mm/demotion: update node_is_toptier to work with memory tiers
[linux-2.6-block.git] / mm / memory.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/mm_inline.h>
45#include <linux/sched/mm.h>
46#include <linux/sched/coredump.h>
47#include <linux/sched/numa_balancing.h>
48#include <linux/sched/task.h>
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
54#include <linux/memremap.h>
55#include <linux/ksm.h>
56#include <linux/rmap.h>
57#include <linux/export.h>
58#include <linux/delayacct.h>
59#include <linux/init.h>
60#include <linux/pfn_t.h>
61#include <linux/writeback.h>
62#include <linux/memcontrol.h>
63#include <linux/mmu_notifier.h>
64#include <linux/swapops.h>
65#include <linux/elf.h>
66#include <linux/gfp.h>
67#include <linux/migrate.h>
68#include <linux/string.h>
69#include <linux/memory-tiers.h>
70#include <linux/debugfs.h>
71#include <linux/userfaultfd_k.h>
72#include <linux/dax.h>
73#include <linux/oom.h>
74#include <linux/numa.h>
75#include <linux/perf_event.h>
76#include <linux/ptrace.h>
77#include <linux/vmalloc.h>
78#include <linux/sched/sysctl.h>
79
80#include <trace/events/kmem.h>
81
82#include <asm/io.h>
83#include <asm/mmu_context.h>
84#include <asm/pgalloc.h>
85#include <linux/uaccess.h>
86#include <asm/tlb.h>
87#include <asm/tlbflush.h>
88
89#include "pgalloc-track.h"
90#include "internal.h"
91#include "swap.h"
92
93#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95#endif
96
97#ifndef CONFIG_NUMA
98unsigned long max_mapnr;
99EXPORT_SYMBOL(max_mapnr);
100
101struct page *mem_map;
102EXPORT_SYMBOL(mem_map);
103#endif
104
105static vm_fault_t do_fault(struct vm_fault *vmf);
106
107/*
108 * A number of key systems in x86 including ioremap() rely on the assumption
109 * that high_memory defines the upper bound on direct map memory, then end
110 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
111 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
112 * and ZONE_HIGHMEM.
113 */
114void *high_memory;
115EXPORT_SYMBOL(high_memory);
116
117/*
118 * Randomize the address space (stacks, mmaps, brk, etc.).
119 *
120 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
121 * as ancient (libc5 based) binaries can segfault. )
122 */
123int randomize_va_space __read_mostly =
124#ifdef CONFIG_COMPAT_BRK
125 1;
126#else
127 2;
128#endif
129
130#ifndef arch_wants_old_prefaulted_pte
131static inline bool arch_wants_old_prefaulted_pte(void)
132{
133 /*
134 * Transitioning a PTE from 'old' to 'young' can be expensive on
135 * some architectures, even if it's performed in hardware. By
136 * default, "false" means prefaulted entries will be 'young'.
137 */
138 return false;
139}
140#endif
141
142static int __init disable_randmaps(char *s)
143{
144 randomize_va_space = 0;
145 return 1;
146}
147__setup("norandmaps", disable_randmaps);
148
149unsigned long zero_pfn __read_mostly;
150EXPORT_SYMBOL(zero_pfn);
151
152unsigned long highest_memmap_pfn __read_mostly;
153
154/*
155 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
156 */
157static int __init init_zero_pfn(void)
158{
159 zero_pfn = page_to_pfn(ZERO_PAGE(0));
160 return 0;
161}
162early_initcall(init_zero_pfn);
163
164void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
165{
166 trace_rss_stat(mm, member, count);
167}
168
169#if defined(SPLIT_RSS_COUNTING)
170
171void sync_mm_rss(struct mm_struct *mm)
172{
173 int i;
174
175 for (i = 0; i < NR_MM_COUNTERS; i++) {
176 if (current->rss_stat.count[i]) {
177 add_mm_counter(mm, i, current->rss_stat.count[i]);
178 current->rss_stat.count[i] = 0;
179 }
180 }
181 current->rss_stat.events = 0;
182}
183
184static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
185{
186 struct task_struct *task = current;
187
188 if (likely(task->mm == mm))
189 task->rss_stat.count[member] += val;
190 else
191 add_mm_counter(mm, member, val);
192}
193#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
194#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
195
196/* sync counter once per 64 page faults */
197#define TASK_RSS_EVENTS_THRESH (64)
198static void check_sync_rss_stat(struct task_struct *task)
199{
200 if (unlikely(task != current))
201 return;
202 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
203 sync_mm_rss(task->mm);
204}
205#else /* SPLIT_RSS_COUNTING */
206
207#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
208#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
209
210static void check_sync_rss_stat(struct task_struct *task)
211{
212}
213
214#endif /* SPLIT_RSS_COUNTING */
215
216/*
217 * Note: this doesn't free the actual pages themselves. That
218 * has been handled earlier when unmapping all the memory regions.
219 */
220static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
221 unsigned long addr)
222{
223 pgtable_t token = pmd_pgtable(*pmd);
224 pmd_clear(pmd);
225 pte_free_tlb(tlb, token, addr);
226 mm_dec_nr_ptes(tlb->mm);
227}
228
229static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
230 unsigned long addr, unsigned long end,
231 unsigned long floor, unsigned long ceiling)
232{
233 pmd_t *pmd;
234 unsigned long next;
235 unsigned long start;
236
237 start = addr;
238 pmd = pmd_offset(pud, addr);
239 do {
240 next = pmd_addr_end(addr, end);
241 if (pmd_none_or_clear_bad(pmd))
242 continue;
243 free_pte_range(tlb, pmd, addr);
244 } while (pmd++, addr = next, addr != end);
245
246 start &= PUD_MASK;
247 if (start < floor)
248 return;
249 if (ceiling) {
250 ceiling &= PUD_MASK;
251 if (!ceiling)
252 return;
253 }
254 if (end - 1 > ceiling - 1)
255 return;
256
257 pmd = pmd_offset(pud, start);
258 pud_clear(pud);
259 pmd_free_tlb(tlb, pmd, start);
260 mm_dec_nr_pmds(tlb->mm);
261}
262
263static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
264 unsigned long addr, unsigned long end,
265 unsigned long floor, unsigned long ceiling)
266{
267 pud_t *pud;
268 unsigned long next;
269 unsigned long start;
270
271 start = addr;
272 pud = pud_offset(p4d, addr);
273 do {
274 next = pud_addr_end(addr, end);
275 if (pud_none_or_clear_bad(pud))
276 continue;
277 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
278 } while (pud++, addr = next, addr != end);
279
280 start &= P4D_MASK;
281 if (start < floor)
282 return;
283 if (ceiling) {
284 ceiling &= P4D_MASK;
285 if (!ceiling)
286 return;
287 }
288 if (end - 1 > ceiling - 1)
289 return;
290
291 pud = pud_offset(p4d, start);
292 p4d_clear(p4d);
293 pud_free_tlb(tlb, pud, start);
294 mm_dec_nr_puds(tlb->mm);
295}
296
297static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
298 unsigned long addr, unsigned long end,
299 unsigned long floor, unsigned long ceiling)
300{
301 p4d_t *p4d;
302 unsigned long next;
303 unsigned long start;
304
305 start = addr;
306 p4d = p4d_offset(pgd, addr);
307 do {
308 next = p4d_addr_end(addr, end);
309 if (p4d_none_or_clear_bad(p4d))
310 continue;
311 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
312 } while (p4d++, addr = next, addr != end);
313
314 start &= PGDIR_MASK;
315 if (start < floor)
316 return;
317 if (ceiling) {
318 ceiling &= PGDIR_MASK;
319 if (!ceiling)
320 return;
321 }
322 if (end - 1 > ceiling - 1)
323 return;
324
325 p4d = p4d_offset(pgd, start);
326 pgd_clear(pgd);
327 p4d_free_tlb(tlb, p4d, start);
328}
329
330/*
331 * This function frees user-level page tables of a process.
332 */
333void free_pgd_range(struct mmu_gather *tlb,
334 unsigned long addr, unsigned long end,
335 unsigned long floor, unsigned long ceiling)
336{
337 pgd_t *pgd;
338 unsigned long next;
339
340 /*
341 * The next few lines have given us lots of grief...
342 *
343 * Why are we testing PMD* at this top level? Because often
344 * there will be no work to do at all, and we'd prefer not to
345 * go all the way down to the bottom just to discover that.
346 *
347 * Why all these "- 1"s? Because 0 represents both the bottom
348 * of the address space and the top of it (using -1 for the
349 * top wouldn't help much: the masks would do the wrong thing).
350 * The rule is that addr 0 and floor 0 refer to the bottom of
351 * the address space, but end 0 and ceiling 0 refer to the top
352 * Comparisons need to use "end - 1" and "ceiling - 1" (though
353 * that end 0 case should be mythical).
354 *
355 * Wherever addr is brought up or ceiling brought down, we must
356 * be careful to reject "the opposite 0" before it confuses the
357 * subsequent tests. But what about where end is brought down
358 * by PMD_SIZE below? no, end can't go down to 0 there.
359 *
360 * Whereas we round start (addr) and ceiling down, by different
361 * masks at different levels, in order to test whether a table
362 * now has no other vmas using it, so can be freed, we don't
363 * bother to round floor or end up - the tests don't need that.
364 */
365
366 addr &= PMD_MASK;
367 if (addr < floor) {
368 addr += PMD_SIZE;
369 if (!addr)
370 return;
371 }
372 if (ceiling) {
373 ceiling &= PMD_MASK;
374 if (!ceiling)
375 return;
376 }
377 if (end - 1 > ceiling - 1)
378 end -= PMD_SIZE;
379 if (addr > end - 1)
380 return;
381 /*
382 * We add page table cache pages with PAGE_SIZE,
383 * (see pte_free_tlb()), flush the tlb if we need
384 */
385 tlb_change_page_size(tlb, PAGE_SIZE);
386 pgd = pgd_offset(tlb->mm, addr);
387 do {
388 next = pgd_addr_end(addr, end);
389 if (pgd_none_or_clear_bad(pgd))
390 continue;
391 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
392 } while (pgd++, addr = next, addr != end);
393}
394
395void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
396 unsigned long floor, unsigned long ceiling)
397{
398 while (vma) {
399 struct vm_area_struct *next = vma->vm_next;
400 unsigned long addr = vma->vm_start;
401
402 /*
403 * Hide vma from rmap and truncate_pagecache before freeing
404 * pgtables
405 */
406 unlink_anon_vmas(vma);
407 unlink_file_vma(vma);
408
409 if (is_vm_hugetlb_page(vma)) {
410 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
411 floor, next ? next->vm_start : ceiling);
412 } else {
413 /*
414 * Optimization: gather nearby vmas into one call down
415 */
416 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
417 && !is_vm_hugetlb_page(next)) {
418 vma = next;
419 next = vma->vm_next;
420 unlink_anon_vmas(vma);
421 unlink_file_vma(vma);
422 }
423 free_pgd_range(tlb, addr, vma->vm_end,
424 floor, next ? next->vm_start : ceiling);
425 }
426 vma = next;
427 }
428}
429
430void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
431{
432 spinlock_t *ptl = pmd_lock(mm, pmd);
433
434 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
435 mm_inc_nr_ptes(mm);
436 /*
437 * Ensure all pte setup (eg. pte page lock and page clearing) are
438 * visible before the pte is made visible to other CPUs by being
439 * put into page tables.
440 *
441 * The other side of the story is the pointer chasing in the page
442 * table walking code (when walking the page table without locking;
443 * ie. most of the time). Fortunately, these data accesses consist
444 * of a chain of data-dependent loads, meaning most CPUs (alpha
445 * being the notable exception) will already guarantee loads are
446 * seen in-order. See the alpha page table accessors for the
447 * smp_rmb() barriers in page table walking code.
448 */
449 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
450 pmd_populate(mm, pmd, *pte);
451 *pte = NULL;
452 }
453 spin_unlock(ptl);
454}
455
456int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
457{
458 pgtable_t new = pte_alloc_one(mm);
459 if (!new)
460 return -ENOMEM;
461
462 pmd_install(mm, pmd, &new);
463 if (new)
464 pte_free(mm, new);
465 return 0;
466}
467
468int __pte_alloc_kernel(pmd_t *pmd)
469{
470 pte_t *new = pte_alloc_one_kernel(&init_mm);
471 if (!new)
472 return -ENOMEM;
473
474 spin_lock(&init_mm.page_table_lock);
475 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
476 smp_wmb(); /* See comment in pmd_install() */
477 pmd_populate_kernel(&init_mm, pmd, new);
478 new = NULL;
479 }
480 spin_unlock(&init_mm.page_table_lock);
481 if (new)
482 pte_free_kernel(&init_mm, new);
483 return 0;
484}
485
486static inline void init_rss_vec(int *rss)
487{
488 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
489}
490
491static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
492{
493 int i;
494
495 if (current->mm == mm)
496 sync_mm_rss(mm);
497 for (i = 0; i < NR_MM_COUNTERS; i++)
498 if (rss[i])
499 add_mm_counter(mm, i, rss[i]);
500}
501
502/*
503 * This function is called to print an error when a bad pte
504 * is found. For example, we might have a PFN-mapped pte in
505 * a region that doesn't allow it.
506 *
507 * The calling function must still handle the error.
508 */
509static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
510 pte_t pte, struct page *page)
511{
512 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
513 p4d_t *p4d = p4d_offset(pgd, addr);
514 pud_t *pud = pud_offset(p4d, addr);
515 pmd_t *pmd = pmd_offset(pud, addr);
516 struct address_space *mapping;
517 pgoff_t index;
518 static unsigned long resume;
519 static unsigned long nr_shown;
520 static unsigned long nr_unshown;
521
522 /*
523 * Allow a burst of 60 reports, then keep quiet for that minute;
524 * or allow a steady drip of one report per second.
525 */
526 if (nr_shown == 60) {
527 if (time_before(jiffies, resume)) {
528 nr_unshown++;
529 return;
530 }
531 if (nr_unshown) {
532 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
533 nr_unshown);
534 nr_unshown = 0;
535 }
536 nr_shown = 0;
537 }
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
540
541 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
542 index = linear_page_index(vma, addr);
543
544 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
545 current->comm,
546 (long long)pte_val(pte), (long long)pmd_val(*pmd));
547 if (page)
548 dump_page(page, "bad pte");
549 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
550 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
551 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
552 vma->vm_file,
553 vma->vm_ops ? vma->vm_ops->fault : NULL,
554 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
555 mapping ? mapping->a_ops->read_folio : NULL);
556 dump_stack();
557 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
558}
559
560/*
561 * vm_normal_page -- This function gets the "struct page" associated with a pte.
562 *
563 * "Special" mappings do not wish to be associated with a "struct page" (either
564 * it doesn't exist, or it exists but they don't want to touch it). In this
565 * case, NULL is returned here. "Normal" mappings do have a struct page.
566 *
567 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
568 * pte bit, in which case this function is trivial. Secondly, an architecture
569 * may not have a spare pte bit, which requires a more complicated scheme,
570 * described below.
571 *
572 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
573 * special mapping (even if there are underlying and valid "struct pages").
574 * COWed pages of a VM_PFNMAP are always normal.
575 *
576 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
577 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
578 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
579 * mapping will always honor the rule
580 *
581 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
582 *
583 * And for normal mappings this is false.
584 *
585 * This restricts such mappings to be a linear translation from virtual address
586 * to pfn. To get around this restriction, we allow arbitrary mappings so long
587 * as the vma is not a COW mapping; in that case, we know that all ptes are
588 * special (because none can have been COWed).
589 *
590 *
591 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
592 *
593 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
594 * page" backing, however the difference is that _all_ pages with a struct
595 * page (that is, those where pfn_valid is true) are refcounted and considered
596 * normal pages by the VM. The disadvantage is that pages are refcounted
597 * (which can be slower and simply not an option for some PFNMAP users). The
598 * advantage is that we don't have to follow the strict linearity rule of
599 * PFNMAP mappings in order to support COWable mappings.
600 *
601 */
602struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603 pte_t pte)
604{
605 unsigned long pfn = pte_pfn(pte);
606
607 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
608 if (likely(!pte_special(pte)))
609 goto check_pfn;
610 if (vma->vm_ops && vma->vm_ops->find_special_page)
611 return vma->vm_ops->find_special_page(vma, addr);
612 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
613 return NULL;
614 if (is_zero_pfn(pfn))
615 return NULL;
616 if (pte_devmap(pte))
617 /*
618 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
619 * and will have refcounts incremented on their struct pages
620 * when they are inserted into PTEs, thus they are safe to
621 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
622 * do not have refcounts. Example of legacy ZONE_DEVICE is
623 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
624 */
625 return NULL;
626
627 print_bad_pte(vma, addr, pte, NULL);
628 return NULL;
629 }
630
631 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
632
633 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
634 if (vma->vm_flags & VM_MIXEDMAP) {
635 if (!pfn_valid(pfn))
636 return NULL;
637 goto out;
638 } else {
639 unsigned long off;
640 off = (addr - vma->vm_start) >> PAGE_SHIFT;
641 if (pfn == vma->vm_pgoff + off)
642 return NULL;
643 if (!is_cow_mapping(vma->vm_flags))
644 return NULL;
645 }
646 }
647
648 if (is_zero_pfn(pfn))
649 return NULL;
650
651check_pfn:
652 if (unlikely(pfn > highest_memmap_pfn)) {
653 print_bad_pte(vma, addr, pte, NULL);
654 return NULL;
655 }
656
657 /*
658 * NOTE! We still have PageReserved() pages in the page tables.
659 * eg. VDSO mappings can cause them to exist.
660 */
661out:
662 return pfn_to_page(pfn);
663}
664
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
666struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
667 pmd_t pmd)
668{
669 unsigned long pfn = pmd_pfn(pmd);
670
671 /*
672 * There is no pmd_special() but there may be special pmds, e.g.
673 * in a direct-access (dax) mapping, so let's just replicate the
674 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
675 */
676 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
677 if (vma->vm_flags & VM_MIXEDMAP) {
678 if (!pfn_valid(pfn))
679 return NULL;
680 goto out;
681 } else {
682 unsigned long off;
683 off = (addr - vma->vm_start) >> PAGE_SHIFT;
684 if (pfn == vma->vm_pgoff + off)
685 return NULL;
686 if (!is_cow_mapping(vma->vm_flags))
687 return NULL;
688 }
689 }
690
691 if (pmd_devmap(pmd))
692 return NULL;
693 if (is_huge_zero_pmd(pmd))
694 return NULL;
695 if (unlikely(pfn > highest_memmap_pfn))
696 return NULL;
697
698 /*
699 * NOTE! We still have PageReserved() pages in the page tables.
700 * eg. VDSO mappings can cause them to exist.
701 */
702out:
703 return pfn_to_page(pfn);
704}
705#endif
706
707static void restore_exclusive_pte(struct vm_area_struct *vma,
708 struct page *page, unsigned long address,
709 pte_t *ptep)
710{
711 pte_t pte;
712 swp_entry_t entry;
713
714 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
715 if (pte_swp_soft_dirty(*ptep))
716 pte = pte_mksoft_dirty(pte);
717
718 entry = pte_to_swp_entry(*ptep);
719 if (pte_swp_uffd_wp(*ptep))
720 pte = pte_mkuffd_wp(pte);
721 else if (is_writable_device_exclusive_entry(entry))
722 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
723
724 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
725
726 /*
727 * No need to take a page reference as one was already
728 * created when the swap entry was made.
729 */
730 if (PageAnon(page))
731 page_add_anon_rmap(page, vma, address, RMAP_NONE);
732 else
733 /*
734 * Currently device exclusive access only supports anonymous
735 * memory so the entry shouldn't point to a filebacked page.
736 */
737 WARN_ON_ONCE(1);
738
739 set_pte_at(vma->vm_mm, address, ptep, pte);
740
741 /*
742 * No need to invalidate - it was non-present before. However
743 * secondary CPUs may have mappings that need invalidating.
744 */
745 update_mmu_cache(vma, address, ptep);
746}
747
748/*
749 * Tries to restore an exclusive pte if the page lock can be acquired without
750 * sleeping.
751 */
752static int
753try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 unsigned long addr)
755{
756 swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 struct page *page = pfn_swap_entry_to_page(entry);
758
759 if (trylock_page(page)) {
760 restore_exclusive_pte(vma, page, addr, src_pte);
761 unlock_page(page);
762 return 0;
763 }
764
765 return -EBUSY;
766}
767
768/*
769 * copy one vm_area from one task to the other. Assumes the page tables
770 * already present in the new task to be cleared in the whole range
771 * covered by this vma.
772 */
773
774static unsigned long
775copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778{
779 unsigned long vm_flags = dst_vma->vm_flags;
780 pte_t pte = *src_pte;
781 struct page *page;
782 swp_entry_t entry = pte_to_swp_entry(pte);
783
784 if (likely(!non_swap_entry(entry))) {
785 if (swap_duplicate(entry) < 0)
786 return -EIO;
787
788 /* make sure dst_mm is on swapoff's mmlist. */
789 if (unlikely(list_empty(&dst_mm->mmlist))) {
790 spin_lock(&mmlist_lock);
791 if (list_empty(&dst_mm->mmlist))
792 list_add(&dst_mm->mmlist,
793 &src_mm->mmlist);
794 spin_unlock(&mmlist_lock);
795 }
796 /* Mark the swap entry as shared. */
797 if (pte_swp_exclusive(*src_pte)) {
798 pte = pte_swp_clear_exclusive(*src_pte);
799 set_pte_at(src_mm, addr, src_pte, pte);
800 }
801 rss[MM_SWAPENTS]++;
802 } else if (is_migration_entry(entry)) {
803 page = pfn_swap_entry_to_page(entry);
804
805 rss[mm_counter(page)]++;
806
807 if (!is_readable_migration_entry(entry) &&
808 is_cow_mapping(vm_flags)) {
809 /*
810 * COW mappings require pages in both parent and child
811 * to be set to read. A previously exclusive entry is
812 * now shared.
