Merge tag 'ext4_for_linus_fixes2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / mempolicy.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70#include <linux/mempolicy.h>
71#include <linux/pagewalk.h>
72#include <linux/highmem.h>
73#include <linux/hugetlb.h>
74#include <linux/kernel.h>
75#include <linux/sched.h>
76#include <linux/sched/mm.h>
77#include <linux/sched/numa_balancing.h>
78#include <linux/sched/task.h>
79#include <linux/nodemask.h>
80#include <linux/cpuset.h>
81#include <linux/slab.h>
82#include <linux/string.h>
83#include <linux/export.h>
84#include <linux/nsproxy.h>
85#include <linux/interrupt.h>
86#include <linux/init.h>
87#include <linux/compat.h>
88#include <linux/ptrace.h>
89#include <linux/swap.h>
90#include <linux/seq_file.h>
91#include <linux/proc_fs.h>
92#include <linux/migrate.h>
93#include <linux/ksm.h>
94#include <linux/rmap.h>
95#include <linux/security.h>
96#include <linux/syscalls.h>
97#include <linux/ctype.h>
98#include <linux/mm_inline.h>
99#include <linux/mmu_notifier.h>
100#include <linux/printk.h>
101#include <linux/swapops.h>
102
103#include <asm/tlbflush.h>
104#include <linux/uaccess.h>
105
106#include "internal.h"
107
108/* Internal flags */
109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112static struct kmem_cache *policy_cache;
113static struct kmem_cache *sn_cache;
114
115/* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117enum zone_type policy_zone = 0;
118
119/*
120 * run-time system-wide default policy => local allocation
121 */
122static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126};
127
128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130/**
131 * numa_map_to_online_node - Find closest online node
132 * @node: Node id to start the search
133 *
134 * Lookup the next closest node by distance if @nid is not online.
135 */
136int numa_map_to_online_node(int node)
137{
138 int min_dist = INT_MAX, dist, n, min_node;
139
140 if (node == NUMA_NO_NODE || node_online(node))
141 return node;
142
143 min_node = node;
144 for_each_online_node(n) {
145 dist = node_distance(node, n);
146 if (dist < min_dist) {
147 min_dist = dist;
148 min_node = n;
149 }
150 }
151
152 return min_node;
153}
154EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155
156struct mempolicy *get_task_policy(struct task_struct *p)
157{
158 struct mempolicy *pol = p->mempolicy;
159 int node;
160
161 if (pol)
162 return pol;
163
164 node = numa_node_id();
165 if (node != NUMA_NO_NODE) {
166 pol = &preferred_node_policy[node];
167 /* preferred_node_policy is not initialised early in boot */
168 if (pol->mode)
169 return pol;
170 }
171
172 return &default_policy;
173}
174
175static const struct mempolicy_operations {
176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178} mpol_ops[MPOL_MAX];
179
180static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181{
182 return pol->flags & MPOL_MODE_FLAGS;
183}
184
185static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 const nodemask_t *rel)
187{
188 nodemask_t tmp;
189 nodes_fold(tmp, *orig, nodes_weight(*rel));
190 nodes_onto(*ret, tmp, *rel);
191}
192
193static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194{
195 if (nodes_empty(*nodes))
196 return -EINVAL;
197 pol->v.nodes = *nodes;
198 return 0;
199}
200
201static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202{
203 if (!nodes)
204 pol->flags |= MPOL_F_LOCAL; /* local allocation */
205 else if (nodes_empty(*nodes))
206 return -EINVAL; /* no allowed nodes */
207 else
208 pol->v.preferred_node = first_node(*nodes);
209 return 0;
210}
211
212static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213{
214 if (nodes_empty(*nodes))
215 return -EINVAL;
216 pol->v.nodes = *nodes;
217 return 0;
218}
219
220/*
221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222 * any, for the new policy. mpol_new() has already validated the nodes
223 * parameter with respect to the policy mode and flags. But, we need to
224 * handle an empty nodemask with MPOL_PREFERRED here.
225 *
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
228 */
229static int mpol_set_nodemask(struct mempolicy *pol,
230 const nodemask_t *nodes, struct nodemask_scratch *nsc)
231{
232 int ret;
233
234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 if (pol == NULL)
236 return 0;
237 /* Check N_MEMORY */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240
241 VM_BUG_ON(!nodes);
242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 nodes = NULL; /* explicit local allocation */
244 else {
245 if (pol->flags & MPOL_F_RELATIVE_NODES)
246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 else
248 nodes_and(nsc->mask2, *nodes, nsc->mask1);
249
250 if (mpol_store_user_nodemask(pol))
251 pol->w.user_nodemask = *nodes;
252 else
253 pol->w.cpuset_mems_allowed =
254 cpuset_current_mems_allowed;
255 }
256
257 if (nodes)
258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 else
260 ret = mpol_ops[pol->mode].create(pol, NULL);
261 return ret;
262}
263
264/*
265 * This function just creates a new policy, does some check and simple
266 * initialization. You must invoke mpol_set_nodemask() to set nodes.
267 */
268static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 nodemask_t *nodes)
270{
271 struct mempolicy *policy;
272
273 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275
276 if (mode == MPOL_DEFAULT) {
277 if (nodes && !nodes_empty(*nodes))
278 return ERR_PTR(-EINVAL);
279 return NULL;
280 }
281 VM_BUG_ON(!nodes);
282
283 /*
284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 * All other modes require a valid pointer to a non-empty nodemask.
287 */
288 if (mode == MPOL_PREFERRED) {
289 if (nodes_empty(*nodes)) {
290 if (((flags & MPOL_F_STATIC_NODES) ||
291 (flags & MPOL_F_RELATIVE_NODES)))
292 return ERR_PTR(-EINVAL);
293 }
294 } else if (mode == MPOL_LOCAL) {
295 if (!nodes_empty(*nodes) ||
296 (flags & MPOL_F_STATIC_NODES) ||
297 (flags & MPOL_F_RELATIVE_NODES))
298 return ERR_PTR(-EINVAL);
299 mode = MPOL_PREFERRED;
300 } else if (nodes_empty(*nodes))
301 return ERR_PTR(-EINVAL);
302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 if (!policy)
304 return ERR_PTR(-ENOMEM);
305 atomic_set(&policy->refcnt, 1);
306 policy->mode = mode;
307 policy->flags = flags;
308
309 return policy;
310}
311
312/* Slow path of a mpol destructor. */
313void __mpol_put(struct mempolicy *p)
314{
315 if (!atomic_dec_and_test(&p->refcnt))
316 return;
317 kmem_cache_free(policy_cache, p);
318}
319
320static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321{
322}
323
324static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325{
326 nodemask_t tmp;
327
328 if (pol->flags & MPOL_F_STATIC_NODES)
329 nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 else {
333 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 *nodes);
335 pol->w.cpuset_mems_allowed = *nodes;
336 }
337
338 if (nodes_empty(tmp))
339 tmp = *nodes;
340
341 pol->v.nodes = tmp;
342}
343
344static void mpol_rebind_preferred(struct mempolicy *pol,
345 const nodemask_t *nodes)
346{
347 nodemask_t tmp;
348
349 if (pol->flags & MPOL_F_STATIC_NODES) {
350 int node = first_node(pol->w.user_nodemask);
351
352 if (node_isset(node, *nodes)) {
353 pol->v.preferred_node = node;
354 pol->flags &= ~MPOL_F_LOCAL;
355 } else
356 pol->flags |= MPOL_F_LOCAL;
357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 pol->v.preferred_node = first_node(tmp);
360 } else if (!(pol->flags & MPOL_F_LOCAL)) {
361 pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 pol->w.cpuset_mems_allowed,
363 *nodes);
364 pol->w.cpuset_mems_allowed = *nodes;
365 }
366}
367
368/*
369 * mpol_rebind_policy - Migrate a policy to a different set of nodes
370 *
371 * Per-vma policies are protected by mmap_lock. Allocations using per-task
372 * policies are protected by task->mems_allowed_seq to prevent a premature
373 * OOM/allocation failure due to parallel nodemask modification.
374 */
375static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376{
377 if (!pol)
378 return;
379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 return;
382
383 mpol_ops[pol->mode].rebind(pol, newmask);
384}
385
386/*
387 * Wrapper for mpol_rebind_policy() that just requires task
388 * pointer, and updates task mempolicy.
389 *
390 * Called with task's alloc_lock held.
391 */
392
393void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394{
395 mpol_rebind_policy(tsk->mempolicy, new);
396}
397
398/*
399 * Rebind each vma in mm to new nodemask.
400 *
401 * Call holding a reference to mm. Takes mm->mmap_lock during call.
402 */
403
404void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405{
406 struct vm_area_struct *vma;
407
408 mmap_write_lock(mm);
409 for (vma = mm->mmap; vma; vma = vma->vm_next)
410 mpol_rebind_policy(vma->vm_policy, new);
411 mmap_write_unlock(mm);
412}
413
414static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 [MPOL_DEFAULT] = {
416 .rebind = mpol_rebind_default,
417 },
418 [MPOL_INTERLEAVE] = {
419 .create = mpol_new_interleave,
420 .rebind = mpol_rebind_nodemask,
421 },
422 [MPOL_PREFERRED] = {
423 .create = mpol_new_preferred,
424 .rebind = mpol_rebind_preferred,
425 },
426 [MPOL_BIND] = {
427 .create = mpol_new_bind,
428 .rebind = mpol_rebind_nodemask,
429 },
430};
431
432static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 unsigned long flags);
434
435struct queue_pages {
436 struct list_head *pagelist;
437 unsigned long flags;
438 nodemask_t *nmask;
439 unsigned long start;
440 unsigned long end;
441 struct vm_area_struct *first;
442};
443
444/*
445 * Check if the page's nid is in qp->nmask.
446 *
447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448 * in the invert of qp->nmask.
449 */
450static inline bool queue_pages_required(struct page *page,
451 struct queue_pages *qp)
452{
453 int nid = page_to_nid(page);
454 unsigned long flags = qp->flags;
455
456 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457}
458
459/*
460 * queue_pages_pmd() has four possible return values:
461 * 0 - pages are placed on the right node or queued successfully.
462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463 * specified.
464 * 2 - THP was split.
465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466 * existing page was already on a node that does not follow the
467 * policy.
