Merge tag 'soc-ep93xx-dt-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-block.git] / mm / memory.c
... / ...
CommitLineData
1
2// SPDX-License-Identifier: GPL-2.0-only
3/*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9/*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14/*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25/*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33/*
34 * 05.04.94 - Multi-page memory management added for v1.1.
35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43#include <linux/kernel_stat.h>
44#include <linux/mm.h>
45#include <linux/mm_inline.h>
46#include <linux/sched/mm.h>
47#include <linux/sched/coredump.h>
48#include <linux/sched/numa_balancing.h>
49#include <linux/sched/task.h>
50#include <linux/hugetlb.h>
51#include <linux/mman.h>
52#include <linux/swap.h>
53#include <linux/highmem.h>
54#include <linux/pagemap.h>
55#include <linux/memremap.h>
56#include <linux/kmsan.h>
57#include <linux/ksm.h>
58#include <linux/rmap.h>
59#include <linux/export.h>
60#include <linux/delayacct.h>
61#include <linux/init.h>
62#include <linux/pfn_t.h>
63#include <linux/writeback.h>
64#include <linux/memcontrol.h>
65#include <linux/mmu_notifier.h>
66#include <linux/swapops.h>
67#include <linux/elf.h>
68#include <linux/gfp.h>
69#include <linux/migrate.h>
70#include <linux/string.h>
71#include <linux/memory-tiers.h>
72#include <linux/debugfs.h>
73#include <linux/userfaultfd_k.h>
74#include <linux/dax.h>
75#include <linux/oom.h>
76#include <linux/numa.h>
77#include <linux/perf_event.h>
78#include <linux/ptrace.h>
79#include <linux/vmalloc.h>
80#include <linux/sched/sysctl.h>
81
82#include <trace/events/kmem.h>
83
84#include <asm/io.h>
85#include <asm/mmu_context.h>
86#include <asm/pgalloc.h>
87#include <linux/uaccess.h>
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
90
91#include "pgalloc-track.h"
92#include "internal.h"
93#include "swap.h"
94
95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97#endif
98
99#ifndef CONFIG_NUMA
100unsigned long max_mapnr;
101EXPORT_SYMBOL(max_mapnr);
102
103struct page *mem_map;
104EXPORT_SYMBOL(mem_map);
105#endif
106
107static vm_fault_t do_fault(struct vm_fault *vmf);
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116{
117 if (!userfaultfd_wp(vmf->vma))
118 return false;
119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 return false;
121
122 return pte_marker_uffd_wp(vmf->orig_pte);
123}
124
125/*
126 * A number of key systems in x86 including ioremap() rely on the assumption
127 * that high_memory defines the upper bound on direct map memory, then end
128 * of ZONE_NORMAL.
129 */
130void *high_memory;
131EXPORT_SYMBOL(high_memory);
132
133/*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139int randomize_va_space __read_mostly =
140#ifdef CONFIG_COMPAT_BRK
141 1;
142#else
143 2;
144#endif
145
146#ifndef arch_wants_old_prefaulted_pte
147static inline bool arch_wants_old_prefaulted_pte(void)
148{
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155}
156#endif
157
158static int __init disable_randmaps(char *s)
159{
160 randomize_va_space = 0;
161 return 1;
162}
163__setup("norandmaps", disable_randmaps);
164
165unsigned long zero_pfn __read_mostly;
166EXPORT_SYMBOL(zero_pfn);
167
168unsigned long highest_memmap_pfn __read_mostly;
169
170/*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
173static int __init init_zero_pfn(void)
174{
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177}
178early_initcall(init_zero_pfn);
179
180void mm_trace_rss_stat(struct mm_struct *mm, int member)
181{
182 trace_rss_stat(mm, member);
183}
184
185/*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
191{
192 pgtable_t token = pmd_pgtable(*pmd);
193 pmd_clear(pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
196}
197
198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
201{
202 pmd_t *pmd;
203 unsigned long next;
204 unsigned long start;
205
206 start = addr;
207 pmd = pmd_offset(pud, addr);
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
214
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
230}
231
232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235{
236 pud_t *pud;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pud = pud_offset(p4d, addr);
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
248
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
264}
265
266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269{
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 p4d = p4d_offset(pgd, start);
295 pgd_clear(pgd);
296 p4d_free_tlb(tlb, p4d, start);
297}
298
299/*
300 * This function frees user-level page tables of a process.
301 */
302void free_pgd_range(struct mmu_gather *tlb,
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
305{
306 pgd_t *pgd;
307 unsigned long next;
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
334
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
354 tlb_change_page_size(tlb, PAGE_SIZE);
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
362}
363
364void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 struct vm_area_struct *vma, unsigned long floor,
366 unsigned long ceiling, bool mm_wr_locked)
367{
368 struct unlink_vma_file_batch vb;
369
370 do {
371 unsigned long addr = vma->vm_start;
372 struct vm_area_struct *next;
373
374 /*
375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 * be 0. This will underflow and is okay.
377 */
378 next = mas_find(mas, ceiling - 1);
379 if (unlikely(xa_is_zero(next)))
380 next = NULL;
381
382 /*
383 * Hide vma from rmap and truncate_pagecache before freeing
384 * pgtables
385 */
386 if (mm_wr_locked)
387 vma_start_write(vma);
388 unlink_anon_vmas(vma);
389
390 if (is_vm_hugetlb_page(vma)) {
391 unlink_file_vma(vma);
392 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
393 floor, next ? next->vm_start : ceiling);
394 } else {
395 unlink_file_vma_batch_init(&vb);
396 unlink_file_vma_batch_add(&vb, vma);
397
398 /*
399 * Optimization: gather nearby vmas into one call down
400 */
401 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
402 && !is_vm_hugetlb_page(next)) {
403 vma = next;
404 next = mas_find(mas, ceiling - 1);
405 if (unlikely(xa_is_zero(next)))
406 next = NULL;
407 if (mm_wr_locked)
408 vma_start_write(vma);
409 unlink_anon_vmas(vma);
410 unlink_file_vma_batch_add(&vb, vma);
411 }
412 unlink_file_vma_batch_final(&vb);
413 free_pgd_range(tlb, addr, vma->vm_end,
414 floor, next ? next->vm_start : ceiling);
415 }
416 vma = next;
417 } while (vma);
418}
419
420void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
421{
422 spinlock_t *ptl = pmd_lock(mm, pmd);
423
424 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
425 mm_inc_nr_ptes(mm);
426 /*
427 * Ensure all pte setup (eg. pte page lock and page clearing) are
428 * visible before the pte is made visible to other CPUs by being
429 * put into page tables.
430 *
431 * The other side of the story is the pointer chasing in the page
432 * table walking code (when walking the page table without locking;
433 * ie. most of the time). Fortunately, these data accesses consist
434 * of a chain of data-dependent loads, meaning most CPUs (alpha
435 * being the notable exception) will already guarantee loads are
436 * seen in-order. See the alpha page table accessors for the
437 * smp_rmb() barriers in page table walking code.
438 */
439 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
440 pmd_populate(mm, pmd, *pte);
441 *pte = NULL;
442 }
443 spin_unlock(ptl);
444}
445
446int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
447{
448 pgtable_t new = pte_alloc_one(mm);
449 if (!new)
450 return -ENOMEM;
451
452 pmd_install(mm, pmd, &new);
453 if (new)
454 pte_free(mm, new);
455 return 0;
456}
457
458int __pte_alloc_kernel(pmd_t *pmd)
459{
460 pte_t *new = pte_alloc_one_kernel(&init_mm);
461 if (!new)
462 return -ENOMEM;
463
464 spin_lock(&init_mm.page_table_lock);
465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
466 smp_wmb(); /* See comment in pmd_install() */
467 pmd_populate_kernel(&init_mm, pmd, new);
468 new = NULL;
469 }
470 spin_unlock(&init_mm.page_table_lock);
471 if (new)
472 pte_free_kernel(&init_mm, new);
473 return 0;
474}
475
476static inline void init_rss_vec(int *rss)
477{
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479}
480
481static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482{
483 int i;
484
485 for (i = 0; i < NR_MM_COUNTERS; i++)
486 if (rss[i])
487 add_mm_counter(mm, i, rss[i]);
488}
489
490/*
491 * This function is called to print an error when a bad pte
492 * is found. For example, we might have a PFN-mapped pte in
493 * a region that doesn't allow it.
494 *
495 * The calling function must still handle the error.
496 */
497static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
498 pte_t pte, struct page *page)
499{
500 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
501 p4d_t *p4d = p4d_offset(pgd, addr);
502 pud_t *pud = pud_offset(p4d, addr);
503 pmd_t *pmd = pmd_offset(pud, addr);
504 struct address_space *mapping;
505 pgoff_t index;
506 static unsigned long resume;
507 static unsigned long nr_shown;
508 static unsigned long nr_unshown;
509
510 /*
511 * Allow a burst of 60 reports, then keep quiet for that minute;
512 * or allow a steady drip of one report per second.
513 */
514 if (nr_shown == 60) {
515 if (time_before(jiffies, resume)) {
516 nr_unshown++;
517 return;
518 }
519 if (nr_unshown) {
520 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521 nr_unshown);
522 nr_unshown = 0;
523 }
524 nr_shown = 0;
525 }
526 if (nr_shown++ == 0)
527 resume = jiffies + 60 * HZ;
528
529 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
530 index = linear_page_index(vma, addr);
531
532 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
533 current->comm,
534 (long long)pte_val(pte), (long long)pmd_val(*pmd));
535 if (page)
536 dump_page(page, "bad pte");
537 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
538 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
539 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
540 vma->vm_file,
541 vma->vm_ops ? vma->vm_ops->fault : NULL,
542 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
543 mapping ? mapping->a_ops->read_folio : NULL);
544 dump_stack();
545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
546}
547
548/*
549 * vm_normal_page -- This function gets the "struct page" associated with a pte.
550 *
551 * "Special" mappings do not wish to be associated with a "struct page" (either
552 * it doesn't exist, or it exists but they don't want to touch it). In this
553 * case, NULL is returned here. "Normal" mappings do have a struct page.
554 *
555 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556 * pte bit, in which case this function is trivial. Secondly, an architecture
557 * may not have a spare pte bit, which requires a more complicated scheme,
558 * described below.
559 *
560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561 * special mapping (even if there are underlying and valid "struct pages").
562 * COWed pages of a VM_PFNMAP are always normal.
563 *
564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567 * mapping will always honor the rule
568 *
569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570 *
571 * And for normal mappings this is false.
572 *
573 * This restricts such mappings to be a linear translation from virtual address
574 * to pfn. To get around this restriction, we allow arbitrary mappings so long
575 * as the vma is not a COW mapping; in that case, we know that all ptes are
576 * special (because none can have been COWed).
577 *
578 *
579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580 *
581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582 * page" backing, however the difference is that _all_ pages with a struct
583 * page (that is, those where pfn_valid is true) are refcounted and considered
584 * normal pages by the VM. The only exception are zeropages, which are
585 * *never* refcounted.
586 *
587 * The disadvantage is that pages are refcounted (which can be slower and
588 * simply not an option for some PFNMAP users). The advantage is that we
589 * don't have to follow the strict linearity rule of PFNMAP mappings in
590 * order to support COWable mappings.
591 *
592 */
593struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 pte_t pte)
595{
596 unsigned long pfn = pte_pfn(pte);
597
598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 if (likely(!pte_special(pte)))
600 goto check_pfn;
601 if (vma->vm_ops && vma->vm_ops->find_special_page)
602 return vma->vm_ops->find_special_page(vma, addr);
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
605 if (is_zero_pfn(pfn))
606 return NULL;
607 if (pte_devmap(pte))
608 /*
609 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
610 * and will have refcounts incremented on their struct pages
611 * when they are inserted into PTEs, thus they are safe to
612 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
613 * do not have refcounts. Example of legacy ZONE_DEVICE is
614 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
615 */
616 return NULL;
617
618 print_bad_pte(vma, addr, pte, NULL);
619 return NULL;
620 }
621
622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623
624 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
625 if (vma->vm_flags & VM_MIXEDMAP) {
626 if (!pfn_valid(pfn))
627 return NULL;
628 if (is_zero_pfn(pfn))
629 return NULL;
630 goto out;
631 } else {
632 unsigned long off;
633 off = (addr - vma->vm_start) >> PAGE_SHIFT;
634 if (pfn == vma->vm_pgoff + off)
635 return NULL;
636 if (!is_cow_mapping(vma->vm_flags))
637 return NULL;
638 }
639 }
640
641 if (is_zero_pfn(pfn))
642 return NULL;
643
644check_pfn:
645 if (unlikely(pfn > highest_memmap_pfn)) {
646 print_bad_pte(vma, addr, pte, NULL);
647 return NULL;
648 }
649
650 /*
651 * NOTE! We still have PageReserved() pages in the page tables.
652 * eg. VDSO mappings can cause them to exist.
653 */
654out:
655 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
656 return pfn_to_page(pfn);
657}
658
659struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte)
661{
662 struct page *page = vm_normal_page(vma, addr, pte);
663
664 if (page)
665 return page_folio(page);
666 return NULL;
667}
668
669#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
670struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
671 pmd_t pmd)
672{
673 unsigned long pfn = pmd_pfn(pmd);
674
675 /* Currently it's only used for huge pfnmaps */
676 if (unlikely(pmd_special(pmd)))
677 return NULL;
678
679 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
680 if (vma->vm_flags & VM_MIXEDMAP) {
681 if (!pfn_valid(pfn))
682 return NULL;
683 goto out;
684 } else {
685 unsigned long off;
686 off = (addr - vma->vm_start) >> PAGE_SHIFT;
687 if (pfn == vma->vm_pgoff + off)
688 return NULL;
689 if (!is_cow_mapping(vma->vm_flags))
690 return NULL;
691 }
692 }
693
694 if (pmd_devmap(pmd))
695 return NULL;
696 if (is_huge_zero_pmd(pmd))
697 return NULL;
698 if (unlikely(pfn > highest_memmap_pfn))
699 return NULL;
700
701 /*
702 * NOTE! We still have PageReserved() pages in the page tables.
703 * eg. VDSO mappings can cause them to exist.
704 */
705out:
706 return pfn_to_page(pfn);
707}
708
709struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
710 unsigned long addr, pmd_t pmd)
711{
712 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
713
714 if (page)
715 return page_folio(page);
716 return NULL;
717}
718#endif
719
720static void restore_exclusive_pte(struct vm_area_struct *vma,
721 struct page *page, unsigned long address,
722 pte_t *ptep)
723{
724 struct folio *folio = page_folio(page);
725 pte_t orig_pte;
726 pte_t pte;
727 swp_entry_t entry;
728
729 orig_pte = ptep_get(ptep);
730 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
731 if (pte_swp_soft_dirty(orig_pte))
732 pte = pte_mksoft_dirty(pte);
733
734 entry = pte_to_swp_entry(orig_pte);
735 if (pte_swp_uffd_wp(orig_pte))
736 pte = pte_mkuffd_wp(pte);
737 else if (is_writable_device_exclusive_entry(entry))
738 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
739
740 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
741 PageAnonExclusive(page)), folio);
742
743 /*
744 * No need to take a page reference as one was already
745 * created when the swap entry was made.
746 */
747 if (folio_test_anon(folio))
748 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
749 else
750 /*
751 * Currently device exclusive access only supports anonymous
752 * memory so the entry shouldn't point to a filebacked page.
753 */
754 WARN_ON_ONCE(1);
755
756 set_pte_at(vma->vm_mm, address, ptep, pte);
757
758 /*
759 * No need to invalidate - it was non-present before. However
760 * secondary CPUs may have mappings that need invalidating.
761 */
762 update_mmu_cache(vma, address, ptep);
763}
764
765/*
766 * Tries to restore an exclusive pte if the page lock can be acquired without
767 * sleeping.
768 */
769static int
770try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
771 unsigned long addr)
772{
773 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
774 struct page *page = pfn_swap_entry_to_page(entry);
775
776 if (trylock_page(page)) {
777 restore_exclusive_pte(vma, page, addr, src_pte);
778 unlock_page(page);
779 return 0;
780 }
781
782 return -EBUSY;
783}
784
785/*
786 * copy one vm_area from one task to the other. Assumes the page tables
787 * already present in the new task to be cleared in the whole range
788 * covered by this vma.
789 */
790
791static unsigned long
792copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
794 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
795{
796 unsigned long vm_flags = dst_vma->vm_flags;
797 pte_t orig_pte = ptep_get(src_pte);
798 pte_t pte = orig_pte;
799 struct folio *folio;
800 struct page *page;
801 swp_entry_t entry = pte_to_swp_entry(orig_pte);
802
803 if (likely(!non_swap_entry(entry))) {
804 if (swap_duplicate(entry) < 0)
805 return -EIO;
806
807 /* make sure dst_mm is on swapoff's mmlist. */
808 if (unlikely(list_empty(&dst_mm->mmlist))) {
809 spin_lock(&mmlist_lock);
810 if (list_empty(&dst_mm->mmlist))
811 list_add(&dst_mm->mmlist,
812 &src_mm->mmlist);
813 spin_unlock(&mmlist_lock);
814 }
815 /* Mark the swap entry as shared. */
816 if (pte_swp_exclusive(orig_pte)) {
817 pte = pte_swp_clear_exclusive(orig_pte);
818 set_pte_at(src_mm, addr, src_pte, pte);
819 }
820 rss[MM_SWAPENTS]++;
821 } else if (is_migration_entry(entry)) {
822 folio = pfn_swap_entry_folio(entry);
823
824 rss[mm_counter(folio)]++;
825
826 if (!is_readable_migration_entry(entry) &&
827 is_cow_mapping(vm_flags)) {
828 /*
829 * COW mappings require pages in both parent and child
830 * to be set to read. A previously exclusive entry is
831 * now shared.
832 */
833 entry = make_readable_migration_entry(
834 swp_offset(entry));
835 pte = swp_entry_to_pte(entry);
836 if (pte_swp_soft_dirty(orig_pte))
837 pte = pte_swp_mksoft_dirty(pte);
838 if (pte_swp_uffd_wp(orig_pte))
839 pte = pte_swp_mkuffd_wp(pte);
840 set_pte_at(src_mm, addr, src_pte, pte);
841 }
842 } else if (is_device_private_entry(entry)) {
843 page = pfn_swap_entry_to_page(entry);
844 folio = page_folio(page);
845
846 /*
847 * Update rss count even for unaddressable pages, as
848 * they should treated just like normal pages in this
849 * respect.
850 *
851 * We will likely want to have some new rss counters
852 * for unaddressable pages, at some point. But for now
853 * keep things as they are.
854 */
855 folio_get(folio);
856 rss[mm_counter(folio)]++;
857 /* Cannot fail as these pages cannot get pinned. */
858 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
859
860 /*
861 * We do not preserve soft-dirty information, because so
862 * far, checkpoint/restore is the only feature that
863 * requires that. And checkpoint/restore does not work
864 * when a device driver is involved (you cannot easily
865 * save and restore device driver state).
866 */
867 if (is_writable_device_private_entry(entry) &&
868 is_cow_mapping(vm_flags)) {
869 entry = make_readable_device_private_entry(
870 swp_offset(entry));
871 pte = swp_entry_to_pte(entry);
872 if (pte_swp_uffd_wp(orig_pte))
873 pte = pte_swp_mkuffd_wp(pte);
874 set_pte_at(src_mm, addr, src_pte, pte);
875 }
876 } else if (is_device_exclusive_entry(entry)) {
877 /*
878 * Make device exclusive entries present by restoring the
879 * original entry then copying as for a present pte. Device
880 * exclusive entries currently only support private writable
881 * (ie. COW) mappings.
882 */
883 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
884 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
885 return -EBUSY;
886 return -ENOENT;
887 } else if (is_pte_marker_entry(entry)) {
888 pte_marker marker = copy_pte_marker(entry, dst_vma);
889
890 if (marker)
891 set_pte_at(dst_mm, addr, dst_pte,
892 make_pte_marker(marker));
893 return 0;
894 }
895 if (!userfaultfd_wp(dst_vma))
896 pte = pte_swp_clear_uffd_wp(pte);
897 set_pte_at(dst_mm, addr, dst_pte, pte);
898 return 0;
899}
900
901/*
902 * Copy a present and normal page.
903 *
904 * NOTE! The usual case is that this isn't required;
905 * instead, the caller can just increase the page refcount
906 * and re-use the pte the traditional way.
907 *
908 * And if we need a pre-allocated page but don't yet have
909 * one, return a negative error to let the preallocation
910 * code know so that it can do so outside the page table
911 * lock.
912 */
913static inline int
914copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
915 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
916 struct folio **prealloc, struct page *page)
917{
918 struct folio *new_folio;
919 pte_t pte;
920
921 new_folio = *prealloc;
922 if (!new_folio)
923 return -EAGAIN;
924
925 /*
926 * We have a prealloc page, all good! Take it
927 * over and copy the page & arm it.
928 */
929
930 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
931 return -EHWPOISON;
932
933 *prealloc = NULL;
934 __folio_mark_uptodate(new_folio);
935 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
936 folio_add_lru_vma(new_folio, dst_vma);
937 rss[MM_ANONPAGES]++;
938
939 /* All done, just insert the new page copy in the child */
940 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
941 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
942 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
943 /* Uffd-wp needs to be delivered to dest pte as well */
944 pte = pte_mkuffd_wp(pte);
945 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
946 return 0;
947}
948
949static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
950 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
951 pte_t pte, unsigned long addr, int nr)
952{
953 struct mm_struct *src_mm = src_vma->vm_mm;
954
955 /* If it's a COW mapping, write protect it both processes. */
956 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
957 wrprotect_ptes(src_mm, addr, src_pte, nr);
958 pte = pte_wrprotect(pte);
959 }
960
961 /* If it's a shared mapping, mark it clean in the child. */
962 if (src_vma->vm_flags & VM_SHARED)
963 pte = pte_mkclean(pte);
964 pte = pte_mkold(pte);
965
966 if (!userfaultfd_wp(dst_vma))
967 pte = pte_clear_uffd_wp(pte);
968
969 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
970}
971
972/*
973 * Copy one present PTE, trying to batch-process subsequent PTEs that map
974 * consecutive pages of the same folio by copying them as well.
975 *
976 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
977 * Otherwise, returns the number of copied PTEs (at least 1).
978 */
979static inline int
980copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
981 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
982 int max_nr, int *rss, struct folio **prealloc)
983{
984 struct page *page;
985 struct folio *folio;
986 bool any_writable;
987 fpb_t flags = 0;
988 int err, nr;
989
990 page = vm_normal_page(src_vma, addr, pte);
991 if (unlikely(!page))
992 goto copy_pte;
993
994 folio = page_folio(page);
995
996 /*
997 * If we likely have to copy, just don't bother with batching. Make
998 * sure that the common "small folio" case is as fast as possible
999 * by keeping the batching logic separate.
1000 */
1001 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1002 if (src_vma->vm_flags & VM_SHARED)
1003 flags |= FPB_IGNORE_DIRTY;
1004 if (!vma_soft_dirty_enabled(src_vma))
1005 flags |= FPB_IGNORE_SOFT_DIRTY;
1006
1007 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1008 &any_writable, NULL, NULL);
1009 folio_ref_add(folio, nr);
1010 if (folio_test_anon(folio)) {
1011 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1012 nr, src_vma))) {
1013 folio_ref_sub(folio, nr);
1014 return -EAGAIN;
1015 }
1016 rss[MM_ANONPAGES] += nr;
1017 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1018 } else {
1019 folio_dup_file_rmap_ptes(folio, page, nr);
1020 rss[mm_counter_file(folio)] += nr;
1021 }
1022 if (any_writable)
1023 pte = pte_mkwrite(pte, src_vma);
1024 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1025 addr, nr);
1026 return nr;
1027 }
1028
1029 folio_get(folio);
1030 if (folio_test_anon(folio)) {
1031 /*
1032 * If this page may have been pinned by the parent process,
1033 * copy the page immediately for the child so that we'll always
1034 * guarantee the pinned page won't be randomly replaced in the
1035 * future.
1036 */
1037 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1038 /* Page may be pinned, we have to copy. */
1039 folio_put(folio);
1040 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1041 addr, rss, prealloc, page);
1042 return err ? err : 1;
1043 }
1044 rss[MM_ANONPAGES]++;
1045 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1046 } else {
1047 folio_dup_file_rmap_pte(folio, page);
1048 rss[mm_counter_file(folio)]++;
1049 }
1050
1051copy_pte:
1052 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1053 return 1;
1054}
1055
1056static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1057 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1058{
1059 struct folio *new_folio;
1060
1061 if (need_zero)
1062 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1063 else
1064 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1065 addr, false);
1066
1067 if (!new_folio)
1068 return NULL;
1069
1070 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1071 folio_put(new_folio);
1072 return NULL;
1073 }
1074 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1075
1076 return new_folio;
1077}
1078
1079static int
1080copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1081 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1082 unsigned long end)
1083{
1084 struct mm_struct *dst_mm = dst_vma->vm_mm;
1085 struct mm_struct *src_mm = src_vma->vm_mm;
1086 pte_t *orig_src_pte, *orig_dst_pte;
1087 pte_t *src_pte, *dst_pte;
1088 pte_t ptent;
1089 spinlock_t *src_ptl, *dst_ptl;
1090 int progress, max_nr, ret = 0;
1091 int rss[NR_MM_COUNTERS];
1092 swp_entry_t entry = (swp_entry_t){0};
1093 struct folio *prealloc = NULL;
1094 int nr;
1095
1096again:
1097 progress = 0;
1098 init_rss_vec(rss);
1099
1100 /*
1101 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1102 * error handling here, assume that exclusive mmap_lock on dst and src
1103 * protects anon from unexpected THP transitions; with shmem and file
1104 * protected by mmap_lock-less collapse skipping areas with anon_vma
1105 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1106 * can remove such assumptions later, but this is good enough for now.
