;
931 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
932
933 if (flags &
934 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
935 return -EINVAL;
936
937 if (flags & MPOL_F_MEMS_ALLOWED) {
938 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
939 return -EINVAL;
940 *policy = 0; /* just so it's initialized */
941 task_lock(current);
942 *nmask = cpuset_current_mems_allowed;
943 task_unlock(current);
944 return 0;
945 }
946
947 if (flags & MPOL_F_ADDR) {
948 pgoff_t ilx; /* ignored here */
949 /*
950 * Do NOT fall back to task policy if the
951 * vma/shared policy at addr is NULL. We
952 * want to return MPOL_DEFAULT in this case.
953 */
954 mmap_read_lock(mm);
955 vma = vma_lookup(mm, addr);
956 if (!vma) {
957 mmap_read_unlock(mm);
958 return -EFAULT;
959 }
960 pol = __get_vma_policy(vma, addr, &ilx);
961 } else if (addr)
962 return -EINVAL;
963
964 if (!pol)
965 pol = &default_policy; /* indicates default behavior */
966
967 if (flags & MPOL_F_NODE) {
968 if (flags & MPOL_F_ADDR) {
969 /*
970 * Take a refcount on the mpol, because we are about to
971 * drop the mmap_lock, after which only "pol" remains
972 * valid, "vma" is stale.
973 */
974 pol_refcount = pol;
975 vma = NULL;
976 mpol_get(pol);
977 mmap_read_unlock(mm);
978 err = lookup_node(mm, addr);
979 if (err < 0)
980 goto out;
981 *policy = err;
982 } else if (pol == current->mempolicy &&
983 pol->mode == MPOL_INTERLEAVE) {
984 *policy = next_node_in(current->il_prev, pol->nodes);
985 } else if (pol == current->mempolicy &&
986 pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
987 if (current->il_weight)
988 *policy = current->il_prev;
989 else
990 *policy = next_node_in(current->il_prev,
991 pol->nodes);
992 } else {
993 err = -EINVAL;
994 goto out;
995 }
996 } else {
997 *policy = pol == &default_policy ? MPOL_DEFAULT :
998 pol->mode;
999 /*
1000 * Internal mempolicy flags must be masked off before exposing
1001 * the policy to userspace.
1002 */
1003 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1004 }
1005
1006 err = 0;
1007 if (nmask) {
1008 if (mpol_store_user_nodemask(pol)) {
1009 *nmask = pol->w.user_nodemask;
1010 } else {
1011 task_lock(current);
1012 get_policy_nodemask(pol, nmask);
1013 task_unlock(current);
1014 }
1015 }
1016
1017 out:
1018 mpol_cond_put(pol);
1019 if (vma)
1020 mmap_read_unlock(mm);
1021 if (pol_refcount)
1022 mpol_put(pol_refcount);
1023 return err;
1024}
1025
1026#ifdef CONFIG_MIGRATION
1027static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1028 unsigned long flags)
1029{
1030 /*
1031 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1032 * Choosing not to migrate a shared folio is not counted as a failure.
1033 *
1034 * See folio_likely_mapped_shared() on possible imprecision when we
1035 * cannot easily detect if a folio is shared.
1036 */
1037 if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1038 if (folio_isolate_lru(folio)) {
1039 list_add_tail(&folio->lru, foliolist);
1040 node_stat_mod_folio(folio,
1041 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1042 folio_nr_pages(folio));
1043 } else {
1044 /*
1045 * Non-movable folio may reach here. And, there may be
1046 * temporary off LRU folios or non-LRU movable folios.
1047 * Treat them as unmovable folios since they can't be
1048 * isolated, so they can't be moved at the moment.
1049 */
1050 return false;
1051 }
1052 }
1053 return true;
1054}
1055
1056/*
1057 * Migrate pages from one node to a target node.
1058 * Returns error or the number of pages not migrated.
1059 */
1060static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1061 int flags)
1062{
1063 nodemask_t nmask;
1064 struct vm_area_struct *vma;
1065 LIST_HEAD(pagelist);
1066 long nr_failed;
1067 long err = 0;
1068 struct migration_target_control mtc = {
1069 .nid = dest,
1070 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1071 .reason = MR_SYSCALL,
1072 };
1073
1074 nodes_clear(nmask);
1075 node_set(source, nmask);
1076
1077 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1078
1079 mmap_read_lock(mm);
1080 vma = find_vma(mm, 0);
1081
1082 /*
1083 * This does not migrate the range, but isolates all pages that
1084 * need migration. Between passing in the full user address
1085 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1086 * but passes back the count of pages which could not be isolated.
1087 */
1088 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1089 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1090 mmap_read_unlock(mm);
1091
1092 if (!list_empty(&pagelist)) {
1093 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1094 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1095 if (err)
1096 putback_movable_pages(&pagelist);
1097 }
1098
1099 if (err >= 0)
1100 err += nr_failed;
1101 return err;
1102}
1103
1104/*
1105 * Move pages between the two nodesets so as to preserve the physical
1106 * layout as much as possible.
1107 *
1108 * Returns the number of page that could not be moved.
1109 */
1110int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 const nodemask_t *to, int flags)
1112{
1113 long nr_failed = 0;
1114 long err = 0;
1115 nodemask_t tmp;
1116
1117 lru_cache_disable();
1118
1119 /*
1120 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1121 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1122 * bit in 'tmp', and return that <source, dest> pair for migration.
1123 * The pair of nodemasks 'to' and 'from' define the map.
1124 *
1125 * If no pair of bits is found that way, fallback to picking some
1126 * pair of 'source' and 'dest' bits that are not the same. If the
1127 * 'source' and 'dest' bits are the same, this represents a node
1128 * that will be migrating to itself, so no pages need move.
1129 *
1130 * If no bits are left in 'tmp', or if all remaining bits left
1131 * in 'tmp' correspond to the same bit in 'to', return false
1132 * (nothing left to migrate).
1133 *
1134 * This lets us pick a pair of nodes to migrate between, such that
1135 * if possible the dest node is not already occupied by some other
1136 * source node, minimizing the risk of overloading the memory on a
1137 * node that would happen if we migrated incoming memory to a node
1138 * before migrating outgoing memory source that same node.
1139 *
1140 * A single scan of tmp is sufficient. As we go, we remember the
1141 * most recent <s, d> pair that moved (s != d). If we find a pair
1142 * that not only moved, but what's better, moved to an empty slot
1143 * (d is not set in tmp), then we break out then, with that pair.
1144 * Otherwise when we finish scanning from_tmp, we at least have the
1145 * most recent <s, d> pair that moved. If we get all the way through
1146 * the scan of tmp without finding any node that moved, much less
1147 * moved to an empty node, then there is nothing left worth migrating.
1148 */
1149
1150 tmp = *from;
1151 while (!nodes_empty(tmp)) {
1152 int s, d;
1153 int source = NUMA_NO_NODE;
1154 int dest = 0;
1155
1156 for_each_node_mask(s, tmp) {
1157
1158 /*
1159 * do_migrate_pages() tries to maintain the relative
1160 * node relationship of the pages established between
1161 * threads and memory areas.
1162 *
1163 * However if the number of source nodes is not equal to
1164 * the number of destination nodes we can not preserve
1165 * this node relative relationship. In that case, skip
1166 * copying memory from a node that is in the destination
1167 * mask.
1168 *
1169 * Example: [2,3,4] -> [3,4,5] moves everything.
1170 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1171 */
1172
1173 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1174 (node_isset(s, *to)))
1175 continue;
1176
1177 d = node_remap(s, *from, *to);
1178 if (s == d)
1179 continue;
1180
1181 source = s; /* Node moved. Memorize */
1182 dest = d;
1183
1184 /* dest not in remaining from nodes? */
1185 if (!node_isset(dest, tmp))
1186 break;
1187 }
1188 if (source == NUMA_NO_NODE)
1189 break;
1190
1191 node_clear(source, tmp);
1192 err = migrate_to_node(mm, source, dest, flags);
1193 if (err > 0)
1194 nr_failed += err;
1195 if (err < 0)
1196 break;
1197 }
1198
1199 lru_cache_enable();
1200 if (err < 0)
1201 return err;
1202 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1203}
1204
1205/*
1206 * Allocate a new folio for page migration, according to NUMA mempolicy.
