| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* memcontrol.c - Memory Controller |
| 3 | * |
| 4 | * Copyright IBM Corporation, 2007 |
| 5 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> |
| 6 | * |
| 7 | * Copyright 2007 OpenVZ SWsoft Inc |
| 8 | * Author: Pavel Emelianov <xemul@openvz.org> |
| 9 | * |
| 10 | * Memory thresholds |
| 11 | * Copyright (C) 2009 Nokia Corporation |
| 12 | * Author: Kirill A. Shutemov |
| 13 | * |
| 14 | * Kernel Memory Controller |
| 15 | * Copyright (C) 2012 Parallels Inc. and Google Inc. |
| 16 | * Authors: Glauber Costa and Suleiman Souhlal |
| 17 | * |
| 18 | * Native page reclaim |
| 19 | * Charge lifetime sanitation |
| 20 | * Lockless page tracking & accounting |
| 21 | * Unified hierarchy configuration model |
| 22 | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner |
| 23 | * |
| 24 | * Per memcg lru locking |
| 25 | * Copyright (C) 2020 Alibaba, Inc, Alex Shi |
| 26 | */ |
| 27 | |
| 28 | #include <linux/cgroup-defs.h> |
| 29 | #include <linux/page_counter.h> |
| 30 | #include <linux/memcontrol.h> |
| 31 | #include <linux/cgroup.h> |
| 32 | #include <linux/cpuset.h> |
| 33 | #include <linux/sched/mm.h> |
| 34 | #include <linux/shmem_fs.h> |
| 35 | #include <linux/hugetlb.h> |
| 36 | #include <linux/pagemap.h> |
| 37 | #include <linux/pagevec.h> |
| 38 | #include <linux/vm_event_item.h> |
| 39 | #include <linux/smp.h> |
| 40 | #include <linux/page-flags.h> |
| 41 | #include <linux/backing-dev.h> |
| 42 | #include <linux/bit_spinlock.h> |
| 43 | #include <linux/rcupdate.h> |
| 44 | #include <linux/limits.h> |
| 45 | #include <linux/export.h> |
| 46 | #include <linux/list.h> |
| 47 | #include <linux/mutex.h> |
| 48 | #include <linux/rbtree.h> |
| 49 | #include <linux/slab.h> |
| 50 | #include <linux/swapops.h> |
| 51 | #include <linux/spinlock.h> |
| 52 | #include <linux/fs.h> |
| 53 | #include <linux/seq_file.h> |
| 54 | #include <linux/parser.h> |
| 55 | #include <linux/vmpressure.h> |
| 56 | #include <linux/memremap.h> |
| 57 | #include <linux/mm_inline.h> |
| 58 | #include <linux/swap_cgroup.h> |
| 59 | #include <linux/cpu.h> |
| 60 | #include <linux/oom.h> |
| 61 | #include <linux/lockdep.h> |
| 62 | #include <linux/resume_user_mode.h> |
| 63 | #include <linux/psi.h> |
| 64 | #include <linux/seq_buf.h> |
| 65 | #include <linux/sched/isolation.h> |
| 66 | #include <linux/kmemleak.h> |
| 67 | #include "internal.h" |
| 68 | #include <net/sock.h> |
| 69 | #include <net/ip.h> |
| 70 | #include "slab.h" |
| 71 | #include "memcontrol-v1.h" |
| 72 | |
| 73 | #include <linux/uaccess.h> |
| 74 | |
| 75 | #define CREATE_TRACE_POINTS |
| 76 | #include <trace/events/memcg.h> |
| 77 | #undef CREATE_TRACE_POINTS |
| 78 | |
| 79 | #include <trace/events/vmscan.h> |
| 80 | |
| 81 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; |
| 82 | EXPORT_SYMBOL(memory_cgrp_subsys); |
| 83 | |
| 84 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
| 85 | |
| 86 | /* Active memory cgroup to use from an interrupt context */ |
| 87 | DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); |
| 88 | EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); |
| 89 | |
| 90 | /* Socket memory accounting disabled? */ |
| 91 | static bool cgroup_memory_nosocket __ro_after_init; |
| 92 | |
| 93 | /* Kernel memory accounting disabled? */ |
| 94 | static bool cgroup_memory_nokmem __ro_after_init; |
| 95 | |
| 96 | /* BPF memory accounting disabled? */ |
| 97 | static bool cgroup_memory_nobpf __ro_after_init; |
| 98 | |
| 99 | static struct kmem_cache *memcg_cachep; |
| 100 | static struct kmem_cache *memcg_pn_cachep; |
| 101 | |
| 102 | #ifdef CONFIG_CGROUP_WRITEBACK |
| 103 | static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); |
| 104 | #endif |
| 105 | |
| 106 | static inline bool task_is_dying(void) |
| 107 | { |
| 108 | return tsk_is_oom_victim(current) || fatal_signal_pending(current) || |
| 109 | (current->flags & PF_EXITING); |
| 110 | } |
| 111 | |
| 112 | /* Some nice accessors for the vmpressure. */ |
| 113 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) |
| 114 | { |
| 115 | if (!memcg) |
| 116 | memcg = root_mem_cgroup; |
| 117 | return &memcg->vmpressure; |
| 118 | } |
| 119 | |
| 120 | struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) |
| 121 | { |
| 122 | return container_of(vmpr, struct mem_cgroup, vmpressure); |
| 123 | } |
| 124 | |
| 125 | #define SEQ_BUF_SIZE SZ_4K |
| 126 | #define CURRENT_OBJCG_UPDATE_BIT 0 |
| 127 | #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) |
| 128 | |
| 129 | static DEFINE_SPINLOCK(objcg_lock); |
| 130 | |
| 131 | bool mem_cgroup_kmem_disabled(void) |
| 132 | { |
| 133 | return cgroup_memory_nokmem; |
| 134 | } |
| 135 | |
| 136 | static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); |
| 137 | |
| 138 | static void obj_cgroup_release(struct percpu_ref *ref) |
| 139 | { |
| 140 | struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); |
| 141 | unsigned int nr_bytes; |
| 142 | unsigned int nr_pages; |
| 143 | unsigned long flags; |
| 144 | |
| 145 | /* |
| 146 | * At this point all allocated objects are freed, and |
| 147 | * objcg->nr_charged_bytes can't have an arbitrary byte value. |
| 148 | * However, it can be PAGE_SIZE or (x * PAGE_SIZE). |
| 149 | * |
| 150 | * The following sequence can lead to it: |
| 151 | * 1) CPU0: objcg == stock->cached_objcg |
| 152 | * 2) CPU1: we do a small allocation (e.g. 92 bytes), |
| 153 | * PAGE_SIZE bytes are charged |
| 154 | * 3) CPU1: a process from another memcg is allocating something, |
| 155 | * the stock if flushed, |
| 156 | * objcg->nr_charged_bytes = PAGE_SIZE - 92 |
| 157 | * 5) CPU0: we do release this object, |
| 158 | * 92 bytes are added to stock->nr_bytes |
| 159 | * 6) CPU0: stock is flushed, |
| 160 | * 92 bytes are added to objcg->nr_charged_bytes |
| 161 | * |
| 162 | * In the result, nr_charged_bytes == PAGE_SIZE. |
| 163 | * This page will be uncharged in obj_cgroup_release(). |
| 164 | */ |
| 165 | nr_bytes = atomic_read(&objcg->nr_charged_bytes); |
| 166 | WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); |
| 167 | nr_pages = nr_bytes >> PAGE_SHIFT; |
| 168 | |
| 169 | if (nr_pages) { |
| 170 | struct mem_cgroup *memcg; |
| 171 | |
| 172 | memcg = get_mem_cgroup_from_objcg(objcg); |
| 173 | mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); |
| 174 | memcg1_account_kmem(memcg, -nr_pages); |
| 175 | if (!mem_cgroup_is_root(memcg)) |
| 176 | memcg_uncharge(memcg, nr_pages); |
| 177 | mem_cgroup_put(memcg); |
| 178 | } |
| 179 | |
| 180 | spin_lock_irqsave(&objcg_lock, flags); |
| 181 | list_del(&objcg->list); |
| 182 | spin_unlock_irqrestore(&objcg_lock, flags); |
| 183 | |
| 184 | percpu_ref_exit(ref); |
| 185 | kfree_rcu(objcg, rcu); |
| 186 | } |
| 187 | |
| 188 | static struct obj_cgroup *obj_cgroup_alloc(void) |
| 189 | { |
| 190 | struct obj_cgroup *objcg; |
| 191 | int ret; |
| 192 | |
| 193 | objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); |
| 194 | if (!objcg) |
| 195 | return NULL; |
| 196 | |
| 197 | ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, |
| 198 | GFP_KERNEL); |
| 199 | if (ret) { |
| 200 | kfree(objcg); |
| 201 | return NULL; |
| 202 | } |
| 203 | INIT_LIST_HEAD(&objcg->list); |
| 204 | return objcg; |
| 205 | } |
| 206 | |
| 207 | static void memcg_reparent_objcgs(struct mem_cgroup *memcg, |
| 208 | struct mem_cgroup *parent) |
| 209 | { |
| 210 | struct obj_cgroup *objcg, *iter; |
| 211 | |
| 212 | objcg = rcu_replace_pointer(memcg->objcg, NULL, true); |
| 213 | |
| 214 | spin_lock_irq(&objcg_lock); |
| 215 | |
| 216 | /* 1) Ready to reparent active objcg. */ |
| 217 | list_add(&objcg->list, &memcg->objcg_list); |
| 218 | /* 2) Reparent active objcg and already reparented objcgs to parent. */ |
| 219 | list_for_each_entry(iter, &memcg->objcg_list, list) |
| 220 | WRITE_ONCE(iter->memcg, parent); |
| 221 | /* 3) Move already reparented objcgs to the parent's list */ |
| 222 | list_splice(&memcg->objcg_list, &parent->objcg_list); |
| 223 | |
| 224 | spin_unlock_irq(&objcg_lock); |
| 225 | |
| 226 | percpu_ref_kill(&objcg->refcnt); |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * A lot of the calls to the cache allocation functions are expected to be |
| 231 | * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are |
| 232 | * conditional to this static branch, we'll have to allow modules that does |
| 233 | * kmem_cache_alloc and the such to see this symbol as well |
| 234 | */ |
| 235 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); |
| 236 | EXPORT_SYMBOL(memcg_kmem_online_key); |
| 237 | |
| 238 | DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); |
| 239 | EXPORT_SYMBOL(memcg_bpf_enabled_key); |
| 240 | |
| 241 | /** |
| 242 | * mem_cgroup_css_from_folio - css of the memcg associated with a folio |
| 243 | * @folio: folio of interest |
| 244 | * |
| 245 | * If memcg is bound to the default hierarchy, css of the memcg associated |
| 246 | * with @folio is returned. The returned css remains associated with @folio |
| 247 | * until it is released. |
| 248 | * |
| 249 | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup |
| 250 | * is returned. |
| 251 | */ |
| 252 | struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) |
| 253 | { |
| 254 | struct mem_cgroup *memcg = folio_memcg(folio); |
| 255 | |
| 256 | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 257 | memcg = root_mem_cgroup; |
| 258 | |
| 259 | return &memcg->css; |
| 260 | } |
| 261 | |
| 262 | /** |
| 263 | * page_cgroup_ino - return inode number of the memcg a page is charged to |
| 264 | * @page: the page |
| 265 | * |
| 266 | * Look up the closest online ancestor of the memory cgroup @page is charged to |
| 267 | * and return its inode number or 0 if @page is not charged to any cgroup. It |
| 268 | * is safe to call this function without holding a reference to @page. |
| 269 | * |
| 270 | * Note, this function is inherently racy, because there is nothing to prevent |
| 271 | * the cgroup inode from getting torn down and potentially reallocated a moment |
| 272 | * after page_cgroup_ino() returns, so it only should be used by callers that |
| 273 | * do not care (such as procfs interfaces). |
| 274 | */ |
| 275 | ino_t page_cgroup_ino(struct page *page) |
| 276 | { |
| 277 | struct mem_cgroup *memcg; |
| 278 | unsigned long ino = 0; |
| 279 | |
| 280 | rcu_read_lock(); |
| 281 | /* page_folio() is racy here, but the entire function is racy anyway */ |
| 282 | memcg = folio_memcg_check(page_folio(page)); |
| 283 | |
| 284 | while (memcg && !(memcg->css.flags & CSS_ONLINE)) |
| 285 | memcg = parent_mem_cgroup(memcg); |
| 286 | if (memcg) |
| 287 | ino = cgroup_ino(memcg->css.cgroup); |
| 288 | rcu_read_unlock(); |
| 289 | return ino; |
| 290 | } |
| 291 | |
| 292 | /* Subset of node_stat_item for memcg stats */ |
| 293 | static const unsigned int memcg_node_stat_items[] = { |
| 294 | NR_INACTIVE_ANON, |
| 295 | NR_ACTIVE_ANON, |
| 296 | NR_INACTIVE_FILE, |
| 297 | NR_ACTIVE_FILE, |
| 298 | NR_UNEVICTABLE, |
| 299 | NR_SLAB_RECLAIMABLE_B, |
| 300 | NR_SLAB_UNRECLAIMABLE_B, |
| 301 | WORKINGSET_REFAULT_ANON, |
| 302 | WORKINGSET_REFAULT_FILE, |
| 303 | WORKINGSET_ACTIVATE_ANON, |
| 304 | WORKINGSET_ACTIVATE_FILE, |
| 305 | WORKINGSET_RESTORE_ANON, |
| 306 | WORKINGSET_RESTORE_FILE, |
| 307 | WORKINGSET_NODERECLAIM, |
| 308 | NR_ANON_MAPPED, |
| 309 | NR_FILE_MAPPED, |
| 310 | NR_FILE_PAGES, |
| 311 | NR_FILE_DIRTY, |
| 312 | NR_WRITEBACK, |
| 313 | NR_SHMEM, |
| 314 | NR_SHMEM_THPS, |
| 315 | NR_FILE_THPS, |
| 316 | NR_ANON_THPS, |
| 317 | NR_KERNEL_STACK_KB, |
| 318 | NR_PAGETABLE, |
| 319 | NR_SECONDARY_PAGETABLE, |
| 320 | #ifdef CONFIG_SWAP |
| 321 | NR_SWAPCACHE, |
| 322 | #endif |
| 323 | #ifdef CONFIG_NUMA_BALANCING |
| 324 | PGPROMOTE_SUCCESS, |
| 325 | #endif |
| 326 | PGDEMOTE_KSWAPD, |
| 327 | PGDEMOTE_DIRECT, |
| 328 | PGDEMOTE_KHUGEPAGED, |
| 329 | PGDEMOTE_PROACTIVE, |
| 330 | #ifdef CONFIG_HUGETLB_PAGE |
| 331 | NR_HUGETLB, |
| 332 | #endif |
| 333 | }; |
| 334 | |
| 335 | static const unsigned int memcg_stat_items[] = { |
| 336 | MEMCG_SWAP, |
| 337 | MEMCG_SOCK, |
| 338 | MEMCG_PERCPU_B, |
| 339 | MEMCG_VMALLOC, |
| 340 | MEMCG_KMEM, |
| 341 | MEMCG_ZSWAP_B, |
| 342 | MEMCG_ZSWAPPED, |
| 343 | }; |
| 344 | |
| 345 | #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) |
| 346 | #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ |
| 347 | ARRAY_SIZE(memcg_stat_items)) |
| 348 | #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) |
| 349 | static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; |
| 350 | |
| 351 | static void init_memcg_stats(void) |
| 352 | { |
| 353 | u8 i, j = 0; |
| 354 | |
| 355 | BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); |
| 356 | |
| 357 | memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); |
| 358 | |
| 359 | for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) |
| 360 | mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; |
| 361 | |
| 362 | for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) |
| 363 | mem_cgroup_stats_index[memcg_stat_items[i]] = j; |
| 364 | } |
| 365 | |
| 366 | static inline int memcg_stats_index(int idx) |
| 367 | { |
| 368 | return mem_cgroup_stats_index[idx]; |
| 369 | } |
| 370 | |
| 371 | struct lruvec_stats_percpu { |
| 372 | /* Local (CPU and cgroup) state */ |
| 373 | long state[NR_MEMCG_NODE_STAT_ITEMS]; |
| 374 | |
| 375 | /* Delta calculation for lockless upward propagation */ |
| 376 | long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; |
| 377 | }; |
| 378 | |
| 379 | struct lruvec_stats { |
| 380 | /* Aggregated (CPU and subtree) state */ |
| 381 | long state[NR_MEMCG_NODE_STAT_ITEMS]; |
| 382 | |
| 383 | /* Non-hierarchical (CPU aggregated) state */ |
| 384 | long state_local[NR_MEMCG_NODE_STAT_ITEMS]; |
| 385 | |
| 386 | /* Pending child counts during tree propagation */ |
| 387 | long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; |
| 388 | }; |
| 389 | |
| 390 | unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) |
| 391 | { |
| 392 | struct mem_cgroup_per_node *pn; |
| 393 | long x; |
| 394 | int i; |
| 395 | |
| 396 | if (mem_cgroup_disabled()) |
| 397 | return node_page_state(lruvec_pgdat(lruvec), idx); |
| 398 | |
| 399 | i = memcg_stats_index(idx); |
| 400 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
| 401 | return 0; |
| 402 | |
| 403 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
| 404 | x = READ_ONCE(pn->lruvec_stats->state[i]); |
| 405 | #ifdef CONFIG_SMP |
| 406 | if (x < 0) |
| 407 | x = 0; |
| 408 | #endif |
| 409 | return x; |
| 410 | } |
| 411 | |
| 412 | unsigned long lruvec_page_state_local(struct lruvec *lruvec, |
| 413 | enum node_stat_item idx) |
| 414 | { |
| 415 | struct mem_cgroup_per_node *pn; |
| 416 | long x; |
| 417 | int i; |
| 418 | |
| 419 | if (mem_cgroup_disabled()) |
| 420 | return node_page_state(lruvec_pgdat(lruvec), idx); |
| 421 | |
| 422 | i = memcg_stats_index(idx); |
| 423 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
| 424 | return 0; |
| 425 | |
| 426 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
| 427 | x = READ_ONCE(pn->lruvec_stats->state_local[i]); |
| 428 | #ifdef CONFIG_SMP |
| 429 | if (x < 0) |
| 430 | x = 0; |
| 431 | #endif |
| 432 | return x; |
| 433 | } |
| 434 | |
| 435 | /* Subset of vm_event_item to report for memcg event stats */ |
| 436 | static const unsigned int memcg_vm_event_stat[] = { |
| 437 | #ifdef CONFIG_MEMCG_V1 |
| 438 | PGPGIN, |
| 439 | PGPGOUT, |
| 440 | #endif |
| 441 | PSWPIN, |
| 442 | PSWPOUT, |
| 443 | PGSCAN_KSWAPD, |
| 444 | PGSCAN_DIRECT, |
| 445 | PGSCAN_KHUGEPAGED, |
| 446 | PGSCAN_PROACTIVE, |
| 447 | PGSTEAL_KSWAPD, |
| 448 | PGSTEAL_DIRECT, |
| 449 | PGSTEAL_KHUGEPAGED, |
| 450 | PGSTEAL_PROACTIVE, |
| 451 | PGFAULT, |
| 452 | PGMAJFAULT, |
| 453 | PGREFILL, |
| 454 | PGACTIVATE, |
| 455 | PGDEACTIVATE, |
| 456 | PGLAZYFREE, |
| 457 | PGLAZYFREED, |
| 458 | #ifdef CONFIG_SWAP |
| 459 | SWPIN_ZERO, |
| 460 | SWPOUT_ZERO, |
| 461 | #endif |
| 462 | #ifdef CONFIG_ZSWAP |
| 463 | ZSWPIN, |
| 464 | ZSWPOUT, |
| 465 | ZSWPWB, |
| 466 | #endif |
| 467 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 468 | THP_FAULT_ALLOC, |
| 469 | THP_COLLAPSE_ALLOC, |
| 470 | THP_SWPOUT, |
| 471 | THP_SWPOUT_FALLBACK, |
| 472 | #endif |
| 473 | #ifdef CONFIG_NUMA_BALANCING |
| 474 | NUMA_PAGE_MIGRATE, |
| 475 | NUMA_PTE_UPDATES, |
| 476 | NUMA_HINT_FAULTS, |
| 477 | NUMA_TASK_MIGRATE, |
| 478 | NUMA_TASK_SWAP, |
| 479 | #endif |
| 480 | }; |
| 481 | |
| 482 | #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) |
| 483 | static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; |
| 484 | |
| 485 | static void init_memcg_events(void) |
| 486 | { |
| 487 | u8 i; |
| 488 | |
| 489 | BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); |
| 490 | |
| 491 | memset(mem_cgroup_events_index, U8_MAX, |
| 492 | sizeof(mem_cgroup_events_index)); |
| 493 | |
| 494 | for (i = 0; i < NR_MEMCG_EVENTS; ++i) |
| 495 | mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; |
| 496 | } |
| 497 | |
| 498 | static inline int memcg_events_index(enum vm_event_item idx) |
| 499 | { |
| 500 | return mem_cgroup_events_index[idx]; |
| 501 | } |
| 502 | |
| 503 | struct memcg_vmstats_percpu { |
| 504 | /* Stats updates since the last flush */ |
| 505 | unsigned int stats_updates; |
| 506 | |
| 507 | /* Cached pointers for fast iteration in memcg_rstat_updated() */ |
| 508 | struct memcg_vmstats_percpu __percpu *parent_pcpu; |
| 509 | struct memcg_vmstats *vmstats; |
| 510 | |
| 511 | /* The above should fit a single cacheline for memcg_rstat_updated() */ |
| 512 | |
| 513 | /* Local (CPU and cgroup) page state & events */ |
| 514 | long state[MEMCG_VMSTAT_SIZE]; |
| 515 | unsigned long events[NR_MEMCG_EVENTS]; |
| 516 | |
| 517 | /* Delta calculation for lockless upward propagation */ |
| 518 | long state_prev[MEMCG_VMSTAT_SIZE]; |
| 519 | unsigned long events_prev[NR_MEMCG_EVENTS]; |
| 520 | } ____cacheline_aligned; |
| 521 | |
| 522 | struct memcg_vmstats { |
| 523 | /* Aggregated (CPU and subtree) page state & events */ |
| 524 | long state[MEMCG_VMSTAT_SIZE]; |
| 525 | unsigned long events[NR_MEMCG_EVENTS]; |
| 526 | |
| 527 | /* Non-hierarchical (CPU aggregated) page state & events */ |
| 528 | long state_local[MEMCG_VMSTAT_SIZE]; |
| 529 | unsigned long events_local[NR_MEMCG_EVENTS]; |
| 530 | |
| 531 | /* Pending child counts during tree propagation */ |
| 532 | long state_pending[MEMCG_VMSTAT_SIZE]; |
| 533 | unsigned long events_pending[NR_MEMCG_EVENTS]; |
| 534 | |
| 535 | /* Stats updates since the last flush */ |
| 536 | atomic_t stats_updates; |
| 537 | }; |
| 538 | |
| 539 | /* |
| 540 | * memcg and lruvec stats flushing |
| 541 | * |
| 542 | * Many codepaths leading to stats update or read are performance sensitive and |
| 543 | * adding stats flushing in such codepaths is not desirable. So, to optimize the |
| 544 | * flushing the kernel does: |
| 545 | * |
| 546 | * 1) Periodically and asynchronously flush the stats every 2 seconds to not let |
| 547 | * rstat update tree grow unbounded. |
| 548 | * |
| 549 | * 2) Flush the stats synchronously on reader side only when there are more than |
| 550 | * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization |
| 551 | * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but |
| 552 | * only for 2 seconds due to (1). |
| 553 | */ |
| 554 | static void flush_memcg_stats_dwork(struct work_struct *w); |
| 555 | static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); |
| 556 | static u64 flush_last_time; |
| 557 | |
| 558 | #define FLUSH_TIME (2UL*HZ) |
| 559 | |
| 560 | static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) |
| 561 | { |
| 562 | return atomic_read(&vmstats->stats_updates) > |
| 563 | MEMCG_CHARGE_BATCH * num_online_cpus(); |
| 564 | } |
| 565 | |
| 566 | static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, |
| 567 | int cpu) |
| 568 | { |
| 569 | struct memcg_vmstats_percpu __percpu *statc_pcpu; |
| 570 | struct memcg_vmstats_percpu *statc; |
| 571 | unsigned int stats_updates; |
| 572 | |
| 573 | if (!val) |
| 574 | return; |
| 575 | |
| 576 | /* TODO: add to cgroup update tree once it is nmi-safe. */ |
| 577 | if (!in_nmi()) |
| 578 | css_rstat_updated(&memcg->css, cpu); |
| 579 | statc_pcpu = memcg->vmstats_percpu; |
| 580 | for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { |
| 581 | statc = this_cpu_ptr(statc_pcpu); |
| 582 | /* |
| 583 | * If @memcg is already flushable then all its ancestors are |
| 584 | * flushable as well and also there is no need to increase |
| 585 | * stats_updates. |
| 586 | */ |
| 587 | if (memcg_vmstats_needs_flush(statc->vmstats)) |
| 588 | break; |
| 589 | |
| 590 | stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, |
| 591 | abs(val)); |
| 592 | if (stats_updates < MEMCG_CHARGE_BATCH) |
| 593 | continue; |
| 594 | |
| 595 | stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); |
| 596 | atomic_add(stats_updates, &statc->vmstats->stats_updates); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) |
| 601 | { |
| 602 | bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); |
| 603 | |
| 604 | trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates), |
| 605 | force, needs_flush); |
| 606 | |
| 607 | if (!force && !needs_flush) |
| 608 | return; |
| 609 | |
| 610 | if (mem_cgroup_is_root(memcg)) |
| 611 | WRITE_ONCE(flush_last_time, jiffies_64); |
| 612 | |
| 613 | css_rstat_flush(&memcg->css); |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree |
| 618 | * @memcg: root of the subtree to flush |
| 619 | * |
| 620 | * Flushing is serialized by the underlying global rstat lock. There is also a |
| 621 | * minimum amount of work to be done even if there are no stat updates to flush. |
| 622 | * Hence, we only flush the stats if the updates delta exceeds a threshold. This |
| 623 | * avoids unnecessary work and contention on the underlying lock. |
| 624 | */ |
| 625 | void mem_cgroup_flush_stats(struct mem_cgroup *memcg) |
| 626 | { |
| 627 | if (mem_cgroup_disabled()) |
| 628 | return; |
| 629 | |
| 630 | if (!memcg) |
| 631 | memcg = root_mem_cgroup; |
| 632 | |
| 633 | __mem_cgroup_flush_stats(memcg, false); |
| 634 | } |
| 635 | |
| 636 | void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) |
| 637 | { |
| 638 | /* Only flush if the periodic flusher is one full cycle late */ |
| 639 | if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) |
| 640 | mem_cgroup_flush_stats(memcg); |
| 641 | } |
| 642 | |
| 643 | static void flush_memcg_stats_dwork(struct work_struct *w) |
| 644 | { |
| 645 | /* |
| 646 | * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing |
| 647 | * in latency-sensitive paths is as cheap as possible. |
| 648 | */ |
| 649 | __mem_cgroup_flush_stats(root_mem_cgroup, true); |
| 650 | queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); |
| 651 | } |
| 652 | |
| 653 | unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) |
| 654 | { |
| 655 | long x; |
| 656 | int i = memcg_stats_index(idx); |
| 657 | |
| 658 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
| 659 | return 0; |
| 660 | |
| 661 | x = READ_ONCE(memcg->vmstats->state[i]); |
| 662 | #ifdef CONFIG_SMP |
| 663 | if (x < 0) |
| 664 | x = 0; |
| 665 | #endif |
| 666 | return x; |
| 667 | } |
| 668 | |
| 669 | static int memcg_page_state_unit(int item); |
| 670 | |
| 671 | /* |
| 672 | * Normalize the value passed into memcg_rstat_updated() to be in pages. Round |
| 673 | * up non-zero sub-page updates to 1 page as zero page updates are ignored. |
| 674 | */ |
| 675 | static int memcg_state_val_in_pages(int idx, int val) |
| 676 | { |
| 677 | int unit = memcg_page_state_unit(idx); |
| 678 | |
| 679 | if (!val || unit == PAGE_SIZE) |
| 680 | return val; |
| 681 | else |
| 682 | return max(val * unit / PAGE_SIZE, 1UL); |
| 683 | } |
| 684 | |
| 685 | /** |
| 686 | * mod_memcg_state - update cgroup memory statistics |
| 687 | * @memcg: the memory cgroup |
| 688 | * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item |
| 689 | * @val: delta to add to the counter, can be negative |
| 690 | */ |
| 691 | void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, |
| 692 | int val) |
| 693 | { |
| 694 | int i = memcg_stats_index(idx); |
| 695 | int cpu; |
| 696 | |
| 697 | if (mem_cgroup_disabled()) |
| 698 | return; |
| 699 | |
| 700 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
| 701 | return; |
| 702 | |
| 703 | cpu = get_cpu(); |
| 704 | |
| 705 | this_cpu_add(memcg->vmstats_percpu->state[i], val); |
| 706 | val = memcg_state_val_in_pages(idx, val); |
| 707 | memcg_rstat_updated(memcg, val, cpu); |
| 708 | trace_mod_memcg_state(memcg, idx, val); |
| 709 | |
| 710 | put_cpu(); |
| 711 | } |
| 712 | |
| 713 | #ifdef CONFIG_MEMCG_V1 |