468 */
469static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 unsigned long end, struct mm_walk *walk)
471 __releases(ptl)
472{
473 int ret = 0;
474 struct page *page;
475 struct queue_pages *qp = walk->private;
476 unsigned long flags;
477
478 if (unlikely(is_pmd_migration_entry(*pmd))) {
479 ret = -EIO;
480 goto unlock;
481 }
482 page = pmd_page(*pmd);
483 if (is_huge_zero_page(page)) {
484 spin_unlock(ptl);
485 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 ret = 2;
487 goto out;
488 }
489 if (!queue_pages_required(page, qp))
490 goto unlock;
491
492 flags = qp->flags;
493 /* go to thp migration */
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 if (!vma_migratable(walk->vma) ||
496 migrate_page_add(page, qp->pagelist, flags)) {
497 ret = 1;
498 goto unlock;
499 }
500 } else
501 ret = -EIO;
502unlock:
503 spin_unlock(ptl);
504out:
505 return ret;
506}
507
508/*
509 * Scan through pages checking if pages follow certain conditions,
510 * and move them to the pagelist if they do.
511 *
512 * queue_pages_pte_range() has three possible return values:
513 * 0 - pages are placed on the right node or queued successfully.
514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515 * specified.
516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517 * on a node that does not follow the policy.
518 */
519static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 unsigned long end, struct mm_walk *walk)
521{
522 struct vm_area_struct *vma = walk->vma;
523 struct page *page;
524 struct queue_pages *qp = walk->private;
525 unsigned long flags = qp->flags;
526 int ret;
527 bool has_unmovable = false;
528 pte_t *pte, *mapped_pte;
529 spinlock_t *ptl;
530
531 ptl = pmd_trans_huge_lock(pmd, vma);
532 if (ptl) {
533 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 if (ret != 2)
535 return ret;
536 }
537 /* THP was split, fall through to pte walk */
538
539 if (pmd_trans_unstable(pmd))
540 return 0;
541
542 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 for (; addr != end; pte++, addr += PAGE_SIZE) {
544 if (!pte_present(*pte))
545 continue;
546 page = vm_normal_page(vma, addr, *pte);
547 if (!page)
548 continue;
549 /*
550 * vm_normal_page() filters out zero pages, but there might
551 * still be PageReserved pages to skip, perhaps in a VDSO.
552 */
553 if (PageReserved(page))
554 continue;
555 if (!queue_pages_required(page, qp))
556 continue;
557 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 /* MPOL_MF_STRICT must be specified if we get here */
559 if (!vma_migratable(vma)) {
560 has_unmovable = true;
561 break;
562 }
563
564 /*
565 * Do not abort immediately since there may be
566 * temporary off LRU pages in the range. Still
567 * need migrate other LRU pages.
568 */
569 if (migrate_page_add(page, qp->pagelist, flags))
570 has_unmovable = true;
571 } else
572 break;
573 }
574 pte_unmap_unlock(mapped_pte, ptl);
575 cond_resched();
576
577 if (has_unmovable)
578 return 1;
579
580 return addr != end ? -EIO : 0;
581}
582
583static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 unsigned long addr, unsigned long end,
585 struct mm_walk *walk)
586{
587 int ret = 0;
588#ifdef CONFIG_HUGETLB_PAGE
589 struct queue_pages *qp = walk->private;
590 unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 struct page *page;
592 spinlock_t *ptl;
593 pte_t entry;
594
595 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 entry = huge_ptep_get(pte);
597 if (!pte_present(entry))
598 goto unlock;
599 page = pte_page(entry);
600 if (!queue_pages_required(page, qp))
601 goto unlock;
602
603 if (flags == MPOL_MF_STRICT) {
604 /*
605 * STRICT alone means only detecting misplaced page and no
606 * need to further check other vma.
607 */
608 ret = -EIO;
609 goto unlock;
610 }
611
612 if (!vma_migratable(walk->vma)) {
613 /*
614 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 * stopped walking current vma.
616 * Detecting misplaced page but allow migrating pages which
617 * have been queued.
618 */
619 ret = 1;
620 goto unlock;
621 }
622
623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 if (flags & (MPOL_MF_MOVE_ALL) ||
625 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 if (!isolate_huge_page(page, qp->pagelist) &&
627 (flags & MPOL_MF_STRICT))
628 /*
629 * Failed to isolate page but allow migrating pages
630 * which have been queued.
631 */
632 ret = 1;
633 }
634unlock:
635 spin_unlock(ptl);
636#else
637 BUG();
638#endif
639 return ret;
640}
641
642#ifdef CONFIG_NUMA_BALANCING
643/*
644 * This is used to mark a range of virtual addresses to be inaccessible.
645 * These are later cleared by a NUMA hinting fault. Depending on these
646 * faults, pages may be migrated for better NUMA placement.
647 *
648 * This is assuming that NUMA faults are handled using PROT_NONE. If
649 * an architecture makes a different choice, it will need further
650 * changes to the core.
651 */
652unsigned long change_prot_numa(struct vm_area_struct *vma,
653 unsigned long addr, unsigned long end)
654{
655 int nr_updated;
656
657 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 if (nr_updated)
659 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660
661 return nr_updated;
662}
663#else
664static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 unsigned long addr, unsigned long end)
666{
667 return 0;
668}
669#endif /* CONFIG_NUMA_BALANCING */
670
671static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 struct mm_walk *walk)
673{
674 struct vm_area_struct *vma = walk->vma;
675 struct queue_pages *qp = walk->private;
676 unsigned long endvma = vma->vm_end;
677 unsigned long flags = qp->flags;
678
679 /* range check first */
680 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
681
682 if (!qp->first) {
683 qp->first = vma;
684 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 (qp->start < vma->vm_start))
686 /* hole at head side of range */
687 return -EFAULT;
688 }
689 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 ((vma->vm_end < qp->end) &&
691 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 /* hole at middle or tail of range */
693 return -EFAULT;
694
695 /*
696 * Need check MPOL_MF_STRICT to return -EIO if possible
697 * regardless of vma_migratable
698 */
699 if (!vma_migratable(vma) &&
700 !(flags & MPOL_MF_STRICT))
701 return 1;
702
703 if (endvma > end)
704 endvma = end;
705
706 if (flags & MPOL_MF_LAZY) {
707 /* Similar to task_numa_work, skip inaccessible VMAs */
708 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 !(vma->vm_flags & VM_MIXEDMAP))
710 change_prot_numa(vma, start, endvma);
711 return 1;
712 }
713
714 /* queue pages from current vma */
715 if (flags & MPOL_MF_VALID)
716 return 0;
717 return 1;
718}
719
720static const struct mm_walk_ops queue_pages_walk_ops = {
721 .hugetlb_entry = queue_pages_hugetlb,
722 .pmd_entry = queue_pages_pte_range,
723 .test_walk = queue_pages_test_walk,
724};
725
726/*
727 * Walk through page tables and collect pages to be migrated.
728 *
729 * If pages found in a given range are on a set of nodes (determined by
730 * @nodes and @flags,) it's isolated and queued to the pagelist which is
731 * passed via @private.
732 *
733 * queue_pages_range() has three possible return values:
734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735 * specified.
736 * 0 - queue pages successfully or no misplaced page.
737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738 * memory range specified by nodemask and maxnode points outside
739 * your accessible address space (-EFAULT)
740 */
741static int
742queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 nodemask_t *nodes, unsigned long flags,
744 struct list_head *pagelist)
745{
746 int err;
747 struct queue_pages qp = {
748 .pagelist = pagelist,
749 .flags = flags,
750 .nmask = nodes,
751 .start = start,
752 .end = end,
753 .first = NULL,
754 };
755
756 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757
758 if (!qp.first)
759 /* whole range in hole */
760 err = -EFAULT;
761
762 return err;
763}
764
765/*
766 * Apply policy to a single VMA
767 * This must be called with the mmap_lock held for writing.
768 */
769static int vma_replace_policy(struct vm_area_struct *vma,
770 struct mempolicy *pol)
771{
772 int err;
773 struct mempolicy *old;
774 struct mempolicy *new;
775
776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 vma->vm_ops, vma->vm_file,
779 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780
781 new = mpol_dup(pol);
782 if (IS_ERR(new))
783 return PTR_ERR(new);
784
785 if (vma->vm_ops && vma->vm_ops->set_policy) {
786 err = vma->vm_ops->set_policy(vma, new);
787 if (err)
788 goto err_out;
789 }
790
791 old = vma->vm_policy;
792 vma->vm_policy = new; /* protected by mmap_lock */
793 mpol_put(old);
794
795 return 0;
796 err_out:
797 mpol_put(new);
798 return err;
799}
800
801/* Step 2: apply policy to a range and do splits. */
802static int mbind_range(struct mm_struct *mm, unsigned long start,
803 unsigned long end, struct mempolicy *new_pol)
804{
805 struct vm_area_struct *next;
806 struct vm_area_struct *prev;
807 struct vm_area_struct *vma;
808 int err = 0;
809 pgoff_t pgoff;
810 unsigned long vmstart;
811 unsigned long vmend;
812
813 vma = find_vma(mm, start);
814 VM_BUG_ON(!vma);
815
816 prev = vma->vm_prev;
817 if (start > vma->vm_start)
818 prev = vma;
819
820 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 next = vma->vm_next;
822 vmstart = max(start, vma->vm_start);
823 vmend = min(end, vma->vm_end);
824
825 if (mpol_equal(vma_policy(vma), new_pol))
826 continue;
827
828 pgoff = vma->vm_pgoff +
829 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 vma->anon_vma, vma->vm_file, pgoff,
832 new_pol, vma->vm_userfaultfd_ctx);
833 if (prev) {
834 vma = prev;
835 next = vma->vm_next;
836 if (mpol_equal(vma_policy(vma), new_pol))
837 continue;
838 /* vma_merge() joined vma && vma->next, case 8 */
839 goto replace;
840 }
841 if (vma->vm_start != vmstart) {
842 err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 if (err)
844 goto out;
845 }
846 if (vma->vm_end != vmend) {
847 err = split_vma(vma->vm_mm, vma, vmend, 0);
848 if (err)
849 goto out;
850 }
851 replace:
852 err = vma_replace_policy(vma, new_pol);
853 if (err)
854 goto out;
855 }
856
857 out:
858 return err;
859}
860
861/* Set the process memory policy */
862static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 nodemask_t *nodes)
864{
865 struct mempolicy *new, *old;
866 NODEMASK_SCRATCH(scratch);
867 int ret;
868
869 if (!scratch)
870 return -ENOMEM;
871
872 new = mpol_new(mode, flags, nodes);
873 if (IS_ERR(new)) {
874 ret = PTR_ERR(new);
875 goto out;
876 }
877
878 ret = mpol_set_nodemask(new, nodes, scratch);
879 if (ret) {
880 mpol_put(new);
881 goto out;
882 }
883 task_lock(current);
884 old = current->mempolicy;
885 current->mempolicy = new;
886 if (new && new->mode == MPOL_INTERLEAVE)
887 current->il_prev = MAX_NUMNODES-1;
888 task_unlock(current);
889 mpol_put(old);
890 ret = 0;
891out:
892 NODEMASK_SCRATCH_FREE(scratch);
893 return ret;
894}
895
896/*
897 * Return nodemask for policy for get_mempolicy() query
898 *
899 * Called with task's alloc_lock held
900 */
901static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
902{
903 nodes_clear(*nodes);
904 if (p == &default_policy)
905 return;
906
907 switch (p->mode) {
908 case MPOL_BIND:
909 case MPOL_INTERLEAVE:
910 *nodes = p->v.nodes;
911 break;
912 case MPOL_PREFERRED:
913 if (!(p->flags & MPOL_F_LOCAL))
914 node_set(p->v.preferred_node, *nodes);
915 /* else return empty node mask for local allocation */
916 break;
917 default:
918 BUG();
919 }
920}
921
922static int lookup_node(struct mm_struct *mm, unsigned long addr)
923{
924 struct page *p = NULL;
925 int err;
926
927 int locked = 1;
928 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
929 if (err > 0) {
930 err = page_to_nid(p);
931 put_page(p);
932 }
933 if (locked)
934 mmap_read_unlock(mm);
935 return err;
936}
937
938/* Retrieve NUMA policy */
939static long do_get_mempolicy(int *policy, nodemask_t *nmask,
940 unsigned long addr, unsigned long flags)
941{
942 int err;
943 struct mm_struct *mm = current->mm;
944 struct vm_area_struct *vma = NULL;
945 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
946
947 if (flags &
948 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
949 return -EINVAL;
950
951 if (flags & MPOL_F_MEMS_ALLOWED) {
952 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
953 return -EINVAL;
954 *policy = 0; /* just so it's initialized */
955 task_lock(current);
956 *nmask = cpuset_current_mems_allowed;
957 task_unlock(current);
958 return 0;
959 }
960
961 if (flags & MPOL_F_ADDR) {
962 /*
963 * Do NOT fall back to task policy if the
964 * vma/shared policy at addr is NULL. We
965 * want to return MPOL_DEFAULT in this case.