1207 */
1208static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1209 unsigned long private)
1210{
1211 struct migration_mpol *mmpol = (struct migration_mpol *)private;
1212 struct mempolicy *pol = mmpol->pol;
1213 pgoff_t ilx = mmpol->ilx;
1214 struct page *page;
1215 unsigned int order;
1216 int nid = numa_node_id();
1217 gfp_t gfp;
1218
1219 order = folio_order(src);
1220 ilx += src->index >> order;
1221
1222 if (folio_test_hugetlb(src)) {
1223 nodemask_t *nodemask;
1224 struct hstate *h;
1225
1226 h = folio_hstate(src);
1227 gfp = htlb_alloc_mask(h);
1228 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1229 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1230 htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1231 }
1232
1233 if (folio_test_large(src))
1234 gfp = GFP_TRANSHUGE;
1235 else
1236 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1237
1238 page = alloc_pages_mpol(gfp, order, pol, ilx, nid);
1239 return page_rmappable_folio(page);
1240}
1241#else
1242
1243static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1244 unsigned long flags)
1245{
1246 return false;
1247}
1248
1249int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250 const nodemask_t *to, int flags)
1251{
1252 return -ENOSYS;
1253}
1254
1255static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1256 unsigned long private)
1257{
1258 return NULL;
1259}
1260#endif
1261
1262static long do_mbind(unsigned long start, unsigned long len,
1263 unsigned short mode, unsigned short mode_flags,
1264 nodemask_t *nmask, unsigned long flags)
1265{
1266 struct mm_struct *mm = current->mm;
1267 struct vm_area_struct *vma, *prev;
1268 struct vma_iterator vmi;
1269 struct migration_mpol mmpol;
1270 struct mempolicy *new;
1271 unsigned long end;
1272 long err;
1273 long nr_failed;
1274 LIST_HEAD(pagelist);
1275
1276 if (flags & ~(unsigned long)MPOL_MF_VALID)
1277 return -EINVAL;
1278 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1279 return -EPERM;
1280
1281 if (start & ~PAGE_MASK)
1282 return -EINVAL;
1283
1284 if (mode == MPOL_DEFAULT)
1285 flags &= ~MPOL_MF_STRICT;
1286
1287 len = PAGE_ALIGN(len);
1288 end = start + len;
1289
1290 if (end < start)
1291 return -EINVAL;
1292 if (end == start)
1293 return 0;
1294
1295 new = mpol_new(mode, mode_flags, nmask);
1296 if (IS_ERR(new))
1297 return PTR_ERR(new);
1298
1299 /*
1300 * If we are using the default policy then operation
1301 * on discontinuous address spaces is okay after all
1302 */
1303 if (!new)
1304 flags |= MPOL_MF_DISCONTIG_OK;
1305
1306 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1307 lru_cache_disable();
1308 {
1309 NODEMASK_SCRATCH(scratch);
1310 if (scratch) {
1311 mmap_write_lock(mm);
1312 err = mpol_set_nodemask(new, nmask, scratch);
1313 if (err)
1314 mmap_write_unlock(mm);
1315 } else
1316 err = -ENOMEM;
1317 NODEMASK_SCRATCH_FREE(scratch);
1318 }
1319 if (err)
1320 goto mpol_out;
1321
1322 /*
1323 * Lock the VMAs before scanning for pages to migrate,
1324 * to ensure we don't miss a concurrently inserted page.
1325 */
1326 nr_failed = queue_pages_range(mm, start, end, nmask,
1327 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1328
1329 if (nr_failed < 0) {
1330 err = nr_failed;
1331 nr_failed = 0;
1332 } else {
1333 vma_iter_init(&vmi, mm, start);
1334 prev = vma_prev(&vmi);
1335 for_each_vma_range(vmi, vma, end) {
1336 err = mbind_range(&vmi, vma, &prev, start, end, new);
1337 if (err)
1338 break;
1339 }
1340 }
1341
1342 if (!err && !list_empty(&pagelist)) {
1343 /* Convert MPOL_DEFAULT's NULL to task or default policy */
1344 if (!new) {
1345 new = get_task_policy(current);
1346 mpol_get(new);
1347 }
1348 mmpol.pol = new;
1349 mmpol.ilx = 0;
1350
1351 /*
1352 * In the interleaved case, attempt to allocate on exactly the
1353 * targeted nodes, for the first VMA to be migrated; for later
1354 * VMAs, the nodes will still be interleaved from the targeted
1355 * nodemask, but one by one may be selected differently.
1356 */
1357 if (new->mode == MPOL_INTERLEAVE ||
1358 new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1359 struct folio *folio;
1360 unsigned int order;
1361 unsigned long addr = -EFAULT;
1362
1363 list_for_each_entry(folio, &pagelist, lru) {
1364 if (!folio_test_ksm(folio))
1365 break;
1366 }
1367 if (!list_entry_is_head(folio, &pagelist, lru)) {
1368 vma_iter_init(&vmi, mm, start);
1369 for_each_vma_range(vmi, vma, end) {
1370 addr = page_address_in_vma(
1371 folio_page(folio, 0), vma);
1372 if (addr != -EFAULT)
1373 break;
1374 }
1375 }
1376 if (addr != -EFAULT) {
1377 order = folio_order(folio);
1378 /* We already know the pol, but not the ilx */
1379 mpol_cond_put(get_vma_policy(vma, addr, order,
1380 &mmpol.ilx));
1381 /* Set base from which to increment by index */
1382 mmpol.ilx -= folio->index >> order;
1383 }
1384 }
1385 }
1386
1387 mmap_write_unlock(mm);
1388
1389 if (!err && !list_empty(&pagelist)) {
1390 nr_failed |= migrate_pages(&pagelist,
1391 alloc_migration_target_by_mpol, NULL,
1392 (unsigned long)&mmpol, MIGRATE_SYNC,
1393 MR_MEMPOLICY_MBIND, NULL);
1394 }
1395
1396 if (nr_failed && (flags & MPOL_MF_STRICT))
1397 err = -EIO;
1398 if (!list_empty(&pagelist))
1399 putback_movable_pages(&pagelist);
1400mpol_out:
1401 mpol_put(new);
1402 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1403 lru_cache_enable();
1404 return err;
1405}
1406
1407/*
1408 * User space interface with variable sized bitmaps for nodelists.
1409 */
1410static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1411 unsigned long maxnode)
1412{
1413 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1414 int ret;
1415
1416 if (in_compat_syscall())
1417 ret = compat_get_bitmap(mask,
1418 (const compat_ulong_t __user *)nmask,
1419 maxnode);
1420 else
1421 ret = copy_from_user(mask, nmask,
1422 nlongs * sizeof(unsigned long));
1423
1424 if (ret)
1425 return -EFAULT;
1426
1427 if (maxnode % BITS_PER_LONG)
1428 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1429
1430 return 0;
1431}
1432
1433/* Copy a node mask from user space. */
1434static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1435 unsigned long maxnode)
1436{
1437 --maxnode;
1438 nodes_clear(*nodes);
1439 if (maxnode == 0 || !nmask)
1440 return 0;
1441 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1442 return -EINVAL;
1443
1444 /*
1445 * When the user specified more nodes than supported just check
1446 * if the non supported part is all zero, one word at a time,
1447 * starting at the end.
1448 */
1449 while (maxnode > MAX_NUMNODES) {
1450 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1451 unsigned long t;
1452
1453 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1454 return -EFAULT;
1455
1456 if (maxnode - bits >= MAX_NUMNODES) {
1457 maxnode -= bits;
1458 } else {
1459 maxnode = MAX_NUMNODES;
1460 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1461 }
1462 if (t)
1463 return -EINVAL;
1464 }
1465
1466 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1467}
1468
1469/* Copy a kernel node mask to user space */
1470static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1471 nodemask_t *nodes)
1472{
1473 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1474 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1475 bool compat = in_compat_syscall();
1476
1477 if (compat)
1478 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1479
1480 if (copy > nbytes) {
1481 if (copy > PAGE_SIZE)
1482 return -EINVAL;
1483 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1484 return -EFAULT;
1485 copy = nbytes;
1486 maxnode = nr_node_ids;
1487 }
1488
1489 if (compat)
1490 return compat_put_bitmap((compat_ulong_t __user *)mask,
1491 nodes_addr(*nodes), maxnode);
1492
1493 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1494}
1495
1496/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1497static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1498{
1499 *flags = *mode & MPOL_MODE_FLAGS;
1500 *mode &= ~MPOL_MODE_FLAGS;
1501
1502 if ((unsigned int)(*mode) >= MPOL_MAX)
1503 return -EINVAL;
1504 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1505 return -EINVAL;
1506 if (*flags & MPOL_F_NUMA_BALANCING) {
1507 if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1508 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1509 else
1510 return -EINVAL;
1511 }
1512 return 0;
1513}
1514
1515static long kernel_mbind(unsigned long start, unsigned long len,
1516 unsigned long mode, const unsigned long __user *nmask,
1517 unsigned long maxnode, unsigned int flags)
1518{
1519 unsigned short mode_flags;
1520 nodemask_t nodes;
1521 int lmode = mode;
1522 int err;
1523
1524 start = untagged_addr(start);
1525 err = sanitize_mpol_flags(&lmode, &mode_flags);
1526 if (err)
1527 return err;
1528
1529 err = get_nodes(&nodes, nmask, maxnode);
1530 if (err)
1531 return err;
1532
1533 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1534}
1535
1536SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1537 unsigned long, home_node, unsigned long, flags)
1538{
1539 struct mm_struct *mm = current->mm;
1540 struct vm_area_struct *vma, *prev;
1541 struct mempolicy *new, *old;
1542 unsigned long end;
1543 int err = -ENOENT;
1544 VMA_ITERATOR(vmi, mm, start);
1545
1546 start = untagged_addr(start);
1547 if (start & ~PAGE_MASK)
1548 return -EINVAL;
1549 /*
1550 * flags is used for future extension if any.
1551 */
1552 if (flags != 0)
1553 return -EINVAL;
1554
1555 /*
1556 * Check home_node is online to avoid accessing uninitialized
1557 * NODE_DATA.
1558 */
1559 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1560 return -EINVAL;
1561
1562 len = PAGE_ALIGN(len);
1563 end = start + len;
1564
1565 if (end < start)
1566 return -EINVAL;
1567 if (end == start)
1568 return 0;
1569 mmap_write_lock(mm);
1570 prev = vma_prev(&vmi);
1571 for_each_vma_range(vmi, vma, end) {
1572 /*
1573 * If any vma in the range got policy other than MPOL_BIND
1574 * or MPOL_PREFERRED_MANY we return error. We don't reset
1575 * the home node for vmas we already updated before.