| 714 | /* idx can be of type enum memcg_stat_item or node_stat_item. */ |
| 715 | unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) |
| 716 | { |
| 717 | long x; |
| 718 | int i = memcg_stats_index(idx); |
| 719 | |
| 720 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
| 721 | return 0; |
| 722 | |
| 723 | x = READ_ONCE(memcg->vmstats->state_local[i]); |
| 724 | #ifdef CONFIG_SMP |
| 725 | if (x < 0) |
| 726 | x = 0; |
| 727 | #endif |
| 728 | return x; |
| 729 | } |
| 730 | #endif |
| 731 | |
| 732 | static void mod_memcg_lruvec_state(struct lruvec *lruvec, |
| 733 | enum node_stat_item idx, |
| 734 | int val) |
| 735 | { |
| 736 | struct mem_cgroup_per_node *pn; |
| 737 | struct mem_cgroup *memcg; |
| 738 | int i = memcg_stats_index(idx); |
| 739 | int cpu; |
| 740 | |
| 741 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
| 742 | return; |
| 743 | |
| 744 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
| 745 | memcg = pn->memcg; |
| 746 | |
| 747 | cpu = get_cpu(); |
| 748 | |
| 749 | /* Update memcg */ |
| 750 | this_cpu_add(memcg->vmstats_percpu->state[i], val); |
| 751 | |
| 752 | /* Update lruvec */ |
| 753 | this_cpu_add(pn->lruvec_stats_percpu->state[i], val); |
| 754 | |
| 755 | val = memcg_state_val_in_pages(idx, val); |
| 756 | memcg_rstat_updated(memcg, val, cpu); |
| 757 | trace_mod_memcg_lruvec_state(memcg, idx, val); |
| 758 | |
| 759 | put_cpu(); |
| 760 | } |
| 761 | |
| 762 | /** |
| 763 | * __mod_lruvec_state - update lruvec memory statistics |
| 764 | * @lruvec: the lruvec |
| 765 | * @idx: the stat item |
| 766 | * @val: delta to add to the counter, can be negative |
| 767 | * |
| 768 | * The lruvec is the intersection of the NUMA node and a cgroup. This |
| 769 | * function updates the all three counters that are affected by a |
| 770 | * change of state at this level: per-node, per-cgroup, per-lruvec. |
| 771 | */ |
| 772 | void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, |
| 773 | int val) |
| 774 | { |
| 775 | /* Update node */ |
| 776 | __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); |
| 777 | |
| 778 | /* Update memcg and lruvec */ |
| 779 | if (!mem_cgroup_disabled()) |
| 780 | mod_memcg_lruvec_state(lruvec, idx, val); |
| 781 | } |
| 782 | |
| 783 | void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, |
| 784 | int val) |
| 785 | { |
| 786 | struct mem_cgroup *memcg; |
| 787 | pg_data_t *pgdat = folio_pgdat(folio); |
| 788 | struct lruvec *lruvec; |
| 789 | |
| 790 | rcu_read_lock(); |
| 791 | memcg = folio_memcg(folio); |
| 792 | /* Untracked pages have no memcg, no lruvec. Update only the node */ |
| 793 | if (!memcg) { |
| 794 | rcu_read_unlock(); |
| 795 | __mod_node_page_state(pgdat, idx, val); |
| 796 | return; |
| 797 | } |
| 798 | |
| 799 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
| 800 | __mod_lruvec_state(lruvec, idx, val); |
| 801 | rcu_read_unlock(); |
| 802 | } |
| 803 | EXPORT_SYMBOL(__lruvec_stat_mod_folio); |
| 804 | |
| 805 | void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) |
| 806 | { |
| 807 | pg_data_t *pgdat = page_pgdat(virt_to_page(p)); |
| 808 | struct mem_cgroup *memcg; |
| 809 | struct lruvec *lruvec; |
| 810 | |
| 811 | rcu_read_lock(); |
| 812 | memcg = mem_cgroup_from_slab_obj(p); |
| 813 | |
| 814 | /* |
| 815 | * Untracked pages have no memcg, no lruvec. Update only the |
| 816 | * node. If we reparent the slab objects to the root memcg, |
| 817 | * when we free the slab object, we need to update the per-memcg |
| 818 | * vmstats to keep it correct for the root memcg. |
| 819 | */ |
| 820 | if (!memcg) { |
| 821 | __mod_node_page_state(pgdat, idx, val); |
| 822 | } else { |
| 823 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
| 824 | __mod_lruvec_state(lruvec, idx, val); |
| 825 | } |
| 826 | rcu_read_unlock(); |
| 827 | } |
| 828 | |
| 829 | /** |
| 830 | * count_memcg_events - account VM events in a cgroup |
| 831 | * @memcg: the memory cgroup |
| 832 | * @idx: the event item |
| 833 | * @count: the number of events that occurred |
| 834 | */ |
| 835 | void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, |
| 836 | unsigned long count) |
| 837 | { |
| 838 | int i = memcg_events_index(idx); |
| 839 | int cpu; |
| 840 | |
| 841 | if (mem_cgroup_disabled()) |
| 842 | return; |
| 843 | |
| 844 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
| 845 | return; |
| 846 | |
| 847 | cpu = get_cpu(); |
| 848 | |
| 849 | this_cpu_add(memcg->vmstats_percpu->events[i], count); |
| 850 | memcg_rstat_updated(memcg, count, cpu); |
| 851 | trace_count_memcg_events(memcg, idx, count); |
| 852 | |
| 853 | put_cpu(); |
| 854 | } |
| 855 | |
| 856 | unsigned long memcg_events(struct mem_cgroup *memcg, int event) |
| 857 | { |
| 858 | int i = memcg_events_index(event); |
| 859 | |
| 860 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) |
| 861 | return 0; |
| 862 | |
| 863 | return READ_ONCE(memcg->vmstats->events[i]); |
| 864 | } |
| 865 | |
| 866 | #ifdef CONFIG_MEMCG_V1 |
| 867 | unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) |
| 868 | { |
| 869 | int i = memcg_events_index(event); |
| 870 | |
| 871 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) |
| 872 | return 0; |
| 873 | |
| 874 | return READ_ONCE(memcg->vmstats->events_local[i]); |
| 875 | } |
| 876 | #endif |
| 877 | |
| 878 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
| 879 | { |
| 880 | /* |
| 881 | * mm_update_next_owner() may clear mm->owner to NULL |
| 882 | * if it races with swapoff, page migration, etc. |
| 883 | * So this can be called with p == NULL. |
| 884 | */ |
| 885 | if (unlikely(!p)) |
| 886 | return NULL; |
| 887 | |
| 888 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); |
| 889 | } |
| 890 | EXPORT_SYMBOL(mem_cgroup_from_task); |
| 891 | |
| 892 | static __always_inline struct mem_cgroup *active_memcg(void) |
| 893 | { |
| 894 | if (!in_task()) |
| 895 | return this_cpu_read(int_active_memcg); |
| 896 | else |
| 897 | return current->active_memcg; |
| 898 | } |
| 899 | |
| 900 | /** |
| 901 | * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. |
| 902 | * @mm: mm from which memcg should be extracted. It can be NULL. |
| 903 | * |
| 904 | * Obtain a reference on mm->memcg and returns it if successful. If mm |
| 905 | * is NULL, then the memcg is chosen as follows: |
| 906 | * 1) The active memcg, if set. |
| 907 | * 2) current->mm->memcg, if available |
| 908 | * 3) root memcg |
| 909 | * If mem_cgroup is disabled, NULL is returned. |
| 910 | */ |
| 911 | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) |
| 912 | { |
| 913 | struct mem_cgroup *memcg; |
| 914 | |
| 915 | if (mem_cgroup_disabled()) |
| 916 | return NULL; |
| 917 | |
| 918 | /* |
| 919 | * Page cache insertions can happen without an |
| 920 | * actual mm context, e.g. during disk probing |
| 921 | * on boot, loopback IO, acct() writes etc. |
| 922 | * |
| 923 | * No need to css_get on root memcg as the reference |
| 924 | * counting is disabled on the root level in the |
| 925 | * cgroup core. See CSS_NO_REF. |
| 926 | */ |
| 927 | if (unlikely(!mm)) { |
| 928 | memcg = active_memcg(); |
| 929 | if (unlikely(memcg)) { |
| 930 | /* remote memcg must hold a ref */ |
| 931 | css_get(&memcg->css); |
| 932 | return memcg; |
| 933 | } |
| 934 | mm = current->mm; |
| 935 | if (unlikely(!mm)) |
| 936 | return root_mem_cgroup; |
| 937 | } |
| 938 | |
| 939 | rcu_read_lock(); |
| 940 | do { |
| 941 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
| 942 | if (unlikely(!memcg)) |
| 943 | memcg = root_mem_cgroup; |
| 944 | } while (!css_tryget(&memcg->css)); |
| 945 | rcu_read_unlock(); |
| 946 | return memcg; |
| 947 | } |
| 948 | EXPORT_SYMBOL(get_mem_cgroup_from_mm); |
| 949 | |
| 950 | /** |
| 951 | * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. |
| 952 | */ |
| 953 | struct mem_cgroup *get_mem_cgroup_from_current(void) |
| 954 | { |
| 955 | struct mem_cgroup *memcg; |
| 956 | |
| 957 | if (mem_cgroup_disabled()) |
| 958 | return NULL; |
| 959 | |
| 960 | again: |
| 961 | rcu_read_lock(); |
| 962 | memcg = mem_cgroup_from_task(current); |
| 963 | if (!css_tryget(&memcg->css)) { |
| 964 | rcu_read_unlock(); |
| 965 | goto again; |
| 966 | } |
| 967 | rcu_read_unlock(); |
| 968 | return memcg; |
| 969 | } |
| 970 | |
| 971 | /** |
| 972 | * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. |
| 973 | * @folio: folio from which memcg should be extracted. |
| 974 | */ |
| 975 | struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) |
| 976 | { |
| 977 | struct mem_cgroup *memcg = folio_memcg(folio); |
| 978 | |
| 979 | if (mem_cgroup_disabled()) |
| 980 | return NULL; |
| 981 | |
| 982 | rcu_read_lock(); |
| 983 | if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) |
| 984 | memcg = root_mem_cgroup; |
| 985 | rcu_read_unlock(); |
| 986 | return memcg; |
| 987 | } |
| 988 | |
| 989 | /** |
| 990 | * mem_cgroup_iter - iterate over memory cgroup hierarchy |
| 991 | * @root: hierarchy root |
| 992 | * @prev: previously returned memcg, NULL on first invocation |
| 993 | * @reclaim: cookie for shared reclaim walks, NULL for full walks |
| 994 | * |
| 995 | * Returns references to children of the hierarchy below @root, or |
| 996 | * @root itself, or %NULL after a full round-trip. |
| 997 | * |
| 998 | * Caller must pass the return value in @prev on subsequent |
| 999 | * invocations for reference counting, or use mem_cgroup_iter_break() |
| 1000 | * to cancel a hierarchy walk before the round-trip is complete. |
| 1001 | * |
| 1002 | * Reclaimers can specify a node in @reclaim to divide up the memcgs |
| 1003 | * in the hierarchy among all concurrent reclaimers operating on the |
| 1004 | * same node. |
| 1005 | */ |
| 1006 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
| 1007 | struct mem_cgroup *prev, |
| 1008 | struct mem_cgroup_reclaim_cookie *reclaim) |
| 1009 | { |
| 1010 | struct mem_cgroup_reclaim_iter *iter; |
| 1011 | struct cgroup_subsys_state *css; |
| 1012 | struct mem_cgroup *pos; |
| 1013 | struct mem_cgroup *next; |
| 1014 | |
| 1015 | if (mem_cgroup_disabled()) |
| 1016 | return NULL; |
| 1017 | |
| 1018 | if (!root) |
| 1019 | root = root_mem_cgroup; |
| 1020 | |
| 1021 | rcu_read_lock(); |
| 1022 | restart: |
| 1023 | next = NULL; |
| 1024 | |
| 1025 | if (reclaim) { |
| 1026 | int gen; |
| 1027 | int nid = reclaim->pgdat->node_id; |
| 1028 | |
| 1029 | iter = &root->nodeinfo[nid]->iter; |
| 1030 | gen = atomic_read(&iter->generation); |
| 1031 | |
| 1032 | /* |
| 1033 | * On start, join the current reclaim iteration cycle. |
| 1034 | * Exit when a concurrent walker completes it. |
| 1035 | */ |
| 1036 | if (!prev) |
| 1037 | reclaim->generation = gen; |
| 1038 | else if (reclaim->generation != gen) |
| 1039 | goto out_unlock; |
| 1040 | |
| 1041 | pos = READ_ONCE(iter->position); |
| 1042 | } else |
| 1043 | pos = prev; |
| 1044 | |
| 1045 | css = pos ? &pos->css : NULL; |
| 1046 | |
| 1047 | while ((css = css_next_descendant_pre(css, &root->css))) { |
| 1048 | /* |
| 1049 | * Verify the css and acquire a reference. The root |
| 1050 | * is provided by the caller, so we know it's alive |
| 1051 | * and kicking, and don't take an extra reference. |
| 1052 | */ |
| 1053 | if (css == &root->css || css_tryget(css)) |
| 1054 | break; |
| 1055 | } |
| 1056 | |
| 1057 | next = mem_cgroup_from_css(css); |
| 1058 | |
| 1059 | if (reclaim) { |
| 1060 | /* |
| 1061 | * The position could have already been updated by a competing |
| 1062 | * thread, so check that the value hasn't changed since we read |
| 1063 | * it to avoid reclaiming from the same cgroup twice. |
| 1064 | */ |
| 1065 | if (cmpxchg(&iter->position, pos, next) != pos) { |
| 1066 | if (css && css != &root->css) |
| 1067 | css_put(css); |
| 1068 | goto restart; |
| 1069 | } |
| 1070 | |
| 1071 | if (!next) { |
| 1072 | atomic_inc(&iter->generation); |
| 1073 | |
| 1074 | /* |
| 1075 | * Reclaimers share the hierarchy walk, and a |
| 1076 | * new one might jump in right at the end of |
| 1077 | * the hierarchy - make sure they see at least |
| 1078 | * one group and restart from the beginning. |
| 1079 | */ |
| 1080 | if (!prev) |
| 1081 | goto restart; |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | out_unlock: |
| 1086 | rcu_read_unlock(); |
| 1087 | if (prev && prev != root) |
| 1088 | css_put(&prev->css); |
| 1089 | |
| 1090 | return next; |
| 1091 | } |
| 1092 | |
| 1093 | /** |
| 1094 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely |
| 1095 | * @root: hierarchy root |
| 1096 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() |
| 1097 | */ |
| 1098 | void mem_cgroup_iter_break(struct mem_cgroup *root, |
| 1099 | struct mem_cgroup *prev) |
| 1100 | { |
| 1101 | if (!root) |
| 1102 | root = root_mem_cgroup; |
| 1103 | if (prev && prev != root) |
| 1104 | css_put(&prev->css); |
| 1105 | } |
| 1106 | |
| 1107 | static void __invalidate_reclaim_iterators(struct mem_cgroup *from, |
| 1108 | struct mem_cgroup *dead_memcg) |
| 1109 | { |
| 1110 | struct mem_cgroup_reclaim_iter *iter; |
| 1111 | struct mem_cgroup_per_node *mz; |
| 1112 | int nid; |
| 1113 | |
| 1114 | for_each_node(nid) { |
| 1115 | mz = from->nodeinfo[nid]; |
| 1116 | iter = &mz->iter; |
| 1117 | cmpxchg(&iter->position, dead_memcg, NULL); |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) |
| 1122 | { |
| 1123 | struct mem_cgroup *memcg = dead_memcg; |
| 1124 | struct mem_cgroup *last; |
| 1125 | |
| 1126 | do { |
| 1127 | __invalidate_reclaim_iterators(memcg, dead_memcg); |
| 1128 | last = memcg; |
| 1129 | } while ((memcg = parent_mem_cgroup(memcg))); |
| 1130 | |
| 1131 | /* |
| 1132 | * When cgroup1 non-hierarchy mode is used, |
| 1133 | * parent_mem_cgroup() does not walk all the way up to the |
| 1134 | * cgroup root (root_mem_cgroup). So we have to handle |
| 1135 | * dead_memcg from cgroup root separately. |
| 1136 | */ |
| 1137 | if (!mem_cgroup_is_root(last)) |
| 1138 | __invalidate_reclaim_iterators(root_mem_cgroup, |
| 1139 | dead_memcg); |
| 1140 | } |
| 1141 | |
| 1142 | /** |
| 1143 | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy |
| 1144 | * @memcg: hierarchy root |
| 1145 | * @fn: function to call for each task |
| 1146 | * @arg: argument passed to @fn |
| 1147 | * |
| 1148 | * This function iterates over tasks attached to @memcg or to any of its |
| 1149 | * descendants and calls @fn for each task. If @fn returns a non-zero |
| 1150 | * value, the function breaks the iteration loop. Otherwise, it will iterate |
| 1151 | * over all tasks and return 0. |
| 1152 | * |
| 1153 | * This function must not be called for the root memory cgroup. |
| 1154 | */ |
| 1155 | void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, |
| 1156 | int (*fn)(struct task_struct *, void *), void *arg) |
| 1157 | { |
| 1158 | struct mem_cgroup *iter; |
| 1159 | int ret = 0; |
| 1160 | |
| 1161 | BUG_ON(mem_cgroup_is_root(memcg)); |
| 1162 | |
| 1163 | for_each_mem_cgroup_tree(iter, memcg) { |
| 1164 | struct css_task_iter it; |
| 1165 | struct task_struct *task; |
| 1166 | |
| 1167 | css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); |
| 1168 | while (!ret && (task = css_task_iter_next(&it))) { |
| 1169 | ret = fn(task, arg); |
| 1170 | /* Avoid potential softlockup warning */ |
| 1171 | cond_resched(); |
| 1172 | } |
| 1173 | css_task_iter_end(&it); |
| 1174 | if (ret) { |
| 1175 | mem_cgroup_iter_break(memcg, iter); |
| 1176 | break; |
| 1177 | } |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | #ifdef CONFIG_DEBUG_VM |
| 1182 | void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) |
| 1183 | { |
| 1184 | struct mem_cgroup *memcg; |
| 1185 | |
| 1186 | if (mem_cgroup_disabled()) |
| 1187 | return; |
| 1188 | |
| 1189 | memcg = folio_memcg(folio); |
| 1190 | |
| 1191 | if (!memcg) |
| 1192 | VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); |
| 1193 | else |
| 1194 | VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); |
| 1195 | } |
| 1196 | #endif |
| 1197 | |
| 1198 | /** |
| 1199 | * folio_lruvec_lock - Lock the lruvec for a folio. |
| 1200 | * @folio: Pointer to the folio. |
| 1201 | * |
| 1202 | * These functions are safe to use under any of the following conditions: |
| 1203 | * - folio locked |
| 1204 | * - folio_test_lru false |
| 1205 | * - folio frozen (refcount of 0) |
| 1206 | * |
| 1207 | * Return: The lruvec this folio is on with its lock held. |
| 1208 | */ |
| 1209 | struct lruvec *folio_lruvec_lock(struct folio *folio) |
| 1210 | { |
| 1211 | struct lruvec *lruvec = folio_lruvec(folio); |
| 1212 | |
| 1213 | spin_lock(&lruvec->lru_lock); |
| 1214 | lruvec_memcg_debug(lruvec, folio); |
| 1215 | |
| 1216 | return lruvec; |
| 1217 | } |
| 1218 | |
| 1219 | /** |
| 1220 | * folio_lruvec_lock_irq - Lock the lruvec for a folio. |
| 1221 | * @folio: Pointer to the folio. |
| 1222 | * |
| 1223 | * These functions are safe to use under any of the following conditions: |
| 1224 | * - folio locked |
| 1225 | * - folio_test_lru false |
| 1226 | * - folio frozen (refcount of 0) |
| 1227 | * |
| 1228 | * Return: The lruvec this folio is on with its lock held and interrupts |
| 1229 | * disabled. |
| 1230 | */ |
| 1231 | struct lruvec *folio_lruvec_lock_irq(struct folio *folio) |
| 1232 | { |
| 1233 | struct lruvec *lruvec = folio_lruvec(folio); |
| 1234 | |
| 1235 | spin_lock_irq(&lruvec->lru_lock); |
| 1236 | lruvec_memcg_debug(lruvec, folio); |
| 1237 | |
| 1238 | return lruvec; |
| 1239 | } |
| 1240 | |
| 1241 | /** |
| 1242 | * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. |
| 1243 | * @folio: Pointer to the folio. |
| 1244 | * @flags: Pointer to irqsave flags. |
| 1245 | * |
| 1246 | * These functions are safe to use under any of the following conditions: |
| 1247 | * - folio locked |
| 1248 | * - folio_test_lru false |
| 1249 | * - folio frozen (refcount of 0) |
| 1250 | * |
| 1251 | * Return: The lruvec this folio is on with its lock held and interrupts |
| 1252 | * disabled. |
| 1253 | */ |
| 1254 | struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, |
| 1255 | unsigned long *flags) |
| 1256 | { |
| 1257 | struct lruvec *lruvec = folio_lruvec(folio); |
| 1258 | |
| 1259 | spin_lock_irqsave(&lruvec->lru_lock, *flags); |
| 1260 | lruvec_memcg_debug(lruvec, folio); |
| 1261 | |
| 1262 | return lruvec; |
| 1263 | } |
| 1264 | |
| 1265 | /** |
| 1266 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
| 1267 | * @lruvec: mem_cgroup per zone lru vector |
| 1268 | * @lru: index of lru list the page is sitting on |
| 1269 | * @zid: zone id of the accounted pages |
| 1270 | * @nr_pages: positive when adding or negative when removing |
| 1271 | * |
| 1272 | * This function must be called under lru_lock, just before a page is added |
| 1273 | * to or just after a page is removed from an lru list. |
| 1274 | */ |
| 1275 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
| 1276 | int zid, int nr_pages) |
| 1277 | { |
| 1278 | struct mem_cgroup_per_node *mz; |
| 1279 | unsigned long *lru_size; |
| 1280 | long size; |
| 1281 | |
| 1282 | if (mem_cgroup_disabled()) |
| 1283 | return; |
| 1284 | |
| 1285 | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
| 1286 | lru_size = &mz->lru_zone_size[zid][lru]; |
| 1287 | |
| 1288 | if (nr_pages < 0) |
| 1289 | *lru_size += nr_pages; |
| 1290 | |
| 1291 | size = *lru_size; |
| 1292 | if (WARN_ONCE(size < 0, |
| 1293 | "%s(%p, %d, %d): lru_size %ld\n", |
| 1294 | __func__, lruvec, lru, nr_pages, size)) { |
| 1295 | VM_BUG_ON(1); |
| 1296 | *lru_size = 0; |
| 1297 | } |
| 1298 | |
| 1299 | if (nr_pages > 0) |
| 1300 | *lru_size += nr_pages; |
| 1301 | } |
| 1302 | |
| 1303 | /** |
| 1304 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
| 1305 | * @memcg: the memory cgroup |
| 1306 | * |
| 1307 | * Returns the maximum amount of memory @mem can be charged with, in |
| 1308 | * pages. |
| 1309 | */ |
| 1310 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
| 1311 | { |
| 1312 | unsigned long margin = 0; |
| 1313 | unsigned long count; |
| 1314 | unsigned long limit; |
| 1315 | |
| 1316 | count = page_counter_read(&memcg->memory); |
| 1317 | limit = READ_ONCE(memcg->memory.max); |
| 1318 | if (count < limit) |
| 1319 | margin = limit - count; |
| 1320 | |
| 1321 | if (do_memsw_account()) { |
| 1322 | count = page_counter_read(&memcg->memsw); |
| 1323 | limit = READ_ONCE(memcg->memsw.max); |
| 1324 | if (count < limit) |
| 1325 | margin = min(margin, limit - count); |
| 1326 | else |
| 1327 | margin = 0; |
| 1328 | } |
| 1329 | |
| 1330 | return margin; |
| 1331 | } |
| 1332 | |
| 1333 | struct memory_stat { |
| 1334 | const char *name; |
| 1335 | unsigned int idx; |
| 1336 | }; |
| 1337 | |
| 1338 | static const struct memory_stat memory_stats[] = { |
| 1339 | { "anon", NR_ANON_MAPPED }, |
| 1340 | { "file", NR_FILE_PAGES }, |
| 1341 | { "kernel", MEMCG_KMEM }, |
| 1342 | { "kernel_stack", NR_KERNEL_STACK_KB }, |
| 1343 | { "pagetables", NR_PAGETABLE }, |
| 1344 | { "sec_pagetables", NR_SECONDARY_PAGETABLE }, |
| 1345 | { "percpu", MEMCG_PERCPU_B }, |
| 1346 | { "sock", MEMCG_SOCK }, |
| 1347 | { "vmalloc", MEMCG_VMALLOC }, |
| 1348 | { "shmem", NR_SHMEM }, |
| 1349 | #ifdef CONFIG_ZSWAP |
| 1350 | { "zswap", MEMCG_ZSWAP_B }, |
| 1351 | { "zswapped", MEMCG_ZSWAPPED }, |
| 1352 | #endif |
| 1353 | { "file_mapped", NR_FILE_MAPPED }, |
| 1354 | { "file_dirty", NR_FILE_DIRTY }, |
| 1355 | { "file_writeback", NR_WRITEBACK }, |
| 1356 | #ifdef CONFIG_SWAP |
| 1357 | { "swapcached", NR_SWAPCACHE }, |
| 1358 | #endif |
| 1359 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1360 | { "anon_thp", NR_ANON_THPS }, |
| 1361 | { "file_thp", NR_FILE_THPS }, |
| 1362 | { "shmem_thp", NR_SHMEM_THPS }, |
| 1363 | #endif |
| 1364 | { "inactive_anon", NR_INACTIVE_ANON }, |
| 1365 | { "active_anon", NR_ACTIVE_ANON }, |
| 1366 | { "inactive_file", NR_INACTIVE_FILE }, |
| 1367 | { "active_file", NR_ACTIVE_FILE }, |
| 1368 | { "unevictable", NR_UNEVICTABLE }, |
| 1369 | { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, |
| 1370 | { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, |
| 1371 | #ifdef CONFIG_HUGETLB_PAGE |
| 1372 | { "hugetlb", NR_HUGETLB }, |
| 1373 | #endif |
| 1374 | |
| 1375 | /* The memory events */ |
| 1376 | { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, |
| 1377 | { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, |
| 1378 | { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, |
| 1379 | { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, |
| 1380 | { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, |
| 1381 | { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, |
| 1382 | { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, |
| 1383 | |
| 1384 | { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, |
| 1385 | { "pgdemote_direct", PGDEMOTE_DIRECT }, |
| 1386 | { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, |
| 1387 | { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, |
| 1388 | #ifdef CONFIG_NUMA_BALANCING |
| 1389 | { "pgpromote_success", PGPROMOTE_SUCCESS }, |
| 1390 | #endif |
| 1391 | }; |
| 1392 | |
| 1393 | /* The actual unit of the state item, not the same as the output unit */ |
| 1394 | static int memcg_page_state_unit(int item) |
| 1395 | { |
| 1396 | switch (item) { |
| 1397 | case MEMCG_PERCPU_B: |
| 1398 | case MEMCG_ZSWAP_B: |
| 1399 | case NR_SLAB_RECLAIMABLE_B: |
| 1400 | case NR_SLAB_UNRECLAIMABLE_B: |
| 1401 | return 1; |
| 1402 | case NR_KERNEL_STACK_KB: |
| 1403 | return SZ_1K; |
| 1404 | default: |
| 1405 | return PAGE_SIZE; |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | /* Translate stat items to the correct unit for memory.stat output */ |
| 1410 | static int memcg_page_state_output_unit(int item) |
| 1411 | { |
| 1412 | /* |
| 1413 | * Workingset state is actually in pages, but we export it to userspace |
| 1414 | * as a scalar count of events, so special case it here. |
| 1415 | * |
| 1416 | * Demotion and promotion activities are exported in pages, consistent |
| 1417 | * with their global counterparts. |
| 1418 | */ |
| 1419 | switch (item) { |
| 1420 | case WORKINGSET_REFAULT_ANON: |
| 1421 | case WORKINGSET_REFAULT_FILE: |
| 1422 | case WORKINGSET_ACTIVATE_ANON: |
| 1423 | case WORKINGSET_ACTIVATE_FILE: |
| 1424 | case WORKINGSET_RESTORE_ANON: |
| 1425 | case WORKINGSET_RESTORE_FILE: |
| 1426 | case WORKINGSET_NODERECLAIM: |
| 1427 | case PGDEMOTE_KSWAPD: |
| 1428 | case PGDEMOTE_DIRECT: |
| 1429 | case PGDEMOTE_KHUGEPAGED: |
| 1430 | case PGDEMOTE_PROACTIVE: |
| 1431 | #ifdef CONFIG_NUMA_BALANCING |
| 1432 | case PGPROMOTE_SUCCESS: |
| 1433 | #endif |
| 1434 | return 1; |
| 1435 | default: |
| 1436 | return memcg_page_state_unit(item); |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) |
| 1441 | { |
| 1442 | return memcg_page_state(memcg, item) * |
| 1443 | memcg_page_state_output_unit(item); |
| 1444 | } |
| 1445 | |