966 */
967 mmap_read_lock(mm);
968 vma = find_vma_intersection(mm, addr, addr+1);
969 if (!vma) {
970 mmap_read_unlock(mm);
971 return -EFAULT;
972 }
973 if (vma->vm_ops && vma->vm_ops->get_policy)
974 pol = vma->vm_ops->get_policy(vma, addr);
975 else
976 pol = vma->vm_policy;
977 } else if (addr)
978 return -EINVAL;
979
980 if (!pol)
981 pol = &default_policy; /* indicates default behavior */
982
983 if (flags & MPOL_F_NODE) {
984 if (flags & MPOL_F_ADDR) {
985 /*
986 * Take a refcount on the mpol, lookup_node()
987 * wil drop the mmap_lock, so after calling
988 * lookup_node() only "pol" remains valid, "vma"
989 * is stale.
990 */
991 pol_refcount = pol;
992 vma = NULL;
993 mpol_get(pol);
994 err = lookup_node(mm, addr);
995 if (err < 0)
996 goto out;
997 *policy = err;
998 } else if (pol == current->mempolicy &&
999 pol->mode == MPOL_INTERLEAVE) {
1000 *policy = next_node_in(current->il_prev, pol->v.nodes);
1001 } else {
1002 err = -EINVAL;
1003 goto out;
1004 }
1005 } else {
1006 *policy = pol == &default_policy ? MPOL_DEFAULT :
1007 pol->mode;
1008 /*
1009 * Internal mempolicy flags must be masked off before exposing
1010 * the policy to userspace.
1011 */
1012 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1013 }
1014
1015 err = 0;
1016 if (nmask) {
1017 if (mpol_store_user_nodemask(pol)) {
1018 *nmask = pol->w.user_nodemask;
1019 } else {
1020 task_lock(current);
1021 get_policy_nodemask(pol, nmask);
1022 task_unlock(current);
1023 }
1024 }
1025
1026 out:
1027 mpol_cond_put(pol);
1028 if (vma)
1029 mmap_read_unlock(mm);
1030 if (pol_refcount)
1031 mpol_put(pol_refcount);
1032 return err;
1033}
1034
1035#ifdef CONFIG_MIGRATION
1036/*
1037 * page migration, thp tail pages can be passed.
1038 */
1039static int migrate_page_add(struct page *page, struct list_head *pagelist,
1040 unsigned long flags)
1041{
1042 struct page *head = compound_head(page);
1043 /*
1044 * Avoid migrating a page that is shared with others.
1045 */
1046 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1047 if (!isolate_lru_page(head)) {
1048 list_add_tail(&head->lru, pagelist);
1049 mod_node_page_state(page_pgdat(head),
1050 NR_ISOLATED_ANON + page_is_file_lru(head),
1051 thp_nr_pages(head));
1052 } else if (flags & MPOL_MF_STRICT) {
1053 /*
1054 * Non-movable page may reach here. And, there may be
1055 * temporary off LRU pages or non-LRU movable pages.
1056 * Treat them as unmovable pages since they can't be
1057 * isolated, so they can't be moved at the moment. It
1058 * should return -EIO for this case too.
1059 */
1060 return -EIO;
1061 }
1062 }
1063
1064 return 0;
1065}
1066
1067/*
1068 * Migrate pages from one node to a target node.
1069 * Returns error or the number of pages not migrated.
1070 */
1071static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1072 int flags)
1073{
1074 nodemask_t nmask;
1075 LIST_HEAD(pagelist);
1076 int err = 0;
1077 struct migration_target_control mtc = {
1078 .nid = dest,
1079 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1080 };
1081
1082 nodes_clear(nmask);
1083 node_set(source, nmask);
1084
1085 /*
1086 * This does not "check" the range but isolates all pages that
1087 * need migration. Between passing in the full user address
1088 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1089 */
1090 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1091 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1092 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1093
1094 if (!list_empty(&pagelist)) {
1095 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1096 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1097 if (err)
1098 putback_movable_pages(&pagelist);
1099 }
1100
1101 return err;
1102}
1103
1104/*
1105 * Move pages between the two nodesets so as to preserve the physical
1106 * layout as much as possible.
1107 *
1108 * Returns the number of page that could not be moved.
1109 */
1110int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 const nodemask_t *to, int flags)
1112{
1113 int busy = 0;
1114 int err;
1115 nodemask_t tmp;
1116
1117 err = migrate_prep();
1118 if (err)
1119 return err;
1120
1121 mmap_read_lock(mm);
1122
1123 /*
1124 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1125 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1126 * bit in 'tmp', and return that <source, dest> pair for migration.
1127 * The pair of nodemasks 'to' and 'from' define the map.
1128 *
1129 * If no pair of bits is found that way, fallback to picking some
1130 * pair of 'source' and 'dest' bits that are not the same. If the
1131 * 'source' and 'dest' bits are the same, this represents a node
1132 * that will be migrating to itself, so no pages need move.
1133 *
1134 * If no bits are left in 'tmp', or if all remaining bits left
1135 * in 'tmp' correspond to the same bit in 'to', return false
1136 * (nothing left to migrate).
1137 *
1138 * This lets us pick a pair of nodes to migrate between, such that
1139 * if possible the dest node is not already occupied by some other
1140 * source node, minimizing the risk of overloading the memory on a
1141 * node that would happen if we migrated incoming memory to a node
1142 * before migrating outgoing memory source that same node.
1143 *
1144 * A single scan of tmp is sufficient. As we go, we remember the
1145 * most recent <s, d> pair that moved (s != d). If we find a pair
1146 * that not only moved, but what's better, moved to an empty slot
1147 * (d is not set in tmp), then we break out then, with that pair.
1148 * Otherwise when we finish scanning from_tmp, we at least have the
1149 * most recent <s, d> pair that moved. If we get all the way through
1150 * the scan of tmp without finding any node that moved, much less
1151 * moved to an empty node, then there is nothing left worth migrating.
1152 */
1153
1154 tmp = *from;
1155 while (!nodes_empty(tmp)) {
1156 int s,d;
1157 int source = NUMA_NO_NODE;
1158 int dest = 0;
1159
1160 for_each_node_mask(s, tmp) {
1161
1162 /*
1163 * do_migrate_pages() tries to maintain the relative
1164 * node relationship of the pages established between
1165 * threads and memory areas.
1166 *
1167 * However if the number of source nodes is not equal to
1168 * the number of destination nodes we can not preserve
1169 * this node relative relationship. In that case, skip
1170 * copying memory from a node that is in the destination
1171 * mask.
1172 *
1173 * Example: [2,3,4] -> [3,4,5] moves everything.
1174 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1175 */
1176
1177 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1178 (node_isset(s, *to)))
1179 continue;
1180
1181 d = node_remap(s, *from, *to);
1182 if (s == d)
1183 continue;
1184
1185 source = s; /* Node moved. Memorize */
1186 dest = d;
1187
1188 /* dest not in remaining from nodes? */
1189 if (!node_isset(dest, tmp))
1190 break;
1191 }
1192 if (source == NUMA_NO_NODE)
1193 break;
1194
1195 node_clear(source, tmp);
1196 err = migrate_to_node(mm, source, dest, flags);
1197 if (err > 0)
1198 busy += err;
1199 if (err < 0)
1200 break;
1201 }
1202 mmap_read_unlock(mm);
1203 if (err < 0)
1204 return err;
1205 return busy;
1206
1207}
1208
1209/*
1210 * Allocate a new page for page migration based on vma policy.
1211 * Start by assuming the page is mapped by the same vma as contains @start.
1212 * Search forward from there, if not. N.B., this assumes that the
1213 * list of pages handed to migrate_pages()--which is how we get here--
1214 * is in virtual address order.