1576 */
1577 old = vma_policy(vma);
1578 if (!old) {
1579 prev = vma;
1580 continue;
1581 }
1582 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1583 err = -EOPNOTSUPP;
1584 break;
1585 }
1586 new = mpol_dup(old);
1587 if (IS_ERR(new)) {
1588 err = PTR_ERR(new);
1589 break;
1590 }
1591
1592 vma_start_write(vma);
1593 new->home_node = home_node;
1594 err = mbind_range(&vmi, vma, &prev, start, end, new);
1595 mpol_put(new);
1596 if (err)
1597 break;
1598 }
1599 mmap_write_unlock(mm);
1600 return err;
1601}
1602
1603SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1604 unsigned long, mode, const unsigned long __user *, nmask,
1605 unsigned long, maxnode, unsigned int, flags)
1606{
1607 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1608}
1609
1610/* Set the process memory policy */
1611static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1612 unsigned long maxnode)
1613{
1614 unsigned short mode_flags;
1615 nodemask_t nodes;
1616 int lmode = mode;
1617 int err;
1618
1619 err = sanitize_mpol_flags(&lmode, &mode_flags);
1620 if (err)
1621 return err;
1622
1623 err = get_nodes(&nodes, nmask, maxnode);
1624 if (err)
1625 return err;
1626
1627 return do_set_mempolicy(lmode, mode_flags, &nodes);
1628}
1629
1630SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1631 unsigned long, maxnode)
1632{
1633 return kernel_set_mempolicy(mode, nmask, maxnode);
1634}
1635
1636static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1637 const unsigned long __user *old_nodes,
1638 const unsigned long __user *new_nodes)
1639{
1640 struct mm_struct *mm = NULL;
1641 struct task_struct *task;
1642 nodemask_t task_nodes;
1643 int err;
1644 nodemask_t *old;
1645 nodemask_t *new;
1646 NODEMASK_SCRATCH(scratch);
1647
1648 if (!scratch)
1649 return -ENOMEM;
1650
1651 old = &scratch->mask1;
1652 new = &scratch->mask2;
1653
1654 err = get_nodes(old, old_nodes, maxnode);
1655 if (err)
1656 goto out;
1657
1658 err = get_nodes(new, new_nodes, maxnode);
1659 if (err)
1660 goto out;
1661
1662 /* Find the mm_struct */
1663 rcu_read_lock();
1664 task = pid ? find_task_by_vpid(pid) : current;
1665 if (!task) {
1666 rcu_read_unlock();
1667 err = -ESRCH;
1668 goto out;
1669 }
1670 get_task_struct(task);
1671
1672 err = -EINVAL;
1673
1674 /*
1675 * Check if this process has the right to modify the specified process.
1676 * Use the regular "ptrace_may_access()" checks.
1677 */
1678 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1679 rcu_read_unlock();
1680 err = -EPERM;
1681 goto out_put;
1682 }
1683 rcu_read_unlock();
1684
1685 task_nodes = cpuset_mems_allowed(task);
1686 /* Is the user allowed to access the target nodes? */
1687 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1688 err = -EPERM;
1689 goto out_put;
1690 }
1691
1692 task_nodes = cpuset_mems_allowed(current);
1693 nodes_and(*new, *new, task_nodes);
1694 if (nodes_empty(*new))
1695 goto out_put;
1696
1697 err = security_task_movememory(task);
1698 if (err)
1699 goto out_put;
1700
1701 mm = get_task_mm(task);
1702 put_task_struct(task);
1703
1704 if (!mm) {
1705 err = -EINVAL;
1706 goto out;
1707 }
1708
1709 err = do_migrate_pages(mm, old, new,
1710 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1711
1712 mmput(mm);
1713out:
1714 NODEMASK_SCRATCH_FREE(scratch);
1715
1716 return err;
1717
1718out_put:
1719 put_task_struct(task);
1720 goto out;
1721}
1722
1723SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1724 const unsigned long __user *, old_nodes,
1725 const unsigned long __user *, new_nodes)
1726{
1727 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1728}
1729
1730/* Retrieve NUMA policy */
1731static int kernel_get_mempolicy(int __user *policy,
1732 unsigned long __user *nmask,
1733 unsigned long maxnode,
1734 unsigned long addr,
1735 unsigned long flags)
1736{
1737 int err;
1738 int pval;
1739 nodemask_t nodes;
1740
1741 if (nmask != NULL && maxnode < nr_node_ids)
1742 return -EINVAL;
1743
1744 addr = untagged_addr(addr);
1745
1746 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1747
1748 if (err)
1749 return err;
1750
1751 if (policy && put_user(pval, policy))
1752 return -EFAULT;
1753
1754 if (nmask)
1755 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1756
1757 return err;
1758}
1759
1760SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1761 unsigned long __user *, nmask, unsigned long, maxnode,
1762 unsigned long, addr, unsigned long, flags)
1763{
1764 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1765}
1766
1767bool vma_migratable(struct vm_area_struct *vma)
1768{
1769 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1770 return false;
1771
1772 /*
1773 * DAX device mappings require predictable access latency, so avoid
1774 * incurring periodic faults.
1775 */
1776 if (vma_is_dax(vma))
1777 return false;
1778
1779 if (is_vm_hugetlb_page(vma) &&
1780 !hugepage_migration_supported(hstate_vma(vma)))
1781 return false;
1782
1783 /*
1784 * Migration allocates pages in the highest zone. If we cannot
1785 * do so then migration (at least from node to node) is not
1786 * possible.
1787 */
1788 if (vma->vm_file &&
1789 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1790 < policy_zone)
1791 return false;
1792 return true;
1793}
1794
1795struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1796 unsigned long addr, pgoff_t *ilx)
1797{
1798 *ilx = 0;
1799 return (vma->vm_ops && vma->vm_ops->get_policy) ?
1800 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1801}
1802
1803/*
1804 * get_vma_policy(@vma, @addr, @order, @ilx)
1805 * @vma: virtual memory area whose policy is sought
1806 * @addr: address in @vma for shared policy lookup
1807 * @order: 0, or appropriate huge_page_order for interleaving
1808 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1809 * MPOL_WEIGHTED_INTERLEAVE
1810 *
1811 * Returns effective policy for a VMA at specified address.
1812 * Falls back to current->mempolicy or system default policy, as necessary.
1813 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1814 * count--added by the get_policy() vm_op, as appropriate--to protect against
1815 * freeing by another task. It is the caller's responsibility to free the
1816 * extra reference for shared policies.
1817 */
1818struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1819 unsigned long addr, int order, pgoff_t *ilx)
1820{
1821 struct mempolicy *pol;
1822
1823 pol = __get_vma_policy(vma, addr, ilx);
1824 if (!pol)
1825 pol = get_task_policy(current);
1826 if (pol->mode == MPOL_INTERLEAVE ||
1827 pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1828 *ilx += vma->vm_pgoff >> order;
1829 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1830 }
1831 return pol;
1832}
1833
1834bool vma_policy_mof(struct vm_area_struct *vma)
1835{
1836 struct mempolicy *pol;
1837
1838 if (vma->vm_ops && vma->vm_ops->get_policy) {
1839 bool ret = false;
1840 pgoff_t ilx; /* ignored here */
1841
1842 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1843 if (pol && (pol->flags & MPOL_F_MOF))
1844 ret = true;
1845 mpol_cond_put(pol);
1846
1847 return ret;
1848 }
1849
1850 pol = vma->vm_policy;
1851 if (!pol)
1852 pol = get_task_policy(current);
1853
1854 return pol->flags & MPOL_F_MOF;
1855}
1856
1857bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1858{
1859 enum zone_type dynamic_policy_zone = policy_zone;
1860
1861 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1862
1863 /*
1864 * if policy->nodes has movable memory only,
1865 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1866 *
1867 * policy->nodes is intersect with node_states[N_MEMORY].
1868 * so if the following test fails, it implies
1869 * policy->nodes has movable memory only.
1870 */
1871 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1872 dynamic_policy_zone = ZONE_MOVABLE;
1873
1874 return zone >= dynamic_policy_zone;
1875}
1876
1877static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1878{
1879 unsigned int node;
1880 unsigned int cpuset_mems_cookie;
1881
1882retry:
1883 /* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1884 cpuset_mems_cookie = read_mems_allowed_begin();
1885 node = current->il_prev;
1886 if (!current->il_weight || !node_isset(node, policy->nodes)) {
1887 node = next_node_in(node, policy->nodes);
1888 if (read_mems_allowed_retry(cpuset_mems_cookie))
1889 goto retry;
1890 if (node == MAX_NUMNODES)
1891 return node;
1892 current->il_prev = node;
1893 current->il_weight = get_il_weight(node);
1894 }
1895 current->il_weight--;
1896 return node;
1897}
1898
1899/* Do dynamic interleaving for a process */
1900static unsigned int interleave_nodes(struct mempolicy *policy)
1901{
1902 unsigned int nid;
1903 unsigned int cpuset_mems_cookie;
1904
1905 /* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1906 do {
1907 cpuset_mems_cookie = read_mems_allowed_begin();
1908 nid = next_node_in(current->il_prev, policy->nodes);
1909 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1910
1911 if (nid < MAX_NUMNODES)
1912 current->il_prev = nid;
1913 return nid;
1914}
1915
1916/*
1917 * Depending on the memory policy provide a node from which to allocate the
1918 * next slab entry.
1919 */
1920unsigned int mempolicy_slab_node(void)
1921{
1922 struct mempolicy *policy;
1923 int node = numa_mem_id();
1924
1925 if (!in_task())
1926 return node;
1927
1928 policy = current->mempolicy;
1929 if (!policy)
1930 return node;
1931
1932 switch (policy->mode) {
1933 case MPOL_PREFERRED:
1934 return first_node(policy->nodes);
1935
1936 case MPOL_INTERLEAVE:
1937 return interleave_nodes(policy);
1938
1939 case MPOL_WEIGHTED_INTERLEAVE:
1940 return weighted_interleave_nodes(policy);
1941
1942 case MPOL_BIND:
1943 case MPOL_PREFERRED_MANY:
1944 {
1945 struct zoneref *z;
1946
1947 /*
1948 * Follow bind policy behavior and start allocation at the
1949 * first node.