1107 */
1108 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1109 if (!dst_pte) {
1110 ret = -ENOMEM;
1111 goto out;
1112 }
1113 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1114 if (!src_pte) {
1115 pte_unmap_unlock(dst_pte, dst_ptl);
1116 /* ret == 0 */
1117 goto out;
1118 }
1119 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1120 orig_src_pte = src_pte;
1121 orig_dst_pte = dst_pte;
1122 arch_enter_lazy_mmu_mode();
1123
1124 do {
1125 nr = 1;
1126
1127 /*
1128 * We are holding two locks at this point - either of them
1129 * could generate latencies in another task on another CPU.
1130 */
1131 if (progress >= 32) {
1132 progress = 0;
1133 if (need_resched() ||
1134 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1135 break;
1136 }
1137 ptent = ptep_get(src_pte);
1138 if (pte_none(ptent)) {
1139 progress++;
1140 continue;
1141 }
1142 if (unlikely(!pte_present(ptent))) {
1143 ret = copy_nonpresent_pte(dst_mm, src_mm,
1144 dst_pte, src_pte,
1145 dst_vma, src_vma,
1146 addr, rss);
1147 if (ret == -EIO) {
1148 entry = pte_to_swp_entry(ptep_get(src_pte));
1149 break;
1150 } else if (ret == -EBUSY) {
1151 break;
1152 } else if (!ret) {
1153 progress += 8;
1154 continue;
1155 }
1156 ptent = ptep_get(src_pte);
1157 VM_WARN_ON_ONCE(!pte_present(ptent));
1158
1159 /*
1160 * Device exclusive entry restored, continue by copying
1161 * the now present pte.
1162 */
1163 WARN_ON_ONCE(ret != -ENOENT);
1164 }
1165 /* copy_present_ptes() will clear `*prealloc' if consumed */
1166 max_nr = (end - addr) / PAGE_SIZE;
1167 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1168 ptent, addr, max_nr, rss, &prealloc);
1169 /*
1170 * If we need a pre-allocated page for this pte, drop the
1171 * locks, allocate, and try again.
1172 * If copy failed due to hwpoison in source page, break out.
1173 */
1174 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1175 break;
1176 if (unlikely(prealloc)) {
1177 /*
1178 * pre-alloc page cannot be reused by next time so as
1179 * to strictly follow mempolicy (e.g., alloc_page_vma()
1180 * will allocate page according to address). This
1181 * could only happen if one pinned pte changed.
1182 */
1183 folio_put(prealloc);
1184 prealloc = NULL;
1185 }
1186 nr = ret;
1187 progress += 8 * nr;
1188 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1189 addr != end);
1190
1191 arch_leave_lazy_mmu_mode();
1192 pte_unmap_unlock(orig_src_pte, src_ptl);
1193 add_mm_rss_vec(dst_mm, rss);
1194 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1195 cond_resched();
1196
1197 if (ret == -EIO) {
1198 VM_WARN_ON_ONCE(!entry.val);
1199 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1200 ret = -ENOMEM;
1201 goto out;
1202 }
1203 entry.val = 0;
1204 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1205 goto out;
1206 } else if (ret == -EAGAIN) {
1207 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1208 if (!prealloc)
1209 return -ENOMEM;
1210 } else if (ret < 0) {
1211 VM_WARN_ON_ONCE(1);
1212 }
1213
1214 /* We've captured and resolved the error. Reset, try again. */
1215 ret = 0;
1216
1217 if (addr != end)
1218 goto again;
1219out:
1220 if (unlikely(prealloc))
1221 folio_put(prealloc);
1222 return ret;
1223}
1224
1225static inline int
1226copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1227 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1228 unsigned long end)
1229{
1230 struct mm_struct *dst_mm = dst_vma->vm_mm;
1231 struct mm_struct *src_mm = src_vma->vm_mm;
1232 pmd_t *src_pmd, *dst_pmd;
1233 unsigned long next;
1234
1235 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1236 if (!dst_pmd)
1237 return -ENOMEM;
1238 src_pmd = pmd_offset(src_pud, addr);
1239 do {
1240 next = pmd_addr_end(addr, end);
1241 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1242 || pmd_devmap(*src_pmd)) {
1243 int err;
1244 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1245 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1246 addr, dst_vma, src_vma);
1247 if (err == -ENOMEM)
1248 return -ENOMEM;
1249 if (!err)
1250 continue;
1251 /* fall through */
1252 }
1253 if (pmd_none_or_clear_bad(src_pmd))
1254 continue;
1255 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1256 addr, next))
1257 return -ENOMEM;
1258 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1259 return 0;
1260}
1261
1262static inline int
1263copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1264 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1265 unsigned long end)
1266{
1267 struct mm_struct *dst_mm = dst_vma->vm_mm;
1268 struct mm_struct *src_mm = src_vma->vm_mm;
1269 pud_t *src_pud, *dst_pud;
1270 unsigned long next;
1271
1272 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1273 if (!dst_pud)
1274 return -ENOMEM;
1275 src_pud = pud_offset(src_p4d, addr);
1276 do {
1277 next = pud_addr_end(addr, end);
1278 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1279 int err;
1280
1281 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1282 err = copy_huge_pud(dst_mm, src_mm,
1283 dst_pud, src_pud, addr, src_vma);
1284 if (err == -ENOMEM)
1285 return -ENOMEM;
1286 if (!err)
1287 continue;
1288 /* fall through */
1289 }
1290 if (pud_none_or_clear_bad(src_pud))
1291 continue;
1292 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1293 addr, next))
1294 return -ENOMEM;
1295 } while (dst_pud++, src_pud++, addr = next, addr != end);
1296 return 0;
1297}
1298
1299static inline int
1300copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1301 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1302 unsigned long end)
1303{
1304 struct mm_struct *dst_mm = dst_vma->vm_mm;
1305 p4d_t *src_p4d, *dst_p4d;
1306 unsigned long next;
1307
1308 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1309 if (!dst_p4d)
1310 return -ENOMEM;
1311 src_p4d = p4d_offset(src_pgd, addr);
1312 do {
1313 next = p4d_addr_end(addr, end);
1314 if (p4d_none_or_clear_bad(src_p4d))
1315 continue;
1316 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1317 addr, next))
1318 return -ENOMEM;
1319 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1320 return 0;
1321}
1322
1323/*
1324 * Return true if the vma needs to copy the pgtable during this fork(). Return
1325 * false when we can speed up fork() by allowing lazy page faults later until
1326 * when the child accesses the memory range.
1327 */
1328static bool
1329vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1330{
1331 /*
1332 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1333 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1334 * contains uffd-wp protection information, that's something we can't
1335 * retrieve from page cache, and skip copying will lose those info.
1336 */
1337 if (userfaultfd_wp(dst_vma))
1338 return true;
1339
1340 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1341 return true;
1342
1343 if (src_vma->anon_vma)
1344 return true;
1345
1346 /*
1347 * Don't copy ptes where a page fault will fill them correctly. Fork
1348 * becomes much lighter when there are big shared or private readonly
1349 * mappings. The tradeoff is that copy_page_range is more efficient
1350 * than faulting.
1351 */
1352 return false;
1353}
1354
1355int
1356copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1357{
1358 pgd_t *src_pgd, *dst_pgd;
1359 unsigned long next;
1360 unsigned long addr = src_vma->vm_start;
1361 unsigned long end = src_vma->vm_end;
1362 struct mm_struct *dst_mm = dst_vma->vm_mm;
1363 struct mm_struct *src_mm = src_vma->vm_mm;
1364 struct mmu_notifier_range range;
1365 bool is_cow;
1366 int ret;
1367
1368 if (!vma_needs_copy(dst_vma, src_vma))
1369 return 0;
1370
1371 if (is_vm_hugetlb_page(src_vma))
1372 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1373
1374 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1375 /*
1376 * We do not free on error cases below as remove_vma
1377 * gets called on error from higher level routine
1378 */
1379 ret = track_pfn_copy(src_vma);
1380 if (ret)
1381 return ret;
1382 }
1383
1384 /*
1385 * We need to invalidate the secondary MMU mappings only when
1386 * there could be a permission downgrade on the ptes of the
1387 * parent mm. And a permission downgrade will only happen if
1388 * is_cow_mapping() returns true.
1389 */
1390 is_cow = is_cow_mapping(src_vma->vm_flags);
1391
1392 if (is_cow) {
1393 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1394 0, src_mm, addr, end);
1395 mmu_notifier_invalidate_range_start(&range);
1396 /*
1397 * Disabling preemption is not needed for the write side, as
1398 * the read side doesn't spin, but goes to the mmap_lock.
1399 *
1400 * Use the raw variant of the seqcount_t write API to avoid
1401 * lockdep complaining about preemptibility.
1402 */
1403 vma_assert_write_locked(src_vma);
1404 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1405 }
1406
1407 ret = 0;
1408 dst_pgd = pgd_offset(dst_mm, addr);
1409 src_pgd = pgd_offset(src_mm, addr);
1410 do {
1411 next = pgd_addr_end(addr, end);
1412 if (pgd_none_or_clear_bad(src_pgd))
1413 continue;
1414 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1415 addr, next))) {
1416 untrack_pfn_clear(dst_vma);
1417 ret = -ENOMEM;
1418 break;
1419 }
1420 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1421
1422 if (is_cow) {
1423 raw_write_seqcount_end(&src_mm->write_protect_seq);
1424 mmu_notifier_invalidate_range_end(&range);
1425 }
1426 return ret;
1427}
1428
1429/* Whether we should zap all COWed (private) pages too */
1430static inline bool should_zap_cows(struct zap_details *details)
1431{
1432 /* By default, zap all pages */
1433 if (!details)
1434 return true;
1435
1436 /* Or, we zap COWed pages only if the caller wants to */
1437 return details->even_cows;
1438}
1439
1440/* Decides whether we should zap this folio with the folio pointer specified */
1441static inline bool should_zap_folio(struct zap_details *details,
1442 struct folio *folio)
1443{
1444 /* If we can make a decision without *folio.. */
1445 if (should_zap_cows(details))
1446 return true;
1447
1448 /* Otherwise we should only zap non-anon folios */
1449 return !folio_test_anon(folio);
1450}
1451
1452static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1453{
1454 if (!details)
1455 return false;
1456
1457 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1458}
1459
1460/*
1461 * This function makes sure that we'll replace the none pte with an uffd-wp
1462 * swap special pte marker when necessary. Must be with the pgtable lock held.
1463 */
1464static inline void
1465zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1466 unsigned long addr, pte_t *pte, int nr,
1467 struct zap_details *details, pte_t pteval)
1468{
1469 /* Zap on anonymous always means dropping everything */
1470 if (vma_is_anonymous(vma))
1471 return;
1472
1473 if (zap_drop_file_uffd_wp(details))
1474 return;
1475
1476 for (;;) {
1477 /* the PFN in the PTE is irrelevant. */
1478 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1479 if (--nr == 0)
1480 break;
1481 pte++;
1482 addr += PAGE_SIZE;
1483 }
1484}
1485
1486static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1487 struct vm_area_struct *vma, struct folio *folio,
1488 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1489 unsigned long addr, struct zap_details *details, int *rss,
1490 bool *force_flush, bool *force_break)
1491{
1492 struct mm_struct *mm = tlb->mm;
1493 bool delay_rmap = false;
1494
1495 if (!folio_test_anon(folio)) {
1496 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1497 if (pte_dirty(ptent)) {
1498 folio_mark_dirty(folio);
1499 if (tlb_delay_rmap(tlb)) {
1500 delay_rmap = true;
1501 *force_flush = true;
1502 }
1503 }
1504 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1505 folio_mark_accessed(folio);
1506 rss[mm_counter(folio)] -= nr;
1507 } else {
1508 /* We don't need up-to-date accessed/dirty bits. */
1509 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1510 rss[MM_ANONPAGES] -= nr;
1511 }
1512 /* Checking a single PTE in a batch is sufficient. */
1513 arch_check_zapped_pte(vma, ptent);
1514 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1515 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1516 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1517 ptent);
1518
1519 if (!delay_rmap) {
1520 folio_remove_rmap_ptes(folio, page, nr, vma);
1521
1522 if (unlikely(folio_mapcount(folio) < 0))
1523 print_bad_pte(vma, addr, ptent, page);
1524 }
1525 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1526 *force_flush = true;
1527 *force_break = true;
1528 }
1529}
1530
1531/*
1532 * Zap or skip at least one present PTE, trying to batch-process subsequent
1533 * PTEs that map consecutive pages of the same folio.
1534 *
1535 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1536 */
1537static inline int zap_present_ptes(struct mmu_gather *tlb,
1538 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1539 unsigned int max_nr, unsigned long addr,
1540 struct zap_details *details, int *rss, bool *force_flush,
1541 bool *force_break)
1542{
1543 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1544 struct mm_struct *mm = tlb->mm;
1545 struct folio *folio;
1546 struct page *page;
1547 int nr;
1548
1549 page = vm_normal_page(vma, addr, ptent);
1550 if (!page) {
1551 /* We don't need up-to-date accessed/dirty bits. */
1552 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1553 arch_check_zapped_pte(vma, ptent);
1554 tlb_remove_tlb_entry(tlb, pte, addr);
1555 if (userfaultfd_pte_wp(vma, ptent))
1556 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1557 details, ptent);
1558 ksm_might_unmap_zero_page(mm, ptent);
1559 return 1;
1560 }
1561
1562 folio = page_folio(page);
1563 if (unlikely(!should_zap_folio(details, folio)))
1564 return 1;
1565
1566 /*
1567 * Make sure that the common "small folio" case is as fast as possible
1568 * by keeping the batching logic separate.
1569 */
1570 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1571 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1572 NULL, NULL, NULL);
1573
1574 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1575 addr, details, rss, force_flush,
1576 force_break);
1577 return nr;
1578 }
1579 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1580 details, rss, force_flush, force_break);
1581 return 1;
1582}
1583
1584static unsigned long zap_pte_range(struct mmu_gather *tlb,
1585 struct vm_area_struct *vma, pmd_t *pmd,
1586 unsigned long addr, unsigned long end,
1587 struct zap_details *details)
1588{
1589 bool force_flush = false, force_break = false;
1590 struct mm_struct *mm = tlb->mm;
1591 int rss[NR_MM_COUNTERS];
1592 spinlock_t *ptl;
1593 pte_t *start_pte;
1594 pte_t *pte;
1595 swp_entry_t entry;
1596 int nr;
1597
1598 tlb_change_page_size(tlb, PAGE_SIZE);
1599 init_rss_vec(rss);
1600 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1601 if (!pte)
1602 return addr;
1603
1604 flush_tlb_batched_pending(mm);
1605 arch_enter_lazy_mmu_mode();
1606 do {
1607 pte_t ptent = ptep_get(pte);
1608 struct folio *folio;
1609 struct page *page;
1610 int max_nr;
1611
1612 nr = 1;
1613 if (pte_none(ptent))
1614 continue;
1615
1616 if (need_resched())
1617 break;
1618
1619 if (pte_present(ptent)) {
1620 max_nr = (end - addr) / PAGE_SIZE;
1621 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1622 addr, details, rss, &force_flush,
1623 &force_break);
1624 if (unlikely(force_break)) {
1625 addr += nr * PAGE_SIZE;
1626 break;
1627 }
1628 continue;
1629 }
1630
1631 entry = pte_to_swp_entry(ptent);
1632 if (is_device_private_entry(entry) ||
1633 is_device_exclusive_entry(entry)) {
1634 page = pfn_swap_entry_to_page(entry);
1635 folio = page_folio(page);
1636 if (unlikely(!should_zap_folio(details, folio)))
1637 continue;
1638 /*
1639 * Both device private/exclusive mappings should only
1640 * work with anonymous page so far, so we don't need to
1641 * consider uffd-wp bit when zap. For more information,
1642 * see zap_install_uffd_wp_if_needed().
1643 */
1644 WARN_ON_ONCE(!vma_is_anonymous(vma));
1645 rss[mm_counter(folio)]--;
1646 if (is_device_private_entry(entry))
1647 folio_remove_rmap_pte(folio, page, vma);
1648 folio_put(folio);
1649 } else if (!non_swap_entry(entry)) {
1650 max_nr = (end - addr) / PAGE_SIZE;
1651 nr = swap_pte_batch(pte, max_nr, ptent);
1652 /* Genuine swap entries, hence a private anon pages */
1653 if (!should_zap_cows(details))
1654 continue;
1655 rss[MM_SWAPENTS] -= nr;
1656 free_swap_and_cache_nr(entry, nr);
1657 } else if (is_migration_entry(entry)) {
1658 folio = pfn_swap_entry_folio(entry);
1659 if (!should_zap_folio(details, folio))
1660 continue;
1661 rss[mm_counter(folio)]--;
1662 } else if (pte_marker_entry_uffd_wp(entry)) {
1663 /*
1664 * For anon: always drop the marker; for file: only
1665 * drop the marker if explicitly requested.
1666 */
1667 if (!vma_is_anonymous(vma) &&
1668 !zap_drop_file_uffd_wp(details))
1669 continue;
1670 } else if (is_hwpoison_entry(entry) ||
1671 is_poisoned_swp_entry(entry)) {
1672 if (!should_zap_cows(details))
1673 continue;
1674 } else {
1675 /* We should have covered all the swap entry types */
1676 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1677 WARN_ON_ONCE(1);
1678 }
1679 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1680 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1681 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1682
1683 add_mm_rss_vec(mm, rss);
1684 arch_leave_lazy_mmu_mode();
1685
1686 /* Do the actual TLB flush before dropping ptl */
1687 if (force_flush) {
1688 tlb_flush_mmu_tlbonly(tlb);
1689 tlb_flush_rmaps(tlb, vma);
1690 }
1691 pte_unmap_unlock(start_pte, ptl);
1692
1693 /*
1694 * If we forced a TLB flush (either due to running out of
1695 * batch buffers or because we needed to flush dirty TLB
1696 * entries before releasing the ptl), free the batched
1697 * memory too. Come back again if we didn't do everything.
1698 */
1699 if (force_flush)
1700 tlb_flush_mmu(tlb);
1701
1702 return addr;
1703}
1704
1705static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1706 struct vm_area_struct *vma, pud_t *pud,
1707 unsigned long addr, unsigned long end,
1708 struct zap_details *details)
1709{
1710 pmd_t *pmd;
1711 unsigned long next;
1712
1713 pmd = pmd_offset(pud, addr);
1714 do {
1715 next = pmd_addr_end(addr, end);
1716 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1717 if (next - addr != HPAGE_PMD_SIZE)
1718 __split_huge_pmd(vma, pmd, addr, false, NULL);
1719 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1720 addr = next;
1721 continue;
1722 }
1723 /* fall through */
1724 } else if (details && details->single_folio &&
1725 folio_test_pmd_mappable(details->single_folio) &&
1726 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1727 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1728 /*
1729 * Take and drop THP pmd lock so that we cannot return
1730 * prematurely, while zap_huge_pmd() has cleared *pmd,
1731 * but not yet decremented compound_mapcount().
1732 */
1733 spin_unlock(ptl);
1734 }
1735 if (pmd_none(*pmd)) {
1736 addr = next;
1737 continue;
1738 }
1739 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1740 if (addr != next)
1741 pmd--;
1742 } while (pmd++, cond_resched(), addr != end);
1743
1744 return addr;
1745}
1746
1747static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1748 struct vm_area_struct *vma, p4d_t *p4d,
1749 unsigned long addr, unsigned long end,
1750 struct zap_details *details)
1751{
1752 pud_t *pud;
1753 unsigned long next;
1754
1755 pud = pud_offset(p4d, addr);
1756 do {
1757 next = pud_addr_end(addr, end);
1758 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1759 if (next - addr != HPAGE_PUD_SIZE) {
1760 mmap_assert_locked(tlb->mm);
1761 split_huge_pud(vma, pud, addr);
1762 } else if (zap_huge_pud(tlb, vma, pud, addr))
1763 goto next;
1764 /* fall through */
1765 }
1766 if (pud_none_or_clear_bad(pud))
1767 continue;
1768 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1769next:
1770 cond_resched();
1771 } while (pud++, addr = next, addr != end);
1772
1773 return addr;
1774}
1775
1776static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1777 struct vm_area_struct *vma, pgd_t *pgd,
1778 unsigned long addr, unsigned long end,
1779 struct zap_details *details)
1780{
1781 p4d_t *p4d;
1782 unsigned long next;
1783
1784 p4d = p4d_offset(pgd, addr);
1785 do {
1786 next = p4d_addr_end(addr, end);
1787 if (p4d_none_or_clear_bad(p4d))
1788 continue;
1789 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1790 } while (p4d++, addr = next, addr != end);
1791
1792 return addr;
1793}
1794
1795void unmap_page_range(struct mmu_gather *tlb,
1796 struct vm_area_struct *vma,
1797 unsigned long addr, unsigned long end,
1798 struct zap_details *details)
1799{
1800 pgd_t *pgd;
1801 unsigned long next;
1802
1803 BUG_ON(addr >= end);
1804 tlb_start_vma(tlb, vma);
1805 pgd = pgd_offset(vma->vm_mm, addr);
1806 do {
1807 next = pgd_addr_end(addr, end);
1808 if (pgd_none_or_clear_bad(pgd))
1809 continue;
1810 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1811 } while (pgd++, addr = next, addr != end);
1812 tlb_end_vma(tlb, vma);
1813}
1814
1815
1816static void unmap_single_vma(struct mmu_gather *tlb,
1817 struct vm_area_struct *vma, unsigned long start_addr,
1818 unsigned long end_addr,
1819 struct zap_details *details, bool mm_wr_locked)
1820{
1821 unsigned long start = max(vma->vm_start, start_addr);
1822 unsigned long end;
1823
1824 if (start >= vma->vm_end)
1825 return;
1826 end = min(vma->vm_end, end_addr);
1827 if (end <= vma->vm_start)
1828 return;
1829
1830 if (vma->vm_file)
1831 uprobe_munmap(vma, start, end);
1832
1833 if (unlikely(vma->vm_flags & VM_PFNMAP))
1834 untrack_pfn(vma, 0, 0, mm_wr_locked);
1835
1836 if (start != end) {
1837 if (unlikely(is_vm_hugetlb_page(vma))) {
1838 /*
1839 * It is undesirable to test vma->vm_file as it
1840 * should be non-null for valid hugetlb area.
1841 * However, vm_file will be NULL in the error
1842 * cleanup path of mmap_region. When
1843 * hugetlbfs ->mmap method fails,
1844 * mmap_region() nullifies vma->vm_file
1845 * before calling this function to clean up.
1846 * Since no pte has actually been setup, it is
1847 * safe to do nothing in this case.
1848 */
1849 if (vma->vm_file) {
1850 zap_flags_t zap_flags = details ?
1851 details->zap_flags : 0;
1852 __unmap_hugepage_range(tlb, vma, start, end,
1853 NULL, zap_flags);
1854 }
1855 } else
1856 unmap_page_range(tlb, vma, start, end, details);
1857 }
1858}
1859
1860/**
1861 * unmap_vmas - unmap a range of memory covered by a list of vma's
1862 * @tlb: address of the caller's struct mmu_gather
1863 * @mas: the maple state
1864 * @vma: the starting vma
1865 * @start_addr: virtual address at which to start unmapping
1866 * @end_addr: virtual address at which to end unmapping
1867 * @tree_end: The maximum index to check
1868 * @mm_wr_locked: lock flag
1869 *
1870 * Unmap all pages in the vma list.
1871 *
1872 * Only addresses between `start' and `end' will be unmapped.
1873 *
1874 * The VMA list must be sorted in ascending virtual address order.
1875 *
1876 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1877 * range after unmap_vmas() returns. So the only responsibility here is to
1878 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1879 * drops the lock and schedules.
1880 */
1881void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1882 struct vm_area_struct *vma, unsigned long start_addr,
1883 unsigned long end_addr, unsigned long tree_end,
1884 bool mm_wr_locked)
1885{
1886 struct mmu_notifier_range range;
1887 struct zap_details details = {
1888 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1889 /* Careful - we need to zap private pages too! */
1890 .even_cows = true,
1891 };
1892
1893 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1894 start_addr, end_addr);
1895 mmu_notifier_invalidate_range_start(&range);
1896 do {
1897 unsigned long start = start_addr;
1898 unsigned long end = end_addr;
1899 hugetlb_zap_begin(vma, &start, &end);
1900 unmap_single_vma(tlb, vma, start, end, &details,
1901 mm_wr_locked);
1902 hugetlb_zap_end(vma, &details);
1903 vma = mas_find(mas, tree_end - 1);
1904 } while (vma && likely(!xa_is_zero(vma)));
1905 mmu_notifier_invalidate_range_end(&range);
1906}
1907
1908/**
1909 * zap_page_range_single - remove user pages in a given range
1910 * @vma: vm_area_struct holding the applicable pages
1911 * @address: starting address of pages to zap
1912 * @size: number of bytes to zap
1913 * @details: details of shared cache invalidation
1914 *
1915 * The range must fit into one VMA.