813 */
814 entry = make_readable_migration_entry(
815 swp_offset(entry));
816 pte = swp_entry_to_pte(entry);
817 if (pte_swp_soft_dirty(*src_pte))
818 pte = pte_swp_mksoft_dirty(pte);
819 if (pte_swp_uffd_wp(*src_pte))
820 pte = pte_swp_mkuffd_wp(pte);
821 set_pte_at(src_mm, addr, src_pte, pte);
822 }
823 } else if (is_device_private_entry(entry)) {
824 page = pfn_swap_entry_to_page(entry);
825
826 /*
827 * Update rss count even for unaddressable pages, as
828 * they should treated just like normal pages in this
829 * respect.
830 *
831 * We will likely want to have some new rss counters
832 * for unaddressable pages, at some point. But for now
833 * keep things as they are.
834 */
835 get_page(page);
836 rss[mm_counter(page)]++;
837 /* Cannot fail as these pages cannot get pinned. */
838 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
839
840 /*
841 * We do not preserve soft-dirty information, because so
842 * far, checkpoint/restore is the only feature that
843 * requires that. And checkpoint/restore does not work
844 * when a device driver is involved (you cannot easily
845 * save and restore device driver state).
846 */
847 if (is_writable_device_private_entry(entry) &&
848 is_cow_mapping(vm_flags)) {
849 entry = make_readable_device_private_entry(
850 swp_offset(entry));
851 pte = swp_entry_to_pte(entry);
852 if (pte_swp_uffd_wp(*src_pte))
853 pte = pte_swp_mkuffd_wp(pte);
854 set_pte_at(src_mm, addr, src_pte, pte);
855 }
856 } else if (is_device_exclusive_entry(entry)) {
857 /*
858 * Make device exclusive entries present by restoring the
859 * original entry then copying as for a present pte. Device
860 * exclusive entries currently only support private writable
861 * (ie. COW) mappings.
862 */
863 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
864 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
865 return -EBUSY;
866 return -ENOENT;
867 } else if (is_pte_marker_entry(entry)) {
868 /*
869 * We're copying the pgtable should only because dst_vma has
870 * uffd-wp enabled, do sanity check.
871 */
872 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
873 set_pte_at(dst_mm, addr, dst_pte, pte);
874 return 0;
875 }
876 if (!userfaultfd_wp(dst_vma))
877 pte = pte_swp_clear_uffd_wp(pte);
878 set_pte_at(dst_mm, addr, dst_pte, pte);
879 return 0;
880}
881
882/*
883 * Copy a present and normal page.
884 *
885 * NOTE! The usual case is that this isn't required;
886 * instead, the caller can just increase the page refcount
887 * and re-use the pte the traditional way.
888 *
889 * And if we need a pre-allocated page but don't yet have
890 * one, return a negative error to let the preallocation
891 * code know so that it can do so outside the page table
892 * lock.
893 */
894static inline int
895copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 struct page **prealloc, struct page *page)
898{
899 struct page *new_page;
900 pte_t pte;
901
902 new_page = *prealloc;
903 if (!new_page)
904 return -EAGAIN;
905
906 /*
907 * We have a prealloc page, all good! Take it
908 * over and copy the page & arm it.
909 */
910 *prealloc = NULL;
911 copy_user_highpage(new_page, page, addr, src_vma);
912 __SetPageUptodate(new_page);
913 page_add_new_anon_rmap(new_page, dst_vma, addr);
914 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
915 rss[mm_counter(new_page)]++;
916
917 /* All done, just insert the new page copy in the child */
918 pte = mk_pte(new_page, dst_vma->vm_page_prot);
919 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
920 if (userfaultfd_pte_wp(dst_vma, *src_pte))
921 /* Uffd-wp needs to be delivered to dest pte as well */
922 pte = pte_wrprotect(pte_mkuffd_wp(pte));
923 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
924 return 0;
925}
926
927/*
928 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
929 * is required to copy this pte.
930 */
931static inline int
932copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
933 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
934 struct page **prealloc)
935{
936 struct mm_struct *src_mm = src_vma->vm_mm;
937 unsigned long vm_flags = src_vma->vm_flags;
938 pte_t pte = *src_pte;
939 struct page *page;
940
941 page = vm_normal_page(src_vma, addr, pte);
942 if (page && PageAnon(page)) {
943 /*
944 * If this page may have been pinned by the parent process,
945 * copy the page immediately for the child so that we'll always
946 * guarantee the pinned page won't be randomly replaced in the
947 * future.
948 */
949 get_page(page);
950 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
951 /* Page maybe pinned, we have to copy. */
952 put_page(page);
953 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954 addr, rss, prealloc, page);
955 }
956 rss[mm_counter(page)]++;
957 } else if (page) {
958 get_page(page);
959 page_dup_file_rmap(page, false);
960 rss[mm_counter(page)]++;
961 }
962
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
967 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
968 ptep_set_wrprotect(src_mm, addr, src_pte);
969 pte = pte_wrprotect(pte);
970 }
971 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
972
973 /*
974 * If it's a shared mapping, mark it clean in
975 * the child
976 */
977 if (vm_flags & VM_SHARED)
978 pte = pte_mkclean(pte);
979 pte = pte_mkold(pte);
980
981 if (!userfaultfd_wp(dst_vma))
982 pte = pte_clear_uffd_wp(pte);
983
984 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
985 return 0;
986}
987
988static inline struct page *
989page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
990 unsigned long addr)
991{
992 struct page *new_page;
993
994 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
995 if (!new_page)
996 return NULL;
997
998 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
999 put_page(new_page);
1000 return NULL;
1001 }
1002 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1003
1004 return new_page;
1005}
1006
1007static int
1008copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1009 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1010 unsigned long end)
1011{
1012 struct mm_struct *dst_mm = dst_vma->vm_mm;
1013 struct mm_struct *src_mm = src_vma->vm_mm;
1014 pte_t *orig_src_pte, *orig_dst_pte;
1015 pte_t *src_pte, *dst_pte;
1016 spinlock_t *src_ptl, *dst_ptl;
1017 int progress, ret = 0;
1018 int rss[NR_MM_COUNTERS];
1019 swp_entry_t entry = (swp_entry_t){0};
1020 struct page *prealloc = NULL;
1021
1022again:
1023 progress = 0;
1024 init_rss_vec(rss);
1025
1026 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1027 if (!dst_pte) {
1028 ret = -ENOMEM;
1029 goto out;
1030 }
1031 src_pte = pte_offset_map(src_pmd, addr);
1032 src_ptl = pte_lockptr(src_mm, src_pmd);
1033 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1034 orig_src_pte = src_pte;
1035 orig_dst_pte = dst_pte;
1036 arch_enter_lazy_mmu_mode();
1037
1038 do {
1039 /*
1040 * We are holding two locks at this point - either of them
1041 * could generate latencies in another task on another CPU.
1042 */
1043 if (progress >= 32) {
1044 progress = 0;
1045 if (need_resched() ||
1046 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1047 break;
1048 }
1049 if (pte_none(*src_pte)) {
1050 progress++;
1051 continue;
1052 }
1053 if (unlikely(!pte_present(*src_pte))) {
1054 ret = copy_nonpresent_pte(dst_mm, src_mm,
1055 dst_pte, src_pte,
1056 dst_vma, src_vma,
1057 addr, rss);
1058 if (ret == -EIO) {
1059 entry = pte_to_swp_entry(*src_pte);
1060 break;
1061 } else if (ret == -EBUSY) {
1062 break;
1063 } else if (!ret) {
1064 progress += 8;
1065 continue;
1066 }
1067
1068 /*
1069 * Device exclusive entry restored, continue by copying
1070 * the now present pte.
1071 */
1072 WARN_ON_ONCE(ret != -ENOENT);
1073 }
1074 /* copy_present_pte() will clear `*prealloc' if consumed */
1075 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1076 addr, rss, &prealloc);
1077 /*
1078 * If we need a pre-allocated page for this pte, drop the
1079 * locks, allocate, and try again.
1080 */
1081 if (unlikely(ret == -EAGAIN))
1082 break;
1083 if (unlikely(prealloc)) {
1084 /*
1085 * pre-alloc page cannot be reused by next time so as
1086 * to strictly follow mempolicy (e.g., alloc_page_vma()
1087 * will allocate page according to address). This
1088 * could only happen if one pinned pte changed.
1089 */
1090 put_page(prealloc);
1091 prealloc = NULL;
1092 }
1093 progress += 8;
1094 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1095
1096 arch_leave_lazy_mmu_mode();
1097 spin_unlock(src_ptl);
1098 pte_unmap(orig_src_pte);
1099 add_mm_rss_vec(dst_mm, rss);
1100 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1101 cond_resched();
1102
1103 if (ret == -EIO) {
1104 VM_WARN_ON_ONCE(!entry.val);
1105 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1106 ret = -ENOMEM;
1107 goto out;
1108 }
1109 entry.val = 0;
1110 } else if (ret == -EBUSY) {
1111 goto out;
1112 } else if (ret == -EAGAIN) {
1113 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1114 if (!prealloc)
1115 return -ENOMEM;
1116 } else if (ret) {
1117 VM_WARN_ON_ONCE(1);
1118 }
1119
1120 /* We've captured and resolved the error. Reset, try again. */
1121 ret = 0;
1122
1123 if (addr != end)
1124 goto again;
1125out:
1126 if (unlikely(prealloc))
1127 put_page(prealloc);
1128 return ret;
1129}
1130
1131static inline int
1132copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1134 unsigned long end)
1135{
1136 struct mm_struct *dst_mm = dst_vma->vm_mm;
1137 struct mm_struct *src_mm = src_vma->vm_mm;
1138 pmd_t *src_pmd, *dst_pmd;
1139 unsigned long next;
1140
1141 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1142 if (!dst_pmd)
1143 return -ENOMEM;
1144 src_pmd = pmd_offset(src_pud, addr);
1145 do {
1146 next = pmd_addr_end(addr, end);
1147 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1148 || pmd_devmap(*src_pmd)) {
1149 int err;
1150 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1151 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1152 addr, dst_vma, src_vma);
1153 if (err == -ENOMEM)
1154 return -ENOMEM;
1155 if (!err)
1156 continue;
1157 /* fall through */
1158 }
1159 if (pmd_none_or_clear_bad(src_pmd))
1160 continue;
1161 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1162 addr, next))
1163 return -ENOMEM;
1164 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1165 return 0;
1166}
1167
1168static inline int
1169copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1171 unsigned long end)
1172{
1173 struct mm_struct *dst_mm = dst_vma->vm_mm;
1174 struct mm_struct *src_mm = src_vma->vm_mm;
1175 pud_t *src_pud, *dst_pud;
1176 unsigned long next;
1177
1178 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1179 if (!dst_pud)
1180 return -ENOMEM;
1181 src_pud = pud_offset(src_p4d, addr);
1182 do {
1183 next = pud_addr_end(addr, end);
1184 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1185 int err;
1186
1187 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1188 err = copy_huge_pud(dst_mm, src_mm,
1189 dst_pud, src_pud, addr, src_vma);
1190 if (err == -ENOMEM)
1191 return -ENOMEM;
1192 if (!err)
1193 continue;
1194 /* fall through */
1195 }
1196 if (pud_none_or_clear_bad(src_pud))
1197 continue;
1198 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1199 addr, next))
1200 return -ENOMEM;
1201 } while (dst_pud++, src_pud++, addr = next, addr != end);
1202 return 0;
1203}
1204
1205static inline int
1206copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1207 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1208 unsigned long end)
1209{
1210 struct mm_struct *dst_mm = dst_vma->vm_mm;
1211 p4d_t *src_p4d, *dst_p4d;
1212 unsigned long next;
1213
1214 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1215 if (!dst_p4d)
1216 return -ENOMEM;
1217 src_p4d = p4d_offset(src_pgd, addr);
1218 do {
1219 next = p4d_addr_end(addr, end);
1220 if (p4d_none_or_clear_bad(src_p4d))
1221 continue;
1222 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1223 addr, next))
1224 return -ENOMEM;
1225 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1226 return 0;
1227}
1228
1229/*
1230 * Return true if the vma needs to copy the pgtable during this fork(). Return
1231 * false when we can speed up fork() by allowing lazy page faults later until
1232 * when the child accesses the memory range.
1233 */
1234static bool
1235vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1236{
1237 /*
1238 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1239 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1240 * contains uffd-wp protection information, that's something we can't
1241 * retrieve from page cache, and skip copying will lose those info.
1242 */
1243 if (userfaultfd_wp(dst_vma))
1244 return true;
1245
1246 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1247 return true;
1248
1249 if (src_vma->anon_vma)
1250 return true;
1251
1252 /*
1253 * Don't copy ptes where a page fault will fill them correctly. Fork
1254 * becomes much lighter when there are big shared or private readonly
1255 * mappings. The tradeoff is that copy_page_range is more efficient
1256 * than faulting.
1257 */
1258 return false;
1259}
1260
1261int
1262copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1263{
1264 pgd_t *src_pgd, *dst_pgd;
1265 unsigned long next;
1266 unsigned long addr = src_vma->vm_start;
1267 unsigned long end = src_vma->vm_end;
1268 struct mm_struct *dst_mm = dst_vma->vm_mm;
1269 struct mm_struct *src_mm = src_vma->vm_mm;
1270 struct mmu_notifier_range range;
1271 bool is_cow;
1272 int ret;
1273
1274 if (!vma_needs_copy(dst_vma, src_vma))
1275 return 0;
1276
1277 if (is_vm_hugetlb_page(src_vma))
1278 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1279
1280 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1281 /*
1282 * We do not free on error cases below as remove_vma
1283 * gets called on error from higher level routine
1284 */
1285 ret = track_pfn_copy(src_vma);
1286 if (ret)
1287 return ret;
1288 }
1289
1290 /*
1291 * We need to invalidate the secondary MMU mappings only when
1292 * there could be a permission downgrade on the ptes of the
1293 * parent mm. And a permission downgrade will only happen if
1294 * is_cow_mapping() returns true.
1295 */
1296 is_cow = is_cow_mapping(src_vma->vm_flags);
1297
1298 if (is_cow) {
1299 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1300 0, src_vma, src_mm, addr, end);
1301 mmu_notifier_invalidate_range_start(&range);
1302 /*
1303 * Disabling preemption is not needed for the write side, as
1304 * the read side doesn't spin, but goes to the mmap_lock.
1305 *
1306 * Use the raw variant of the seqcount_t write API to avoid
1307 * lockdep complaining about preemptibility.
1308 */
1309 mmap_assert_write_locked(src_mm);
1310 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1311 }
1312
1313 ret = 0;
1314 dst_pgd = pgd_offset(dst_mm, addr);
1315 src_pgd = pgd_offset(src_mm, addr);
1316 do {
1317 next = pgd_addr_end(addr, end);
1318 if (pgd_none_or_clear_bad(src_pgd))
1319 continue;
1320 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1321 addr, next))) {
1322 ret = -ENOMEM;
1323 break;
1324 }
1325 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1326
1327 if (is_cow) {
1328 raw_write_seqcount_end(&src_mm->write_protect_seq);
1329 mmu_notifier_invalidate_range_end(&range);
1330 }
1331 return ret;
1332}
1333
1334/*
1335 * Parameter block passed down to zap_pte_range in exceptional cases.
1336 */
1337struct zap_details {
1338 struct folio *single_folio; /* Locked folio to be unmapped */
1339 bool even_cows; /* Zap COWed private pages too? */
1340 zap_flags_t zap_flags; /* Extra flags for zapping */
1341};
1342
1343/* Whether we should zap all COWed (private) pages too */
1344static inline bool should_zap_cows(struct zap_details *details)
1345{
1346 /* By default, zap all pages */
1347 if (!details)
1348 return true;
1349
1350 /* Or, we zap COWed pages only if the caller wants to */
1351 return details->even_cows;
1352}
1353
1354/* Decides whether we should zap this page with the page pointer specified */
1355static inline bool should_zap_page(struct zap_details *details, struct page *page)
1356{
1357 /* If we can make a decision without *page.. */
1358 if (should_zap_cows(details))
1359 return true;
1360
1361 /* E.g. the caller passes NULL for the case of a zero page */
1362 if (!page)
1363 return true;
1364
1365 /* Otherwise we should only zap non-anon pages */
1366 return !PageAnon(page);
1367}
1368
1369static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1370{
1371 if (!details)
1372 return false;
1373
1374 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1375}
1376
1377/*
1378 * This function makes sure that we'll replace the none pte with an uffd-wp
1379 * swap special pte marker when necessary. Must be with the pgtable lock held.
1380 */
1381static inline void
1382zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1383 unsigned long addr, pte_t *pte,
1384 struct zap_details *details, pte_t pteval)
1385{
1386 if (zap_drop_file_uffd_wp(details))
1387 return;
1388
1389 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1390}
1391
1392static unsigned long zap_pte_range(struct mmu_gather *tlb,
1393 struct vm_area_struct *vma, pmd_t *pmd,
1394 unsigned long addr, unsigned long end,
1395 struct zap_details *details)
1396{
1397 struct mm_struct *mm = tlb->mm;
1398 int force_flush = 0;
1399 int rss[NR_MM_COUNTERS];
1400 spinlock_t *ptl;
1401 pte_t *start_pte;
1402 pte_t *pte;
1403 swp_entry_t entry;
1404
1405 tlb_change_page_size(tlb, PAGE_SIZE);
1406again:
1407 init_rss_vec(rss);
1408 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1409 pte = start_pte;
1410 flush_tlb_batched_pending(mm);
1411 arch_enter_lazy_mmu_mode();
1412 do {
1413 pte_t ptent = *pte;
1414 struct page *page;
1415
1416 if (pte_none(ptent))
1417 continue;
1418
1419 if (need_resched())
1420 break;
1421
1422 if (pte_present(ptent)) {
1423 page = vm_normal_page(vma, addr, ptent);
1424 if (unlikely(!should_zap_page(details, page)))
1425 continue;
1426 ptent = ptep_get_and_clear_full(mm, addr, pte,
1427 tlb->fullmm);
1428 tlb_remove_tlb_entry(tlb, pte, addr);
1429 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1430 ptent);
1431 if (unlikely(!page))
1432 continue;
1433
1434 if (!PageAnon(page)) {
1435 if (pte_dirty(ptent)) {
1436 force_flush = 1;
1437 set_page_dirty(page);
1438 }
1439 if (pte_young(ptent) &&
1440 likely(!(vma->vm_flags & VM_SEQ_READ)))
1441 mark_page_accessed(page);
1442 }
1443 rss[mm_counter(page)]--;
1444 page_remove_rmap(page, vma, false);
1445 if (unlikely(page_mapcount(page) < 0))
1446 print_bad_pte(vma, addr, ptent, page);
1447 if (unlikely(__tlb_remove_page(tlb, page))) {
1448 force_flush = 1;
1449 addr += PAGE_SIZE;
1450 break;
1451 }
1452 continue;
1453 }
1454
1455 entry = pte_to_swp_entry(ptent);
1456 if (is_device_private_entry(entry) ||
1457 is_device_exclusive_entry(entry)) {
1458 page = pfn_swap_entry_to_page(entry);
1459 if (unlikely(!should_zap_page(details, page)))
1460 continue;
1461 /*
1462 * Both device private/exclusive mappings should only
1463 * work with anonymous page so far, so we don't need to
1464 * consider uffd-wp bit when zap. For more information,
1465 * see zap_install_uffd_wp_if_needed().
1466 */
1467 WARN_ON_ONCE(!vma_is_anonymous(vma));
1468 rss[mm_counter(page)]--;
1469 if (is_device_private_entry(entry))
1470 page_remove_rmap(page, vma, false);
1471 put_page(page);
1472 } else if (!non_swap_entry(entry)) {
1473 /* Genuine swap entry, hence a private anon page */
1474 if (!should_zap_cows(details))
1475 continue;
1476 rss[MM_SWAPENTS]--;
1477 if (unlikely(!free_swap_and_cache(entry)))
1478 print_bad_pte(vma, addr, ptent, NULL);
1479 } else if (is_migration_entry(entry)) {
1480 page = pfn_swap_entry_to_page(entry);
1481 if (!should_zap_page(details, page))
1482 continue;
1483 rss[mm_counter(page)]--;
1484 } else if (pte_marker_entry_uffd_wp(entry)) {
1485 /* Only drop the uffd-wp marker if explicitly requested */
1486 if (!zap_drop_file_uffd_wp(details))
1487 continue;
1488 } else if (is_hwpoison_entry(entry) ||
1489 is_swapin_error_entry(entry)) {
1490 if (!should_zap_cows(details))
1491 continue;
1492 } else {
1493 /* We should have covered all the swap entry types */
1494 WARN_ON_ONCE(1);
1495 }
1496 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1497 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1498 } while (pte++, addr += PAGE_SIZE, addr != end);
1499
1500 add_mm_rss_vec(mm, rss);
1501 arch_leave_lazy_mmu_mode();
1502
1503 /* Do the actual TLB flush before dropping ptl */
1504 if (force_flush)
1505 tlb_flush_mmu_tlbonly(tlb);
1506 pte_unmap_unlock(start_pte, ptl);
1507
1508 /*
1509 * If we forced a TLB flush (either due to running out of
1510 * batch buffers or because we needed to flush dirty TLB
1511 * entries before releasing the ptl), free the batched
1512 * memory too. Restart if we didn't do everything.