| 1446 | #ifdef CONFIG_MEMCG_V1 |
| 1447 | unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) |
| 1448 | { |
| 1449 | return memcg_page_state_local(memcg, item) * |
| 1450 | memcg_page_state_output_unit(item); |
| 1451 | } |
| 1452 | #endif |
| 1453 | |
| 1454 | #ifdef CONFIG_HUGETLB_PAGE |
| 1455 | static bool memcg_accounts_hugetlb(void) |
| 1456 | { |
| 1457 | return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; |
| 1458 | } |
| 1459 | #else /* CONFIG_HUGETLB_PAGE */ |
| 1460 | static bool memcg_accounts_hugetlb(void) |
| 1461 | { |
| 1462 | return false; |
| 1463 | } |
| 1464 | #endif /* CONFIG_HUGETLB_PAGE */ |
| 1465 | |
| 1466 | static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
| 1467 | { |
| 1468 | int i; |
| 1469 | |
| 1470 | /* |
| 1471 | * Provide statistics on the state of the memory subsystem as |
| 1472 | * well as cumulative event counters that show past behavior. |
| 1473 | * |
| 1474 | * This list is ordered following a combination of these gradients: |
| 1475 | * 1) generic big picture -> specifics and details |
| 1476 | * 2) reflecting userspace activity -> reflecting kernel heuristics |
| 1477 | * |
| 1478 | * Current memory state: |
| 1479 | */ |
| 1480 | mem_cgroup_flush_stats(memcg); |
| 1481 | |
| 1482 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { |
| 1483 | u64 size; |
| 1484 | |
| 1485 | #ifdef CONFIG_HUGETLB_PAGE |
| 1486 | if (unlikely(memory_stats[i].idx == NR_HUGETLB) && |
| 1487 | !memcg_accounts_hugetlb()) |
| 1488 | continue; |
| 1489 | #endif |
| 1490 | size = memcg_page_state_output(memcg, memory_stats[i].idx); |
| 1491 | seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); |
| 1492 | |
| 1493 | if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { |
| 1494 | size += memcg_page_state_output(memcg, |
| 1495 | NR_SLAB_RECLAIMABLE_B); |
| 1496 | seq_buf_printf(s, "slab %llu\n", size); |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | /* Accumulated memory events */ |
| 1501 | seq_buf_printf(s, "pgscan %lu\n", |
| 1502 | memcg_events(memcg, PGSCAN_KSWAPD) + |
| 1503 | memcg_events(memcg, PGSCAN_DIRECT) + |
| 1504 | memcg_events(memcg, PGSCAN_PROACTIVE) + |
| 1505 | memcg_events(memcg, PGSCAN_KHUGEPAGED)); |
| 1506 | seq_buf_printf(s, "pgsteal %lu\n", |
| 1507 | memcg_events(memcg, PGSTEAL_KSWAPD) + |
| 1508 | memcg_events(memcg, PGSTEAL_DIRECT) + |
| 1509 | memcg_events(memcg, PGSTEAL_PROACTIVE) + |
| 1510 | memcg_events(memcg, PGSTEAL_KHUGEPAGED)); |
| 1511 | |
| 1512 | for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { |
| 1513 | #ifdef CONFIG_MEMCG_V1 |
| 1514 | if (memcg_vm_event_stat[i] == PGPGIN || |
| 1515 | memcg_vm_event_stat[i] == PGPGOUT) |
| 1516 | continue; |
| 1517 | #endif |
| 1518 | seq_buf_printf(s, "%s %lu\n", |
| 1519 | vm_event_name(memcg_vm_event_stat[i]), |
| 1520 | memcg_events(memcg, memcg_vm_event_stat[i])); |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
| 1525 | { |
| 1526 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 1527 | memcg_stat_format(memcg, s); |
| 1528 | else |
| 1529 | memcg1_stat_format(memcg, s); |
| 1530 | if (seq_buf_has_overflowed(s)) |
| 1531 | pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); |
| 1532 | } |
| 1533 | |
| 1534 | /** |
| 1535 | * mem_cgroup_print_oom_context: Print OOM information relevant to |
| 1536 | * memory controller. |
| 1537 | * @memcg: The memory cgroup that went over limit |
| 1538 | * @p: Task that is going to be killed |
| 1539 | * |
| 1540 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is |
| 1541 | * enabled |
| 1542 | */ |
| 1543 | void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) |
| 1544 | { |
| 1545 | rcu_read_lock(); |
| 1546 | |
| 1547 | if (memcg) { |
| 1548 | pr_cont(",oom_memcg="); |
| 1549 | pr_cont_cgroup_path(memcg->css.cgroup); |
| 1550 | } else |
| 1551 | pr_cont(",global_oom"); |
| 1552 | if (p) { |
| 1553 | pr_cont(",task_memcg="); |
| 1554 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); |
| 1555 | } |
| 1556 | rcu_read_unlock(); |
| 1557 | } |
| 1558 | |
| 1559 | /** |
| 1560 | * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to |
| 1561 | * memory controller. |
| 1562 | * @memcg: The memory cgroup that went over limit |
| 1563 | */ |
| 1564 | void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) |
| 1565 | { |
| 1566 | /* Use static buffer, for the caller is holding oom_lock. */ |
| 1567 | static char buf[SEQ_BUF_SIZE]; |
| 1568 | struct seq_buf s; |
| 1569 | unsigned long memory_failcnt; |
| 1570 | |
| 1571 | lockdep_assert_held(&oom_lock); |
| 1572 | |
| 1573 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 1574 | memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); |
| 1575 | else |
| 1576 | memory_failcnt = memcg->memory.failcnt; |
| 1577 | |
| 1578 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", |
| 1579 | K((u64)page_counter_read(&memcg->memory)), |
| 1580 | K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); |
| 1581 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 1582 | pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", |
| 1583 | K((u64)page_counter_read(&memcg->swap)), |
| 1584 | K((u64)READ_ONCE(memcg->swap.max)), |
| 1585 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); |
| 1586 | #ifdef CONFIG_MEMCG_V1 |
| 1587 | else { |
| 1588 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", |
| 1589 | K((u64)page_counter_read(&memcg->memsw)), |
| 1590 | K((u64)memcg->memsw.max), memcg->memsw.failcnt); |
| 1591 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", |
| 1592 | K((u64)page_counter_read(&memcg->kmem)), |
| 1593 | K((u64)memcg->kmem.max), memcg->kmem.failcnt); |
| 1594 | } |
| 1595 | #endif |
| 1596 | |
| 1597 | pr_info("Memory cgroup stats for "); |
| 1598 | pr_cont_cgroup_path(memcg->css.cgroup); |
| 1599 | pr_cont(":"); |
| 1600 | seq_buf_init(&s, buf, SEQ_BUF_SIZE); |
| 1601 | memory_stat_format(memcg, &s); |
| 1602 | seq_buf_do_printk(&s, KERN_INFO); |
| 1603 | } |
| 1604 | |
| 1605 | /* |
| 1606 | * Return the memory (and swap, if configured) limit for a memcg. |
| 1607 | */ |
| 1608 | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) |
| 1609 | { |
| 1610 | unsigned long max = READ_ONCE(memcg->memory.max); |
| 1611 | |
| 1612 | if (do_memsw_account()) { |
| 1613 | if (mem_cgroup_swappiness(memcg)) { |
| 1614 | /* Calculate swap excess capacity from memsw limit */ |
| 1615 | unsigned long swap = READ_ONCE(memcg->memsw.max) - max; |
| 1616 | |
| 1617 | max += min(swap, (unsigned long)total_swap_pages); |
| 1618 | } |
| 1619 | } else { |
| 1620 | if (mem_cgroup_swappiness(memcg)) |
| 1621 | max += min(READ_ONCE(memcg->swap.max), |
| 1622 | (unsigned long)total_swap_pages); |
| 1623 | } |
| 1624 | return max; |
| 1625 | } |
| 1626 | |
| 1627 | unsigned long mem_cgroup_size(struct mem_cgroup *memcg) |
| 1628 | { |
| 1629 | return page_counter_read(&memcg->memory); |
| 1630 | } |
| 1631 | |
| 1632 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
| 1633 | int order) |
| 1634 | { |
| 1635 | struct oom_control oc = { |
| 1636 | .zonelist = NULL, |
| 1637 | .nodemask = NULL, |
| 1638 | .memcg = memcg, |
| 1639 | .gfp_mask = gfp_mask, |
| 1640 | .order = order, |
| 1641 | }; |
| 1642 | bool ret = true; |
| 1643 | |
| 1644 | if (mutex_lock_killable(&oom_lock)) |
| 1645 | return true; |
| 1646 | |
| 1647 | if (mem_cgroup_margin(memcg) >= (1 << order)) |
| 1648 | goto unlock; |
| 1649 | |
| 1650 | /* |
| 1651 | * A few threads which were not waiting at mutex_lock_killable() can |
| 1652 | * fail to bail out. Therefore, check again after holding oom_lock. |
| 1653 | */ |
| 1654 | ret = out_of_memory(&oc); |
| 1655 | |
| 1656 | unlock: |
| 1657 | mutex_unlock(&oom_lock); |
| 1658 | return ret; |
| 1659 | } |
| 1660 | |
| 1661 | /* |
| 1662 | * Returns true if successfully killed one or more processes. Though in some |
| 1663 | * corner cases it can return true even without killing any process. |
| 1664 | */ |
| 1665 | static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) |
| 1666 | { |
| 1667 | bool locked, ret; |
| 1668 | |
| 1669 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
| 1670 | return false; |
| 1671 | |
| 1672 | memcg_memory_event(memcg, MEMCG_OOM); |
| 1673 | |
| 1674 | if (!memcg1_oom_prepare(memcg, &locked)) |
| 1675 | return false; |
| 1676 | |
| 1677 | ret = mem_cgroup_out_of_memory(memcg, mask, order); |
| 1678 | |
| 1679 | memcg1_oom_finish(memcg, locked); |
| 1680 | |
| 1681 | return ret; |
| 1682 | } |
| 1683 | |
| 1684 | /** |
| 1685 | * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM |
| 1686 | * @victim: task to be killed by the OOM killer |
| 1687 | * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM |
| 1688 | * |
| 1689 | * Returns a pointer to a memory cgroup, which has to be cleaned up |
| 1690 | * by killing all belonging OOM-killable tasks. |
| 1691 | * |
| 1692 | * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. |
| 1693 | */ |
| 1694 | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, |
| 1695 | struct mem_cgroup *oom_domain) |
| 1696 | { |
| 1697 | struct mem_cgroup *oom_group = NULL; |
| 1698 | struct mem_cgroup *memcg; |
| 1699 | |
| 1700 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 1701 | return NULL; |
| 1702 | |
| 1703 | if (!oom_domain) |
| 1704 | oom_domain = root_mem_cgroup; |
| 1705 | |
| 1706 | rcu_read_lock(); |
| 1707 | |
| 1708 | memcg = mem_cgroup_from_task(victim); |
| 1709 | if (mem_cgroup_is_root(memcg)) |
| 1710 | goto out; |
| 1711 | |
| 1712 | /* |
| 1713 | * If the victim task has been asynchronously moved to a different |
| 1714 | * memory cgroup, we might end up killing tasks outside oom_domain. |
| 1715 | * In this case it's better to ignore memory.group.oom. |
| 1716 | */ |
| 1717 | if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) |
| 1718 | goto out; |
| 1719 | |
| 1720 | /* |
| 1721 | * Traverse the memory cgroup hierarchy from the victim task's |
| 1722 | * cgroup up to the OOMing cgroup (or root) to find the |
| 1723 | * highest-level memory cgroup with oom.group set. |
| 1724 | */ |
| 1725 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
| 1726 | if (READ_ONCE(memcg->oom_group)) |
| 1727 | oom_group = memcg; |
| 1728 | |
| 1729 | if (memcg == oom_domain) |
| 1730 | break; |
| 1731 | } |
| 1732 | |
| 1733 | if (oom_group) |
| 1734 | css_get(&oom_group->css); |
| 1735 | out: |
| 1736 | rcu_read_unlock(); |
| 1737 | |
| 1738 | return oom_group; |
| 1739 | } |
| 1740 | |
| 1741 | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) |
| 1742 | { |
| 1743 | pr_info("Tasks in "); |
| 1744 | pr_cont_cgroup_path(memcg->css.cgroup); |
| 1745 | pr_cont(" are going to be killed due to memory.oom.group set\n"); |
| 1746 | } |
| 1747 | |
| 1748 | /* |
| 1749 | * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their |
| 1750 | * nr_pages in a single cacheline. This may change in future. |
| 1751 | */ |
| 1752 | #define NR_MEMCG_STOCK 7 |
| 1753 | #define FLUSHING_CACHED_CHARGE 0 |
| 1754 | struct memcg_stock_pcp { |
| 1755 | local_trylock_t lock; |
| 1756 | uint8_t nr_pages[NR_MEMCG_STOCK]; |
| 1757 | struct mem_cgroup *cached[NR_MEMCG_STOCK]; |
| 1758 | |
| 1759 | struct work_struct work; |
| 1760 | unsigned long flags; |
| 1761 | }; |
| 1762 | |
| 1763 | static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { |
| 1764 | .lock = INIT_LOCAL_TRYLOCK(lock), |
| 1765 | }; |
| 1766 | |
| 1767 | struct obj_stock_pcp { |
| 1768 | local_trylock_t lock; |
| 1769 | unsigned int nr_bytes; |
| 1770 | struct obj_cgroup *cached_objcg; |
| 1771 | struct pglist_data *cached_pgdat; |
| 1772 | int nr_slab_reclaimable_b; |
| 1773 | int nr_slab_unreclaimable_b; |
| 1774 | |
| 1775 | struct work_struct work; |
| 1776 | unsigned long flags; |
| 1777 | }; |
| 1778 | |
| 1779 | static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { |
| 1780 | .lock = INIT_LOCAL_TRYLOCK(lock), |
| 1781 | }; |
| 1782 | |
| 1783 | static DEFINE_MUTEX(percpu_charge_mutex); |
| 1784 | |
| 1785 | static void drain_obj_stock(struct obj_stock_pcp *stock); |
| 1786 | static bool obj_stock_flush_required(struct obj_stock_pcp *stock, |
| 1787 | struct mem_cgroup *root_memcg); |
| 1788 | |
| 1789 | /** |
| 1790 | * consume_stock: Try to consume stocked charge on this cpu. |
| 1791 | * @memcg: memcg to consume from. |
| 1792 | * @nr_pages: how many pages to charge. |
| 1793 | * |
| 1794 | * Consume the cached charge if enough nr_pages are present otherwise return |
| 1795 | * failure. Also return failure for charge request larger than |
| 1796 | * MEMCG_CHARGE_BATCH or if the local lock is already taken. |
| 1797 | * |
| 1798 | * returns true if successful, false otherwise. |
| 1799 | */ |
| 1800 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
| 1801 | { |
| 1802 | struct memcg_stock_pcp *stock; |
| 1803 | uint8_t stock_pages; |
| 1804 | bool ret = false; |
| 1805 | int i; |
| 1806 | |
| 1807 | if (nr_pages > MEMCG_CHARGE_BATCH || |
| 1808 | !local_trylock(&memcg_stock.lock)) |
| 1809 | return ret; |
| 1810 | |
| 1811 | stock = this_cpu_ptr(&memcg_stock); |
| 1812 | |
| 1813 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { |
| 1814 | if (memcg != READ_ONCE(stock->cached[i])) |
| 1815 | continue; |
| 1816 | |
| 1817 | stock_pages = READ_ONCE(stock->nr_pages[i]); |
| 1818 | if (stock_pages >= nr_pages) { |
| 1819 | WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); |
| 1820 | ret = true; |
| 1821 | } |
| 1822 | break; |
| 1823 | } |
| 1824 | |
| 1825 | local_unlock(&memcg_stock.lock); |
| 1826 | |
| 1827 | return ret; |
| 1828 | } |
| 1829 | |
| 1830 | static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) |
| 1831 | { |
| 1832 | page_counter_uncharge(&memcg->memory, nr_pages); |
| 1833 | if (do_memsw_account()) |
| 1834 | page_counter_uncharge(&memcg->memsw, nr_pages); |
| 1835 | } |
| 1836 | |
| 1837 | /* |
| 1838 | * Returns stocks cached in percpu and reset cached information. |
| 1839 | */ |
| 1840 | static void drain_stock(struct memcg_stock_pcp *stock, int i) |
| 1841 | { |
| 1842 | struct mem_cgroup *old = READ_ONCE(stock->cached[i]); |
| 1843 | uint8_t stock_pages; |
| 1844 | |
| 1845 | if (!old) |
| 1846 | return; |
| 1847 | |
| 1848 | stock_pages = READ_ONCE(stock->nr_pages[i]); |
| 1849 | if (stock_pages) { |
| 1850 | memcg_uncharge(old, stock_pages); |
| 1851 | WRITE_ONCE(stock->nr_pages[i], 0); |
| 1852 | } |
| 1853 | |
| 1854 | css_put(&old->css); |
| 1855 | WRITE_ONCE(stock->cached[i], NULL); |
| 1856 | } |
| 1857 | |
| 1858 | static void drain_stock_fully(struct memcg_stock_pcp *stock) |
| 1859 | { |
| 1860 | int i; |
| 1861 | |
| 1862 | for (i = 0; i < NR_MEMCG_STOCK; ++i) |
| 1863 | drain_stock(stock, i); |
| 1864 | } |
| 1865 | |
| 1866 | static void drain_local_memcg_stock(struct work_struct *dummy) |
| 1867 | { |
| 1868 | struct memcg_stock_pcp *stock; |
| 1869 | |
| 1870 | if (WARN_ONCE(!in_task(), "drain in non-task context")) |
| 1871 | return; |
| 1872 | |
| 1873 | local_lock(&memcg_stock.lock); |
| 1874 | |
| 1875 | stock = this_cpu_ptr(&memcg_stock); |
| 1876 | drain_stock_fully(stock); |
| 1877 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
| 1878 | |
| 1879 | local_unlock(&memcg_stock.lock); |
| 1880 | } |
| 1881 | |
| 1882 | static void drain_local_obj_stock(struct work_struct *dummy) |
| 1883 | { |
| 1884 | struct obj_stock_pcp *stock; |
| 1885 | |
| 1886 | if (WARN_ONCE(!in_task(), "drain in non-task context")) |
| 1887 | return; |
| 1888 | |
| 1889 | local_lock(&obj_stock.lock); |
| 1890 | |
| 1891 | stock = this_cpu_ptr(&obj_stock); |
| 1892 | drain_obj_stock(stock); |
| 1893 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
| 1894 | |
| 1895 | local_unlock(&obj_stock.lock); |
| 1896 | } |
| 1897 | |
| 1898 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
| 1899 | { |
| 1900 | struct memcg_stock_pcp *stock; |
| 1901 | struct mem_cgroup *cached; |
| 1902 | uint8_t stock_pages; |
| 1903 | bool success = false; |
| 1904 | int empty_slot = -1; |
| 1905 | int i; |
| 1906 | |
| 1907 | /* |
| 1908 | * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we |
| 1909 | * decide to increase it more than 127 then we will need more careful |
| 1910 | * handling of nr_pages[] in struct memcg_stock_pcp. |
| 1911 | */ |
| 1912 | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); |
| 1913 | |
| 1914 | VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); |
| 1915 | |
| 1916 | if (nr_pages > MEMCG_CHARGE_BATCH || |
| 1917 | !local_trylock(&memcg_stock.lock)) { |
| 1918 | /* |
| 1919 | * In case of larger than batch refill or unlikely failure to |
| 1920 | * lock the percpu memcg_stock.lock, uncharge memcg directly. |
| 1921 | */ |
| 1922 | memcg_uncharge(memcg, nr_pages); |
| 1923 | return; |
| 1924 | } |
| 1925 | |
| 1926 | stock = this_cpu_ptr(&memcg_stock); |
| 1927 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { |
| 1928 | cached = READ_ONCE(stock->cached[i]); |
| 1929 | if (!cached && empty_slot == -1) |
| 1930 | empty_slot = i; |
| 1931 | if (memcg == READ_ONCE(stock->cached[i])) { |
| 1932 | stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; |
| 1933 | WRITE_ONCE(stock->nr_pages[i], stock_pages); |
| 1934 | if (stock_pages > MEMCG_CHARGE_BATCH) |
| 1935 | drain_stock(stock, i); |
| 1936 | success = true; |
| 1937 | break; |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | if (!success) { |
| 1942 | i = empty_slot; |
| 1943 | if (i == -1) { |
| 1944 | i = get_random_u32_below(NR_MEMCG_STOCK); |
| 1945 | drain_stock(stock, i); |
| 1946 | } |
| 1947 | css_get(&memcg->css); |
| 1948 | WRITE_ONCE(stock->cached[i], memcg); |
| 1949 | WRITE_ONCE(stock->nr_pages[i], nr_pages); |
| 1950 | } |
| 1951 | |
| 1952 | local_unlock(&memcg_stock.lock); |
| 1953 | } |
| 1954 | |
| 1955 | static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, |
| 1956 | struct mem_cgroup *root_memcg) |
| 1957 | { |
| 1958 | struct mem_cgroup *memcg; |
| 1959 | bool flush = false; |
| 1960 | int i; |
| 1961 | |
| 1962 | rcu_read_lock(); |
| 1963 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { |
| 1964 | memcg = READ_ONCE(stock->cached[i]); |
| 1965 | if (!memcg) |
| 1966 | continue; |
| 1967 | |
| 1968 | if (READ_ONCE(stock->nr_pages[i]) && |
| 1969 | mem_cgroup_is_descendant(memcg, root_memcg)) { |
| 1970 | flush = true; |
| 1971 | break; |
| 1972 | } |
| 1973 | } |
| 1974 | rcu_read_unlock(); |
| 1975 | return flush; |
| 1976 | } |
| 1977 | |
| 1978 | /* |
| 1979 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
| 1980 | * of the hierarchy under it. |
| 1981 | */ |
| 1982 | void drain_all_stock(struct mem_cgroup *root_memcg) |
| 1983 | { |
| 1984 | int cpu, curcpu; |
| 1985 | |
| 1986 | /* If someone's already draining, avoid adding running more workers. */ |
| 1987 | if (!mutex_trylock(&percpu_charge_mutex)) |
| 1988 | return; |
| 1989 | /* |
| 1990 | * Notify other cpus that system-wide "drain" is running |
| 1991 | * We do not care about races with the cpu hotplug because cpu down |
| 1992 | * as well as workers from this path always operate on the local |
| 1993 | * per-cpu data. CPU up doesn't touch memcg_stock at all. |
| 1994 | */ |
| 1995 | migrate_disable(); |
| 1996 | curcpu = smp_processor_id(); |
| 1997 | for_each_online_cpu(cpu) { |
| 1998 | struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); |
| 1999 | struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); |
| 2000 | |
| 2001 | if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && |
| 2002 | is_memcg_drain_needed(memcg_st, root_memcg) && |
| 2003 | !test_and_set_bit(FLUSHING_CACHED_CHARGE, |
| 2004 | &memcg_st->flags)) { |
| 2005 | if (cpu == curcpu) |
| 2006 | drain_local_memcg_stock(&memcg_st->work); |
| 2007 | else if (!cpu_is_isolated(cpu)) |
| 2008 | schedule_work_on(cpu, &memcg_st->work); |
| 2009 | } |
| 2010 | |
| 2011 | if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && |
| 2012 | obj_stock_flush_required(obj_st, root_memcg) && |
| 2013 | !test_and_set_bit(FLUSHING_CACHED_CHARGE, |
| 2014 | &obj_st->flags)) { |
| 2015 | if (cpu == curcpu) |
| 2016 | drain_local_obj_stock(&obj_st->work); |
| 2017 | else if (!cpu_is_isolated(cpu)) |
| 2018 | schedule_work_on(cpu, &obj_st->work); |
| 2019 | } |
| 2020 | } |
| 2021 | migrate_enable(); |
| 2022 | mutex_unlock(&percpu_charge_mutex); |
| 2023 | } |
| 2024 | |
| 2025 | static int memcg_hotplug_cpu_dead(unsigned int cpu) |
| 2026 | { |
| 2027 | /* no need for the local lock */ |
| 2028 | drain_obj_stock(&per_cpu(obj_stock, cpu)); |
| 2029 | drain_stock_fully(&per_cpu(memcg_stock, cpu)); |
| 2030 | |
| 2031 | return 0; |
| 2032 | } |
| 2033 | |
| 2034 | static unsigned long reclaim_high(struct mem_cgroup *memcg, |
| 2035 | unsigned int nr_pages, |
| 2036 | gfp_t gfp_mask) |
| 2037 | { |
| 2038 | unsigned long nr_reclaimed = 0; |
| 2039 | |
| 2040 | do { |
| 2041 | unsigned long pflags; |
| 2042 | |
| 2043 | if (page_counter_read(&memcg->memory) <= |
| 2044 | READ_ONCE(memcg->memory.high)) |
| 2045 | continue; |
| 2046 | |
| 2047 | memcg_memory_event(memcg, MEMCG_HIGH); |
| 2048 | |
| 2049 | psi_memstall_enter(&pflags); |
| 2050 | nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, |
| 2051 | gfp_mask, |
| 2052 | MEMCG_RECLAIM_MAY_SWAP, |
| 2053 | NULL); |
| 2054 | psi_memstall_leave(&pflags); |
| 2055 | } while ((memcg = parent_mem_cgroup(memcg)) && |
| 2056 | !mem_cgroup_is_root(memcg)); |
| 2057 | |
| 2058 | return nr_reclaimed; |
| 2059 | } |
| 2060 | |
| 2061 | static void high_work_func(struct work_struct *work) |
| 2062 | { |
| 2063 | struct mem_cgroup *memcg; |
| 2064 | |
| 2065 | memcg = container_of(work, struct mem_cgroup, high_work); |
| 2066 | reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); |
| 2067 | } |
| 2068 | |
| 2069 | /* |
| 2070 | * Clamp the maximum sleep time per allocation batch to 2 seconds. This is |
| 2071 | * enough to still cause a significant slowdown in most cases, while still |
| 2072 | * allowing diagnostics and tracing to proceed without becoming stuck. |
| 2073 | */ |
| 2074 | #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) |
| 2075 | |
| 2076 | /* |
| 2077 | * When calculating the delay, we use these either side of the exponentiation to |
| 2078 | * maintain precision and scale to a reasonable number of jiffies (see the table |
| 2079 | * below. |
| 2080 | * |
| 2081 | * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the |
| 2082 | * overage ratio to a delay. |
| 2083 | * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the |
| 2084 | * proposed penalty in order to reduce to a reasonable number of jiffies, and |
| 2085 | * to produce a reasonable delay curve. |
| 2086 | * |
| 2087 | * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a |
| 2088 | * reasonable delay curve compared to precision-adjusted overage, not |
| 2089 | * penalising heavily at first, but still making sure that growth beyond the |
| 2090 | * limit penalises misbehaviour cgroups by slowing them down exponentially. For |
| 2091 | * example, with a high of 100 megabytes: |
| 2092 | * |
| 2093 | * +-------+------------------------+ |
| 2094 | * | usage | time to allocate in ms | |
| 2095 | * +-------+------------------------+ |
| 2096 | * | 100M | 0 | |
| 2097 | * | 101M | 6 | |
| 2098 | * | 102M | 25 | |
| 2099 | * | 103M | 57 | |
| 2100 | * | 104M | 102 | |
| 2101 | * | 105M | 159 | |
| 2102 | * | 106M | 230 | |
| 2103 | * | 107M | 313 | |
| 2104 | * | 108M | 409 | |
| 2105 | * | 109M | 518 | |
| 2106 | * | 110M | 639 | |
| 2107 | * | 111M | 774 | |
| 2108 | * | 112M | 921 | |
| 2109 | * | 113M | 1081 | |
| 2110 | * | 114M | 1254 | |
| 2111 | * | 115M | 1439 | |
| 2112 | * | 116M | 1638 | |
| 2113 | * | 117M | 1849 | |
| 2114 | * | 118M | 2000 | |
| 2115 | * | 119M | 2000 | |
| 2116 | * | 120M | 2000 | |
| 2117 | * +-------+------------------------+ |
| 2118 | */ |
| 2119 | #define MEMCG_DELAY_PRECISION_SHIFT 20 |
| 2120 | #define MEMCG_DELAY_SCALING_SHIFT 14 |
| 2121 | |
| 2122 | static u64 calculate_overage(unsigned long usage, unsigned long high) |
| 2123 | { |
| 2124 | u64 overage; |
| 2125 | |
| 2126 | if (usage <= high) |
| 2127 | return 0; |
| 2128 | |
| 2129 | /* |
| 2130 | * Prevent division by 0 in overage calculation by acting as if |
| 2131 | * it was a threshold of 1 page |
| 2132 | */ |
| 2133 | high = max(high, 1UL); |
| 2134 | |
| 2135 | overage = usage - high; |
| 2136 | overage <<= MEMCG_DELAY_PRECISION_SHIFT; |
| 2137 | return div64_u64(overage, high); |
| 2138 | } |
| 2139 | |
| 2140 | static u64 mem_find_max_overage(struct mem_cgroup *memcg) |
| 2141 | { |
| 2142 | u64 overage, max_overage = 0; |
| 2143 | |
| 2144 | do { |
| 2145 | overage = calculate_overage(page_counter_read(&memcg->memory), |
| 2146 | READ_ONCE(memcg->memory.high)); |
| 2147 | max_overage = max(overage, max_overage); |
| 2148 | } while ((memcg = parent_mem_cgroup(memcg)) && |
| 2149 | !mem_cgroup_is_root(memcg)); |
| 2150 | |