1215 */
1216static struct page *new_page(struct page *page, unsigned long start)
1217{
1218 struct vm_area_struct *vma;
1219 unsigned long address;
1220
1221 vma = find_vma(current->mm, start);
1222 while (vma) {
1223 address = page_address_in_vma(page, vma);
1224 if (address != -EFAULT)
1225 break;
1226 vma = vma->vm_next;
1227 }
1228
1229 if (PageHuge(page)) {
1230 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1231 vma, address);
1232 } else if (PageTransHuge(page)) {
1233 struct page *thp;
1234
1235 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1236 HPAGE_PMD_ORDER);
1237 if (!thp)
1238 return NULL;
1239 prep_transhuge_page(thp);
1240 return thp;
1241 }
1242 /*
1243 * if !vma, alloc_page_vma() will use task or system default policy
1244 */
1245 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1246 vma, address);
1247}
1248#else
1249
1250static int migrate_page_add(struct page *page, struct list_head *pagelist,
1251 unsigned long flags)
1252{
1253 return -EIO;
1254}
1255
1256int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1257 const nodemask_t *to, int flags)
1258{
1259 return -ENOSYS;
1260}
1261
1262static struct page *new_page(struct page *page, unsigned long start)
1263{
1264 return NULL;
1265}
1266#endif
1267
1268static long do_mbind(unsigned long start, unsigned long len,
1269 unsigned short mode, unsigned short mode_flags,
1270 nodemask_t *nmask, unsigned long flags)
1271{
1272 struct mm_struct *mm = current->mm;
1273 struct mempolicy *new;
1274 unsigned long end;
1275 int err;
1276 int ret;
1277 LIST_HEAD(pagelist);
1278
1279 if (flags & ~(unsigned long)MPOL_MF_VALID)
1280 return -EINVAL;
1281 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1282 return -EPERM;
1283
1284 if (start & ~PAGE_MASK)
1285 return -EINVAL;
1286
1287 if (mode == MPOL_DEFAULT)
1288 flags &= ~MPOL_MF_STRICT;
1289
1290 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1291 end = start + len;
1292
1293 if (end < start)
1294 return -EINVAL;
1295 if (end == start)
1296 return 0;
1297
1298 new = mpol_new(mode, mode_flags, nmask);
1299 if (IS_ERR(new))
1300 return PTR_ERR(new);
1301
1302 if (flags & MPOL_MF_LAZY)
1303 new->flags |= MPOL_F_MOF;
1304
1305 /*
1306 * If we are using the default policy then operation
1307 * on discontinuous address spaces is okay after all
1308 */
1309 if (!new)
1310 flags |= MPOL_MF_DISCONTIG_OK;
1311
1312 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1313 start, start + len, mode, mode_flags,
1314 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1315
1316 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1317
1318 err = migrate_prep();
1319 if (err)
1320 goto mpol_out;
1321 }
1322 {
1323 NODEMASK_SCRATCH(scratch);
1324 if (scratch) {
1325 mmap_write_lock(mm);
1326 err = mpol_set_nodemask(new, nmask, scratch);
1327 if (err)
1328 mmap_write_unlock(mm);
1329 } else
1330 err = -ENOMEM;
1331 NODEMASK_SCRATCH_FREE(scratch);
1332 }
1333 if (err)
1334 goto mpol_out;
1335
1336 ret = queue_pages_range(mm, start, end, nmask,
1337 flags | MPOL_MF_INVERT, &pagelist);
1338
1339 if (ret < 0) {
1340 err = ret;
1341 goto up_out;
1342 }
1343
1344 err = mbind_range(mm, start, end, new);
1345
1346 if (!err) {
1347 int nr_failed = 0;
1348
1349 if (!list_empty(&pagelist)) {
1350 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1351 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1352 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1353 if (nr_failed)
1354 putback_movable_pages(&pagelist);
1355 }
1356
1357 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1358 err = -EIO;
1359 } else {
1360up_out:
1361 if (!list_empty(&pagelist))
1362 putback_movable_pages(&pagelist);
1363 }
1364
1365 mmap_write_unlock(mm);
1366mpol_out:
1367 mpol_put(new);
1368 return err;
1369}
1370
1371/*
1372 * User space interface with variable sized bitmaps for nodelists.
1373 */
1374
1375/* Copy a node mask from user space. */
1376static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1377 unsigned long maxnode)
1378{
1379 unsigned long k;
1380 unsigned long t;
1381 unsigned long nlongs;
1382 unsigned long endmask;
1383
1384 --maxnode;
1385 nodes_clear(*nodes);
1386 if (maxnode == 0 || !nmask)
1387 return 0;
1388 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1389 return -EINVAL;
1390
1391 nlongs = BITS_TO_LONGS(maxnode);
1392 if ((maxnode % BITS_PER_LONG) == 0)
1393 endmask = ~0UL;
1394 else
1395 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1396
1397 /*
1398 * When the user specified more nodes than supported just check
1399 * if the non supported part is all zero.
1400 *
1401 * If maxnode have more longs than MAX_NUMNODES, check
1402 * the bits in that area first. And then go through to
1403 * check the rest bits which equal or bigger than MAX_NUMNODES.
1404 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1405 */
1406 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1407 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1408 if (get_user(t, nmask + k))
1409 return -EFAULT;
1410 if (k == nlongs - 1) {
1411 if (t & endmask)
1412 return -EINVAL;
1413 } else if (t)
1414 return -EINVAL;
1415 }
1416 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1417 endmask = ~0UL;
1418 }
1419
1420 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1421 unsigned long valid_mask = endmask;
1422
1423 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1424 if (get_user(t, nmask + nlongs - 1))
1425 return -EFAULT;
1426 if (t & valid_mask)
1427 return -EINVAL;
1428 }
1429
1430 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1431 return -EFAULT;
1432 nodes_addr(*nodes)[nlongs-1] &= endmask;
1433 return 0;
1434}
1435
1436/* Copy a kernel node mask to user space */
1437static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1438 nodemask_t *nodes)
1439{
1440 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1441 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1442
1443 if (copy > nbytes) {
1444 if (copy > PAGE_SIZE)
1445 return -EINVAL;
1446 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1447 return -EFAULT;
1448 copy = nbytes;
1449 }
1450 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1451}
1452
1453static long kernel_mbind(unsigned long start, unsigned long len,
1454 unsigned long mode, const unsigned long __user *nmask,
1455 unsigned long maxnode, unsigned int flags)
1456{
1457 nodemask_t nodes;
1458 int err;
1459 unsigned short mode_flags;
1460
1461 start = untagged_addr(start);
1462 mode_flags = mode & MPOL_MODE_FLAGS;
1463 mode &= ~MPOL_MODE_FLAGS;
1464 if (mode >= MPOL_MAX)
1465 return -EINVAL;
1466 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1467 (mode_flags & MPOL_F_RELATIVE_NODES))
1468 return -EINVAL;
1469 err = get_nodes(&nodes, nmask, maxnode);
1470 if (err)
1471 return err;
1472 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1473}
1474
1475SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1476 unsigned long, mode, const unsigned long __user *, nmask,
1477 unsigned long, maxnode, unsigned int, flags)
1478{
1479 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1480}
1481
1482/* Set the process memory policy */
1483static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1484 unsigned long maxnode)
1485{
1486 int err;
1487 nodemask_t nodes;
1488 unsigned short flags;
1489
1490 flags = mode & MPOL_MODE_FLAGS;
1491 mode &= ~MPOL_MODE_FLAGS;
1492 if ((unsigned int)mode >= MPOL_MAX)
1493 return -EINVAL;
1494 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1495 return -EINVAL;
1496 err = get_nodes(&nodes, nmask, maxnode);
1497 if (err)
1498 return err;
1499 return do_set_mempolicy(mode, flags, &nodes);
1500}
1501
1502SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1503 unsigned long, maxnode)
1504{
1505 return kernel_set_mempolicy(mode, nmask, maxnode);
1506}
1507
1508static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1509 const unsigned long __user *old_nodes,
1510 const unsigned long __user *new_nodes)
1511{
1512 struct mm_struct *mm = NULL;
1513 struct task_struct *task;
1514 nodemask_t task_nodes;
1515 int err;
1516 nodemask_t *old;
1517 nodemask_t *new;
1518 NODEMASK_SCRATCH(scratch);
1519
1520 if (!scratch)
1521 return -ENOMEM;
1522
1523 old = &scratch->mask1;
1524 new = &scratch->mask2;
1525
1526 err = get_nodes(old, old_nodes, maxnode);
1527 if (err)
1528 goto out;
1529
1530 err = get_nodes(new, new_nodes, maxnode);
1531 if (err)
1532 goto out;
1533
1534 /* Find the mm_struct */
1535 rcu_read_lock();
1536 task = pid ? find_task_by_vpid(pid) : current;
1537 if (!task) {
1538 rcu_read_unlock();
1539 err = -ESRCH;
1540 goto out;
1541 }
1542 get_task_struct(task);
1543
1544 err = -EINVAL;
1545
1546 /*
1547 * Check if this process has the right to modify the specified process.
1548 * Use the regular "ptrace_may_access()" checks.