1916 */
1917void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1918 unsigned long size, struct zap_details *details)
1919{
1920 const unsigned long end = address + size;
1921 struct mmu_notifier_range range;
1922 struct mmu_gather tlb;
1923
1924 lru_add_drain();
1925 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1926 address, end);
1927 hugetlb_zap_begin(vma, &range.start, &range.end);
1928 tlb_gather_mmu(&tlb, vma->vm_mm);
1929 update_hiwater_rss(vma->vm_mm);
1930 mmu_notifier_invalidate_range_start(&range);
1931 /*
1932 * unmap 'address-end' not 'range.start-range.end' as range
1933 * could have been expanded for hugetlb pmd sharing.
1934 */
1935 unmap_single_vma(&tlb, vma, address, end, details, false);
1936 mmu_notifier_invalidate_range_end(&range);
1937 tlb_finish_mmu(&tlb);
1938 hugetlb_zap_end(vma, details);
1939}
1940
1941/**
1942 * zap_vma_ptes - remove ptes mapping the vma
1943 * @vma: vm_area_struct holding ptes to be zapped
1944 * @address: starting address of pages to zap
1945 * @size: number of bytes to zap
1946 *
1947 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1948 *
1949 * The entire address range must be fully contained within the vma.
1950 *
1951 */
1952void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1953 unsigned long size)
1954{
1955 if (!range_in_vma(vma, address, address + size) ||
1956 !(vma->vm_flags & VM_PFNMAP))
1957 return;
1958
1959 zap_page_range_single(vma, address, size, NULL);
1960}
1961EXPORT_SYMBOL_GPL(zap_vma_ptes);
1962
1963static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1964{
1965 pgd_t *pgd;
1966 p4d_t *p4d;
1967 pud_t *pud;
1968 pmd_t *pmd;
1969
1970 pgd = pgd_offset(mm, addr);
1971 p4d = p4d_alloc(mm, pgd, addr);
1972 if (!p4d)
1973 return NULL;
1974 pud = pud_alloc(mm, p4d, addr);
1975 if (!pud)
1976 return NULL;
1977 pmd = pmd_alloc(mm, pud, addr);
1978 if (!pmd)
1979 return NULL;
1980
1981 VM_BUG_ON(pmd_trans_huge(*pmd));
1982 return pmd;
1983}
1984
1985pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1986 spinlock_t **ptl)
1987{
1988 pmd_t *pmd = walk_to_pmd(mm, addr);
1989
1990 if (!pmd)
1991 return NULL;
1992 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1993}
1994
1995static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
1996{
1997 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
1998 /*
1999 * Whoever wants to forbid the zeropage after some zeropages
2000 * might already have been mapped has to scan the page tables and
2001 * bail out on any zeropages. Zeropages in COW mappings can
2002 * be unshared using FAULT_FLAG_UNSHARE faults.
2003 */
2004 if (mm_forbids_zeropage(vma->vm_mm))
2005 return false;
2006 /* zeropages in COW mappings are common and unproblematic. */
2007 if (is_cow_mapping(vma->vm_flags))
2008 return true;
2009 /* Mappings that do not allow for writable PTEs are unproblematic. */
2010 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2011 return true;
2012 /*
2013 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2014 * find the shared zeropage and longterm-pin it, which would
2015 * be problematic as soon as the zeropage gets replaced by a different
2016 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2017 * now differ to what GUP looked up. FSDAX is incompatible to
2018 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2019 * check_vma_flags).
2020 */
2021 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2022 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2023}
2024
2025static int validate_page_before_insert(struct vm_area_struct *vma,
2026 struct page *page)
2027{
2028 struct folio *folio = page_folio(page);
2029
2030 if (!folio_ref_count(folio))
2031 return -EINVAL;
2032 if (unlikely(is_zero_folio(folio))) {
2033 if (!vm_mixed_zeropage_allowed(vma))
2034 return -EINVAL;
2035 return 0;
2036 }
2037 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2038 page_has_type(page))
2039 return -EINVAL;
2040 flush_dcache_folio(folio);
2041 return 0;
2042}
2043
2044static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2045 unsigned long addr, struct page *page, pgprot_t prot)
2046{
2047 struct folio *folio = page_folio(page);
2048 pte_t pteval;
2049
2050 if (!pte_none(ptep_get(pte)))
2051 return -EBUSY;
2052 /* Ok, finally just insert the thing.. */
2053 pteval = mk_pte(page, prot);
2054 if (unlikely(is_zero_folio(folio))) {
2055 pteval = pte_mkspecial(pteval);
2056 } else {
2057 folio_get(folio);
2058 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2059 folio_add_file_rmap_pte(folio, page, vma);
2060 }
2061 set_pte_at(vma->vm_mm, addr, pte, pteval);
2062 return 0;
2063}
2064
2065static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2066 struct page *page, pgprot_t prot)
2067{
2068 int retval;
2069 pte_t *pte;
2070 spinlock_t *ptl;
2071
2072 retval = validate_page_before_insert(vma, page);
2073 if (retval)
2074 goto out;
2075 retval = -ENOMEM;
2076 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2077 if (!pte)
2078 goto out;
2079 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2080 pte_unmap_unlock(pte, ptl);
2081out:
2082 return retval;
2083}
2084
2085static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2086 unsigned long addr, struct page *page, pgprot_t prot)
2087{
2088 int err;
2089
2090 err = validate_page_before_insert(vma, page);
2091 if (err)
2092 return err;
2093 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2094}
2095
2096/* insert_pages() amortizes the cost of spinlock operations
2097 * when inserting pages in a loop.
2098 */
2099static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2100 struct page **pages, unsigned long *num, pgprot_t prot)
2101{
2102 pmd_t *pmd = NULL;
2103 pte_t *start_pte, *pte;
2104 spinlock_t *pte_lock;
2105 struct mm_struct *const mm = vma->vm_mm;
2106 unsigned long curr_page_idx = 0;
2107 unsigned long remaining_pages_total = *num;
2108 unsigned long pages_to_write_in_pmd;
2109 int ret;
2110more:
2111 ret = -EFAULT;
2112 pmd = walk_to_pmd(mm, addr);
2113 if (!pmd)
2114 goto out;
2115
2116 pages_to_write_in_pmd = min_t(unsigned long,
2117 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2118
2119 /* Allocate the PTE if necessary; takes PMD lock once only. */
2120 ret = -ENOMEM;
2121 if (pte_alloc(mm, pmd))
2122 goto out;
2123
2124 while (pages_to_write_in_pmd) {
2125 int pte_idx = 0;
2126 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2127
2128 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2129 if (!start_pte) {
2130 ret = -EFAULT;
2131 goto out;
2132 }
2133 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2134 int err = insert_page_in_batch_locked(vma, pte,
2135 addr, pages[curr_page_idx], prot);
2136 if (unlikely(err)) {
2137 pte_unmap_unlock(start_pte, pte_lock);
2138 ret = err;
2139 remaining_pages_total -= pte_idx;
2140 goto out;
2141 }
2142 addr += PAGE_SIZE;
2143 ++curr_page_idx;
2144 }
2145 pte_unmap_unlock(start_pte, pte_lock);
2146 pages_to_write_in_pmd -= batch_size;
2147 remaining_pages_total -= batch_size;
2148 }
2149 if (remaining_pages_total)
2150 goto more;
2151 ret = 0;
2152out:
2153 *num = remaining_pages_total;
2154 return ret;
2155}
2156
2157/**
2158 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2159 * @vma: user vma to map to
2160 * @addr: target start user address of these pages
2161 * @pages: source kernel pages
2162 * @num: in: number of pages to map. out: number of pages that were *not*
2163 * mapped. (0 means all pages were successfully mapped).
2164 *
2165 * Preferred over vm_insert_page() when inserting multiple pages.
2166 *
2167 * In case of error, we may have mapped a subset of the provided
2168 * pages. It is the caller's responsibility to account for this case.
2169 *
2170 * The same restrictions apply as in vm_insert_page().
2171 */
2172int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2173 struct page **pages, unsigned long *num)
2174{
2175 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2176
2177 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2178 return -EFAULT;
2179 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2180 BUG_ON(mmap_read_trylock(vma->vm_mm));
2181 BUG_ON(vma->vm_flags & VM_PFNMAP);
2182 vm_flags_set(vma, VM_MIXEDMAP);
2183 }
2184 /* Defer page refcount checking till we're about to map that page. */
2185 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2186}
2187EXPORT_SYMBOL(vm_insert_pages);
2188
2189/**
2190 * vm_insert_page - insert single page into user vma
2191 * @vma: user vma to map to
2192 * @addr: target user address of this page
2193 * @page: source kernel page
2194 *
2195 * This allows drivers to insert individual pages they've allocated
2196 * into a user vma. The zeropage is supported in some VMAs,
2197 * see vm_mixed_zeropage_allowed().
2198 *
2199 * The page has to be a nice clean _individual_ kernel allocation.
2200 * If you allocate a compound page, you need to have marked it as
2201 * such (__GFP_COMP), or manually just split the page up yourself
2202 * (see split_page()).
2203 *
2204 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2205 * took an arbitrary page protection parameter. This doesn't allow
2206 * that. Your vma protection will have to be set up correctly, which
2207 * means that if you want a shared writable mapping, you'd better
2208 * ask for a shared writable mapping!
2209 *
2210 * The page does not need to be reserved.
2211 *
2212 * Usually this function is called from f_op->mmap() handler
2213 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2214 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2215 * function from other places, for example from page-fault handler.
2216 *
2217 * Return: %0 on success, negative error code otherwise.
2218 */
2219int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2220 struct page *page)
2221{
2222 if (addr < vma->vm_start || addr >= vma->vm_end)
2223 return -EFAULT;
2224 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2225 BUG_ON(mmap_read_trylock(vma->vm_mm));
2226 BUG_ON(vma->vm_flags & VM_PFNMAP);
2227 vm_flags_set(vma, VM_MIXEDMAP);
2228 }
2229 return insert_page(vma, addr, page, vma->vm_page_prot);
2230}
2231EXPORT_SYMBOL(vm_insert_page);
2232
2233/*
2234 * __vm_map_pages - maps range of kernel pages into user vma
2235 * @vma: user vma to map to
2236 * @pages: pointer to array of source kernel pages
2237 * @num: number of pages in page array
2238 * @offset: user's requested vm_pgoff
2239 *
2240 * This allows drivers to map range of kernel pages into a user vma.
2241 * The zeropage is supported in some VMAs, see
2242 * vm_mixed_zeropage_allowed().
2243 *
2244 * Return: 0 on success and error code otherwise.
2245 */
2246static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2247 unsigned long num, unsigned long offset)
2248{
2249 unsigned long count = vma_pages(vma);
2250 unsigned long uaddr = vma->vm_start;
2251 int ret, i;
2252
2253 /* Fail if the user requested offset is beyond the end of the object */
2254 if (offset >= num)
2255 return -ENXIO;
2256
2257 /* Fail if the user requested size exceeds available object size */
2258 if (count > num - offset)
2259 return -ENXIO;
2260
2261 for (i = 0; i < count; i++) {
2262 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2263 if (ret < 0)
2264 return ret;
2265 uaddr += PAGE_SIZE;
2266 }
2267
2268 return 0;
2269}
2270
2271/**
2272 * vm_map_pages - maps range of kernel pages starts with non zero offset
2273 * @vma: user vma to map to
2274 * @pages: pointer to array of source kernel pages
2275 * @num: number of pages in page array
2276 *
2277 * Maps an object consisting of @num pages, catering for the user's
2278 * requested vm_pgoff
2279 *
2280 * If we fail to insert any page into the vma, the function will return
2281 * immediately leaving any previously inserted pages present. Callers
2282 * from the mmap handler may immediately return the error as their caller
2283 * will destroy the vma, removing any successfully inserted pages. Other
2284 * callers should make their own arrangements for calling unmap_region().
2285 *
2286 * Context: Process context. Called by mmap handlers.
2287 * Return: 0 on success and error code otherwise.
2288 */
2289int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2290 unsigned long num)
2291{
2292 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2293}
2294EXPORT_SYMBOL(vm_map_pages);
2295
2296/**
2297 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2298 * @vma: user vma to map to
2299 * @pages: pointer to array of source kernel pages
2300 * @num: number of pages in page array
2301 *
2302 * Similar to vm_map_pages(), except that it explicitly sets the offset
2303 * to 0. This function is intended for the drivers that did not consider
2304 * vm_pgoff.
2305 *
2306 * Context: Process context. Called by mmap handlers.
2307 * Return: 0 on success and error code otherwise.
2308 */
2309int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2310 unsigned long num)
2311{
2312 return __vm_map_pages(vma, pages, num, 0);
2313}
2314EXPORT_SYMBOL(vm_map_pages_zero);
2315
2316static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2317 pfn_t pfn, pgprot_t prot, bool mkwrite)
2318{
2319 struct mm_struct *mm = vma->vm_mm;
2320 pte_t *pte, entry;
2321 spinlock_t *ptl;
2322
2323 pte = get_locked_pte(mm, addr, &ptl);
2324 if (!pte)
2325 return VM_FAULT_OOM;
2326 entry = ptep_get(pte);
2327 if (!pte_none(entry)) {
2328 if (mkwrite) {
2329 /*
2330 * For read faults on private mappings the PFN passed
2331 * in may not match the PFN we have mapped if the
2332 * mapped PFN is a writeable COW page. In the mkwrite
2333 * case we are creating a writable PTE for a shared
2334 * mapping and we expect the PFNs to match. If they
2335 * don't match, we are likely racing with block
2336 * allocation and mapping invalidation so just skip the
2337 * update.
2338 */
2339 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2340 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2341 goto out_unlock;
2342 }
2343 entry = pte_mkyoung(entry);
2344 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2345 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2346 update_mmu_cache(vma, addr, pte);
2347 }
2348 goto out_unlock;
2349 }
2350
2351 /* Ok, finally just insert the thing.. */
2352 if (pfn_t_devmap(pfn))
2353 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2354 else
2355 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2356
2357 if (mkwrite) {
2358 entry = pte_mkyoung(entry);
2359 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360 }
2361
2362 set_pte_at(mm, addr, pte, entry);
2363 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2364
2365out_unlock:
2366 pte_unmap_unlock(pte, ptl);
2367 return VM_FAULT_NOPAGE;
2368}
2369
2370/**
2371 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2372 * @vma: user vma to map to
2373 * @addr: target user address of this page
2374 * @pfn: source kernel pfn
2375 * @pgprot: pgprot flags for the inserted page
2376 *
2377 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2378 * to override pgprot on a per-page basis.
2379 *
2380 * This only makes sense for IO mappings, and it makes no sense for
2381 * COW mappings. In general, using multiple vmas is preferable;
2382 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2383 * impractical.
2384 *
2385 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2386 * caching- and encryption bits different than those of @vma->vm_page_prot,
2387 * because the caching- or encryption mode may not be known at mmap() time.
2388 *
2389 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2390 * to set caching and encryption bits for those vmas (except for COW pages).
2391 * This is ensured by core vm only modifying these page table entries using
2392 * functions that don't touch caching- or encryption bits, using pte_modify()
2393 * if needed. (See for example mprotect()).
2394 *
2395 * Also when new page-table entries are created, this is only done using the
2396 * fault() callback, and never using the value of vma->vm_page_prot,
2397 * except for page-table entries that point to anonymous pages as the result
2398 * of COW.
2399 *
2400 * Context: Process context. May allocate using %GFP_KERNEL.
2401 * Return: vm_fault_t value.
2402 */
2403vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2404 unsigned long pfn, pgprot_t pgprot)
2405{
2406 /*
2407 * Technically, architectures with pte_special can avoid all these
2408 * restrictions (same for remap_pfn_range). However we would like
2409 * consistency in testing and feature parity among all, so we should
2410 * try to keep these invariants in place for everybody.
2411 */
2412 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2413 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2414 (VM_PFNMAP|VM_MIXEDMAP));
2415 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2416 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2417
2418 if (addr < vma->vm_start || addr >= vma->vm_end)
2419 return VM_FAULT_SIGBUS;
2420
2421 if (!pfn_modify_allowed(pfn, pgprot))
2422 return VM_FAULT_SIGBUS;
2423
2424 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2425
2426 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2427 false);
2428}
2429EXPORT_SYMBOL(vmf_insert_pfn_prot);
2430
2431/**
2432 * vmf_insert_pfn - insert single pfn into user vma
2433 * @vma: user vma to map to
2434 * @addr: target user address of this page
2435 * @pfn: source kernel pfn
2436 *
2437 * Similar to vm_insert_page, this allows drivers to insert individual pages
2438 * they've allocated into a user vma. Same comments apply.
2439 *
2440 * This function should only be called from a vm_ops->fault handler, and
2441 * in that case the handler should return the result of this function.
2442 *
2443 * vma cannot be a COW mapping.
2444 *
2445 * As this is called only for pages that do not currently exist, we
2446 * do not need to flush old virtual caches or the TLB.
2447 *
2448 * Context: Process context. May allocate using %GFP_KERNEL.
2449 * Return: vm_fault_t value.
2450 */
2451vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2452 unsigned long pfn)
2453{
2454 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2455}
2456EXPORT_SYMBOL(vmf_insert_pfn);
2457
2458static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2459{
2460 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2461 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2462 return false;
2463 /* these checks mirror the abort conditions in vm_normal_page */
2464 if (vma->vm_flags & VM_MIXEDMAP)
2465 return true;
2466 if (pfn_t_devmap(pfn))
2467 return true;
2468 if (pfn_t_special(pfn))
2469 return true;
2470 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2471 return true;
2472 return false;
2473}
2474
2475static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2476 unsigned long addr, pfn_t pfn, bool mkwrite)
2477{
2478 pgprot_t pgprot = vma->vm_page_prot;
2479 int err;
2480
2481 if (!vm_mixed_ok(vma, pfn, mkwrite))
2482 return VM_FAULT_SIGBUS;
2483
2484 if (addr < vma->vm_start || addr >= vma->vm_end)
2485 return VM_FAULT_SIGBUS;
2486
2487 track_pfn_insert(vma, &pgprot, pfn);
2488
2489 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2490 return VM_FAULT_SIGBUS;
2491
2492 /*
2493 * If we don't have pte special, then we have to use the pfn_valid()
2494 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2495 * refcount the page if pfn_valid is true (hence insert_page rather
2496 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2497 * without pte special, it would there be refcounted as a normal page.
2498 */
2499 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2500 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2501 struct page *page;
2502
2503 /*
2504 * At this point we are committed to insert_page()
2505 * regardless of whether the caller specified flags that
2506 * result in pfn_t_has_page() == false.
2507 */
2508 page = pfn_to_page(pfn_t_to_pfn(pfn));
2509 err = insert_page(vma, addr, page, pgprot);
2510 } else {
2511 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2512 }
2513
2514 if (err == -ENOMEM)
2515 return VM_FAULT_OOM;
2516 if (err < 0 && err != -EBUSY)
2517 return VM_FAULT_SIGBUS;
2518
2519 return VM_FAULT_NOPAGE;
2520}
2521
2522vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2523 pfn_t pfn)
2524{
2525 return __vm_insert_mixed(vma, addr, pfn, false);
2526}
2527EXPORT_SYMBOL(vmf_insert_mixed);
2528
2529/*
2530 * If the insertion of PTE failed because someone else already added a
2531 * different entry in the mean time, we treat that as success as we assume
2532 * the same entry was actually inserted.
2533 */
2534vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2535 unsigned long addr, pfn_t pfn)
2536{
2537 return __vm_insert_mixed(vma, addr, pfn, true);
2538}
2539
2540/*
2541 * maps a range of physical memory into the requested pages. the old
2542 * mappings are removed. any references to nonexistent pages results
2543 * in null mappings (currently treated as "copy-on-access")
2544 */
2545static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2546 unsigned long addr, unsigned long end,
2547 unsigned long pfn, pgprot_t prot)
2548{
2549 pte_t *pte, *mapped_pte;
2550 spinlock_t *ptl;
2551 int err = 0;
2552
2553 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2554 if (!pte)
2555 return -ENOMEM;
2556 arch_enter_lazy_mmu_mode();
2557 do {
2558 BUG_ON(!pte_none(ptep_get(pte)));
2559 if (!pfn_modify_allowed(pfn, prot)) {
2560 err = -EACCES;
2561 break;
2562 }
2563 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2564 pfn++;
2565 } while (pte++, addr += PAGE_SIZE, addr != end);
2566 arch_leave_lazy_mmu_mode();
2567 pte_unmap_unlock(mapped_pte, ptl);
2568 return err;
2569}
2570
2571static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2572 unsigned long addr, unsigned long end,
2573 unsigned long pfn, pgprot_t prot)
2574{
2575 pmd_t *pmd;
2576 unsigned long next;
2577 int err;
2578
2579 pfn -= addr >> PAGE_SHIFT;
2580 pmd = pmd_alloc(mm, pud, addr);
2581 if (!pmd)
2582 return -ENOMEM;
2583 VM_BUG_ON(pmd_trans_huge(*pmd));
2584 do {
2585 next = pmd_addr_end(addr, end);
2586 err = remap_pte_range(mm, pmd, addr, next,
2587 pfn + (addr >> PAGE_SHIFT), prot);
2588 if (err)
2589 return err;
2590 } while (pmd++, addr = next, addr != end);
2591 return 0;
2592}
2593
2594static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2595 unsigned long addr, unsigned long end,
2596 unsigned long pfn, pgprot_t prot)
2597{
2598 pud_t *pud;
2599 unsigned long next;
2600 int err;
2601
2602 pfn -= addr >> PAGE_SHIFT;
2603 pud = pud_alloc(mm, p4d, addr);
2604 if (!pud)
2605 return -ENOMEM;
2606 do {
2607 next = pud_addr_end(addr, end);
2608 err = remap_pmd_range(mm, pud, addr, next,
2609 pfn + (addr >> PAGE_SHIFT), prot);
2610 if (err)
2611 return err;
2612 } while (pud++, addr = next, addr != end);
2613 return 0;
2614}
2615
2616static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2617 unsigned long addr, unsigned long end,
2618 unsigned long pfn, pgprot_t prot)
2619{
2620 p4d_t *p4d;
2621 unsigned long next;
2622 int err;
2623
2624 pfn -= addr >> PAGE_SHIFT;
2625 p4d = p4d_alloc(mm, pgd, addr);
2626 if (!p4d)
2627 return -ENOMEM;
2628 do {
2629 next = p4d_addr_end(addr, end);
2630 err = remap_pud_range(mm, p4d, addr, next,
2631 pfn + (addr >> PAGE_SHIFT), prot);
2632 if (err)
2633 return err;
2634 } while (p4d++, addr = next, addr != end);
2635 return 0;
2636}
2637
2638static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2639 unsigned long pfn, unsigned long size, pgprot_t prot)
2640{
2641 pgd_t *pgd;
2642 unsigned long next;
2643 unsigned long end = addr + PAGE_ALIGN(size);
2644 struct mm_struct *mm = vma->vm_mm;
2645 int err;
2646
2647 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2648 return -EINVAL;
2649
2650 /*
2651 * Physically remapped pages are special. Tell the
2652 * rest of the world about it:
2653 * VM_IO tells people not to look at these pages
2654 * (accesses can have side effects).
2655 * VM_PFNMAP tells the core MM that the base pages are just
2656 * raw PFN mappings, and do not have a "struct page" associated
2657 * with them.
2658 * VM_DONTEXPAND
2659 * Disable vma merging and expanding with mremap().
2660 * VM_DONTDUMP
2661 * Omit vma from core dump, even when VM_IO turned off.
2662 *
2663 * There's a horrible special case to handle copy-on-write
2664 * behaviour that some programs depend on. We mark the "original"
2665 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2666 * See vm_normal_page() for details.
2667 */
2668 if (is_cow_mapping(vma->vm_flags)) {
2669 if (addr != vma->vm_start || end != vma->vm_end)
2670 return -EINVAL;
2671 vma->vm_pgoff = pfn;
2672 }
2673
2674 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2675
2676 BUG_ON(addr >= end);
2677 pfn -= addr >> PAGE_SHIFT;
2678 pgd = pgd_offset(mm, addr);
2679 flush_cache_range(vma, addr, end);
2680 do {
2681 next = pgd_addr_end(addr, end);
2682 err = remap_p4d_range(mm, pgd, addr, next,
2683 pfn + (addr >> PAGE_SHIFT), prot);
2684 if (err)
2685 return err;
2686 } while (pgd++, addr = next, addr != end);
2687
2688 return 0;
2689}
2690
2691/*
2692 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2693 * must have pre-validated the caching bits of the pgprot_t.