| 2151 | return max_overage; |
| 2152 | } |
| 2153 | |
| 2154 | static u64 swap_find_max_overage(struct mem_cgroup *memcg) |
| 2155 | { |
| 2156 | u64 overage, max_overage = 0; |
| 2157 | |
| 2158 | do { |
| 2159 | overage = calculate_overage(page_counter_read(&memcg->swap), |
| 2160 | READ_ONCE(memcg->swap.high)); |
| 2161 | if (overage) |
| 2162 | memcg_memory_event(memcg, MEMCG_SWAP_HIGH); |
| 2163 | max_overage = max(overage, max_overage); |
| 2164 | } while ((memcg = parent_mem_cgroup(memcg)) && |
| 2165 | !mem_cgroup_is_root(memcg)); |
| 2166 | |
| 2167 | return max_overage; |
| 2168 | } |
| 2169 | |
| 2170 | /* |
| 2171 | * Get the number of jiffies that we should penalise a mischievous cgroup which |
| 2172 | * is exceeding its memory.high by checking both it and its ancestors. |
| 2173 | */ |
| 2174 | static unsigned long calculate_high_delay(struct mem_cgroup *memcg, |
| 2175 | unsigned int nr_pages, |
| 2176 | u64 max_overage) |
| 2177 | { |
| 2178 | unsigned long penalty_jiffies; |
| 2179 | |
| 2180 | if (!max_overage) |
| 2181 | return 0; |
| 2182 | |
| 2183 | /* |
| 2184 | * We use overage compared to memory.high to calculate the number of |
| 2185 | * jiffies to sleep (penalty_jiffies). Ideally this value should be |
| 2186 | * fairly lenient on small overages, and increasingly harsh when the |
| 2187 | * memcg in question makes it clear that it has no intention of stopping |
| 2188 | * its crazy behaviour, so we exponentially increase the delay based on |
| 2189 | * overage amount. |
| 2190 | */ |
| 2191 | penalty_jiffies = max_overage * max_overage * HZ; |
| 2192 | penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; |
| 2193 | penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; |
| 2194 | |
| 2195 | /* |
| 2196 | * Factor in the task's own contribution to the overage, such that four |
| 2197 | * N-sized allocations are throttled approximately the same as one |
| 2198 | * 4N-sized allocation. |
| 2199 | * |
| 2200 | * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or |
| 2201 | * larger the current charge patch is than that. |
| 2202 | */ |
| 2203 | return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; |
| 2204 | } |
| 2205 | |
| 2206 | /* |
| 2207 | * Reclaims memory over the high limit. Called directly from |
| 2208 | * try_charge() (context permitting), as well as from the userland |
| 2209 | * return path where reclaim is always able to block. |
| 2210 | */ |
| 2211 | void mem_cgroup_handle_over_high(gfp_t gfp_mask) |
| 2212 | { |
| 2213 | unsigned long penalty_jiffies; |
| 2214 | unsigned long pflags; |
| 2215 | unsigned long nr_reclaimed; |
| 2216 | unsigned int nr_pages = current->memcg_nr_pages_over_high; |
| 2217 | int nr_retries = MAX_RECLAIM_RETRIES; |
| 2218 | struct mem_cgroup *memcg; |
| 2219 | bool in_retry = false; |
| 2220 | |
| 2221 | if (likely(!nr_pages)) |
| 2222 | return; |
| 2223 | |
| 2224 | memcg = get_mem_cgroup_from_mm(current->mm); |
| 2225 | current->memcg_nr_pages_over_high = 0; |
| 2226 | |
| 2227 | retry_reclaim: |
| 2228 | /* |
| 2229 | * Bail if the task is already exiting. Unlike memory.max, |
| 2230 | * memory.high enforcement isn't as strict, and there is no |
| 2231 | * OOM killer involved, which means the excess could already |
| 2232 | * be much bigger (and still growing) than it could for |
| 2233 | * memory.max; the dying task could get stuck in fruitless |
| 2234 | * reclaim for a long time, which isn't desirable. |
| 2235 | */ |
| 2236 | if (task_is_dying()) |
| 2237 | goto out; |
| 2238 | |
| 2239 | /* |
| 2240 | * The allocating task should reclaim at least the batch size, but for |
| 2241 | * subsequent retries we only want to do what's necessary to prevent oom |
| 2242 | * or breaching resource isolation. |
| 2243 | * |
| 2244 | * This is distinct from memory.max or page allocator behaviour because |
| 2245 | * memory.high is currently batched, whereas memory.max and the page |
| 2246 | * allocator run every time an allocation is made. |
| 2247 | */ |
| 2248 | nr_reclaimed = reclaim_high(memcg, |
| 2249 | in_retry ? SWAP_CLUSTER_MAX : nr_pages, |
| 2250 | gfp_mask); |
| 2251 | |
| 2252 | /* |
| 2253 | * memory.high is breached and reclaim is unable to keep up. Throttle |
| 2254 | * allocators proactively to slow down excessive growth. |
| 2255 | */ |
| 2256 | penalty_jiffies = calculate_high_delay(memcg, nr_pages, |
| 2257 | mem_find_max_overage(memcg)); |
| 2258 | |
| 2259 | penalty_jiffies += calculate_high_delay(memcg, nr_pages, |
| 2260 | swap_find_max_overage(memcg)); |
| 2261 | |
| 2262 | /* |
| 2263 | * Clamp the max delay per usermode return so as to still keep the |
| 2264 | * application moving forwards and also permit diagnostics, albeit |
| 2265 | * extremely slowly. |
| 2266 | */ |
| 2267 | penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); |
| 2268 | |
| 2269 | /* |
| 2270 | * Don't sleep if the amount of jiffies this memcg owes us is so low |
| 2271 | * that it's not even worth doing, in an attempt to be nice to those who |
| 2272 | * go only a small amount over their memory.high value and maybe haven't |
| 2273 | * been aggressively reclaimed enough yet. |
| 2274 | */ |
| 2275 | if (penalty_jiffies <= HZ / 100) |
| 2276 | goto out; |
| 2277 | |
| 2278 | /* |
| 2279 | * If reclaim is making forward progress but we're still over |
| 2280 | * memory.high, we want to encourage that rather than doing allocator |
| 2281 | * throttling. |
| 2282 | */ |
| 2283 | if (nr_reclaimed || nr_retries--) { |
| 2284 | in_retry = true; |
| 2285 | goto retry_reclaim; |
| 2286 | } |
| 2287 | |
| 2288 | /* |
| 2289 | * Reclaim didn't manage to push usage below the limit, slow |
| 2290 | * this allocating task down. |
| 2291 | * |
| 2292 | * If we exit early, we're guaranteed to die (since |
| 2293 | * schedule_timeout_killable sets TASK_KILLABLE). This means we don't |
| 2294 | * need to account for any ill-begotten jiffies to pay them off later. |
| 2295 | */ |
| 2296 | psi_memstall_enter(&pflags); |
| 2297 | schedule_timeout_killable(penalty_jiffies); |
| 2298 | psi_memstall_leave(&pflags); |
| 2299 | |
| 2300 | out: |
| 2301 | css_put(&memcg->css); |
| 2302 | } |
| 2303 | |
| 2304 | static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, |
| 2305 | unsigned int nr_pages) |
| 2306 | { |
| 2307 | unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); |
| 2308 | int nr_retries = MAX_RECLAIM_RETRIES; |
| 2309 | struct mem_cgroup *mem_over_limit; |
| 2310 | struct page_counter *counter; |
| 2311 | unsigned long nr_reclaimed; |
| 2312 | bool passed_oom = false; |
| 2313 | unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; |
| 2314 | bool drained = false; |
| 2315 | bool raised_max_event = false; |
| 2316 | unsigned long pflags; |
| 2317 | |
| 2318 | retry: |
| 2319 | if (consume_stock(memcg, nr_pages)) |
| 2320 | return 0; |
| 2321 | |
| 2322 | if (!gfpflags_allow_spinning(gfp_mask)) |
| 2323 | /* Avoid the refill and flush of the older stock */ |
| 2324 | batch = nr_pages; |
| 2325 | |
| 2326 | if (!do_memsw_account() || |
| 2327 | page_counter_try_charge(&memcg->memsw, batch, &counter)) { |
| 2328 | if (page_counter_try_charge(&memcg->memory, batch, &counter)) |
| 2329 | goto done_restock; |
| 2330 | if (do_memsw_account()) |
| 2331 | page_counter_uncharge(&memcg->memsw, batch); |
| 2332 | mem_over_limit = mem_cgroup_from_counter(counter, memory); |
| 2333 | } else { |
| 2334 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); |
| 2335 | reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; |
| 2336 | } |
| 2337 | |
| 2338 | if (batch > nr_pages) { |
| 2339 | batch = nr_pages; |
| 2340 | goto retry; |
| 2341 | } |
| 2342 | |
| 2343 | /* |
| 2344 | * Prevent unbounded recursion when reclaim operations need to |
| 2345 | * allocate memory. This might exceed the limits temporarily, |
| 2346 | * but we prefer facilitating memory reclaim and getting back |
| 2347 | * under the limit over triggering OOM kills in these cases. |
| 2348 | */ |
| 2349 | if (unlikely(current->flags & PF_MEMALLOC)) |
| 2350 | goto force; |
| 2351 | |
| 2352 | if (unlikely(task_in_memcg_oom(current))) |
| 2353 | goto nomem; |
| 2354 | |
| 2355 | if (!gfpflags_allow_blocking(gfp_mask)) |
| 2356 | goto nomem; |
| 2357 | |
| 2358 | memcg_memory_event(mem_over_limit, MEMCG_MAX); |
| 2359 | raised_max_event = true; |
| 2360 | |
| 2361 | psi_memstall_enter(&pflags); |
| 2362 | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, |
| 2363 | gfp_mask, reclaim_options, NULL); |
| 2364 | psi_memstall_leave(&pflags); |
| 2365 | |
| 2366 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
| 2367 | goto retry; |
| 2368 | |
| 2369 | if (!drained) { |
| 2370 | drain_all_stock(mem_over_limit); |
| 2371 | drained = true; |
| 2372 | goto retry; |
| 2373 | } |
| 2374 | |
| 2375 | if (gfp_mask & __GFP_NORETRY) |
| 2376 | goto nomem; |
| 2377 | /* |
| 2378 | * Even though the limit is exceeded at this point, reclaim |
| 2379 | * may have been able to free some pages. Retry the charge |
| 2380 | * before killing the task. |
| 2381 | * |
| 2382 | * Only for regular pages, though: huge pages are rather |
| 2383 | * unlikely to succeed so close to the limit, and we fall back |
| 2384 | * to regular pages anyway in case of failure. |
| 2385 | */ |
| 2386 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) |
| 2387 | goto retry; |
| 2388 | |
| 2389 | if (nr_retries--) |
| 2390 | goto retry; |
| 2391 | |
| 2392 | if (gfp_mask & __GFP_RETRY_MAYFAIL) |
| 2393 | goto nomem; |
| 2394 | |
| 2395 | /* Avoid endless loop for tasks bypassed by the oom killer */ |
| 2396 | if (passed_oom && task_is_dying()) |
| 2397 | goto nomem; |
| 2398 | |
| 2399 | /* |
| 2400 | * keep retrying as long as the memcg oom killer is able to make |
| 2401 | * a forward progress or bypass the charge if the oom killer |
| 2402 | * couldn't make any progress. |
| 2403 | */ |
| 2404 | if (mem_cgroup_oom(mem_over_limit, gfp_mask, |
| 2405 | get_order(nr_pages * PAGE_SIZE))) { |
| 2406 | passed_oom = true; |
| 2407 | nr_retries = MAX_RECLAIM_RETRIES; |
| 2408 | goto retry; |
| 2409 | } |
| 2410 | nomem: |
| 2411 | /* |
| 2412 | * Memcg doesn't have a dedicated reserve for atomic |
| 2413 | * allocations. But like the global atomic pool, we need to |
| 2414 | * put the burden of reclaim on regular allocation requests |
| 2415 | * and let these go through as privileged allocations. |
| 2416 | */ |
| 2417 | if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) |
| 2418 | return -ENOMEM; |
| 2419 | force: |
| 2420 | /* |
| 2421 | * If the allocation has to be enforced, don't forget to raise |
| 2422 | * a MEMCG_MAX event. |
| 2423 | */ |
| 2424 | if (!raised_max_event) |
| 2425 | memcg_memory_event(mem_over_limit, MEMCG_MAX); |
| 2426 | |
| 2427 | /* |
| 2428 | * The allocation either can't fail or will lead to more memory |
| 2429 | * being freed very soon. Allow memory usage go over the limit |
| 2430 | * temporarily by force charging it. |
| 2431 | */ |
| 2432 | page_counter_charge(&memcg->memory, nr_pages); |
| 2433 | if (do_memsw_account()) |
| 2434 | page_counter_charge(&memcg->memsw, nr_pages); |
| 2435 | |
| 2436 | return 0; |
| 2437 | |
| 2438 | done_restock: |
| 2439 | if (batch > nr_pages) |
| 2440 | refill_stock(memcg, batch - nr_pages); |
| 2441 | |
| 2442 | /* |
| 2443 | * If the hierarchy is above the normal consumption range, schedule |
| 2444 | * reclaim on returning to userland. We can perform reclaim here |
| 2445 | * if __GFP_RECLAIM but let's always punt for simplicity and so that |
| 2446 | * GFP_KERNEL can consistently be used during reclaim. @memcg is |
| 2447 | * not recorded as it most likely matches current's and won't |
| 2448 | * change in the meantime. As high limit is checked again before |
| 2449 | * reclaim, the cost of mismatch is negligible. |
| 2450 | */ |
| 2451 | do { |
| 2452 | bool mem_high, swap_high; |
| 2453 | |
| 2454 | mem_high = page_counter_read(&memcg->memory) > |
| 2455 | READ_ONCE(memcg->memory.high); |
| 2456 | swap_high = page_counter_read(&memcg->swap) > |
| 2457 | READ_ONCE(memcg->swap.high); |
| 2458 | |
| 2459 | /* Don't bother a random interrupted task */ |
| 2460 | if (!in_task()) { |
| 2461 | if (mem_high) { |
| 2462 | schedule_work(&memcg->high_work); |
| 2463 | break; |
| 2464 | } |
| 2465 | continue; |
| 2466 | } |
| 2467 | |
| 2468 | if (mem_high || swap_high) { |
| 2469 | /* |
| 2470 | * The allocating tasks in this cgroup will need to do |
| 2471 | * reclaim or be throttled to prevent further growth |
| 2472 | * of the memory or swap footprints. |
| 2473 | * |
| 2474 | * Target some best-effort fairness between the tasks, |
| 2475 | * and distribute reclaim work and delay penalties |
| 2476 | * based on how much each task is actually allocating. |
| 2477 | */ |
| 2478 | current->memcg_nr_pages_over_high += batch; |
| 2479 | set_notify_resume(current); |
| 2480 | break; |
| 2481 | } |
| 2482 | } while ((memcg = parent_mem_cgroup(memcg))); |
| 2483 | |
| 2484 | /* |
| 2485 | * Reclaim is set up above to be called from the userland |
| 2486 | * return path. But also attempt synchronous reclaim to avoid |
| 2487 | * excessive overrun while the task is still inside the |
| 2488 | * kernel. If this is successful, the return path will see it |
| 2489 | * when it rechecks the overage and simply bail out. |
| 2490 | */ |
| 2491 | if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && |
| 2492 | !(current->flags & PF_MEMALLOC) && |
| 2493 | gfpflags_allow_blocking(gfp_mask)) |
| 2494 | mem_cgroup_handle_over_high(gfp_mask); |
| 2495 | return 0; |
| 2496 | } |
| 2497 | |
| 2498 | static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
| 2499 | unsigned int nr_pages) |
| 2500 | { |
| 2501 | if (mem_cgroup_is_root(memcg)) |
| 2502 | return 0; |
| 2503 | |
| 2504 | return try_charge_memcg(memcg, gfp_mask, nr_pages); |
| 2505 | } |
| 2506 | |
| 2507 | static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) |
| 2508 | { |
| 2509 | VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); |
| 2510 | /* |
| 2511 | * Any of the following ensures page's memcg stability: |
| 2512 | * |
| 2513 | * - the page lock |
| 2514 | * - LRU isolation |
| 2515 | * - exclusive reference |
| 2516 | */ |
| 2517 | folio->memcg_data = (unsigned long)memcg; |
| 2518 | } |
| 2519 | |
| 2520 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
| 2521 | static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, |
| 2522 | struct pglist_data *pgdat, |
| 2523 | enum node_stat_item idx, int nr) |
| 2524 | { |
| 2525 | struct lruvec *lruvec; |
| 2526 | |
| 2527 | if (likely(!in_nmi())) { |
| 2528 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
| 2529 | mod_memcg_lruvec_state(lruvec, idx, nr); |
| 2530 | } else { |
| 2531 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id]; |
| 2532 | |
| 2533 | /* TODO: add to cgroup update tree once it is nmi-safe. */ |
| 2534 | if (idx == NR_SLAB_RECLAIMABLE_B) |
| 2535 | atomic_add(nr, &pn->slab_reclaimable); |
| 2536 | else |
| 2537 | atomic_add(nr, &pn->slab_unreclaimable); |
| 2538 | } |
| 2539 | } |
| 2540 | #else |
| 2541 | static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, |
| 2542 | struct pglist_data *pgdat, |
| 2543 | enum node_stat_item idx, int nr) |
| 2544 | { |
| 2545 | struct lruvec *lruvec; |
| 2546 | |
| 2547 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
| 2548 | mod_memcg_lruvec_state(lruvec, idx, nr); |
| 2549 | } |
| 2550 | #endif |
| 2551 | |
| 2552 | static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, |
| 2553 | struct pglist_data *pgdat, |
| 2554 | enum node_stat_item idx, int nr) |
| 2555 | { |
| 2556 | struct mem_cgroup *memcg; |
| 2557 | |
| 2558 | rcu_read_lock(); |
| 2559 | memcg = obj_cgroup_memcg(objcg); |
| 2560 | account_slab_nmi_safe(memcg, pgdat, idx, nr); |
| 2561 | rcu_read_unlock(); |
| 2562 | } |
| 2563 | |
| 2564 | static __always_inline |
| 2565 | struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) |
| 2566 | { |
| 2567 | /* |
| 2568 | * Slab objects are accounted individually, not per-page. |
| 2569 | * Memcg membership data for each individual object is saved in |
| 2570 | * slab->obj_exts. |
| 2571 | */ |
| 2572 | if (folio_test_slab(folio)) { |
| 2573 | struct slabobj_ext *obj_exts; |
| 2574 | struct slab *slab; |
| 2575 | unsigned int off; |
| 2576 | |
| 2577 | slab = folio_slab(folio); |
| 2578 | obj_exts = slab_obj_exts(slab); |
| 2579 | if (!obj_exts) |
| 2580 | return NULL; |
| 2581 | |
| 2582 | off = obj_to_index(slab->slab_cache, slab, p); |
| 2583 | if (obj_exts[off].objcg) |
| 2584 | return obj_cgroup_memcg(obj_exts[off].objcg); |
| 2585 | |
| 2586 | return NULL; |
| 2587 | } |
| 2588 | |
| 2589 | /* |
| 2590 | * folio_memcg_check() is used here, because in theory we can encounter |
| 2591 | * a folio where the slab flag has been cleared already, but |
| 2592 | * slab->obj_exts has not been freed yet |
| 2593 | * folio_memcg_check() will guarantee that a proper memory |
| 2594 | * cgroup pointer or NULL will be returned. |
| 2595 | */ |
| 2596 | return folio_memcg_check(folio); |
| 2597 | } |
| 2598 | |
| 2599 | /* |
| 2600 | * Returns a pointer to the memory cgroup to which the kernel object is charged. |
| 2601 | * It is not suitable for objects allocated using vmalloc(). |
| 2602 | * |
| 2603 | * A passed kernel object must be a slab object or a generic kernel page. |
| 2604 | * |
| 2605 | * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), |
| 2606 | * cgroup_mutex, etc. |
| 2607 | */ |
| 2608 | struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) |
| 2609 | { |
| 2610 | if (mem_cgroup_disabled()) |
| 2611 | return NULL; |
| 2612 | |
| 2613 | return mem_cgroup_from_obj_folio(virt_to_folio(p), p); |
| 2614 | } |
| 2615 | |
| 2616 | static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) |
| 2617 | { |
| 2618 | struct obj_cgroup *objcg = NULL; |
| 2619 | |
| 2620 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
| 2621 | objcg = rcu_dereference(memcg->objcg); |
| 2622 | if (likely(objcg && obj_cgroup_tryget(objcg))) |
| 2623 | break; |
| 2624 | objcg = NULL; |
| 2625 | } |
| 2626 | return objcg; |
| 2627 | } |
| 2628 | |
| 2629 | static struct obj_cgroup *current_objcg_update(void) |
| 2630 | { |
| 2631 | struct mem_cgroup *memcg; |
| 2632 | struct obj_cgroup *old, *objcg = NULL; |
| 2633 | |
| 2634 | do { |
| 2635 | /* Atomically drop the update bit. */ |
| 2636 | old = xchg(¤t->objcg, NULL); |
| 2637 | if (old) { |
| 2638 | old = (struct obj_cgroup *) |
| 2639 | ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); |
| 2640 | obj_cgroup_put(old); |
| 2641 | |
| 2642 | old = NULL; |
| 2643 | } |
| 2644 | |
| 2645 | /* If new objcg is NULL, no reason for the second atomic update. */ |
| 2646 | if (!current->mm || (current->flags & PF_KTHREAD)) |
| 2647 | return NULL; |
| 2648 | |
| 2649 | /* |
| 2650 | * Release the objcg pointer from the previous iteration, |
| 2651 | * if try_cmpxcg() below fails. |
| 2652 | */ |
| 2653 | if (unlikely(objcg)) { |
| 2654 | obj_cgroup_put(objcg); |
| 2655 | objcg = NULL; |
| 2656 | } |
| 2657 | |
| 2658 | /* |
| 2659 | * Obtain the new objcg pointer. The current task can be |
| 2660 | * asynchronously moved to another memcg and the previous |
| 2661 | * memcg can be offlined. So let's get the memcg pointer |
| 2662 | * and try get a reference to objcg under a rcu read lock. |
| 2663 | */ |
| 2664 | |
| 2665 | rcu_read_lock(); |
| 2666 | memcg = mem_cgroup_from_task(current); |
| 2667 | objcg = __get_obj_cgroup_from_memcg(memcg); |
| 2668 | rcu_read_unlock(); |
| 2669 | |
| 2670 | /* |
| 2671 | * Try set up a new objcg pointer atomically. If it |
| 2672 | * fails, it means the update flag was set concurrently, so |
| 2673 | * the whole procedure should be repeated. |
| 2674 | */ |
| 2675 | } while (!try_cmpxchg(¤t->objcg, &old, objcg)); |
| 2676 | |
| 2677 | return objcg; |
| 2678 | } |
| 2679 | |
| 2680 | __always_inline struct obj_cgroup *current_obj_cgroup(void) |
| 2681 | { |
| 2682 | struct mem_cgroup *memcg; |
| 2683 | struct obj_cgroup *objcg; |
| 2684 | |
| 2685 | if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi()) |
| 2686 | return NULL; |
| 2687 | |
| 2688 | if (in_task()) { |
| 2689 | memcg = current->active_memcg; |
| 2690 | if (unlikely(memcg)) |
| 2691 | goto from_memcg; |
| 2692 | |
| 2693 | objcg = READ_ONCE(current->objcg); |
| 2694 | if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) |
| 2695 | objcg = current_objcg_update(); |
| 2696 | /* |
| 2697 | * Objcg reference is kept by the task, so it's safe |
| 2698 | * to use the objcg by the current task. |
| 2699 | */ |
| 2700 | return objcg; |
| 2701 | } |
| 2702 | |
| 2703 | memcg = this_cpu_read(int_active_memcg); |
| 2704 | if (unlikely(memcg)) |
| 2705 | goto from_memcg; |
| 2706 | |
| 2707 | return NULL; |
| 2708 | |
| 2709 | from_memcg: |
| 2710 | objcg = NULL; |
| 2711 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
| 2712 | /* |
| 2713 | * Memcg pointer is protected by scope (see set_active_memcg()) |
| 2714 | * and is pinning the corresponding objcg, so objcg can't go |
| 2715 | * away and can be used within the scope without any additional |
| 2716 | * protection. |
| 2717 | */ |
| 2718 | objcg = rcu_dereference_check(memcg->objcg, 1); |
| 2719 | if (likely(objcg)) |
| 2720 | break; |
| 2721 | } |
| 2722 | |
| 2723 | return objcg; |
| 2724 | } |
| 2725 | |
| 2726 | struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) |
| 2727 | { |
| 2728 | struct obj_cgroup *objcg; |
| 2729 | |
| 2730 | if (!memcg_kmem_online()) |
| 2731 | return NULL; |
| 2732 | |
| 2733 | if (folio_memcg_kmem(folio)) { |
| 2734 | objcg = __folio_objcg(folio); |
| 2735 | obj_cgroup_get(objcg); |
| 2736 | } else { |
| 2737 | struct mem_cgroup *memcg; |
| 2738 | |
| 2739 | rcu_read_lock(); |
| 2740 | memcg = __folio_memcg(folio); |
| 2741 | if (memcg) |
| 2742 | objcg = __get_obj_cgroup_from_memcg(memcg); |
| 2743 | else |
| 2744 | objcg = NULL; |
| 2745 | rcu_read_unlock(); |
| 2746 | } |
| 2747 | return objcg; |
| 2748 | } |
| 2749 | |
| 2750 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
| 2751 | static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) |
| 2752 | { |
| 2753 | if (likely(!in_nmi())) { |
| 2754 | mod_memcg_state(memcg, MEMCG_KMEM, val); |
| 2755 | } else { |
| 2756 | /* TODO: add to cgroup update tree once it is nmi-safe. */ |
| 2757 | atomic_add(val, &memcg->kmem_stat); |
| 2758 | } |
| 2759 | } |
| 2760 | #else |
| 2761 | static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) |
| 2762 | { |
| 2763 | mod_memcg_state(memcg, MEMCG_KMEM, val); |
| 2764 | } |
| 2765 | #endif |
| 2766 | |
| 2767 | /* |
| 2768 | * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg |
| 2769 | * @objcg: object cgroup to uncharge |
| 2770 | * @nr_pages: number of pages to uncharge |
| 2771 | */ |
| 2772 | static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, |
| 2773 | unsigned int nr_pages) |
| 2774 | { |
| 2775 | struct mem_cgroup *memcg; |
| 2776 | |
| 2777 | memcg = get_mem_cgroup_from_objcg(objcg); |
| 2778 | |
| 2779 | account_kmem_nmi_safe(memcg, -nr_pages); |
| 2780 | memcg1_account_kmem(memcg, -nr_pages); |
| 2781 | if (!mem_cgroup_is_root(memcg)) |
| 2782 | refill_stock(memcg, nr_pages); |
| 2783 | |
| 2784 | css_put(&memcg->css); |
| 2785 | } |
| 2786 | |
| 2787 | /* |
| 2788 | * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg |
| 2789 | * @objcg: object cgroup to charge |
| 2790 | * @gfp: reclaim mode |
| 2791 | * @nr_pages: number of pages to charge |
| 2792 | * |
| 2793 | * Returns 0 on success, an error code on failure. |
| 2794 | */ |
| 2795 | static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, |
| 2796 | unsigned int nr_pages) |
| 2797 | { |
| 2798 | struct mem_cgroup *memcg; |
| 2799 | int ret; |
| 2800 | |
| 2801 | memcg = get_mem_cgroup_from_objcg(objcg); |
| 2802 | |
| 2803 | ret = try_charge_memcg(memcg, gfp, nr_pages); |
| 2804 | if (ret) |
| 2805 | goto out; |
| 2806 | |
| 2807 | account_kmem_nmi_safe(memcg, nr_pages); |
| 2808 | memcg1_account_kmem(memcg, nr_pages); |
| 2809 | out: |
| 2810 | css_put(&memcg->css); |
| 2811 | |
| 2812 | return ret; |
| 2813 | } |
| 2814 | |
| 2815 | static struct obj_cgroup *page_objcg(const struct page *page) |
| 2816 | { |
| 2817 | unsigned long memcg_data = page->memcg_data; |
| 2818 | |
| 2819 | if (mem_cgroup_disabled() || !memcg_data) |
| 2820 | return NULL; |
| 2821 | |
| 2822 | VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, |
| 2823 | page); |
| 2824 | return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); |
| 2825 | } |
| 2826 | |
| 2827 | static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) |
| 2828 | { |
| 2829 | page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; |
| 2830 | } |
| 2831 | |
| 2832 | /** |
| 2833 | * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup |
| 2834 | * @page: page to charge |
| 2835 | * @gfp: reclaim mode |
| 2836 | * @order: allocation order |
| 2837 | * |
| 2838 | * Returns 0 on success, an error code on failure. |
| 2839 | */ |
| 2840 | int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) |
| 2841 | { |
| 2842 | struct obj_cgroup *objcg; |
| 2843 | int ret = 0; |
| 2844 | |
| 2845 | objcg = current_obj_cgroup(); |
| 2846 | if (objcg) { |
| 2847 | ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); |
| 2848 | if (!ret) { |
| 2849 | obj_cgroup_get(objcg); |
| 2850 | page_set_objcg(page, objcg); |
| 2851 | return 0; |
| 2852 | } |
| 2853 | } |
| 2854 | return ret; |
| 2855 | } |
| 2856 | |
| 2857 | /** |
| 2858 | * __memcg_kmem_uncharge_page: uncharge a kmem page |
| 2859 | * @page: page to uncharge |
| 2860 | * @order: allocation order |
| 2861 | */ |
| 2862 | void __memcg_kmem_uncharge_page(struct page *page, int order) |
| 2863 | { |
| 2864 | struct obj_cgroup *objcg = page_objcg(page); |
| 2865 | unsigned int nr_pages = 1 << order; |
| 2866 | |
| 2867 | if (!objcg) |
| 2868 | return; |
| 2869 | |
| 2870 | obj_cgroup_uncharge_pages(objcg, nr_pages); |
| 2871 | page->memcg_data = 0; |
| 2872 | obj_cgroup_put(objcg); |
| 2873 | } |
| 2874 | |
| 2875 | static void __account_obj_stock(struct obj_cgroup *objcg, |
| 2876 | struct obj_stock_pcp *stock, int nr, |
| 2877 | struct pglist_data *pgdat, enum node_stat_item idx) |
| 2878 | { |
| 2879 | int *bytes; |
| 2880 | |
| 2881 | /* |
| 2882 | * Save vmstat data in stock and skip vmstat array update unless |
| 2883 | * accumulating over a page of vmstat data or when pgdat changes. |
| 2884 | */ |
| 2885 | if (stock->cached_pgdat != pgdat) { |
| 2886 | /* Flush the existing cached vmstat data */ |
| 2887 | struct pglist_data *oldpg = stock->cached_pgdat; |
| 2888 | |
| 2889 | if (stock->nr_slab_reclaimable_b) { |
| 2890 | mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, |
| 2891 | stock->nr_slab_reclaimable_b); |
| 2892 | stock->nr_slab_reclaimable_b = 0; |
| 2893 | } |
| 2894 | if (stock->nr_slab_unreclaimable_b) { |
| 2895 | mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, |
| 2896 | stock->nr_slab_unreclaimable_b); |
| 2897 | stock->nr_slab_unreclaimable_b = 0; |
| 2898 | } |
| 2899 | stock->cached_pgdat = pgdat; |
| 2900 | } |
| 2901 | |
| 2902 | bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b |
| 2903 | : &stock->nr_slab_unreclaimable_b; |
| 2904 | /* |
| 2905 | * Even for large object >= PAGE_SIZE, the vmstat data will still be |
| 2906 | * cached locally at least once before pushing it out. |
| 2907 | */ |
| 2908 | if (!*bytes) { |
| 2909 | *bytes = nr; |
| 2910 | nr = 0; |
| 2911 | } else { |
| 2912 | *bytes += nr; |
| 2913 | if (abs(*bytes) > PAGE_SIZE) { |
| 2914 | nr = *bytes; |
| 2915 | *bytes = 0; |
| 2916 | } else { |
| 2917 | nr = 0; |
| 2918 | } |
| 2919 | } |
| 2920 | if (nr) |
| 2921 | mod_objcg_mlstate(objcg, pgdat, idx, nr); |
| 2922 | } |
| 2923 | |
| 2924 | static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, |
| 2925 | struct pglist_data *pgdat, enum node_stat_item idx) |
| 2926 | { |
| 2927 | struct obj_stock_pcp *stock; |
| 2928 | bool ret = false; |
| 2929 | |
| 2930 | if (!local_trylock(&obj_stock.lock)) |
| 2931 | return ret; |
| 2932 | |
| 2933 | stock = this_cpu_ptr(&obj_stock); |
| 2934 | if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { |
| 2935 | stock->nr_bytes -= nr_bytes; |
| 2936 | ret = true; |
| 2937 | |
| 2938 | if (pgdat) |
| 2939 | __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); |
| 2940 | } |
| 2941 | |
| 2942 | local_unlock(&obj_stock.lock); |
| 2943 | |
| 2944 | return ret; |
| 2945 | } |
| 2946 | |
| 2947 | static void drain_obj_stock(struct obj_stock_pcp *stock) |
| 2948 | { |
| 2949 | struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); |
| 2950 | |
| 2951 | if (!old) |
| 2952 | return; |
| 2953 | |
| 2954 | if (stock->nr_bytes) { |
| 2955 | unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; |
| 2956 | unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); |
| 2957 | |
| 2958 | if (nr_pages) { |
| 2959 | struct mem_cgroup *memcg; |
| 2960 | |
| 2961 | memcg = get_mem_cgroup_from_objcg(old); |
| 2962 | |
| 2963 | mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); |
| 2964 | memcg1_account_kmem(memcg, -nr_pages); |
| 2965 | if (!mem_cgroup_is_root(memcg)) |
| 2966 | memcg_uncharge(memcg, nr_pages); |
| 2967 | |
| 2968 | css_put(&memcg->css); |
| 2969 | } |
| 2970 | |
| 2971 | /* |
| 2972 | * The leftover is flushed to the centralized per-memcg value. |
| 2973 | * On the next attempt to refill obj stock it will be moved |
| 2974 | * to a per-cpu stock (probably, on an other CPU), see |
| 2975 | * refill_obj_stock(). |
| 2976 | * |
| 2977 | * How often it's flushed is a trade-off between the memory |
| 2978 | * limit enforcement accuracy and potential CPU contention, |
| 2979 | * so it might be changed in the future. |
| 2980 | */ |
| 2981 | atomic_add(nr_bytes, &old->nr_charged_bytes); |
| 2982 | stock->nr_bytes = 0; |
| 2983 | } |
| 2984 | |
| 2985 | /* |
| 2986 | * Flush the vmstat data in current stock |
| 2987 | */ |
| 2988 | if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { |
| 2989 | if (stock->nr_slab_reclaimable_b) { |
| 2990 | mod_objcg_mlstate(old, stock->cached_pgdat, |
| 2991 | NR_SLAB_RECLAIMABLE_B, |
| 2992 | stock->nr_slab_reclaimable_b); |
| 2993 | stock->nr_slab_reclaimable_b = 0; |
| 2994 | } |
| 2995 | if (stock->nr_slab_unreclaimable_b) { |
| 2996 | mod_objcg_mlstate(old, stock->cached_pgdat, |
| 2997 | NR_SLAB_UNRECLAIMABLE_B, |
| 2998 | stock->nr_slab_unreclaimable_b); |
| 2999 | stock->nr_slab_unreclaimable_b = 0; |
| 3000 | } |
| 3001 | stock->cached_pgdat = NULL; |
| 3002 | } |
| 3003 | |
| 3004 | WRITE_ONCE(stock->cached_objcg, NULL); |
| 3005 | obj_cgroup_put(old); |
| 3006 | } |
| 3007 | |
| 3008 | static bool obj_stock_flush_required(struct obj_stock_pcp *stock, |
| 3009 | struct mem_cgroup *root_memcg) |
| 3010 | { |
| 3011 | struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); |
| 3012 | struct mem_cgroup *memcg; |
| 3013 | bool flush = false; |
| 3014 | |
| 3015 | rcu_read_lock(); |
| 3016 | if (objcg) { |
| 3017 | memcg = obj_cgroup_memcg(objcg); |
| 3018 | if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) |
| 3019 | flush = true; |
| 3020 | } |
| 3021 | rcu_read_unlock(); |
| 3022 | |
| 3023 | return flush; |
| 3024 | } |
| 3025 | |
| 3026 | static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, |
| 3027 | bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, |
| 3028 | enum node_stat_item idx) |
| 3029 | { |
| 3030 | struct obj_stock_pcp *stock; |
| 3031 | unsigned int nr_pages = 0; |
| 3032 | |
| 3033 | if (!local_trylock(&obj_stock.lock)) { |
| 3034 | if (pgdat) |
| 3035 | mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); |
| 3036 | nr_pages = nr_bytes >> PAGE_SHIFT; |
| 3037 | nr_bytes = nr_bytes & (PAGE_SIZE - 1); |
| 3038 | atomic_add(nr_bytes, &objcg->nr_charged_bytes); |
| 3039 | goto out; |
| 3040 | } |
| 3041 | |
| 3042 | stock = this_cpu_ptr(&obj_stock); |
| 3043 | if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ |
| 3044 | drain_obj_stock(stock); |
| 3045 | obj_cgroup_get(objcg); |
| 3046 | stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) |
| 3047 | ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; |
| 3048 | WRITE_ONCE(stock->cached_objcg, objcg); |
| 3049 | |
| 3050 | allow_uncharge = true; /* Allow uncharge when objcg changes */ |
| 3051 | } |
| 3052 | stock->nr_bytes += nr_bytes; |
| 3053 | |
| 3054 | if (pgdat) |
| 3055 | __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); |
| 3056 | |
| 3057 | if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { |
| 3058 | nr_pages = stock->nr_bytes >> PAGE_SHIFT; |
| 3059 | stock->nr_bytes &= (PAGE_SIZE - 1); |
| 3060 | } |
| 3061 | |
| 3062 | local_unlock(&obj_stock.lock); |
| 3063 | out: |
| 3064 | if (nr_pages) |
| 3065 | obj_cgroup_uncharge_pages(objcg, nr_pages); |
| 3066 | } |
| 3067 | |
| 3068 | static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, |
| 3069 | struct pglist_data *pgdat, enum node_stat_item idx) |
| 3070 | { |
| 3071 | unsigned int nr_pages, nr_bytes; |
| 3072 | int ret; |
| 3073 | |
| 3074 | if (likely(consume_obj_stock(objcg, size, pgdat, idx))) |
| 3075 | return 0; |
| 3076 | |
| 3077 | /* |
| 3078 | * In theory, objcg->nr_charged_bytes can have enough |
| 3079 | * pre-charged bytes to satisfy the allocation. However, |
| 3080 | * flushing objcg->nr_charged_bytes requires two atomic |
| 3081 | * operations, and objcg->nr_charged_bytes can't be big. |
| 3082 | * The shared objcg->nr_charged_bytes can also become a |
| 3083 | * performance bottleneck if all tasks of the same memcg are |
| 3084 | * trying to update it. So it's better to ignore it and try |
| 3085 | * grab some new pages. The stock's nr_bytes will be flushed to |
| 3086 | * objcg->nr_charged_bytes later on when objcg changes. |
| 3087 | * |
| 3088 | * The stock's nr_bytes may contain enough pre-charged bytes |
| 3089 | * to allow one less page from being charged, but we can't rely |
| 3090 | * on the pre-charged bytes not being changed outside of |
| 3091 | * consume_obj_stock() or refill_obj_stock(). So ignore those |
| 3092 | * pre-charged bytes as well when charging pages. To avoid a |
| 3093 | * page uncharge right after a page charge, we set the |
| 3094 | * allow_uncharge flag to false when calling refill_obj_stock() |
| 3095 | * to temporarily allow the pre-charged bytes to exceed the page |
| 3096 | * size limit. The maximum reachable value of the pre-charged |
| 3097 | * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data |
| 3098 | * race. |
| 3099 | */ |
| 3100 | nr_pages = size >> PAGE_SHIFT; |
| 3101 | nr_bytes = size & (PAGE_SIZE - 1); |
| 3102 | |
| 3103 | if (nr_bytes) |
| 3104 | nr_pages += 1; |
| 3105 | |
| 3106 | ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); |
| 3107 | if (!ret && (nr_bytes || pgdat)) |
| 3108 | refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, |
| 3109 | false, size, pgdat, idx); |
| 3110 | |
| 3111 | return ret; |
| 3112 | } |
| 3113 | |
| 3114 | int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) |
| 3115 | { |
| 3116 | return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); |
| 3117 | } |
| 3118 | |
| 3119 | void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) |
| 3120 | { |
| 3121 | refill_obj_stock(objcg, size, true, 0, NULL, 0); |
| 3122 | } |
| 3123 | |
| 3124 | static inline size_t obj_full_size(struct kmem_cache *s) |
| 3125 | { |
| 3126 | /* |
| 3127 | * For each accounted object there is an extra space which is used |
| 3128 | * to store obj_cgroup membership. Charge it too. |
| 3129 | */ |
| 3130 | return s->size + sizeof(struct obj_cgroup *); |
| 3131 | } |
| 3132 | |
| 3133 | bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, |
| 3134 | gfp_t flags, size_t size, void **p) |
| 3135 | { |
| 3136 | struct obj_cgroup *objcg; |
| 3137 | struct slab *slab; |
| 3138 | unsigned long off; |
| 3139 | size_t i; |
| 3140 | |
| 3141 | /* |
| 3142 | * The obtained objcg pointer is safe to use within the current scope, |
| 3143 | * defined by current task or set_active_memcg() pair. |
| 3144 | * obj_cgroup_get() is used to get a permanent reference. |
| 3145 | */ |
| 3146 | objcg = current_obj_cgroup(); |
| 3147 | if (!objcg) |
| 3148 | return true; |
| 3149 | |
| 3150 | /* |
| 3151 | * slab_alloc_node() avoids the NULL check, so we might be called with a |
| 3152 | * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill |
| 3153 | * the whole requested size. |
| 3154 | * return success as there's nothing to free back |
| 3155 | */ |
| 3156 | if (unlikely(*p == NULL)) |
| 3157 | return true; |
| 3158 | |
| 3159 | flags &= gfp_allowed_mask; |
| 3160 | |
| 3161 | if (lru) { |
| 3162 | int ret; |
| 3163 | struct mem_cgroup *memcg; |
| 3164 | |
| 3165 | memcg = get_mem_cgroup_from_objcg(objcg); |
| 3166 | ret = memcg_list_lru_alloc(memcg, lru, flags); |
| 3167 | css_put(&memcg->css); |
| 3168 | |
| 3169 | if (ret) |
| 3170 | return false; |
| 3171 | } |
| 3172 | |
| 3173 | for (i = 0; i < size; i++) { |
| 3174 | slab = virt_to_slab(p[i]); |
| 3175 | |
| 3176 | if (!slab_obj_exts(slab) && |
| 3177 | alloc_slab_obj_exts(slab, s, flags, false)) { |
| 3178 | continue; |
| 3179 | } |
| 3180 | |
| 3181 | /* |
| 3182 | * if we fail and size is 1, memcg_alloc_abort_single() will |
| 3183 | * just free the object, which is ok as we have not assigned |
| 3184 | * objcg to its obj_ext yet |
| 3185 | * |
| 3186 | * for larger sizes, kmem_cache_free_bulk() will uncharge |
| 3187 | * any objects that were already charged and obj_ext assigned |
| 3188 | * |
| 3189 | * TODO: we could batch this until slab_pgdat(slab) changes |
| 3190 | * between iterations, with a more complicated undo |
| 3191 | */ |
| 3192 | if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), |
| 3193 | slab_pgdat(slab), cache_vmstat_idx(s))) |
| 3194 | return false; |
| 3195 | |
| 3196 | off = obj_to_index(s, slab, p[i]); |
| 3197 | obj_cgroup_get(objcg); |
| 3198 | slab_obj_exts(slab)[off].objcg = objcg; |
| 3199 | } |
| 3200 | |
| 3201 | return true; |
| 3202 | } |
| 3203 | |
| 3204 | void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, |
| 3205 | void **p, int objects, struct slabobj_ext *obj_exts) |
| 3206 | { |
| 3207 | size_t obj_size = obj_full_size(s); |
| 3208 | |
| 3209 | for (int i = 0; i < objects; i++) { |
| 3210 | struct obj_cgroup *objcg; |
| 3211 | unsigned int off; |
| 3212 | |
| 3213 | off = obj_to_index(s, slab, p[i]); |
| 3214 | objcg = obj_exts[off].objcg; |
| 3215 | if (!objcg) |
| 3216 | continue; |
| 3217 | |
| 3218 | obj_exts[off].objcg = NULL; |
| 3219 | refill_obj_stock(objcg, obj_size, true, -obj_size, |
| 3220 | slab_pgdat(slab), cache_vmstat_idx(s)); |
| 3221 | obj_cgroup_put(objcg); |
| 3222 | } |
| 3223 | } |
| 3224 | |
| 3225 | /* |
| 3226 | * The objcg is only set on the first page, so transfer it to all the |
| 3227 | * other pages. |
| 3228 | */ |
| 3229 | void split_page_memcg(struct page *page, unsigned order) |
| 3230 | { |
| 3231 | struct obj_cgroup *objcg = page_objcg(page); |
| 3232 | unsigned int i, nr = 1 << order; |
| 3233 | |
| 3234 | if (!objcg) |
| 3235 | return; |
| 3236 | |
| 3237 | for (i = 1; i < nr; i++) |
| 3238 | page_set_objcg(&page[i], objcg); |
| 3239 | |
| 3240 | obj_cgroup_get_many(objcg, nr - 1); |
| 3241 | } |
| 3242 | |
| 3243 | void folio_split_memcg_refs(struct folio *folio, unsigned old_order, |
| 3244 | unsigned new_order) |
| 3245 | { |
| 3246 | unsigned new_refs; |
| 3247 | |
| 3248 | if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) |
| 3249 | return; |
| 3250 | |
| 3251 | new_refs = (1 << (old_order - new_order)) - 1; |
| 3252 | css_get_many(&__folio_memcg(folio)->css, new_refs); |
| 3253 | } |
| 3254 | |
| 3255 | unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
| 3256 | { |
| 3257 | unsigned long val; |
| 3258 | |
| 3259 | if (mem_cgroup_is_root(memcg)) { |
| 3260 | /* |
| 3261 | * Approximate root's usage from global state. This isn't |
| 3262 | * perfect, but the root usage was always an approximation. |
| 3263 | */ |
| 3264 | val = global_node_page_state(NR_FILE_PAGES) + |
| 3265 | global_node_page_state(NR_ANON_MAPPED); |
| 3266 | if (swap) |
| 3267 | val += total_swap_pages - get_nr_swap_pages(); |
| 3268 | } else { |
| 3269 | if (!swap) |
| 3270 | val = page_counter_read(&memcg->memory); |
| 3271 | else |
| 3272 | val = page_counter_read(&memcg->memsw); |
| 3273 | } |
| 3274 | return val; |
| 3275 | } |
| 3276 | |
| 3277 | static int memcg_online_kmem(struct mem_cgroup *memcg) |
| 3278 | { |
| 3279 | struct obj_cgroup *objcg; |
| 3280 | |
| 3281 | if (mem_cgroup_kmem_disabled()) |
| 3282 | return 0; |
| 3283 | |
| 3284 | if (unlikely(mem_cgroup_is_root(memcg))) |
| 3285 | return 0; |
| 3286 | |
| 3287 | objcg = obj_cgroup_alloc(); |
| 3288 | if (!objcg) |
| 3289 | return -ENOMEM; |
| 3290 | |
| 3291 | objcg->memcg = memcg; |
| 3292 | rcu_assign_pointer(memcg->objcg, objcg); |
| 3293 | obj_cgroup_get(objcg); |
| 3294 | memcg->orig_objcg = objcg; |
| 3295 | |
| 3296 | static_branch_enable(&memcg_kmem_online_key); |
| 3297 | |
| 3298 | memcg->kmemcg_id = memcg->id.id; |
| 3299 | |
| 3300 | return 0; |
| 3301 | } |
| 3302 | |
| 3303 | static void memcg_offline_kmem(struct mem_cgroup *memcg) |
| 3304 | { |
| 3305 | struct mem_cgroup *parent; |
| 3306 | |
| 3307 | if (mem_cgroup_kmem_disabled()) |
| 3308 | return; |
| 3309 | |
| 3310 | if (unlikely(mem_cgroup_is_root(memcg))) |
| 3311 | return; |
| 3312 | |
| 3313 | parent = parent_mem_cgroup(memcg); |
| 3314 | if (!parent) |
| 3315 | parent = root_mem_cgroup; |
| 3316 | |
| 3317 | memcg_reparent_list_lrus(memcg, parent); |
| 3318 | |
| 3319 | /* |
| 3320 | * Objcg's reparenting must be after list_lru's, make sure list_lru |
| 3321 | * helpers won't use parent's list_lru until child is drained. |
| 3322 | */ |
| 3323 | memcg_reparent_objcgs(memcg, parent); |
| 3324 | } |
| 3325 | |
| 3326 | #ifdef CONFIG_CGROUP_WRITEBACK |
| 3327 | |
| 3328 | #include <trace/events/writeback.h> |
| 3329 | |
| 3330 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) |
| 3331 | { |
| 3332 | return wb_domain_init(&memcg->cgwb_domain, gfp); |
| 3333 | } |
| 3334 | |
| 3335 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) |
| 3336 | { |
| 3337 | wb_domain_exit(&memcg->cgwb_domain); |
| 3338 | } |
| 3339 | |
| 3340 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
| 3341 | { |
| 3342 | wb_domain_size_changed(&memcg->cgwb_domain); |
| 3343 | } |
| 3344 | |
| 3345 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) |
| 3346 | { |
| 3347 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); |
| 3348 | |
| 3349 | if (!memcg->css.parent) |
| 3350 | return NULL; |
| 3351 | |
| 3352 | return &memcg->cgwb_domain; |
| 3353 | } |
| 3354 | |
| 3355 | /** |
| 3356 | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg |
| 3357 | * @wb: bdi_writeback in question |
| 3358 | * @pfilepages: out parameter for number of file pages |
| 3359 | * @pheadroom: out parameter for number of allocatable pages according to memcg |
| 3360 | * @pdirty: out parameter for number of dirty pages |
| 3361 | * @pwriteback: out parameter for number of pages under writeback |
| 3362 | * |
| 3363 | * Determine the numbers of file, headroom, dirty, and writeback pages in |
| 3364 | * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom |
| 3365 | * is a bit more involved. |
| 3366 | * |
| 3367 | * A memcg's headroom is "min(max, high) - used". In the hierarchy, the |
| 3368 | * headroom is calculated as the lowest headroom of itself and the |
| 3369 | * ancestors. Note that this doesn't consider the actual amount of |
| 3370 | * available memory in the system. The caller should further cap |
| 3371 | * *@pheadroom accordingly. |
| 3372 | */ |
| 3373 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, |
| 3374 | unsigned long *pheadroom, unsigned long *pdirty, |
| 3375 | unsigned long *pwriteback) |
| 3376 | { |
| 3377 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); |
| 3378 | struct mem_cgroup *parent; |
| 3379 | |
| 3380 | mem_cgroup_flush_stats_ratelimited(memcg); |
| 3381 | |
| 3382 | *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); |
| 3383 | *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); |
| 3384 | *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + |
| 3385 | memcg_page_state(memcg, NR_ACTIVE_FILE); |
| 3386 | |
| 3387 | *pheadroom = PAGE_COUNTER_MAX; |
| 3388 | while ((parent = parent_mem_cgroup(memcg))) { |
| 3389 | unsigned long ceiling = min(READ_ONCE(memcg->memory.max), |
| 3390 | READ_ONCE(memcg->memory.high)); |
| 3391 | unsigned long used = page_counter_read(&memcg->memory); |
| 3392 | |
| 3393 | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); |
| 3394 | memcg = parent; |
| 3395 | } |
| 3396 | } |
| 3397 | |
| 3398 | /* |
| 3399 | * Foreign dirty flushing |
| 3400 | * |
| 3401 | * There's an inherent mismatch between memcg and writeback. The former |
| 3402 | * tracks ownership per-page while the latter per-inode. This was a |
| 3403 | * deliberate design decision because honoring per-page ownership in the |
| 3404 | * writeback path is complicated, may lead to higher CPU and IO overheads |
| 3405 | * and deemed unnecessary given that write-sharing an inode across |
| 3406 | * different cgroups isn't a common use-case. |
| 3407 | * |
| 3408 | * Combined with inode majority-writer ownership switching, this works well |
| 3409 | * enough in most cases but there are some pathological cases. For |
| 3410 | * example, let's say there are two cgroups A and B which keep writing to |
| 3411 | * different but confined parts of the same inode. B owns the inode and |
| 3412 | * A's memory is limited far below B's. A's dirty ratio can rise enough to |
| 3413 | * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid |
| 3414 | * triggering background writeback. A will be slowed down without a way to |
| 3415 | * make writeback of the dirty pages happen. |
| 3416 | * |
| 3417 | * Conditions like the above can lead to a cgroup getting repeatedly and |
| 3418 | * severely throttled after making some progress after each |
| 3419 | * dirty_expire_interval while the underlying IO device is almost |
| 3420 | * completely idle. |
| 3421 | * |
| 3422 | * Solving this problem completely requires matching the ownership tracking |
| 3423 | * granularities between memcg and writeback in either direction. However, |
| 3424 | * the more egregious behaviors can be avoided by simply remembering the |
| 3425 | * most recent foreign dirtying events and initiating remote flushes on |
| 3426 | * them when local writeback isn't enough to keep the memory clean enough. |
| 3427 | * |
| 3428 | * The following two functions implement such mechanism. When a foreign |
| 3429 | * page - a page whose memcg and writeback ownerships don't match - is |
| 3430 | * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning |
| 3431 | * bdi_writeback on the page owning memcg. When balance_dirty_pages() |
| 3432 | * decides that the memcg needs to sleep due to high dirty ratio, it calls |
| 3433 | * mem_cgroup_flush_foreign() which queues writeback on the recorded |
| 3434 | * foreign bdi_writebacks which haven't expired. Both the numbers of |
| 3435 | * recorded bdi_writebacks and concurrent in-flight foreign writebacks are |
| 3436 | * limited to MEMCG_CGWB_FRN_CNT. |
| 3437 | * |
| 3438 | * The mechanism only remembers IDs and doesn't hold any object references. |
| 3439 | * As being wrong occasionally doesn't matter, updates and accesses to the |
| 3440 | * records are lockless and racy. |
| 3441 | */ |
| 3442 | void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, |
| 3443 | struct bdi_writeback *wb) |
| 3444 | { |
| 3445 | struct mem_cgroup *memcg = folio_memcg(folio); |
| 3446 | struct memcg_cgwb_frn *frn; |
| 3447 | u64 now = get_jiffies_64(); |
| 3448 | u64 oldest_at = now; |
| 3449 | int oldest = -1; |
| 3450 | int i; |
| 3451 | |
| 3452 | trace_track_foreign_dirty(folio, wb); |
| 3453 | |
| 3454 | /* |
| 3455 | * Pick the slot to use. If there is already a slot for @wb, keep |
| 3456 | * using it. If not replace the oldest one which isn't being |
| 3457 | * written out. |
| 3458 | */ |
| 3459 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { |
| 3460 | frn = &memcg->cgwb_frn[i]; |
| 3461 | if (frn->bdi_id == wb->bdi->id && |
| 3462 | frn->memcg_id == wb->memcg_css->id) |
| 3463 | break; |
| 3464 | if (time_before64(frn->at, oldest_at) && |
| 3465 | atomic_read(&frn->done.cnt) == 1) { |
| 3466 | oldest = i; |
| 3467 | oldest_at = frn->at; |
| 3468 | } |
| 3469 | } |
| 3470 | |
| 3471 | if (i < MEMCG_CGWB_FRN_CNT) { |
| 3472 | /* |
| 3473 | * Re-using an existing one. Update timestamp lazily to |
| 3474 | * avoid making the cacheline hot. We want them to be |
| 3475 | * reasonably up-to-date and significantly shorter than |
| 3476 | * dirty_expire_interval as that's what expires the record. |
| 3477 | * Use the shorter of 1s and dirty_expire_interval / 8. |
| 3478 | */ |
| 3479 | unsigned long update_intv = |
| 3480 | min_t(unsigned long, HZ, |
| 3481 | msecs_to_jiffies(dirty_expire_interval * 10) / 8); |
| 3482 | |
| 3483 | if (time_before64(frn->at, now - update_intv)) |
| 3484 | frn->at = now; |
| 3485 | } else if (oldest >= 0) { |
| 3486 | /* replace the oldest free one */ |
| 3487 | frn = &memcg->cgwb_frn[oldest]; |
| 3488 | frn->bdi_id = wb->bdi->id; |
| 3489 | frn->memcg_id = wb->memcg_css->id; |
| 3490 | frn->at = now; |
| 3491 | } |
| 3492 | } |
| 3493 | |
| 3494 | /* issue foreign writeback flushes for recorded foreign dirtying events */ |
| 3495 | void mem_cgroup_flush_foreign(struct bdi_writeback *wb) |
| 3496 | { |