1950 */
1951 struct zonelist *zonelist;
1952 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1953 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1954 z = first_zones_zonelist(zonelist, highest_zoneidx,
1955 &policy->nodes);
1956 return z->zone ? zone_to_nid(z->zone) : node;
1957 }
1958 case MPOL_LOCAL:
1959 return node;
1960
1961 default:
1962 BUG();
1963 }
1964}
1965
1966static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1967 nodemask_t *mask)
1968{
1969 /*
1970 * barrier stabilizes the nodemask locally so that it can be iterated
1971 * over safely without concern for changes. Allocators validate node
1972 * selection does not violate mems_allowed, so this is safe.
1973 */
1974 barrier();
1975 memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1976 barrier();
1977 return nodes_weight(*mask);
1978}
1979
1980static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1981{
1982 nodemask_t nodemask;
1983 unsigned int target, nr_nodes;
1984 u8 *table;
1985 unsigned int weight_total = 0;
1986 u8 weight;
1987 int nid;
1988
1989 nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1990 if (!nr_nodes)
1991 return numa_node_id();
1992
1993 rcu_read_lock();
1994 table = rcu_dereference(iw_table);
1995 /* calculate the total weight */
1996 for_each_node_mask(nid, nodemask) {
1997 /* detect system default usage */
1998 weight = table ? table[nid] : 1;
1999 weight = weight ? weight : 1;
2000 weight_total += weight;
2001 }
2002
2003 /* Calculate the node offset based on totals */
2004 target = ilx % weight_total;
2005 nid = first_node(nodemask);
2006 while (target) {
2007 /* detect system default usage */
2008 weight = table ? table[nid] : 1;
2009 weight = weight ? weight : 1;
2010 if (target < weight)
2011 break;
2012 target -= weight;
2013 nid = next_node_in(nid, nodemask);
2014 }
2015 rcu_read_unlock();
2016 return nid;
2017}
2018
2019/*
2020 * Do static interleaving for interleave index @ilx. Returns the ilx'th
2021 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2022 * exceeds the number of present nodes.
2023 */
2024static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2025{
2026 nodemask_t nodemask;
2027 unsigned int target, nnodes;
2028 int i;
2029 int nid;
2030
2031 nnodes = read_once_policy_nodemask(pol, &nodemask);
2032 if (!nnodes)
2033 return numa_node_id();
2034 target = ilx % nnodes;
2035 nid = first_node(nodemask);
2036 for (i = 0; i < target; i++)
2037 nid = next_node(nid, nodemask);
2038 return nid;
2039}
2040
2041/*
2042 * Return a nodemask representing a mempolicy for filtering nodes for
2043 * page allocation, together with preferred node id (or the input node id).
2044 */
2045static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2046 pgoff_t ilx, int *nid)
2047{
2048 nodemask_t *nodemask = NULL;
2049
2050 switch (pol->mode) {
2051 case MPOL_PREFERRED:
2052 /* Override input node id */
2053 *nid = first_node(pol->nodes);
2054 break;
2055 case MPOL_PREFERRED_MANY:
2056 nodemask = &pol->nodes;
2057 if (pol->home_node != NUMA_NO_NODE)
2058 *nid = pol->home_node;
2059 break;
2060 case MPOL_BIND:
2061 /* Restrict to nodemask (but not on lower zones) */
2062 if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2063 cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2064 nodemask = &pol->nodes;
2065 if (pol->home_node != NUMA_NO_NODE)
2066 *nid = pol->home_node;
2067 /*
2068 * __GFP_THISNODE shouldn't even be used with the bind policy
2069 * because we might easily break the expectation to stay on the
2070 * requested node and not break the policy.
2071 */
2072 WARN_ON_ONCE(gfp & __GFP_THISNODE);
2073 break;
2074 case MPOL_INTERLEAVE:
2075 /* Override input node id */
2076 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
2077 interleave_nodes(pol) : interleave_nid(pol, ilx);
2078 break;
2079 case MPOL_WEIGHTED_INTERLEAVE:
2080 *nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081 weighted_interleave_nodes(pol) :
2082 weighted_interleave_nid(pol, ilx);
2083 break;
2084 }
2085
2086 return nodemask;
2087}
2088
2089#ifdef CONFIG_HUGETLBFS
2090/*
2091 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2092 * @vma: virtual memory area whose policy is sought
2093 * @addr: address in @vma for shared policy lookup and interleave policy
2094 * @gfp_flags: for requested zone
2095 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2096 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2097 *
2098 * Returns a nid suitable for a huge page allocation and a pointer
2099 * to the struct mempolicy for conditional unref after allocation.
2100 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2101 * to the mempolicy's @nodemask for filtering the zonelist.
2102 */
2103int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2104 struct mempolicy **mpol, nodemask_t **nodemask)
2105{
2106 pgoff_t ilx;
2107 int nid;
2108
2109 nid = numa_node_id();
2110 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2111 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2112 return nid;
2113}
2114
2115/*
2116 * init_nodemask_of_mempolicy
2117 *
2118 * If the current task's mempolicy is "default" [NULL], return 'false'
2119 * to indicate default policy. Otherwise, extract the policy nodemask
2120 * for 'bind' or 'interleave' policy into the argument nodemask, or
2121 * initialize the argument nodemask to contain the single node for
2122 * 'preferred' or 'local' policy and return 'true' to indicate presence
2123 * of non-default mempolicy.
2124 *
2125 * We don't bother with reference counting the mempolicy [mpol_get/put]
2126 * because the current task is examining it's own mempolicy and a task's
2127 * mempolicy is only ever changed by the task itself.
2128 *
2129 * N.B., it is the caller's responsibility to free a returned nodemask.
2130 */
2131bool init_nodemask_of_mempolicy(nodemask_t *mask)
2132{
2133 struct mempolicy *mempolicy;
2134
2135 if (!(mask && current->mempolicy))
2136 return false;
2137
2138 task_lock(current);
2139 mempolicy = current->mempolicy;
2140 switch (mempolicy->mode) {
2141 case MPOL_PREFERRED:
2142 case MPOL_PREFERRED_MANY:
2143 case MPOL_BIND:
2144 case MPOL_INTERLEAVE:
2145 case MPOL_WEIGHTED_INTERLEAVE:
2146 *mask = mempolicy->nodes;
2147 break;
2148
2149 case MPOL_LOCAL:
2150 init_nodemask_of_node(mask, numa_node_id());
2151 break;
2152
2153 default:
2154 BUG();
2155 }
2156 task_unlock(current);
2157
2158 return true;
2159}
2160#endif
2161
2162/*
2163 * mempolicy_in_oom_domain
2164 *
2165 * If tsk's mempolicy is "bind", check for intersection between mask and
2166 * the policy nodemask. Otherwise, return true for all other policies
2167 * including "interleave", as a tsk with "interleave" policy may have
2168 * memory allocated from all nodes in system.
2169 *
2170 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2171 */
2172bool mempolicy_in_oom_domain(struct task_struct *tsk,
2173 const nodemask_t *mask)
2174{
2175 struct mempolicy *mempolicy;
2176 bool ret = true;
2177
2178 if (!mask)
2179 return ret;
2180
2181 task_lock(tsk);
2182 mempolicy = tsk->mempolicy;
2183 if (mempolicy && mempolicy->mode == MPOL_BIND)
2184 ret = nodes_intersects(mempolicy->nodes, *mask);
2185 task_unlock(tsk);
2186
2187 return ret;
2188}
2189
2190static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2191 int nid, nodemask_t *nodemask)
2192{
2193 struct page *page;
2194 gfp_t preferred_gfp;
2195
2196 /*
2197 * This is a two pass approach. The first pass will only try the
2198 * preferred nodes but skip the direct reclaim and allow the
2199 * allocation to fail, while the second pass will try all the
2200 * nodes in system.
2201 */
2202 preferred_gfp = gfp | __GFP_NOWARN;
2203 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2204 page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2205 if (!page)
2206 page = __alloc_pages_noprof(gfp, order, nid, NULL);
2207
2208 return page;
2209}
2210
2211/**
2212 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2213 * @gfp: GFP flags.
2214 * @order: Order of the page allocation.
2215 * @pol: Pointer to the NUMA mempolicy.
2216 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2217 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2218 *
2219 * Return: The page on success or NULL if allocation fails.
2220 */
2221struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2222 struct mempolicy *pol, pgoff_t ilx, int nid)
2223{
2224 nodemask_t *nodemask;
2225 struct page *page;
2226
2227 nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2228
2229 if (pol->mode == MPOL_PREFERRED_MANY)
2230 return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2231
2232 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2233 /* filter "hugepage" allocation, unless from alloc_pages() */
2234 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2235 /*
2236 * For hugepage allocation and non-interleave policy which
2237 * allows the current node (or other explicitly preferred
2238 * node) we only try to allocate from the current/preferred
2239 * node and don't fall back to other nodes, as the cost of
2240 * remote accesses would likely offset THP benefits.
2241 *
2242 * If the policy is interleave or does not allow the current
2243 * node in its nodemask, we allocate the standard way.
2244 */
2245 if (pol->mode != MPOL_INTERLEAVE &&
2246 pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2247 (!nodemask || node_isset(nid, *nodemask))) {
2248 /*
2249 * First, try to allocate THP only on local node, but
2250 * don't reclaim unnecessarily, just compact.
2251 */
2252 page = __alloc_pages_node_noprof(nid,
2253 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2254 if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2255 return page;
2256 /*
2257 * If hugepage allocations are configured to always
2258 * synchronous compact or the vma has been madvised
2259 * to prefer hugepage backing, retry allowing remote
2260 * memory with both reclaim and compact as well.