1513 */
1514 if (force_flush) {
1515 force_flush = 0;
1516 tlb_flush_mmu(tlb);
1517 }
1518
1519 if (addr != end) {
1520 cond_resched();
1521 goto again;
1522 }
1523
1524 return addr;
1525}
1526
1527static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1528 struct vm_area_struct *vma, pud_t *pud,
1529 unsigned long addr, unsigned long end,
1530 struct zap_details *details)
1531{
1532 pmd_t *pmd;
1533 unsigned long next;
1534
1535 pmd = pmd_offset(pud, addr);
1536 do {
1537 next = pmd_addr_end(addr, end);
1538 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1539 if (next - addr != HPAGE_PMD_SIZE)
1540 __split_huge_pmd(vma, pmd, addr, false, NULL);
1541 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1542 goto next;
1543 /* fall through */
1544 } else if (details && details->single_folio &&
1545 folio_test_pmd_mappable(details->single_folio) &&
1546 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1547 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1548 /*
1549 * Take and drop THP pmd lock so that we cannot return
1550 * prematurely, while zap_huge_pmd() has cleared *pmd,
1551 * but not yet decremented compound_mapcount().
1552 */
1553 spin_unlock(ptl);
1554 }
1555
1556 /*
1557 * Here there can be other concurrent MADV_DONTNEED or
1558 * trans huge page faults running, and if the pmd is
1559 * none or trans huge it can change under us. This is
1560 * because MADV_DONTNEED holds the mmap_lock in read
1561 * mode.
1562 */
1563 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1564 goto next;
1565 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1566next:
1567 cond_resched();
1568 } while (pmd++, addr = next, addr != end);
1569
1570 return addr;
1571}
1572
1573static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1574 struct vm_area_struct *vma, p4d_t *p4d,
1575 unsigned long addr, unsigned long end,
1576 struct zap_details *details)
1577{
1578 pud_t *pud;
1579 unsigned long next;
1580
1581 pud = pud_offset(p4d, addr);
1582 do {
1583 next = pud_addr_end(addr, end);
1584 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1585 if (next - addr != HPAGE_PUD_SIZE) {
1586 mmap_assert_locked(tlb->mm);
1587 split_huge_pud(vma, pud, addr);
1588 } else if (zap_huge_pud(tlb, vma, pud, addr))
1589 goto next;
1590 /* fall through */
1591 }
1592 if (pud_none_or_clear_bad(pud))
1593 continue;
1594 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1595next:
1596 cond_resched();
1597 } while (pud++, addr = next, addr != end);
1598
1599 return addr;
1600}
1601
1602static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1603 struct vm_area_struct *vma, pgd_t *pgd,
1604 unsigned long addr, unsigned long end,
1605 struct zap_details *details)
1606{
1607 p4d_t *p4d;
1608 unsigned long next;
1609
1610 p4d = p4d_offset(pgd, addr);
1611 do {
1612 next = p4d_addr_end(addr, end);
1613 if (p4d_none_or_clear_bad(p4d))
1614 continue;
1615 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1616 } while (p4d++, addr = next, addr != end);
1617
1618 return addr;
1619}
1620
1621void unmap_page_range(struct mmu_gather *tlb,
1622 struct vm_area_struct *vma,
1623 unsigned long addr, unsigned long end,
1624 struct zap_details *details)
1625{
1626 pgd_t *pgd;
1627 unsigned long next;
1628
1629 BUG_ON(addr >= end);
1630 tlb_start_vma(tlb, vma);
1631 pgd = pgd_offset(vma->vm_mm, addr);
1632 do {
1633 next = pgd_addr_end(addr, end);
1634 if (pgd_none_or_clear_bad(pgd))
1635 continue;
1636 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1637 } while (pgd++, addr = next, addr != end);
1638 tlb_end_vma(tlb, vma);
1639}
1640
1641
1642static void unmap_single_vma(struct mmu_gather *tlb,
1643 struct vm_area_struct *vma, unsigned long start_addr,
1644 unsigned long end_addr,
1645 struct zap_details *details)
1646{
1647 unsigned long start = max(vma->vm_start, start_addr);
1648 unsigned long end;
1649
1650 if (start >= vma->vm_end)
1651 return;
1652 end = min(vma->vm_end, end_addr);
1653 if (end <= vma->vm_start)
1654 return;
1655
1656 if (vma->vm_file)
1657 uprobe_munmap(vma, start, end);
1658
1659 if (unlikely(vma->vm_flags & VM_PFNMAP))
1660 untrack_pfn(vma, 0, 0);
1661
1662 if (start != end) {
1663 if (unlikely(is_vm_hugetlb_page(vma))) {
1664 /*
1665 * It is undesirable to test vma->vm_file as it
1666 * should be non-null for valid hugetlb area.
1667 * However, vm_file will be NULL in the error
1668 * cleanup path of mmap_region. When
1669 * hugetlbfs ->mmap method fails,
1670 * mmap_region() nullifies vma->vm_file
1671 * before calling this function to clean up.
1672 * Since no pte has actually been setup, it is
1673 * safe to do nothing in this case.
1674 */
1675 if (vma->vm_file) {
1676 zap_flags_t zap_flags = details ?
1677 details->zap_flags : 0;
1678 i_mmap_lock_write(vma->vm_file->f_mapping);
1679 __unmap_hugepage_range_final(tlb, vma, start, end,
1680 NULL, zap_flags);
1681 i_mmap_unlock_write(vma->vm_file->f_mapping);
1682 }
1683 } else
1684 unmap_page_range(tlb, vma, start, end, details);
1685 }
1686}
1687
1688/**
1689 * unmap_vmas - unmap a range of memory covered by a list of vma's
1690 * @tlb: address of the caller's struct mmu_gather
1691 * @vma: the starting vma
1692 * @start_addr: virtual address at which to start unmapping
1693 * @end_addr: virtual address at which to end unmapping
1694 *
1695 * Unmap all pages in the vma list.
1696 *
1697 * Only addresses between `start' and `end' will be unmapped.
1698 *
1699 * The VMA list must be sorted in ascending virtual address order.
1700 *
1701 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1702 * range after unmap_vmas() returns. So the only responsibility here is to
1703 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1704 * drops the lock and schedules.
1705 */
1706void unmap_vmas(struct mmu_gather *tlb,
1707 struct vm_area_struct *vma, unsigned long start_addr,
1708 unsigned long end_addr)
1709{
1710 struct mmu_notifier_range range;
1711 struct zap_details details = {
1712 .zap_flags = ZAP_FLAG_DROP_MARKER,
1713 /* Careful - we need to zap private pages too! */
1714 .even_cows = true,
1715 };
1716
1717 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1718 start_addr, end_addr);
1719 mmu_notifier_invalidate_range_start(&range);
1720 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1721 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1722 mmu_notifier_invalidate_range_end(&range);
1723}
1724
1725/**
1726 * zap_page_range - remove user pages in a given range
1727 * @vma: vm_area_struct holding the applicable pages
1728 * @start: starting address of pages to zap
1729 * @size: number of bytes to zap
1730 *
1731 * Caller must protect the VMA list
1732 */
1733void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1734 unsigned long size)
1735{
1736 struct mmu_notifier_range range;
1737 struct mmu_gather tlb;
1738
1739 lru_add_drain();
1740 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1741 start, start + size);
1742 tlb_gather_mmu(&tlb, vma->vm_mm);
1743 update_hiwater_rss(vma->vm_mm);
1744 mmu_notifier_invalidate_range_start(&range);
1745 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1746 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1747 mmu_notifier_invalidate_range_end(&range);
1748 tlb_finish_mmu(&tlb);
1749}
1750
1751/**
1752 * zap_page_range_single - remove user pages in a given range
1753 * @vma: vm_area_struct holding the applicable pages
1754 * @address: starting address of pages to zap
1755 * @size: number of bytes to zap
1756 * @details: details of shared cache invalidation
1757 *
1758 * The range must fit into one VMA.
1759 */
1760static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1761 unsigned long size, struct zap_details *details)
1762{
1763 struct mmu_notifier_range range;
1764 struct mmu_gather tlb;
1765
1766 lru_add_drain();
1767 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1768 address, address + size);
1769 tlb_gather_mmu(&tlb, vma->vm_mm);
1770 update_hiwater_rss(vma->vm_mm);
1771 mmu_notifier_invalidate_range_start(&range);
1772 unmap_single_vma(&tlb, vma, address, range.end, details);
1773 mmu_notifier_invalidate_range_end(&range);
1774 tlb_finish_mmu(&tlb);
1775}
1776
1777/**
1778 * zap_vma_ptes - remove ptes mapping the vma
1779 * @vma: vm_area_struct holding ptes to be zapped
1780 * @address: starting address of pages to zap
1781 * @size: number of bytes to zap
1782 *
1783 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1784 *
1785 * The entire address range must be fully contained within the vma.
1786 *
1787 */
1788void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1789 unsigned long size)
1790{
1791 if (!range_in_vma(vma, address, address + size) ||
1792 !(vma->vm_flags & VM_PFNMAP))
1793 return;
1794
1795 zap_page_range_single(vma, address, size, NULL);
1796}
1797EXPORT_SYMBOL_GPL(zap_vma_ptes);
1798
1799static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1800{
1801 pgd_t *pgd;
1802 p4d_t *p4d;
1803 pud_t *pud;
1804 pmd_t *pmd;
1805
1806 pgd = pgd_offset(mm, addr);
1807 p4d = p4d_alloc(mm, pgd, addr);
1808 if (!p4d)
1809 return NULL;
1810 pud = pud_alloc(mm, p4d, addr);
1811 if (!pud)
1812 return NULL;
1813 pmd = pmd_alloc(mm, pud, addr);
1814 if (!pmd)
1815 return NULL;
1816
1817 VM_BUG_ON(pmd_trans_huge(*pmd));
1818 return pmd;
1819}
1820
1821pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1822 spinlock_t **ptl)
1823{
1824 pmd_t *pmd = walk_to_pmd(mm, addr);
1825
1826 if (!pmd)
1827 return NULL;
1828 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1829}
1830
1831static int validate_page_before_insert(struct page *page)
1832{
1833 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1834 return -EINVAL;
1835 flush_dcache_page(page);
1836 return 0;
1837}
1838
1839static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1840 unsigned long addr, struct page *page, pgprot_t prot)
1841{
1842 if (!pte_none(*pte))
1843 return -EBUSY;
1844 /* Ok, finally just insert the thing.. */
1845 get_page(page);
1846 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1847 page_add_file_rmap(page, vma, false);
1848 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1849 return 0;
1850}
1851
1852/*
1853 * This is the old fallback for page remapping.
1854 *
1855 * For historical reasons, it only allows reserved pages. Only
1856 * old drivers should use this, and they needed to mark their
1857 * pages reserved for the old functions anyway.
1858 */
1859static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1860 struct page *page, pgprot_t prot)
1861{
1862 int retval;
1863 pte_t *pte;
1864 spinlock_t *ptl;
1865
1866 retval = validate_page_before_insert(page);
1867 if (retval)
1868 goto out;
1869 retval = -ENOMEM;
1870 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1871 if (!pte)
1872 goto out;
1873 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1874 pte_unmap_unlock(pte, ptl);
1875out:
1876 return retval;
1877}
1878
1879#ifdef pte_index
1880static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1881 unsigned long addr, struct page *page, pgprot_t prot)
1882{
1883 int err;
1884
1885 if (!page_count(page))
1886 return -EINVAL;
1887 err = validate_page_before_insert(page);
1888 if (err)
1889 return err;
1890 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1891}
1892
1893/* insert_pages() amortizes the cost of spinlock operations
1894 * when inserting pages in a loop. Arch *must* define pte_index.
1895 */
1896static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1897 struct page **pages, unsigned long *num, pgprot_t prot)
1898{
1899 pmd_t *pmd = NULL;
1900 pte_t *start_pte, *pte;
1901 spinlock_t *pte_lock;
1902 struct mm_struct *const mm = vma->vm_mm;
1903 unsigned long curr_page_idx = 0;
1904 unsigned long remaining_pages_total = *num;
1905 unsigned long pages_to_write_in_pmd;
1906 int ret;
1907more:
1908 ret = -EFAULT;
1909 pmd = walk_to_pmd(mm, addr);
1910 if (!pmd)
1911 goto out;
1912
1913 pages_to_write_in_pmd = min_t(unsigned long,
1914 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1915
1916 /* Allocate the PTE if necessary; takes PMD lock once only. */
1917 ret = -ENOMEM;
1918 if (pte_alloc(mm, pmd))
1919 goto out;
1920
1921 while (pages_to_write_in_pmd) {
1922 int pte_idx = 0;
1923 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1924
1925 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1926 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1927 int err = insert_page_in_batch_locked(vma, pte,
1928 addr, pages[curr_page_idx], prot);
1929 if (unlikely(err)) {
1930 pte_unmap_unlock(start_pte, pte_lock);
1931 ret = err;
1932 remaining_pages_total -= pte_idx;
1933 goto out;
1934 }
1935 addr += PAGE_SIZE;
1936 ++curr_page_idx;
1937 }
1938 pte_unmap_unlock(start_pte, pte_lock);
1939 pages_to_write_in_pmd -= batch_size;
1940 remaining_pages_total -= batch_size;
1941 }
1942 if (remaining_pages_total)
1943 goto more;
1944 ret = 0;
1945out:
1946 *num = remaining_pages_total;
1947 return ret;
1948}
1949#endif /* ifdef pte_index */
1950
1951/**
1952 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1953 * @vma: user vma to map to
1954 * @addr: target start user address of these pages
1955 * @pages: source kernel pages
1956 * @num: in: number of pages to map. out: number of pages that were *not*
1957 * mapped. (0 means all pages were successfully mapped).
1958 *
1959 * Preferred over vm_insert_page() when inserting multiple pages.
1960 *
1961 * In case of error, we may have mapped a subset of the provided
1962 * pages. It is the caller's responsibility to account for this case.
1963 *
1964 * The same restrictions apply as in vm_insert_page().
1965 */
1966int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1967 struct page **pages, unsigned long *num)
1968{
1969#ifdef pte_index
1970 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1971
1972 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1973 return -EFAULT;
1974 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1975 BUG_ON(mmap_read_trylock(vma->vm_mm));
1976 BUG_ON(vma->vm_flags & VM_PFNMAP);
1977 vma->vm_flags |= VM_MIXEDMAP;
1978 }
1979 /* Defer page refcount checking till we're about to map that page. */
1980 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1981#else
1982 unsigned long idx = 0, pgcount = *num;
1983 int err = -EINVAL;
1984
1985 for (; idx < pgcount; ++idx) {
1986 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1987 if (err)
1988 break;
1989 }
1990 *num = pgcount - idx;
1991 return err;
1992#endif /* ifdef pte_index */
1993}
1994EXPORT_SYMBOL(vm_insert_pages);
1995
1996/**
1997 * vm_insert_page - insert single page into user vma
1998 * @vma: user vma to map to
1999 * @addr: target user address of this page
2000 * @page: source kernel page
2001 *
2002 * This allows drivers to insert individual pages they've allocated
2003 * into a user vma.
2004 *
2005 * The page has to be a nice clean _individual_ kernel allocation.
2006 * If you allocate a compound page, you need to have marked it as
2007 * such (__GFP_COMP), or manually just split the page up yourself
2008 * (see split_page()).
2009 *
2010 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2011 * took an arbitrary page protection parameter. This doesn't allow
2012 * that. Your vma protection will have to be set up correctly, which
2013 * means that if you want a shared writable mapping, you'd better
2014 * ask for a shared writable mapping!
2015 *
2016 * The page does not need to be reserved.
2017 *
2018 * Usually this function is called from f_op->mmap() handler
2019 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2020 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2021 * function from other places, for example from page-fault handler.
2022 *
2023 * Return: %0 on success, negative error code otherwise.
2024 */
2025int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2026 struct page *page)
2027{
2028 if (addr < vma->vm_start || addr >= vma->vm_end)
2029 return -EFAULT;
2030 if (!page_count(page))
2031 return -EINVAL;
2032 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2033 BUG_ON(mmap_read_trylock(vma->vm_mm));
2034 BUG_ON(vma->vm_flags & VM_PFNMAP);
2035 vma->vm_flags |= VM_MIXEDMAP;
2036 }
2037 return insert_page(vma, addr, page, vma->vm_page_prot);
2038}
2039EXPORT_SYMBOL(vm_insert_page);
2040
2041/*
2042 * __vm_map_pages - maps range of kernel pages into user vma
2043 * @vma: user vma to map to
2044 * @pages: pointer to array of source kernel pages
2045 * @num: number of pages in page array
2046 * @offset: user's requested vm_pgoff
2047 *
2048 * This allows drivers to map range of kernel pages into a user vma.
2049 *
2050 * Return: 0 on success and error code otherwise.
2051 */
2052static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2053 unsigned long num, unsigned long offset)
2054{
2055 unsigned long count = vma_pages(vma);
2056 unsigned long uaddr = vma->vm_start;
2057 int ret, i;
2058
2059 /* Fail if the user requested offset is beyond the end of the object */
2060 if (offset >= num)
2061 return -ENXIO;
2062
2063 /* Fail if the user requested size exceeds available object size */
2064 if (count > num - offset)
2065 return -ENXIO;
2066
2067 for (i = 0; i < count; i++) {
2068 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2069 if (ret < 0)
2070 return ret;
2071 uaddr += PAGE_SIZE;
2072 }
2073
2074 return 0;
2075}
2076
2077/**
2078 * vm_map_pages - maps range of kernel pages starts with non zero offset
2079 * @vma: user vma to map to
2080 * @pages: pointer to array of source kernel pages
2081 * @num: number of pages in page array
2082 *
2083 * Maps an object consisting of @num pages, catering for the user's
2084 * requested vm_pgoff
2085 *
2086 * If we fail to insert any page into the vma, the function will return
2087 * immediately leaving any previously inserted pages present. Callers
2088 * from the mmap handler may immediately return the error as their caller
2089 * will destroy the vma, removing any successfully inserted pages. Other
2090 * callers should make their own arrangements for calling unmap_region().
2091 *
2092 * Context: Process context. Called by mmap handlers.
2093 * Return: 0 on success and error code otherwise.
2094 */
2095int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2096 unsigned long num)
2097{
2098 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2099}
2100EXPORT_SYMBOL(vm_map_pages);
2101
2102/**
2103 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2104 * @vma: user vma to map to
2105 * @pages: pointer to array of source kernel pages
2106 * @num: number of pages in page array
2107 *
2108 * Similar to vm_map_pages(), except that it explicitly sets the offset
2109 * to 0. This function is intended for the drivers that did not consider
2110 * vm_pgoff.
2111 *
2112 * Context: Process context. Called by mmap handlers.
2113 * Return: 0 on success and error code otherwise.
2114 */
2115int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2116 unsigned long num)
2117{
2118 return __vm_map_pages(vma, pages, num, 0);
2119}
2120EXPORT_SYMBOL(vm_map_pages_zero);
2121
2122static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2123 pfn_t pfn, pgprot_t prot, bool mkwrite)
2124{
2125 struct mm_struct *mm = vma->vm_mm;
2126 pte_t *pte, entry;
2127 spinlock_t *ptl;
2128
2129 pte = get_locked_pte(mm, addr, &ptl);
2130 if (!pte)
2131 return VM_FAULT_OOM;
2132 if (!pte_none(*pte)) {
2133 if (mkwrite) {
2134 /*
2135 * For read faults on private mappings the PFN passed
2136 * in may not match the PFN we have mapped if the
2137 * mapped PFN is a writeable COW page. In the mkwrite
2138 * case we are creating a writable PTE for a shared
2139 * mapping and we expect the PFNs to match. If they
2140 * don't match, we are likely racing with block
2141 * allocation and mapping invalidation so just skip the
2142 * update.
2143 */
2144 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2145 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2146 goto out_unlock;
2147 }
2148 entry = pte_mkyoung(*pte);
2149 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2151 update_mmu_cache(vma, addr, pte);
2152 }
2153 goto out_unlock;
2154 }
2155
2156 /* Ok, finally just insert the thing.. */
2157 if (pfn_t_devmap(pfn))
2158 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2159 else
2160 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2161
2162 if (mkwrite) {
2163 entry = pte_mkyoung(entry);
2164 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2165 }
2166
2167 set_pte_at(mm, addr, pte, entry);
2168 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2169
2170out_unlock:
2171 pte_unmap_unlock(pte, ptl);
2172 return VM_FAULT_NOPAGE;
2173}
2174
2175/**
2176 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2177 * @vma: user vma to map to
2178 * @addr: target user address of this page
2179 * @pfn: source kernel pfn
2180 * @pgprot: pgprot flags for the inserted page
2181 *
2182 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2183 * to override pgprot on a per-page basis.
2184 *
2185 * This only makes sense for IO mappings, and it makes no sense for
2186 * COW mappings. In general, using multiple vmas is preferable;
2187 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2188 * impractical.
2189 *
2190 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2191 * a value of @pgprot different from that of @vma->vm_page_prot.
2192 *
2193 * Context: Process context. May allocate using %GFP_KERNEL.
2194 * Return: vm_fault_t value.
2195 */
2196vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2197 unsigned long pfn, pgprot_t pgprot)
2198{
2199 /*
2200 * Technically, architectures with pte_special can avoid all these
2201 * restrictions (same for remap_pfn_range). However we would like
2202 * consistency in testing and feature parity among all, so we should
2203 * try to keep these invariants in place for everybody.
2204 */
2205 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2206 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2207 (VM_PFNMAP|VM_MIXEDMAP));
2208 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2209 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2210
2211 if (addr < vma->vm_start || addr >= vma->vm_end)
2212 return VM_FAULT_SIGBUS;
2213
2214 if (!pfn_modify_allowed(pfn, pgprot))
2215 return VM_FAULT_SIGBUS;
2216
2217 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2218
2219 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2220 false);
2221}
2222EXPORT_SYMBOL(vmf_insert_pfn_prot);
2223
2224/**
2225 * vmf_insert_pfn - insert single pfn into user vma
2226 * @vma: user vma to map to
2227 * @addr: target user address of this page
2228 * @pfn: source kernel pfn
2229 *
2230 * Similar to vm_insert_page, this allows drivers to insert individual pages
2231 * they've allocated into a user vma. Same comments apply.