| 3497 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); |
| 3498 | unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); |
| 3499 | u64 now = jiffies_64; |
| 3500 | int i; |
| 3501 | |
| 3502 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { |
| 3503 | struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; |
| 3504 | |
| 3505 | /* |
| 3506 | * If the record is older than dirty_expire_interval, |
| 3507 | * writeback on it has already started. No need to kick it |
| 3508 | * off again. Also, don't start a new one if there's |
| 3509 | * already one in flight. |
| 3510 | */ |
| 3511 | if (time_after64(frn->at, now - intv) && |
| 3512 | atomic_read(&frn->done.cnt) == 1) { |
| 3513 | frn->at = 0; |
| 3514 | trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); |
| 3515 | cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, |
| 3516 | WB_REASON_FOREIGN_FLUSH, |
| 3517 | &frn->done); |
| 3518 | } |
| 3519 | } |
| 3520 | } |
| 3521 | |
| 3522 | #else /* CONFIG_CGROUP_WRITEBACK */ |
| 3523 | |
| 3524 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) |
| 3525 | { |
| 3526 | return 0; |
| 3527 | } |
| 3528 | |
| 3529 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) |
| 3530 | { |
| 3531 | } |
| 3532 | |
| 3533 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
| 3534 | { |
| 3535 | } |
| 3536 | |
| 3537 | #endif /* CONFIG_CGROUP_WRITEBACK */ |
| 3538 | |
| 3539 | /* |
| 3540 | * Private memory cgroup IDR |
| 3541 | * |
| 3542 | * Swap-out records and page cache shadow entries need to store memcg |
| 3543 | * references in constrained space, so we maintain an ID space that is |
| 3544 | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of |
| 3545 | * memory-controlled cgroups to 64k. |
| 3546 | * |
| 3547 | * However, there usually are many references to the offline CSS after |
| 3548 | * the cgroup has been destroyed, such as page cache or reclaimable |
| 3549 | * slab objects, that don't need to hang on to the ID. We want to keep |
| 3550 | * those dead CSS from occupying IDs, or we might quickly exhaust the |
| 3551 | * relatively small ID space and prevent the creation of new cgroups |
| 3552 | * even when there are much fewer than 64k cgroups - possibly none. |
| 3553 | * |
| 3554 | * Maintain a private 16-bit ID space for memcg, and allow the ID to |
| 3555 | * be freed and recycled when it's no longer needed, which is usually |
| 3556 | * when the CSS is offlined. |
| 3557 | * |
| 3558 | * The only exception to that are records of swapped out tmpfs/shmem |
| 3559 | * pages that need to be attributed to live ancestors on swapin. But |
| 3560 | * those references are manageable from userspace. |
| 3561 | */ |
| 3562 | |
| 3563 | #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) |
| 3564 | static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); |
| 3565 | |
| 3566 | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) |
| 3567 | { |
| 3568 | if (memcg->id.id > 0) { |
| 3569 | xa_erase(&mem_cgroup_ids, memcg->id.id); |
| 3570 | memcg->id.id = 0; |
| 3571 | } |
| 3572 | } |
| 3573 | |
| 3574 | void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, |
| 3575 | unsigned int n) |
| 3576 | { |
| 3577 | refcount_add(n, &memcg->id.ref); |
| 3578 | } |
| 3579 | |
| 3580 | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) |
| 3581 | { |
| 3582 | if (refcount_sub_and_test(n, &memcg->id.ref)) { |
| 3583 | mem_cgroup_id_remove(memcg); |
| 3584 | |
| 3585 | /* Memcg ID pins CSS */ |
| 3586 | css_put(&memcg->css); |
| 3587 | } |
| 3588 | } |
| 3589 | |
| 3590 | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) |
| 3591 | { |
| 3592 | mem_cgroup_id_put_many(memcg, 1); |
| 3593 | } |
| 3594 | |
| 3595 | struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) |
| 3596 | { |
| 3597 | while (!refcount_inc_not_zero(&memcg->id.ref)) { |
| 3598 | /* |
| 3599 | * The root cgroup cannot be destroyed, so it's refcount must |
| 3600 | * always be >= 1. |
| 3601 | */ |
| 3602 | if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { |
| 3603 | VM_BUG_ON(1); |
| 3604 | break; |
| 3605 | } |
| 3606 | memcg = parent_mem_cgroup(memcg); |
| 3607 | if (!memcg) |
| 3608 | memcg = root_mem_cgroup; |
| 3609 | } |
| 3610 | return memcg; |
| 3611 | } |
| 3612 | |
| 3613 | /** |
| 3614 | * mem_cgroup_from_id - look up a memcg from a memcg id |
| 3615 | * @id: the memcg id to look up |
| 3616 | * |
| 3617 | * Caller must hold rcu_read_lock(). |
| 3618 | */ |
| 3619 | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) |
| 3620 | { |
| 3621 | WARN_ON_ONCE(!rcu_read_lock_held()); |
| 3622 | return xa_load(&mem_cgroup_ids, id); |
| 3623 | } |
| 3624 | |
| 3625 | #ifdef CONFIG_SHRINKER_DEBUG |
| 3626 | struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) |
| 3627 | { |
| 3628 | struct cgroup *cgrp; |
| 3629 | struct cgroup_subsys_state *css; |
| 3630 | struct mem_cgroup *memcg; |
| 3631 | |
| 3632 | cgrp = cgroup_get_from_id(ino); |
| 3633 | if (IS_ERR(cgrp)) |
| 3634 | return ERR_CAST(cgrp); |
| 3635 | |
| 3636 | css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); |
| 3637 | if (css) |
| 3638 | memcg = container_of(css, struct mem_cgroup, css); |
| 3639 | else |
| 3640 | memcg = ERR_PTR(-ENOENT); |
| 3641 | |
| 3642 | cgroup_put(cgrp); |
| 3643 | |
| 3644 | return memcg; |
| 3645 | } |
| 3646 | #endif |
| 3647 | |
| 3648 | static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) |
| 3649 | { |
| 3650 | if (!pn) |
| 3651 | return; |
| 3652 | |
| 3653 | free_percpu(pn->lruvec_stats_percpu); |
| 3654 | kfree(pn->lruvec_stats); |
| 3655 | kfree(pn); |
| 3656 | } |
| 3657 | |
| 3658 | static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) |
| 3659 | { |
| 3660 | struct mem_cgroup_per_node *pn; |
| 3661 | |
| 3662 | pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, |
| 3663 | node); |
| 3664 | if (!pn) |
| 3665 | return false; |
| 3666 | |
| 3667 | pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), |
| 3668 | GFP_KERNEL_ACCOUNT, node); |
| 3669 | if (!pn->lruvec_stats) |
| 3670 | goto fail; |
| 3671 | |
| 3672 | pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, |
| 3673 | GFP_KERNEL_ACCOUNT); |
| 3674 | if (!pn->lruvec_stats_percpu) |
| 3675 | goto fail; |
| 3676 | |
| 3677 | lruvec_init(&pn->lruvec); |
| 3678 | pn->memcg = memcg; |
| 3679 | |
| 3680 | memcg->nodeinfo[node] = pn; |
| 3681 | return true; |
| 3682 | fail: |
| 3683 | free_mem_cgroup_per_node_info(pn); |
| 3684 | return false; |
| 3685 | } |
| 3686 | |
| 3687 | static void __mem_cgroup_free(struct mem_cgroup *memcg) |
| 3688 | { |
| 3689 | int node; |
| 3690 | |
| 3691 | obj_cgroup_put(memcg->orig_objcg); |
| 3692 | |
| 3693 | for_each_node(node) |
| 3694 | free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); |
| 3695 | memcg1_free_events(memcg); |
| 3696 | kfree(memcg->vmstats); |
| 3697 | free_percpu(memcg->vmstats_percpu); |
| 3698 | kfree(memcg); |
| 3699 | } |
| 3700 | |
| 3701 | static void mem_cgroup_free(struct mem_cgroup *memcg) |
| 3702 | { |
| 3703 | lru_gen_exit_memcg(memcg); |
| 3704 | memcg_wb_domain_exit(memcg); |
| 3705 | __mem_cgroup_free(memcg); |
| 3706 | } |
| 3707 | |
| 3708 | static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) |
| 3709 | { |
| 3710 | struct memcg_vmstats_percpu *statc; |
| 3711 | struct memcg_vmstats_percpu __percpu *pstatc_pcpu; |
| 3712 | struct mem_cgroup *memcg; |
| 3713 | int node, cpu; |
| 3714 | int __maybe_unused i; |
| 3715 | long error; |
| 3716 | |
| 3717 | memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); |
| 3718 | if (!memcg) |
| 3719 | return ERR_PTR(-ENOMEM); |
| 3720 | |
| 3721 | error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, |
| 3722 | XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); |
| 3723 | if (error) |
| 3724 | goto fail; |
| 3725 | error = -ENOMEM; |
| 3726 | |
| 3727 | memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), |
| 3728 | GFP_KERNEL_ACCOUNT); |
| 3729 | if (!memcg->vmstats) |
| 3730 | goto fail; |
| 3731 | |
| 3732 | memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, |
| 3733 | GFP_KERNEL_ACCOUNT); |
| 3734 | if (!memcg->vmstats_percpu) |
| 3735 | goto fail; |
| 3736 | |
| 3737 | if (!memcg1_alloc_events(memcg)) |
| 3738 | goto fail; |
| 3739 | |
| 3740 | for_each_possible_cpu(cpu) { |
| 3741 | if (parent) |
| 3742 | pstatc_pcpu = parent->vmstats_percpu; |
| 3743 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); |
| 3744 | statc->parent_pcpu = parent ? pstatc_pcpu : NULL; |
| 3745 | statc->vmstats = memcg->vmstats; |
| 3746 | } |
| 3747 | |
| 3748 | for_each_node(node) |
| 3749 | if (!alloc_mem_cgroup_per_node_info(memcg, node)) |
| 3750 | goto fail; |
| 3751 | |
| 3752 | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) |
| 3753 | goto fail; |
| 3754 | |
| 3755 | INIT_WORK(&memcg->high_work, high_work_func); |
| 3756 | vmpressure_init(&memcg->vmpressure); |
| 3757 | INIT_LIST_HEAD(&memcg->memory_peaks); |
| 3758 | INIT_LIST_HEAD(&memcg->swap_peaks); |
| 3759 | spin_lock_init(&memcg->peaks_lock); |
| 3760 | memcg->socket_pressure = jiffies; |
| 3761 | memcg1_memcg_init(memcg); |
| 3762 | memcg->kmemcg_id = -1; |
| 3763 | INIT_LIST_HEAD(&memcg->objcg_list); |
| 3764 | #ifdef CONFIG_CGROUP_WRITEBACK |
| 3765 | INIT_LIST_HEAD(&memcg->cgwb_list); |
| 3766 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) |
| 3767 | memcg->cgwb_frn[i].done = |
| 3768 | __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); |
| 3769 | #endif |
| 3770 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 3771 | spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); |
| 3772 | INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); |
| 3773 | memcg->deferred_split_queue.split_queue_len = 0; |
| 3774 | #endif |
| 3775 | lru_gen_init_memcg(memcg); |
| 3776 | return memcg; |
| 3777 | fail: |
| 3778 | mem_cgroup_id_remove(memcg); |
| 3779 | __mem_cgroup_free(memcg); |
| 3780 | return ERR_PTR(error); |
| 3781 | } |
| 3782 | |
| 3783 | static struct cgroup_subsys_state * __ref |
| 3784 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) |
| 3785 | { |
| 3786 | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); |
| 3787 | struct mem_cgroup *memcg, *old_memcg; |
| 3788 | bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); |
| 3789 | |
| 3790 | old_memcg = set_active_memcg(parent); |
| 3791 | memcg = mem_cgroup_alloc(parent); |
| 3792 | set_active_memcg(old_memcg); |
| 3793 | if (IS_ERR(memcg)) |
| 3794 | return ERR_CAST(memcg); |
| 3795 | |
| 3796 | page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); |
| 3797 | memcg1_soft_limit_reset(memcg); |
| 3798 | #ifdef CONFIG_ZSWAP |
| 3799 | memcg->zswap_max = PAGE_COUNTER_MAX; |
| 3800 | WRITE_ONCE(memcg->zswap_writeback, true); |
| 3801 | #endif |
| 3802 | page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); |
| 3803 | if (parent) { |
| 3804 | WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); |
| 3805 | |
| 3806 | page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); |
| 3807 | page_counter_init(&memcg->swap, &parent->swap, false); |
| 3808 | #ifdef CONFIG_MEMCG_V1 |
| 3809 | memcg->memory.track_failcnt = !memcg_on_dfl; |
| 3810 | WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); |
| 3811 | page_counter_init(&memcg->kmem, &parent->kmem, false); |
| 3812 | page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); |
| 3813 | #endif |
| 3814 | } else { |
| 3815 | init_memcg_stats(); |
| 3816 | init_memcg_events(); |
| 3817 | page_counter_init(&memcg->memory, NULL, true); |
| 3818 | page_counter_init(&memcg->swap, NULL, false); |
| 3819 | #ifdef CONFIG_MEMCG_V1 |
| 3820 | page_counter_init(&memcg->kmem, NULL, false); |
| 3821 | page_counter_init(&memcg->tcpmem, NULL, false); |
| 3822 | #endif |
| 3823 | root_mem_cgroup = memcg; |
| 3824 | return &memcg->css; |
| 3825 | } |
| 3826 | |
| 3827 | if (memcg_on_dfl && !cgroup_memory_nosocket) |
| 3828 | static_branch_inc(&memcg_sockets_enabled_key); |
| 3829 | |
| 3830 | if (!cgroup_memory_nobpf) |
| 3831 | static_branch_inc(&memcg_bpf_enabled_key); |
| 3832 | |
| 3833 | return &memcg->css; |
| 3834 | } |
| 3835 | |
| 3836 | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) |
| 3837 | { |
| 3838 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 3839 | |
| 3840 | if (memcg_online_kmem(memcg)) |
| 3841 | goto remove_id; |
| 3842 | |
| 3843 | /* |
| 3844 | * A memcg must be visible for expand_shrinker_info() |
| 3845 | * by the time the maps are allocated. So, we allocate maps |
| 3846 | * here, when for_each_mem_cgroup() can't skip it. |
| 3847 | */ |
| 3848 | if (alloc_shrinker_info(memcg)) |
| 3849 | goto offline_kmem; |
| 3850 | |
| 3851 | if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) |
| 3852 | queue_delayed_work(system_unbound_wq, &stats_flush_dwork, |
| 3853 | FLUSH_TIME); |
| 3854 | lru_gen_online_memcg(memcg); |
| 3855 | |
| 3856 | /* Online state pins memcg ID, memcg ID pins CSS */ |
| 3857 | refcount_set(&memcg->id.ref, 1); |
| 3858 | css_get(css); |
| 3859 | |
| 3860 | /* |
| 3861 | * Ensure mem_cgroup_from_id() works once we're fully online. |
| 3862 | * |
| 3863 | * We could do this earlier and require callers to filter with |
| 3864 | * css_tryget_online(). But right now there are no users that |
| 3865 | * need earlier access, and the workingset code relies on the |
| 3866 | * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So |
| 3867 | * publish it here at the end of onlining. This matches the |
| 3868 | * regular ID destruction during offlining. |
| 3869 | */ |
| 3870 | xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); |
| 3871 | |
| 3872 | return 0; |
| 3873 | offline_kmem: |
| 3874 | memcg_offline_kmem(memcg); |
| 3875 | remove_id: |
| 3876 | mem_cgroup_id_remove(memcg); |
| 3877 | return -ENOMEM; |
| 3878 | } |
| 3879 | |
| 3880 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) |
| 3881 | { |
| 3882 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 3883 | |
| 3884 | memcg1_css_offline(memcg); |
| 3885 | |
| 3886 | page_counter_set_min(&memcg->memory, 0); |
| 3887 | page_counter_set_low(&memcg->memory, 0); |
| 3888 | |
| 3889 | zswap_memcg_offline_cleanup(memcg); |
| 3890 | |
| 3891 | memcg_offline_kmem(memcg); |
| 3892 | reparent_shrinker_deferred(memcg); |
| 3893 | wb_memcg_offline(memcg); |
| 3894 | lru_gen_offline_memcg(memcg); |
| 3895 | |
| 3896 | drain_all_stock(memcg); |
| 3897 | |
| 3898 | mem_cgroup_id_put(memcg); |
| 3899 | } |
| 3900 | |
| 3901 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) |
| 3902 | { |
| 3903 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 3904 | |
| 3905 | invalidate_reclaim_iterators(memcg); |
| 3906 | lru_gen_release_memcg(memcg); |
| 3907 | } |
| 3908 | |
| 3909 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) |
| 3910 | { |
| 3911 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 3912 | int __maybe_unused i; |
| 3913 | |
| 3914 | #ifdef CONFIG_CGROUP_WRITEBACK |
| 3915 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) |
| 3916 | wb_wait_for_completion(&memcg->cgwb_frn[i].done); |
| 3917 | #endif |
| 3918 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) |
| 3919 | static_branch_dec(&memcg_sockets_enabled_key); |
| 3920 | |
| 3921 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) |
| 3922 | static_branch_dec(&memcg_sockets_enabled_key); |
| 3923 | |
| 3924 | if (!cgroup_memory_nobpf) |
| 3925 | static_branch_dec(&memcg_bpf_enabled_key); |
| 3926 | |
| 3927 | vmpressure_cleanup(&memcg->vmpressure); |
| 3928 | cancel_work_sync(&memcg->high_work); |
| 3929 | memcg1_remove_from_trees(memcg); |
| 3930 | free_shrinker_info(memcg); |
| 3931 | mem_cgroup_free(memcg); |
| 3932 | } |
| 3933 | |
| 3934 | /** |
| 3935 | * mem_cgroup_css_reset - reset the states of a mem_cgroup |
| 3936 | * @css: the target css |
| 3937 | * |
| 3938 | * Reset the states of the mem_cgroup associated with @css. This is |
| 3939 | * invoked when the userland requests disabling on the default hierarchy |
| 3940 | * but the memcg is pinned through dependency. The memcg should stop |
| 3941 | * applying policies and should revert to the vanilla state as it may be |
| 3942 | * made visible again. |
| 3943 | * |
| 3944 | * The current implementation only resets the essential configurations. |
| 3945 | * This needs to be expanded to cover all the visible parts. |
| 3946 | */ |
| 3947 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) |
| 3948 | { |
| 3949 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 3950 | |
| 3951 | page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); |
| 3952 | page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); |
| 3953 | #ifdef CONFIG_MEMCG_V1 |
| 3954 | page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); |
| 3955 | page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); |
| 3956 | #endif |
| 3957 | page_counter_set_min(&memcg->memory, 0); |
| 3958 | page_counter_set_low(&memcg->memory, 0); |
| 3959 | page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); |
| 3960 | memcg1_soft_limit_reset(memcg); |
| 3961 | page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); |
| 3962 | memcg_wb_domain_size_changed(memcg); |
| 3963 | } |
| 3964 | |
| 3965 | struct aggregate_control { |
| 3966 | /* pointer to the aggregated (CPU and subtree aggregated) counters */ |
| 3967 | long *aggregate; |
| 3968 | /* pointer to the non-hierarchichal (CPU aggregated) counters */ |
| 3969 | long *local; |
| 3970 | /* pointer to the pending child counters during tree propagation */ |
| 3971 | long *pending; |
| 3972 | /* pointer to the parent's pending counters, could be NULL */ |
| 3973 | long *ppending; |
| 3974 | /* pointer to the percpu counters to be aggregated */ |
| 3975 | long *cstat; |
| 3976 | /* pointer to the percpu counters of the last aggregation*/ |
| 3977 | long *cstat_prev; |
| 3978 | /* size of the above counters */ |
| 3979 | int size; |
| 3980 | }; |
| 3981 | |
| 3982 | static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) |
| 3983 | { |
| 3984 | int i; |
| 3985 | long delta, delta_cpu, v; |
| 3986 | |
| 3987 | for (i = 0; i < ac->size; i++) { |
| 3988 | /* |
| 3989 | * Collect the aggregated propagation counts of groups |
| 3990 | * below us. We're in a per-cpu loop here and this is |
| 3991 | * a global counter, so the first cycle will get them. |
| 3992 | */ |
| 3993 | delta = ac->pending[i]; |
| 3994 | if (delta) |
| 3995 | ac->pending[i] = 0; |
| 3996 | |
| 3997 | /* Add CPU changes on this level since the last flush */ |
| 3998 | delta_cpu = 0; |
| 3999 | v = READ_ONCE(ac->cstat[i]); |
| 4000 | if (v != ac->cstat_prev[i]) { |
| 4001 | delta_cpu = v - ac->cstat_prev[i]; |
| 4002 | delta += delta_cpu; |
| 4003 | ac->cstat_prev[i] = v; |
| 4004 | } |
| 4005 | |
| 4006 | /* Aggregate counts on this level and propagate upwards */ |
| 4007 | if (delta_cpu) |
| 4008 | ac->local[i] += delta_cpu; |
| 4009 | |
| 4010 | if (delta) { |
| 4011 | ac->aggregate[i] += delta; |
| 4012 | if (ac->ppending) |
| 4013 | ac->ppending[i] += delta; |
| 4014 | } |
| 4015 | } |
| 4016 | } |
| 4017 | |
| 4018 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
| 4019 | static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, |
| 4020 | int cpu) |
| 4021 | { |
| 4022 | int nid; |
| 4023 | |
| 4024 | if (atomic_read(&memcg->kmem_stat)) { |
| 4025 | int kmem = atomic_xchg(&memcg->kmem_stat, 0); |
| 4026 | int index = memcg_stats_index(MEMCG_KMEM); |
| 4027 | |
| 4028 | memcg->vmstats->state[index] += kmem; |
| 4029 | if (parent) |
| 4030 | parent->vmstats->state_pending[index] += kmem; |
| 4031 | } |
| 4032 | |
| 4033 | for_each_node_state(nid, N_MEMORY) { |
| 4034 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; |
| 4035 | struct lruvec_stats *lstats = pn->lruvec_stats; |
| 4036 | struct lruvec_stats *plstats = NULL; |
| 4037 | |
| 4038 | if (parent) |
| 4039 | plstats = parent->nodeinfo[nid]->lruvec_stats; |
| 4040 | |
| 4041 | if (atomic_read(&pn->slab_reclaimable)) { |
| 4042 | int slab = atomic_xchg(&pn->slab_reclaimable, 0); |
| 4043 | int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B); |
| 4044 | |
| 4045 | lstats->state[index] += slab; |
| 4046 | if (plstats) |
| 4047 | plstats->state_pending[index] += slab; |
| 4048 | } |
| 4049 | if (atomic_read(&pn->slab_unreclaimable)) { |
| 4050 | int slab = atomic_xchg(&pn->slab_unreclaimable, 0); |
| 4051 | int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B); |
| 4052 | |
| 4053 | lstats->state[index] += slab; |
| 4054 | if (plstats) |
| 4055 | plstats->state_pending[index] += slab; |
| 4056 | } |
| 4057 | } |
| 4058 | } |
| 4059 | #else |
| 4060 | static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, |
| 4061 | int cpu) |
| 4062 | {} |
| 4063 | #endif |
| 4064 | |
| 4065 | static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) |
| 4066 | { |
| 4067 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 4068 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
| 4069 | struct memcg_vmstats_percpu *statc; |
| 4070 | struct aggregate_control ac; |
| 4071 | int nid; |
| 4072 | |
| 4073 | flush_nmi_stats(memcg, parent, cpu); |
| 4074 | |
| 4075 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); |
| 4076 | |
| 4077 | ac = (struct aggregate_control) { |
| 4078 | .aggregate = memcg->vmstats->state, |
| 4079 | .local = memcg->vmstats->state_local, |
| 4080 | .pending = memcg->vmstats->state_pending, |
| 4081 | .ppending = parent ? parent->vmstats->state_pending : NULL, |
| 4082 | .cstat = statc->state, |
| 4083 | .cstat_prev = statc->state_prev, |
| 4084 | .size = MEMCG_VMSTAT_SIZE, |
| 4085 | }; |
| 4086 | mem_cgroup_stat_aggregate(&ac); |
| 4087 | |
| 4088 | ac = (struct aggregate_control) { |
| 4089 | .aggregate = memcg->vmstats->events, |
| 4090 | .local = memcg->vmstats->events_local, |
| 4091 | .pending = memcg->vmstats->events_pending, |
| 4092 | .ppending = parent ? parent->vmstats->events_pending : NULL, |
| 4093 | .cstat = statc->events, |
| 4094 | .cstat_prev = statc->events_prev, |
| 4095 | .size = NR_MEMCG_EVENTS, |
| 4096 | }; |
| 4097 | mem_cgroup_stat_aggregate(&ac); |
| 4098 | |
| 4099 | for_each_node_state(nid, N_MEMORY) { |
| 4100 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; |
| 4101 | struct lruvec_stats *lstats = pn->lruvec_stats; |
| 4102 | struct lruvec_stats *plstats = NULL; |
| 4103 | struct lruvec_stats_percpu *lstatc; |
| 4104 | |
| 4105 | if (parent) |
| 4106 | plstats = parent->nodeinfo[nid]->lruvec_stats; |
| 4107 | |
| 4108 | lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); |
| 4109 | |
| 4110 | ac = (struct aggregate_control) { |
| 4111 | .aggregate = lstats->state, |
| 4112 | .local = lstats->state_local, |
| 4113 | .pending = lstats->state_pending, |
| 4114 | .ppending = plstats ? plstats->state_pending : NULL, |
| 4115 | .cstat = lstatc->state, |
| 4116 | .cstat_prev = lstatc->state_prev, |
| 4117 | .size = NR_MEMCG_NODE_STAT_ITEMS, |
| 4118 | }; |
| 4119 | mem_cgroup_stat_aggregate(&ac); |
| 4120 | |
| 4121 | } |
| 4122 | WRITE_ONCE(statc->stats_updates, 0); |
| 4123 | /* We are in a per-cpu loop here, only do the atomic write once */ |
| 4124 | if (atomic_read(&memcg->vmstats->stats_updates)) |
| 4125 | atomic_set(&memcg->vmstats->stats_updates, 0); |
| 4126 | } |
| 4127 | |
| 4128 | static void mem_cgroup_fork(struct task_struct *task) |
| 4129 | { |
| 4130 | /* |
| 4131 | * Set the update flag to cause task->objcg to be initialized lazily |
| 4132 | * on the first allocation. It can be done without any synchronization |
| 4133 | * because it's always performed on the current task, so does |
| 4134 | * current_objcg_update(). |
| 4135 | */ |
| 4136 | task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; |
| 4137 | } |
| 4138 | |
| 4139 | static void mem_cgroup_exit(struct task_struct *task) |
| 4140 | { |
| 4141 | struct obj_cgroup *objcg = task->objcg; |
| 4142 | |
| 4143 | objcg = (struct obj_cgroup *) |
| 4144 | ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); |
| 4145 | obj_cgroup_put(objcg); |
| 4146 | |
| 4147 | /* |
| 4148 | * Some kernel allocations can happen after this point, |
| 4149 | * but let's ignore them. It can be done without any synchronization |
| 4150 | * because it's always performed on the current task, so does |
| 4151 | * current_objcg_update(). |
| 4152 | */ |
| 4153 | task->objcg = NULL; |
| 4154 | } |
| 4155 | |
| 4156 | #ifdef CONFIG_LRU_GEN |
| 4157 | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) |
| 4158 | { |
| 4159 | struct task_struct *task; |
| 4160 | struct cgroup_subsys_state *css; |
| 4161 | |
| 4162 | /* find the first leader if there is any */ |
| 4163 | cgroup_taskset_for_each_leader(task, css, tset) |
| 4164 | break; |
| 4165 | |
| 4166 | if (!task) |
| 4167 | return; |
| 4168 | |
| 4169 | task_lock(task); |
| 4170 | if (task->mm && READ_ONCE(task->mm->owner) == task) |
| 4171 | lru_gen_migrate_mm(task->mm); |