1549 */
1550 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1551 rcu_read_unlock();
1552 err = -EPERM;
1553 goto out_put;
1554 }
1555 rcu_read_unlock();
1556
1557 task_nodes = cpuset_mems_allowed(task);
1558 /* Is the user allowed to access the target nodes? */
1559 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1560 err = -EPERM;
1561 goto out_put;
1562 }
1563
1564 task_nodes = cpuset_mems_allowed(current);
1565 nodes_and(*new, *new, task_nodes);
1566 if (nodes_empty(*new))
1567 goto out_put;
1568
1569 err = security_task_movememory(task);
1570 if (err)
1571 goto out_put;
1572
1573 mm = get_task_mm(task);
1574 put_task_struct(task);
1575
1576 if (!mm) {
1577 err = -EINVAL;
1578 goto out;
1579 }
1580
1581 err = do_migrate_pages(mm, old, new,
1582 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1583
1584 mmput(mm);
1585out:
1586 NODEMASK_SCRATCH_FREE(scratch);
1587
1588 return err;
1589
1590out_put:
1591 put_task_struct(task);
1592 goto out;
1593
1594}
1595
1596SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1597 const unsigned long __user *, old_nodes,
1598 const unsigned long __user *, new_nodes)
1599{
1600 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1601}
1602
1603
1604/* Retrieve NUMA policy */
1605static int kernel_get_mempolicy(int __user *policy,
1606 unsigned long __user *nmask,
1607 unsigned long maxnode,
1608 unsigned long addr,
1609 unsigned long flags)
1610{
1611 int err;
1612 int pval;
1613 nodemask_t nodes;
1614
1615 if (nmask != NULL && maxnode < nr_node_ids)
1616 return -EINVAL;
1617
1618 addr = untagged_addr(addr);
1619
1620 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1621
1622 if (err)
1623 return err;
1624
1625 if (policy && put_user(pval, policy))
1626 return -EFAULT;
1627
1628 if (nmask)
1629 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1630
1631 return err;
1632}
1633
1634SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1635 unsigned long __user *, nmask, unsigned long, maxnode,
1636 unsigned long, addr, unsigned long, flags)
1637{
1638 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1639}
1640
1641#ifdef CONFIG_COMPAT
1642
1643COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1644 compat_ulong_t __user *, nmask,
1645 compat_ulong_t, maxnode,
1646 compat_ulong_t, addr, compat_ulong_t, flags)
1647{
1648 long err;
1649 unsigned long __user *nm = NULL;
1650 unsigned long nr_bits, alloc_size;
1651 DECLARE_BITMAP(bm, MAX_NUMNODES);
1652
1653 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1654 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1655
1656 if (nmask)
1657 nm = compat_alloc_user_space(alloc_size);
1658
1659 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1660
1661 if (!err && nmask) {
1662 unsigned long copy_size;
1663 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1664 err = copy_from_user(bm, nm, copy_size);
1665 /* ensure entire bitmap is zeroed */
1666 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1667 err |= compat_put_bitmap(nmask, bm, nr_bits);
1668 }
1669
1670 return err;
1671}
1672
1673COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1674 compat_ulong_t, maxnode)
1675{
1676 unsigned long __user *nm = NULL;
1677 unsigned long nr_bits, alloc_size;
1678 DECLARE_BITMAP(bm, MAX_NUMNODES);
1679
1680 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1681 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1682
1683 if (nmask) {
1684 if (compat_get_bitmap(bm, nmask, nr_bits))
1685 return -EFAULT;
1686 nm = compat_alloc_user_space(alloc_size);
1687 if (copy_to_user(nm, bm, alloc_size))
1688 return -EFAULT;
1689 }
1690
1691 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1692}
1693
1694COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1695 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1696 compat_ulong_t, maxnode, compat_ulong_t, flags)
1697{
1698 unsigned long __user *nm = NULL;
1699 unsigned long nr_bits, alloc_size;
1700 nodemask_t bm;
1701
1702 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1703 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1704
1705 if (nmask) {
1706 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1707 return -EFAULT;
1708 nm = compat_alloc_user_space(alloc_size);
1709 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1710 return -EFAULT;
1711 }
1712
1713 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1714}
1715
1716COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1717 compat_ulong_t, maxnode,
1718 const compat_ulong_t __user *, old_nodes,
1719 const compat_ulong_t __user *, new_nodes)
1720{
1721 unsigned long __user *old = NULL;
1722 unsigned long __user *new = NULL;
1723 nodemask_t tmp_mask;
1724 unsigned long nr_bits;
1725 unsigned long size;
1726
1727 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1728 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1729 if (old_nodes) {
1730 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1731 return -EFAULT;
1732 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1733 if (new_nodes)
1734 new = old + size / sizeof(unsigned long);
1735 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1736 return -EFAULT;
1737 }
1738 if (new_nodes) {
1739 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1740 return -EFAULT;
1741 if (new == NULL)
1742 new = compat_alloc_user_space(size);
1743 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1744 return -EFAULT;
1745 }
1746 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1747}
1748
1749#endif /* CONFIG_COMPAT */
1750
1751bool vma_migratable(struct vm_area_struct *vma)
1752{
1753 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1754 return false;
1755
1756 /*
1757 * DAX device mappings require predictable access latency, so avoid
1758 * incurring periodic faults.
1759 */
1760 if (vma_is_dax(vma))
1761 return false;
1762
1763 if (is_vm_hugetlb_page(vma) &&
1764 !hugepage_migration_supported(hstate_vma(vma)))
1765 return false;
1766
1767 /*
1768 * Migration allocates pages in the highest zone. If we cannot
1769 * do so then migration (at least from node to node) is not
1770 * possible.
1771 */
1772 if (vma->vm_file &&
1773 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1774 < policy_zone)
1775 return false;
1776 return true;
1777}
1778
1779struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1780 unsigned long addr)
1781{
1782 struct mempolicy *pol = NULL;
1783
1784 if (vma) {
1785 if (vma->vm_ops && vma->vm_ops->get_policy) {
1786 pol = vma->vm_ops->get_policy(vma, addr);
1787 } else if (vma->vm_policy) {
1788 pol = vma->vm_policy;
1789
1790 /*
1791 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1792 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1793 * count on these policies which will be dropped by
1794 * mpol_cond_put() later
1795 */
1796 if (mpol_needs_cond_ref(pol))
1797 mpol_get(pol);
1798 }
1799 }
1800
1801 return pol;
1802}
1803
1804/*
1805 * get_vma_policy(@vma, @addr)
1806 * @vma: virtual memory area whose policy is sought
1807 * @addr: address in @vma for shared policy lookup
1808 *
1809 * Returns effective policy for a VMA at specified address.
1810 * Falls back to current->mempolicy or system default policy, as necessary.
1811 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1812 * count--added by the get_policy() vm_op, as appropriate--to protect against
1813 * freeing by another task. It is the caller's responsibility to free the
1814 * extra reference for shared policies.
1815 */
1816static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1817 unsigned long addr)
1818{
1819 struct mempolicy *pol = __get_vma_policy(vma, addr);
1820
1821 if (!pol)
1822 pol = get_task_policy(current);
1823
1824 return pol;
1825}
1826
1827bool vma_policy_mof(struct vm_area_struct *vma)
1828{
1829 struct mempolicy *pol;
1830
1831 if (vma->vm_ops && vma->vm_ops->get_policy) {
1832 bool ret = false;
1833
1834 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1835 if (pol && (pol->flags & MPOL_F_MOF))
1836 ret = true;
1837 mpol_cond_put(pol);
1838
1839 return ret;
1840 }
1841
1842 pol = vma->vm_policy;
1843 if (!pol)
1844 pol = get_task_policy(current);
1845
1846 return pol->flags & MPOL_F_MOF;
1847}
1848
1849static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1850{
1851 enum zone_type dynamic_policy_zone = policy_zone;
1852
1853 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1854
1855 /*
1856 * if policy->v.nodes has movable memory only,
1857 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1858 *
1859 * policy->v.nodes is intersect with node_states[N_MEMORY].
1860 * so if the following test faile, it implies
1861 * policy->v.nodes has movable memory only.
1862 */
1863 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1864 dynamic_policy_zone = ZONE_MOVABLE;
1865
1866 return zone >= dynamic_policy_zone;
1867}
1868
1869/*
1870 * Return a nodemask representing a mempolicy for filtering nodes for
1871 * page allocation
1872 */
1873nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1874{
1875 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1876 if (unlikely(policy->mode == MPOL_BIND) &&
1877 apply_policy_zone(policy, gfp_zone(gfp)) &&
1878 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1879 return &policy->v.nodes;
1880
1881 return NULL;
1882}
1883
1884/* Return the node id preferred by the given mempolicy, or the given id */
1885static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1886{
1887 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1888 nd = policy->v.preferred_node;
1889 else {
1890 /*
1891 * __GFP_THISNODE shouldn't even be used with the bind policy
1892 * because we might easily break the expectation to stay on the
1893 * requested node and not break the policy.
1894 */
1895 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1896 }
1897
1898 return nd;
1899}
1900
1901/* Do dynamic interleaving for a process */
1902static unsigned interleave_nodes(struct mempolicy *policy)
1903{
1904 unsigned next;
1905 struct task_struct *me = current;
1906
1907 next = next_node_in(me->il_prev, policy->v.nodes);
1908 if (next < MAX_NUMNODES)
1909 me->il_prev = next;
1910 return next;
1911}
1912
1913/*
1914 * Depending on the memory policy provide a node from which to allocate the
1915 * next slab entry.
1916 */
1917unsigned int mempolicy_slab_node(void)
1918{
1919 struct mempolicy *policy;
1920 int node = numa_mem_id();
1921
1922 if (in_interrupt())
1923 return node;
1924
1925 policy = current->mempolicy;
1926 if (!policy || policy->flags & MPOL_F_LOCAL)
1927 return node;
1928
1929 switch (policy->mode) {
1930 case MPOL_PREFERRED:
1931 /*
1932 * handled MPOL_F_LOCAL above
1933 */
1934 return policy->v.preferred_node;
1935
1936 case MPOL_INTERLEAVE:
1937 return interleave_nodes(policy);
1938
1939 case MPOL_BIND: {
1940 struct zoneref *z;
1941
1942 /*
1943 * Follow bind policy behavior and start allocation at the
1944 * first node.
1945 */
1946 struct zonelist *zonelist;
1947 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1948 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1949 z = first_zones_zonelist(zonelist, highest_zoneidx,
1950 &policy->v.nodes);
1951 return z->zone ? zone_to_nid(z->zone) : node;
1952 }
1953
1954 default:
1955 BUG();
1956 }
1957}
1958
1959/*
1960 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1961 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1962 * number of present nodes.
1963 */
1964static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1965{
1966 unsigned nnodes = nodes_weight(pol->v.nodes);
1967 unsigned target;
1968 int i;
1969 int nid;
1970
1971 if (!nnodes)
1972 return numa_node_id();
1973 target = (unsigned int)n % nnodes;
1974 nid = first_node(pol->v.nodes);
1975 for (i = 0; i < target; i++)
1976 nid = next_node(nid, pol->v.nodes);
1977 return nid;
1978}
1979
1980/* Determine a node number for interleave */
1981static inline unsigned interleave_nid(struct mempolicy *pol,
1982 struct vm_area_struct *vma, unsigned long addr, int shift)
1983{
1984 if (vma) {
1985 unsigned long off;
1986
1987 /*
1988 * for small pages, there is no difference between
1989 * shift and PAGE_SHIFT, so the bit-shift is safe.
1990 * for huge pages, since vm_pgoff is in units of small
1991 * pages, we need to shift off the always 0 bits to get
1992 * a useful offset.
1993 */
1994 BUG_ON(shift < PAGE_SHIFT);
1995 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1996 off += (addr - vma->vm_start) >> shift;
1997 return offset_il_node(pol, off);
1998 } else
1999 return interleave_nodes(pol);
2000}
2001
2002#ifdef CONFIG_HUGETLBFS
2003/*
2004 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2005 * @vma: virtual memory area whose policy is sought
2006 * @addr: address in @vma for shared policy lookup and interleave policy
2007 * @gfp_flags: for requested zone
2008 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2009 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2010 *
2011 * Returns a nid suitable for a huge page allocation and a pointer
2012 * to the struct mempolicy for conditional unref after allocation.