2232 *
2233 * This function should only be called from a vm_ops->fault handler, and
2234 * in that case the handler should return the result of this function.
2235 *
2236 * vma cannot be a COW mapping.
2237 *
2238 * As this is called only for pages that do not currently exist, we
2239 * do not need to flush old virtual caches or the TLB.
2240 *
2241 * Context: Process context. May allocate using %GFP_KERNEL.
2242 * Return: vm_fault_t value.
2243 */
2244vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2245 unsigned long pfn)
2246{
2247 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2248}
2249EXPORT_SYMBOL(vmf_insert_pfn);
2250
2251static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2252{
2253 /* these checks mirror the abort conditions in vm_normal_page */
2254 if (vma->vm_flags & VM_MIXEDMAP)
2255 return true;
2256 if (pfn_t_devmap(pfn))
2257 return true;
2258 if (pfn_t_special(pfn))
2259 return true;
2260 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2261 return true;
2262 return false;
2263}
2264
2265static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2266 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2267 bool mkwrite)
2268{
2269 int err;
2270
2271 BUG_ON(!vm_mixed_ok(vma, pfn));
2272
2273 if (addr < vma->vm_start || addr >= vma->vm_end)
2274 return VM_FAULT_SIGBUS;
2275
2276 track_pfn_insert(vma, &pgprot, pfn);
2277
2278 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2279 return VM_FAULT_SIGBUS;
2280
2281 /*
2282 * If we don't have pte special, then we have to use the pfn_valid()
2283 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2284 * refcount the page if pfn_valid is true (hence insert_page rather
2285 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2286 * without pte special, it would there be refcounted as a normal page.
2287 */
2288 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2289 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2290 struct page *page;
2291
2292 /*
2293 * At this point we are committed to insert_page()
2294 * regardless of whether the caller specified flags that
2295 * result in pfn_t_has_page() == false.
2296 */
2297 page = pfn_to_page(pfn_t_to_pfn(pfn));
2298 err = insert_page(vma, addr, page, pgprot);
2299 } else {
2300 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2301 }
2302
2303 if (err == -ENOMEM)
2304 return VM_FAULT_OOM;
2305 if (err < 0 && err != -EBUSY)
2306 return VM_FAULT_SIGBUS;
2307
2308 return VM_FAULT_NOPAGE;
2309}
2310
2311/**
2312 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2313 * @vma: user vma to map to
2314 * @addr: target user address of this page
2315 * @pfn: source kernel pfn
2316 * @pgprot: pgprot flags for the inserted page
2317 *
2318 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2319 * to override pgprot on a per-page basis.
2320 *
2321 * Typically this function should be used by drivers to set caching- and
2322 * encryption bits different than those of @vma->vm_page_prot, because
2323 * the caching- or encryption mode may not be known at mmap() time.
2324 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2325 * to set caching and encryption bits for those vmas (except for COW pages).
2326 * This is ensured by core vm only modifying these page table entries using
2327 * functions that don't touch caching- or encryption bits, using pte_modify()
2328 * if needed. (See for example mprotect()).
2329 * Also when new page-table entries are created, this is only done using the
2330 * fault() callback, and never using the value of vma->vm_page_prot,
2331 * except for page-table entries that point to anonymous pages as the result
2332 * of COW.
2333 *
2334 * Context: Process context. May allocate using %GFP_KERNEL.
2335 * Return: vm_fault_t value.
2336 */
2337vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2338 pfn_t pfn, pgprot_t pgprot)
2339{
2340 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2341}
2342EXPORT_SYMBOL(vmf_insert_mixed_prot);
2343
2344vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2345 pfn_t pfn)
2346{
2347 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2348}
2349EXPORT_SYMBOL(vmf_insert_mixed);
2350
2351/*
2352 * If the insertion of PTE failed because someone else already added a
2353 * different entry in the mean time, we treat that as success as we assume
2354 * the same entry was actually inserted.
2355 */
2356vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2357 unsigned long addr, pfn_t pfn)
2358{
2359 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2360}
2361EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2362
2363/*
2364 * maps a range of physical memory into the requested pages. the old
2365 * mappings are removed. any references to nonexistent pages results
2366 * in null mappings (currently treated as "copy-on-access")
2367 */
2368static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2369 unsigned long addr, unsigned long end,
2370 unsigned long pfn, pgprot_t prot)
2371{
2372 pte_t *pte, *mapped_pte;
2373 spinlock_t *ptl;
2374 int err = 0;
2375
2376 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2377 if (!pte)
2378 return -ENOMEM;
2379 arch_enter_lazy_mmu_mode();
2380 do {
2381 BUG_ON(!pte_none(*pte));
2382 if (!pfn_modify_allowed(pfn, prot)) {
2383 err = -EACCES;
2384 break;
2385 }
2386 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2387 pfn++;
2388 } while (pte++, addr += PAGE_SIZE, addr != end);
2389 arch_leave_lazy_mmu_mode();
2390 pte_unmap_unlock(mapped_pte, ptl);
2391 return err;
2392}
2393
2394static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2395 unsigned long addr, unsigned long end,
2396 unsigned long pfn, pgprot_t prot)
2397{
2398 pmd_t *pmd;
2399 unsigned long next;
2400 int err;
2401
2402 pfn -= addr >> PAGE_SHIFT;
2403 pmd = pmd_alloc(mm, pud, addr);
2404 if (!pmd)
2405 return -ENOMEM;
2406 VM_BUG_ON(pmd_trans_huge(*pmd));
2407 do {
2408 next = pmd_addr_end(addr, end);
2409 err = remap_pte_range(mm, pmd, addr, next,
2410 pfn + (addr >> PAGE_SHIFT), prot);
2411 if (err)
2412 return err;
2413 } while (pmd++, addr = next, addr != end);
2414 return 0;
2415}
2416
2417static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2418 unsigned long addr, unsigned long end,
2419 unsigned long pfn, pgprot_t prot)
2420{
2421 pud_t *pud;
2422 unsigned long next;
2423 int err;
2424
2425 pfn -= addr >> PAGE_SHIFT;
2426 pud = pud_alloc(mm, p4d, addr);
2427 if (!pud)
2428 return -ENOMEM;
2429 do {
2430 next = pud_addr_end(addr, end);
2431 err = remap_pmd_range(mm, pud, addr, next,
2432 pfn + (addr >> PAGE_SHIFT), prot);
2433 if (err)
2434 return err;
2435 } while (pud++, addr = next, addr != end);
2436 return 0;
2437}
2438
2439static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2440 unsigned long addr, unsigned long end,
2441 unsigned long pfn, pgprot_t prot)
2442{
2443 p4d_t *p4d;
2444 unsigned long next;
2445 int err;
2446
2447 pfn -= addr >> PAGE_SHIFT;
2448 p4d = p4d_alloc(mm, pgd, addr);
2449 if (!p4d)
2450 return -ENOMEM;
2451 do {
2452 next = p4d_addr_end(addr, end);
2453 err = remap_pud_range(mm, p4d, addr, next,
2454 pfn + (addr >> PAGE_SHIFT), prot);
2455 if (err)
2456 return err;
2457 } while (p4d++, addr = next, addr != end);
2458 return 0;
2459}
2460
2461/*
2462 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2463 * must have pre-validated the caching bits of the pgprot_t.
2464 */
2465int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2466 unsigned long pfn, unsigned long size, pgprot_t prot)
2467{
2468 pgd_t *pgd;
2469 unsigned long next;
2470 unsigned long end = addr + PAGE_ALIGN(size);
2471 struct mm_struct *mm = vma->vm_mm;
2472 int err;
2473
2474 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2475 return -EINVAL;
2476
2477 /*
2478 * Physically remapped pages are special. Tell the
2479 * rest of the world about it:
2480 * VM_IO tells people not to look at these pages
2481 * (accesses can have side effects).
2482 * VM_PFNMAP tells the core MM that the base pages are just
2483 * raw PFN mappings, and do not have a "struct page" associated
2484 * with them.
2485 * VM_DONTEXPAND
2486 * Disable vma merging and expanding with mremap().
2487 * VM_DONTDUMP
2488 * Omit vma from core dump, even when VM_IO turned off.
2489 *
2490 * There's a horrible special case to handle copy-on-write
2491 * behaviour that some programs depend on. We mark the "original"
2492 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2493 * See vm_normal_page() for details.
2494 */
2495 if (is_cow_mapping(vma->vm_flags)) {
2496 if (addr != vma->vm_start || end != vma->vm_end)
2497 return -EINVAL;
2498 vma->vm_pgoff = pfn;
2499 }
2500
2501 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2502
2503 BUG_ON(addr >= end);
2504 pfn -= addr >> PAGE_SHIFT;
2505 pgd = pgd_offset(mm, addr);
2506 flush_cache_range(vma, addr, end);
2507 do {
2508 next = pgd_addr_end(addr, end);
2509 err = remap_p4d_range(mm, pgd, addr, next,
2510 pfn + (addr >> PAGE_SHIFT), prot);
2511 if (err)
2512 return err;
2513 } while (pgd++, addr = next, addr != end);
2514
2515 return 0;
2516}
2517
2518/**
2519 * remap_pfn_range - remap kernel memory to userspace
2520 * @vma: user vma to map to
2521 * @addr: target page aligned user address to start at
2522 * @pfn: page frame number of kernel physical memory address
2523 * @size: size of mapping area
2524 * @prot: page protection flags for this mapping
2525 *
2526 * Note: this is only safe if the mm semaphore is held when called.
2527 *
2528 * Return: %0 on success, negative error code otherwise.
2529 */
2530int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2531 unsigned long pfn, unsigned long size, pgprot_t prot)
2532{
2533 int err;
2534
2535 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2536 if (err)
2537 return -EINVAL;
2538
2539 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2540 if (err)
2541 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2542 return err;
2543}
2544EXPORT_SYMBOL(remap_pfn_range);
2545
2546/**
2547 * vm_iomap_memory - remap memory to userspace
2548 * @vma: user vma to map to
2549 * @start: start of the physical memory to be mapped
2550 * @len: size of area
2551 *
2552 * This is a simplified io_remap_pfn_range() for common driver use. The
2553 * driver just needs to give us the physical memory range to be mapped,
2554 * we'll figure out the rest from the vma information.
2555 *
2556 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2557 * whatever write-combining details or similar.
2558 *
2559 * Return: %0 on success, negative error code otherwise.
2560 */
2561int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2562{
2563 unsigned long vm_len, pfn, pages;
2564
2565 /* Check that the physical memory area passed in looks valid */
2566 if (start + len < start)
2567 return -EINVAL;
2568 /*
2569 * You *really* shouldn't map things that aren't page-aligned,
2570 * but we've historically allowed it because IO memory might
2571 * just have smaller alignment.
2572 */
2573 len += start & ~PAGE_MASK;
2574 pfn = start >> PAGE_SHIFT;
2575 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2576 if (pfn + pages < pfn)
2577 return -EINVAL;
2578
2579 /* We start the mapping 'vm_pgoff' pages into the area */
2580 if (vma->vm_pgoff > pages)
2581 return -EINVAL;
2582 pfn += vma->vm_pgoff;
2583 pages -= vma->vm_pgoff;
2584
2585 /* Can we fit all of the mapping? */
2586 vm_len = vma->vm_end - vma->vm_start;
2587 if (vm_len >> PAGE_SHIFT > pages)
2588 return -EINVAL;
2589
2590 /* Ok, let it rip */
2591 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2592}
2593EXPORT_SYMBOL(vm_iomap_memory);
2594
2595static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2596 unsigned long addr, unsigned long end,
2597 pte_fn_t fn, void *data, bool create,
2598 pgtbl_mod_mask *mask)
2599{
2600 pte_t *pte, *mapped_pte;
2601 int err = 0;
2602 spinlock_t *ptl;
2603
2604 if (create) {
2605 mapped_pte = pte = (mm == &init_mm) ?
2606 pte_alloc_kernel_track(pmd, addr, mask) :
2607 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2608 if (!pte)
2609 return -ENOMEM;
2610 } else {
2611 mapped_pte = pte = (mm == &init_mm) ?
2612 pte_offset_kernel(pmd, addr) :
2613 pte_offset_map_lock(mm, pmd, addr, &ptl);
2614 }
2615
2616 BUG_ON(pmd_huge(*pmd));
2617
2618 arch_enter_lazy_mmu_mode();
2619
2620 if (fn) {
2621 do {
2622 if (create || !pte_none(*pte)) {
2623 err = fn(pte++, addr, data);
2624 if (err)
2625 break;
2626 }
2627 } while (addr += PAGE_SIZE, addr != end);
2628 }
2629 *mask |= PGTBL_PTE_MODIFIED;
2630
2631 arch_leave_lazy_mmu_mode();
2632
2633 if (mm != &init_mm)
2634 pte_unmap_unlock(mapped_pte, ptl);
2635 return err;
2636}
2637
2638static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2639 unsigned long addr, unsigned long end,
2640 pte_fn_t fn, void *data, bool create,
2641 pgtbl_mod_mask *mask)
2642{
2643 pmd_t *pmd;
2644 unsigned long next;
2645 int err = 0;
2646
2647 BUG_ON(pud_huge(*pud));
2648
2649 if (create) {
2650 pmd = pmd_alloc_track(mm, pud, addr, mask);
2651 if (!pmd)
2652 return -ENOMEM;
2653 } else {
2654 pmd = pmd_offset(pud, addr);
2655 }
2656 do {
2657 next = pmd_addr_end(addr, end);
2658 if (pmd_none(*pmd) && !create)
2659 continue;
2660 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2661 return -EINVAL;
2662 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2663 if (!create)
2664 continue;
2665 pmd_clear_bad(pmd);
2666 }
2667 err = apply_to_pte_range(mm, pmd, addr, next,
2668 fn, data, create, mask);
2669 if (err)
2670 break;
2671 } while (pmd++, addr = next, addr != end);
2672
2673 return err;
2674}
2675
2676static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2677 unsigned long addr, unsigned long end,
2678 pte_fn_t fn, void *data, bool create,
2679 pgtbl_mod_mask *mask)
2680{
2681 pud_t *pud;
2682 unsigned long next;
2683 int err = 0;
2684
2685 if (create) {
2686 pud = pud_alloc_track(mm, p4d, addr, mask);
2687 if (!pud)
2688 return -ENOMEM;
2689 } else {
2690 pud = pud_offset(p4d, addr);
2691 }
2692 do {
2693 next = pud_addr_end(addr, end);
2694 if (pud_none(*pud) && !create)
2695 continue;
2696 if (WARN_ON_ONCE(pud_leaf(*pud)))
2697 return -EINVAL;
2698 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2699 if (!create)
2700 continue;
2701 pud_clear_bad(pud);
2702 }
2703 err = apply_to_pmd_range(mm, pud, addr, next,
2704 fn, data, create, mask);
2705 if (err)
2706 break;
2707 } while (pud++, addr = next, addr != end);
2708
2709 return err;
2710}
2711
2712static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2713 unsigned long addr, unsigned long end,
2714 pte_fn_t fn, void *data, bool create,
2715 pgtbl_mod_mask *mask)
2716{
2717 p4d_t *p4d;
2718 unsigned long next;
2719 int err = 0;
2720
2721 if (create) {
2722 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2723 if (!p4d)
2724 return -ENOMEM;
2725 } else {
2726 p4d = p4d_offset(pgd, addr);
2727 }
2728 do {
2729 next = p4d_addr_end(addr, end);
2730 if (p4d_none(*p4d) && !create)
2731 continue;
2732 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2733 return -EINVAL;
2734 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2735 if (!create)
2736 continue;
2737 p4d_clear_bad(p4d);
2738 }
2739 err = apply_to_pud_range(mm, p4d, addr, next,
2740 fn, data, create, mask);
2741 if (err)
2742 break;
2743 } while (p4d++, addr = next, addr != end);
2744
2745 return err;
2746}
2747
2748static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2749 unsigned long size, pte_fn_t fn,
2750 void *data, bool create)
2751{
2752 pgd_t *pgd;
2753 unsigned long start = addr, next;
2754 unsigned long end = addr + size;
2755 pgtbl_mod_mask mask = 0;
2756 int err = 0;
2757
2758 if (WARN_ON(addr >= end))
2759 return -EINVAL;
2760
2761 pgd = pgd_offset(mm, addr);
2762 do {
2763 next = pgd_addr_end(addr, end);
2764 if (pgd_none(*pgd) && !create)
2765 continue;
2766 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2767 return -EINVAL;
2768 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2769 if (!create)
2770 continue;
2771 pgd_clear_bad(pgd);
2772 }
2773 err = apply_to_p4d_range(mm, pgd, addr, next,
2774 fn, data, create, &mask);
2775 if (err)
2776 break;
2777 } while (pgd++, addr = next, addr != end);
2778
2779 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2780 arch_sync_kernel_mappings(start, start + size);
2781
2782 return err;
2783}
2784
2785/*
2786 * Scan a region of virtual memory, filling in page tables as necessary
2787 * and calling a provided function on each leaf page table.
2788 */
2789int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2790 unsigned long size, pte_fn_t fn, void *data)
2791{
2792 return __apply_to_page_range(mm, addr, size, fn, data, true);
2793}
2794EXPORT_SYMBOL_GPL(apply_to_page_range);
2795
2796/*
2797 * Scan a region of virtual memory, calling a provided function on
2798 * each leaf page table where it exists.
2799 *
2800 * Unlike apply_to_page_range, this does _not_ fill in page tables
2801 * where they are absent.
2802 */
2803int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2804 unsigned long size, pte_fn_t fn, void *data)
2805{
2806 return __apply_to_page_range(mm, addr, size, fn, data, false);
2807}
2808EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2809
2810/*
2811 * handle_pte_fault chooses page fault handler according to an entry which was
2812 * read non-atomically. Before making any commitment, on those architectures
2813 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2814 * parts, do_swap_page must check under lock before unmapping the pte and
2815 * proceeding (but do_wp_page is only called after already making such a check;
2816 * and do_anonymous_page can safely check later on).
2817 */
2818static inline int pte_unmap_same(struct vm_fault *vmf)
2819{
2820 int same = 1;
2821#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2822 if (sizeof(pte_t) > sizeof(unsigned long)) {
2823 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2824 spin_lock(ptl);
2825 same = pte_same(*vmf->pte, vmf->orig_pte);
2826 spin_unlock(ptl);
2827 }
2828#endif
2829 pte_unmap(vmf->pte);
2830 vmf->pte = NULL;
2831 return same;
2832}
2833
2834static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2835 struct vm_fault *vmf)
2836{
2837 bool ret;
2838 void *kaddr;
2839 void __user *uaddr;
2840 bool locked = false;
2841 struct vm_area_struct *vma = vmf->vma;
2842 struct mm_struct *mm = vma->vm_mm;
2843 unsigned long addr = vmf->address;
2844
2845 if (likely(src)) {
2846 copy_user_highpage(dst, src, addr, vma);
2847 return true;
2848 }
2849
2850 /*
2851 * If the source page was a PFN mapping, we don't have
2852 * a "struct page" for it. We do a best-effort copy by
2853 * just copying from the original user address. If that
2854 * fails, we just zero-fill it. Live with it.
2855 */
2856 kaddr = kmap_atomic(dst);
2857 uaddr = (void __user *)(addr & PAGE_MASK);
2858
2859 /*
2860 * On architectures with software "accessed" bits, we would
2861 * take a double page fault, so mark it accessed here.
2862 */
2863 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2864 pte_t entry;
2865
2866 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2867 locked = true;
2868 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2869 /*
2870 * Other thread has already handled the fault
2871 * and update local tlb only
2872 */
2873 update_mmu_tlb(vma, addr, vmf->pte);
2874 ret = false;
2875 goto pte_unlock;
2876 }
2877
2878 entry = pte_mkyoung(vmf->orig_pte);
2879 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2880 update_mmu_cache(vma, addr, vmf->pte);
2881 }
2882
2883 /*
2884 * This really shouldn't fail, because the page is there
2885 * in the page tables. But it might just be unreadable,
2886 * in which case we just give up and fill the result with
2887 * zeroes.
2888 */
2889 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2890 if (locked)
2891 goto warn;
2892
2893 /* Re-validate under PTL if the page is still mapped */
2894 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2895 locked = true;
2896 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2897 /* The PTE changed under us, update local tlb */
2898 update_mmu_tlb(vma, addr, vmf->pte);
2899 ret = false;
2900 goto pte_unlock;
2901 }
2902
2903 /*
2904 * The same page can be mapped back since last copy attempt.
2905 * Try to copy again under PTL.
2906 */
2907 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2908 /*
2909 * Give a warn in case there can be some obscure
2910 * use-case
2911 */
2912warn:
2913 WARN_ON_ONCE(1);
2914 clear_page(kaddr);
2915 }
2916 }
2917
2918 ret = true;
2919
2920pte_unlock:
2921 if (locked)
2922 pte_unmap_unlock(vmf->pte, vmf->ptl);
2923 kunmap_atomic(kaddr);
2924 flush_dcache_page(dst);
2925
2926 return ret;
2927}
2928
2929static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2930{
2931 struct file *vm_file = vma->vm_file;
2932
2933 if (vm_file)
2934 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2935
2936 /*
2937 * Special mappings (e.g. VDSO) do not have any file so fake
2938 * a default GFP_KERNEL for them.
2939 */
2940 return GFP_KERNEL;
2941}
2942
2943/*
2944 * Notify the address space that the page is about to become writable so that
2945 * it can prohibit this or wait for the page to get into an appropriate state.
2946 *
2947 * We do this without the lock held, so that it can sleep if it needs to.