2261 */
2262 }
2263 }
2264
2265 page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2266
2267 if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2268 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2269 if (static_branch_likely(&vm_numa_stat_key) &&
2270 page_to_nid(page) == nid) {
2271 preempt_disable();
2272 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2273 preempt_enable();
2274 }
2275 }
2276
2277 return page;
2278}
2279
2280/**
2281 * vma_alloc_folio - Allocate a folio for a VMA.
2282 * @gfp: GFP flags.
2283 * @order: Order of the folio.
2284 * @vma: Pointer to VMA.
2285 * @addr: Virtual address of the allocation. Must be inside @vma.
2286 * @hugepage: Unused (was: For hugepages try only preferred node if possible).
2287 *
2288 * Allocate a folio for a specific address in @vma, using the appropriate
2289 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the
2290 * VMA to prevent it from going away. Should be used for all allocations
2291 * for folios that will be mapped into user space, excepting hugetlbfs, and
2292 * excepting where direct use of alloc_pages_mpol() is more appropriate.
2293 *
2294 * Return: The folio on success or NULL if allocation fails.
2295 */
2296struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2297 unsigned long addr, bool hugepage)
2298{
2299 struct mempolicy *pol;
2300 pgoff_t ilx;
2301 struct page *page;
2302
2303 pol = get_vma_policy(vma, addr, order, &ilx);
2304 page = alloc_pages_mpol_noprof(gfp | __GFP_COMP, order,
2305 pol, ilx, numa_node_id());
2306 mpol_cond_put(pol);
2307 return page_rmappable_folio(page);
2308}
2309EXPORT_SYMBOL(vma_alloc_folio_noprof);
2310
2311/**
2312 * alloc_pages - Allocate pages.
2313 * @gfp: GFP flags.
2314 * @order: Power of two of number of pages to allocate.
2315 *
2316 * Allocate 1 << @order contiguous pages. The physical address of the
2317 * first page is naturally aligned (eg an order-3 allocation will be aligned
2318 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2319 * process is honoured when in process context.
2320 *
2321 * Context: Can be called from any context, providing the appropriate GFP
2322 * flags are used.
2323 * Return: The page on success or NULL if allocation fails.
2324 */
2325struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2326{
2327 struct mempolicy *pol = &default_policy;
2328
2329 /*
2330 * No reference counting needed for current->mempolicy
2331 * nor system default_policy
2332 */
2333 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2334 pol = get_task_policy(current);
2335
2336 return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2337 numa_node_id());
2338}
2339EXPORT_SYMBOL(alloc_pages_noprof);
2340
2341struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2342{
2343 return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2344}
2345EXPORT_SYMBOL(folio_alloc_noprof);
2346
2347static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2348 struct mempolicy *pol, unsigned long nr_pages,
2349 struct page **page_array)
2350{
2351 int nodes;
2352 unsigned long nr_pages_per_node;
2353 int delta;
2354 int i;
2355 unsigned long nr_allocated;
2356 unsigned long total_allocated = 0;
2357
2358 nodes = nodes_weight(pol->nodes);
2359 nr_pages_per_node = nr_pages / nodes;
2360 delta = nr_pages - nodes * nr_pages_per_node;
2361
2362 for (i = 0; i < nodes; i++) {
2363 if (delta) {
2364 nr_allocated = alloc_pages_bulk_noprof(gfp,
2365 interleave_nodes(pol), NULL,
2366 nr_pages_per_node + 1, NULL,
2367 page_array);
2368 delta--;
2369 } else {
2370 nr_allocated = alloc_pages_bulk_noprof(gfp,
2371 interleave_nodes(pol), NULL,
2372 nr_pages_per_node, NULL, page_array);
2373 }
2374
2375 page_array += nr_allocated;
2376 total_allocated += nr_allocated;
2377 }
2378
2379 return total_allocated;
2380}
2381
2382static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2383 struct mempolicy *pol, unsigned long nr_pages,
2384 struct page **page_array)
2385{
2386 struct task_struct *me = current;
2387 unsigned int cpuset_mems_cookie;
2388 unsigned long total_allocated = 0;
2389 unsigned long nr_allocated = 0;
2390 unsigned long rounds;
2391 unsigned long node_pages, delta;
2392 u8 *table, *weights, weight;
2393 unsigned int weight_total = 0;
2394 unsigned long rem_pages = nr_pages;
2395 nodemask_t nodes;
2396 int nnodes, node;
2397 int resume_node = MAX_NUMNODES - 1;
2398 u8 resume_weight = 0;
2399 int prev_node;
2400 int i;
2401
2402 if (!nr_pages)
2403 return 0;
2404
2405 /* read the nodes onto the stack, retry if done during rebind */
2406 do {
2407 cpuset_mems_cookie = read_mems_allowed_begin();
2408 nnodes = read_once_policy_nodemask(pol, &nodes);
2409 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2410
2411 /* if the nodemask has become invalid, we cannot do anything */
2412 if (!nnodes)
2413 return 0;
2414
2415 /* Continue allocating from most recent node and adjust the nr_pages */
2416 node = me->il_prev;
2417 weight = me->il_weight;
2418 if (weight && node_isset(node, nodes)) {
2419 node_pages = min(rem_pages, weight);
2420 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2421 NULL, page_array);
2422 page_array += nr_allocated;
2423 total_allocated += nr_allocated;
2424 /* if that's all the pages, no need to interleave */
2425 if (rem_pages <= weight) {
2426 me->il_weight -= rem_pages;
2427 return total_allocated;
2428 }
2429 /* Otherwise we adjust remaining pages, continue from there */
2430 rem_pages -= weight;
2431 }
2432 /* clear active weight in case of an allocation failure */
2433 me->il_weight = 0;
2434 prev_node = node;
2435
2436 /* create a local copy of node weights to operate on outside rcu */
2437 weights = kzalloc(nr_node_ids, GFP_KERNEL);
2438 if (!weights)
2439 return total_allocated;
2440
2441 rcu_read_lock();
2442 table = rcu_dereference(iw_table);
2443 if (table)
2444 memcpy(weights, table, nr_node_ids);
2445 rcu_read_unlock();
2446
2447 /* calculate total, detect system default usage */
2448 for_each_node_mask(node, nodes) {
2449 if (!weights[node])
2450 weights[node] = 1;
2451 weight_total += weights[node];
2452 }
2453
2454 /*
2455 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2456 * Track which node weighted interleave should resume from.
2457 *
2458 * if (rounds > 0) and (delta == 0), resume_node will always be
2459 * the node following prev_node and its weight.
2460 */
2461 rounds = rem_pages / weight_total;
2462 delta = rem_pages % weight_total;
2463 resume_node = next_node_in(prev_node, nodes);
2464 resume_weight = weights[resume_node];
2465 for (i = 0; i < nnodes; i++) {
2466 node = next_node_in(prev_node, nodes);
2467 weight = weights[node];
2468 node_pages = weight * rounds;
2469 /* If a delta exists, add this node's portion of the delta */
2470 if (delta > weight) {
2471 node_pages += weight;
2472 delta -= weight;
2473 } else if (delta) {
2474 /* when delta is depleted, resume from that node */
2475 node_pages += delta;
2476 resume_node = node;
2477 resume_weight = weight - delta;
2478 delta = 0;
2479 }
2480 /* node_pages can be 0 if an allocation fails and rounds == 0 */
2481 if (!node_pages)
2482 break;
2483 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2484 NULL, page_array);
2485 page_array += nr_allocated;
2486 total_allocated += nr_allocated;
2487 if (total_allocated == nr_pages)
2488 break;
2489 prev_node = node;
2490 }
2491 me->il_prev = resume_node;
2492 me->il_weight = resume_weight;
2493 kfree(weights);
2494 return total_allocated;
2495}
2496
2497static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2498 struct mempolicy *pol, unsigned long nr_pages,
2499 struct page **page_array)
2500{
2501 gfp_t preferred_gfp;
2502 unsigned long nr_allocated = 0;
2503
2504 preferred_gfp = gfp | __GFP_NOWARN;
2505 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2506
2507 nr_allocated = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2508 nr_pages, NULL, page_array);
2509
2510 if (nr_allocated < nr_pages)
2511 nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2512 nr_pages - nr_allocated, NULL,
2513 page_array + nr_allocated);
2514 return nr_allocated;
2515}
2516
2517/* alloc pages bulk and mempolicy should be considered at the
2518 * same time in some situation such as vmalloc.
2519 *
2520 * It can accelerate memory allocation especially interleaving
2521 * allocate memory.
2522 */
2523unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2524 unsigned long nr_pages, struct page **page_array)
2525{
2526 struct mempolicy *pol = &default_policy;
2527 nodemask_t *nodemask;
2528 int nid;
2529
2530 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2531 pol = get_task_policy(current);
2532
2533 if (pol->mode == MPOL_INTERLEAVE)
2534 return alloc_pages_bulk_array_interleave(gfp, pol,
2535 nr_pages, page_array);
2536
2537 if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2538 return alloc_pages_bulk_array_weighted_interleave(
2539 gfp, pol, nr_pages, page_array);
2540
2541 if (pol->mode == MPOL_PREFERRED_MANY)
2542 return alloc_pages_bulk_array_preferred_many(gfp,
2543 numa_node_id(), pol, nr_pages, page_array);
2544
2545 nid = numa_node_id();
2546 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2547 return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2548 nr_pages, NULL, page_array);
2549}
2550
2551int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2552{
2553 struct mempolicy *pol = mpol_dup(src->vm_policy);
2554
2555 if (IS_ERR(pol))
2556 return PTR_ERR(pol);
2557 dst->vm_policy = pol;
2558 return 0;
2559}
2560
2561/*
2562 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2563 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2564 * with the mems_allowed returned by cpuset_mems_allowed(). This
2565 * keeps mempolicies cpuset relative after its cpuset moves. See
2566 * further kernel/cpuset.c update_nodemask().