2013 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2014 * @nodemask for filtering the zonelist.
2015 *
2016 * Must be protected by read_mems_allowed_begin()
2017 */
2018int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2019 struct mempolicy **mpol, nodemask_t **nodemask)
2020{
2021 int nid;
2022
2023 *mpol = get_vma_policy(vma, addr);
2024 *nodemask = NULL; /* assume !MPOL_BIND */
2025
2026 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2027 nid = interleave_nid(*mpol, vma, addr,
2028 huge_page_shift(hstate_vma(vma)));
2029 } else {
2030 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2031 if ((*mpol)->mode == MPOL_BIND)
2032 *nodemask = &(*mpol)->v.nodes;
2033 }
2034 return nid;
2035}
2036
2037/*
2038 * init_nodemask_of_mempolicy
2039 *
2040 * If the current task's mempolicy is "default" [NULL], return 'false'
2041 * to indicate default policy. Otherwise, extract the policy nodemask
2042 * for 'bind' or 'interleave' policy into the argument nodemask, or
2043 * initialize the argument nodemask to contain the single node for
2044 * 'preferred' or 'local' policy and return 'true' to indicate presence
2045 * of non-default mempolicy.
2046 *
2047 * We don't bother with reference counting the mempolicy [mpol_get/put]
2048 * because the current task is examining it's own mempolicy and a task's
2049 * mempolicy is only ever changed by the task itself.
2050 *
2051 * N.B., it is the caller's responsibility to free a returned nodemask.
2052 */
2053bool init_nodemask_of_mempolicy(nodemask_t *mask)
2054{
2055 struct mempolicy *mempolicy;
2056 int nid;
2057
2058 if (!(mask && current->mempolicy))
2059 return false;
2060
2061 task_lock(current);
2062 mempolicy = current->mempolicy;
2063 switch (mempolicy->mode) {
2064 case MPOL_PREFERRED:
2065 if (mempolicy->flags & MPOL_F_LOCAL)
2066 nid = numa_node_id();
2067 else
2068 nid = mempolicy->v.preferred_node;
2069 init_nodemask_of_node(mask, nid);
2070 break;
2071
2072 case MPOL_BIND:
2073 case MPOL_INTERLEAVE:
2074 *mask = mempolicy->v.nodes;
2075 break;
2076
2077 default:
2078 BUG();
2079 }
2080 task_unlock(current);
2081
2082 return true;
2083}
2084#endif
2085
2086/*
2087 * mempolicy_nodemask_intersects
2088 *
2089 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2090 * policy. Otherwise, check for intersection between mask and the policy
2091 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2092 * policy, always return true since it may allocate elsewhere on fallback.
2093 *
2094 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2095 */
2096bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2097 const nodemask_t *mask)
2098{
2099 struct mempolicy *mempolicy;
2100 bool ret = true;
2101
2102 if (!mask)
2103 return ret;
2104 task_lock(tsk);
2105 mempolicy = tsk->mempolicy;
2106 if (!mempolicy)
2107 goto out;
2108
2109 switch (mempolicy->mode) {
2110 case MPOL_PREFERRED:
2111 /*
2112 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2113 * allocate from, they may fallback to other nodes when oom.
2114 * Thus, it's possible for tsk to have allocated memory from
2115 * nodes in mask.
2116 */
2117 break;
2118 case MPOL_BIND:
2119 case MPOL_INTERLEAVE:
2120 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2121 break;
2122 default:
2123 BUG();
2124 }
2125out:
2126 task_unlock(tsk);
2127 return ret;
2128}
2129
2130/* Allocate a page in interleaved policy.
2131 Own path because it needs to do special accounting. */
2132static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2133 unsigned nid)
2134{
2135 struct page *page;
2136
2137 page = __alloc_pages(gfp, order, nid);
2138 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2139 if (!static_branch_likely(&vm_numa_stat_key))
2140 return page;
2141 if (page && page_to_nid(page) == nid) {
2142 preempt_disable();
2143 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2144 preempt_enable();
2145 }
2146 return page;
2147}
2148
2149/**
2150 * alloc_pages_vma - Allocate a page for a VMA.
2151 *
2152 * @gfp:
2153 * %GFP_USER user allocation.
2154 * %GFP_KERNEL kernel allocations,
2155 * %GFP_HIGHMEM highmem/user allocations,
2156 * %GFP_FS allocation should not call back into a file system.
2157 * %GFP_ATOMIC don't sleep.
2158 *
2159 * @order:Order of the GFP allocation.
2160 * @vma: Pointer to VMA or NULL if not available.
2161 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2162 * @node: Which node to prefer for allocation (modulo policy).
2163 * @hugepage: for hugepages try only the preferred node if possible
2164 *
2165 * This function allocates a page from the kernel page pool and applies
2166 * a NUMA policy associated with the VMA or the current process.
2167 * When VMA is not NULL caller must read-lock the mmap_lock of the
2168 * mm_struct of the VMA to prevent it from going away. Should be used for
2169 * all allocations for pages that will be mapped into user space. Returns
2170 * NULL when no page can be allocated.
2171 */
2172struct page *
2173alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2174 unsigned long addr, int node, bool hugepage)
2175{
2176 struct mempolicy *pol;
2177 struct page *page;
2178 int preferred_nid;
2179 nodemask_t *nmask;
2180
2181 pol = get_vma_policy(vma, addr);
2182
2183 if (pol->mode == MPOL_INTERLEAVE) {
2184 unsigned nid;
2185
2186 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2187 mpol_cond_put(pol);
2188 page = alloc_page_interleave(gfp, order, nid);
2189 goto out;
2190 }
2191
2192 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2193 int hpage_node = node;
2194
2195 /*
2196 * For hugepage allocation and non-interleave policy which
2197 * allows the current node (or other explicitly preferred
2198 * node) we only try to allocate from the current/preferred
2199 * node and don't fall back to other nodes, as the cost of
2200 * remote accesses would likely offset THP benefits.
2201 *
2202 * If the policy is interleave, or does not allow the current
2203 * node in its nodemask, we allocate the standard way.
2204 */
2205 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2206 hpage_node = pol->v.preferred_node;
2207
2208 nmask = policy_nodemask(gfp, pol);
2209 if (!nmask || node_isset(hpage_node, *nmask)) {
2210 mpol_cond_put(pol);
2211 /*
2212 * First, try to allocate THP only on local node, but
2213 * don't reclaim unnecessarily, just compact.
2214 */
2215 page = __alloc_pages_node(hpage_node,
2216 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2217
2218 /*
2219 * If hugepage allocations are configured to always
2220 * synchronous compact or the vma has been madvised
2221 * to prefer hugepage backing, retry allowing remote
2222 * memory with both reclaim and compact as well.
2223 */
2224 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2225 page = __alloc_pages_node(hpage_node,
2226 gfp, order);
2227
2228 goto out;
2229 }
2230 }
2231
2232 nmask = policy_nodemask(gfp, pol);
2233 preferred_nid = policy_node(gfp, pol, node);
2234 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2235 mpol_cond_put(pol);
2236out:
2237 return page;
2238}
2239EXPORT_SYMBOL(alloc_pages_vma);
2240
2241/**
2242 * alloc_pages_current - Allocate pages.
2243 *
2244 * @gfp:
2245 * %GFP_USER user allocation,
2246 * %GFP_KERNEL kernel allocation,
2247 * %GFP_HIGHMEM highmem allocation,
2248 * %GFP_FS don't call back into a file system.
2249 * %GFP_ATOMIC don't sleep.
2250 * @order: Power of two of allocation size in pages. 0 is a single page.
2251 *
2252 * Allocate a page from the kernel page pool. When not in
2253 * interrupt context and apply the current process NUMA policy.
2254 * Returns NULL when no page can be allocated.
2255 */
2256struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2257{
2258 struct mempolicy *pol = &default_policy;
2259 struct page *page;
2260
2261 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2262 pol = get_task_policy(current);
2263
2264 /*
2265 * No reference counting needed for current->mempolicy
2266 * nor system default_policy
2267 */
2268 if (pol->mode == MPOL_INTERLEAVE)
2269 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2270 else
2271 page = __alloc_pages_nodemask(gfp, order,
2272 policy_node(gfp, pol, numa_node_id()),
2273 policy_nodemask(gfp, pol));
2274
2275 return page;
2276}
2277EXPORT_SYMBOL(alloc_pages_current);
2278
2279int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2280{
2281 struct mempolicy *pol = mpol_dup(vma_policy(src));
2282
2283 if (IS_ERR(pol))
2284 return PTR_ERR(pol);
2285 dst->vm_policy = pol;
2286 return 0;
2287}
2288
2289/*
2290 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2291 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2292 * with the mems_allowed returned by cpuset_mems_allowed(). This
2293 * keeps mempolicies cpuset relative after its cpuset moves. See
2294 * further kernel/cpuset.c update_nodemask().
2295 *
2296 * current's mempolicy may be rebinded by the other task(the task that changes
2297 * cpuset's mems), so we needn't do rebind work for current task.
2298 */
2299
2300/* Slow path of a mempolicy duplicate */
2301struct mempolicy *__mpol_dup(struct mempolicy *old)
2302{
2303 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2304
2305 if (!new)
2306 return ERR_PTR(-ENOMEM);
2307
2308 /* task's mempolicy is protected by alloc_lock */
2309 if (old == current->mempolicy) {
2310 task_lock(current);
2311 *new = *old;
2312 task_unlock(current);
2313 } else
2314 *new = *old;
2315
2316 if (current_cpuset_is_being_rebound()) {
2317 nodemask_t mems = cpuset_mems_allowed(current);
2318 mpol_rebind_policy(new, &mems);
2319 }
2320 atomic_set(&new->refcnt, 1);
2321 return new;
2322}
2323
2324/* Slow path of a mempolicy comparison */
2325bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2326{
2327 if (!a || !b)
2328 return false;
2329 if (a->mode != b->mode)
2330 return false;
2331 if (a->flags != b->flags)
2332 return false;
2333 if (mpol_store_user_nodemask(a))
2334 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2335 return false;
2336
2337 switch (a->mode) {
2338 case MPOL_BIND:
2339 case MPOL_INTERLEAVE:
2340 return !!nodes_equal(a->v.nodes, b->v.nodes);
2341 case MPOL_PREFERRED:
2342 /* a's ->flags is the same as b's */
2343 if (a->flags & MPOL_F_LOCAL)
2344 return true;
2345 return a->v.preferred_node == b->v.preferred_node;
2346 default:
2347 BUG();
2348 return false;
2349 }
2350}
2351
2352/*
2353 * Shared memory backing store policy support.