2948 */
2949static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2950{
2951 vm_fault_t ret;
2952 struct page *page = vmf->page;
2953 unsigned int old_flags = vmf->flags;
2954
2955 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2956
2957 if (vmf->vma->vm_file &&
2958 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2959 return VM_FAULT_SIGBUS;
2960
2961 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2962 /* Restore original flags so that caller is not surprised */
2963 vmf->flags = old_flags;
2964 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2965 return ret;
2966 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2967 lock_page(page);
2968 if (!page->mapping) {
2969 unlock_page(page);
2970 return 0; /* retry */
2971 }
2972 ret |= VM_FAULT_LOCKED;
2973 } else
2974 VM_BUG_ON_PAGE(!PageLocked(page), page);
2975 return ret;
2976}
2977
2978/*
2979 * Handle dirtying of a page in shared file mapping on a write fault.
2980 *
2981 * The function expects the page to be locked and unlocks it.
2982 */
2983static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2984{
2985 struct vm_area_struct *vma = vmf->vma;
2986 struct address_space *mapping;
2987 struct page *page = vmf->page;
2988 bool dirtied;
2989 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2990
2991 dirtied = set_page_dirty(page);
2992 VM_BUG_ON_PAGE(PageAnon(page), page);
2993 /*
2994 * Take a local copy of the address_space - page.mapping may be zeroed
2995 * by truncate after unlock_page(). The address_space itself remains
2996 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2997 * release semantics to prevent the compiler from undoing this copying.
2998 */
2999 mapping = page_rmapping(page);
3000 unlock_page(page);
3001
3002 if (!page_mkwrite)
3003 file_update_time(vma->vm_file);
3004
3005 /*
3006 * Throttle page dirtying rate down to writeback speed.
3007 *
3008 * mapping may be NULL here because some device drivers do not
3009 * set page.mapping but still dirty their pages
3010 *
3011 * Drop the mmap_lock before waiting on IO, if we can. The file
3012 * is pinning the mapping, as per above.
3013 */
3014 if ((dirtied || page_mkwrite) && mapping) {
3015 struct file *fpin;
3016
3017 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3018 balance_dirty_pages_ratelimited(mapping);
3019 if (fpin) {
3020 fput(fpin);
3021 return VM_FAULT_COMPLETED;
3022 }
3023 }
3024
3025 return 0;
3026}
3027
3028/*
3029 * Handle write page faults for pages that can be reused in the current vma
3030 *
3031 * This can happen either due to the mapping being with the VM_SHARED flag,
3032 * or due to us being the last reference standing to the page. In either
3033 * case, all we need to do here is to mark the page as writable and update
3034 * any related book-keeping.
3035 */
3036static inline void wp_page_reuse(struct vm_fault *vmf)
3037 __releases(vmf->ptl)
3038{
3039 struct vm_area_struct *vma = vmf->vma;
3040 struct page *page = vmf->page;
3041 pte_t entry;
3042
3043 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3044 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3045
3046 /*
3047 * Clear the pages cpupid information as the existing
3048 * information potentially belongs to a now completely
3049 * unrelated process.
3050 */
3051 if (page)
3052 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3053
3054 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3055 entry = pte_mkyoung(vmf->orig_pte);
3056 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3057 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3058 update_mmu_cache(vma, vmf->address, vmf->pte);
3059 pte_unmap_unlock(vmf->pte, vmf->ptl);
3060 count_vm_event(PGREUSE);
3061}
3062
3063/*
3064 * Handle the case of a page which we actually need to copy to a new page,
3065 * either due to COW or unsharing.
3066 *
3067 * Called with mmap_lock locked and the old page referenced, but
3068 * without the ptl held.
3069 *
3070 * High level logic flow:
3071 *
3072 * - Allocate a page, copy the content of the old page to the new one.
3073 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3074 * - Take the PTL. If the pte changed, bail out and release the allocated page
3075 * - If the pte is still the way we remember it, update the page table and all
3076 * relevant references. This includes dropping the reference the page-table
3077 * held to the old page, as well as updating the rmap.
3078 * - In any case, unlock the PTL and drop the reference we took to the old page.
3079 */
3080static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3081{
3082 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3083 struct vm_area_struct *vma = vmf->vma;
3084 struct mm_struct *mm = vma->vm_mm;
3085 struct page *old_page = vmf->page;
3086 struct page *new_page = NULL;
3087 pte_t entry;
3088 int page_copied = 0;
3089 struct mmu_notifier_range range;
3090
3091 delayacct_wpcopy_start();
3092
3093 if (unlikely(anon_vma_prepare(vma)))
3094 goto oom;
3095
3096 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3097 new_page = alloc_zeroed_user_highpage_movable(vma,
3098 vmf->address);
3099 if (!new_page)
3100 goto oom;
3101 } else {
3102 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3103 vmf->address);
3104 if (!new_page)
3105 goto oom;
3106
3107 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3108 /*
3109 * COW failed, if the fault was solved by other,
3110 * it's fine. If not, userspace would re-fault on
3111 * the same address and we will handle the fault
3112 * from the second attempt.
3113 */
3114 put_page(new_page);
3115 if (old_page)
3116 put_page(old_page);
3117
3118 delayacct_wpcopy_end();
3119 return 0;
3120 }
3121 }
3122
3123 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3124 goto oom_free_new;
3125 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3126
3127 __SetPageUptodate(new_page);
3128
3129 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3130 vmf->address & PAGE_MASK,
3131 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3132 mmu_notifier_invalidate_range_start(&range);
3133
3134 /*
3135 * Re-check the pte - we dropped the lock
3136 */
3137 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3138 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3139 if (old_page) {
3140 if (!PageAnon(old_page)) {
3141 dec_mm_counter_fast(mm,
3142 mm_counter_file(old_page));
3143 inc_mm_counter_fast(mm, MM_ANONPAGES);
3144 }
3145 } else {
3146 inc_mm_counter_fast(mm, MM_ANONPAGES);
3147 }
3148 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3149 entry = mk_pte(new_page, vma->vm_page_prot);
3150 entry = pte_sw_mkyoung(entry);
3151 if (unlikely(unshare)) {
3152 if (pte_soft_dirty(vmf->orig_pte))
3153 entry = pte_mksoft_dirty(entry);
3154 if (pte_uffd_wp(vmf->orig_pte))
3155 entry = pte_mkuffd_wp(entry);
3156 } else {
3157 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3158 }
3159
3160 /*
3161 * Clear the pte entry and flush it first, before updating the
3162 * pte with the new entry, to keep TLBs on different CPUs in
3163 * sync. This code used to set the new PTE then flush TLBs, but
3164 * that left a window where the new PTE could be loaded into
3165 * some TLBs while the old PTE remains in others.
3166 */
3167 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3168 page_add_new_anon_rmap(new_page, vma, vmf->address);
3169 lru_cache_add_inactive_or_unevictable(new_page, vma);
3170 /*
3171 * We call the notify macro here because, when using secondary
3172 * mmu page tables (such as kvm shadow page tables), we want the
3173 * new page to be mapped directly into the secondary page table.
3174 */
3175 BUG_ON(unshare && pte_write(entry));
3176 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3177 update_mmu_cache(vma, vmf->address, vmf->pte);
3178 if (old_page) {
3179 /*
3180 * Only after switching the pte to the new page may
3181 * we remove the mapcount here. Otherwise another
3182 * process may come and find the rmap count decremented
3183 * before the pte is switched to the new page, and
3184 * "reuse" the old page writing into it while our pte
3185 * here still points into it and can be read by other
3186 * threads.
3187 *
3188 * The critical issue is to order this
3189 * page_remove_rmap with the ptp_clear_flush above.
3190 * Those stores are ordered by (if nothing else,)
3191 * the barrier present in the atomic_add_negative
3192 * in page_remove_rmap.
3193 *
3194 * Then the TLB flush in ptep_clear_flush ensures that
3195 * no process can access the old page before the
3196 * decremented mapcount is visible. And the old page
3197 * cannot be reused until after the decremented
3198 * mapcount is visible. So transitively, TLBs to
3199 * old page will be flushed before it can be reused.
3200 */
3201 page_remove_rmap(old_page, vma, false);
3202 }
3203
3204 /* Free the old page.. */
3205 new_page = old_page;
3206 page_copied = 1;
3207 } else {
3208 update_mmu_tlb(vma, vmf->address, vmf->pte);
3209 }
3210
3211 if (new_page)
3212 put_page(new_page);
3213
3214 pte_unmap_unlock(vmf->pte, vmf->ptl);
3215 /*
3216 * No need to double call mmu_notifier->invalidate_range() callback as
3217 * the above ptep_clear_flush_notify() did already call it.
3218 */
3219 mmu_notifier_invalidate_range_only_end(&range);
3220 if (old_page) {
3221 if (page_copied)
3222 free_swap_cache(old_page);
3223 put_page(old_page);
3224 }
3225
3226 delayacct_wpcopy_end();
3227 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3228oom_free_new:
3229 put_page(new_page);
3230oom:
3231 if (old_page)
3232 put_page(old_page);
3233
3234 delayacct_wpcopy_end();
3235 return VM_FAULT_OOM;
3236}
3237
3238/**
3239 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3240 * writeable once the page is prepared
3241 *
3242 * @vmf: structure describing the fault
3243 *
3244 * This function handles all that is needed to finish a write page fault in a
3245 * shared mapping due to PTE being read-only once the mapped page is prepared.
3246 * It handles locking of PTE and modifying it.
3247 *
3248 * The function expects the page to be locked or other protection against
3249 * concurrent faults / writeback (such as DAX radix tree locks).
3250 *
3251 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3252 * we acquired PTE lock.
3253 */
3254vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3255{
3256 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3257 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3258 &vmf->ptl);
3259 /*
3260 * We might have raced with another page fault while we released the
3261 * pte_offset_map_lock.
3262 */
3263 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3264 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3265 pte_unmap_unlock(vmf->pte, vmf->ptl);
3266 return VM_FAULT_NOPAGE;
3267 }
3268 wp_page_reuse(vmf);
3269 return 0;
3270}
3271
3272/*
3273 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3274 * mapping
3275 */
3276static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3277{
3278 struct vm_area_struct *vma = vmf->vma;
3279
3280 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3281 vm_fault_t ret;
3282
3283 pte_unmap_unlock(vmf->pte, vmf->ptl);
3284 vmf->flags |= FAULT_FLAG_MKWRITE;
3285 ret = vma->vm_ops->pfn_mkwrite(vmf);
3286 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3287 return ret;
3288 return finish_mkwrite_fault(vmf);
3289 }
3290 wp_page_reuse(vmf);
3291 return VM_FAULT_WRITE;
3292}
3293
3294static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3295 __releases(vmf->ptl)
3296{
3297 struct vm_area_struct *vma = vmf->vma;
3298 vm_fault_t ret = VM_FAULT_WRITE;
3299
3300 get_page(vmf->page);
3301
3302 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3303 vm_fault_t tmp;
3304
3305 pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 tmp = do_page_mkwrite(vmf);
3307 if (unlikely(!tmp || (tmp &
3308 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3309 put_page(vmf->page);
3310 return tmp;
3311 }
3312 tmp = finish_mkwrite_fault(vmf);
3313 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3314 unlock_page(vmf->page);
3315 put_page(vmf->page);
3316 return tmp;
3317 }
3318 } else {
3319 wp_page_reuse(vmf);
3320 lock_page(vmf->page);
3321 }
3322 ret |= fault_dirty_shared_page(vmf);
3323 put_page(vmf->page);
3324
3325 return ret;
3326}
3327
3328/*
3329 * This routine handles present pages, when
3330 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3331 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3332 * (FAULT_FLAG_UNSHARE)
3333 *
3334 * It is done by copying the page to a new address and decrementing the
3335 * shared-page counter for the old page.
3336 *
3337 * Note that this routine assumes that the protection checks have been
3338 * done by the caller (the low-level page fault routine in most cases).
3339 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3340 * done any necessary COW.
3341 *
3342 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3343 * though the page will change only once the write actually happens. This
3344 * avoids a few races, and potentially makes it more efficient.
3345 *
3346 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3347 * but allow concurrent faults), with pte both mapped and locked.
3348 * We return with mmap_lock still held, but pte unmapped and unlocked.
3349 */
3350static vm_fault_t do_wp_page(struct vm_fault *vmf)
3351 __releases(vmf->ptl)
3352{
3353 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3354 struct vm_area_struct *vma = vmf->vma;
3355
3356 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3357 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3358
3359 if (likely(!unshare)) {
3360 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3361 pte_unmap_unlock(vmf->pte, vmf->ptl);
3362 return handle_userfault(vmf, VM_UFFD_WP);
3363 }
3364
3365 /*
3366 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3367 * is flushed in this case before copying.
3368 */
3369 if (unlikely(userfaultfd_wp(vmf->vma) &&
3370 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3371 flush_tlb_page(vmf->vma, vmf->address);
3372 }
3373
3374 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3375 if (!vmf->page) {
3376 if (unlikely(unshare)) {
3377 /* No anonymous page -> nothing to do. */
3378 pte_unmap_unlock(vmf->pte, vmf->ptl);
3379 return 0;
3380 }
3381
3382 /*
3383 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3384 * VM_PFNMAP VMA.
3385 *
3386 * We should not cow pages in a shared writeable mapping.
3387 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3388 */
3389 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3390 (VM_WRITE|VM_SHARED))
3391 return wp_pfn_shared(vmf);
3392
3393 pte_unmap_unlock(vmf->pte, vmf->ptl);
3394 return wp_page_copy(vmf);
3395 }
3396
3397 /*
3398 * Take out anonymous pages first, anonymous shared vmas are
3399 * not dirty accountable.
3400 */
3401 if (PageAnon(vmf->page)) {
3402 struct page *page = vmf->page;
3403
3404 /*
3405 * If the page is exclusive to this process we must reuse the
3406 * page without further checks.
3407 */
3408 if (PageAnonExclusive(page))
3409 goto reuse;
3410
3411 /*
3412 * We have to verify under page lock: these early checks are
3413 * just an optimization to avoid locking the page and freeing
3414 * the swapcache if there is little hope that we can reuse.
3415 *
3416 * PageKsm() doesn't necessarily raise the page refcount.
3417 */
3418 if (PageKsm(page) || page_count(page) > 3)
3419 goto copy;
3420 if (!PageLRU(page))
3421 /*
3422 * Note: We cannot easily detect+handle references from
3423 * remote LRU pagevecs or references to PageLRU() pages.
3424 */
3425 lru_add_drain();
3426 if (page_count(page) > 1 + PageSwapCache(page))
3427 goto copy;
3428 if (!trylock_page(page))
3429 goto copy;
3430 if (PageSwapCache(page))
3431 try_to_free_swap(page);
3432 if (PageKsm(page) || page_count(page) != 1) {
3433 unlock_page(page);
3434 goto copy;
3435 }
3436 /*
3437 * Ok, we've got the only page reference from our mapping
3438 * and the page is locked, it's dark out, and we're wearing
3439 * sunglasses. Hit it.
3440 */
3441 page_move_anon_rmap(page, vma);
3442 unlock_page(page);
3443reuse:
3444 if (unlikely(unshare)) {
3445 pte_unmap_unlock(vmf->pte, vmf->ptl);
3446 return 0;
3447 }
3448 wp_page_reuse(vmf);
3449 return VM_FAULT_WRITE;
3450 } else if (unshare) {
3451 /* No anonymous page -> nothing to do. */
3452 pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 return 0;
3454 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3455 (VM_WRITE|VM_SHARED))) {
3456 return wp_page_shared(vmf);
3457 }
3458copy:
3459 /*
3460 * Ok, we need to copy. Oh, well..
3461 */
3462 get_page(vmf->page);
3463
3464 pte_unmap_unlock(vmf->pte, vmf->ptl);
3465#ifdef CONFIG_KSM
3466 if (PageKsm(vmf->page))
3467 count_vm_event(COW_KSM);
3468#endif
3469 return wp_page_copy(vmf);
3470}
3471
3472static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3473 unsigned long start_addr, unsigned long end_addr,
3474 struct zap_details *details)
3475{
3476 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3477}
3478
3479static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3480 pgoff_t first_index,
3481 pgoff_t last_index,
3482 struct zap_details *details)
3483{
3484 struct vm_area_struct *vma;
3485 pgoff_t vba, vea, zba, zea;
3486
3487 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3488 vba = vma->vm_pgoff;
3489 vea = vba + vma_pages(vma) - 1;
3490 zba = max(first_index, vba);
3491 zea = min(last_index, vea);
3492
3493 unmap_mapping_range_vma(vma,
3494 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3495 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3496 details);
3497 }
3498}
3499
3500/**
3501 * unmap_mapping_folio() - Unmap single folio from processes.
3502 * @folio: The locked folio to be unmapped.
3503 *
3504 * Unmap this folio from any userspace process which still has it mmaped.
3505 * Typically, for efficiency, the range of nearby pages has already been
3506 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3507 * truncation or invalidation holds the lock on a folio, it may find that
3508 * the page has been remapped again: and then uses unmap_mapping_folio()
3509 * to unmap it finally.
3510 */
3511void unmap_mapping_folio(struct folio *folio)
3512{
3513 struct address_space *mapping = folio->mapping;
3514 struct zap_details details = { };
3515 pgoff_t first_index;
3516 pgoff_t last_index;
3517
3518 VM_BUG_ON(!folio_test_locked(folio));
3519
3520 first_index = folio->index;
3521 last_index = folio->index + folio_nr_pages(folio) - 1;
3522
3523 details.even_cows = false;
3524 details.single_folio = folio;
3525 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3526
3527 i_mmap_lock_read(mapping);
3528 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3529 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3530 last_index, &details);
3531 i_mmap_unlock_read(mapping);
3532}
3533
3534/**
3535 * unmap_mapping_pages() - Unmap pages from processes.
3536 * @mapping: The address space containing pages to be unmapped.
3537 * @start: Index of first page to be unmapped.
3538 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3539 * @even_cows: Whether to unmap even private COWed pages.
3540 *
3541 * Unmap the pages in this address space from any userspace process which
3542 * has them mmaped. Generally, you want to remove COWed pages as well when
3543 * a file is being truncated, but not when invalidating pages from the page
3544 * cache.
3545 */
3546void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3547 pgoff_t nr, bool even_cows)
3548{
3549 struct zap_details details = { };
3550 pgoff_t first_index = start;
3551 pgoff_t last_index = start + nr - 1;
3552
3553 details.even_cows = even_cows;
3554 if (last_index < first_index)
3555 last_index = ULONG_MAX;
3556
3557 i_mmap_lock_read(mapping);
3558 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3559 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3560 last_index, &details);
3561 i_mmap_unlock_read(mapping);
3562}
3563EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3564
3565/**
3566 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3567 * address_space corresponding to the specified byte range in the underlying
3568 * file.
3569 *
3570 * @mapping: the address space containing mmaps to be unmapped.
3571 * @holebegin: byte in first page to unmap, relative to the start of
3572 * the underlying file. This will be rounded down to a PAGE_SIZE
3573 * boundary. Note that this is different from truncate_pagecache(), which
3574 * must keep the partial page. In contrast, we must get rid of
3575 * partial pages.
3576 * @holelen: size of prospective hole in bytes. This will be rounded
3577 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3578 * end of the file.
3579 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3580 * but 0 when invalidating pagecache, don't throw away private data.
3581 */
3582void unmap_mapping_range(struct address_space *mapping,
3583 loff_t const holebegin, loff_t const holelen, int even_cows)
3584{
3585 pgoff_t hba = holebegin >> PAGE_SHIFT;
3586 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3587
3588 /* Check for overflow. */
3589 if (sizeof(holelen) > sizeof(hlen)) {
3590 long long holeend =
3591 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3592 if (holeend & ~(long long)ULONG_MAX)
3593 hlen = ULONG_MAX - hba + 1;
3594 }
3595
3596 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3597}
3598EXPORT_SYMBOL(unmap_mapping_range);
3599
3600/*
3601 * Restore a potential device exclusive pte to a working pte entry
3602 */
3603static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3604{
3605 struct page *page = vmf->page;
3606 struct vm_area_struct *vma = vmf->vma;
3607 struct mmu_notifier_range range;
3608
3609 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3610 return VM_FAULT_RETRY;
3611 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3612 vma->vm_mm, vmf->address & PAGE_MASK,
3613 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3614 mmu_notifier_invalidate_range_start(&range);
3615
3616 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3617 &vmf->ptl);
3618 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3619 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3620
3621 pte_unmap_unlock(vmf->pte, vmf->ptl);
3622 unlock_page(page);
3623
3624 mmu_notifier_invalidate_range_end(&range);
3625 return 0;
3626}
3627
3628static inline bool should_try_to_free_swap(struct page *page,
3629 struct vm_area_struct *vma,
3630 unsigned int fault_flags)
3631{
3632 if (!PageSwapCache(page))
3633 return false;
3634 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3635 PageMlocked(page))
3636 return true;
3637 /*
3638 * If we want to map a page that's in the swapcache writable, we
3639 * have to detect via the refcount if we're really the exclusive
3640 * user. Try freeing the swapcache to get rid of the swapcache
3641 * reference only in case it's likely that we'll be the exlusive user.
3642 */
3643 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3644 page_count(page) == 2;
3645}
3646
3647static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3648{
3649 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3650 vmf->address, &vmf->ptl);
3651 /*
3652 * Be careful so that we will only recover a special uffd-wp pte into a
3653 * none pte. Otherwise it means the pte could have changed, so retry.
3654 */
3655 if (is_pte_marker(*vmf->pte))
3656 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3657 pte_unmap_unlock(vmf->pte, vmf->ptl);
3658 return 0;
3659}
3660
3661/*
3662 * This is actually a page-missing access, but with uffd-wp special pte
3663 * installed. It means this pte was wr-protected before being unmapped.
3664 */
3665static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3666{
3667 /*
3668 * Just in case there're leftover special ptes even after the region
3669 * got unregistered - we can simply clear them. We can also do that
3670 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3671 * ranges, but it should be more efficient to be done lazily here.