2567 *
2568 * current's mempolicy may be rebinded by the other task(the task that changes
2569 * cpuset's mems), so we needn't do rebind work for current task.
2570 */
2571
2572/* Slow path of a mempolicy duplicate */
2573struct mempolicy *__mpol_dup(struct mempolicy *old)
2574{
2575 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2576
2577 if (!new)
2578 return ERR_PTR(-ENOMEM);
2579
2580 /* task's mempolicy is protected by alloc_lock */
2581 if (old == current->mempolicy) {
2582 task_lock(current);
2583 *new = *old;
2584 task_unlock(current);
2585 } else
2586 *new = *old;
2587
2588 if (current_cpuset_is_being_rebound()) {
2589 nodemask_t mems = cpuset_mems_allowed(current);
2590 mpol_rebind_policy(new, &mems);
2591 }
2592 atomic_set(&new->refcnt, 1);
2593 return new;
2594}
2595
2596/* Slow path of a mempolicy comparison */
2597bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2598{
2599 if (!a || !b)
2600 return false;
2601 if (a->mode != b->mode)
2602 return false;
2603 if (a->flags != b->flags)
2604 return false;
2605 if (a->home_node != b->home_node)
2606 return false;
2607 if (mpol_store_user_nodemask(a))
2608 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2609 return false;
2610
2611 switch (a->mode) {
2612 case MPOL_BIND:
2613 case MPOL_INTERLEAVE:
2614 case MPOL_PREFERRED:
2615 case MPOL_PREFERRED_MANY:
2616 case MPOL_WEIGHTED_INTERLEAVE:
2617 return !!nodes_equal(a->nodes, b->nodes);
2618 case MPOL_LOCAL:
2619 return true;
2620 default:
2621 BUG();
2622 return false;
2623 }
2624}
2625
2626/*
2627 * Shared memory backing store policy support.
2628 *
2629 * Remember policies even when nobody has shared memory mapped.
2630 * The policies are kept in Red-Black tree linked from the inode.
2631 * They are protected by the sp->lock rwlock, which should be held
2632 * for any accesses to the tree.
2633 */
2634
2635/*
2636 * lookup first element intersecting start-end. Caller holds sp->lock for
2637 * reading or for writing
2638 */
2639static struct sp_node *sp_lookup(struct shared_policy *sp,
2640 pgoff_t start, pgoff_t end)
2641{
2642 struct rb_node *n = sp->root.rb_node;
2643
2644 while (n) {
2645 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2646
2647 if (start >= p->end)
2648 n = n->rb_right;
2649 else if (end <= p->start)
2650 n = n->rb_left;
2651 else
2652 break;
2653 }
2654 if (!n)
2655 return NULL;
2656 for (;;) {
2657 struct sp_node *w = NULL;
2658 struct rb_node *prev = rb_prev(n);
2659 if (!prev)
2660 break;
2661 w = rb_entry(prev, struct sp_node, nd);
2662 if (w->end <= start)
2663 break;
2664 n = prev;
2665 }
2666 return rb_entry(n, struct sp_node, nd);
2667}
2668
2669/*
2670 * Insert a new shared policy into the list. Caller holds sp->lock for
2671 * writing.
2672 */
2673static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2674{
2675 struct rb_node **p = &sp->root.rb_node;
2676 struct rb_node *parent = NULL;
2677 struct sp_node *nd;
2678
2679 while (*p) {
2680 parent = *p;
2681 nd = rb_entry(parent, struct sp_node, nd);
2682 if (new->start < nd->start)
2683 p = &(*p)->rb_left;
2684 else if (new->end > nd->end)
2685 p = &(*p)->rb_right;
2686 else
2687 BUG();
2688 }
2689 rb_link_node(&new->nd, parent, p);
2690 rb_insert_color(&new->nd, &sp->root);
2691}
2692
2693/* Find shared policy intersecting idx */
2694struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2695 pgoff_t idx)
2696{
2697 struct mempolicy *pol = NULL;
2698 struct sp_node *sn;
2699
2700 if (!sp->root.rb_node)
2701 return NULL;
2702 read_lock(&sp->lock);
2703 sn = sp_lookup(sp, idx, idx+1);
2704 if (sn) {
2705 mpol_get(sn->policy);
2706 pol = sn->policy;
2707 }
2708 read_unlock(&sp->lock);
2709 return pol;
2710}
2711
2712static void sp_free(struct sp_node *n)
2713{
2714 mpol_put(n->policy);
2715 kmem_cache_free(sn_cache, n);
2716}
2717
2718/**
2719 * mpol_misplaced - check whether current folio node is valid in policy
2720 *
2721 * @folio: folio to be checked
2722 * @vmf: structure describing the fault
2723 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2724 *
2725 * Lookup current policy node id for vma,addr and "compare to" folio's
2726 * node id. Policy determination "mimics" alloc_page_vma().
2727 * Called from fault path where we know the vma and faulting address.
2728 *
2729 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2730 * policy, or a suitable node ID to allocate a replacement folio from.
2731 */
2732int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2733 unsigned long addr)
2734{
2735 struct mempolicy *pol;
2736 pgoff_t ilx;
2737 struct zoneref *z;
2738 int curnid = folio_nid(folio);
2739 struct vm_area_struct *vma = vmf->vma;
2740 int thiscpu = raw_smp_processor_id();
2741 int thisnid = numa_node_id();
2742 int polnid = NUMA_NO_NODE;
2743 int ret = NUMA_NO_NODE;
2744
2745 /*
2746 * Make sure ptl is held so that we don't preempt and we
2747 * have a stable smp processor id
2748 */
2749 lockdep_assert_held(vmf->ptl);
2750 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2751 if (!(pol->flags & MPOL_F_MOF))
2752 goto out;
2753
2754 switch (pol->mode) {
2755 case MPOL_INTERLEAVE:
2756 polnid = interleave_nid(pol, ilx);
2757 break;
2758
2759 case MPOL_WEIGHTED_INTERLEAVE:
2760 polnid = weighted_interleave_nid(pol, ilx);
2761 break;
2762
2763 case MPOL_PREFERRED:
2764 if (node_isset(curnid, pol->nodes))
2765 goto out;
2766 polnid = first_node(pol->nodes);
2767 break;
2768
2769 case MPOL_LOCAL:
2770 polnid = numa_node_id();
2771 break;
2772
2773 case MPOL_BIND:
2774 case MPOL_PREFERRED_MANY:
2775 /*
2776 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2777 * policy nodemask we don't allow numa migration to nodes
2778 * outside policy nodemask for now. This is done so that if we
2779 * want demotion to slow memory to happen, before allocating
2780 * from some DRAM node say 'x', we will end up using a
2781 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2782 * we should not promote to node 'x' from slow memory node.
2783 */
2784 if (pol->flags & MPOL_F_MORON) {
2785 /*
2786 * Optimize placement among multiple nodes
2787 * via NUMA balancing
2788 */
2789 if (node_isset(thisnid, pol->nodes))
2790 break;
2791 goto out;
2792 }
2793
2794 /*
2795 * use current page if in policy nodemask,
2796 * else select nearest allowed node, if any.
2797 * If no allowed nodes, use current [!misplaced].
2798 */
2799 if (node_isset(curnid, pol->nodes))
2800 goto out;
2801 z = first_zones_zonelist(
2802 node_zonelist(thisnid, GFP_HIGHUSER),
2803 gfp_zone(GFP_HIGHUSER),
2804 &pol->nodes);
2805 polnid = zone_to_nid(z->zone);
2806 break;
2807
2808 default:
2809 BUG();
2810 }
2811
2812 /* Migrate the folio towards the node whose CPU is referencing it */
2813 if (pol->flags & MPOL_F_MORON) {
2814 polnid = thisnid;
2815
2816 if (!should_numa_migrate_memory(current, folio, curnid,
2817 thiscpu))
2818 goto out;
2819 }
2820
2821 if (curnid != polnid)
2822 ret = polnid;
2823out:
2824 mpol_cond_put(pol);
2825
2826 return ret;
2827}
2828
2829/*
2830 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2831 * dropped after task->mempolicy is set to NULL so that any allocation done as
2832 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2833 * policy.