2354 *
2355 * Remember policies even when nobody has shared memory mapped.
2356 * The policies are kept in Red-Black tree linked from the inode.
2357 * They are protected by the sp->lock rwlock, which should be held
2358 * for any accesses to the tree.
2359 */
2360
2361/*
2362 * lookup first element intersecting start-end. Caller holds sp->lock for
2363 * reading or for writing
2364 */
2365static struct sp_node *
2366sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2367{
2368 struct rb_node *n = sp->root.rb_node;
2369
2370 while (n) {
2371 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2372
2373 if (start >= p->end)
2374 n = n->rb_right;
2375 else if (end <= p->start)
2376 n = n->rb_left;
2377 else
2378 break;
2379 }
2380 if (!n)
2381 return NULL;
2382 for (;;) {
2383 struct sp_node *w = NULL;
2384 struct rb_node *prev = rb_prev(n);
2385 if (!prev)
2386 break;
2387 w = rb_entry(prev, struct sp_node, nd);
2388 if (w->end <= start)
2389 break;
2390 n = prev;
2391 }
2392 return rb_entry(n, struct sp_node, nd);
2393}
2394
2395/*
2396 * Insert a new shared policy into the list. Caller holds sp->lock for
2397 * writing.
2398 */
2399static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2400{
2401 struct rb_node **p = &sp->root.rb_node;
2402 struct rb_node *parent = NULL;
2403 struct sp_node *nd;
2404
2405 while (*p) {
2406 parent = *p;
2407 nd = rb_entry(parent, struct sp_node, nd);
2408 if (new->start < nd->start)
2409 p = &(*p)->rb_left;
2410 else if (new->end > nd->end)
2411 p = &(*p)->rb_right;
2412 else
2413 BUG();
2414 }
2415 rb_link_node(&new->nd, parent, p);
2416 rb_insert_color(&new->nd, &sp->root);
2417 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2418 new->policy ? new->policy->mode : 0);
2419}
2420
2421/* Find shared policy intersecting idx */
2422struct mempolicy *
2423mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2424{
2425 struct mempolicy *pol = NULL;
2426 struct sp_node *sn;
2427
2428 if (!sp->root.rb_node)
2429 return NULL;
2430 read_lock(&sp->lock);
2431 sn = sp_lookup(sp, idx, idx+1);
2432 if (sn) {
2433 mpol_get(sn->policy);
2434 pol = sn->policy;
2435 }
2436 read_unlock(&sp->lock);
2437 return pol;
2438}
2439
2440static void sp_free(struct sp_node *n)
2441{
2442 mpol_put(n->policy);
2443 kmem_cache_free(sn_cache, n);
2444}
2445
2446/**
2447 * mpol_misplaced - check whether current page node is valid in policy
2448 *
2449 * @page: page to be checked
2450 * @vma: vm area where page mapped
2451 * @addr: virtual address where page mapped
2452 *
2453 * Lookup current policy node id for vma,addr and "compare to" page's
2454 * node id.
2455 *
2456 * Returns:
2457 * -1 - not misplaced, page is in the right node
2458 * node - node id where the page should be
2459 *
2460 * Policy determination "mimics" alloc_page_vma().
2461 * Called from fault path where we know the vma and faulting address.
2462 */
2463int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2464{
2465 struct mempolicy *pol;
2466 struct zoneref *z;
2467 int curnid = page_to_nid(page);
2468 unsigned long pgoff;
2469 int thiscpu = raw_smp_processor_id();
2470 int thisnid = cpu_to_node(thiscpu);
2471 int polnid = NUMA_NO_NODE;
2472 int ret = -1;
2473
2474 pol = get_vma_policy(vma, addr);
2475 if (!(pol->flags & MPOL_F_MOF))
2476 goto out;
2477
2478 switch (pol->mode) {
2479 case MPOL_INTERLEAVE:
2480 pgoff = vma->vm_pgoff;
2481 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2482 polnid = offset_il_node(pol, pgoff);
2483 break;
2484
2485 case MPOL_PREFERRED:
2486 if (pol->flags & MPOL_F_LOCAL)
2487 polnid = numa_node_id();
2488 else
2489 polnid = pol->v.preferred_node;
2490 break;
2491
2492 case MPOL_BIND:
2493
2494 /*
2495 * allows binding to multiple nodes.
2496 * use current page if in policy nodemask,
2497 * else select nearest allowed node, if any.
2498 * If no allowed nodes, use current [!misplaced].
2499 */
2500 if (node_isset(curnid, pol->v.nodes))
2501 goto out;
2502 z = first_zones_zonelist(
2503 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2504 gfp_zone(GFP_HIGHUSER),
2505 &pol->v.nodes);
2506 polnid = zone_to_nid(z->zone);
2507 break;
2508
2509 default:
2510 BUG();
2511 }
2512
2513 /* Migrate the page towards the node whose CPU is referencing it */
2514 if (pol->flags & MPOL_F_MORON) {
2515 polnid = thisnid;
2516
2517 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2518 goto out;
2519 }
2520
2521 if (curnid != polnid)
2522 ret = polnid;
2523out:
2524 mpol_cond_put(pol);
2525
2526 return ret;
2527}
2528
2529/*
2530 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2531 * dropped after task->mempolicy is set to NULL so that any allocation done as
2532 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2533 * policy.
2534 */
2535void mpol_put_task_policy(struct task_struct *task)
2536{
2537 struct mempolicy *pol;
2538
2539 task_lock(task);
2540 pol = task->mempolicy;
2541 task->mempolicy = NULL;
2542 task_unlock(task);
2543 mpol_put(pol);
2544}
2545
2546static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2547{
2548 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2549 rb_erase(&n->nd, &sp->root);
2550 sp_free(n);
2551}
2552
2553static void sp_node_init(struct sp_node *node, unsigned long start,
2554 unsigned long end, struct mempolicy *pol)
2555{
2556 node->start = start;
2557 node->end = end;
2558 node->policy = pol;
2559}
2560
2561static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2562 struct mempolicy *pol)
2563{
2564 struct sp_node *n;
2565 struct mempolicy *newpol;
2566
2567 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2568 if (!n)
2569 return NULL;
2570
2571 newpol = mpol_dup(pol);
2572 if (IS_ERR(newpol)) {
2573 kmem_cache_free(sn_cache, n);
2574 return NULL;
2575 }
2576 newpol->flags |= MPOL_F_SHARED;
2577 sp_node_init(n, start, end, newpol);
2578
2579 return n;
2580}
2581
2582/* Replace a policy range. */
2583static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2584 unsigned long end, struct sp_node *new)
2585{
2586 struct sp_node *n;
2587 struct sp_node *n_new = NULL;
2588 struct mempolicy *mpol_new = NULL;
2589 int ret = 0;
2590
2591restart:
2592 write_lock(&sp->lock);
2593 n = sp_lookup(sp, start, end);
2594 /* Take care of old policies in the same range. */
2595 while (n && n->start < end) {
2596 struct rb_node *next = rb_next(&n->nd);
2597 if (n->start >= start) {
2598 if (n->end <= end)
2599 sp_delete(sp, n);
2600 else
2601 n->start = end;
2602 } else {
2603 /* Old policy spanning whole new range. */
2604 if (n->end > end) {
2605 if (!n_new)
2606 goto alloc_new;
2607
2608 *mpol_new = *n->policy;
2609 atomic_set(&mpol_new->refcnt, 1);
2610 sp_node_init(n_new, end, n->end, mpol_new);
2611 n->end = start;
2612 sp_insert(sp, n_new);
2613 n_new = NULL;
2614 mpol_new = NULL;
2615 break;
2616 } else
2617 n->end = start;
2618 }
2619 if (!next)
2620 break;
2621 n = rb_entry(next, struct sp_node, nd);
2622 }
2623 if (new)
2624 sp_insert(sp, new);
2625 write_unlock(&sp->lock);
2626 ret = 0;
2627
2628err_out:
2629 if (mpol_new)
2630 mpol_put(mpol_new);
2631 if (n_new)
2632 kmem_cache_free(sn_cache, n_new);
2633
2634 return ret;
2635
2636alloc_new:
2637 write_unlock(&sp->lock);
2638 ret = -ENOMEM;
2639 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2640 if (!n_new)
2641 goto err_out;
2642 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2643 if (!mpol_new)
2644 goto err_out;
2645 goto restart;
2646}
2647
2648/**
2649 * mpol_shared_policy_init - initialize shared policy for inode
2650 * @sp: pointer to inode shared policy
2651 * @mpol: struct mempolicy to install
2652 *
2653 * Install non-NULL @mpol in inode's shared policy rb-tree.
2654 * On entry, the current task has a reference on a non-NULL @mpol.
2655 * This must be released on exit.
2656 * This is called at get_inode() calls and we can use GFP_KERNEL.