3672 */
3673 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3674 return pte_marker_clear(vmf);
3675
3676 /* do_fault() can handle pte markers too like none pte */
3677 return do_fault(vmf);
3678}
3679
3680static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3681{
3682 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3683 unsigned long marker = pte_marker_get(entry);
3684
3685 /*
3686 * PTE markers should always be with file-backed memories, and the
3687 * marker should never be empty. If anything weird happened, the best
3688 * thing to do is to kill the process along with its mm.
3689 */
3690 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3691 return VM_FAULT_SIGBUS;
3692
3693 if (pte_marker_entry_uffd_wp(entry))
3694 return pte_marker_handle_uffd_wp(vmf);
3695
3696 /* This is an unknown pte marker */
3697 return VM_FAULT_SIGBUS;
3698}
3699
3700/*
3701 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3702 * but allow concurrent faults), and pte mapped but not yet locked.
3703 * We return with pte unmapped and unlocked.
3704 *
3705 * We return with the mmap_lock locked or unlocked in the same cases
3706 * as does filemap_fault().
3707 */
3708vm_fault_t do_swap_page(struct vm_fault *vmf)
3709{
3710 struct vm_area_struct *vma = vmf->vma;
3711 struct page *page = NULL, *swapcache;
3712 struct swap_info_struct *si = NULL;
3713 rmap_t rmap_flags = RMAP_NONE;
3714 bool exclusive = false;
3715 swp_entry_t entry;
3716 pte_t pte;
3717 int locked;
3718 vm_fault_t ret = 0;
3719 void *shadow = NULL;
3720
3721 if (!pte_unmap_same(vmf))
3722 goto out;
3723
3724 entry = pte_to_swp_entry(vmf->orig_pte);
3725 if (unlikely(non_swap_entry(entry))) {
3726 if (is_migration_entry(entry)) {
3727 migration_entry_wait(vma->vm_mm, vmf->pmd,
3728 vmf->address);
3729 } else if (is_device_exclusive_entry(entry)) {
3730 vmf->page = pfn_swap_entry_to_page(entry);
3731 ret = remove_device_exclusive_entry(vmf);
3732 } else if (is_device_private_entry(entry)) {
3733 vmf->page = pfn_swap_entry_to_page(entry);
3734 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3735 } else if (is_hwpoison_entry(entry)) {
3736 ret = VM_FAULT_HWPOISON;
3737 } else if (is_swapin_error_entry(entry)) {
3738 ret = VM_FAULT_SIGBUS;
3739 } else if (is_pte_marker_entry(entry)) {
3740 ret = handle_pte_marker(vmf);
3741 } else {
3742 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3743 ret = VM_FAULT_SIGBUS;
3744 }
3745 goto out;
3746 }
3747
3748 /* Prevent swapoff from happening to us. */
3749 si = get_swap_device(entry);
3750 if (unlikely(!si))
3751 goto out;
3752
3753 page = lookup_swap_cache(entry, vma, vmf->address);
3754 swapcache = page;
3755
3756 if (!page) {
3757 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3758 __swap_count(entry) == 1) {
3759 /* skip swapcache */
3760 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3761 vmf->address);
3762 if (page) {
3763 __SetPageLocked(page);
3764 __SetPageSwapBacked(page);
3765
3766 if (mem_cgroup_swapin_charge_page(page,
3767 vma->vm_mm, GFP_KERNEL, entry)) {
3768 ret = VM_FAULT_OOM;
3769 goto out_page;
3770 }
3771 mem_cgroup_swapin_uncharge_swap(entry);
3772
3773 shadow = get_shadow_from_swap_cache(entry);
3774 if (shadow)
3775 workingset_refault(page_folio(page),
3776 shadow);
3777
3778 lru_cache_add(page);
3779
3780 /* To provide entry to swap_readpage() */
3781 set_page_private(page, entry.val);
3782 swap_readpage(page, true, NULL);
3783 set_page_private(page, 0);
3784 }
3785 } else {
3786 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3787 vmf);
3788 swapcache = page;
3789 }
3790
3791 if (!page) {
3792 /*
3793 * Back out if somebody else faulted in this pte
3794 * while we released the pte lock.
3795 */
3796 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3797 vmf->address, &vmf->ptl);
3798 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3799 ret = VM_FAULT_OOM;
3800 goto unlock;
3801 }
3802
3803 /* Had to read the page from swap area: Major fault */
3804 ret = VM_FAULT_MAJOR;
3805 count_vm_event(PGMAJFAULT);
3806 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3807 } else if (PageHWPoison(page)) {
3808 /*
3809 * hwpoisoned dirty swapcache pages are kept for killing
3810 * owner processes (which may be unknown at hwpoison time)
3811 */
3812 ret = VM_FAULT_HWPOISON;
3813 goto out_release;
3814 }
3815
3816 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3817
3818 if (!locked) {
3819 ret |= VM_FAULT_RETRY;
3820 goto out_release;
3821 }
3822
3823 if (swapcache) {
3824 /*
3825 * Make sure try_to_free_swap or swapoff did not release the
3826 * swapcache from under us. The page pin, and pte_same test
3827 * below, are not enough to exclude that. Even if it is still
3828 * swapcache, we need to check that the page's swap has not
3829 * changed.
3830 */
3831 if (unlikely(!PageSwapCache(page) ||
3832 page_private(page) != entry.val))
3833 goto out_page;
3834
3835 /*
3836 * KSM sometimes has to copy on read faults, for example, if
3837 * page->index of !PageKSM() pages would be nonlinear inside the
3838 * anon VMA -- PageKSM() is lost on actual swapout.
3839 */
3840 page = ksm_might_need_to_copy(page, vma, vmf->address);
3841 if (unlikely(!page)) {
3842 ret = VM_FAULT_OOM;
3843 page = swapcache;
3844 goto out_page;
3845 }
3846
3847 /*
3848 * If we want to map a page that's in the swapcache writable, we
3849 * have to detect via the refcount if we're really the exclusive
3850 * owner. Try removing the extra reference from the local LRU
3851 * pagevecs if required.
3852 */
3853 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3854 !PageKsm(page) && !PageLRU(page))
3855 lru_add_drain();
3856 }
3857
3858 cgroup_throttle_swaprate(page, GFP_KERNEL);
3859
3860 /*
3861 * Back out if somebody else already faulted in this pte.
3862 */
3863 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3864 &vmf->ptl);
3865 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3866 goto out_nomap;
3867
3868 if (unlikely(!PageUptodate(page))) {
3869 ret = VM_FAULT_SIGBUS;
3870 goto out_nomap;
3871 }
3872
3873 /*
3874 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3875 * must never point at an anonymous page in the swapcache that is
3876 * PG_anon_exclusive. Sanity check that this holds and especially, that
3877 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3878 * check after taking the PT lock and making sure that nobody
3879 * concurrently faulted in this page and set PG_anon_exclusive.
3880 */
3881 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3882 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3883
3884 /*
3885 * Check under PT lock (to protect against concurrent fork() sharing
3886 * the swap entry concurrently) for certainly exclusive pages.
3887 */
3888 if (!PageKsm(page)) {
3889 /*
3890 * Note that pte_swp_exclusive() == false for architectures
3891 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3892 */
3893 exclusive = pte_swp_exclusive(vmf->orig_pte);
3894 if (page != swapcache) {
3895 /*
3896 * We have a fresh page that is not exposed to the
3897 * swapcache -> certainly exclusive.
3898 */
3899 exclusive = true;
3900 } else if (exclusive && PageWriteback(page) &&
3901 data_race(si->flags & SWP_STABLE_WRITES)) {
3902 /*
3903 * This is tricky: not all swap backends support
3904 * concurrent page modifications while under writeback.
3905 *
3906 * So if we stumble over such a page in the swapcache
3907 * we must not set the page exclusive, otherwise we can
3908 * map it writable without further checks and modify it
3909 * while still under writeback.
3910 *
3911 * For these problematic swap backends, simply drop the
3912 * exclusive marker: this is perfectly fine as we start
3913 * writeback only if we fully unmapped the page and
3914 * there are no unexpected references on the page after
3915 * unmapping succeeded. After fully unmapped, no
3916 * further GUP references (FOLL_GET and FOLL_PIN) can
3917 * appear, so dropping the exclusive marker and mapping
3918 * it only R/O is fine.
3919 */
3920 exclusive = false;
3921 }
3922 }
3923
3924 /*
3925 * Remove the swap entry and conditionally try to free up the swapcache.
3926 * We're already holding a reference on the page but haven't mapped it
3927 * yet.
3928 */
3929 swap_free(entry);
3930 if (should_try_to_free_swap(page, vma, vmf->flags))
3931 try_to_free_swap(page);
3932
3933 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3934 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3935 pte = mk_pte(page, vma->vm_page_prot);
3936
3937 /*
3938 * Same logic as in do_wp_page(); however, optimize for pages that are
3939 * certainly not shared either because we just allocated them without
3940 * exposing them to the swapcache or because the swap entry indicates
3941 * exclusivity.
3942 */
3943 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3944 if (vmf->flags & FAULT_FLAG_WRITE) {
3945 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3946 vmf->flags &= ~FAULT_FLAG_WRITE;
3947 ret |= VM_FAULT_WRITE;
3948 }
3949 rmap_flags |= RMAP_EXCLUSIVE;
3950 }
3951 flush_icache_page(vma, page);
3952 if (pte_swp_soft_dirty(vmf->orig_pte))
3953 pte = pte_mksoft_dirty(pte);
3954 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3955 pte = pte_mkuffd_wp(pte);
3956 pte = pte_wrprotect(pte);
3957 }
3958 vmf->orig_pte = pte;
3959
3960 /* ksm created a completely new copy */
3961 if (unlikely(page != swapcache && swapcache)) {
3962 page_add_new_anon_rmap(page, vma, vmf->address);
3963 lru_cache_add_inactive_or_unevictable(page, vma);
3964 } else {
3965 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3966 }
3967
3968 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3969 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3970 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3971
3972 unlock_page(page);
3973 if (page != swapcache && swapcache) {
3974 /*
3975 * Hold the lock to avoid the swap entry to be reused
3976 * until we take the PT lock for the pte_same() check
3977 * (to avoid false positives from pte_same). For
3978 * further safety release the lock after the swap_free
3979 * so that the swap count won't change under a
3980 * parallel locked swapcache.
3981 */
3982 unlock_page(swapcache);
3983 put_page(swapcache);
3984 }
3985
3986 if (vmf->flags & FAULT_FLAG_WRITE) {
3987 ret |= do_wp_page(vmf);
3988 if (ret & VM_FAULT_ERROR)
3989 ret &= VM_FAULT_ERROR;
3990 goto out;
3991 }
3992
3993 /* No need to invalidate - it was non-present before */
3994 update_mmu_cache(vma, vmf->address, vmf->pte);
3995unlock:
3996 pte_unmap_unlock(vmf->pte, vmf->ptl);
3997out:
3998 if (si)
3999 put_swap_device(si);
4000 return ret;
4001out_nomap:
4002 pte_unmap_unlock(vmf->pte, vmf->ptl);
4003out_page:
4004 unlock_page(page);
4005out_release:
4006 put_page(page);
4007 if (page != swapcache && swapcache) {
4008 unlock_page(swapcache);
4009 put_page(swapcache);
4010 }
4011 if (si)
4012 put_swap_device(si);
4013 return ret;
4014}
4015
4016/*
4017 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4018 * but allow concurrent faults), and pte mapped but not yet locked.
4019 * We return with mmap_lock still held, but pte unmapped and unlocked.
4020 */
4021static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4022{
4023 struct vm_area_struct *vma = vmf->vma;
4024 struct page *page;
4025 vm_fault_t ret = 0;
4026 pte_t entry;
4027
4028 /* File mapping without ->vm_ops ? */
4029 if (vma->vm_flags & VM_SHARED)
4030 return VM_FAULT_SIGBUS;
4031
4032 /*
4033 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4034 * pte_offset_map() on pmds where a huge pmd might be created
4035 * from a different thread.
4036 *
4037 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4038 * parallel threads are excluded by other means.
4039 *
4040 * Here we only have mmap_read_lock(mm).
4041 */
4042 if (pte_alloc(vma->vm_mm, vmf->pmd))
4043 return VM_FAULT_OOM;
4044
4045 /* See comment in handle_pte_fault() */
4046 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4047 return 0;
4048
4049 /* Use the zero-page for reads */
4050 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4051 !mm_forbids_zeropage(vma->vm_mm)) {
4052 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4053 vma->vm_page_prot));
4054 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4055 vmf->address, &vmf->ptl);
4056 if (!pte_none(*vmf->pte)) {
4057 update_mmu_tlb(vma, vmf->address, vmf->pte);
4058 goto unlock;
4059 }
4060 ret = check_stable_address_space(vma->vm_mm);
4061 if (ret)
4062 goto unlock;
4063 /* Deliver the page fault to userland, check inside PT lock */
4064 if (userfaultfd_missing(vma)) {
4065 pte_unmap_unlock(vmf->pte, vmf->ptl);
4066 return handle_userfault(vmf, VM_UFFD_MISSING);
4067 }
4068 goto setpte;
4069 }
4070
4071 /* Allocate our own private page. */
4072 if (unlikely(anon_vma_prepare(vma)))
4073 goto oom;
4074 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4075 if (!page)
4076 goto oom;
4077
4078 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4079 goto oom_free_page;
4080 cgroup_throttle_swaprate(page, GFP_KERNEL);
4081
4082 /*
4083 * The memory barrier inside __SetPageUptodate makes sure that
4084 * preceding stores to the page contents become visible before
4085 * the set_pte_at() write.
4086 */
4087 __SetPageUptodate(page);
4088
4089 entry = mk_pte(page, vma->vm_page_prot);
4090 entry = pte_sw_mkyoung(entry);
4091 if (vma->vm_flags & VM_WRITE)
4092 entry = pte_mkwrite(pte_mkdirty(entry));
4093
4094 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4095 &vmf->ptl);
4096 if (!pte_none(*vmf->pte)) {
4097 update_mmu_cache(vma, vmf->address, vmf->pte);
4098 goto release;
4099 }
4100
4101 ret = check_stable_address_space(vma->vm_mm);
4102 if (ret)
4103 goto release;
4104
4105 /* Deliver the page fault to userland, check inside PT lock */
4106 if (userfaultfd_missing(vma)) {
4107 pte_unmap_unlock(vmf->pte, vmf->ptl);
4108 put_page(page);
4109 return handle_userfault(vmf, VM_UFFD_MISSING);
4110 }
4111
4112 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4113 page_add_new_anon_rmap(page, vma, vmf->address);
4114 lru_cache_add_inactive_or_unevictable(page, vma);
4115setpte:
4116 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4117
4118 /* No need to invalidate - it was non-present before */
4119 update_mmu_cache(vma, vmf->address, vmf->pte);
4120unlock:
4121 pte_unmap_unlock(vmf->pte, vmf->ptl);
4122 return ret;
4123release:
4124 put_page(page);
4125 goto unlock;
4126oom_free_page:
4127 put_page(page);
4128oom:
4129 return VM_FAULT_OOM;
4130}
4131
4132/*
4133 * The mmap_lock must have been held on entry, and may have been
4134 * released depending on flags and vma->vm_ops->fault() return value.
4135 * See filemap_fault() and __lock_page_retry().
4136 */
4137static vm_fault_t __do_fault(struct vm_fault *vmf)
4138{
4139 struct vm_area_struct *vma = vmf->vma;
4140 vm_fault_t ret;
4141
4142 /*
4143 * Preallocate pte before we take page_lock because this might lead to
4144 * deadlocks for memcg reclaim which waits for pages under writeback:
4145 * lock_page(A)
4146 * SetPageWriteback(A)
4147 * unlock_page(A)
4148 * lock_page(B)
4149 * lock_page(B)
4150 * pte_alloc_one
4151 * shrink_page_list
4152 * wait_on_page_writeback(A)
4153 * SetPageWriteback(B)
4154 * unlock_page(B)
4155 * # flush A, B to clear the writeback
4156 */
4157 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4158 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4159 if (!vmf->prealloc_pte)
4160 return VM_FAULT_OOM;
4161 }
4162
4163 ret = vma->vm_ops->fault(vmf);
4164 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4165 VM_FAULT_DONE_COW)))
4166 return ret;
4167
4168 if (unlikely(PageHWPoison(vmf->page))) {
4169 struct page *page = vmf->page;
4170 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4171 if (ret & VM_FAULT_LOCKED) {
4172 if (page_mapped(page))
4173 unmap_mapping_pages(page_mapping(page),
4174 page->index, 1, false);
4175 /* Retry if a clean page was removed from the cache. */
4176 if (invalidate_inode_page(page))
4177 poisonret = VM_FAULT_NOPAGE;
4178 unlock_page(page);
4179 }
4180 put_page(page);
4181 vmf->page = NULL;
4182 return poisonret;
4183 }
4184
4185 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4186 lock_page(vmf->page);
4187 else
4188 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4189
4190 return ret;
4191}
4192
4193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4194static void deposit_prealloc_pte(struct vm_fault *vmf)
4195{
4196 struct vm_area_struct *vma = vmf->vma;
4197
4198 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4199 /*
4200 * We are going to consume the prealloc table,
4201 * count that as nr_ptes.
4202 */
4203 mm_inc_nr_ptes(vma->vm_mm);
4204 vmf->prealloc_pte = NULL;
4205}
4206
4207vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4208{
4209 struct vm_area_struct *vma = vmf->vma;
4210 bool write = vmf->flags & FAULT_FLAG_WRITE;
4211 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4212 pmd_t entry;
4213 int i;
4214 vm_fault_t ret = VM_FAULT_FALLBACK;
4215
4216 if (!transhuge_vma_suitable(vma, haddr))
4217 return ret;
4218
4219 page = compound_head(page);
4220 if (compound_order(page) != HPAGE_PMD_ORDER)
4221 return ret;
4222
4223 /*
4224 * Just backoff if any subpage of a THP is corrupted otherwise
4225 * the corrupted page may mapped by PMD silently to escape the
4226 * check. This kind of THP just can be PTE mapped. Access to
4227 * the corrupted subpage should trigger SIGBUS as expected.
4228 */
4229 if (unlikely(PageHasHWPoisoned(page)))
4230 return ret;
4231
4232 /*
4233 * Archs like ppc64 need additional space to store information
4234 * related to pte entry. Use the preallocated table for that.
4235 */
4236 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4237 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4238 if (!vmf->prealloc_pte)
4239 return VM_FAULT_OOM;
4240 }
4241
4242 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4243 if (unlikely(!pmd_none(*vmf->pmd)))
4244 goto out;
4245
4246 for (i = 0; i < HPAGE_PMD_NR; i++)
4247 flush_icache_page(vma, page + i);
4248
4249 entry = mk_huge_pmd(page, vma->vm_page_prot);
4250 if (write)
4251 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4252
4253 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4254 page_add_file_rmap(page, vma, true);
4255
4256 /*
4257 * deposit and withdraw with pmd lock held
4258 */
4259 if (arch_needs_pgtable_deposit())
4260 deposit_prealloc_pte(vmf);
4261
4262 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4263
4264 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4265
4266 /* fault is handled */
4267 ret = 0;
4268 count_vm_event(THP_FILE_MAPPED);
4269out:
4270 spin_unlock(vmf->ptl);
4271 return ret;
4272}
4273#else
4274vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4275{
4276 return VM_FAULT_FALLBACK;
4277}
4278#endif
4279
4280void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4281{
4282 struct vm_area_struct *vma = vmf->vma;
4283 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4284 bool write = vmf->flags & FAULT_FLAG_WRITE;
4285 bool prefault = vmf->address != addr;
4286 pte_t entry;
4287
4288 flush_icache_page(vma, page);
4289 entry = mk_pte(page, vma->vm_page_prot);
4290
4291 if (prefault && arch_wants_old_prefaulted_pte())
4292 entry = pte_mkold(entry);
4293 else
4294 entry = pte_sw_mkyoung(entry);
4295
4296 if (write)
4297 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4298 if (unlikely(uffd_wp))
4299 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4300 /* copy-on-write page */
4301 if (write && !(vma->vm_flags & VM_SHARED)) {
4302 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4303 page_add_new_anon_rmap(page, vma, addr);
4304 lru_cache_add_inactive_or_unevictable(page, vma);
4305 } else {
4306 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4307 page_add_file_rmap(page, vma, false);
4308 }
4309 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4310}
4311
4312static bool vmf_pte_changed(struct vm_fault *vmf)
4313{
4314 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4315 return !pte_same(*vmf->pte, vmf->orig_pte);
4316
4317 return !pte_none(*vmf->pte);
4318}
4319
4320/**
4321 * finish_fault - finish page fault once we have prepared the page to fault
4322 *
4323 * @vmf: structure describing the fault
4324 *
4325 * This function handles all that is needed to finish a page fault once the
4326 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4327 * given page, adds reverse page mapping, handles memcg charges and LRU
4328 * addition.
4329 *
4330 * The function expects the page to be locked and on success it consumes a
4331 * reference of a page being mapped (for the PTE which maps it).
4332 *
4333 * Return: %0 on success, %VM_FAULT_ code in case of error.
4334 */
4335vm_fault_t finish_fault(struct vm_fault *vmf)
4336{
4337 struct vm_area_struct *vma = vmf->vma;
4338 struct page *page;
4339 vm_fault_t ret;
4340
4341 /* Did we COW the page? */
4342 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4343 page = vmf->cow_page;
4344 else
4345 page = vmf->page;
4346
4347 /*
4348 * check even for read faults because we might have lost our CoWed
4349 * page
4350 */
4351 if (!(vma->vm_flags & VM_SHARED)) {
4352 ret = check_stable_address_space(vma->vm_mm);
4353 if (ret)
4354 return ret;
4355 }
4356
4357 if (pmd_none(*vmf->pmd)) {
4358 if (PageTransCompound(page)) {
4359 ret = do_set_pmd(vmf, page);
4360 if (ret != VM_FAULT_FALLBACK)
4361 return ret;
4362 }
4363
4364 if (vmf->prealloc_pte)
4365 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4366 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4367 return VM_FAULT_OOM;
4368 }
4369
4370 /*
4371 * See comment in handle_pte_fault() for how this scenario happens, we
4372 * need to return NOPAGE so that we drop this page.