2694 */
2695int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2696 unsigned long pfn, unsigned long size, pgprot_t prot)
2697{
2698 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2699
2700 if (!error)
2701 return 0;
2702
2703 /*
2704 * A partial pfn range mapping is dangerous: it does not
2705 * maintain page reference counts, and callers may free
2706 * pages due to the error. So zap it early.
2707 */
2708 zap_page_range_single(vma, addr, size, NULL);
2709 return error;
2710}
2711
2712/**
2713 * remap_pfn_range - remap kernel memory to userspace
2714 * @vma: user vma to map to
2715 * @addr: target page aligned user address to start at
2716 * @pfn: page frame number of kernel physical memory address
2717 * @size: size of mapping area
2718 * @prot: page protection flags for this mapping
2719 *
2720 * Note: this is only safe if the mm semaphore is held when called.
2721 *
2722 * Return: %0 on success, negative error code otherwise.
2723 */
2724int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2725 unsigned long pfn, unsigned long size, pgprot_t prot)
2726{
2727 int err;
2728
2729 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2730 if (err)
2731 return -EINVAL;
2732
2733 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2734 if (err)
2735 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2736 return err;
2737}
2738EXPORT_SYMBOL(remap_pfn_range);
2739
2740/**
2741 * vm_iomap_memory - remap memory to userspace
2742 * @vma: user vma to map to
2743 * @start: start of the physical memory to be mapped
2744 * @len: size of area
2745 *
2746 * This is a simplified io_remap_pfn_range() for common driver use. The
2747 * driver just needs to give us the physical memory range to be mapped,
2748 * we'll figure out the rest from the vma information.
2749 *
2750 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2751 * whatever write-combining details or similar.
2752 *
2753 * Return: %0 on success, negative error code otherwise.
2754 */
2755int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2756{
2757 unsigned long vm_len, pfn, pages;
2758
2759 /* Check that the physical memory area passed in looks valid */
2760 if (start + len < start)
2761 return -EINVAL;
2762 /*
2763 * You *really* shouldn't map things that aren't page-aligned,
2764 * but we've historically allowed it because IO memory might
2765 * just have smaller alignment.
2766 */
2767 len += start & ~PAGE_MASK;
2768 pfn = start >> PAGE_SHIFT;
2769 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2770 if (pfn + pages < pfn)
2771 return -EINVAL;
2772
2773 /* We start the mapping 'vm_pgoff' pages into the area */
2774 if (vma->vm_pgoff > pages)
2775 return -EINVAL;
2776 pfn += vma->vm_pgoff;
2777 pages -= vma->vm_pgoff;
2778
2779 /* Can we fit all of the mapping? */
2780 vm_len = vma->vm_end - vma->vm_start;
2781 if (vm_len >> PAGE_SHIFT > pages)
2782 return -EINVAL;
2783
2784 /* Ok, let it rip */
2785 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2786}
2787EXPORT_SYMBOL(vm_iomap_memory);
2788
2789static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2790 unsigned long addr, unsigned long end,
2791 pte_fn_t fn, void *data, bool create,
2792 pgtbl_mod_mask *mask)
2793{
2794 pte_t *pte, *mapped_pte;
2795 int err = 0;
2796 spinlock_t *ptl;
2797
2798 if (create) {
2799 mapped_pte = pte = (mm == &init_mm) ?
2800 pte_alloc_kernel_track(pmd, addr, mask) :
2801 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2802 if (!pte)
2803 return -ENOMEM;
2804 } else {
2805 mapped_pte = pte = (mm == &init_mm) ?
2806 pte_offset_kernel(pmd, addr) :
2807 pte_offset_map_lock(mm, pmd, addr, &ptl);
2808 if (!pte)
2809 return -EINVAL;
2810 }
2811
2812 arch_enter_lazy_mmu_mode();
2813
2814 if (fn) {
2815 do {
2816 if (create || !pte_none(ptep_get(pte))) {
2817 err = fn(pte++, addr, data);
2818 if (err)
2819 break;
2820 }
2821 } while (addr += PAGE_SIZE, addr != end);
2822 }
2823 *mask |= PGTBL_PTE_MODIFIED;
2824
2825 arch_leave_lazy_mmu_mode();
2826
2827 if (mm != &init_mm)
2828 pte_unmap_unlock(mapped_pte, ptl);
2829 return err;
2830}
2831
2832static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2833 unsigned long addr, unsigned long end,
2834 pte_fn_t fn, void *data, bool create,
2835 pgtbl_mod_mask *mask)
2836{
2837 pmd_t *pmd;
2838 unsigned long next;
2839 int err = 0;
2840
2841 BUG_ON(pud_leaf(*pud));
2842
2843 if (create) {
2844 pmd = pmd_alloc_track(mm, pud, addr, mask);
2845 if (!pmd)
2846 return -ENOMEM;
2847 } else {
2848 pmd = pmd_offset(pud, addr);
2849 }
2850 do {
2851 next = pmd_addr_end(addr, end);
2852 if (pmd_none(*pmd) && !create)
2853 continue;
2854 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2855 return -EINVAL;
2856 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2857 if (!create)
2858 continue;
2859 pmd_clear_bad(pmd);
2860 }
2861 err = apply_to_pte_range(mm, pmd, addr, next,
2862 fn, data, create, mask);
2863 if (err)
2864 break;
2865 } while (pmd++, addr = next, addr != end);
2866
2867 return err;
2868}
2869
2870static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2871 unsigned long addr, unsigned long end,
2872 pte_fn_t fn, void *data, bool create,
2873 pgtbl_mod_mask *mask)
2874{
2875 pud_t *pud;
2876 unsigned long next;
2877 int err = 0;
2878
2879 if (create) {
2880 pud = pud_alloc_track(mm, p4d, addr, mask);
2881 if (!pud)
2882 return -ENOMEM;
2883 } else {
2884 pud = pud_offset(p4d, addr);
2885 }
2886 do {
2887 next = pud_addr_end(addr, end);
2888 if (pud_none(*pud) && !create)
2889 continue;
2890 if (WARN_ON_ONCE(pud_leaf(*pud)))
2891 return -EINVAL;
2892 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2893 if (!create)
2894 continue;
2895 pud_clear_bad(pud);
2896 }
2897 err = apply_to_pmd_range(mm, pud, addr, next,
2898 fn, data, create, mask);
2899 if (err)
2900 break;
2901 } while (pud++, addr = next, addr != end);
2902
2903 return err;
2904}
2905
2906static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2907 unsigned long addr, unsigned long end,
2908 pte_fn_t fn, void *data, bool create,
2909 pgtbl_mod_mask *mask)
2910{
2911 p4d_t *p4d;
2912 unsigned long next;
2913 int err = 0;
2914
2915 if (create) {
2916 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2917 if (!p4d)
2918 return -ENOMEM;
2919 } else {
2920 p4d = p4d_offset(pgd, addr);
2921 }
2922 do {
2923 next = p4d_addr_end(addr, end);
2924 if (p4d_none(*p4d) && !create)
2925 continue;
2926 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2927 return -EINVAL;
2928 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2929 if (!create)
2930 continue;
2931 p4d_clear_bad(p4d);
2932 }
2933 err = apply_to_pud_range(mm, p4d, addr, next,
2934 fn, data, create, mask);
2935 if (err)
2936 break;
2937 } while (p4d++, addr = next, addr != end);
2938
2939 return err;
2940}
2941
2942static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2943 unsigned long size, pte_fn_t fn,
2944 void *data, bool create)
2945{
2946 pgd_t *pgd;
2947 unsigned long start = addr, next;
2948 unsigned long end = addr + size;
2949 pgtbl_mod_mask mask = 0;
2950 int err = 0;
2951
2952 if (WARN_ON(addr >= end))
2953 return -EINVAL;
2954
2955 pgd = pgd_offset(mm, addr);
2956 do {
2957 next = pgd_addr_end(addr, end);
2958 if (pgd_none(*pgd) && !create)
2959 continue;
2960 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2961 return -EINVAL;
2962 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2963 if (!create)
2964 continue;
2965 pgd_clear_bad(pgd);
2966 }
2967 err = apply_to_p4d_range(mm, pgd, addr, next,
2968 fn, data, create, &mask);
2969 if (err)
2970 break;
2971 } while (pgd++, addr = next, addr != end);
2972
2973 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2974 arch_sync_kernel_mappings(start, start + size);
2975
2976 return err;
2977}
2978
2979/*
2980 * Scan a region of virtual memory, filling in page tables as necessary
2981 * and calling a provided function on each leaf page table.
2982 */
2983int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2984 unsigned long size, pte_fn_t fn, void *data)
2985{
2986 return __apply_to_page_range(mm, addr, size, fn, data, true);
2987}
2988EXPORT_SYMBOL_GPL(apply_to_page_range);
2989
2990/*
2991 * Scan a region of virtual memory, calling a provided function on
2992 * each leaf page table where it exists.
2993 *
2994 * Unlike apply_to_page_range, this does _not_ fill in page tables
2995 * where they are absent.
2996 */
2997int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2998 unsigned long size, pte_fn_t fn, void *data)
2999{
3000 return __apply_to_page_range(mm, addr, size, fn, data, false);
3001}
3002EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3003
3004/*
3005 * handle_pte_fault chooses page fault handler according to an entry which was
3006 * read non-atomically. Before making any commitment, on those architectures
3007 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3008 * parts, do_swap_page must check under lock before unmapping the pte and
3009 * proceeding (but do_wp_page is only called after already making such a check;
3010 * and do_anonymous_page can safely check later on).
3011 */
3012static inline int pte_unmap_same(struct vm_fault *vmf)
3013{
3014 int same = 1;
3015#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3016 if (sizeof(pte_t) > sizeof(unsigned long)) {
3017 spin_lock(vmf->ptl);
3018 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3019 spin_unlock(vmf->ptl);
3020 }
3021#endif
3022 pte_unmap(vmf->pte);
3023 vmf->pte = NULL;
3024 return same;
3025}
3026
3027/*
3028 * Return:
3029 * 0: copied succeeded
3030 * -EHWPOISON: copy failed due to hwpoison in source page
3031 * -EAGAIN: copied failed (some other reason)
3032 */
3033static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3034 struct vm_fault *vmf)
3035{
3036 int ret;
3037 void *kaddr;
3038 void __user *uaddr;
3039 struct vm_area_struct *vma = vmf->vma;
3040 struct mm_struct *mm = vma->vm_mm;
3041 unsigned long addr = vmf->address;
3042
3043 if (likely(src)) {
3044 if (copy_mc_user_highpage(dst, src, addr, vma))
3045 return -EHWPOISON;
3046 return 0;
3047 }
3048
3049 /*
3050 * If the source page was a PFN mapping, we don't have
3051 * a "struct page" for it. We do a best-effort copy by
3052 * just copying from the original user address. If that
3053 * fails, we just zero-fill it. Live with it.
3054 */
3055 kaddr = kmap_local_page(dst);
3056 pagefault_disable();
3057 uaddr = (void __user *)(addr & PAGE_MASK);
3058
3059 /*
3060 * On architectures with software "accessed" bits, we would
3061 * take a double page fault, so mark it accessed here.
3062 */
3063 vmf->pte = NULL;
3064 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3065 pte_t entry;
3066
3067 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3068 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3069 /*
3070 * Other thread has already handled the fault
3071 * and update local tlb only
3072 */
3073 if (vmf->pte)
3074 update_mmu_tlb(vma, addr, vmf->pte);
3075 ret = -EAGAIN;
3076 goto pte_unlock;
3077 }
3078
3079 entry = pte_mkyoung(vmf->orig_pte);
3080 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3081 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3082 }
3083
3084 /*
3085 * This really shouldn't fail, because the page is there
3086 * in the page tables. But it might just be unreadable,
3087 * in which case we just give up and fill the result with
3088 * zeroes.
3089 */
3090 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3091 if (vmf->pte)
3092 goto warn;
3093
3094 /* Re-validate under PTL if the page is still mapped */
3095 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3096 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3097 /* The PTE changed under us, update local tlb */
3098 if (vmf->pte)
3099 update_mmu_tlb(vma, addr, vmf->pte);
3100 ret = -EAGAIN;
3101 goto pte_unlock;
3102 }
3103
3104 /*
3105 * The same page can be mapped back since last copy attempt.
3106 * Try to copy again under PTL.
3107 */
3108 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3109 /*
3110 * Give a warn in case there can be some obscure
3111 * use-case
3112 */
3113warn:
3114 WARN_ON_ONCE(1);
3115 clear_page(kaddr);
3116 }
3117 }
3118
3119 ret = 0;
3120
3121pte_unlock:
3122 if (vmf->pte)
3123 pte_unmap_unlock(vmf->pte, vmf->ptl);
3124 pagefault_enable();
3125 kunmap_local(kaddr);
3126 flush_dcache_page(dst);
3127
3128 return ret;
3129}
3130
3131static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3132{
3133 struct file *vm_file = vma->vm_file;
3134
3135 if (vm_file)
3136 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3137
3138 /*
3139 * Special mappings (e.g. VDSO) do not have any file so fake
3140 * a default GFP_KERNEL for them.
3141 */
3142 return GFP_KERNEL;
3143}
3144
3145/*
3146 * Notify the address space that the page is about to become writable so that
3147 * it can prohibit this or wait for the page to get into an appropriate state.
3148 *
3149 * We do this without the lock held, so that it can sleep if it needs to.
3150 */
3151static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3152{
3153 vm_fault_t ret;
3154 unsigned int old_flags = vmf->flags;
3155
3156 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3157
3158 if (vmf->vma->vm_file &&
3159 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3160 return VM_FAULT_SIGBUS;
3161
3162 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3163 /* Restore original flags so that caller is not surprised */
3164 vmf->flags = old_flags;
3165 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3166 return ret;
3167 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3168 folio_lock(folio);
3169 if (!folio->mapping) {
3170 folio_unlock(folio);
3171 return 0; /* retry */
3172 }
3173 ret |= VM_FAULT_LOCKED;
3174 } else
3175 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3176 return ret;
3177}
3178
3179/*
3180 * Handle dirtying of a page in shared file mapping on a write fault.
3181 *
3182 * The function expects the page to be locked and unlocks it.
3183 */
3184static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3185{
3186 struct vm_area_struct *vma = vmf->vma;
3187 struct address_space *mapping;
3188 struct folio *folio = page_folio(vmf->page);
3189 bool dirtied;
3190 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3191
3192 dirtied = folio_mark_dirty(folio);
3193 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3194 /*
3195 * Take a local copy of the address_space - folio.mapping may be zeroed
3196 * by truncate after folio_unlock(). The address_space itself remains
3197 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3198 * release semantics to prevent the compiler from undoing this copying.
3199 */
3200 mapping = folio_raw_mapping(folio);
3201 folio_unlock(folio);
3202
3203 if (!page_mkwrite)
3204 file_update_time(vma->vm_file);
3205
3206 /*
3207 * Throttle page dirtying rate down to writeback speed.
3208 *
3209 * mapping may be NULL here because some device drivers do not
3210 * set page.mapping but still dirty their pages
3211 *
3212 * Drop the mmap_lock before waiting on IO, if we can. The file
3213 * is pinning the mapping, as per above.
3214 */
3215 if ((dirtied || page_mkwrite) && mapping) {
3216 struct file *fpin;
3217
3218 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3219 balance_dirty_pages_ratelimited(mapping);
3220 if (fpin) {
3221 fput(fpin);
3222 return VM_FAULT_COMPLETED;
3223 }
3224 }
3225
3226 return 0;
3227}
3228
3229/*
3230 * Handle write page faults for pages that can be reused in the current vma
3231 *
3232 * This can happen either due to the mapping being with the VM_SHARED flag,
3233 * or due to us being the last reference standing to the page. In either
3234 * case, all we need to do here is to mark the page as writable and update
3235 * any related book-keeping.
3236 */
3237static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3238 __releases(vmf->ptl)
3239{
3240 struct vm_area_struct *vma = vmf->vma;
3241 pte_t entry;
3242
3243 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3244 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3245
3246 if (folio) {
3247 VM_BUG_ON(folio_test_anon(folio) &&
3248 !PageAnonExclusive(vmf->page));
3249 /*
3250 * Clear the folio's cpupid information as the existing
3251 * information potentially belongs to a now completely
3252 * unrelated process.
3253 */
3254 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3255 }
3256
3257 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3258 entry = pte_mkyoung(vmf->orig_pte);
3259 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3260 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3261 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3262 pte_unmap_unlock(vmf->pte, vmf->ptl);
3263 count_vm_event(PGREUSE);
3264}
3265
3266/*
3267 * We could add a bitflag somewhere, but for now, we know that all
3268 * vm_ops that have a ->map_pages have been audited and don't need
3269 * the mmap_lock to be held.
3270 */
3271static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3272{
3273 struct vm_area_struct *vma = vmf->vma;
3274
3275 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3276 return 0;
3277 vma_end_read(vma);
3278 return VM_FAULT_RETRY;
3279}
3280
3281/**
3282 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3283 * @vmf: The vm_fault descriptor passed from the fault handler.
3284 *
3285 * When preparing to insert an anonymous page into a VMA from a
3286 * fault handler, call this function rather than anon_vma_prepare().
3287 * If this vma does not already have an associated anon_vma and we are
3288 * only protected by the per-VMA lock, the caller must retry with the
3289 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3290 * determine if this VMA can share its anon_vma, and that's not safe to
3291 * do with only the per-VMA lock held for this VMA.
3292 *
3293 * Return: 0 if fault handling can proceed. Any other value should be
3294 * returned to the caller.
3295 */
3296vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3297{
3298 struct vm_area_struct *vma = vmf->vma;
3299 vm_fault_t ret = 0;
3300
3301 if (likely(vma->anon_vma))
3302 return 0;
3303 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3304 if (!mmap_read_trylock(vma->vm_mm))
3305 return VM_FAULT_RETRY;
3306 }
3307 if (__anon_vma_prepare(vma))
3308 ret = VM_FAULT_OOM;
3309 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3310 mmap_read_unlock(vma->vm_mm);
3311 return ret;
3312}
3313
3314/*
3315 * Handle the case of a page which we actually need to copy to a new page,
3316 * either due to COW or unsharing.
3317 *
3318 * Called with mmap_lock locked and the old page referenced, but
3319 * without the ptl held.
3320 *
3321 * High level logic flow:
3322 *
3323 * - Allocate a page, copy the content of the old page to the new one.
3324 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3325 * - Take the PTL. If the pte changed, bail out and release the allocated page
3326 * - If the pte is still the way we remember it, update the page table and all
3327 * relevant references. This includes dropping the reference the page-table
3328 * held to the old page, as well as updating the rmap.
3329 * - In any case, unlock the PTL and drop the reference we took to the old page.
3330 */
3331static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3332{
3333 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3334 struct vm_area_struct *vma = vmf->vma;
3335 struct mm_struct *mm = vma->vm_mm;
3336 struct folio *old_folio = NULL;
3337 struct folio *new_folio = NULL;
3338 pte_t entry;
3339 int page_copied = 0;
3340 struct mmu_notifier_range range;
3341 vm_fault_t ret;
3342 bool pfn_is_zero;
3343
3344 delayacct_wpcopy_start();
3345
3346 if (vmf->page)
3347 old_folio = page_folio(vmf->page);
3348 ret = vmf_anon_prepare(vmf);
3349 if (unlikely(ret))
3350 goto out;
3351
3352 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3353 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3354 if (!new_folio)
3355 goto oom;
3356
3357 if (!pfn_is_zero) {
3358 int err;
3359
3360 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3361 if (err) {
3362 /*
3363 * COW failed, if the fault was solved by other,
3364 * it's fine. If not, userspace would re-fault on
3365 * the same address and we will handle the fault
3366 * from the second attempt.
3367 * The -EHWPOISON case will not be retried.
3368 */
3369 folio_put(new_folio);
3370 if (old_folio)
3371 folio_put(old_folio);
3372
3373 delayacct_wpcopy_end();
3374 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3375 }
3376 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3377 }
3378
3379 __folio_mark_uptodate(new_folio);
3380
3381 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3382 vmf->address & PAGE_MASK,
3383 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3384 mmu_notifier_invalidate_range_start(&range);
3385
3386 /*
3387 * Re-check the pte - we dropped the lock
3388 */
3389 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3390 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3391 if (old_folio) {
3392 if (!folio_test_anon(old_folio)) {
3393 dec_mm_counter(mm, mm_counter_file(old_folio));
3394 inc_mm_counter(mm, MM_ANONPAGES);
3395 }
3396 } else {
3397 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3398 inc_mm_counter(mm, MM_ANONPAGES);
3399 }
3400 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3401 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3402 entry = pte_sw_mkyoung(entry);
3403 if (unlikely(unshare)) {
3404 if (pte_soft_dirty(vmf->orig_pte))
3405 entry = pte_mksoft_dirty(entry);
3406 if (pte_uffd_wp(vmf->orig_pte))
3407 entry = pte_mkuffd_wp(entry);
3408 } else {
3409 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3410 }
3411
3412 /*
3413 * Clear the pte entry and flush it first, before updating the
3414 * pte with the new entry, to keep TLBs on different CPUs in
3415 * sync. This code used to set the new PTE then flush TLBs, but
3416 * that left a window where the new PTE could be loaded into
3417 * some TLBs while the old PTE remains in others.
3418 */
3419 ptep_clear_flush(vma, vmf->address, vmf->pte);
3420 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3421 folio_add_lru_vma(new_folio, vma);
3422 BUG_ON(unshare && pte_write(entry));
3423 set_pte_at(mm, vmf->address, vmf->pte, entry);
3424 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3425 if (old_folio) {
3426 /*
3427 * Only after switching the pte to the new page may
3428 * we remove the mapcount here. Otherwise another
3429 * process may come and find the rmap count decremented
3430 * before the pte is switched to the new page, and
3431 * "reuse" the old page writing into it while our pte
3432 * here still points into it and can be read by other
3433 * threads.
3434 *
3435 * The critical issue is to order this
3436 * folio_remove_rmap_pte() with the ptp_clear_flush
3437 * above. Those stores are ordered by (if nothing else,)
3438 * the barrier present in the atomic_add_negative
3439 * in folio_remove_rmap_pte();
3440 *
3441 * Then the TLB flush in ptep_clear_flush ensures that
3442 * no process can access the old page before the
3443 * decremented mapcount is visible. And the old page
3444 * cannot be reused until after the decremented
3445 * mapcount is visible. So transitively, TLBs to
3446 * old page will be flushed before it can be reused.
3447 */
3448 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3449 }
3450
3451 /* Free the old page.. */
3452 new_folio = old_folio;
3453 page_copied = 1;
3454 pte_unmap_unlock(vmf->pte, vmf->ptl);
3455 } else if (vmf->pte) {
3456 update_mmu_tlb(vma, vmf->address, vmf->pte);
3457 pte_unmap_unlock(vmf->pte, vmf->ptl);
3458 }
3459
3460 mmu_notifier_invalidate_range_end(&range);
3461
3462 if (new_folio)
3463 folio_put(new_folio);
3464 if (old_folio) {
3465 if (page_copied)
3466 free_swap_cache(old_folio);
3467 folio_put(old_folio);
3468 }
3469
3470 delayacct_wpcopy_end();
3471 return 0;
3472oom:
3473 ret = VM_FAULT_OOM;
3474out:
3475 if (old_folio)
3476 folio_put(old_folio);
3477
3478 delayacct_wpcopy_end();
3479 return ret;
3480}
3481
3482/**
3483 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3484 * writeable once the page is prepared
3485 *
3486 * @vmf: structure describing the fault
3487 * @folio: the folio of vmf->page
3488 *
3489 * This function handles all that is needed to finish a write page fault in a
3490 * shared mapping due to PTE being read-only once the mapped page is prepared.
3491 * It handles locking of PTE and modifying it.
3492 *
3493 * The function expects the page to be locked or other protection against
3494 * concurrent faults / writeback (such as DAX radix tree locks).
3495 *
3496 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3497 * we acquired PTE lock.
3498 */
3499static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3500{
3501 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3502 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3503 &vmf->ptl);
3504 if (!vmf->pte)
3505 return VM_FAULT_NOPAGE;
3506 /*
3507 * We might have raced with another page fault while we released the
3508 * pte_offset_map_lock.