2834 */
2835void mpol_put_task_policy(struct task_struct *task)
2836{
2837 struct mempolicy *pol;
2838
2839 task_lock(task);
2840 pol = task->mempolicy;
2841 task->mempolicy = NULL;
2842 task_unlock(task);
2843 mpol_put(pol);
2844}
2845
2846static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2847{
2848 rb_erase(&n->nd, &sp->root);
2849 sp_free(n);
2850}
2851
2852static void sp_node_init(struct sp_node *node, unsigned long start,
2853 unsigned long end, struct mempolicy *pol)
2854{
2855 node->start = start;
2856 node->end = end;
2857 node->policy = pol;
2858}
2859
2860static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2861 struct mempolicy *pol)
2862{
2863 struct sp_node *n;
2864 struct mempolicy *newpol;
2865
2866 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2867 if (!n)
2868 return NULL;
2869
2870 newpol = mpol_dup(pol);
2871 if (IS_ERR(newpol)) {
2872 kmem_cache_free(sn_cache, n);
2873 return NULL;
2874 }
2875 newpol->flags |= MPOL_F_SHARED;
2876 sp_node_init(n, start, end, newpol);
2877
2878 return n;
2879}
2880
2881/* Replace a policy range. */
2882static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2883 pgoff_t end, struct sp_node *new)
2884{
2885 struct sp_node *n;
2886 struct sp_node *n_new = NULL;
2887 struct mempolicy *mpol_new = NULL;
2888 int ret = 0;
2889
2890restart:
2891 write_lock(&sp->lock);
2892 n = sp_lookup(sp, start, end);
2893 /* Take care of old policies in the same range. */
2894 while (n && n->start < end) {
2895 struct rb_node *next = rb_next(&n->nd);
2896 if (n->start >= start) {
2897 if (n->end <= end)
2898 sp_delete(sp, n);
2899 else
2900 n->start = end;
2901 } else {
2902 /* Old policy spanning whole new range. */
2903 if (n->end > end) {
2904 if (!n_new)
2905 goto alloc_new;
2906
2907 *mpol_new = *n->policy;
2908 atomic_set(&mpol_new->refcnt, 1);
2909 sp_node_init(n_new, end, n->end, mpol_new);
2910 n->end = start;
2911 sp_insert(sp, n_new);
2912 n_new = NULL;
2913 mpol_new = NULL;
2914 break;
2915 } else
2916 n->end = start;
2917 }
2918 if (!next)
2919 break;
2920 n = rb_entry(next, struct sp_node, nd);
2921 }
2922 if (new)
2923 sp_insert(sp, new);
2924 write_unlock(&sp->lock);
2925 ret = 0;
2926
2927err_out:
2928 if (mpol_new)
2929 mpol_put(mpol_new);
2930 if (n_new)
2931 kmem_cache_free(sn_cache, n_new);
2932
2933 return ret;
2934
2935alloc_new:
2936 write_unlock(&sp->lock);
2937 ret = -ENOMEM;
2938 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2939 if (!n_new)
2940 goto err_out;
2941 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2942 if (!mpol_new)
2943 goto err_out;
2944 atomic_set(&mpol_new->refcnt, 1);
2945 goto restart;
2946}
2947
2948/**
2949 * mpol_shared_policy_init - initialize shared policy for inode
2950 * @sp: pointer to inode shared policy
2951 * @mpol: struct mempolicy to install
2952 *
2953 * Install non-NULL @mpol in inode's shared policy rb-tree.
2954 * On entry, the current task has a reference on a non-NULL @mpol.
2955 * This must be released on exit.
2956 * This is called at get_inode() calls and we can use GFP_KERNEL.
2957 */
2958void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2959{
2960 int ret;
2961
2962 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2963 rwlock_init(&sp->lock);
2964
2965 if (mpol) {
2966 struct sp_node *sn;
2967 struct mempolicy *npol;
2968 NODEMASK_SCRATCH(scratch);
2969
2970 if (!scratch)
2971 goto put_mpol;
2972
2973 /* contextualize the tmpfs mount point mempolicy to this file */
2974 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2975 if (IS_ERR(npol))
2976 goto free_scratch; /* no valid nodemask intersection */
2977
2978 task_lock(current);
2979 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2980 task_unlock(current);
2981 if (ret)
2982 goto put_npol;
2983
2984 /* alloc node covering entire file; adds ref to file's npol */
2985 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2986 if (sn)
2987 sp_insert(sp, sn);
2988put_npol:
2989 mpol_put(npol); /* drop initial ref on file's npol */
2990free_scratch:
2991 NODEMASK_SCRATCH_FREE(scratch);
2992put_mpol:
2993 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2994 }
2995}
2996
2997int mpol_set_shared_policy(struct shared_policy *sp,
2998 struct vm_area_struct *vma, struct mempolicy *pol)
2999{
3000 int err;
3001 struct sp_node *new = NULL;
3002 unsigned long sz = vma_pages(vma);
3003
3004 if (pol) {
3005 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3006 if (!new)
3007 return -ENOMEM;
3008 }
3009 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3010 if (err && new)
3011 sp_free(new);
3012 return err;
3013}
3014
3015/* Free a backing policy store on inode delete. */
3016void mpol_free_shared_policy(struct shared_policy *sp)
3017{
3018 struct sp_node *n;
3019 struct rb_node *next;
3020
3021 if (!sp->root.rb_node)
3022 return;
3023 write_lock(&sp->lock);
3024 next = rb_first(&sp->root);
3025 while (next) {
3026 n = rb_entry(next, struct sp_node, nd);
3027 next = rb_next(&n->nd);
3028 sp_delete(sp, n);
3029 }
3030 write_unlock(&sp->lock);
3031}
3032
3033#ifdef CONFIG_NUMA_BALANCING
3034static int __initdata numabalancing_override;
3035
3036static void __init check_numabalancing_enable(void)
3037{
3038 bool numabalancing_default = false;
3039
3040 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3041 numabalancing_default = true;
3042
3043 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3044 if (numabalancing_override)
3045 set_numabalancing_state(numabalancing_override == 1);
3046
3047 if (num_online_nodes() > 1 && !numabalancing_override) {
3048 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3049 numabalancing_default ? "Enabling" : "Disabling");
3050 set_numabalancing_state(numabalancing_default);
3051 }
3052}
3053
3054static int __init setup_numabalancing(char *str)
3055{
3056 int ret = 0;
3057 if (!str)
3058 goto out;
3059
3060 if (!strcmp(str, "enable")) {
3061 numabalancing_override = 1;
3062 ret = 1;
3063 } else if (!strcmp(str, "disable")) {
3064 numabalancing_override = -1;
3065 ret = 1;
3066 }
3067out:
3068 if (!ret)
3069 pr_warn("Unable to parse numa_balancing=\n");
3070
3071 return ret;
3072}
3073__setup("numa_balancing=", setup_numabalancing);
3074#else
3075static inline void __init check_numabalancing_enable(void)
3076{
3077}
3078#endif /* CONFIG_NUMA_BALANCING */
3079
3080void __init numa_policy_init(void)
3081{
3082 nodemask_t interleave_nodes;
3083 unsigned long largest = 0;
3084 int nid, prefer = 0;
3085
3086 policy_cache = kmem_cache_create("numa_policy",
3087 sizeof(struct mempolicy),
3088 0, SLAB_PANIC, NULL);
3089
3090 sn_cache = kmem_cache_create("shared_policy_node",
3091 sizeof(struct sp_node),
3092 0, SLAB_PANIC, NULL);
3093
3094 for_each_node(nid) {
3095 preferred_node_policy[nid] = (struct mempolicy) {
3096 .refcnt = ATOMIC_INIT(1),
3097 .mode = MPOL_PREFERRED,
3098 .flags = MPOL_F_MOF | MPOL_F_MORON,
3099 .nodes = nodemask_of_node(nid),
3100 };
3101 }
3102
3103 /*
3104 * Set interleaving policy for system init. Interleaving is only
3105 * enabled across suitably sized nodes (default is >= 16MB), or
3106 * fall back to the largest node if they're all smaller.
3107 */
3108 nodes_clear(interleave_nodes);
3109 for_each_node_state(nid, N_MEMORY) {
3110 unsigned long total_pages = node_present_pages(nid);
3111
3112 /* Preserve the largest node */
3113 if (largest < total_pages) {
3114 largest = total_pages;
3115 prefer = nid;
3116 }
3117
3118 /* Interleave this node? */
3119 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3120 node_set(nid, interleave_nodes);
3121 }
3122
3123 /* All too small, use the largest */
3124 if (unlikely(nodes_empty(interleave_nodes)))
3125 node_set(prefer, interleave_nodes);
3126
3127 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3128 pr_err("%s: interleaving failed\n", __func__);
3129
3130 check_numabalancing_enable();
3131}
3132
3133/* Reset policy of current process to default */
3134void numa_default_policy(void)
3135{
3136 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3137}
3138
3139/*
3140 * Parse and format mempolicy from/to strings
3141 */
3142static const char * const policy_modes[] =
3143{
3144 [MPOL_DEFAULT] = "default",
3145 [MPOL_PREFERRED] = "prefer",
3146 [MPOL_BIND] = "bind",
3147 [MPOL_INTERLEAVE] = "interleave",
3148 [MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3149 [MPOL_LOCAL] = "local",
3150 [MPOL_PREFERRED_MANY] = "prefer (many)",
3151};
3152
3153#ifdef CONFIG_TMPFS
3154/**
3155 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3156 * @str: string containing mempolicy to parse
3157 * @mpol: pointer to struct mempolicy pointer, returned on success.
3158 *
3159 * Format of input:
3160 * <mode>[=<flags>][:<nodelist>]
3161 *
3162 * Return: %0 on success, else %1
3163 */
3164int mpol_parse_str(char *str, struct mempolicy **mpol)
3165{
3166 struct mempolicy *new = NULL;
3167 unsigned short mode_flags;
3168 nodemask_t nodes;
3169 char *nodelist = strchr(str, ':');
3170 char *flags = strchr(str, '=');
3171 int err = 1, mode;
3172
3173 if (flags)
3174 *flags++ = '\0'; /* terminate mode string */
3175
3176 if (nodelist) {
3177 /* NUL-terminate mode or flags string */
3178 *nodelist++ = '\0';
3179 if (nodelist_parse(nodelist, nodes))
3180 goto out;
3181 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3182 goto out;
3183 } else
3184 nodes_clear(nodes);
3185
3186 mode = match_string(policy_modes, MPOL_MAX, str);
3187 if (mode < 0)
3188 goto out;
3189
3190 switch (mode) {
3191 case MPOL_PREFERRED:
3192 /*
3193 * Insist on a nodelist of one node only, although later
3194 * we use first_node(nodes) to grab a single node, so here
3195 * nodelist (or nodes) cannot be empty.