4373 */
4374 if (pmd_devmap_trans_unstable(vmf->pmd))
4375 return VM_FAULT_NOPAGE;
4376
4377 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4378 vmf->address, &vmf->ptl);
4379
4380 /* Re-check under ptl */
4381 if (likely(!vmf_pte_changed(vmf))) {
4382 do_set_pte(vmf, page, vmf->address);
4383
4384 /* no need to invalidate: a not-present page won't be cached */
4385 update_mmu_cache(vma, vmf->address, vmf->pte);
4386
4387 ret = 0;
4388 } else {
4389 update_mmu_tlb(vma, vmf->address, vmf->pte);
4390 ret = VM_FAULT_NOPAGE;
4391 }
4392
4393 pte_unmap_unlock(vmf->pte, vmf->ptl);
4394 return ret;
4395}
4396
4397static unsigned long fault_around_bytes __read_mostly =
4398 rounddown_pow_of_two(65536);
4399
4400#ifdef CONFIG_DEBUG_FS
4401static int fault_around_bytes_get(void *data, u64 *val)
4402{
4403 *val = fault_around_bytes;
4404 return 0;
4405}
4406
4407/*
4408 * fault_around_bytes must be rounded down to the nearest page order as it's
4409 * what do_fault_around() expects to see.
4410 */
4411static int fault_around_bytes_set(void *data, u64 val)
4412{
4413 if (val / PAGE_SIZE > PTRS_PER_PTE)
4414 return -EINVAL;
4415 if (val > PAGE_SIZE)
4416 fault_around_bytes = rounddown_pow_of_two(val);
4417 else
4418 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4419 return 0;
4420}
4421DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4422 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4423
4424static int __init fault_around_debugfs(void)
4425{
4426 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4427 &fault_around_bytes_fops);
4428 return 0;
4429}
4430late_initcall(fault_around_debugfs);
4431#endif
4432
4433/*
4434 * do_fault_around() tries to map few pages around the fault address. The hope
4435 * is that the pages will be needed soon and this will lower the number of
4436 * faults to handle.
4437 *
4438 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4439 * not ready to be mapped: not up-to-date, locked, etc.
4440 *
4441 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4442 * only once.
4443 *
4444 * fault_around_bytes defines how many bytes we'll try to map.
4445 * do_fault_around() expects it to be set to a power of two less than or equal
4446 * to PTRS_PER_PTE.
4447 *
4448 * The virtual address of the area that we map is naturally aligned to
4449 * fault_around_bytes rounded down to the machine page size
4450 * (and therefore to page order). This way it's easier to guarantee
4451 * that we don't cross page table boundaries.
4452 */
4453static vm_fault_t do_fault_around(struct vm_fault *vmf)
4454{
4455 unsigned long address = vmf->address, nr_pages, mask;
4456 pgoff_t start_pgoff = vmf->pgoff;
4457 pgoff_t end_pgoff;
4458 int off;
4459
4460 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4461 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4462
4463 address = max(address & mask, vmf->vma->vm_start);
4464 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4465 start_pgoff -= off;
4466
4467 /*
4468 * end_pgoff is either the end of the page table, the end of
4469 * the vma or nr_pages from start_pgoff, depending what is nearest.
4470 */
4471 end_pgoff = start_pgoff -
4472 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4473 PTRS_PER_PTE - 1;
4474 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4475 start_pgoff + nr_pages - 1);
4476
4477 if (pmd_none(*vmf->pmd)) {
4478 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4479 if (!vmf->prealloc_pte)
4480 return VM_FAULT_OOM;
4481 }
4482
4483 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4484}
4485
4486/* Return true if we should do read fault-around, false otherwise */
4487static inline bool should_fault_around(struct vm_fault *vmf)
4488{
4489 /* No ->map_pages? No way to fault around... */
4490 if (!vmf->vma->vm_ops->map_pages)
4491 return false;
4492
4493 if (uffd_disable_fault_around(vmf->vma))
4494 return false;
4495
4496 return fault_around_bytes >> PAGE_SHIFT > 1;
4497}
4498
4499static vm_fault_t do_read_fault(struct vm_fault *vmf)
4500{
4501 vm_fault_t ret = 0;
4502
4503 /*
4504 * Let's call ->map_pages() first and use ->fault() as fallback
4505 * if page by the offset is not ready to be mapped (cold cache or
4506 * something).
4507 */
4508 if (should_fault_around(vmf)) {
4509 ret = do_fault_around(vmf);
4510 if (ret)
4511 return ret;
4512 }
4513
4514 ret = __do_fault(vmf);
4515 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4516 return ret;
4517
4518 ret |= finish_fault(vmf);
4519 unlock_page(vmf->page);
4520 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521 put_page(vmf->page);
4522 return ret;
4523}
4524
4525static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4526{
4527 struct vm_area_struct *vma = vmf->vma;
4528 vm_fault_t ret;
4529
4530 if (unlikely(anon_vma_prepare(vma)))
4531 return VM_FAULT_OOM;
4532
4533 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4534 if (!vmf->cow_page)
4535 return VM_FAULT_OOM;
4536
4537 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4538 GFP_KERNEL)) {
4539 put_page(vmf->cow_page);
4540 return VM_FAULT_OOM;
4541 }
4542 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4543
4544 ret = __do_fault(vmf);
4545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4546 goto uncharge_out;
4547 if (ret & VM_FAULT_DONE_COW)
4548 return ret;
4549
4550 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4551 __SetPageUptodate(vmf->cow_page);
4552
4553 ret |= finish_fault(vmf);
4554 unlock_page(vmf->page);
4555 put_page(vmf->page);
4556 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4557 goto uncharge_out;
4558 return ret;
4559uncharge_out:
4560 put_page(vmf->cow_page);
4561 return ret;
4562}
4563
4564static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4565{
4566 struct vm_area_struct *vma = vmf->vma;
4567 vm_fault_t ret, tmp;
4568
4569 ret = __do_fault(vmf);
4570 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571 return ret;
4572
4573 /*
4574 * Check if the backing address space wants to know that the page is
4575 * about to become writable
4576 */
4577 if (vma->vm_ops->page_mkwrite) {
4578 unlock_page(vmf->page);
4579 tmp = do_page_mkwrite(vmf);
4580 if (unlikely(!tmp ||
4581 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4582 put_page(vmf->page);
4583 return tmp;
4584 }
4585 }
4586
4587 ret |= finish_fault(vmf);
4588 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4589 VM_FAULT_RETRY))) {
4590 unlock_page(vmf->page);
4591 put_page(vmf->page);
4592 return ret;
4593 }
4594
4595 ret |= fault_dirty_shared_page(vmf);
4596 return ret;
4597}
4598
4599/*
4600 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4601 * but allow concurrent faults).
4602 * The mmap_lock may have been released depending on flags and our
4603 * return value. See filemap_fault() and __folio_lock_or_retry().
4604 * If mmap_lock is released, vma may become invalid (for example
4605 * by other thread calling munmap()).
4606 */
4607static vm_fault_t do_fault(struct vm_fault *vmf)
4608{
4609 struct vm_area_struct *vma = vmf->vma;
4610 struct mm_struct *vm_mm = vma->vm_mm;
4611 vm_fault_t ret;
4612
4613 /*
4614 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4615 */
4616 if (!vma->vm_ops->fault) {
4617 /*
4618 * If we find a migration pmd entry or a none pmd entry, which
4619 * should never happen, return SIGBUS
4620 */
4621 if (unlikely(!pmd_present(*vmf->pmd)))
4622 ret = VM_FAULT_SIGBUS;
4623 else {
4624 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4625 vmf->pmd,
4626 vmf->address,
4627 &vmf->ptl);
4628 /*
4629 * Make sure this is not a temporary clearing of pte
4630 * by holding ptl and checking again. A R/M/W update
4631 * of pte involves: take ptl, clearing the pte so that
4632 * we don't have concurrent modification by hardware
4633 * followed by an update.
4634 */
4635 if (unlikely(pte_none(*vmf->pte)))
4636 ret = VM_FAULT_SIGBUS;
4637 else
4638 ret = VM_FAULT_NOPAGE;
4639
4640 pte_unmap_unlock(vmf->pte, vmf->ptl);
4641 }
4642 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4643 ret = do_read_fault(vmf);
4644 else if (!(vma->vm_flags & VM_SHARED))
4645 ret = do_cow_fault(vmf);
4646 else
4647 ret = do_shared_fault(vmf);
4648
4649 /* preallocated pagetable is unused: free it */
4650 if (vmf->prealloc_pte) {
4651 pte_free(vm_mm, vmf->prealloc_pte);
4652 vmf->prealloc_pte = NULL;
4653 }
4654 return ret;
4655}
4656
4657int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4658 unsigned long addr, int page_nid, int *flags)
4659{
4660 get_page(page);
4661
4662 count_vm_numa_event(NUMA_HINT_FAULTS);
4663 if (page_nid == numa_node_id()) {
4664 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4665 *flags |= TNF_FAULT_LOCAL;
4666 }
4667
4668 return mpol_misplaced(page, vma, addr);
4669}
4670
4671static vm_fault_t do_numa_page(struct vm_fault *vmf)
4672{
4673 struct vm_area_struct *vma = vmf->vma;
4674 struct page *page = NULL;
4675 int page_nid = NUMA_NO_NODE;
4676 int last_cpupid;
4677 int target_nid;
4678 pte_t pte, old_pte;
4679 bool was_writable = pte_savedwrite(vmf->orig_pte);
4680 int flags = 0;
4681
4682 /*
4683 * The "pte" at this point cannot be used safely without
4684 * validation through pte_unmap_same(). It's of NUMA type but
4685 * the pfn may be screwed if the read is non atomic.
4686 */
4687 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4688 spin_lock(vmf->ptl);
4689 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4690 pte_unmap_unlock(vmf->pte, vmf->ptl);
4691 goto out;
4692 }
4693
4694 /* Get the normal PTE */
4695 old_pte = ptep_get(vmf->pte);
4696 pte = pte_modify(old_pte, vma->vm_page_prot);
4697
4698 page = vm_normal_page(vma, vmf->address, pte);
4699 if (!page || is_zone_device_page(page))
4700 goto out_map;
4701
4702 /* TODO: handle PTE-mapped THP */
4703 if (PageCompound(page))
4704 goto out_map;
4705
4706 /*
4707 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4708 * much anyway since they can be in shared cache state. This misses
4709 * the case where a mapping is writable but the process never writes
4710 * to it but pte_write gets cleared during protection updates and
4711 * pte_dirty has unpredictable behaviour between PTE scan updates,
4712 * background writeback, dirty balancing and application behaviour.
4713 */
4714 if (!was_writable)
4715 flags |= TNF_NO_GROUP;
4716
4717 /*
4718 * Flag if the page is shared between multiple address spaces. This
4719 * is later used when determining whether to group tasks together
4720 */
4721 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4722 flags |= TNF_SHARED;
4723
4724 page_nid = page_to_nid(page);
4725 /*
4726 * For memory tiering mode, cpupid of slow memory page is used
4727 * to record page access time. So use default value.
4728 */
4729 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4730 !node_is_toptier(page_nid))
4731 last_cpupid = (-1 & LAST_CPUPID_MASK);
4732 else
4733 last_cpupid = page_cpupid_last(page);
4734 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4735 &flags);
4736 if (target_nid == NUMA_NO_NODE) {
4737 put_page(page);
4738 goto out_map;
4739 }
4740 pte_unmap_unlock(vmf->pte, vmf->ptl);
4741
4742 /* Migrate to the requested node */
4743 if (migrate_misplaced_page(page, vma, target_nid)) {
4744 page_nid = target_nid;
4745 flags |= TNF_MIGRATED;
4746 } else {
4747 flags |= TNF_MIGRATE_FAIL;
4748 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4749 spin_lock(vmf->ptl);
4750 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4751 pte_unmap_unlock(vmf->pte, vmf->ptl);
4752 goto out;
4753 }
4754 goto out_map;
4755 }
4756
4757out:
4758 if (page_nid != NUMA_NO_NODE)
4759 task_numa_fault(last_cpupid, page_nid, 1, flags);
4760 return 0;
4761out_map:
4762 /*
4763 * Make it present again, depending on how arch implements
4764 * non-accessible ptes, some can allow access by kernel mode.
4765 */
4766 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4767 pte = pte_modify(old_pte, vma->vm_page_prot);
4768 pte = pte_mkyoung(pte);
4769 if (was_writable)
4770 pte = pte_mkwrite(pte);
4771 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4772 update_mmu_cache(vma, vmf->address, vmf->pte);
4773 pte_unmap_unlock(vmf->pte, vmf->ptl);
4774 goto out;
4775}
4776
4777static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4778{
4779 if (vma_is_anonymous(vmf->vma))
4780 return do_huge_pmd_anonymous_page(vmf);
4781 if (vmf->vma->vm_ops->huge_fault)
4782 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4783 return VM_FAULT_FALLBACK;
4784}
4785
4786/* `inline' is required to avoid gcc 4.1.2 build error */
4787static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4788{
4789 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4790
4791 if (vma_is_anonymous(vmf->vma)) {
4792 if (likely(!unshare) &&
4793 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4794 return handle_userfault(vmf, VM_UFFD_WP);
4795 return do_huge_pmd_wp_page(vmf);
4796 }
4797 if (vmf->vma->vm_ops->huge_fault) {
4798 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4799
4800 if (!(ret & VM_FAULT_FALLBACK))
4801 return ret;
4802 }
4803
4804 /* COW or write-notify handled on pte level: split pmd. */
4805 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4806
4807 return VM_FAULT_FALLBACK;
4808}
4809
4810static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4811{
4812#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4813 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4814 /* No support for anonymous transparent PUD pages yet */
4815 if (vma_is_anonymous(vmf->vma))
4816 return VM_FAULT_FALLBACK;
4817 if (vmf->vma->vm_ops->huge_fault)
4818 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4819#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4820 return VM_FAULT_FALLBACK;
4821}
4822
4823static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4824{
4825#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4826 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4827 /* No support for anonymous transparent PUD pages yet */
4828 if (vma_is_anonymous(vmf->vma))
4829 goto split;
4830 if (vmf->vma->vm_ops->huge_fault) {
4831 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4832
4833 if (!(ret & VM_FAULT_FALLBACK))
4834 return ret;
4835 }
4836split:
4837 /* COW or write-notify not handled on PUD level: split pud.*/
4838 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4839#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4840 return VM_FAULT_FALLBACK;
4841}
4842
4843/*
4844 * These routines also need to handle stuff like marking pages dirty
4845 * and/or accessed for architectures that don't do it in hardware (most
4846 * RISC architectures). The early dirtying is also good on the i386.
4847 *
4848 * There is also a hook called "update_mmu_cache()" that architectures
4849 * with external mmu caches can use to update those (ie the Sparc or
4850 * PowerPC hashed page tables that act as extended TLBs).
4851 *
4852 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4853 * concurrent faults).
4854 *
4855 * The mmap_lock may have been released depending on flags and our return value.
4856 * See filemap_fault() and __folio_lock_or_retry().
4857 */
4858static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4859{
4860 pte_t entry;
4861
4862 if (unlikely(pmd_none(*vmf->pmd))) {
4863 /*
4864 * Leave __pte_alloc() until later: because vm_ops->fault may
4865 * want to allocate huge page, and if we expose page table
4866 * for an instant, it will be difficult to retract from
4867 * concurrent faults and from rmap lookups.
4868 */
4869 vmf->pte = NULL;
4870 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4871 } else {
4872 /*
4873 * If a huge pmd materialized under us just retry later. Use
4874 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4875 * of pmd_trans_huge() to ensure the pmd didn't become
4876 * pmd_trans_huge under us and then back to pmd_none, as a
4877 * result of MADV_DONTNEED running immediately after a huge pmd
4878 * fault in a different thread of this mm, in turn leading to a
4879 * misleading pmd_trans_huge() retval. All we have to ensure is
4880 * that it is a regular pmd that we can walk with
4881 * pte_offset_map() and we can do that through an atomic read
4882 * in C, which is what pmd_trans_unstable() provides.
4883 */
4884 if (pmd_devmap_trans_unstable(vmf->pmd))
4885 return 0;
4886 /*
4887 * A regular pmd is established and it can't morph into a huge
4888 * pmd from under us anymore at this point because we hold the
4889 * mmap_lock read mode and khugepaged takes it in write mode.
4890 * So now it's safe to run pte_offset_map().
4891 */
4892 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4893 vmf->orig_pte = *vmf->pte;
4894 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4895
4896 /*
4897 * some architectures can have larger ptes than wordsize,
4898 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4899 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4900 * accesses. The code below just needs a consistent view
4901 * for the ifs and we later double check anyway with the
4902 * ptl lock held. So here a barrier will do.
4903 */
4904 barrier();
4905 if (pte_none(vmf->orig_pte)) {
4906 pte_unmap(vmf->pte);
4907 vmf->pte = NULL;
4908 }
4909 }
4910
4911 if (!vmf->pte) {
4912 if (vma_is_anonymous(vmf->vma))
4913 return do_anonymous_page(vmf);
4914 else
4915 return do_fault(vmf);
4916 }
4917
4918 if (!pte_present(vmf->orig_pte))
4919 return do_swap_page(vmf);
4920
4921 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4922 return do_numa_page(vmf);
4923
4924 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4925 spin_lock(vmf->ptl);
4926 entry = vmf->orig_pte;
4927 if (unlikely(!pte_same(*vmf->pte, entry))) {
4928 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4929 goto unlock;
4930 }
4931 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4932 if (!pte_write(entry))
4933 return do_wp_page(vmf);
4934 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4935 entry = pte_mkdirty(entry);
4936 }
4937 entry = pte_mkyoung(entry);
4938 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4939 vmf->flags & FAULT_FLAG_WRITE)) {
4940 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4941 } else {
4942 /* Skip spurious TLB flush for retried page fault */
4943 if (vmf->flags & FAULT_FLAG_TRIED)
4944 goto unlock;
4945 /*
4946 * This is needed only for protection faults but the arch code
4947 * is not yet telling us if this is a protection fault or not.
4948 * This still avoids useless tlb flushes for .text page faults
4949 * with threads.
4950 */
4951 if (vmf->flags & FAULT_FLAG_WRITE)
4952 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4953 }
4954unlock:
4955 pte_unmap_unlock(vmf->pte, vmf->ptl);
4956 return 0;
4957}
4958
4959/*
4960 * By the time we get here, we already hold the mm semaphore
4961 *
4962 * The mmap_lock may have been released depending on flags and our
4963 * return value. See filemap_fault() and __folio_lock_or_retry().
4964 */
4965static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4966 unsigned long address, unsigned int flags)
4967{
4968 struct vm_fault vmf = {
4969 .vma = vma,
4970 .address = address & PAGE_MASK,
4971 .real_address = address,
4972 .flags = flags,
4973 .pgoff = linear_page_index(vma, address),
4974 .gfp_mask = __get_fault_gfp_mask(vma),
4975 };
4976 struct mm_struct *mm = vma->vm_mm;
4977 unsigned long vm_flags = vma->vm_flags;
4978 pgd_t *pgd;
4979 p4d_t *p4d;
4980 vm_fault_t ret;
4981
4982 pgd = pgd_offset(mm, address);
4983 p4d = p4d_alloc(mm, pgd, address);
4984 if (!p4d)
4985 return VM_FAULT_OOM;
4986
4987 vmf.pud = pud_alloc(mm, p4d, address);
4988 if (!vmf.pud)
4989 return VM_FAULT_OOM;
4990retry_pud:
4991 if (pud_none(*vmf.pud) &&
4992 hugepage_vma_check(vma, vm_flags, false, true, true)) {
4993 ret = create_huge_pud(&vmf);
4994 if (!(ret & VM_FAULT_FALLBACK))
4995 return ret;
4996 } else {
4997 pud_t orig_pud = *vmf.pud;
4998
4999 barrier();
5000 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5001
5002 /*
5003 * TODO once we support anonymous PUDs: NUMA case and
5004 * FAULT_FLAG_UNSHARE handling.
5005 */
5006 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5007 ret = wp_huge_pud(&vmf, orig_pud);
5008 if (!(ret & VM_FAULT_FALLBACK))
5009 return ret;
5010 } else {
5011 huge_pud_set_accessed(&vmf, orig_pud);
5012 return 0;
5013 }
5014 }
5015 }
5016
5017 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5018 if (!vmf.pmd)
5019 return VM_FAULT_OOM;
5020
5021 /* Huge pud page fault raced with pmd_alloc? */
5022 if (pud_trans_unstable(vmf.pud))
5023 goto retry_pud;
5024
5025 if (pmd_none(*vmf.pmd) &&
5026 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5027 ret = create_huge_pmd(&vmf);
5028 if (!(ret & VM_FAULT_FALLBACK))
5029 return ret;
5030 } else {
5031 vmf.orig_pmd = *vmf.pmd;
5032
5033 barrier();
5034 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5035 VM_BUG_ON(thp_migration_supported() &&
5036 !is_pmd_migration_entry(vmf.orig_pmd));
5037 if (is_pmd_migration_entry(vmf.orig_pmd))
5038 pmd_migration_entry_wait(mm, vmf.pmd);
5039 return 0;
5040 }
5041 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5042 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5043 return do_huge_pmd_numa_page(&vmf);
5044
5045 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5046 !pmd_write(vmf.orig_pmd)) {
5047 ret = wp_huge_pmd(&vmf);
5048 if (!(ret & VM_FAULT_FALLBACK))
5049 return ret;
5050 } else {
5051 huge_pmd_set_accessed(&vmf);
5052 return 0;
5053 }
5054 }
5055 }
5056
5057 return handle_pte_fault(&vmf);
5058}
5059
5060/**
5061 * mm_account_fault - Do page fault accounting
5062 *
5063 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5064 * of perf event counters, but we'll still do the per-task accounting to
5065 * the task who triggered this page fault.