| 4172 | task_unlock(task); |
| 4173 | } |
| 4174 | #else |
| 4175 | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} |
| 4176 | #endif /* CONFIG_LRU_GEN */ |
| 4177 | |
| 4178 | static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) |
| 4179 | { |
| 4180 | struct task_struct *task; |
| 4181 | struct cgroup_subsys_state *css; |
| 4182 | |
| 4183 | cgroup_taskset_for_each(task, css, tset) { |
| 4184 | /* atomically set the update bit */ |
| 4185 | set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); |
| 4186 | } |
| 4187 | } |
| 4188 | |
| 4189 | static void mem_cgroup_attach(struct cgroup_taskset *tset) |
| 4190 | { |
| 4191 | mem_cgroup_lru_gen_attach(tset); |
| 4192 | mem_cgroup_kmem_attach(tset); |
| 4193 | } |
| 4194 | |
| 4195 | static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) |
| 4196 | { |
| 4197 | if (value == PAGE_COUNTER_MAX) |
| 4198 | seq_puts(m, "max\n"); |
| 4199 | else |
| 4200 | seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); |
| 4201 | |
| 4202 | return 0; |
| 4203 | } |
| 4204 | |
| 4205 | static u64 memory_current_read(struct cgroup_subsys_state *css, |
| 4206 | struct cftype *cft) |
| 4207 | { |
| 4208 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 4209 | |
| 4210 | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; |
| 4211 | } |
| 4212 | |
| 4213 | #define OFP_PEAK_UNSET (((-1UL))) |
| 4214 | |
| 4215 | static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) |
| 4216 | { |
| 4217 | struct cgroup_of_peak *ofp = of_peak(sf->private); |
| 4218 | u64 fd_peak = READ_ONCE(ofp->value), peak; |
| 4219 | |
| 4220 | /* User wants global or local peak? */ |
| 4221 | if (fd_peak == OFP_PEAK_UNSET) |
| 4222 | peak = pc->watermark; |
| 4223 | else |
| 4224 | peak = max(fd_peak, READ_ONCE(pc->local_watermark)); |
| 4225 | |
| 4226 | seq_printf(sf, "%llu\n", peak * PAGE_SIZE); |
| 4227 | return 0; |
| 4228 | } |
| 4229 | |
| 4230 | static int memory_peak_show(struct seq_file *sf, void *v) |
| 4231 | { |
| 4232 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); |
| 4233 | |
| 4234 | return peak_show(sf, v, &memcg->memory); |
| 4235 | } |
| 4236 | |
| 4237 | static int peak_open(struct kernfs_open_file *of) |
| 4238 | { |
| 4239 | struct cgroup_of_peak *ofp = of_peak(of); |
| 4240 | |
| 4241 | ofp->value = OFP_PEAK_UNSET; |
| 4242 | return 0; |
| 4243 | } |
| 4244 | |
| 4245 | static void peak_release(struct kernfs_open_file *of) |
| 4246 | { |
| 4247 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4248 | struct cgroup_of_peak *ofp = of_peak(of); |
| 4249 | |
| 4250 | if (ofp->value == OFP_PEAK_UNSET) { |
| 4251 | /* fast path (no writes on this fd) */ |
| 4252 | return; |
| 4253 | } |
| 4254 | spin_lock(&memcg->peaks_lock); |
| 4255 | list_del(&ofp->list); |
| 4256 | spin_unlock(&memcg->peaks_lock); |
| 4257 | } |
| 4258 | |
| 4259 | static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, |
| 4260 | loff_t off, struct page_counter *pc, |
| 4261 | struct list_head *watchers) |
| 4262 | { |
| 4263 | unsigned long usage; |
| 4264 | struct cgroup_of_peak *peer_ctx; |
| 4265 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4266 | struct cgroup_of_peak *ofp = of_peak(of); |
| 4267 | |
| 4268 | spin_lock(&memcg->peaks_lock); |
| 4269 | |
| 4270 | usage = page_counter_read(pc); |
| 4271 | WRITE_ONCE(pc->local_watermark, usage); |
| 4272 | |
| 4273 | list_for_each_entry(peer_ctx, watchers, list) |
| 4274 | if (usage > peer_ctx->value) |
| 4275 | WRITE_ONCE(peer_ctx->value, usage); |
| 4276 | |
| 4277 | /* initial write, register watcher */ |
| 4278 | if (ofp->value == OFP_PEAK_UNSET) |
| 4279 | list_add(&ofp->list, watchers); |
| 4280 | |
| 4281 | WRITE_ONCE(ofp->value, usage); |
| 4282 | spin_unlock(&memcg->peaks_lock); |
| 4283 | |
| 4284 | return nbytes; |
| 4285 | } |
| 4286 | |
| 4287 | static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, |
| 4288 | size_t nbytes, loff_t off) |
| 4289 | { |
| 4290 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4291 | |
| 4292 | return peak_write(of, buf, nbytes, off, &memcg->memory, |
| 4293 | &memcg->memory_peaks); |
| 4294 | } |
| 4295 | |
| 4296 | #undef OFP_PEAK_UNSET |
| 4297 | |
| 4298 | static int memory_min_show(struct seq_file *m, void *v) |
| 4299 | { |
| 4300 | return seq_puts_memcg_tunable(m, |
| 4301 | READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); |
| 4302 | } |
| 4303 | |
| 4304 | static ssize_t memory_min_write(struct kernfs_open_file *of, |
| 4305 | char *buf, size_t nbytes, loff_t off) |
| 4306 | { |
| 4307 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4308 | unsigned long min; |
| 4309 | int err; |
| 4310 | |
| 4311 | buf = strstrip(buf); |
| 4312 | err = page_counter_memparse(buf, "max", &min); |
| 4313 | if (err) |
| 4314 | return err; |
| 4315 | |
| 4316 | page_counter_set_min(&memcg->memory, min); |
| 4317 | |
| 4318 | return nbytes; |
| 4319 | } |
| 4320 | |
| 4321 | static int memory_low_show(struct seq_file *m, void *v) |
| 4322 | { |
| 4323 | return seq_puts_memcg_tunable(m, |
| 4324 | READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); |
| 4325 | } |
| 4326 | |
| 4327 | static ssize_t memory_low_write(struct kernfs_open_file *of, |
| 4328 | char *buf, size_t nbytes, loff_t off) |
| 4329 | { |
| 4330 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4331 | unsigned long low; |
| 4332 | int err; |
| 4333 | |
| 4334 | buf = strstrip(buf); |
| 4335 | err = page_counter_memparse(buf, "max", &low); |
| 4336 | if (err) |
| 4337 | return err; |
| 4338 | |
| 4339 | page_counter_set_low(&memcg->memory, low); |
| 4340 | |
| 4341 | return nbytes; |
| 4342 | } |
| 4343 | |
| 4344 | static int memory_high_show(struct seq_file *m, void *v) |
| 4345 | { |
| 4346 | return seq_puts_memcg_tunable(m, |
| 4347 | READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); |
| 4348 | } |
| 4349 | |
| 4350 | static ssize_t memory_high_write(struct kernfs_open_file *of, |
| 4351 | char *buf, size_t nbytes, loff_t off) |
| 4352 | { |
| 4353 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4354 | unsigned int nr_retries = MAX_RECLAIM_RETRIES; |
| 4355 | bool drained = false; |
| 4356 | unsigned long high; |
| 4357 | int err; |
| 4358 | |
| 4359 | buf = strstrip(buf); |
| 4360 | err = page_counter_memparse(buf, "max", &high); |
| 4361 | if (err) |
| 4362 | return err; |
| 4363 | |
| 4364 | page_counter_set_high(&memcg->memory, high); |
| 4365 | |
| 4366 | if (of->file->f_flags & O_NONBLOCK) |
| 4367 | goto out; |
| 4368 | |
| 4369 | for (;;) { |
| 4370 | unsigned long nr_pages = page_counter_read(&memcg->memory); |
| 4371 | unsigned long reclaimed; |
| 4372 | |
| 4373 | if (nr_pages <= high) |
| 4374 | break; |
| 4375 | |
| 4376 | if (signal_pending(current)) |
| 4377 | break; |
| 4378 | |
| 4379 | if (!drained) { |
| 4380 | drain_all_stock(memcg); |
| 4381 | drained = true; |
| 4382 | continue; |
| 4383 | } |
| 4384 | |
| 4385 | reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, |
| 4386 | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); |
| 4387 | |
| 4388 | if (!reclaimed && !nr_retries--) |
| 4389 | break; |
| 4390 | } |
| 4391 | out: |
| 4392 | memcg_wb_domain_size_changed(memcg); |
| 4393 | return nbytes; |
| 4394 | } |
| 4395 | |
| 4396 | static int memory_max_show(struct seq_file *m, void *v) |
| 4397 | { |
| 4398 | return seq_puts_memcg_tunable(m, |
| 4399 | READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); |
| 4400 | } |
| 4401 | |
| 4402 | static ssize_t memory_max_write(struct kernfs_open_file *of, |
| 4403 | char *buf, size_t nbytes, loff_t off) |
| 4404 | { |
| 4405 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4406 | unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; |
| 4407 | bool drained = false; |
| 4408 | unsigned long max; |
| 4409 | int err; |
| 4410 | |
| 4411 | buf = strstrip(buf); |
| 4412 | err = page_counter_memparse(buf, "max", &max); |
| 4413 | if (err) |
| 4414 | return err; |
| 4415 | |
| 4416 | xchg(&memcg->memory.max, max); |
| 4417 | |
| 4418 | if (of->file->f_flags & O_NONBLOCK) |
| 4419 | goto out; |
| 4420 | |
| 4421 | for (;;) { |
| 4422 | unsigned long nr_pages = page_counter_read(&memcg->memory); |
| 4423 | |
| 4424 | if (nr_pages <= max) |
| 4425 | break; |
| 4426 | |
| 4427 | if (signal_pending(current)) |
| 4428 | break; |
| 4429 | |
| 4430 | if (!drained) { |
| 4431 | drain_all_stock(memcg); |
| 4432 | drained = true; |
| 4433 | continue; |
| 4434 | } |
| 4435 | |
| 4436 | if (nr_reclaims) { |
| 4437 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, |
| 4438 | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) |
| 4439 | nr_reclaims--; |
| 4440 | continue; |
| 4441 | } |
| 4442 | |
| 4443 | memcg_memory_event(memcg, MEMCG_OOM); |
| 4444 | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) |
| 4445 | break; |
| 4446 | cond_resched(); |
| 4447 | } |
| 4448 | out: |
| 4449 | memcg_wb_domain_size_changed(memcg); |
| 4450 | return nbytes; |
| 4451 | } |
| 4452 | |
| 4453 | /* |
| 4454 | * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' |
| 4455 | * if any new events become available. |
| 4456 | */ |
| 4457 | static void __memory_events_show(struct seq_file *m, atomic_long_t *events) |
| 4458 | { |
| 4459 | seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); |
| 4460 | seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); |
| 4461 | seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); |
| 4462 | seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); |
| 4463 | seq_printf(m, "oom_kill %lu\n", |
| 4464 | atomic_long_read(&events[MEMCG_OOM_KILL])); |
| 4465 | seq_printf(m, "oom_group_kill %lu\n", |
| 4466 | atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); |
| 4467 | } |
| 4468 | |
| 4469 | static int memory_events_show(struct seq_file *m, void *v) |
| 4470 | { |
| 4471 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
| 4472 | |
| 4473 | __memory_events_show(m, memcg->memory_events); |
| 4474 | return 0; |
| 4475 | } |
| 4476 | |
| 4477 | static int memory_events_local_show(struct seq_file *m, void *v) |
| 4478 | { |
| 4479 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
| 4480 | |
| 4481 | __memory_events_show(m, memcg->memory_events_local); |
| 4482 | return 0; |
| 4483 | } |
| 4484 | |
| 4485 | int memory_stat_show(struct seq_file *m, void *v) |
| 4486 | { |
| 4487 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
| 4488 | char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); |
| 4489 | struct seq_buf s; |
| 4490 | |
| 4491 | if (!buf) |
| 4492 | return -ENOMEM; |
| 4493 | seq_buf_init(&s, buf, SEQ_BUF_SIZE); |
| 4494 | memory_stat_format(memcg, &s); |
| 4495 | seq_puts(m, buf); |
| 4496 | kfree(buf); |
| 4497 | return 0; |
| 4498 | } |
| 4499 | |
| 4500 | #ifdef CONFIG_NUMA |
| 4501 | static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, |
| 4502 | int item) |
| 4503 | { |
| 4504 | return lruvec_page_state(lruvec, item) * |
| 4505 | memcg_page_state_output_unit(item); |
| 4506 | } |
| 4507 | |
| 4508 | static int memory_numa_stat_show(struct seq_file *m, void *v) |
| 4509 | { |
| 4510 | int i; |
| 4511 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
| 4512 | |
| 4513 | mem_cgroup_flush_stats(memcg); |
| 4514 | |
| 4515 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { |
| 4516 | int nid; |
| 4517 | |
| 4518 | if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) |
| 4519 | continue; |
| 4520 | |
| 4521 | seq_printf(m, "%s", memory_stats[i].name); |
| 4522 | for_each_node_state(nid, N_MEMORY) { |
| 4523 | u64 size; |
| 4524 | struct lruvec *lruvec; |
| 4525 | |
| 4526 | lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); |
| 4527 | size = lruvec_page_state_output(lruvec, |
| 4528 | memory_stats[i].idx); |
| 4529 | seq_printf(m, " N%d=%llu", nid, size); |
| 4530 | } |
| 4531 | seq_putc(m, '\n'); |
| 4532 | } |
| 4533 | |
| 4534 | return 0; |
| 4535 | } |
| 4536 | #endif |
| 4537 | |
| 4538 | static int memory_oom_group_show(struct seq_file *m, void *v) |
| 4539 | { |
| 4540 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
| 4541 | |
| 4542 | seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); |
| 4543 | |
| 4544 | return 0; |
| 4545 | } |
| 4546 | |
| 4547 | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, |
| 4548 | char *buf, size_t nbytes, loff_t off) |
| 4549 | { |
| 4550 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4551 | int ret, oom_group; |
| 4552 | |
| 4553 | buf = strstrip(buf); |
| 4554 | if (!buf) |
| 4555 | return -EINVAL; |
| 4556 | |
| 4557 | ret = kstrtoint(buf, 0, &oom_group); |
| 4558 | if (ret) |
| 4559 | return ret; |
| 4560 | |
| 4561 | if (oom_group != 0 && oom_group != 1) |
| 4562 | return -EINVAL; |
| 4563 | |
| 4564 | WRITE_ONCE(memcg->oom_group, oom_group); |
| 4565 | |
| 4566 | return nbytes; |
| 4567 | } |
| 4568 | |
| 4569 | enum { |
| 4570 | MEMORY_RECLAIM_SWAPPINESS = 0, |
| 4571 | MEMORY_RECLAIM_SWAPPINESS_MAX, |
| 4572 | MEMORY_RECLAIM_NULL, |
| 4573 | }; |
| 4574 | |
| 4575 | static const match_table_t tokens = { |
| 4576 | { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, |
| 4577 | { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, |
| 4578 | { MEMORY_RECLAIM_NULL, NULL }, |
| 4579 | }; |
| 4580 | |
| 4581 | static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, |
| 4582 | size_t nbytes, loff_t off) |
| 4583 | { |
| 4584 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 4585 | unsigned int nr_retries = MAX_RECLAIM_RETRIES; |
| 4586 | unsigned long nr_to_reclaim, nr_reclaimed = 0; |
| 4587 | int swappiness = -1; |
| 4588 | unsigned int reclaim_options; |
| 4589 | char *old_buf, *start; |
| 4590 | substring_t args[MAX_OPT_ARGS]; |
| 4591 | |
| 4592 | buf = strstrip(buf); |
| 4593 | |
| 4594 | old_buf = buf; |
| 4595 | nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; |
| 4596 | if (buf == old_buf) |
| 4597 | return -EINVAL; |
| 4598 | |
| 4599 | buf = strstrip(buf); |
| 4600 | |
| 4601 | while ((start = strsep(&buf, " ")) != NULL) { |
| 4602 | if (!strlen(start)) |
| 4603 | continue; |
| 4604 | switch (match_token(start, tokens, args)) { |
| 4605 | case MEMORY_RECLAIM_SWAPPINESS: |
| 4606 | if (match_int(&args[0], &swappiness)) |
| 4607 | return -EINVAL; |
| 4608 | if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) |
| 4609 | return -EINVAL; |
| 4610 | break; |
| 4611 | case MEMORY_RECLAIM_SWAPPINESS_MAX: |
| 4612 | swappiness = SWAPPINESS_ANON_ONLY; |
| 4613 | break; |
| 4614 | default: |
| 4615 | return -EINVAL; |
| 4616 | } |
| 4617 | } |
| 4618 | |
| 4619 | reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; |
| 4620 | while (nr_reclaimed < nr_to_reclaim) { |
| 4621 | /* Will converge on zero, but reclaim enforces a minimum */ |
| 4622 | unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; |
| 4623 | unsigned long reclaimed; |
| 4624 | |
| 4625 | if (signal_pending(current)) |
| 4626 | return -EINTR; |
| 4627 | |
| 4628 | /* |
| 4629 | * This is the final attempt, drain percpu lru caches in the |
| 4630 | * hope of introducing more evictable pages for |
| 4631 | * try_to_free_mem_cgroup_pages(). |
| 4632 | */ |
| 4633 | if (!nr_retries) |
| 4634 | lru_add_drain_all(); |
| 4635 | |
| 4636 | reclaimed = try_to_free_mem_cgroup_pages(memcg, |
| 4637 | batch_size, GFP_KERNEL, |
| 4638 | reclaim_options, |
| 4639 | swappiness == -1 ? NULL : &swappiness); |
| 4640 | |
| 4641 | if (!reclaimed && !nr_retries--) |
| 4642 | return -EAGAIN; |
| 4643 | |
| 4644 | nr_reclaimed += reclaimed; |
| 4645 | } |
| 4646 | |
| 4647 | return nbytes; |
| 4648 | } |
| 4649 | |
| 4650 | static struct cftype memory_files[] = { |
| 4651 | { |
| 4652 | .name = "current", |
| 4653 | .flags = CFTYPE_NOT_ON_ROOT, |
| 4654 | .read_u64 = memory_current_read, |
| 4655 | }, |
| 4656 | { |
| 4657 | .name = "peak", |
| 4658 | .flags = CFTYPE_NOT_ON_ROOT, |
| 4659 | .open = peak_open, |
| 4660 | .release = peak_release, |
| 4661 | .seq_show = memory_peak_show, |
| 4662 | .write = memory_peak_write, |
| 4663 | }, |
| 4664 | { |
| 4665 | .name = "min", |
| 4666 | .flags = CFTYPE_NOT_ON_ROOT, |
| 4667 | .seq_show = memory_min_show, |
| 4668 | .write = memory_min_write, |
| 4669 | }, |
| 4670 | { |
| 4671 | .name = "low", |
| 4672 | .flags = CFTYPE_NOT_ON_ROOT, |
| 4673 | .seq_show = memory_low_show, |
| 4674 | .write = memory_low_write, |
| 4675 | }, |
| 4676 | { |
| 4677 | .name = "high", |
| 4678 | .flags = CFTYPE_NOT_ON_ROOT, |
| 4679 | .seq_show = memory_high_show, |
| 4680 | .write = memory_high_write, |
| 4681 | }, |
| 4682 | { |
| 4683 | .name = "max", |
| 4684 | .flags = CFTYPE_NOT_ON_ROOT, |
| 4685 | .seq_show = memory_max_show, |
| 4686 | .write = memory_max_write, |
| 4687 | }, |
| 4688 | { |
| 4689 | .name = "events", |
| 4690 | .flags = CFTYPE_NOT_ON_ROOT, |
| 4691 | .file_offset = offsetof(struct mem_cgroup, events_file), |
| 4692 | .seq_show = memory_events_show, |
| 4693 | }, |
| 4694 | { |
| 4695 | .name = "events.local", |
| 4696 | .flags = CFTYPE_NOT_ON_ROOT, |
| 4697 | .file_offset = offsetof(struct mem_cgroup, events_local_file), |
| 4698 | .seq_show = memory_events_local_show, |
| 4699 | }, |
| 4700 | { |
| 4701 | .name = "stat", |
| 4702 | .seq_show = memory_stat_show, |
| 4703 | }, |
| 4704 | #ifdef CONFIG_NUMA |
| 4705 | { |
| 4706 | .name = "numa_stat", |
| 4707 | .seq_show = memory_numa_stat_show, |
| 4708 | }, |
| 4709 | #endif |
| 4710 | { |
| 4711 | .name = "oom.group", |
| 4712 | .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, |
| 4713 | .seq_show = memory_oom_group_show, |
| 4714 | .write = memory_oom_group_write, |
| 4715 | }, |
| 4716 | { |
| 4717 | .name = "reclaim", |
| 4718 | .flags = CFTYPE_NS_DELEGATABLE, |
| 4719 | .write = memory_reclaim, |
| 4720 | }, |
| 4721 | { } /* terminate */ |
| 4722 | }; |
| 4723 | |
| 4724 | struct cgroup_subsys memory_cgrp_subsys = { |
| 4725 | .css_alloc = mem_cgroup_css_alloc, |
| 4726 | .css_online = mem_cgroup_css_online, |
| 4727 | .css_offline = mem_cgroup_css_offline, |
| 4728 | .css_released = mem_cgroup_css_released, |
| 4729 | .css_free = mem_cgroup_css_free, |
| 4730 | .css_reset = mem_cgroup_css_reset, |
| 4731 | .css_rstat_flush = mem_cgroup_css_rstat_flush, |
| 4732 | .attach = mem_cgroup_attach, |
| 4733 | .fork = mem_cgroup_fork, |
| 4734 | .exit = mem_cgroup_exit, |
| 4735 | .dfl_cftypes = memory_files, |
| 4736 | #ifdef CONFIG_MEMCG_V1 |
| 4737 | .legacy_cftypes = mem_cgroup_legacy_files, |
| 4738 | #endif |
| 4739 | .early_init = 0, |
| 4740 | }; |
| 4741 | |
| 4742 | /** |
| 4743 | * mem_cgroup_calculate_protection - check if memory consumption is in the normal range |
| 4744 | * @root: the top ancestor of the sub-tree being checked |
| 4745 | * @memcg: the memory cgroup to check |
| 4746 | * |
| 4747 | * WARNING: This function is not stateless! It can only be used as part |
| 4748 | * of a top-down tree iteration, not for isolated queries. |
| 4749 | */ |
| 4750 | void mem_cgroup_calculate_protection(struct mem_cgroup *root, |
| 4751 | struct mem_cgroup *memcg) |
| 4752 | { |
| 4753 | bool recursive_protection = |
| 4754 | cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; |
| 4755 | |
| 4756 | if (mem_cgroup_disabled()) |
| 4757 | return; |
| 4758 | |
| 4759 | if (!root) |
| 4760 | root = root_mem_cgroup; |
| 4761 | |
| 4762 | page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); |
| 4763 | } |
| 4764 | |
| 4765 | static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, |
| 4766 | gfp_t gfp) |
| 4767 | { |
| 4768 | int ret; |
| 4769 | |
| 4770 | ret = try_charge(memcg, gfp, folio_nr_pages(folio)); |
| 4771 | if (ret) |
| 4772 | goto out; |
| 4773 | |
| 4774 | css_get(&memcg->css); |
| 4775 | commit_charge(folio, memcg); |
| 4776 | memcg1_commit_charge(folio, memcg); |
| 4777 | out: |
| 4778 | return ret; |
| 4779 | } |
| 4780 | |
| 4781 | int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) |
| 4782 | { |
| 4783 | struct mem_cgroup *memcg; |
| 4784 | int ret; |
| 4785 | |
| 4786 | memcg = get_mem_cgroup_from_mm(mm); |
| 4787 | ret = charge_memcg(folio, memcg, gfp); |
| 4788 | css_put(&memcg->css); |
| 4789 | |
| 4790 | return ret; |
| 4791 | } |
| 4792 | |
| 4793 | /** |
| 4794 | * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio |
| 4795 | * @folio: folio being charged |
| 4796 | * @gfp: reclaim mode |
| 4797 | * |
| 4798 | * This function is called when allocating a huge page folio, after the page has |
| 4799 | * already been obtained and charged to the appropriate hugetlb cgroup |
| 4800 | * controller (if it is enabled). |
| 4801 | * |
| 4802 | * Returns ENOMEM if the memcg is already full. |
| 4803 | * Returns 0 if either the charge was successful, or if we skip the charging. |
| 4804 | */ |
| 4805 | int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) |
| 4806 | { |
| 4807 | struct mem_cgroup *memcg = get_mem_cgroup_from_current(); |
| 4808 | int ret = 0; |
| 4809 | |
| 4810 | /* |
| 4811 | * Even memcg does not account for hugetlb, we still want to update |
| 4812 | * system-level stats via lruvec_stat_mod_folio. Return 0, and skip |
| 4813 | * charging the memcg. |
| 4814 | */ |
| 4815 | if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || |
| 4816 | !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 4817 | goto out; |
| 4818 | |
| 4819 | if (charge_memcg(folio, memcg, gfp)) |
| 4820 | ret = -ENOMEM; |
| 4821 | |
| 4822 | out: |
| 4823 | mem_cgroup_put(memcg); |
| 4824 | return ret; |
| 4825 | } |
| 4826 | |
| 4827 | /** |
| 4828 | * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. |
| 4829 | * @folio: folio to charge. |
| 4830 | * @mm: mm context of the victim |
| 4831 | * @gfp: reclaim mode |
| 4832 | * @entry: swap entry for which the folio is allocated |
| 4833 | * |
| 4834 | * This function charges a folio allocated for swapin. Please call this before |
| 4835 | * adding the folio to the swapcache. |
| 4836 | * |
| 4837 | * Returns 0 on success. Otherwise, an error code is returned. |
| 4838 | */ |
| 4839 | int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, |
| 4840 | gfp_t gfp, swp_entry_t entry) |
| 4841 | { |
| 4842 | struct mem_cgroup *memcg; |
| 4843 | unsigned short id; |
| 4844 | int ret; |
| 4845 | |
| 4846 | if (mem_cgroup_disabled()) |
| 4847 | return 0; |
| 4848 | |
| 4849 | id = lookup_swap_cgroup_id(entry); |
| 4850 | rcu_read_lock(); |
| 4851 | memcg = mem_cgroup_from_id(id); |
| 4852 | if (!memcg || !css_tryget_online(&memcg->css)) |
| 4853 | memcg = get_mem_cgroup_from_mm(mm); |
| 4854 | rcu_read_unlock(); |
| 4855 | |
| 4856 | ret = charge_memcg(folio, memcg, gfp); |
| 4857 | |
| 4858 | css_put(&memcg->css); |
| 4859 | return ret; |
| 4860 | } |
| 4861 | |
| 4862 | struct uncharge_gather { |
| 4863 | struct mem_cgroup *memcg; |
| 4864 | unsigned long nr_memory; |
| 4865 | unsigned long pgpgout; |
| 4866 | unsigned long nr_kmem; |
| 4867 | int nid; |
| 4868 | }; |
| 4869 | |
| 4870 | static inline void uncharge_gather_clear(struct uncharge_gather *ug) |
| 4871 | { |
| 4872 | memset(ug, 0, sizeof(*ug)); |
| 4873 | } |
| 4874 | |
| 4875 | static void uncharge_batch(const struct uncharge_gather *ug) |
| 4876 | { |
| 4877 | if (ug->nr_memory) { |
| 4878 | memcg_uncharge(ug->memcg, ug->nr_memory); |
| 4879 | if (ug->nr_kmem) { |
| 4880 | mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); |
| 4881 | memcg1_account_kmem(ug->memcg, -ug->nr_kmem); |
| 4882 | } |
| 4883 | memcg1_oom_recover(ug->memcg); |
| 4884 | } |
| 4885 | |
| 4886 | memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); |
| 4887 | |
| 4888 | /* drop reference from uncharge_folio */ |
| 4889 | css_put(&ug->memcg->css); |
| 4890 | } |
| 4891 | |
| 4892 | static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) |
| 4893 | { |
| 4894 | long nr_pages; |
| 4895 | struct mem_cgroup *memcg; |
| 4896 | struct obj_cgroup *objcg; |
| 4897 | |
| 4898 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); |
| 4899 | |
| 4900 | /* |
| 4901 | * Nobody should be changing or seriously looking at |
| 4902 | * folio memcg or objcg at this point, we have fully |
| 4903 | * exclusive access to the folio. |
| 4904 | */ |
| 4905 | if (folio_memcg_kmem(folio)) { |
| 4906 | objcg = __folio_objcg(folio); |
| 4907 | /* |
| 4908 | * This get matches the put at the end of the function and |
| 4909 | * kmem pages do not hold memcg references anymore. |
| 4910 | */ |
| 4911 | memcg = get_mem_cgroup_from_objcg(objcg); |
| 4912 | } else { |
| 4913 | memcg = __folio_memcg(folio); |
| 4914 | } |
| 4915 | |
| 4916 | if (!memcg) |
| 4917 | return; |
| 4918 | |
| 4919 | if (ug->memcg != memcg) { |
| 4920 | if (ug->memcg) { |
| 4921 | uncharge_batch(ug); |
| 4922 | uncharge_gather_clear(ug); |
| 4923 | } |
| 4924 | ug->memcg = memcg; |
| 4925 | ug->nid = folio_nid(folio); |
| 4926 | |
| 4927 | /* pairs with css_put in uncharge_batch */ |
| 4928 | css_get(&memcg->css); |
| 4929 | } |
| 4930 | |