3509 */
3510 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3511 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3512 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 return VM_FAULT_NOPAGE;
3514 }
3515 wp_page_reuse(vmf, folio);
3516 return 0;
3517}
3518
3519/*
3520 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3521 * mapping
3522 */
3523static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3524{
3525 struct vm_area_struct *vma = vmf->vma;
3526
3527 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3528 vm_fault_t ret;
3529
3530 pte_unmap_unlock(vmf->pte, vmf->ptl);
3531 ret = vmf_can_call_fault(vmf);
3532 if (ret)
3533 return ret;
3534
3535 vmf->flags |= FAULT_FLAG_MKWRITE;
3536 ret = vma->vm_ops->pfn_mkwrite(vmf);
3537 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3538 return ret;
3539 return finish_mkwrite_fault(vmf, NULL);
3540 }
3541 wp_page_reuse(vmf, NULL);
3542 return 0;
3543}
3544
3545static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3546 __releases(vmf->ptl)
3547{
3548 struct vm_area_struct *vma = vmf->vma;
3549 vm_fault_t ret = 0;
3550
3551 folio_get(folio);
3552
3553 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3554 vm_fault_t tmp;
3555
3556 pte_unmap_unlock(vmf->pte, vmf->ptl);
3557 tmp = vmf_can_call_fault(vmf);
3558 if (tmp) {
3559 folio_put(folio);
3560 return tmp;
3561 }
3562
3563 tmp = do_page_mkwrite(vmf, folio);
3564 if (unlikely(!tmp || (tmp &
3565 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3566 folio_put(folio);
3567 return tmp;
3568 }
3569 tmp = finish_mkwrite_fault(vmf, folio);
3570 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3571 folio_unlock(folio);
3572 folio_put(folio);
3573 return tmp;
3574 }
3575 } else {
3576 wp_page_reuse(vmf, folio);
3577 folio_lock(folio);
3578 }
3579 ret |= fault_dirty_shared_page(vmf);
3580 folio_put(folio);
3581
3582 return ret;
3583}
3584
3585static bool wp_can_reuse_anon_folio(struct folio *folio,
3586 struct vm_area_struct *vma)
3587{
3588 /*
3589 * We could currently only reuse a subpage of a large folio if no
3590 * other subpages of the large folios are still mapped. However,
3591 * let's just consistently not reuse subpages even if we could
3592 * reuse in that scenario, and give back a large folio a bit
3593 * sooner.
3594 */
3595 if (folio_test_large(folio))
3596 return false;
3597
3598 /*
3599 * We have to verify under folio lock: these early checks are
3600 * just an optimization to avoid locking the folio and freeing
3601 * the swapcache if there is little hope that we can reuse.
3602 *
3603 * KSM doesn't necessarily raise the folio refcount.
3604 */
3605 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3606 return false;
3607 if (!folio_test_lru(folio))
3608 /*
3609 * We cannot easily detect+handle references from
3610 * remote LRU caches or references to LRU folios.
3611 */
3612 lru_add_drain();
3613 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3614 return false;
3615 if (!folio_trylock(folio))
3616 return false;
3617 if (folio_test_swapcache(folio))
3618 folio_free_swap(folio);
3619 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3620 folio_unlock(folio);
3621 return false;
3622 }
3623 /*
3624 * Ok, we've got the only folio reference from our mapping
3625 * and the folio is locked, it's dark out, and we're wearing
3626 * sunglasses. Hit it.
3627 */
3628 folio_move_anon_rmap(folio, vma);
3629 folio_unlock(folio);
3630 return true;
3631}
3632
3633/*
3634 * This routine handles present pages, when
3635 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3636 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3637 * (FAULT_FLAG_UNSHARE)
3638 *
3639 * It is done by copying the page to a new address and decrementing the
3640 * shared-page counter for the old page.
3641 *
3642 * Note that this routine assumes that the protection checks have been
3643 * done by the caller (the low-level page fault routine in most cases).
3644 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3645 * done any necessary COW.
3646 *
3647 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3648 * though the page will change only once the write actually happens. This
3649 * avoids a few races, and potentially makes it more efficient.
3650 *
3651 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3652 * but allow concurrent faults), with pte both mapped and locked.
3653 * We return with mmap_lock still held, but pte unmapped and unlocked.
3654 */
3655static vm_fault_t do_wp_page(struct vm_fault *vmf)
3656 __releases(vmf->ptl)
3657{
3658 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3659 struct vm_area_struct *vma = vmf->vma;
3660 struct folio *folio = NULL;
3661 pte_t pte;
3662
3663 if (likely(!unshare)) {
3664 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3665 if (!userfaultfd_wp_async(vma)) {
3666 pte_unmap_unlock(vmf->pte, vmf->ptl);
3667 return handle_userfault(vmf, VM_UFFD_WP);
3668 }
3669
3670 /*
3671 * Nothing needed (cache flush, TLB invalidations,
3672 * etc.) because we're only removing the uffd-wp bit,
3673 * which is completely invisible to the user.
3674 */
3675 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3676
3677 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3678 /*
3679 * Update this to be prepared for following up CoW
3680 * handling
3681 */
3682 vmf->orig_pte = pte;
3683 }
3684
3685 /*
3686 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3687 * is flushed in this case before copying.
3688 */
3689 if (unlikely(userfaultfd_wp(vmf->vma) &&
3690 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3691 flush_tlb_page(vmf->vma, vmf->address);
3692 }
3693
3694 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3695
3696 if (vmf->page)
3697 folio = page_folio(vmf->page);
3698
3699 /*
3700 * Shared mapping: we are guaranteed to have VM_WRITE and
3701 * FAULT_FLAG_WRITE set at this point.
3702 */
3703 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3704 /*
3705 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3706 * VM_PFNMAP VMA.
3707 *
3708 * We should not cow pages in a shared writeable mapping.
3709 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3710 */
3711 if (!vmf->page)
3712 return wp_pfn_shared(vmf);
3713 return wp_page_shared(vmf, folio);
3714 }
3715
3716 /*
3717 * Private mapping: create an exclusive anonymous page copy if reuse
3718 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3719 *
3720 * If we encounter a page that is marked exclusive, we must reuse
3721 * the page without further checks.
3722 */
3723 if (folio && folio_test_anon(folio) &&
3724 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3725 if (!PageAnonExclusive(vmf->page))
3726 SetPageAnonExclusive(vmf->page);
3727 if (unlikely(unshare)) {
3728 pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 return 0;
3730 }
3731 wp_page_reuse(vmf, folio);
3732 return 0;
3733 }
3734 /*
3735 * Ok, we need to copy. Oh, well..
3736 */
3737 if (folio)
3738 folio_get(folio);
3739
3740 pte_unmap_unlock(vmf->pte, vmf->ptl);
3741#ifdef CONFIG_KSM
3742 if (folio && folio_test_ksm(folio))
3743 count_vm_event(COW_KSM);
3744#endif
3745 return wp_page_copy(vmf);
3746}
3747
3748static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3749 unsigned long start_addr, unsigned long end_addr,
3750 struct zap_details *details)
3751{
3752 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3753}
3754
3755static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3756 pgoff_t first_index,
3757 pgoff_t last_index,
3758 struct zap_details *details)
3759{
3760 struct vm_area_struct *vma;
3761 pgoff_t vba, vea, zba, zea;
3762
3763 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3764 vba = vma->vm_pgoff;
3765 vea = vba + vma_pages(vma) - 1;
3766 zba = max(first_index, vba);
3767 zea = min(last_index, vea);
3768
3769 unmap_mapping_range_vma(vma,
3770 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3771 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3772 details);
3773 }
3774}
3775
3776/**
3777 * unmap_mapping_folio() - Unmap single folio from processes.
3778 * @folio: The locked folio to be unmapped.
3779 *
3780 * Unmap this folio from any userspace process which still has it mmaped.
3781 * Typically, for efficiency, the range of nearby pages has already been
3782 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3783 * truncation or invalidation holds the lock on a folio, it may find that
3784 * the page has been remapped again: and then uses unmap_mapping_folio()
3785 * to unmap it finally.
3786 */
3787void unmap_mapping_folio(struct folio *folio)
3788{
3789 struct address_space *mapping = folio->mapping;
3790 struct zap_details details = { };
3791 pgoff_t first_index;
3792 pgoff_t last_index;
3793
3794 VM_BUG_ON(!folio_test_locked(folio));
3795
3796 first_index = folio->index;
3797 last_index = folio_next_index(folio) - 1;
3798
3799 details.even_cows = false;
3800 details.single_folio = folio;
3801 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3802
3803 i_mmap_lock_read(mapping);
3804 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3805 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3806 last_index, &details);
3807 i_mmap_unlock_read(mapping);
3808}
3809
3810/**
3811 * unmap_mapping_pages() - Unmap pages from processes.
3812 * @mapping: The address space containing pages to be unmapped.
3813 * @start: Index of first page to be unmapped.
3814 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3815 * @even_cows: Whether to unmap even private COWed pages.
3816 *
3817 * Unmap the pages in this address space from any userspace process which
3818 * has them mmaped. Generally, you want to remove COWed pages as well when
3819 * a file is being truncated, but not when invalidating pages from the page
3820 * cache.
3821 */
3822void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3823 pgoff_t nr, bool even_cows)
3824{
3825 struct zap_details details = { };
3826 pgoff_t first_index = start;
3827 pgoff_t last_index = start + nr - 1;
3828
3829 details.even_cows = even_cows;
3830 if (last_index < first_index)
3831 last_index = ULONG_MAX;
3832
3833 i_mmap_lock_read(mapping);
3834 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3835 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3836 last_index, &details);
3837 i_mmap_unlock_read(mapping);
3838}
3839EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3840
3841/**
3842 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3843 * address_space corresponding to the specified byte range in the underlying
3844 * file.
3845 *
3846 * @mapping: the address space containing mmaps to be unmapped.
3847 * @holebegin: byte in first page to unmap, relative to the start of
3848 * the underlying file. This will be rounded down to a PAGE_SIZE
3849 * boundary. Note that this is different from truncate_pagecache(), which
3850 * must keep the partial page. In contrast, we must get rid of
3851 * partial pages.
3852 * @holelen: size of prospective hole in bytes. This will be rounded
3853 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3854 * end of the file.
3855 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3856 * but 0 when invalidating pagecache, don't throw away private data.
3857 */
3858void unmap_mapping_range(struct address_space *mapping,
3859 loff_t const holebegin, loff_t const holelen, int even_cows)
3860{
3861 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3862 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3863
3864 /* Check for overflow. */
3865 if (sizeof(holelen) > sizeof(hlen)) {
3866 long long holeend =
3867 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3868 if (holeend & ~(long long)ULONG_MAX)
3869 hlen = ULONG_MAX - hba + 1;
3870 }
3871
3872 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3873}
3874EXPORT_SYMBOL(unmap_mapping_range);
3875
3876/*
3877 * Restore a potential device exclusive pte to a working pte entry
3878 */
3879static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3880{
3881 struct folio *folio = page_folio(vmf->page);
3882 struct vm_area_struct *vma = vmf->vma;
3883 struct mmu_notifier_range range;
3884 vm_fault_t ret;
3885
3886 /*
3887 * We need a reference to lock the folio because we don't hold
3888 * the PTL so a racing thread can remove the device-exclusive
3889 * entry and unmap it. If the folio is free the entry must
3890 * have been removed already. If it happens to have already
3891 * been re-allocated after being freed all we do is lock and
3892 * unlock it.
3893 */
3894 if (!folio_try_get(folio))
3895 return 0;
3896
3897 ret = folio_lock_or_retry(folio, vmf);
3898 if (ret) {
3899 folio_put(folio);
3900 return ret;
3901 }
3902 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3903 vma->vm_mm, vmf->address & PAGE_MASK,
3904 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3905 mmu_notifier_invalidate_range_start(&range);
3906
3907 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3908 &vmf->ptl);
3909 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3910 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3911
3912 if (vmf->pte)
3913 pte_unmap_unlock(vmf->pte, vmf->ptl);
3914 folio_unlock(folio);
3915 folio_put(folio);
3916
3917 mmu_notifier_invalidate_range_end(&range);
3918 return 0;
3919}
3920
3921static inline bool should_try_to_free_swap(struct folio *folio,
3922 struct vm_area_struct *vma,
3923 unsigned int fault_flags)
3924{
3925 if (!folio_test_swapcache(folio))
3926 return false;
3927 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3928 folio_test_mlocked(folio))
3929 return true;
3930 /*
3931 * If we want to map a page that's in the swapcache writable, we
3932 * have to detect via the refcount if we're really the exclusive
3933 * user. Try freeing the swapcache to get rid of the swapcache
3934 * reference only in case it's likely that we'll be the exlusive user.
3935 */
3936 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3937 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3938}
3939
3940static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3941{
3942 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3943 vmf->address, &vmf->ptl);
3944 if (!vmf->pte)
3945 return 0;
3946 /*
3947 * Be careful so that we will only recover a special uffd-wp pte into a
3948 * none pte. Otherwise it means the pte could have changed, so retry.
3949 *
3950 * This should also cover the case where e.g. the pte changed
3951 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3952 * So is_pte_marker() check is not enough to safely drop the pte.
3953 */
3954 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3955 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3956 pte_unmap_unlock(vmf->pte, vmf->ptl);
3957 return 0;
3958}
3959
3960static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3961{
3962 if (vma_is_anonymous(vmf->vma))
3963 return do_anonymous_page(vmf);
3964 else
3965 return do_fault(vmf);
3966}
3967
3968/*
3969 * This is actually a page-missing access, but with uffd-wp special pte
3970 * installed. It means this pte was wr-protected before being unmapped.
3971 */
3972static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3973{
3974 /*
3975 * Just in case there're leftover special ptes even after the region
3976 * got unregistered - we can simply clear them.
3977 */
3978 if (unlikely(!userfaultfd_wp(vmf->vma)))
3979 return pte_marker_clear(vmf);
3980
3981 return do_pte_missing(vmf);
3982}
3983
3984static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3985{
3986 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3987 unsigned long marker = pte_marker_get(entry);
3988
3989 /*
3990 * PTE markers should never be empty. If anything weird happened,
3991 * the best thing to do is to kill the process along with its mm.
3992 */
3993 if (WARN_ON_ONCE(!marker))
3994 return VM_FAULT_SIGBUS;
3995
3996 /* Higher priority than uffd-wp when data corrupted */
3997 if (marker & PTE_MARKER_POISONED)
3998 return VM_FAULT_HWPOISON;
3999
4000 if (pte_marker_entry_uffd_wp(entry))
4001 return pte_marker_handle_uffd_wp(vmf);
4002
4003 /* This is an unknown pte marker */
4004 return VM_FAULT_SIGBUS;
4005}
4006
4007static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4008{
4009 struct vm_area_struct *vma = vmf->vma;
4010 struct folio *folio;
4011 swp_entry_t entry;
4012
4013 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
4014 vmf->address, false);
4015 if (!folio)
4016 return NULL;
4017
4018 entry = pte_to_swp_entry(vmf->orig_pte);
4019 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4020 GFP_KERNEL, entry)) {
4021 folio_put(folio);
4022 return NULL;
4023 }
4024
4025 return folio;
4026}
4027
4028#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4029static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4030{
4031 struct swap_info_struct *si = swp_swap_info(entry);
4032 pgoff_t offset = swp_offset(entry);
4033 int i;
4034
4035 /*
4036 * While allocating a large folio and doing swap_read_folio, which is
4037 * the case the being faulted pte doesn't have swapcache. We need to
4038 * ensure all PTEs have no cache as well, otherwise, we might go to
4039 * swap devices while the content is in swapcache.
4040 */
4041 for (i = 0; i < max_nr; i++) {
4042 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4043 return i;
4044 }
4045
4046 return i;
4047}
4048
4049/*
4050 * Check if the PTEs within a range are contiguous swap entries
4051 * and have consistent swapcache, zeromap.
4052 */
4053static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4054{
4055 unsigned long addr;
4056 swp_entry_t entry;
4057 int idx;
4058 pte_t pte;
4059
4060 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4061 idx = (vmf->address - addr) / PAGE_SIZE;
4062 pte = ptep_get(ptep);
4063
4064 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4065 return false;
4066 entry = pte_to_swp_entry(pte);
4067 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4068 return false;
4069
4070 /*
4071 * swap_read_folio() can't handle the case a large folio is hybridly
4072 * from different backends. And they are likely corner cases. Similar
4073 * things might be added once zswap support large folios.
4074 */
4075 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4076 return false;
4077 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4078 return false;
4079
4080 return true;
4081}
4082
4083static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4084 unsigned long addr,
4085 unsigned long orders)
4086{
4087 int order, nr;
4088
4089 order = highest_order(orders);
4090
4091 /*
4092 * To swap in a THP with nr pages, we require that its first swap_offset
4093 * is aligned with that number, as it was when the THP was swapped out.
4094 * This helps filter out most invalid entries.
4095 */
4096 while (orders) {
4097 nr = 1 << order;
4098 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4099 break;
4100 order = next_order(&orders, order);
4101 }
4102
4103 return orders;
4104}
4105
4106static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4107{
4108 struct vm_area_struct *vma = vmf->vma;
4109 unsigned long orders;
4110 struct folio *folio;
4111 unsigned long addr;
4112 swp_entry_t entry;
4113 spinlock_t *ptl;
4114 pte_t *pte;
4115 gfp_t gfp;
4116 int order;
4117
4118 /*
4119 * If uffd is active for the vma we need per-page fault fidelity to
4120 * maintain the uffd semantics.
4121 */
4122 if (unlikely(userfaultfd_armed(vma)))
4123 goto fallback;
4124
4125 /*
4126 * A large swapped out folio could be partially or fully in zswap. We
4127 * lack handling for such cases, so fallback to swapping in order-0
4128 * folio.
4129 */
4130 if (!zswap_never_enabled())
4131 goto fallback;
4132
4133 entry = pte_to_swp_entry(vmf->orig_pte);
4134 /*
4135 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4136 * and suitable for swapping THP.
4137 */
4138 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4139 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4140 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4141 orders = thp_swap_suitable_orders(swp_offset(entry),
4142 vmf->address, orders);
4143
4144 if (!orders)
4145 goto fallback;
4146
4147 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4148 vmf->address & PMD_MASK, &ptl);
4149 if (unlikely(!pte))
4150 goto fallback;
4151
4152 /*
4153 * For do_swap_page, find the highest order where the aligned range is
4154 * completely swap entries with contiguous swap offsets.
4155 */
4156 order = highest_order(orders);
4157 while (orders) {
4158 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4159 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4160 break;
4161 order = next_order(&orders, order);
4162 }
4163
4164 pte_unmap_unlock(pte, ptl);
4165
4166 /* Try allocating the highest of the remaining orders. */
4167 gfp = vma_thp_gfp_mask(vma);
4168 while (orders) {
4169 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4170 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4171 if (folio) {
4172 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4173 gfp, entry))
4174 return folio;
4175 folio_put(folio);
4176 }
4177 order = next_order(&orders, order);
4178 }
4179
4180fallback:
4181 return __alloc_swap_folio(vmf);
4182}
4183#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4184static inline bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4185{
4186 return false;
4187}
4188
4189static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4190{
4191 return __alloc_swap_folio(vmf);
4192}
4193#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4194
4195/*
4196 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4197 * but allow concurrent faults), and pte mapped but not yet locked.
4198 * We return with pte unmapped and unlocked.
4199 *
4200 * We return with the mmap_lock locked or unlocked in the same cases
4201 * as does filemap_fault().
4202 */
4203vm_fault_t do_swap_page(struct vm_fault *vmf)
4204{
4205 struct vm_area_struct *vma = vmf->vma;
4206 struct folio *swapcache, *folio = NULL;
4207 struct page *page;
4208 struct swap_info_struct *si = NULL;
4209 rmap_t rmap_flags = RMAP_NONE;
4210 bool need_clear_cache = false;
4211 bool exclusive = false;
4212 swp_entry_t entry;
4213 pte_t pte;
4214 vm_fault_t ret = 0;
4215 void *shadow = NULL;
4216 int nr_pages;
4217 unsigned long page_idx;
4218 unsigned long address;
4219 pte_t *ptep;
4220
4221 if (!pte_unmap_same(vmf))
4222 goto out;
4223
4224 entry = pte_to_swp_entry(vmf->orig_pte);
4225 if (unlikely(non_swap_entry(entry))) {
4226 if (is_migration_entry(entry)) {
4227 migration_entry_wait(vma->vm_mm, vmf->pmd,
4228 vmf->address);
4229 } else if (is_device_exclusive_entry(entry)) {
4230 vmf->page = pfn_swap_entry_to_page(entry);
4231 ret = remove_device_exclusive_entry(vmf);
4232 } else if (is_device_private_entry(entry)) {
4233 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4234 /*
4235 * migrate_to_ram is not yet ready to operate
4236 * under VMA lock.
4237 */
4238 vma_end_read(vma);
4239 ret = VM_FAULT_RETRY;
4240 goto out;
4241 }
4242
4243 vmf->page = pfn_swap_entry_to_page(entry);
4244 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4245 vmf->address, &vmf->ptl);
4246 if (unlikely(!vmf->pte ||
4247 !pte_same(ptep_get(vmf->pte),
4248 vmf->orig_pte)))
4249 goto unlock;
4250
4251 /*
4252 * Get a page reference while we know the page can't be
4253 * freed.
4254 */
4255 get_page(vmf->page);
4256 pte_unmap_unlock(vmf->pte, vmf->ptl);
4257 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4258 put_page(vmf->page);
4259 } else if (is_hwpoison_entry(entry)) {
4260 ret = VM_FAULT_HWPOISON;
4261 } else if (is_pte_marker_entry(entry)) {
4262 ret = handle_pte_marker(vmf);
4263 } else {
4264 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4265 ret = VM_FAULT_SIGBUS;
4266 }
4267 goto out;
4268 }
4269
4270 /* Prevent swapoff from happening to us. */
4271 si = get_swap_device(entry);
4272 if (unlikely(!si))
4273 goto out;
4274
4275 folio = swap_cache_get_folio(entry, vma, vmf->address);
4276 if (folio)
4277 page = folio_file_page(folio, swp_offset(entry));
4278 swapcache = folio;
4279
4280 if (!folio) {
4281 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4282 __swap_count(entry) == 1) {
4283 /* skip swapcache */
4284 folio = alloc_swap_folio(vmf);
4285 if (folio) {
4286 __folio_set_locked(folio);
4287 __folio_set_swapbacked(folio);
4288
4289 nr_pages = folio_nr_pages(folio);
4290 if (folio_test_large(folio))
4291 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4292 /*
4293 * Prevent parallel swapin from proceeding with
4294 * the cache flag. Otherwise, another thread
4295 * may finish swapin first, free the entry, and
4296 * swapout reusing the same entry. It's
4297 * undetectable as pte_same() returns true due
4298 * to entry reuse.
4299 */
4300 if (swapcache_prepare(entry, nr_pages)) {
4301 /*
4302 * Relax a bit to prevent rapid
4303 * repeated page faults.
4304 */
4305 schedule_timeout_uninterruptible(1);
4306 goto out_page;
4307 }
4308 need_clear_cache = true;
4309
4310 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4311
4312 shadow = get_shadow_from_swap_cache(entry);
4313 if (shadow)
4314 workingset_refault(folio, shadow);
4315
4316 folio_add_lru(folio);
4317
4318 /* To provide entry to swap_read_folio() */
4319 folio->swap = entry;
4320 swap_read_folio(folio, NULL);
4321 folio->private = NULL;
4322 }
4323 } else {
4324 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4325 vmf);
4326 swapcache = folio;
4327 }
4328
4329 if (!folio) {
4330 /*
4331 * Back out if somebody else faulted in this pte
4332 * while we released the pte lock.
4333 */
4334 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4335 vmf->address, &vmf->ptl);
4336 if (likely(vmf->pte &&
4337 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4338 ret = VM_FAULT_OOM;
4339 goto unlock;
4340 }
4341
4342 /* Had to read the page from swap area: Major fault */
4343 ret = VM_FAULT_MAJOR;
4344 count_vm_event(PGMAJFAULT);
4345 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4346 page = folio_file_page(folio, swp_offset(entry));
4347 } else if (PageHWPoison(page)) {
4348 /*
4349 * hwpoisoned dirty swapcache pages are kept for killing
4350 * owner processes (which may be unknown at hwpoison time)
4351 */
4352 ret = VM_FAULT_HWPOISON;
4353 goto out_release;
4354 }
4355
4356 ret |= folio_lock_or_retry(folio, vmf);
4357 if (ret & VM_FAULT_RETRY)
4358 goto out_release;
4359
4360 if (swapcache) {
4361 /*
4362 * Make sure folio_free_swap() or swapoff did not release the
4363 * swapcache from under us. The page pin, and pte_same test
4364 * below, are not enough to exclude that. Even if it is still
4365 * swapcache, we need to check that the page's swap has not
4366 * changed.
4367 */
4368 if (unlikely(!folio_test_swapcache(folio) ||
4369 page_swap_entry(page).val != entry.val))
4370 goto out_page;
4371
4372 /*
4373 * KSM sometimes has to copy on read faults, for example, if
4374 * page->index of !PageKSM() pages would be nonlinear inside the
4375 * anon VMA -- PageKSM() is lost on actual swapout.
4376 */
4377 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4378 if (unlikely(!folio)) {
4379 ret = VM_FAULT_OOM;
4380 folio = swapcache;
4381 goto out_page;
4382 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4383 ret = VM_FAULT_HWPOISON;
4384 folio = swapcache;
4385 goto out_page;
4386 }
4387 if (folio != swapcache)
4388 page = folio_page(folio, 0);
4389
4390 /*
4391 * If we want to map a page that's in the swapcache writable, we
4392 * have to detect via the refcount if we're really the exclusive
4393 * owner. Try removing the extra reference from the local LRU
4394 * caches if required.
4395 */
4396 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4397 !folio_test_ksm(folio) && !folio_test_lru(folio))
4398 lru_add_drain();
4399 }
4400
4401 folio_throttle_swaprate(folio, GFP_KERNEL);
4402
4403 /*
4404 * Back out if somebody else already faulted in this pte.