3196 */
3197 if (nodelist) {
3198 char *rest = nodelist;
3199 while (isdigit(*rest))
3200 rest++;
3201 if (*rest)
3202 goto out;
3203 if (nodes_empty(nodes))
3204 goto out;
3205 }
3206 break;
3207 case MPOL_INTERLEAVE:
3208 case MPOL_WEIGHTED_INTERLEAVE:
3209 /*
3210 * Default to online nodes with memory if no nodelist
3211 */
3212 if (!nodelist)
3213 nodes = node_states[N_MEMORY];
3214 break;
3215 case MPOL_LOCAL:
3216 /*
3217 * Don't allow a nodelist; mpol_new() checks flags
3218 */
3219 if (nodelist)
3220 goto out;
3221 break;
3222 case MPOL_DEFAULT:
3223 /*
3224 * Insist on a empty nodelist
3225 */
3226 if (!nodelist)
3227 err = 0;
3228 goto out;
3229 case MPOL_PREFERRED_MANY:
3230 case MPOL_BIND:
3231 /*
3232 * Insist on a nodelist
3233 */
3234 if (!nodelist)
3235 goto out;
3236 }
3237
3238 mode_flags = 0;
3239 if (flags) {
3240 /*
3241 * Currently, we only support two mutually exclusive
3242 * mode flags.
3243 */
3244 if (!strcmp(flags, "static"))
3245 mode_flags |= MPOL_F_STATIC_NODES;
3246 else if (!strcmp(flags, "relative"))
3247 mode_flags |= MPOL_F_RELATIVE_NODES;
3248 else
3249 goto out;
3250 }
3251
3252 new = mpol_new(mode, mode_flags, &nodes);
3253 if (IS_ERR(new))
3254 goto out;
3255
3256 /*
3257 * Save nodes for mpol_to_str() to show the tmpfs mount options
3258 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3259 */
3260 if (mode != MPOL_PREFERRED) {
3261 new->nodes = nodes;
3262 } else if (nodelist) {
3263 nodes_clear(new->nodes);
3264 node_set(first_node(nodes), new->nodes);
3265 } else {
3266 new->mode = MPOL_LOCAL;
3267 }
3268
3269 /*
3270 * Save nodes for contextualization: this will be used to "clone"
3271 * the mempolicy in a specific context [cpuset] at a later time.
3272 */
3273 new->w.user_nodemask = nodes;
3274
3275 err = 0;
3276
3277out:
3278 /* Restore string for error message */
3279 if (nodelist)
3280 *--nodelist = ':';
3281 if (flags)
3282 *--flags = '=';
3283 if (!err)
3284 *mpol = new;
3285 return err;
3286}
3287#endif /* CONFIG_TMPFS */
3288
3289/**
3290 * mpol_to_str - format a mempolicy structure for printing
3291 * @buffer: to contain formatted mempolicy string
3292 * @maxlen: length of @buffer
3293 * @pol: pointer to mempolicy to be formatted
3294 *
3295 * Convert @pol into a string. If @buffer is too short, truncate the string.
3296 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3297 * longest flag, "relative", and to display at least a few node ids.
3298 */
3299void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3300{
3301 char *p = buffer;
3302 nodemask_t nodes = NODE_MASK_NONE;
3303 unsigned short mode = MPOL_DEFAULT;
3304 unsigned short flags = 0;
3305
3306 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3307 mode = pol->mode;
3308 flags = pol->flags;
3309 }
3310
3311 switch (mode) {
3312 case MPOL_DEFAULT:
3313 case MPOL_LOCAL:
3314 break;
3315 case MPOL_PREFERRED:
3316 case MPOL_PREFERRED_MANY:
3317 case MPOL_BIND:
3318 case MPOL_INTERLEAVE:
3319 case MPOL_WEIGHTED_INTERLEAVE:
3320 nodes = pol->nodes;
3321 break;
3322 default:
3323 WARN_ON_ONCE(1);
3324 snprintf(p, maxlen, "unknown");
3325 return;
3326 }
3327
3328 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3329
3330 if (flags & MPOL_MODE_FLAGS) {
3331 p += snprintf(p, buffer + maxlen - p, "=");
3332
3333 /*
3334 * Currently, the only defined flags are mutually exclusive
3335 */
3336 if (flags & MPOL_F_STATIC_NODES)
3337 p += snprintf(p, buffer + maxlen - p, "static");
3338 else if (flags & MPOL_F_RELATIVE_NODES)
3339 p += snprintf(p, buffer + maxlen - p, "relative");
3340 }
3341
3342 if (!nodes_empty(nodes))
3343 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3344 nodemask_pr_args(&nodes));
3345}
3346
3347#ifdef CONFIG_SYSFS
3348struct iw_node_attr {
3349 struct kobj_attribute kobj_attr;
3350 int nid;
3351};
3352
3353static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3354 char *buf)
3355{
3356 struct iw_node_attr *node_attr;
3357 u8 weight;
3358
3359 node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3360 weight = get_il_weight(node_attr->nid);
3361 return sysfs_emit(buf, "%d\n", weight);
3362}
3363
3364static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3365 const char *buf, size_t count)
3366{
3367 struct iw_node_attr *node_attr;
3368 u8 *new;
3369 u8 *old;
3370 u8 weight = 0;
3371
3372 node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3373 if (count == 0 || sysfs_streq(buf, ""))
3374 weight = 0;
3375 else if (kstrtou8(buf, 0, &weight))
3376 return -EINVAL;
3377
3378 new = kzalloc(nr_node_ids, GFP_KERNEL);
3379 if (!new)
3380 return -ENOMEM;
3381
3382 mutex_lock(&iw_table_lock);
3383 old = rcu_dereference_protected(iw_table,
3384 lockdep_is_held(&iw_table_lock));
3385 if (old)
3386 memcpy(new, old, nr_node_ids);
3387 new[node_attr->nid] = weight;
3388 rcu_assign_pointer(iw_table, new);
3389 mutex_unlock(&iw_table_lock);
3390 synchronize_rcu();
3391 kfree(old);
3392 return count;
3393}
3394
3395static struct iw_node_attr **node_attrs;
3396
3397static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3398 struct kobject *parent)
3399{
3400 if (!node_attr)
3401 return;
3402 sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3403 kfree(node_attr->kobj_attr.attr.name);
3404 kfree(node_attr);
3405}
3406
3407static void sysfs_wi_release(struct kobject *wi_kobj)
3408{
3409 int i;
3410
3411 for (i = 0; i < nr_node_ids; i++)
3412 sysfs_wi_node_release(node_attrs[i], wi_kobj);
3413 kobject_put(wi_kobj);
3414}
3415
3416static const struct kobj_type wi_ktype = {
3417 .sysfs_ops = &kobj_sysfs_ops,
3418 .release = sysfs_wi_release,
3419};
3420
3421static int add_weight_node(int nid, struct kobject *wi_kobj)
3422{
3423 struct iw_node_attr *node_attr;
3424 char *name;
3425
3426 node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3427 if (!node_attr)
3428 return -ENOMEM;
3429
3430 name = kasprintf(GFP_KERNEL, "node%d", nid);
3431 if (!name) {
3432 kfree(node_attr);
3433 return -ENOMEM;
3434 }
3435
3436 sysfs_attr_init(&node_attr->kobj_attr.attr);
3437 node_attr->kobj_attr.attr.name = name;
3438 node_attr->kobj_attr.attr.mode = 0644;
3439 node_attr->kobj_attr.show = node_show;
3440 node_attr->kobj_attr.store = node_store;
3441 node_attr->nid = nid;
3442
3443 if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3444 kfree(node_attr->kobj_attr.attr.name);
3445 kfree(node_attr);
3446 pr_err("failed to add attribute to weighted_interleave\n");
3447 return -ENOMEM;
3448 }
3449
3450 node_attrs[nid] = node_attr;
3451 return 0;
3452}
3453
3454static int add_weighted_interleave_group(struct kobject *root_kobj)
3455{
3456 struct kobject *wi_kobj;
3457 int nid, err;
3458
3459 wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3460 if (!wi_kobj)
3461 return -ENOMEM;
3462
3463 err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3464 "weighted_interleave");
3465 if (err) {
3466 kfree(wi_kobj);
3467 return err;
3468 }
3469
3470 for_each_node_state(nid, N_POSSIBLE) {
3471 err = add_weight_node(nid, wi_kobj);
3472 if (err) {
3473 pr_err("failed to add sysfs [node%d]\n", nid);
3474 break;
3475 }
3476 }
3477 if (err)
3478 kobject_put(wi_kobj);
3479 return 0;
3480}
3481
3482static void mempolicy_kobj_release(struct kobject *kobj)
3483{
3484 u8 *old;
3485
3486 mutex_lock(&iw_table_lock);
3487 old = rcu_dereference_protected(iw_table,
3488 lockdep_is_held(&iw_table_lock));
3489 rcu_assign_pointer(iw_table, NULL);
3490 mutex_unlock(&iw_table_lock);
3491 synchronize_rcu();
3492 kfree(old);
3493 kfree(node_attrs);
3494 kfree(kobj);
3495}
3496
3497static const struct kobj_type mempolicy_ktype = {
3498 .release = mempolicy_kobj_release
3499};
3500
3501static int __init mempolicy_sysfs_init(void)
3502{
3503 int err;
3504 static struct kobject *mempolicy_kobj;
3505
3506 mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3507 if (!mempolicy_kobj) {
3508 err = -ENOMEM;
3509 goto err_out;
3510 }
3511
3512 node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3513 GFP_KERNEL);
3514 if (!node_attrs) {
3515 err = -ENOMEM;
3516 goto mempol_out;
3517 }
3518
3519 err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3520 "mempolicy");
3521 if (err)
3522 goto node_out;
3523
3524 err = add_weighted_interleave_group(mempolicy_kobj);
3525 if (err) {
3526 pr_err("mempolicy sysfs structure failed to initialize\n");
3527 kobject_put(mempolicy_kobj);
3528 return err;
3529 }
3530
3531 return err;
3532node_out:
3533 kfree(node_attrs);
3534mempol_out:
3535 kfree(mempolicy_kobj);
3536err_out:
3537 pr_err("failed to add mempolicy kobject to the system\n");
3538 return err;
3539}
3540
3541late_initcall(mempolicy_sysfs_init);
3542#endif /* CONFIG_SYSFS */