2657 */
2658void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2659{
2660 int ret;
2661
2662 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2663 rwlock_init(&sp->lock);
2664
2665 if (mpol) {
2666 struct vm_area_struct pvma;
2667 struct mempolicy *new;
2668 NODEMASK_SCRATCH(scratch);
2669
2670 if (!scratch)
2671 goto put_mpol;
2672 /* contextualize the tmpfs mount point mempolicy */
2673 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2674 if (IS_ERR(new))
2675 goto free_scratch; /* no valid nodemask intersection */
2676
2677 task_lock(current);
2678 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2679 task_unlock(current);
2680 if (ret)
2681 goto put_new;
2682
2683 /* Create pseudo-vma that contains just the policy */
2684 vma_init(&pvma, NULL);
2685 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2686 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2687
2688put_new:
2689 mpol_put(new); /* drop initial ref */
2690free_scratch:
2691 NODEMASK_SCRATCH_FREE(scratch);
2692put_mpol:
2693 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2694 }
2695}
2696
2697int mpol_set_shared_policy(struct shared_policy *info,
2698 struct vm_area_struct *vma, struct mempolicy *npol)
2699{
2700 int err;
2701 struct sp_node *new = NULL;
2702 unsigned long sz = vma_pages(vma);
2703
2704 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2705 vma->vm_pgoff,
2706 sz, npol ? npol->mode : -1,
2707 npol ? npol->flags : -1,
2708 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2709
2710 if (npol) {
2711 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2712 if (!new)
2713 return -ENOMEM;
2714 }
2715 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2716 if (err && new)
2717 sp_free(new);
2718 return err;
2719}
2720
2721/* Free a backing policy store on inode delete. */
2722void mpol_free_shared_policy(struct shared_policy *p)
2723{
2724 struct sp_node *n;
2725 struct rb_node *next;
2726
2727 if (!p->root.rb_node)
2728 return;
2729 write_lock(&p->lock);
2730 next = rb_first(&p->root);
2731 while (next) {
2732 n = rb_entry(next, struct sp_node, nd);
2733 next = rb_next(&n->nd);
2734 sp_delete(p, n);
2735 }
2736 write_unlock(&p->lock);
2737}
2738
2739#ifdef CONFIG_NUMA_BALANCING
2740static int __initdata numabalancing_override;
2741
2742static void __init check_numabalancing_enable(void)
2743{
2744 bool numabalancing_default = false;
2745
2746 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2747 numabalancing_default = true;
2748
2749 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2750 if (numabalancing_override)
2751 set_numabalancing_state(numabalancing_override == 1);
2752
2753 if (num_online_nodes() > 1 && !numabalancing_override) {
2754 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2755 numabalancing_default ? "Enabling" : "Disabling");
2756 set_numabalancing_state(numabalancing_default);
2757 }
2758}
2759
2760static int __init setup_numabalancing(char *str)
2761{
2762 int ret = 0;
2763 if (!str)
2764 goto out;
2765
2766 if (!strcmp(str, "enable")) {
2767 numabalancing_override = 1;
2768 ret = 1;
2769 } else if (!strcmp(str, "disable")) {
2770 numabalancing_override = -1;
2771 ret = 1;
2772 }
2773out:
2774 if (!ret)
2775 pr_warn("Unable to parse numa_balancing=\n");
2776
2777 return ret;
2778}
2779__setup("numa_balancing=", setup_numabalancing);
2780#else
2781static inline void __init check_numabalancing_enable(void)
2782{
2783}
2784#endif /* CONFIG_NUMA_BALANCING */
2785
2786/* assumes fs == KERNEL_DS */
2787void __init numa_policy_init(void)
2788{
2789 nodemask_t interleave_nodes;
2790 unsigned long largest = 0;
2791 int nid, prefer = 0;
2792
2793 policy_cache = kmem_cache_create("numa_policy",
2794 sizeof(struct mempolicy),
2795 0, SLAB_PANIC, NULL);
2796
2797 sn_cache = kmem_cache_create("shared_policy_node",
2798 sizeof(struct sp_node),
2799 0, SLAB_PANIC, NULL);
2800
2801 for_each_node(nid) {
2802 preferred_node_policy[nid] = (struct mempolicy) {
2803 .refcnt = ATOMIC_INIT(1),
2804 .mode = MPOL_PREFERRED,
2805 .flags = MPOL_F_MOF | MPOL_F_MORON,
2806 .v = { .preferred_node = nid, },
2807 };
2808 }
2809
2810 /*
2811 * Set interleaving policy for system init. Interleaving is only
2812 * enabled across suitably sized nodes (default is >= 16MB), or
2813 * fall back to the largest node if they're all smaller.
2814 */
2815 nodes_clear(interleave_nodes);
2816 for_each_node_state(nid, N_MEMORY) {
2817 unsigned long total_pages = node_present_pages(nid);
2818
2819 /* Preserve the largest node */
2820 if (largest < total_pages) {
2821 largest = total_pages;
2822 prefer = nid;
2823 }
2824
2825 /* Interleave this node? */
2826 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2827 node_set(nid, interleave_nodes);
2828 }
2829
2830 /* All too small, use the largest */
2831 if (unlikely(nodes_empty(interleave_nodes)))
2832 node_set(prefer, interleave_nodes);
2833
2834 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2835 pr_err("%s: interleaving failed\n", __func__);
2836
2837 check_numabalancing_enable();
2838}
2839
2840/* Reset policy of current process to default */
2841void numa_default_policy(void)
2842{
2843 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2844}
2845
2846/*
2847 * Parse and format mempolicy from/to strings
2848 */
2849
2850/*
2851 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2852 */
2853static const char * const policy_modes[] =
2854{
2855 [MPOL_DEFAULT] = "default",
2856 [MPOL_PREFERRED] = "prefer",
2857 [MPOL_BIND] = "bind",
2858 [MPOL_INTERLEAVE] = "interleave",
2859 [MPOL_LOCAL] = "local",
2860};
2861
2862
2863#ifdef CONFIG_TMPFS
2864/**
2865 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2866 * @str: string containing mempolicy to parse
2867 * @mpol: pointer to struct mempolicy pointer, returned on success.
2868 *
2869 * Format of input:
2870 * <mode>[=<flags>][:<nodelist>]
2871 *
2872 * On success, returns 0, else 1
2873 */
2874int mpol_parse_str(char *str, struct mempolicy **mpol)
2875{
2876 struct mempolicy *new = NULL;
2877 unsigned short mode_flags;
2878 nodemask_t nodes;
2879 char *nodelist = strchr(str, ':');
2880 char *flags = strchr(str, '=');
2881 int err = 1, mode;
2882
2883 if (flags)
2884 *flags++ = '\0'; /* terminate mode string */
2885
2886 if (nodelist) {
2887 /* NUL-terminate mode or flags string */
2888 *nodelist++ = '\0';
2889 if (nodelist_parse(nodelist, nodes))
2890 goto out;
2891 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2892 goto out;
2893 } else
2894 nodes_clear(nodes);
2895
2896 mode = match_string(policy_modes, MPOL_MAX, str);
2897 if (mode < 0)
2898 goto out;
2899
2900 switch (mode) {
2901 case MPOL_PREFERRED:
2902 /*
2903 * Insist on a nodelist of one node only, although later
2904 * we use first_node(nodes) to grab a single node, so here
2905 * nodelist (or nodes) cannot be empty.
2906 */
2907 if (nodelist) {
2908 char *rest = nodelist;
2909 while (isdigit(*rest))
2910 rest++;
2911 if (*rest)
2912 goto out;
2913 if (nodes_empty(nodes))
2914 goto out;
2915 }
2916 break;
2917 case MPOL_INTERLEAVE:
2918 /*
2919 * Default to online nodes with memory if no nodelist
2920 */
2921 if (!nodelist)
2922 nodes = node_states[N_MEMORY];
2923 break;
2924 case MPOL_LOCAL:
2925 /*
2926 * Don't allow a nodelist; mpol_new() checks flags
2927 */
2928 if (nodelist)
2929 goto out;
2930 mode = MPOL_PREFERRED;
2931 break;
2932 case MPOL_DEFAULT:
2933 /*
2934 * Insist on a empty nodelist
2935 */
2936 if (!nodelist)
2937 err = 0;
2938 goto out;
2939 case MPOL_BIND:
2940 /*
2941 * Insist on a nodelist
2942 */
2943 if (!nodelist)
2944 goto out;
2945 }
2946
2947 mode_flags = 0;
2948 if (flags) {
2949 /*
2950 * Currently, we only support two mutually exclusive
2951 * mode flags.
2952 */
2953 if (!strcmp(flags, "static"))
2954 mode_flags |= MPOL_F_STATIC_NODES;
2955 else if (!strcmp(flags, "relative"))
2956 mode_flags |= MPOL_F_RELATIVE_NODES;
2957 else
2958 goto out;
2959 }
2960
2961 new = mpol_new(mode, mode_flags, &nodes);
2962 if (IS_ERR(new))
2963 goto out;
2964
2965 /*
2966 * Save nodes for mpol_to_str() to show the tmpfs mount options
2967 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2968 */
2969 if (mode != MPOL_PREFERRED)
2970 new->v.nodes = nodes;
2971 else if (nodelist)
2972 new->v.preferred_node = first_node(nodes);
2973 else
2974 new->flags |= MPOL_F_LOCAL;
2975
2976 /*
2977 * Save nodes for contextualization: this will be used to "clone"
2978 * the mempolicy in a specific context [cpuset] at a later time.
2979 */
2980 new->w.user_nodemask = nodes;
2981
2982 err = 0;
2983
2984out:
2985 /* Restore string for error message */
2986 if (nodelist)
2987 *--nodelist = ':';
2988 if (flags)
2989 *--flags = '=';
2990 if (!err)
2991 *mpol = new;
2992 return err;
2993}
2994#endif /* CONFIG_TMPFS */
2995
2996/**
2997 * mpol_to_str - format a mempolicy structure for printing
2998 * @buffer: to contain formatted mempolicy string
2999 * @maxlen: length of @buffer
3000 * @pol: pointer to mempolicy to be formatted
3001 *
3002 * Convert @pol into a string. If @buffer is too short, truncate the string.
3003 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3004 * longest flag, "relative", and to display at least a few node ids.
3005 */
3006void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3007{
3008 char *p = buffer;
3009 nodemask_t nodes = NODE_MASK_NONE;
3010 unsigned short mode = MPOL_DEFAULT;
3011 unsigned short flags = 0;
3012
3013 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3014 mode = pol->mode;
3015 flags = pol->flags;
3016 }
3017
3018 switch (mode) {
3019 case MPOL_DEFAULT:
3020 break;
3021 case MPOL_PREFERRED:
3022 if (flags & MPOL_F_LOCAL)
3023 mode = MPOL_LOCAL;
3024 else
3025 node_set(pol->v.preferred_node, nodes);
3026 break;
3027 case MPOL_BIND:
3028 case MPOL_INTERLEAVE:
3029 nodes = pol->v.nodes;
3030 break;
3031 default:
3032 WARN_ON_ONCE(1);
3033 snprintf(p, maxlen, "unknown");
3034 return;
3035 }
3036
3037 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3038
3039 if (flags & MPOL_MODE_FLAGS) {
3040 p += snprintf(p, buffer + maxlen - p, "=");
3041
3042 /*
3043 * Currently, the only defined flags are mutually exclusive
3044 */
3045 if (flags & MPOL_F_STATIC_NODES)
3046 p += snprintf(p, buffer + maxlen - p, "static");
3047 else if (flags & MPOL_F_RELATIVE_NODES)
3048 p += snprintf(p, buffer + maxlen - p, "relative");
3049 }
3050
3051 if (!nodes_empty(nodes))
3052 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3053 nodemask_pr_args(&nodes));
3054}