4405 */
4406 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4407 &vmf->ptl);
4408 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4409 goto out_nomap;
4410
4411 if (unlikely(!folio_test_uptodate(folio))) {
4412 ret = VM_FAULT_SIGBUS;
4413 goto out_nomap;
4414 }
4415
4416 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4417 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4418 unsigned long nr = folio_nr_pages(folio);
4419 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4420 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4421 pte_t *folio_ptep = vmf->pte - idx;
4422 pte_t folio_pte = ptep_get(folio_ptep);
4423
4424 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4425 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4426 goto out_nomap;
4427
4428 page_idx = idx;
4429 address = folio_start;
4430 ptep = folio_ptep;
4431 goto check_folio;
4432 }
4433
4434 nr_pages = 1;
4435 page_idx = 0;
4436 address = vmf->address;
4437 ptep = vmf->pte;
4438 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4439 int nr = folio_nr_pages(folio);
4440 unsigned long idx = folio_page_idx(folio, page);
4441 unsigned long folio_start = address - idx * PAGE_SIZE;
4442 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4443 pte_t *folio_ptep;
4444 pte_t folio_pte;
4445
4446 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4447 goto check_folio;
4448 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4449 goto check_folio;
4450
4451 folio_ptep = vmf->pte - idx;
4452 folio_pte = ptep_get(folio_ptep);
4453 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4454 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4455 goto check_folio;
4456
4457 page_idx = idx;
4458 address = folio_start;
4459 ptep = folio_ptep;
4460 nr_pages = nr;
4461 entry = folio->swap;
4462 page = &folio->page;
4463 }
4464
4465check_folio:
4466 /*
4467 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4468 * must never point at an anonymous page in the swapcache that is
4469 * PG_anon_exclusive. Sanity check that this holds and especially, that
4470 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4471 * check after taking the PT lock and making sure that nobody
4472 * concurrently faulted in this page and set PG_anon_exclusive.
4473 */
4474 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4475 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4476
4477 /*
4478 * Check under PT lock (to protect against concurrent fork() sharing
4479 * the swap entry concurrently) for certainly exclusive pages.
4480 */
4481 if (!folio_test_ksm(folio)) {
4482 exclusive = pte_swp_exclusive(vmf->orig_pte);
4483 if (folio != swapcache) {
4484 /*
4485 * We have a fresh page that is not exposed to the
4486 * swapcache -> certainly exclusive.
4487 */
4488 exclusive = true;
4489 } else if (exclusive && folio_test_writeback(folio) &&
4490 data_race(si->flags & SWP_STABLE_WRITES)) {
4491 /*
4492 * This is tricky: not all swap backends support
4493 * concurrent page modifications while under writeback.
4494 *
4495 * So if we stumble over such a page in the swapcache
4496 * we must not set the page exclusive, otherwise we can
4497 * map it writable without further checks and modify it
4498 * while still under writeback.
4499 *
4500 * For these problematic swap backends, simply drop the
4501 * exclusive marker: this is perfectly fine as we start
4502 * writeback only if we fully unmapped the page and
4503 * there are no unexpected references on the page after
4504 * unmapping succeeded. After fully unmapped, no
4505 * further GUP references (FOLL_GET and FOLL_PIN) can
4506 * appear, so dropping the exclusive marker and mapping
4507 * it only R/O is fine.
4508 */
4509 exclusive = false;
4510 }
4511 }
4512
4513 /*
4514 * Some architectures may have to restore extra metadata to the page
4515 * when reading from swap. This metadata may be indexed by swap entry
4516 * so this must be called before swap_free().
4517 */
4518 arch_swap_restore(folio_swap(entry, folio), folio);
4519
4520 /*
4521 * Remove the swap entry and conditionally try to free up the swapcache.
4522 * We're already holding a reference on the page but haven't mapped it
4523 * yet.
4524 */
4525 swap_free_nr(entry, nr_pages);
4526 if (should_try_to_free_swap(folio, vma, vmf->flags))
4527 folio_free_swap(folio);
4528
4529 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4530 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4531 pte = mk_pte(page, vma->vm_page_prot);
4532 if (pte_swp_soft_dirty(vmf->orig_pte))
4533 pte = pte_mksoft_dirty(pte);
4534 if (pte_swp_uffd_wp(vmf->orig_pte))
4535 pte = pte_mkuffd_wp(pte);
4536
4537 /*
4538 * Same logic as in do_wp_page(); however, optimize for pages that are
4539 * certainly not shared either because we just allocated them without
4540 * exposing them to the swapcache or because the swap entry indicates
4541 * exclusivity.
4542 */
4543 if (!folio_test_ksm(folio) &&
4544 (exclusive || folio_ref_count(folio) == 1)) {
4545 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4546 !pte_needs_soft_dirty_wp(vma, pte)) {
4547 pte = pte_mkwrite(pte, vma);
4548 if (vmf->flags & FAULT_FLAG_WRITE) {
4549 pte = pte_mkdirty(pte);
4550 vmf->flags &= ~FAULT_FLAG_WRITE;
4551 }
4552 }
4553 rmap_flags |= RMAP_EXCLUSIVE;
4554 }
4555 folio_ref_add(folio, nr_pages - 1);
4556 flush_icache_pages(vma, page, nr_pages);
4557 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4558
4559 /* ksm created a completely new copy */
4560 if (unlikely(folio != swapcache && swapcache)) {
4561 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4562 folio_add_lru_vma(folio, vma);
4563 } else if (!folio_test_anon(folio)) {
4564 /*
4565 * We currently only expect small !anon folios which are either
4566 * fully exclusive or fully shared, or new allocated large
4567 * folios which are fully exclusive. If we ever get large
4568 * folios within swapcache here, we have to be careful.
4569 */
4570 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4571 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4572 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4573 } else {
4574 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4575 rmap_flags);
4576 }
4577
4578 VM_BUG_ON(!folio_test_anon(folio) ||
4579 (pte_write(pte) && !PageAnonExclusive(page)));
4580 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4581 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4582 pte, pte, nr_pages);
4583
4584 folio_unlock(folio);
4585 if (folio != swapcache && swapcache) {
4586 /*
4587 * Hold the lock to avoid the swap entry to be reused
4588 * until we take the PT lock for the pte_same() check
4589 * (to avoid false positives from pte_same). For
4590 * further safety release the lock after the swap_free
4591 * so that the swap count won't change under a
4592 * parallel locked swapcache.
4593 */
4594 folio_unlock(swapcache);
4595 folio_put(swapcache);
4596 }
4597
4598 if (vmf->flags & FAULT_FLAG_WRITE) {
4599 ret |= do_wp_page(vmf);
4600 if (ret & VM_FAULT_ERROR)
4601 ret &= VM_FAULT_ERROR;
4602 goto out;
4603 }
4604
4605 /* No need to invalidate - it was non-present before */
4606 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4607unlock:
4608 if (vmf->pte)
4609 pte_unmap_unlock(vmf->pte, vmf->ptl);
4610out:
4611 /* Clear the swap cache pin for direct swapin after PTL unlock */
4612 if (need_clear_cache)
4613 swapcache_clear(si, entry, nr_pages);
4614 if (si)
4615 put_swap_device(si);
4616 return ret;
4617out_nomap:
4618 if (vmf->pte)
4619 pte_unmap_unlock(vmf->pte, vmf->ptl);
4620out_page:
4621 folio_unlock(folio);
4622out_release:
4623 folio_put(folio);
4624 if (folio != swapcache && swapcache) {
4625 folio_unlock(swapcache);
4626 folio_put(swapcache);
4627 }
4628 if (need_clear_cache)
4629 swapcache_clear(si, entry, nr_pages);
4630 if (si)
4631 put_swap_device(si);
4632 return ret;
4633}
4634
4635static bool pte_range_none(pte_t *pte, int nr_pages)
4636{
4637 int i;
4638
4639 for (i = 0; i < nr_pages; i++) {
4640 if (!pte_none(ptep_get_lockless(pte + i)))
4641 return false;
4642 }
4643
4644 return true;
4645}
4646
4647static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4648{
4649 struct vm_area_struct *vma = vmf->vma;
4650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4651 unsigned long orders;
4652 struct folio *folio;
4653 unsigned long addr;
4654 pte_t *pte;
4655 gfp_t gfp;
4656 int order;
4657
4658 /*
4659 * If uffd is active for the vma we need per-page fault fidelity to
4660 * maintain the uffd semantics.
4661 */
4662 if (unlikely(userfaultfd_armed(vma)))
4663 goto fallback;
4664
4665 /*
4666 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4667 * for this vma. Then filter out the orders that can't be allocated over
4668 * the faulting address and still be fully contained in the vma.
4669 */
4670 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4671 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4672 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4673
4674 if (!orders)
4675 goto fallback;
4676
4677 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4678 if (!pte)
4679 return ERR_PTR(-EAGAIN);
4680
4681 /*
4682 * Find the highest order where the aligned range is completely
4683 * pte_none(). Note that all remaining orders will be completely
4684 * pte_none().
4685 */
4686 order = highest_order(orders);
4687 while (orders) {
4688 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4689 if (pte_range_none(pte + pte_index(addr), 1 << order))
4690 break;
4691 order = next_order(&orders, order);
4692 }
4693
4694 pte_unmap(pte);
4695
4696 if (!orders)
4697 goto fallback;
4698
4699 /* Try allocating the highest of the remaining orders. */
4700 gfp = vma_thp_gfp_mask(vma);
4701 while (orders) {
4702 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4703 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4704 if (folio) {
4705 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4706 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4707 folio_put(folio);
4708 goto next;
4709 }
4710 folio_throttle_swaprate(folio, gfp);
4711 folio_zero_user(folio, vmf->address);
4712 return folio;
4713 }
4714next:
4715 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4716 order = next_order(&orders, order);
4717 }
4718
4719fallback:
4720#endif
4721 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4722}
4723
4724/*
4725 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4726 * but allow concurrent faults), and pte mapped but not yet locked.
4727 * We return with mmap_lock still held, but pte unmapped and unlocked.
4728 */
4729static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4730{
4731 struct vm_area_struct *vma = vmf->vma;
4732 unsigned long addr = vmf->address;
4733 struct folio *folio;
4734 vm_fault_t ret = 0;
4735 int nr_pages = 1;
4736 pte_t entry;
4737
4738 /* File mapping without ->vm_ops ? */
4739 if (vma->vm_flags & VM_SHARED)
4740 return VM_FAULT_SIGBUS;
4741
4742 /*
4743 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4744 * be distinguished from a transient failure of pte_offset_map().
4745 */
4746 if (pte_alloc(vma->vm_mm, vmf->pmd))
4747 return VM_FAULT_OOM;
4748
4749 /* Use the zero-page for reads */
4750 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4751 !mm_forbids_zeropage(vma->vm_mm)) {
4752 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4753 vma->vm_page_prot));
4754 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4755 vmf->address, &vmf->ptl);
4756 if (!vmf->pte)
4757 goto unlock;
4758 if (vmf_pte_changed(vmf)) {
4759 update_mmu_tlb(vma, vmf->address, vmf->pte);
4760 goto unlock;
4761 }
4762 ret = check_stable_address_space(vma->vm_mm);
4763 if (ret)
4764 goto unlock;
4765 /* Deliver the page fault to userland, check inside PT lock */
4766 if (userfaultfd_missing(vma)) {
4767 pte_unmap_unlock(vmf->pte, vmf->ptl);
4768 return handle_userfault(vmf, VM_UFFD_MISSING);
4769 }
4770 goto setpte;
4771 }
4772
4773 /* Allocate our own private page. */
4774 ret = vmf_anon_prepare(vmf);
4775 if (ret)
4776 return ret;
4777 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4778 folio = alloc_anon_folio(vmf);
4779 if (IS_ERR(folio))
4780 return 0;
4781 if (!folio)
4782 goto oom;
4783
4784 nr_pages = folio_nr_pages(folio);
4785 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4786
4787 /*
4788 * The memory barrier inside __folio_mark_uptodate makes sure that
4789 * preceding stores to the page contents become visible before
4790 * the set_pte_at() write.
4791 */
4792 __folio_mark_uptodate(folio);
4793
4794 entry = mk_pte(&folio->page, vma->vm_page_prot);
4795 entry = pte_sw_mkyoung(entry);
4796 if (vma->vm_flags & VM_WRITE)
4797 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4798
4799 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4800 if (!vmf->pte)
4801 goto release;
4802 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4803 update_mmu_tlb(vma, addr, vmf->pte);
4804 goto release;
4805 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4806 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4807 goto release;
4808 }
4809
4810 ret = check_stable_address_space(vma->vm_mm);
4811 if (ret)
4812 goto release;
4813
4814 /* Deliver the page fault to userland, check inside PT lock */
4815 if (userfaultfd_missing(vma)) {
4816 pte_unmap_unlock(vmf->pte, vmf->ptl);
4817 folio_put(folio);
4818 return handle_userfault(vmf, VM_UFFD_MISSING);
4819 }
4820
4821 folio_ref_add(folio, nr_pages - 1);
4822 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4823 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4824 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4825 folio_add_lru_vma(folio, vma);
4826setpte:
4827 if (vmf_orig_pte_uffd_wp(vmf))
4828 entry = pte_mkuffd_wp(entry);
4829 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4830
4831 /* No need to invalidate - it was non-present before */
4832 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4833unlock:
4834 if (vmf->pte)
4835 pte_unmap_unlock(vmf->pte, vmf->ptl);
4836 return ret;
4837release:
4838 folio_put(folio);
4839 goto unlock;
4840oom:
4841 return VM_FAULT_OOM;
4842}
4843
4844/*
4845 * The mmap_lock must have been held on entry, and may have been
4846 * released depending on flags and vma->vm_ops->fault() return value.
4847 * See filemap_fault() and __lock_page_retry().
4848 */
4849static vm_fault_t __do_fault(struct vm_fault *vmf)
4850{
4851 struct vm_area_struct *vma = vmf->vma;
4852 struct folio *folio;
4853 vm_fault_t ret;
4854
4855 /*
4856 * Preallocate pte before we take page_lock because this might lead to
4857 * deadlocks for memcg reclaim which waits for pages under writeback:
4858 * lock_page(A)
4859 * SetPageWriteback(A)
4860 * unlock_page(A)
4861 * lock_page(B)
4862 * lock_page(B)
4863 * pte_alloc_one
4864 * shrink_folio_list
4865 * wait_on_page_writeback(A)
4866 * SetPageWriteback(B)
4867 * unlock_page(B)
4868 * # flush A, B to clear the writeback
4869 */
4870 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4871 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4872 if (!vmf->prealloc_pte)
4873 return VM_FAULT_OOM;
4874 }
4875
4876 ret = vma->vm_ops->fault(vmf);
4877 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4878 VM_FAULT_DONE_COW)))
4879 return ret;
4880
4881 folio = page_folio(vmf->page);
4882 if (unlikely(PageHWPoison(vmf->page))) {
4883 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4884 if (ret & VM_FAULT_LOCKED) {
4885 if (page_mapped(vmf->page))
4886 unmap_mapping_folio(folio);
4887 /* Retry if a clean folio was removed from the cache. */
4888 if (mapping_evict_folio(folio->mapping, folio))
4889 poisonret = VM_FAULT_NOPAGE;
4890 folio_unlock(folio);
4891 }
4892 folio_put(folio);
4893 vmf->page = NULL;
4894 return poisonret;
4895 }
4896
4897 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4898 folio_lock(folio);
4899 else
4900 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4901
4902 return ret;
4903}
4904
4905#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4906static void deposit_prealloc_pte(struct vm_fault *vmf)
4907{
4908 struct vm_area_struct *vma = vmf->vma;
4909
4910 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4911 /*
4912 * We are going to consume the prealloc table,
4913 * count that as nr_ptes.
4914 */
4915 mm_inc_nr_ptes(vma->vm_mm);
4916 vmf->prealloc_pte = NULL;
4917}
4918
4919vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4920{
4921 struct folio *folio = page_folio(page);
4922 struct vm_area_struct *vma = vmf->vma;
4923 bool write = vmf->flags & FAULT_FLAG_WRITE;
4924 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4925 pmd_t entry;
4926 vm_fault_t ret = VM_FAULT_FALLBACK;
4927
4928 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4929 return ret;
4930
4931 if (folio_order(folio) != HPAGE_PMD_ORDER)
4932 return ret;
4933 page = &folio->page;
4934
4935 /*
4936 * Just backoff if any subpage of a THP is corrupted otherwise
4937 * the corrupted page may mapped by PMD silently to escape the
4938 * check. This kind of THP just can be PTE mapped. Access to
4939 * the corrupted subpage should trigger SIGBUS as expected.
4940 */
4941 if (unlikely(folio_test_has_hwpoisoned(folio)))
4942 return ret;
4943
4944 /*
4945 * Archs like ppc64 need additional space to store information
4946 * related to pte entry. Use the preallocated table for that.
4947 */
4948 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4949 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4950 if (!vmf->prealloc_pte)
4951 return VM_FAULT_OOM;
4952 }
4953
4954 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4955 if (unlikely(!pmd_none(*vmf->pmd)))
4956 goto out;
4957
4958 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4959
4960 entry = mk_huge_pmd(page, vma->vm_page_prot);
4961 if (write)
4962 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4963
4964 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4965 folio_add_file_rmap_pmd(folio, page, vma);
4966
4967 /*
4968 * deposit and withdraw with pmd lock held
4969 */
4970 if (arch_needs_pgtable_deposit())
4971 deposit_prealloc_pte(vmf);
4972
4973 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4974
4975 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4976
4977 /* fault is handled */
4978 ret = 0;
4979 count_vm_event(THP_FILE_MAPPED);
4980out:
4981 spin_unlock(vmf->ptl);
4982 return ret;
4983}
4984#else
4985vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4986{
4987 return VM_FAULT_FALLBACK;
4988}
4989#endif
4990
4991/**
4992 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4993 * @vmf: Fault decription.
4994 * @folio: The folio that contains @page.
4995 * @page: The first page to create a PTE for.
4996 * @nr: The number of PTEs to create.
4997 * @addr: The first address to create a PTE for.
4998 */
4999void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5000 struct page *page, unsigned int nr, unsigned long addr)
5001{
5002 struct vm_area_struct *vma = vmf->vma;
5003 bool write = vmf->flags & FAULT_FLAG_WRITE;
5004 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5005 pte_t entry;
5006
5007 flush_icache_pages(vma, page, nr);
5008 entry = mk_pte(page, vma->vm_page_prot);
5009
5010 if (prefault && arch_wants_old_prefaulted_pte())
5011 entry = pte_mkold(entry);
5012 else
5013 entry = pte_sw_mkyoung(entry);
5014
5015 if (write)
5016 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5017 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5018 entry = pte_mkuffd_wp(entry);
5019 /* copy-on-write page */
5020 if (write && !(vma->vm_flags & VM_SHARED)) {
5021 VM_BUG_ON_FOLIO(nr != 1, folio);
5022 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5023 folio_add_lru_vma(folio, vma);
5024 } else {
5025 folio_add_file_rmap_ptes(folio, page, nr, vma);
5026 }
5027 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5028
5029 /* no need to invalidate: a not-present page won't be cached */
5030 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5031}
5032
5033static bool vmf_pte_changed(struct vm_fault *vmf)
5034{
5035 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5036 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5037
5038 return !pte_none(ptep_get(vmf->pte));
5039}
5040
5041/**
5042 * finish_fault - finish page fault once we have prepared the page to fault
5043 *
5044 * @vmf: structure describing the fault
5045 *
5046 * This function handles all that is needed to finish a page fault once the
5047 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5048 * given page, adds reverse page mapping, handles memcg charges and LRU
5049 * addition.
5050 *
5051 * The function expects the page to be locked and on success it consumes a
5052 * reference of a page being mapped (for the PTE which maps it).
5053 *
5054 * Return: %0 on success, %VM_FAULT_ code in case of error.
5055 */
5056vm_fault_t finish_fault(struct vm_fault *vmf)
5057{
5058 struct vm_area_struct *vma = vmf->vma;
5059 struct page *page;
5060 struct folio *folio;
5061 vm_fault_t ret;
5062 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5063 !(vma->vm_flags & VM_SHARED);
5064 int type, nr_pages;
5065 unsigned long addr = vmf->address;
5066
5067 /* Did we COW the page? */
5068 if (is_cow)
5069 page = vmf->cow_page;
5070 else
5071 page = vmf->page;
5072
5073 /*
5074 * check even for read faults because we might have lost our CoWed
5075 * page
5076 */
5077 if (!(vma->vm_flags & VM_SHARED)) {
5078 ret = check_stable_address_space(vma->vm_mm);
5079 if (ret)
5080 return ret;
5081 }
5082
5083 if (pmd_none(*vmf->pmd)) {
5084 if (PageTransCompound(page)) {
5085 ret = do_set_pmd(vmf, page);
5086 if (ret != VM_FAULT_FALLBACK)
5087 return ret;
5088 }
5089
5090 if (vmf->prealloc_pte)
5091 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5092 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5093 return VM_FAULT_OOM;
5094 }
5095
5096 folio = page_folio(page);
5097 nr_pages = folio_nr_pages(folio);
5098
5099 /*
5100 * Using per-page fault to maintain the uffd semantics, and same
5101 * approach also applies to non-anonymous-shmem faults to avoid
5102 * inflating the RSS of the process.
5103 */
5104 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5105 nr_pages = 1;
5106 } else if (nr_pages > 1) {
5107 pgoff_t idx = folio_page_idx(folio, page);
5108 /* The page offset of vmf->address within the VMA. */
5109 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5110 /* The index of the entry in the pagetable for fault page. */
5111 pgoff_t pte_off = pte_index(vmf->address);
5112
5113 /*
5114 * Fallback to per-page fault in case the folio size in page
5115 * cache beyond the VMA limits and PMD pagetable limits.
5116 */
5117 if (unlikely(vma_off < idx ||
5118 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5119 pte_off < idx ||
5120 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5121 nr_pages = 1;
5122 } else {
5123 /* Now we can set mappings for the whole large folio. */
5124 addr = vmf->address - idx * PAGE_SIZE;
5125 page = &folio->page;
5126 }
5127 }
5128
5129 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5130 addr, &vmf->ptl);
5131 if (!vmf->pte)
5132 return VM_FAULT_NOPAGE;
5133
5134 /* Re-check under ptl */
5135 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5136 update_mmu_tlb(vma, addr, vmf->pte);
5137 ret = VM_FAULT_NOPAGE;
5138 goto unlock;
5139 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5140 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5141 ret = VM_FAULT_NOPAGE;
5142 goto unlock;
5143 }
5144
5145 folio_ref_add(folio, nr_pages - 1);
5146 set_pte_range(vmf, folio, page, nr_pages, addr);
5147 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5148 add_mm_counter(vma->vm_mm, type, nr_pages);
5149 ret = 0;
5150
5151unlock:
5152 pte_unmap_unlock(vmf->pte, vmf->ptl);
5153 return ret;
5154}
5155
5156static unsigned long fault_around_pages __read_mostly =
5157 65536 >> PAGE_SHIFT;
5158
5159#ifdef CONFIG_DEBUG_FS
5160static int fault_around_bytes_get(void *data, u64 *val)
5161{
5162 *val = fault_around_pages << PAGE_SHIFT;
5163 return 0;
5164}
5165
5166/*
5167 * fault_around_bytes must be rounded down to the nearest page order as it's
5168 * what do_fault_around() expects to see.
5169 */
5170static int fault_around_bytes_set(void *data, u64 val)
5171{
5172 if (val / PAGE_SIZE > PTRS_PER_PTE)
5173 return -EINVAL;
5174
5175 /*
5176 * The minimum value is 1 page, however this results in no fault-around
5177 * at all. See should_fault_around().
5178 */
5179 val = max(val, PAGE_SIZE);
5180 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5181
5182 return 0;
5183}
5184DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5185 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5186
5187static int __init fault_around_debugfs(void)
5188{
5189 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5190 &fault_around_bytes_fops);
5191 return 0;
5192}
5193late_initcall(fault_around_debugfs);
5194#endif
5195
5196/*
5197 * do_fault_around() tries to map few pages around the fault address. The hope
5198 * is that the pages will be needed soon and this will lower the number of
5199 * faults to handle.
5200 *
5201 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5202 * not ready to be mapped: not up-to-date, locked, etc.
5203 *
5204 * This function doesn't cross VMA or page table boundaries, in order to call
5205 * map_pages() and acquire a PTE lock only once.
5206 *
5207 * fault_around_pages defines how many pages we'll try to map.
5208 * do_fault_around() expects it to be set to a power of two less than or equal
5209 * to PTRS_PER_PTE.
5210 *
5211 * The virtual address of the area that we map is naturally aligned to
5212 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5213 * (and therefore to page order). This way it's easier to guarantee
5214 * that we don't cross page table boundaries.