5066 * @address: the faulted address.
5067 * @flags: the fault flags.
5068 * @ret: the fault retcode.
5069 *
5070 * This will take care of most of the page fault accounting. Meanwhile, it
5071 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5072 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5073 * still be in per-arch page fault handlers at the entry of page fault.
5074 */
5075static inline void mm_account_fault(struct pt_regs *regs,
5076 unsigned long address, unsigned int flags,
5077 vm_fault_t ret)
5078{
5079 bool major;
5080
5081 /*
5082 * We don't do accounting for some specific faults:
5083 *
5084 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5085 * includes arch_vma_access_permitted() failing before reaching here.
5086 * So this is not a "this many hardware page faults" counter. We
5087 * should use the hw profiling for that.
5088 *
5089 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5090 * once they're completed.
5091 */
5092 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5093 return;
5094
5095 /*
5096 * We define the fault as a major fault when the final successful fault
5097 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5098 * handle it immediately previously).
5099 */
5100 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5101
5102 if (major)
5103 current->maj_flt++;
5104 else
5105 current->min_flt++;
5106
5107 /*
5108 * If the fault is done for GUP, regs will be NULL. We only do the
5109 * accounting for the per thread fault counters who triggered the
5110 * fault, and we skip the perf event updates.
5111 */
5112 if (!regs)
5113 return;
5114
5115 if (major)
5116 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5117 else
5118 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5119}
5120
5121#ifdef CONFIG_LRU_GEN
5122static void lru_gen_enter_fault(struct vm_area_struct *vma)
5123{
5124 /* the LRU algorithm doesn't apply to sequential or random reads */
5125 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5126}
5127
5128static void lru_gen_exit_fault(void)
5129{
5130 current->in_lru_fault = false;
5131}
5132#else
5133static void lru_gen_enter_fault(struct vm_area_struct *vma)
5134{
5135}
5136
5137static void lru_gen_exit_fault(void)
5138{
5139}
5140#endif /* CONFIG_LRU_GEN */
5141
5142/*
5143 * By the time we get here, we already hold the mm semaphore
5144 *
5145 * The mmap_lock may have been released depending on flags and our
5146 * return value. See filemap_fault() and __folio_lock_or_retry().
5147 */
5148vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5149 unsigned int flags, struct pt_regs *regs)
5150{
5151 vm_fault_t ret;
5152
5153 __set_current_state(TASK_RUNNING);
5154
5155 count_vm_event(PGFAULT);
5156 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5157
5158 /* do counter updates before entering really critical section. */
5159 check_sync_rss_stat(current);
5160
5161 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5162 flags & FAULT_FLAG_INSTRUCTION,
5163 flags & FAULT_FLAG_REMOTE))
5164 return VM_FAULT_SIGSEGV;
5165
5166 /*
5167 * Enable the memcg OOM handling for faults triggered in user
5168 * space. Kernel faults are handled more gracefully.
5169 */
5170 if (flags & FAULT_FLAG_USER)
5171 mem_cgroup_enter_user_fault();
5172
5173 lru_gen_enter_fault(vma);
5174
5175 if (unlikely(is_vm_hugetlb_page(vma)))
5176 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5177 else
5178 ret = __handle_mm_fault(vma, address, flags);
5179
5180 lru_gen_exit_fault();
5181
5182 if (flags & FAULT_FLAG_USER) {
5183 mem_cgroup_exit_user_fault();
5184 /*
5185 * The task may have entered a memcg OOM situation but
5186 * if the allocation error was handled gracefully (no
5187 * VM_FAULT_OOM), there is no need to kill anything.
5188 * Just clean up the OOM state peacefully.
5189 */
5190 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5191 mem_cgroup_oom_synchronize(false);
5192 }
5193
5194 mm_account_fault(regs, address, flags, ret);
5195
5196 return ret;
5197}
5198EXPORT_SYMBOL_GPL(handle_mm_fault);
5199
5200#ifndef __PAGETABLE_P4D_FOLDED
5201/*
5202 * Allocate p4d page table.
5203 * We've already handled the fast-path in-line.
5204 */
5205int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5206{
5207 p4d_t *new = p4d_alloc_one(mm, address);
5208 if (!new)
5209 return -ENOMEM;
5210
5211 spin_lock(&mm->page_table_lock);
5212 if (pgd_present(*pgd)) { /* Another has populated it */
5213 p4d_free(mm, new);
5214 } else {
5215 smp_wmb(); /* See comment in pmd_install() */
5216 pgd_populate(mm, pgd, new);
5217 }
5218 spin_unlock(&mm->page_table_lock);
5219 return 0;
5220}
5221#endif /* __PAGETABLE_P4D_FOLDED */
5222
5223#ifndef __PAGETABLE_PUD_FOLDED
5224/*
5225 * Allocate page upper directory.
5226 * We've already handled the fast-path in-line.
5227 */
5228int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5229{
5230 pud_t *new = pud_alloc_one(mm, address);
5231 if (!new)
5232 return -ENOMEM;
5233
5234 spin_lock(&mm->page_table_lock);
5235 if (!p4d_present(*p4d)) {
5236 mm_inc_nr_puds(mm);
5237 smp_wmb(); /* See comment in pmd_install() */
5238 p4d_populate(mm, p4d, new);
5239 } else /* Another has populated it */
5240 pud_free(mm, new);
5241 spin_unlock(&mm->page_table_lock);
5242 return 0;
5243}
5244#endif /* __PAGETABLE_PUD_FOLDED */
5245
5246#ifndef __PAGETABLE_PMD_FOLDED
5247/*
5248 * Allocate page middle directory.
5249 * We've already handled the fast-path in-line.
5250 */
5251int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5252{
5253 spinlock_t *ptl;
5254 pmd_t *new = pmd_alloc_one(mm, address);
5255 if (!new)
5256 return -ENOMEM;
5257
5258 ptl = pud_lock(mm, pud);
5259 if (!pud_present(*pud)) {
5260 mm_inc_nr_pmds(mm);
5261 smp_wmb(); /* See comment in pmd_install() */
5262 pud_populate(mm, pud, new);
5263 } else { /* Another has populated it */
5264 pmd_free(mm, new);
5265 }
5266 spin_unlock(ptl);
5267 return 0;
5268}
5269#endif /* __PAGETABLE_PMD_FOLDED */
5270
5271/**
5272 * follow_pte - look up PTE at a user virtual address
5273 * @mm: the mm_struct of the target address space
5274 * @address: user virtual address
5275 * @ptepp: location to store found PTE
5276 * @ptlp: location to store the lock for the PTE
5277 *
5278 * On a successful return, the pointer to the PTE is stored in @ptepp;
5279 * the corresponding lock is taken and its location is stored in @ptlp.
5280 * The contents of the PTE are only stable until @ptlp is released;
5281 * any further use, if any, must be protected against invalidation
5282 * with MMU notifiers.
5283 *
5284 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5285 * should be taken for read.
5286 *
5287 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5288 * it is not a good general-purpose API.
5289 *
5290 * Return: zero on success, -ve otherwise.
5291 */
5292int follow_pte(struct mm_struct *mm, unsigned long address,
5293 pte_t **ptepp, spinlock_t **ptlp)
5294{
5295 pgd_t *pgd;
5296 p4d_t *p4d;
5297 pud_t *pud;
5298 pmd_t *pmd;
5299 pte_t *ptep;
5300
5301 pgd = pgd_offset(mm, address);
5302 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5303 goto out;
5304
5305 p4d = p4d_offset(pgd, address);
5306 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5307 goto out;
5308
5309 pud = pud_offset(p4d, address);
5310 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5311 goto out;
5312
5313 pmd = pmd_offset(pud, address);
5314 VM_BUG_ON(pmd_trans_huge(*pmd));
5315
5316 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5317 goto out;
5318
5319 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5320 if (!pte_present(*ptep))
5321 goto unlock;
5322 *ptepp = ptep;
5323 return 0;
5324unlock:
5325 pte_unmap_unlock(ptep, *ptlp);
5326out:
5327 return -EINVAL;
5328}
5329EXPORT_SYMBOL_GPL(follow_pte);
5330
5331/**
5332 * follow_pfn - look up PFN at a user virtual address
5333 * @vma: memory mapping
5334 * @address: user virtual address
5335 * @pfn: location to store found PFN
5336 *
5337 * Only IO mappings and raw PFN mappings are allowed.
5338 *
5339 * This function does not allow the caller to read the permissions
5340 * of the PTE. Do not use it.
5341 *
5342 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5343 */
5344int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5345 unsigned long *pfn)
5346{
5347 int ret = -EINVAL;
5348 spinlock_t *ptl;
5349 pte_t *ptep;
5350
5351 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5352 return ret;
5353
5354 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5355 if (ret)
5356 return ret;
5357 *pfn = pte_pfn(*ptep);
5358 pte_unmap_unlock(ptep, ptl);
5359 return 0;
5360}
5361EXPORT_SYMBOL(follow_pfn);
5362
5363#ifdef CONFIG_HAVE_IOREMAP_PROT
5364int follow_phys(struct vm_area_struct *vma,
5365 unsigned long address, unsigned int flags,
5366 unsigned long *prot, resource_size_t *phys)
5367{
5368 int ret = -EINVAL;
5369 pte_t *ptep, pte;
5370 spinlock_t *ptl;
5371
5372 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5373 goto out;
5374
5375 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5376 goto out;
5377 pte = *ptep;
5378
5379 if ((flags & FOLL_WRITE) && !pte_write(pte))
5380 goto unlock;
5381
5382 *prot = pgprot_val(pte_pgprot(pte));
5383 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5384
5385 ret = 0;
5386unlock:
5387 pte_unmap_unlock(ptep, ptl);
5388out:
5389 return ret;
5390}
5391
5392/**
5393 * generic_access_phys - generic implementation for iomem mmap access
5394 * @vma: the vma to access
5395 * @addr: userspace address, not relative offset within @vma
5396 * @buf: buffer to read/write
5397 * @len: length of transfer
5398 * @write: set to FOLL_WRITE when writing, otherwise reading
5399 *
5400 * This is a generic implementation for &vm_operations_struct.access for an
5401 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5402 * not page based.
5403 */
5404int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5405 void *buf, int len, int write)
5406{
5407 resource_size_t phys_addr;
5408 unsigned long prot = 0;
5409 void __iomem *maddr;
5410 pte_t *ptep, pte;
5411 spinlock_t *ptl;
5412 int offset = offset_in_page(addr);
5413 int ret = -EINVAL;
5414
5415 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5416 return -EINVAL;
5417
5418retry:
5419 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5420 return -EINVAL;
5421 pte = *ptep;
5422 pte_unmap_unlock(ptep, ptl);
5423
5424 prot = pgprot_val(pte_pgprot(pte));
5425 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5426
5427 if ((write & FOLL_WRITE) && !pte_write(pte))
5428 return -EINVAL;
5429
5430 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5431 if (!maddr)
5432 return -ENOMEM;
5433
5434 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5435 goto out_unmap;
5436
5437 if (!pte_same(pte, *ptep)) {
5438 pte_unmap_unlock(ptep, ptl);
5439 iounmap(maddr);
5440
5441 goto retry;
5442 }
5443
5444 if (write)
5445 memcpy_toio(maddr + offset, buf, len);
5446 else
5447 memcpy_fromio(buf, maddr + offset, len);
5448 ret = len;
5449 pte_unmap_unlock(ptep, ptl);
5450out_unmap:
5451 iounmap(maddr);
5452
5453 return ret;
5454}
5455EXPORT_SYMBOL_GPL(generic_access_phys);
5456#endif
5457
5458/*
5459 * Access another process' address space as given in mm.
5460 */
5461int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5462 int len, unsigned int gup_flags)
5463{
5464 struct vm_area_struct *vma;
5465 void *old_buf = buf;
5466 int write = gup_flags & FOLL_WRITE;
5467
5468 if (mmap_read_lock_killable(mm))
5469 return 0;
5470
5471 /* ignore errors, just check how much was successfully transferred */
5472 while (len) {
5473 int bytes, ret, offset;
5474 void *maddr;
5475 struct page *page = NULL;
5476
5477 ret = get_user_pages_remote(mm, addr, 1,
5478 gup_flags, &page, &vma, NULL);
5479 if (ret <= 0) {
5480#ifndef CONFIG_HAVE_IOREMAP_PROT
5481 break;
5482#else
5483 /*
5484 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5485 * we can access using slightly different code.
5486 */
5487 vma = vma_lookup(mm, addr);
5488 if (!vma)
5489 break;
5490 if (vma->vm_ops && vma->vm_ops->access)
5491 ret = vma->vm_ops->access(vma, addr, buf,
5492 len, write);
5493 if (ret <= 0)
5494 break;
5495 bytes = ret;
5496#endif
5497 } else {
5498 bytes = len;
5499 offset = addr & (PAGE_SIZE-1);
5500 if (bytes > PAGE_SIZE-offset)
5501 bytes = PAGE_SIZE-offset;
5502
5503 maddr = kmap(page);
5504 if (write) {
5505 copy_to_user_page(vma, page, addr,
5506 maddr + offset, buf, bytes);
5507 set_page_dirty_lock(page);
5508 } else {
5509 copy_from_user_page(vma, page, addr,
5510 buf, maddr + offset, bytes);
5511 }
5512 kunmap(page);
5513 put_page(page);
5514 }
5515 len -= bytes;
5516 buf += bytes;
5517 addr += bytes;
5518 }
5519 mmap_read_unlock(mm);
5520
5521 return buf - old_buf;
5522}
5523
5524/**
5525 * access_remote_vm - access another process' address space
5526 * @mm: the mm_struct of the target address space
5527 * @addr: start address to access
5528 * @buf: source or destination buffer
5529 * @len: number of bytes to transfer
5530 * @gup_flags: flags modifying lookup behaviour
5531 *
5532 * The caller must hold a reference on @mm.
5533 *
5534 * Return: number of bytes copied from source to destination.
5535 */
5536int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5537 void *buf, int len, unsigned int gup_flags)
5538{
5539 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5540}
5541
5542/*
5543 * Access another process' address space.
5544 * Source/target buffer must be kernel space,
5545 * Do not walk the page table directly, use get_user_pages
5546 */
5547int access_process_vm(struct task_struct *tsk, unsigned long addr,
5548 void *buf, int len, unsigned int gup_flags)
5549{
5550 struct mm_struct *mm;
5551 int ret;
5552
5553 mm = get_task_mm(tsk);
5554 if (!mm)
5555 return 0;
5556
5557 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5558
5559 mmput(mm);
5560
5561 return ret;
5562}
5563EXPORT_SYMBOL_GPL(access_process_vm);
5564
5565/*
5566 * Print the name of a VMA.
5567 */
5568void print_vma_addr(char *prefix, unsigned long ip)
5569{
5570 struct mm_struct *mm = current->mm;
5571 struct vm_area_struct *vma;
5572
5573 /*
5574 * we might be running from an atomic context so we cannot sleep
5575 */
5576 if (!mmap_read_trylock(mm))
5577 return;
5578
5579 vma = find_vma(mm, ip);
5580 if (vma && vma->vm_file) {
5581 struct file *f = vma->vm_file;
5582 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5583 if (buf) {
5584 char *p;
5585
5586 p = file_path(f, buf, PAGE_SIZE);
5587 if (IS_ERR(p))
5588 p = "?";
5589 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5590 vma->vm_start,
5591 vma->vm_end - vma->vm_start);
5592 free_page((unsigned long)buf);
5593 }
5594 }
5595 mmap_read_unlock(mm);
5596}
5597
5598#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5599void __might_fault(const char *file, int line)
5600{
5601 if (pagefault_disabled())
5602 return;
5603 __might_sleep(file, line);
5604#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5605 if (current->mm)
5606 might_lock_read(&current->mm->mmap_lock);
5607#endif
5608}
5609EXPORT_SYMBOL(__might_fault);
5610#endif
5611
5612#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5613/*
5614 * Process all subpages of the specified huge page with the specified
5615 * operation. The target subpage will be processed last to keep its
5616 * cache lines hot.
5617 */
5618static inline void process_huge_page(
5619 unsigned long addr_hint, unsigned int pages_per_huge_page,
5620 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5621 void *arg)
5622{
5623 int i, n, base, l;
5624 unsigned long addr = addr_hint &
5625 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5626
5627 /* Process target subpage last to keep its cache lines hot */
5628 might_sleep();
5629 n = (addr_hint - addr) / PAGE_SIZE;
5630 if (2 * n <= pages_per_huge_page) {
5631 /* If target subpage in first half of huge page */
5632 base = 0;
5633 l = n;
5634 /* Process subpages at the end of huge page */
5635 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5636 cond_resched();
5637 process_subpage(addr + i * PAGE_SIZE, i, arg);
5638 }
5639 } else {
5640 /* If target subpage in second half of huge page */
5641 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5642 l = pages_per_huge_page - n;
5643 /* Process subpages at the begin of huge page */
5644 for (i = 0; i < base; i++) {
5645 cond_resched();
5646 process_subpage(addr + i * PAGE_SIZE, i, arg);
5647 }
5648 }
5649 /*
5650 * Process remaining subpages in left-right-left-right pattern
5651 * towards the target subpage
5652 */
5653 for (i = 0; i < l; i++) {
5654 int left_idx = base + i;
5655 int right_idx = base + 2 * l - 1 - i;
5656
5657 cond_resched();
5658 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5659 cond_resched();
5660 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5661 }
5662}
5663
5664static void clear_gigantic_page(struct page *page,
5665 unsigned long addr,
5666 unsigned int pages_per_huge_page)
5667{
5668 int i;
5669 struct page *p = page;
5670
5671 might_sleep();
5672 for (i = 0; i < pages_per_huge_page;
5673 i++, p = mem_map_next(p, page, i)) {
5674 cond_resched();
5675 clear_user_highpage(p, addr + i * PAGE_SIZE);
5676 }
5677}
5678
5679static void clear_subpage(unsigned long addr, int idx, void *arg)
5680{
5681 struct page *page = arg;
5682
5683 clear_user_highpage(page + idx, addr);
5684}
5685
5686void clear_huge_page(struct page *page,
5687 unsigned long addr_hint, unsigned int pages_per_huge_page)
5688{
5689 unsigned long addr = addr_hint &
5690 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5691
5692 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5693 clear_gigantic_page(page, addr, pages_per_huge_page);
5694 return;
5695 }
5696
5697 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5698}
5699
5700static void copy_user_gigantic_page(struct page *dst, struct page *src,
5701 unsigned long addr,
5702 struct vm_area_struct *vma,
5703 unsigned int pages_per_huge_page)
5704{
5705 int i;
5706 struct page *dst_base = dst;
5707 struct page *src_base = src;
5708
5709 for (i = 0; i < pages_per_huge_page; ) {
5710 cond_resched();
5711 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5712
5713 i++;
5714 dst = mem_map_next(dst, dst_base, i);
5715 src = mem_map_next(src, src_base, i);
5716 }
5717}
5718
5719struct copy_subpage_arg {
5720 struct page *dst;
5721 struct page *src;
5722 struct vm_area_struct *vma;
5723};
5724
5725static void copy_subpage(unsigned long addr, int idx, void *arg)
5726{
5727 struct copy_subpage_arg *copy_arg = arg;
5728
5729 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5730 addr, copy_arg->vma);
5731}
5732
5733void copy_user_huge_page(struct page *dst, struct page *src,
5734 unsigned long addr_hint, struct vm_area_struct *vma,
5735 unsigned int pages_per_huge_page)
5736{
5737 unsigned long addr = addr_hint &
5738 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5739 struct copy_subpage_arg arg = {
5740 .dst = dst,
5741 .src = src,
5742 .vma = vma,
5743 };
5744
5745 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5746 copy_user_gigantic_page(dst, src, addr, vma,
5747 pages_per_huge_page);
5748 return;
5749 }
5750
5751 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5752}
5753
5754long copy_huge_page_from_user(struct page *dst_page,
5755 const void __user *usr_src,
5756 unsigned int pages_per_huge_page,
5757 bool allow_pagefault)
5758{
5759 void *page_kaddr;
5760 unsigned long i, rc = 0;
5761 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5762 struct page *subpage = dst_page;
5763
5764 for (i = 0; i < pages_per_huge_page;
5765 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5766 if (allow_pagefault)
5767 page_kaddr = kmap(subpage);
5768 else
5769 page_kaddr = kmap_atomic(subpage);
5770 rc = copy_from_user(page_kaddr,
5771 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5772 if (allow_pagefault)
5773 kunmap(subpage);
5774 else
5775 kunmap_atomic(page_kaddr);
5776
5777 ret_val -= (PAGE_SIZE - rc);
5778 if (rc)
5779 break;
5780
5781 flush_dcache_page(subpage);
5782
5783 cond_resched();
5784 }
5785 return ret_val;
5786}
5787#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5788
5789#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5790
5791static struct kmem_cache *page_ptl_cachep;
5792
5793void __init ptlock_cache_init(void)
5794{
5795 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5796 SLAB_PANIC, NULL);
5797}
5798
5799bool ptlock_alloc(struct page *page)
5800{
5801 spinlock_t *ptl;
5802
5803 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5804 if (!ptl)
5805 return false;
5806 page->ptl = ptl;
5807 return true;
5808}
5809
5810void ptlock_free(struct page *page)
5811{
5812 kmem_cache_free(page_ptl_cachep, page->ptl);
5813}
5814#endif