| 4931 | nr_pages = folio_nr_pages(folio); |
| 4932 | |
| 4933 | if (folio_memcg_kmem(folio)) { |
| 4934 | ug->nr_memory += nr_pages; |
| 4935 | ug->nr_kmem += nr_pages; |
| 4936 | |
| 4937 | folio->memcg_data = 0; |
| 4938 | obj_cgroup_put(objcg); |
| 4939 | } else { |
| 4940 | /* LRU pages aren't accounted at the root level */ |
| 4941 | if (!mem_cgroup_is_root(memcg)) |
| 4942 | ug->nr_memory += nr_pages; |
| 4943 | ug->pgpgout++; |
| 4944 | |
| 4945 | WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); |
| 4946 | folio->memcg_data = 0; |
| 4947 | } |
| 4948 | |
| 4949 | css_put(&memcg->css); |
| 4950 | } |
| 4951 | |
| 4952 | void __mem_cgroup_uncharge(struct folio *folio) |
| 4953 | { |
| 4954 | struct uncharge_gather ug; |
| 4955 | |
| 4956 | /* Don't touch folio->lru of any random page, pre-check: */ |
| 4957 | if (!folio_memcg_charged(folio)) |
| 4958 | return; |
| 4959 | |
| 4960 | uncharge_gather_clear(&ug); |
| 4961 | uncharge_folio(folio, &ug); |
| 4962 | uncharge_batch(&ug); |
| 4963 | } |
| 4964 | |
| 4965 | void __mem_cgroup_uncharge_folios(struct folio_batch *folios) |
| 4966 | { |
| 4967 | struct uncharge_gather ug; |
| 4968 | unsigned int i; |
| 4969 | |
| 4970 | uncharge_gather_clear(&ug); |
| 4971 | for (i = 0; i < folios->nr; i++) |
| 4972 | uncharge_folio(folios->folios[i], &ug); |
| 4973 | if (ug.memcg) |
| 4974 | uncharge_batch(&ug); |
| 4975 | } |
| 4976 | |
| 4977 | /** |
| 4978 | * mem_cgroup_replace_folio - Charge a folio's replacement. |
| 4979 | * @old: Currently circulating folio. |
| 4980 | * @new: Replacement folio. |
| 4981 | * |
| 4982 | * Charge @new as a replacement folio for @old. @old will |
| 4983 | * be uncharged upon free. |
| 4984 | * |
| 4985 | * Both folios must be locked, @new->mapping must be set up. |
| 4986 | */ |
| 4987 | void mem_cgroup_replace_folio(struct folio *old, struct folio *new) |
| 4988 | { |
| 4989 | struct mem_cgroup *memcg; |
| 4990 | long nr_pages = folio_nr_pages(new); |
| 4991 | |
| 4992 | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); |
| 4993 | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); |
| 4994 | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); |
| 4995 | VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); |
| 4996 | |
| 4997 | if (mem_cgroup_disabled()) |
| 4998 | return; |
| 4999 | |
| 5000 | /* Page cache replacement: new folio already charged? */ |
| 5001 | if (folio_memcg_charged(new)) |
| 5002 | return; |
| 5003 | |
| 5004 | memcg = folio_memcg(old); |
| 5005 | VM_WARN_ON_ONCE_FOLIO(!memcg, old); |
| 5006 | if (!memcg) |
| 5007 | return; |
| 5008 | |
| 5009 | /* Force-charge the new page. The old one will be freed soon */ |
| 5010 | if (!mem_cgroup_is_root(memcg)) { |
| 5011 | page_counter_charge(&memcg->memory, nr_pages); |
| 5012 | if (do_memsw_account()) |
| 5013 | page_counter_charge(&memcg->memsw, nr_pages); |
| 5014 | } |
| 5015 | |
| 5016 | css_get(&memcg->css); |
| 5017 | commit_charge(new, memcg); |
| 5018 | memcg1_commit_charge(new, memcg); |
| 5019 | } |
| 5020 | |
| 5021 | /** |
| 5022 | * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. |
| 5023 | * @old: Currently circulating folio. |
| 5024 | * @new: Replacement folio. |
| 5025 | * |
| 5026 | * Transfer the memcg data from the old folio to the new folio for migration. |
| 5027 | * The old folio's data info will be cleared. Note that the memory counters |
| 5028 | * will remain unchanged throughout the process. |
| 5029 | * |
| 5030 | * Both folios must be locked, @new->mapping must be set up. |
| 5031 | */ |
| 5032 | void mem_cgroup_migrate(struct folio *old, struct folio *new) |
| 5033 | { |
| 5034 | struct mem_cgroup *memcg; |
| 5035 | |
| 5036 | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); |
| 5037 | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); |
| 5038 | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); |
| 5039 | VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); |
| 5040 | VM_BUG_ON_FOLIO(folio_test_lru(old), old); |
| 5041 | |
| 5042 | if (mem_cgroup_disabled()) |
| 5043 | return; |
| 5044 | |
| 5045 | memcg = folio_memcg(old); |
| 5046 | /* |
| 5047 | * Note that it is normal to see !memcg for a hugetlb folio. |
| 5048 | * For e.g, itt could have been allocated when memory_hugetlb_accounting |
| 5049 | * was not selected. |
| 5050 | */ |
| 5051 | VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); |
| 5052 | if (!memcg) |
| 5053 | return; |
| 5054 | |
| 5055 | /* Transfer the charge and the css ref */ |
| 5056 | commit_charge(new, memcg); |
| 5057 | |
| 5058 | /* Warning should never happen, so don't worry about refcount non-0 */ |
| 5059 | WARN_ON_ONCE(folio_unqueue_deferred_split(old)); |
| 5060 | old->memcg_data = 0; |
| 5061 | } |
| 5062 | |
| 5063 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); |
| 5064 | EXPORT_SYMBOL(memcg_sockets_enabled_key); |
| 5065 | |
| 5066 | void mem_cgroup_sk_alloc(struct sock *sk) |
| 5067 | { |
| 5068 | struct mem_cgroup *memcg; |
| 5069 | |
| 5070 | if (!mem_cgroup_sockets_enabled) |
| 5071 | return; |
| 5072 | |
| 5073 | /* Do not associate the sock with unrelated interrupted task's memcg. */ |
| 5074 | if (!in_task()) |
| 5075 | return; |
| 5076 | |
| 5077 | rcu_read_lock(); |
| 5078 | memcg = mem_cgroup_from_task(current); |
| 5079 | if (mem_cgroup_is_root(memcg)) |
| 5080 | goto out; |
| 5081 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) |
| 5082 | goto out; |
| 5083 | if (css_tryget(&memcg->css)) |
| 5084 | sk->sk_memcg = memcg; |
| 5085 | out: |
| 5086 | rcu_read_unlock(); |
| 5087 | } |
| 5088 | |
| 5089 | void mem_cgroup_sk_free(struct sock *sk) |
| 5090 | { |
| 5091 | if (sk->sk_memcg) |
| 5092 | css_put(&sk->sk_memcg->css); |
| 5093 | } |
| 5094 | |
| 5095 | /** |
| 5096 | * mem_cgroup_charge_skmem - charge socket memory |
| 5097 | * @memcg: memcg to charge |
| 5098 | * @nr_pages: number of pages to charge |
| 5099 | * @gfp_mask: reclaim mode |
| 5100 | * |
| 5101 | * Charges @nr_pages to @memcg. Returns %true if the charge fit within |
| 5102 | * @memcg's configured limit, %false if it doesn't. |
| 5103 | */ |
| 5104 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, |
| 5105 | gfp_t gfp_mask) |
| 5106 | { |
| 5107 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 5108 | return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); |
| 5109 | |
| 5110 | if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { |
| 5111 | mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); |
| 5112 | return true; |
| 5113 | } |
| 5114 | |
| 5115 | return false; |
| 5116 | } |
| 5117 | |
| 5118 | /** |
| 5119 | * mem_cgroup_uncharge_skmem - uncharge socket memory |
| 5120 | * @memcg: memcg to uncharge |
| 5121 | * @nr_pages: number of pages to uncharge |
| 5122 | */ |
| 5123 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) |
| 5124 | { |
| 5125 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
| 5126 | memcg1_uncharge_skmem(memcg, nr_pages); |
| 5127 | return; |
| 5128 | } |
| 5129 | |
| 5130 | mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); |
| 5131 | |
| 5132 | refill_stock(memcg, nr_pages); |
| 5133 | } |
| 5134 | |
| 5135 | static int __init cgroup_memory(char *s) |
| 5136 | { |
| 5137 | char *token; |
| 5138 | |
| 5139 | while ((token = strsep(&s, ",")) != NULL) { |
| 5140 | if (!*token) |
| 5141 | continue; |
| 5142 | if (!strcmp(token, "nosocket")) |
| 5143 | cgroup_memory_nosocket = true; |
| 5144 | if (!strcmp(token, "nokmem")) |
| 5145 | cgroup_memory_nokmem = true; |
| 5146 | if (!strcmp(token, "nobpf")) |
| 5147 | cgroup_memory_nobpf = true; |
| 5148 | } |
| 5149 | return 1; |
| 5150 | } |
| 5151 | __setup("cgroup.memory=", cgroup_memory); |
| 5152 | |
| 5153 | /* |
| 5154 | * Memory controller init before cgroup_init() initialize root_mem_cgroup. |
| 5155 | * |
| 5156 | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this |
| 5157 | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but |
| 5158 | * basically everything that doesn't depend on a specific mem_cgroup structure |
| 5159 | * should be initialized from here. |
| 5160 | */ |
| 5161 | int __init mem_cgroup_init(void) |
| 5162 | { |
| 5163 | unsigned int memcg_size; |
| 5164 | int cpu; |
| 5165 | |
| 5166 | /* |
| 5167 | * Currently s32 type (can refer to struct batched_lruvec_stat) is |
| 5168 | * used for per-memcg-per-cpu caching of per-node statistics. In order |
| 5169 | * to work fine, we should make sure that the overfill threshold can't |
| 5170 | * exceed S32_MAX / PAGE_SIZE. |
| 5171 | */ |
| 5172 | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); |
| 5173 | |
| 5174 | cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, |
| 5175 | memcg_hotplug_cpu_dead); |
| 5176 | |
| 5177 | for_each_possible_cpu(cpu) { |
| 5178 | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, |
| 5179 | drain_local_memcg_stock); |
| 5180 | INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, |
| 5181 | drain_local_obj_stock); |
| 5182 | } |
| 5183 | |
| 5184 | memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); |
| 5185 | memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, |
| 5186 | SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); |
| 5187 | |
| 5188 | memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, |
| 5189 | SLAB_PANIC | SLAB_HWCACHE_ALIGN); |
| 5190 | |
| 5191 | return 0; |
| 5192 | } |
| 5193 | |
| 5194 | #ifdef CONFIG_SWAP |
| 5195 | /** |
| 5196 | * __mem_cgroup_try_charge_swap - try charging swap space for a folio |
| 5197 | * @folio: folio being added to swap |
| 5198 | * @entry: swap entry to charge |
| 5199 | * |
| 5200 | * Try to charge @folio's memcg for the swap space at @entry. |
| 5201 | * |
| 5202 | * Returns 0 on success, -ENOMEM on failure. |
| 5203 | */ |
| 5204 | int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) |
| 5205 | { |
| 5206 | unsigned int nr_pages = folio_nr_pages(folio); |
| 5207 | struct page_counter *counter; |
| 5208 | struct mem_cgroup *memcg; |
| 5209 | |
| 5210 | if (do_memsw_account()) |
| 5211 | return 0; |
| 5212 | |
| 5213 | memcg = folio_memcg(folio); |
| 5214 | |
| 5215 | VM_WARN_ON_ONCE_FOLIO(!memcg, folio); |
| 5216 | if (!memcg) |
| 5217 | return 0; |
| 5218 | |
| 5219 | if (!entry.val) { |
| 5220 | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); |
| 5221 | return 0; |
| 5222 | } |
| 5223 | |
| 5224 | memcg = mem_cgroup_id_get_online(memcg); |
| 5225 | |
| 5226 | if (!mem_cgroup_is_root(memcg) && |
| 5227 | !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { |
| 5228 | memcg_memory_event(memcg, MEMCG_SWAP_MAX); |
| 5229 | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); |
| 5230 | mem_cgroup_id_put(memcg); |
| 5231 | return -ENOMEM; |
| 5232 | } |
| 5233 | |
| 5234 | /* Get references for the tail pages, too */ |
| 5235 | if (nr_pages > 1) |
| 5236 | mem_cgroup_id_get_many(memcg, nr_pages - 1); |
| 5237 | mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); |
| 5238 | |
| 5239 | swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); |
| 5240 | |
| 5241 | return 0; |
| 5242 | } |
| 5243 | |
| 5244 | /** |
| 5245 | * __mem_cgroup_uncharge_swap - uncharge swap space |
| 5246 | * @entry: swap entry to uncharge |
| 5247 | * @nr_pages: the amount of swap space to uncharge |
| 5248 | */ |
| 5249 | void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) |
| 5250 | { |
| 5251 | struct mem_cgroup *memcg; |
| 5252 | unsigned short id; |
| 5253 | |
| 5254 | id = swap_cgroup_clear(entry, nr_pages); |
| 5255 | rcu_read_lock(); |
| 5256 | memcg = mem_cgroup_from_id(id); |
| 5257 | if (memcg) { |
| 5258 | if (!mem_cgroup_is_root(memcg)) { |
| 5259 | if (do_memsw_account()) |
| 5260 | page_counter_uncharge(&memcg->memsw, nr_pages); |
| 5261 | else |
| 5262 | page_counter_uncharge(&memcg->swap, nr_pages); |
| 5263 | } |
| 5264 | mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); |
| 5265 | mem_cgroup_id_put_many(memcg, nr_pages); |
| 5266 | } |
| 5267 | rcu_read_unlock(); |
| 5268 | } |
| 5269 | |
| 5270 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) |
| 5271 | { |
| 5272 | long nr_swap_pages = get_nr_swap_pages(); |
| 5273 | |
| 5274 | if (mem_cgroup_disabled() || do_memsw_account()) |
| 5275 | return nr_swap_pages; |
| 5276 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) |
| 5277 | nr_swap_pages = min_t(long, nr_swap_pages, |
| 5278 | READ_ONCE(memcg->swap.max) - |
| 5279 | page_counter_read(&memcg->swap)); |
| 5280 | return nr_swap_pages; |
| 5281 | } |
| 5282 | |
| 5283 | bool mem_cgroup_swap_full(struct folio *folio) |
| 5284 | { |
| 5285 | struct mem_cgroup *memcg; |
| 5286 | |
| 5287 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
| 5288 | |
| 5289 | if (vm_swap_full()) |
| 5290 | return true; |
| 5291 | if (do_memsw_account()) |
| 5292 | return false; |
| 5293 | |
| 5294 | memcg = folio_memcg(folio); |
| 5295 | if (!memcg) |
| 5296 | return false; |
| 5297 | |
| 5298 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
| 5299 | unsigned long usage = page_counter_read(&memcg->swap); |
| 5300 | |
| 5301 | if (usage * 2 >= READ_ONCE(memcg->swap.high) || |
| 5302 | usage * 2 >= READ_ONCE(memcg->swap.max)) |
| 5303 | return true; |
| 5304 | } |
| 5305 | |
| 5306 | return false; |
| 5307 | } |
| 5308 | |
| 5309 | static int __init setup_swap_account(char *s) |
| 5310 | { |
| 5311 | bool res; |
| 5312 | |
| 5313 | if (!kstrtobool(s, &res) && !res) |
| 5314 | pr_warn_once("The swapaccount=0 commandline option is deprecated " |
| 5315 | "in favor of configuring swap control via cgroupfs. " |
| 5316 | "Please report your usecase to linux-mm@kvack.org if you " |
| 5317 | "depend on this functionality.\n"); |
| 5318 | return 1; |
| 5319 | } |
| 5320 | __setup("swapaccount=", setup_swap_account); |
| 5321 | |
| 5322 | static u64 swap_current_read(struct cgroup_subsys_state *css, |
| 5323 | struct cftype *cft) |
| 5324 | { |
| 5325 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 5326 | |
| 5327 | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; |
| 5328 | } |
| 5329 | |
| 5330 | static int swap_peak_show(struct seq_file *sf, void *v) |
| 5331 | { |
| 5332 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); |
| 5333 | |
| 5334 | return peak_show(sf, v, &memcg->swap); |
| 5335 | } |
| 5336 | |
| 5337 | static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, |
| 5338 | size_t nbytes, loff_t off) |
| 5339 | { |
| 5340 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 5341 | |
| 5342 | return peak_write(of, buf, nbytes, off, &memcg->swap, |
| 5343 | &memcg->swap_peaks); |
| 5344 | } |
| 5345 | |
| 5346 | static int swap_high_show(struct seq_file *m, void *v) |
| 5347 | { |
| 5348 | return seq_puts_memcg_tunable(m, |
| 5349 | READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); |
| 5350 | } |
| 5351 | |
| 5352 | static ssize_t swap_high_write(struct kernfs_open_file *of, |
| 5353 | char *buf, size_t nbytes, loff_t off) |
| 5354 | { |
| 5355 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 5356 | unsigned long high; |
| 5357 | int err; |
| 5358 | |
| 5359 | buf = strstrip(buf); |
| 5360 | err = page_counter_memparse(buf, "max", &high); |
| 5361 | if (err) |
| 5362 | return err; |
| 5363 | |
| 5364 | page_counter_set_high(&memcg->swap, high); |
| 5365 | |
| 5366 | return nbytes; |
| 5367 | } |
| 5368 | |
| 5369 | static int swap_max_show(struct seq_file *m, void *v) |
| 5370 | { |
| 5371 | return seq_puts_memcg_tunable(m, |
| 5372 | READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); |
| 5373 | } |
| 5374 | |
| 5375 | static ssize_t swap_max_write(struct kernfs_open_file *of, |
| 5376 | char *buf, size_t nbytes, loff_t off) |
| 5377 | { |
| 5378 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 5379 | unsigned long max; |
| 5380 | int err; |
| 5381 | |
| 5382 | buf = strstrip(buf); |
| 5383 | err = page_counter_memparse(buf, "max", &max); |
| 5384 | if (err) |
| 5385 | return err; |
| 5386 | |
| 5387 | xchg(&memcg->swap.max, max); |
| 5388 | |
| 5389 | return nbytes; |
| 5390 | } |
| 5391 | |
| 5392 | static int swap_events_show(struct seq_file *m, void *v) |
| 5393 | { |
| 5394 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
| 5395 | |
| 5396 | seq_printf(m, "high %lu\n", |
| 5397 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); |
| 5398 | seq_printf(m, "max %lu\n", |
| 5399 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); |
| 5400 | seq_printf(m, "fail %lu\n", |
| 5401 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); |
| 5402 | |
| 5403 | return 0; |
| 5404 | } |
| 5405 | |
| 5406 | static struct cftype swap_files[] = { |
| 5407 | { |
| 5408 | .name = "swap.current", |
| 5409 | .flags = CFTYPE_NOT_ON_ROOT, |
| 5410 | .read_u64 = swap_current_read, |
| 5411 | }, |
| 5412 | { |
| 5413 | .name = "swap.high", |
| 5414 | .flags = CFTYPE_NOT_ON_ROOT, |
| 5415 | .seq_show = swap_high_show, |
| 5416 | .write = swap_high_write, |
| 5417 | }, |
| 5418 | { |
| 5419 | .name = "swap.max", |
| 5420 | .flags = CFTYPE_NOT_ON_ROOT, |
| 5421 | .seq_show = swap_max_show, |
| 5422 | .write = swap_max_write, |
| 5423 | }, |
| 5424 | { |
| 5425 | .name = "swap.peak", |
| 5426 | .flags = CFTYPE_NOT_ON_ROOT, |
| 5427 | .open = peak_open, |
| 5428 | .release = peak_release, |
| 5429 | .seq_show = swap_peak_show, |
| 5430 | .write = swap_peak_write, |
| 5431 | }, |
| 5432 | { |
| 5433 | .name = "swap.events", |
| 5434 | .flags = CFTYPE_NOT_ON_ROOT, |
| 5435 | .file_offset = offsetof(struct mem_cgroup, swap_events_file), |
| 5436 | .seq_show = swap_events_show, |
| 5437 | }, |
| 5438 | { } /* terminate */ |
| 5439 | }; |
| 5440 | |
| 5441 | #ifdef CONFIG_ZSWAP |
| 5442 | /** |
| 5443 | * obj_cgroup_may_zswap - check if this cgroup can zswap |
| 5444 | * @objcg: the object cgroup |
| 5445 | * |
| 5446 | * Check if the hierarchical zswap limit has been reached. |
| 5447 | * |
| 5448 | * This doesn't check for specific headroom, and it is not atomic |
| 5449 | * either. But with zswap, the size of the allocation is only known |
| 5450 | * once compression has occurred, and this optimistic pre-check avoids |
| 5451 | * spending cycles on compression when there is already no room left |
| 5452 | * or zswap is disabled altogether somewhere in the hierarchy. |
| 5453 | */ |
| 5454 | bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) |
| 5455 | { |
| 5456 | struct mem_cgroup *memcg, *original_memcg; |
| 5457 | bool ret = true; |
| 5458 | |
| 5459 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 5460 | return true; |
| 5461 | |
| 5462 | original_memcg = get_mem_cgroup_from_objcg(objcg); |
| 5463 | for (memcg = original_memcg; !mem_cgroup_is_root(memcg); |
| 5464 | memcg = parent_mem_cgroup(memcg)) { |
| 5465 | unsigned long max = READ_ONCE(memcg->zswap_max); |
| 5466 | unsigned long pages; |
| 5467 | |
| 5468 | if (max == PAGE_COUNTER_MAX) |
| 5469 | continue; |
| 5470 | if (max == 0) { |
| 5471 | ret = false; |
| 5472 | break; |
| 5473 | } |
| 5474 | |
| 5475 | /* Force flush to get accurate stats for charging */ |
| 5476 | __mem_cgroup_flush_stats(memcg, true); |
| 5477 | pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; |
| 5478 | if (pages < max) |
| 5479 | continue; |
| 5480 | ret = false; |
| 5481 | break; |
| 5482 | } |
| 5483 | mem_cgroup_put(original_memcg); |
| 5484 | return ret; |
| 5485 | } |
| 5486 | |
| 5487 | /** |
| 5488 | * obj_cgroup_charge_zswap - charge compression backend memory |
| 5489 | * @objcg: the object cgroup |
| 5490 | * @size: size of compressed object |
| 5491 | * |
| 5492 | * This forces the charge after obj_cgroup_may_zswap() allowed |
| 5493 | * compression and storage in zwap for this cgroup to go ahead. |
| 5494 | */ |
| 5495 | void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) |
| 5496 | { |
| 5497 | struct mem_cgroup *memcg; |
| 5498 | |
| 5499 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 5500 | return; |
| 5501 | |
| 5502 | VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); |
| 5503 | |
| 5504 | /* PF_MEMALLOC context, charging must succeed */ |
| 5505 | if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) |
| 5506 | VM_WARN_ON_ONCE(1); |
| 5507 | |
| 5508 | rcu_read_lock(); |
| 5509 | memcg = obj_cgroup_memcg(objcg); |
| 5510 | mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); |
| 5511 | mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); |
| 5512 | rcu_read_unlock(); |
| 5513 | } |
| 5514 | |
| 5515 | /** |
| 5516 | * obj_cgroup_uncharge_zswap - uncharge compression backend memory |
| 5517 | * @objcg: the object cgroup |
| 5518 | * @size: size of compressed object |
| 5519 | * |
| 5520 | * Uncharges zswap memory on page in. |
| 5521 | */ |
| 5522 | void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) |
| 5523 | { |
| 5524 | struct mem_cgroup *memcg; |
| 5525 | |
| 5526 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 5527 | return; |
| 5528 | |
| 5529 | obj_cgroup_uncharge(objcg, size); |
| 5530 | |
| 5531 | rcu_read_lock(); |
| 5532 | memcg = obj_cgroup_memcg(objcg); |
| 5533 | mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); |
| 5534 | mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); |
| 5535 | rcu_read_unlock(); |
| 5536 | } |
| 5537 | |
| 5538 | bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) |
| 5539 | { |
| 5540 | /* if zswap is disabled, do not block pages going to the swapping device */ |
| 5541 | if (!zswap_is_enabled()) |
| 5542 | return true; |
| 5543 | |
| 5544 | for (; memcg; memcg = parent_mem_cgroup(memcg)) |
| 5545 | if (!READ_ONCE(memcg->zswap_writeback)) |
| 5546 | return false; |
| 5547 | |
| 5548 | return true; |
| 5549 | } |
| 5550 | |
| 5551 | static u64 zswap_current_read(struct cgroup_subsys_state *css, |
| 5552 | struct cftype *cft) |
| 5553 | { |
| 5554 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| 5555 | |
| 5556 | mem_cgroup_flush_stats(memcg); |
| 5557 | return memcg_page_state(memcg, MEMCG_ZSWAP_B); |
| 5558 | } |
| 5559 | |
| 5560 | static int zswap_max_show(struct seq_file *m, void *v) |
| 5561 | { |
| 5562 | return seq_puts_memcg_tunable(m, |
| 5563 | READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); |
| 5564 | } |
| 5565 | |
| 5566 | static ssize_t zswap_max_write(struct kernfs_open_file *of, |
| 5567 | char *buf, size_t nbytes, loff_t off) |
| 5568 | { |
| 5569 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 5570 | unsigned long max; |
| 5571 | int err; |
| 5572 | |
| 5573 | buf = strstrip(buf); |
| 5574 | err = page_counter_memparse(buf, "max", &max); |
| 5575 | if (err) |
| 5576 | return err; |
| 5577 | |
| 5578 | xchg(&memcg->zswap_max, max); |
| 5579 | |
| 5580 | return nbytes; |
| 5581 | } |
| 5582 | |
| 5583 | static int zswap_writeback_show(struct seq_file *m, void *v) |
| 5584 | { |
| 5585 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
| 5586 | |
| 5587 | seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); |
| 5588 | return 0; |
| 5589 | } |
| 5590 | |
| 5591 | static ssize_t zswap_writeback_write(struct kernfs_open_file *of, |
| 5592 | char *buf, size_t nbytes, loff_t off) |
| 5593 | { |
| 5594 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| 5595 | int zswap_writeback; |
| 5596 | ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); |
| 5597 | |
| 5598 | if (parse_ret) |
| 5599 | return parse_ret; |
| 5600 | |
| 5601 | if (zswap_writeback != 0 && zswap_writeback != 1) |
| 5602 | return -EINVAL; |
| 5603 | |
| 5604 | WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); |
| 5605 | return nbytes; |
| 5606 | } |
| 5607 | |
| 5608 | static struct cftype zswap_files[] = { |
| 5609 | { |
| 5610 | .name = "zswap.current", |
| 5611 | .flags = CFTYPE_NOT_ON_ROOT, |
| 5612 | .read_u64 = zswap_current_read, |
| 5613 | }, |
| 5614 | { |
| 5615 | .name = "zswap.max", |
| 5616 | .flags = CFTYPE_NOT_ON_ROOT, |
| 5617 | .seq_show = zswap_max_show, |
| 5618 | .write = zswap_max_write, |
| 5619 | }, |
| 5620 | { |
| 5621 | .name = "zswap.writeback", |
| 5622 | .seq_show = zswap_writeback_show, |
| 5623 | .write = zswap_writeback_write, |
| 5624 | }, |
| 5625 | { } /* terminate */ |
| 5626 | }; |
| 5627 | #endif /* CONFIG_ZSWAP */ |
| 5628 | |
| 5629 | static int __init mem_cgroup_swap_init(void) |
| 5630 | { |
| 5631 | if (mem_cgroup_disabled()) |
| 5632 | return 0; |
| 5633 | |
| 5634 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); |
| 5635 | #ifdef CONFIG_MEMCG_V1 |
| 5636 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); |
| 5637 | #endif |
| 5638 | #ifdef CONFIG_ZSWAP |
| 5639 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); |
| 5640 | #endif |
| 5641 | return 0; |
| 5642 | } |
| 5643 | subsys_initcall(mem_cgroup_swap_init); |
| 5644 | |
| 5645 | #endif /* CONFIG_SWAP */ |
| 5646 | |
| 5647 | bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) |
| 5648 | { |
| 5649 | return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; |
| 5650 | } |