5215 */
5216static vm_fault_t do_fault_around(struct vm_fault *vmf)
5217{
5218 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5219 pgoff_t pte_off = pte_index(vmf->address);
5220 /* The page offset of vmf->address within the VMA. */
5221 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5222 pgoff_t from_pte, to_pte;
5223 vm_fault_t ret;
5224
5225 /* The PTE offset of the start address, clamped to the VMA. */
5226 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5227 pte_off - min(pte_off, vma_off));
5228
5229 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5230 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5231 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5232
5233 if (pmd_none(*vmf->pmd)) {
5234 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5235 if (!vmf->prealloc_pte)
5236 return VM_FAULT_OOM;
5237 }
5238
5239 rcu_read_lock();
5240 ret = vmf->vma->vm_ops->map_pages(vmf,
5241 vmf->pgoff + from_pte - pte_off,
5242 vmf->pgoff + to_pte - pte_off);
5243 rcu_read_unlock();
5244
5245 return ret;
5246}
5247
5248/* Return true if we should do read fault-around, false otherwise */
5249static inline bool should_fault_around(struct vm_fault *vmf)
5250{
5251 /* No ->map_pages? No way to fault around... */
5252 if (!vmf->vma->vm_ops->map_pages)
5253 return false;
5254
5255 if (uffd_disable_fault_around(vmf->vma))
5256 return false;
5257
5258 /* A single page implies no faulting 'around' at all. */
5259 return fault_around_pages > 1;
5260}
5261
5262static vm_fault_t do_read_fault(struct vm_fault *vmf)
5263{
5264 vm_fault_t ret = 0;
5265 struct folio *folio;
5266
5267 /*
5268 * Let's call ->map_pages() first and use ->fault() as fallback
5269 * if page by the offset is not ready to be mapped (cold cache or
5270 * something).
5271 */
5272 if (should_fault_around(vmf)) {
5273 ret = do_fault_around(vmf);
5274 if (ret)
5275 return ret;
5276 }
5277
5278 ret = vmf_can_call_fault(vmf);
5279 if (ret)
5280 return ret;
5281
5282 ret = __do_fault(vmf);
5283 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5284 return ret;
5285
5286 ret |= finish_fault(vmf);
5287 folio = page_folio(vmf->page);
5288 folio_unlock(folio);
5289 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5290 folio_put(folio);
5291 return ret;
5292}
5293
5294static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5295{
5296 struct vm_area_struct *vma = vmf->vma;
5297 struct folio *folio;
5298 vm_fault_t ret;
5299
5300 ret = vmf_can_call_fault(vmf);
5301 if (!ret)
5302 ret = vmf_anon_prepare(vmf);
5303 if (ret)
5304 return ret;
5305
5306 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5307 if (!folio)
5308 return VM_FAULT_OOM;
5309
5310 vmf->cow_page = &folio->page;
5311
5312 ret = __do_fault(vmf);
5313 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5314 goto uncharge_out;
5315 if (ret & VM_FAULT_DONE_COW)
5316 return ret;
5317
5318 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5319 ret = VM_FAULT_HWPOISON;
5320 goto unlock;
5321 }
5322 __folio_mark_uptodate(folio);
5323
5324 ret |= finish_fault(vmf);
5325unlock:
5326 unlock_page(vmf->page);
5327 put_page(vmf->page);
5328 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5329 goto uncharge_out;
5330 return ret;
5331uncharge_out:
5332 folio_put(folio);
5333 return ret;
5334}
5335
5336static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5337{
5338 struct vm_area_struct *vma = vmf->vma;
5339 vm_fault_t ret, tmp;
5340 struct folio *folio;
5341
5342 ret = vmf_can_call_fault(vmf);
5343 if (ret)
5344 return ret;
5345
5346 ret = __do_fault(vmf);
5347 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5348 return ret;
5349
5350 folio = page_folio(vmf->page);
5351
5352 /*
5353 * Check if the backing address space wants to know that the page is
5354 * about to become writable
5355 */
5356 if (vma->vm_ops->page_mkwrite) {
5357 folio_unlock(folio);
5358 tmp = do_page_mkwrite(vmf, folio);
5359 if (unlikely(!tmp ||
5360 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5361 folio_put(folio);
5362 return tmp;
5363 }
5364 }
5365
5366 ret |= finish_fault(vmf);
5367 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5368 VM_FAULT_RETRY))) {
5369 folio_unlock(folio);
5370 folio_put(folio);
5371 return ret;
5372 }
5373
5374 ret |= fault_dirty_shared_page(vmf);
5375 return ret;
5376}
5377
5378/*
5379 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5380 * but allow concurrent faults).
5381 * The mmap_lock may have been released depending on flags and our
5382 * return value. See filemap_fault() and __folio_lock_or_retry().
5383 * If mmap_lock is released, vma may become invalid (for example
5384 * by other thread calling munmap()).
5385 */
5386static vm_fault_t do_fault(struct vm_fault *vmf)
5387{
5388 struct vm_area_struct *vma = vmf->vma;
5389 struct mm_struct *vm_mm = vma->vm_mm;
5390 vm_fault_t ret;
5391
5392 /*
5393 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5394 */
5395 if (!vma->vm_ops->fault) {
5396 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5397 vmf->address, &vmf->ptl);
5398 if (unlikely(!vmf->pte))
5399 ret = VM_FAULT_SIGBUS;
5400 else {
5401 /*
5402 * Make sure this is not a temporary clearing of pte
5403 * by holding ptl and checking again. A R/M/W update
5404 * of pte involves: take ptl, clearing the pte so that
5405 * we don't have concurrent modification by hardware
5406 * followed by an update.
5407 */
5408 if (unlikely(pte_none(ptep_get(vmf->pte))))
5409 ret = VM_FAULT_SIGBUS;
5410 else
5411 ret = VM_FAULT_NOPAGE;
5412
5413 pte_unmap_unlock(vmf->pte, vmf->ptl);
5414 }
5415 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5416 ret = do_read_fault(vmf);
5417 else if (!(vma->vm_flags & VM_SHARED))
5418 ret = do_cow_fault(vmf);
5419 else
5420 ret = do_shared_fault(vmf);
5421
5422 /* preallocated pagetable is unused: free it */
5423 if (vmf->prealloc_pte) {
5424 pte_free(vm_mm, vmf->prealloc_pte);
5425 vmf->prealloc_pte = NULL;
5426 }
5427 return ret;
5428}
5429
5430int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5431 unsigned long addr, int *flags,
5432 bool writable, int *last_cpupid)
5433{
5434 struct vm_area_struct *vma = vmf->vma;
5435
5436 /*
5437 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5438 * much anyway since they can be in shared cache state. This misses
5439 * the case where a mapping is writable but the process never writes
5440 * to it but pte_write gets cleared during protection updates and
5441 * pte_dirty has unpredictable behaviour between PTE scan updates,
5442 * background writeback, dirty balancing and application behaviour.
5443 */
5444 if (!writable)
5445 *flags |= TNF_NO_GROUP;
5446
5447 /*
5448 * Flag if the folio is shared between multiple address spaces. This
5449 * is later used when determining whether to group tasks together
5450 */
5451 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5452 *flags |= TNF_SHARED;
5453 /*
5454 * For memory tiering mode, cpupid of slow memory page is used
5455 * to record page access time. So use default value.
5456 */
5457 if (folio_use_access_time(folio))
5458 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5459 else
5460 *last_cpupid = folio_last_cpupid(folio);
5461
5462 /* Record the current PID acceesing VMA */
5463 vma_set_access_pid_bit(vma);
5464
5465 count_vm_numa_event(NUMA_HINT_FAULTS);
5466#ifdef CONFIG_NUMA_BALANCING
5467 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5468#endif
5469 if (folio_nid(folio) == numa_node_id()) {
5470 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5471 *flags |= TNF_FAULT_LOCAL;
5472 }
5473
5474 return mpol_misplaced(folio, vmf, addr);
5475}
5476
5477static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5478 unsigned long fault_addr, pte_t *fault_pte,
5479 bool writable)
5480{
5481 pte_t pte, old_pte;
5482
5483 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5484 pte = pte_modify(old_pte, vma->vm_page_prot);
5485 pte = pte_mkyoung(pte);
5486 if (writable)
5487 pte = pte_mkwrite(pte, vma);
5488 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5489 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5490}
5491
5492static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5493 struct folio *folio, pte_t fault_pte,
5494 bool ignore_writable, bool pte_write_upgrade)
5495{
5496 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5497 unsigned long start, end, addr = vmf->address;
5498 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5499 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5500 pte_t *start_ptep;
5501
5502 /* Stay within the VMA and within the page table. */
5503 start = max3(addr_start, pt_start, vma->vm_start);
5504 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5505 vma->vm_end);
5506 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5507
5508 /* Restore all PTEs' mapping of the large folio */
5509 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5510 pte_t ptent = ptep_get(start_ptep);
5511 bool writable = false;
5512
5513 if (!pte_present(ptent) || !pte_protnone(ptent))
5514 continue;
5515
5516 if (pfn_folio(pte_pfn(ptent)) != folio)
5517 continue;
5518
5519 if (!ignore_writable) {
5520 ptent = pte_modify(ptent, vma->vm_page_prot);
5521 writable = pte_write(ptent);
5522 if (!writable && pte_write_upgrade &&
5523 can_change_pte_writable(vma, addr, ptent))
5524 writable = true;
5525 }
5526
5527 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5528 }
5529}
5530
5531static vm_fault_t do_numa_page(struct vm_fault *vmf)
5532{
5533 struct vm_area_struct *vma = vmf->vma;
5534 struct folio *folio = NULL;
5535 int nid = NUMA_NO_NODE;
5536 bool writable = false, ignore_writable = false;
5537 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5538 int last_cpupid;
5539 int target_nid;
5540 pte_t pte, old_pte;
5541 int flags = 0, nr_pages;
5542
5543 /*
5544 * The pte cannot be used safely until we verify, while holding the page
5545 * table lock, that its contents have not changed during fault handling.
5546 */
5547 spin_lock(vmf->ptl);
5548 /* Read the live PTE from the page tables: */
5549 old_pte = ptep_get(vmf->pte);
5550
5551 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5552 pte_unmap_unlock(vmf->pte, vmf->ptl);
5553 return 0;
5554 }
5555
5556 pte = pte_modify(old_pte, vma->vm_page_prot);
5557
5558 /*
5559 * Detect now whether the PTE could be writable; this information
5560 * is only valid while holding the PT lock.
5561 */
5562 writable = pte_write(pte);
5563 if (!writable && pte_write_upgrade &&
5564 can_change_pte_writable(vma, vmf->address, pte))
5565 writable = true;
5566
5567 folio = vm_normal_folio(vma, vmf->address, pte);
5568 if (!folio || folio_is_zone_device(folio))
5569 goto out_map;
5570
5571 nid = folio_nid(folio);
5572 nr_pages = folio_nr_pages(folio);
5573
5574 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5575 writable, &last_cpupid);
5576 if (target_nid == NUMA_NO_NODE)
5577 goto out_map;
5578 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5579 flags |= TNF_MIGRATE_FAIL;
5580 goto out_map;
5581 }
5582 /* The folio is isolated and isolation code holds a folio reference. */
5583 pte_unmap_unlock(vmf->pte, vmf->ptl);
5584 writable = false;
5585 ignore_writable = true;
5586
5587 /* Migrate to the requested node */
5588 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5589 nid = target_nid;
5590 flags |= TNF_MIGRATED;
5591 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5592 return 0;
5593 }
5594
5595 flags |= TNF_MIGRATE_FAIL;
5596 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5597 vmf->address, &vmf->ptl);
5598 if (unlikely(!vmf->pte))
5599 return 0;
5600 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5601 pte_unmap_unlock(vmf->pte, vmf->ptl);
5602 return 0;
5603 }
5604out_map:
5605 /*
5606 * Make it present again, depending on how arch implements
5607 * non-accessible ptes, some can allow access by kernel mode.
5608 */
5609 if (folio && folio_test_large(folio))
5610 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5611 pte_write_upgrade);
5612 else
5613 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5614 writable);
5615 pte_unmap_unlock(vmf->pte, vmf->ptl);
5616
5617 if (nid != NUMA_NO_NODE)
5618 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5619 return 0;
5620}
5621
5622static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5623{
5624 struct vm_area_struct *vma = vmf->vma;
5625 if (vma_is_anonymous(vma))
5626 return do_huge_pmd_anonymous_page(vmf);
5627 if (vma->vm_ops->huge_fault)
5628 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5629 return VM_FAULT_FALLBACK;
5630}
5631
5632/* `inline' is required to avoid gcc 4.1.2 build error */
5633static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5634{
5635 struct vm_area_struct *vma = vmf->vma;
5636 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5637 vm_fault_t ret;
5638
5639 if (vma_is_anonymous(vma)) {
5640 if (likely(!unshare) &&
5641 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5642 if (userfaultfd_wp_async(vmf->vma))
5643 goto split;
5644 return handle_userfault(vmf, VM_UFFD_WP);
5645 }
5646 return do_huge_pmd_wp_page(vmf);
5647 }
5648
5649 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5650 if (vma->vm_ops->huge_fault) {
5651 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5652 if (!(ret & VM_FAULT_FALLBACK))
5653 return ret;
5654 }
5655 }
5656
5657split:
5658 /* COW or write-notify handled on pte level: split pmd. */
5659 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5660
5661 return VM_FAULT_FALLBACK;
5662}
5663
5664static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5665{
5666#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5667 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5668 struct vm_area_struct *vma = vmf->vma;
5669 /* No support for anonymous transparent PUD pages yet */
5670 if (vma_is_anonymous(vma))
5671 return VM_FAULT_FALLBACK;
5672 if (vma->vm_ops->huge_fault)
5673 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5674#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5675 return VM_FAULT_FALLBACK;
5676}
5677
5678static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5679{
5680#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5681 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5682 struct vm_area_struct *vma = vmf->vma;
5683 vm_fault_t ret;
5684
5685 /* No support for anonymous transparent PUD pages yet */
5686 if (vma_is_anonymous(vma))
5687 goto split;
5688 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5689 if (vma->vm_ops->huge_fault) {
5690 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5691 if (!(ret & VM_FAULT_FALLBACK))
5692 return ret;
5693 }
5694 }
5695split:
5696 /* COW or write-notify not handled on PUD level: split pud.*/
5697 __split_huge_pud(vma, vmf->pud, vmf->address);
5698#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5699 return VM_FAULT_FALLBACK;
5700}
5701
5702/*
5703 * These routines also need to handle stuff like marking pages dirty
5704 * and/or accessed for architectures that don't do it in hardware (most
5705 * RISC architectures). The early dirtying is also good on the i386.
5706 *
5707 * There is also a hook called "update_mmu_cache()" that architectures
5708 * with external mmu caches can use to update those (ie the Sparc or
5709 * PowerPC hashed page tables that act as extended TLBs).
5710 *
5711 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5712 * concurrent faults).
5713 *
5714 * The mmap_lock may have been released depending on flags and our return value.
5715 * See filemap_fault() and __folio_lock_or_retry().
5716 */
5717static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5718{
5719 pte_t entry;
5720
5721 if (unlikely(pmd_none(*vmf->pmd))) {
5722 /*
5723 * Leave __pte_alloc() until later: because vm_ops->fault may
5724 * want to allocate huge page, and if we expose page table
5725 * for an instant, it will be difficult to retract from
5726 * concurrent faults and from rmap lookups.
5727 */
5728 vmf->pte = NULL;
5729 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5730 } else {
5731 /*
5732 * A regular pmd is established and it can't morph into a huge
5733 * pmd by anon khugepaged, since that takes mmap_lock in write
5734 * mode; but shmem or file collapse to THP could still morph
5735 * it into a huge pmd: just retry later if so.
5736 */
5737 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5738 vmf->address, &vmf->ptl);
5739 if (unlikely(!vmf->pte))
5740 return 0;
5741 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5742 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5743
5744 if (pte_none(vmf->orig_pte)) {
5745 pte_unmap(vmf->pte);
5746 vmf->pte = NULL;
5747 }
5748 }
5749
5750 if (!vmf->pte)
5751 return do_pte_missing(vmf);
5752
5753 if (!pte_present(vmf->orig_pte))
5754 return do_swap_page(vmf);
5755
5756 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5757 return do_numa_page(vmf);
5758
5759 spin_lock(vmf->ptl);
5760 entry = vmf->orig_pte;
5761 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5762 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5763 goto unlock;
5764 }
5765 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5766 if (!pte_write(entry))
5767 return do_wp_page(vmf);
5768 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5769 entry = pte_mkdirty(entry);
5770 }
5771 entry = pte_mkyoung(entry);
5772 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5773 vmf->flags & FAULT_FLAG_WRITE)) {
5774 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5775 vmf->pte, 1);
5776 } else {
5777 /* Skip spurious TLB flush for retried page fault */
5778 if (vmf->flags & FAULT_FLAG_TRIED)
5779 goto unlock;
5780 /*
5781 * This is needed only for protection faults but the arch code
5782 * is not yet telling us if this is a protection fault or not.
5783 * This still avoids useless tlb flushes for .text page faults
5784 * with threads.
5785 */
5786 if (vmf->flags & FAULT_FLAG_WRITE)
5787 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5788 vmf->pte);
5789 }
5790unlock:
5791 pte_unmap_unlock(vmf->pte, vmf->ptl);
5792 return 0;
5793}
5794
5795/*
5796 * On entry, we hold either the VMA lock or the mmap_lock
5797 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5798 * the result, the mmap_lock is not held on exit. See filemap_fault()
5799 * and __folio_lock_or_retry().
5800 */
5801static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5802 unsigned long address, unsigned int flags)
5803{
5804 struct vm_fault vmf = {
5805 .vma = vma,
5806 .address = address & PAGE_MASK,
5807 .real_address = address,
5808 .flags = flags,
5809 .pgoff = linear_page_index(vma, address),
5810 .gfp_mask = __get_fault_gfp_mask(vma),
5811 };
5812 struct mm_struct *mm = vma->vm_mm;
5813 unsigned long vm_flags = vma->vm_flags;
5814 pgd_t *pgd;
5815 p4d_t *p4d;
5816 vm_fault_t ret;
5817
5818 pgd = pgd_offset(mm, address);
5819 p4d = p4d_alloc(mm, pgd, address);
5820 if (!p4d)
5821 return VM_FAULT_OOM;
5822
5823 vmf.pud = pud_alloc(mm, p4d, address);
5824 if (!vmf.pud)
5825 return VM_FAULT_OOM;
5826retry_pud:
5827 if (pud_none(*vmf.pud) &&
5828 thp_vma_allowable_order(vma, vm_flags,
5829 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5830 ret = create_huge_pud(&vmf);
5831 if (!(ret & VM_FAULT_FALLBACK))
5832 return ret;
5833 } else {
5834 pud_t orig_pud = *vmf.pud;
5835
5836 barrier();
5837 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5838
5839 /*
5840 * TODO once we support anonymous PUDs: NUMA case and
5841 * FAULT_FLAG_UNSHARE handling.
5842 */
5843 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5844 ret = wp_huge_pud(&vmf, orig_pud);
5845 if (!(ret & VM_FAULT_FALLBACK))
5846 return ret;
5847 } else {
5848 huge_pud_set_accessed(&vmf, orig_pud);
5849 return 0;
5850 }
5851 }
5852 }
5853
5854 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5855 if (!vmf.pmd)
5856 return VM_FAULT_OOM;
5857
5858 /* Huge pud page fault raced with pmd_alloc? */
5859 if (pud_trans_unstable(vmf.pud))
5860 goto retry_pud;
5861
5862 if (pmd_none(*vmf.pmd) &&
5863 thp_vma_allowable_order(vma, vm_flags,
5864 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5865 ret = create_huge_pmd(&vmf);
5866 if (!(ret & VM_FAULT_FALLBACK))
5867 return ret;
5868 } else {
5869 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5870
5871 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5872 VM_BUG_ON(thp_migration_supported() &&
5873 !is_pmd_migration_entry(vmf.orig_pmd));
5874 if (is_pmd_migration_entry(vmf.orig_pmd))
5875 pmd_migration_entry_wait(mm, vmf.pmd);
5876 return 0;
5877 }
5878 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5879 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5880 return do_huge_pmd_numa_page(&vmf);
5881
5882 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5883 !pmd_write(vmf.orig_pmd)) {
5884 ret = wp_huge_pmd(&vmf);
5885 if (!(ret & VM_FAULT_FALLBACK))
5886 return ret;
5887 } else {
5888 huge_pmd_set_accessed(&vmf);
5889 return 0;
5890 }
5891 }
5892 }
5893
5894 return handle_pte_fault(&vmf);
5895}
5896
5897/**
5898 * mm_account_fault - Do page fault accounting
5899 * @mm: mm from which memcg should be extracted. It can be NULL.
5900 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5901 * of perf event counters, but we'll still do the per-task accounting to
5902 * the task who triggered this page fault.
5903 * @address: the faulted address.
5904 * @flags: the fault flags.
5905 * @ret: the fault retcode.
5906 *
5907 * This will take care of most of the page fault accounting. Meanwhile, it
5908 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5909 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5910 * still be in per-arch page fault handlers at the entry of page fault.
5911 */
5912static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5913 unsigned long address, unsigned int flags,
5914 vm_fault_t ret)
5915{
5916 bool major;
5917
5918 /* Incomplete faults will be accounted upon completion. */
5919 if (ret & VM_FAULT_RETRY)
5920 return;
5921
5922 /*
5923 * To preserve the behavior of older kernels, PGFAULT counters record
5924 * both successful and failed faults, as opposed to perf counters,
5925 * which ignore failed cases.
5926 */
5927 count_vm_event(PGFAULT);
5928 count_memcg_event_mm(mm, PGFAULT);
5929
5930 /*
5931 * Do not account for unsuccessful faults (e.g. when the address wasn't
5932 * valid). That includes arch_vma_access_permitted() failing before
5933 * reaching here. So this is not a "this many hardware page faults"
5934 * counter. We should use the hw profiling for that.
5935 */
5936 if (ret & VM_FAULT_ERROR)
5937 return;
5938
5939 /*
5940 * We define the fault as a major fault when the final successful fault
5941 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5942 * handle it immediately previously).
5943 */
5944 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5945
5946 if (major)
5947 current->maj_flt++;
5948 else
5949 current->min_flt++;
5950
5951 /*
5952 * If the fault is done for GUP, regs will be NULL. We only do the
5953 * accounting for the per thread fault counters who triggered the
5954 * fault, and we skip the perf event updates.
5955 */
5956 if (!regs)
5957 return;
5958
5959 if (major)
5960 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5961 else
5962 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5963}
5964
5965#ifdef CONFIG_LRU_GEN
5966static void lru_gen_enter_fault(struct vm_area_struct *vma)
5967{
5968 /* the LRU algorithm only applies to accesses with recency */
5969 current->in_lru_fault = vma_has_recency(vma);
5970}
5971
5972static void lru_gen_exit_fault(void)
5973{
5974 current->in_lru_fault = false;
5975}
5976#else
5977static void lru_gen_enter_fault(struct vm_area_struct *vma)
5978{
5979}
5980
5981static void lru_gen_exit_fault(void)
5982{
5983}
5984#endif /* CONFIG_LRU_GEN */
5985
5986static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5987 unsigned int *flags)
5988{
5989 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5990 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5991 return VM_FAULT_SIGSEGV;
5992 /*
5993 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5994 * just treat it like an ordinary read-fault otherwise.
5995 */
5996 if (!is_cow_mapping(vma->vm_flags))
5997 *flags &= ~FAULT_FLAG_UNSHARE;
5998 } else if (*flags & FAULT_FLAG_WRITE) {
5999 /* Write faults on read-only mappings are impossible ... */
6000 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6001 return VM_FAULT_SIGSEGV;
6002 /* ... and FOLL_FORCE only applies to COW mappings. */
6003 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6004 !is_cow_mapping(vma->vm_flags)))
6005 return VM_FAULT_SIGSEGV;
6006 }
6007#ifdef CONFIG_PER_VMA_LOCK
6008 /*
6009 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6010 * the assumption that lock is dropped on VM_FAULT_RETRY.
6011 */
6012 if (WARN_ON_ONCE((*flags &
6013 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6014 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6015 return VM_FAULT_SIGSEGV;
6016#endif
6017
6018 return 0;
6019}
6020
6021/*
6022 * By the time we get here, we already hold the mm semaphore
6023 *
6024 * The mmap_lock may have been released depending on flags and our
6025 * return value. See filemap_fault() and __folio_lock_or_retry().
6026 */
6027vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6028 unsigned int flags, struct pt_regs *regs)
6029{
6030 /* If the fault handler drops the mmap_lock, vma may be freed */
6031 struct mm_struct *mm = vma->vm_mm;
6032 vm_fault_t ret;
6033 bool is_droppable;
6034
6035 __set_current_state(TASK_RUNNING);
6036
6037 ret = sanitize_fault_flags(vma, &flags);
6038 if (ret)
6039 goto out;
6040
6041 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6042 flags & FAULT_FLAG_INSTRUCTION,
6043 flags & FAULT_FLAG_REMOTE)) {
6044 ret = VM_FAULT_SIGSEGV;
6045 goto out;
6046 }
6047
6048 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6049
6050 /*
6051 * Enable the memcg OOM handling for faults triggered in user
6052 * space. Kernel faults are handled more gracefully.
6053 */
6054 if (flags & FAULT_FLAG_USER)
6055 mem_cgroup_enter_user_fault();
6056
6057 lru_gen_enter_fault(vma);
6058
6059 if (unlikely(is_vm_hugetlb_page(vma)))
6060 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6061 else
6062 ret = __handle_mm_fault(vma, address, flags);
6063
6064 /*
6065 * Warning: It is no longer safe to dereference vma-> after this point,
6066 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6067 * vma might be destroyed from underneath us.
6068 */
6069
6070 lru_gen_exit_fault();
6071
6072 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6073 if (is_droppable)
6074 ret &= ~VM_FAULT_OOM;
6075
6076 if (flags & FAULT_FLAG_USER) {
6077 mem_cgroup_exit_user_fault();
6078 /*
6079 * The task may have entered a memcg OOM situation but
6080 * if the allocation error was handled gracefully (no
6081 * VM_FAULT_OOM), there is no need to kill anything.
6082 * Just clean up the OOM state peacefully.
6083 */
6084 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6085 mem_cgroup_oom_synchronize(false);
6086 }
6087out:
6088 mm_account_fault(mm, regs, address, flags, ret);
6089
6090 return ret;
6091}
6092EXPORT_SYMBOL_GPL(handle_mm_fault);
6093
6094#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6095#include <linux/extable.h>
6096
6097static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6098{
6099 if (likely(mmap_read_trylock(mm)))
6100 return true;
6101
6102 if (regs && !user_mode(regs)) {
6103 unsigned long ip = exception_ip(regs);
6104 if (!search_exception_tables(ip))
6105 return false;
6106 }
6107
6108 return !mmap_read_lock_killable(mm);
6109}
6110
6111static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6112{
6113 /*
6114 * We don't have this operation yet.
6115 *
6116 * It should be easy enough to do: it's basically a
6117 * atomic_long_try_cmpxchg_acquire()
6118 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6119 * it also needs the proper lockdep magic etc.
6120 */
6121 return false;
6122}
6123
6124static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6125{
6126 mmap_read_unlock(mm);
6127 if (regs && !user_mode(regs)) {
6128 unsigned long ip = exception_ip(regs);
6129 if (!search_exception_tables(ip))
6130 return false;
6131 }
6132 return !mmap_write_lock_killable(mm);
6133}
6134
6135/*
6136 * Helper for page fault handling.
6137 *
6138 * This is kind of equivalend to "mmap_read_lock()" followed
6139 * by "find_extend_vma()", except it's a lot more careful about
6140 * the locking (and will drop the lock on failure).
6141 *
6142 * For example, if we have a kernel bug that causes a page
6143 * fault, we don't want to just use mmap_read_lock() to get
6144 * the mm lock, because that would deadlock if the bug were
6145 * to happen while we're holding the mm lock for writing.
6146 *
6147 * So this checks the exception tables on kernel faults in
6148 * order to only do this all for instructions that are actually
6149 * expected to fault.
6150 *
6151 * We can also actually take the mm lock for writing if we
6152 * need to extend the vma, which helps the VM layer a lot.
6153 */
6154struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6155 unsigned long addr, struct pt_regs *regs)
6156{
6157 struct vm_area_struct *vma;
6158
6159 if (!get_mmap_lock_carefully(mm, regs))
6160 return NULL;
6161
6162 vma = find_vma(mm, addr);
6163 if (likely(vma && (vma->vm_start <= addr)))
6164 return vma;
6165
6166 /*
6167 * Well, dang. We might still be successful, but only
6168 * if we can extend a vma to do so.
6169 */
6170 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6171 mmap_read_unlock(mm);
6172 return NULL;
6173 }
6174
6175 /*
6176 * We can try to upgrade the mmap lock atomically,
6177 * in which case we can continue to use the vma
6178 * we already looked up.
6179 *
6180 * Otherwise we'll have to drop the mmap lock and
6181 * re-take it, and also look up the vma again,
6182 * re-checking it.
6183 */
6184 if (!mmap_upgrade_trylock(mm)) {
6185 if (!upgrade_mmap_lock_carefully(mm, regs))
6186 return NULL;
6187
6188 vma = find_vma(mm, addr);
6189 if (!vma)
6190 goto fail;
6191 if (vma->vm_start <= addr)
6192 goto success;
6193 if (!(vma->vm_flags & VM_GROWSDOWN))
6194 goto fail;
6195 }
6196
6197 if (expand_stack_locked(vma, addr))
6198 goto fail;
6199
6200success:
6201 mmap_write_downgrade(mm);
6202 return vma;
6203
6204fail:
6205 mmap_write_unlock(mm);
6206 return NULL;
6207}
6208#endif
6209
6210#ifdef CONFIG_PER_VMA_LOCK
6211/*
6212 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6213 * stable and not isolated. If the VMA is not found or is being modified the
6214 * function returns NULL.
6215 */
6216struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6217 unsigned long address)
6218{
6219 MA_STATE(mas, &mm->mm_mt, address, address);
6220 struct vm_area_struct *vma;
6221
6222 rcu_read_lock();
6223retry:
6224 vma = mas_walk(&mas);
6225 if (!vma)
6226 goto inval;
6227
6228 if (!vma_start_read(vma))
6229 goto inval;
6230
6231 /* Check if the VMA got isolated after we found it */
6232 if (vma->detached) {
6233 vma_end_read(vma);
6234 count_vm_vma_lock_event(VMA_LOCK_MISS);
6235 /* The area was replaced with another one */
6236 goto retry;
6237 }
6238 /*
6239 * At this point, we have a stable reference to a VMA: The VMA is
6240 * locked and we know it hasn't already been isolated.
6241 * From here on, we can access the VMA without worrying about which
6242 * fields are accessible for RCU readers.
6243 */
6244
6245 /* Check since vm_start/vm_end might change before we lock the VMA */
6246 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6247 goto inval_end_read;
6248
6249 rcu_read_unlock();
6250 return vma;
6251
6252inval_end_read:
6253 vma_end_read(vma);
6254inval:
6255 rcu_read_unlock();
6256 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6257 return NULL;
6258}
6259#endif /* CONFIG_PER_VMA_LOCK */
6260
6261#ifndef __PAGETABLE_P4D_FOLDED
6262/*
6263 * Allocate p4d page table.
6264 * We've already handled the fast-path in-line.
6265 */
6266int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6267{
6268 p4d_t *new = p4d_alloc_one(mm, address);
6269 if (!new)
6270 return -ENOMEM;
6271
6272 spin_lock(&mm->page_table_lock);
6273 if (pgd_present(*pgd)) { /* Another has populated it */
6274 p4d_free(mm, new);
6275 } else {
6276 smp_wmb(); /* See comment in pmd_install() */
6277 pgd_populate(mm, pgd, new);
6278 }
6279 spin_unlock(&mm->page_table_lock);
6280 return 0;
6281}
6282#endif /* __PAGETABLE_P4D_FOLDED */
6283
6284#ifndef __PAGETABLE_PUD_FOLDED
6285/*
6286 * Allocate page upper directory.
6287 * We've already handled the fast-path in-line.
6288 */
6289int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6290{
6291 pud_t *new = pud_alloc_one(mm, address);
6292 if (!new)
6293 return -ENOMEM;
6294
6295 spin_lock(&mm->page_table_lock);
6296 if (!p4d_present(*p4d)) {
6297 mm_inc_nr_puds(mm);
6298 smp_wmb(); /* See comment in pmd_install() */
6299 p4d_populate(mm, p4d, new);
6300 } else /* Another has populated it */
6301 pud_free(mm, new);
6302 spin_unlock(&mm->page_table_lock);
6303 return 0;
6304}
6305#endif /* __PAGETABLE_PUD_FOLDED */
6306
6307#ifndef __PAGETABLE_PMD_FOLDED
6308/*
6309 * Allocate page middle directory.
6310 * We've already handled the fast-path in-line.
6311 */
6312int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6313{
6314 spinlock_t *ptl;
6315 pmd_t *new = pmd_alloc_one(mm, address);
6316 if (!new)
6317 return -ENOMEM;
6318
6319 ptl = pud_lock(mm, pud);
6320 if (!pud_present(*pud)) {
6321 mm_inc_nr_pmds(mm);
6322 smp_wmb(); /* See comment in pmd_install() */
6323 pud_populate(mm, pud, new);
6324 } else { /* Another has populated it */
6325 pmd_free(mm, new);
6326 }
6327 spin_unlock(ptl);
6328 return 0;
6329}
6330#endif /* __PAGETABLE_PMD_FOLDED */
6331
6332static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6333 spinlock_t *lock, pte_t *ptep,
6334 pgprot_t pgprot, unsigned long pfn_base,
6335 unsigned long addr_mask, bool writable,
6336 bool special)
6337{
6338 args->lock = lock;
6339 args->ptep = ptep;
6340 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6341 args->pgprot = pgprot;
6342 args->writable = writable;
6343 args->special = special;
6344}
6345
6346static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6347{
6348#ifdef CONFIG_LOCKDEP
6349 struct address_space *mapping = vma->vm_file->f_mapping;
6350
6351 if (mapping)
6352 lockdep_assert(lockdep_is_held(&vma->vm_file->f_mapping->i_mmap_rwsem) ||
6353 lockdep_is_held(&vma->vm_mm->mmap_lock));
6354 else
6355 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6356#endif
6357}
6358
6359/**
6360 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6361 * @args: Pointer to struct @follow_pfnmap_args
6362 *
6363 * The caller needs to setup args->vma and args->address to point to the
6364 * virtual address as the target of such lookup. On a successful return,
6365 * the results will be put into other output fields.
6366 *
6367 * After the caller finished using the fields, the caller must invoke
6368 * another follow_pfnmap_end() to proper releases the locks and resources
6369 * of such look up request.
6370 *
6371 * During the start() and end() calls, the results in @args will be valid
6372 * as proper locks will be held. After the end() is called, all the fields
6373 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6374 * use of such information after end() may require proper synchronizations
6375 * by the caller with page table updates, otherwise it can create a
6376 * security bug.
6377 *
6378 * If the PTE maps a refcounted page, callers are responsible to protect
6379 * against invalidation with MMU notifiers; otherwise access to the PFN at
6380 * a later point in time can trigger use-after-free.
6381 *
6382 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6383 * should be taken for read, and the mmap semaphore cannot be released
6384 * before the end() is invoked.
6385 *
6386 * This function must not be used to modify PTE content.
6387 *
6388 * Return: zero on success, negative otherwise.
6389 */
6390int follow_pfnmap_start(struct follow_pfnmap_args *args)
6391{
6392 struct vm_area_struct *vma = args->vma;
6393 unsigned long address = args->address;
6394 struct mm_struct *mm = vma->vm_mm;
6395 spinlock_t *lock;
6396 pgd_t *pgdp;
6397 p4d_t *p4dp, p4d;
6398 pud_t *pudp, pud;
6399 pmd_t *pmdp, pmd;
6400 pte_t *ptep, pte;
6401
6402 pfnmap_lockdep_assert(vma);
6403
6404 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6405 goto out;
6406
6407 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6408 goto out;
6409retry:
6410 pgdp = pgd_offset(mm, address);
6411 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6412 goto out;
6413
6414 p4dp = p4d_offset(pgdp, address);
6415 p4d = READ_ONCE(*p4dp);
6416 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6417 goto out;
6418
6419 pudp = pud_offset(p4dp, address);
6420 pud = READ_ONCE(*pudp);
6421 if (pud_none(pud))
6422 goto out;
6423 if (pud_leaf(pud)) {
6424 lock = pud_lock(mm, pudp);
6425 if (!unlikely(pud_leaf(pud))) {
6426 spin_unlock(lock);
6427 goto retry;
6428 }
6429 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6430 pud_pfn(pud), PUD_MASK, pud_write(pud),
6431 pud_special(pud));
6432 return 0;
6433 }
6434
6435 pmdp = pmd_offset(pudp, address);
6436 pmd = pmdp_get_lockless(pmdp);
6437 if (pmd_leaf(pmd)) {
6438 lock = pmd_lock(mm, pmdp);
6439 if (!unlikely(pmd_leaf(pmd))) {
6440 spin_unlock(lock);
6441 goto retry;
6442 }
6443 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6444 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6445 pmd_special(pmd));
6446 return 0;
6447 }
6448
6449 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6450 if (!ptep)
6451 goto out;
6452 pte = ptep_get(ptep);
6453 if (!pte_present(pte))
6454 goto unlock;
6455 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6456 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6457 pte_special(pte));
6458 return 0;
6459unlock:
6460 pte_unmap_unlock(ptep, lock);
6461out:
6462 return -EINVAL;
6463}
6464EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6465
6466/**
6467 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6468 * @args: Pointer to struct @follow_pfnmap_args
6469 *
6470 * Must be used in pair of follow_pfnmap_start(). See the start() function
6471 * above for more information.
6472 */
6473void follow_pfnmap_end(struct follow_pfnmap_args *args)
6474{
6475 if (args->lock)
6476 spin_unlock(args->lock);
6477 if (args->ptep)
6478 pte_unmap(args->ptep);
6479}
6480EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6481
6482#ifdef CONFIG_HAVE_IOREMAP_PROT
6483/**
6484 * generic_access_phys - generic implementation for iomem mmap access
6485 * @vma: the vma to access
6486 * @addr: userspace address, not relative offset within @vma
6487 * @buf: buffer to read/write
6488 * @len: length of transfer
6489 * @write: set to FOLL_WRITE when writing, otherwise reading
6490 *
6491 * This is a generic implementation for &vm_operations_struct.access for an
6492 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6493 * not page based.
6494 */
6495int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6496 void *buf, int len, int write)
6497{
6498 resource_size_t phys_addr;
6499 unsigned long prot = 0;
6500 void __iomem *maddr;
6501 int offset = offset_in_page(addr);
6502 int ret = -EINVAL;
6503 bool writable;
6504 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6505
6506retry:
6507 if (follow_pfnmap_start(&args))
6508 return -EINVAL;
6509 prot = pgprot_val(args.pgprot);
6510 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6511 writable = args.writable;
6512 follow_pfnmap_end(&args);
6513
6514 if ((write & FOLL_WRITE) && !writable)
6515 return -EINVAL;
6516
6517 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6518 if (!maddr)
6519 return -ENOMEM;
6520
6521 if (follow_pfnmap_start(&args))
6522 goto out_unmap;
6523
6524 if ((prot != pgprot_val(args.pgprot)) ||
6525 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6526 (writable != args.writable)) {
6527 follow_pfnmap_end(&args);
6528 iounmap(maddr);
6529 goto retry;
6530 }
6531
6532 if (write)
6533 memcpy_toio(maddr + offset, buf, len);
6534 else
6535 memcpy_fromio(buf, maddr + offset, len);
6536 ret = len;
6537 follow_pfnmap_end(&args);
6538out_unmap:
6539 iounmap(maddr);
6540
6541 return ret;
6542}
6543EXPORT_SYMBOL_GPL(generic_access_phys);
6544#endif
6545
6546/*
6547 * Access another process' address space as given in mm.
6548 */
6549static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6550 void *buf, int len, unsigned int gup_flags)
6551{
6552 void *old_buf = buf;
6553 int write = gup_flags & FOLL_WRITE;
6554
6555 if (mmap_read_lock_killable(mm))
6556 return 0;
6557
6558 /* Untag the address before looking up the VMA */
6559 addr = untagged_addr_remote(mm, addr);
6560
6561 /* Avoid triggering the temporary warning in __get_user_pages */
6562 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6563 return 0;
6564
6565 /* ignore errors, just check how much was successfully transferred */
6566 while (len) {
6567 int bytes, offset;
6568 void *maddr;
6569 struct vm_area_struct *vma = NULL;
6570 struct page *page = get_user_page_vma_remote(mm, addr,
6571 gup_flags, &vma);
6572
6573 if (IS_ERR(page)) {
6574 /* We might need to expand the stack to access it */
6575 vma = vma_lookup(mm, addr);
6576 if (!vma) {
6577 vma = expand_stack(mm, addr);
6578
6579 /* mmap_lock was dropped on failure */
6580 if (!vma)
6581 return buf - old_buf;
6582
6583 /* Try again if stack expansion worked */
6584 continue;
6585 }
6586
6587 /*
6588 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6589 * we can access using slightly different code.
6590 */
6591 bytes = 0;
6592#ifdef CONFIG_HAVE_IOREMAP_PROT
6593 if (vma->vm_ops && vma->vm_ops->access)
6594 bytes = vma->vm_ops->access(vma, addr, buf,
6595 len, write);
6596#endif
6597 if (bytes <= 0)
6598 break;
6599 } else {
6600 bytes = len;
6601 offset = addr & (PAGE_SIZE-1);
6602 if (bytes > PAGE_SIZE-offset)
6603 bytes = PAGE_SIZE-offset;
6604
6605 maddr = kmap_local_page(page);
6606 if (write) {
6607 copy_to_user_page(vma, page, addr,
6608 maddr + offset, buf, bytes);
6609 set_page_dirty_lock(page);
6610 } else {
6611 copy_from_user_page(vma, page, addr,
6612 buf, maddr + offset, bytes);
6613 }
6614 unmap_and_put_page(page, maddr);
6615 }
6616 len -= bytes;
6617 buf += bytes;
6618 addr += bytes;
6619 }
6620 mmap_read_unlock(mm);
6621
6622 return buf - old_buf;
6623}
6624
6625/**
6626 * access_remote_vm - access another process' address space
6627 * @mm: the mm_struct of the target address space
6628 * @addr: start address to access
6629 * @buf: source or destination buffer
6630 * @len: number of bytes to transfer
6631 * @gup_flags: flags modifying lookup behaviour
6632 *
6633 * The caller must hold a reference on @mm.
6634 *
6635 * Return: number of bytes copied from source to destination.
6636 */
6637int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6638 void *buf, int len, unsigned int gup_flags)
6639{
6640 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6641}
6642
6643/*
6644 * Access another process' address space.
6645 * Source/target buffer must be kernel space,
6646 * Do not walk the page table directly, use get_user_pages
6647 */
6648int access_process_vm(struct task_struct *tsk, unsigned long addr,
6649 void *buf, int len, unsigned int gup_flags)
6650{
6651 struct mm_struct *mm;
6652 int ret;
6653
6654 mm = get_task_mm(tsk);
6655 if (!mm)
6656 return 0;
6657
6658 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6659
6660 mmput(mm);
6661
6662 return ret;
6663}
6664EXPORT_SYMBOL_GPL(access_process_vm);
6665
6666/*
6667 * Print the name of a VMA.
6668 */
6669void print_vma_addr(char *prefix, unsigned long ip)
6670{
6671 struct mm_struct *mm = current->mm;
6672 struct vm_area_struct *vma;
6673
6674 /*
6675 * we might be running from an atomic context so we cannot sleep
6676 */
6677 if (!mmap_read_trylock(mm))
6678 return;
6679
6680 vma = vma_lookup(mm, ip);
6681 if (vma && vma->vm_file) {
6682 struct file *f = vma->vm_file;
6683 ip -= vma->vm_start;
6684 ip += vma->vm_pgoff << PAGE_SHIFT;
6685 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6686 vma->vm_start,
6687 vma->vm_end - vma->vm_start);
6688 }
6689 mmap_read_unlock(mm);
6690}
6691
6692#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6693void __might_fault(const char *file, int line)
6694{
6695 if (pagefault_disabled())
6696 return;
6697 __might_sleep(file, line);
6698#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6699 if (current->mm)
6700 might_lock_read(&current->mm->mmap_lock);
6701#endif
6702}
6703EXPORT_SYMBOL(__might_fault);
6704#endif
6705
6706#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6707/*
6708 * Process all subpages of the specified huge page with the specified
6709 * operation. The target subpage will be processed last to keep its
6710 * cache lines hot.
6711 */
6712static inline int process_huge_page(
6713 unsigned long addr_hint, unsigned int nr_pages,
6714 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6715 void *arg)
6716{
6717 int i, n, base, l, ret;
6718 unsigned long addr = addr_hint &
6719 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6720
6721 /* Process target subpage last to keep its cache lines hot */
6722 might_sleep();
6723 n = (addr_hint - addr) / PAGE_SIZE;
6724 if (2 * n <= nr_pages) {
6725 /* If target subpage in first half of huge page */
6726 base = 0;
6727 l = n;
6728 /* Process subpages at the end of huge page */
6729 for (i = nr_pages - 1; i >= 2 * n; i--) {
6730 cond_resched();
6731 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6732 if (ret)
6733 return ret;
6734 }
6735 } else {
6736 /* If target subpage in second half of huge page */
6737 base = nr_pages - 2 * (nr_pages - n);
6738 l = nr_pages - n;
6739 /* Process subpages at the begin of huge page */
6740 for (i = 0; i < base; i++) {
6741 cond_resched();
6742 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6743 if (ret)
6744 return ret;
6745 }
6746 }
6747 /*
6748 * Process remaining subpages in left-right-left-right pattern
6749 * towards the target subpage
6750 */
6751 for (i = 0; i < l; i++) {
6752 int left_idx = base + i;
6753 int right_idx = base + 2 * l - 1 - i;
6754
6755 cond_resched();
6756 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6757 if (ret)
6758 return ret;
6759 cond_resched();
6760 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6761 if (ret)
6762 return ret;
6763 }
6764 return 0;
6765}
6766
6767static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6768 unsigned int nr_pages)
6769{
6770 int i;
6771
6772 might_sleep();
6773 for (i = 0; i < nr_pages; i++) {
6774 cond_resched();
6775 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6776 }
6777}
6778
6779static int clear_subpage(unsigned long addr, int idx, void *arg)
6780{
6781 struct folio *folio = arg;
6782
6783 clear_user_highpage(folio_page(folio, idx), addr);
6784 return 0;
6785}
6786
6787/**
6788 * folio_zero_user - Zero a folio which will be mapped to userspace.
6789 * @folio: The folio to zero.
6790 * @addr_hint: The address will be accessed or the base address if uncelar.
6791 */
6792void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6793{
6794 unsigned int nr_pages = folio_nr_pages(folio);
6795
6796 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6797 clear_gigantic_page(folio, addr_hint, nr_pages);
6798 else
6799 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6800}
6801
6802static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6803 unsigned long addr,
6804 struct vm_area_struct *vma,
6805 unsigned int nr_pages)
6806{
6807 int i;
6808 struct page *dst_page;
6809 struct page *src_page;
6810
6811 for (i = 0; i < nr_pages; i++) {
6812 dst_page = folio_page(dst, i);
6813 src_page = folio_page(src, i);
6814
6815 cond_resched();
6816 if (copy_mc_user_highpage(dst_page, src_page,
6817 addr + i*PAGE_SIZE, vma))
6818 return -EHWPOISON;
6819 }
6820 return 0;
6821}
6822
6823struct copy_subpage_arg {
6824 struct folio *dst;
6825 struct folio *src;
6826 struct vm_area_struct *vma;
6827};
6828
6829static int copy_subpage(unsigned long addr, int idx, void *arg)
6830{
6831 struct copy_subpage_arg *copy_arg = arg;
6832 struct page *dst = folio_page(copy_arg->dst, idx);
6833 struct page *src = folio_page(copy_arg->src, idx);
6834
6835 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6836 return -EHWPOISON;
6837 return 0;
6838}
6839
6840int copy_user_large_folio(struct folio *dst, struct folio *src,
6841 unsigned long addr_hint, struct vm_area_struct *vma)
6842{
6843 unsigned int nr_pages = folio_nr_pages(dst);
6844 struct copy_subpage_arg arg = {
6845 .dst = dst,
6846 .src = src,
6847 .vma = vma,
6848 };
6849
6850 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6851 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6852
6853 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6854}
6855
6856long copy_folio_from_user(struct folio *dst_folio,
6857 const void __user *usr_src,
6858 bool allow_pagefault)
6859{
6860 void *kaddr;
6861 unsigned long i, rc = 0;
6862 unsigned int nr_pages = folio_nr_pages(dst_folio);
6863 unsigned long ret_val = nr_pages * PAGE_SIZE;
6864 struct page *subpage;
6865
6866 for (i = 0; i < nr_pages; i++) {
6867 subpage = folio_page(dst_folio, i);
6868 kaddr = kmap_local_page(subpage);
6869 if (!allow_pagefault)
6870 pagefault_disable();
6871 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6872 if (!allow_pagefault)
6873 pagefault_enable();
6874 kunmap_local(kaddr);
6875
6876 ret_val -= (PAGE_SIZE - rc);
6877 if (rc)
6878 break;
6879
6880 flush_dcache_page(subpage);
6881
6882 cond_resched();
6883 }
6884 return ret_val;
6885}
6886#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6887
6888#if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6889
6890static struct kmem_cache *page_ptl_cachep;
6891
6892void __init ptlock_cache_init(void)
6893{
6894 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6895 SLAB_PANIC, NULL);
6896}
6897
6898bool ptlock_alloc(struct ptdesc *ptdesc)
6899{
6900 spinlock_t *ptl;
6901
6902 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6903 if (!ptl)
6904 return false;
6905 ptdesc->ptl = ptl;
6906 return true;
6907}
6908
6909void ptlock_free(struct ptdesc *ptdesc)
6910{
6911 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6912}
6913#endif
6914
6915void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6916{
6917 if (is_vm_hugetlb_page(vma))
6918 hugetlb_vma_lock_read(vma);
6919}
6920
6921void vma_pgtable_walk_end(struct vm_area_struct *vma)
6922{
6923 if (is_vm_hugetlb_page(vma))
6924 hugetlb_vma_unlock_read(vma);
6925}