memcg: remove EXPORT_SYMBOL(mem_cgroup_update_page_stat)
[linux-block.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES 5
62struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account (0)
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
94};
95
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
103};
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
118#define NUMAINFO_EVENTS_TARGET (1024)
119
120struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
124};
125
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
133/*
134 * per-zone information in memory controller.
135 */
136struct mem_cgroup_per_zone {
137 struct lruvec lruvec;
138 unsigned long lru_size[NR_LRU_LISTS];
139
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142 struct zone_reclaim_stat reclaim_stat;
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
147 struct mem_cgroup *memcg; /* Back pointer, we cannot */
148 /* use container_of */
149};
150
151struct mem_cgroup_per_node {
152 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
153};
154
155struct mem_cgroup_lru_info {
156 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
157};
158
159/*
160 * Cgroups above their limits are maintained in a RB-Tree, independent of
161 * their hierarchy representation
162 */
163
164struct mem_cgroup_tree_per_zone {
165 struct rb_root rb_root;
166 spinlock_t lock;
167};
168
169struct mem_cgroup_tree_per_node {
170 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
171};
172
173struct mem_cgroup_tree {
174 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
175};
176
177static struct mem_cgroup_tree soft_limit_tree __read_mostly;
178
179struct mem_cgroup_threshold {
180 struct eventfd_ctx *eventfd;
181 u64 threshold;
182};
183
184/* For threshold */
185struct mem_cgroup_threshold_ary {
186 /* An array index points to threshold just below usage. */
187 int current_threshold;
188 /* Size of entries[] */
189 unsigned int size;
190 /* Array of thresholds */
191 struct mem_cgroup_threshold entries[0];
192};
193
194struct mem_cgroup_thresholds {
195 /* Primary thresholds array */
196 struct mem_cgroup_threshold_ary *primary;
197 /*
198 * Spare threshold array.
199 * This is needed to make mem_cgroup_unregister_event() "never fail".
200 * It must be able to store at least primary->size - 1 entries.
201 */
202 struct mem_cgroup_threshold_ary *spare;
203};
204
205/* for OOM */
206struct mem_cgroup_eventfd_list {
207 struct list_head list;
208 struct eventfd_ctx *eventfd;
209};
210
211static void mem_cgroup_threshold(struct mem_cgroup *memcg);
212static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
213
214/*
215 * The memory controller data structure. The memory controller controls both
216 * page cache and RSS per cgroup. We would eventually like to provide
217 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
218 * to help the administrator determine what knobs to tune.
219 *
220 * TODO: Add a water mark for the memory controller. Reclaim will begin when
221 * we hit the water mark. May be even add a low water mark, such that
222 * no reclaim occurs from a cgroup at it's low water mark, this is
223 * a feature that will be implemented much later in the future.
224 */
225struct mem_cgroup {
226 struct cgroup_subsys_state css;
227 /*
228 * the counter to account for memory usage
229 */
230 struct res_counter res;
231
232 union {
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
237
238 /*
239 * rcu_freeing is used only when freeing struct mem_cgroup,
240 * so put it into a union to avoid wasting more memory.
241 * It must be disjoint from the css field. It could be
242 * in a union with the res field, but res plays a much
243 * larger part in mem_cgroup life than memsw, and might
244 * be of interest, even at time of free, when debugging.
245 * So share rcu_head with the less interesting memsw.
246 */
247 struct rcu_head rcu_freeing;
248 /*
249 * But when using vfree(), that cannot be done at
250 * interrupt time, so we must then queue the work.
251 */
252 struct work_struct work_freeing;
253 };
254
255 /*
256 * Per cgroup active and inactive list, similar to the
257 * per zone LRU lists.
258 */
259 struct mem_cgroup_lru_info info;
260 int last_scanned_node;
261#if MAX_NUMNODES > 1
262 nodemask_t scan_nodes;
263 atomic_t numainfo_events;
264 atomic_t numainfo_updating;
265#endif
266 /*
267 * Should the accounting and control be hierarchical, per subtree?
268 */
269 bool use_hierarchy;
270
271 bool oom_lock;
272 atomic_t under_oom;
273
274 atomic_t refcnt;
275
276 int swappiness;
277 /* OOM-Killer disable */
278 int oom_kill_disable;
279
280 /* set when res.limit == memsw.limit */
281 bool memsw_is_minimum;
282
283 /* protect arrays of thresholds */
284 struct mutex thresholds_lock;
285
286 /* thresholds for memory usage. RCU-protected */
287 struct mem_cgroup_thresholds thresholds;
288
289 /* thresholds for mem+swap usage. RCU-protected */
290 struct mem_cgroup_thresholds memsw_thresholds;
291
292 /* For oom notifier event fd */
293 struct list_head oom_notify;
294
295 /*
296 * Should we move charges of a task when a task is moved into this
297 * mem_cgroup ? And what type of charges should we move ?
298 */
299 unsigned long move_charge_at_immigrate;
300 /*
301 * percpu counter.
302 */
303 struct mem_cgroup_stat_cpu *stat;
304 /*
305 * used when a cpu is offlined or other synchronizations
306 * See mem_cgroup_read_stat().
307 */
308 struct mem_cgroup_stat_cpu nocpu_base;
309 spinlock_t pcp_counter_lock;
310
311#ifdef CONFIG_INET
312 struct tcp_memcontrol tcp_mem;
313#endif
314};
315
316/* Stuffs for move charges at task migration. */
317/*
318 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
319 * left-shifted bitmap of these types.
320 */
321enum move_type {
322 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
323 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
324 NR_MOVE_TYPE,
325};
326
327/* "mc" and its members are protected by cgroup_mutex */
328static struct move_charge_struct {
329 spinlock_t lock; /* for from, to */
330 struct mem_cgroup *from;
331 struct mem_cgroup *to;
332 unsigned long precharge;
333 unsigned long moved_charge;
334 unsigned long moved_swap;
335 struct task_struct *moving_task; /* a task moving charges */
336 wait_queue_head_t waitq; /* a waitq for other context */
337} mc = {
338 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
339 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
340};
341
342static bool move_anon(void)
343{
344 return test_bit(MOVE_CHARGE_TYPE_ANON,
345 &mc.to->move_charge_at_immigrate);
346}
347
348static bool move_file(void)
349{
350 return test_bit(MOVE_CHARGE_TYPE_FILE,
351 &mc.to->move_charge_at_immigrate);
352}
353
354/*
355 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
356 * limit reclaim to prevent infinite loops, if they ever occur.
357 */
358#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
359#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
360
361enum charge_type {
362 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
363 MEM_CGROUP_CHARGE_TYPE_MAPPED,
364 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
365 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
366 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
367 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
368 NR_CHARGE_TYPE,
369};
370
371/* for encoding cft->private value on file */
372#define _MEM (0)
373#define _MEMSWAP (1)
374#define _OOM_TYPE (2)
375#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
376#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
377#define MEMFILE_ATTR(val) ((val) & 0xffff)
378/* Used for OOM nofiier */
379#define OOM_CONTROL (0)
380
381/*
382 * Reclaim flags for mem_cgroup_hierarchical_reclaim
383 */
384#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
385#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
386#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
387#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
388
389static void mem_cgroup_get(struct mem_cgroup *memcg);
390static void mem_cgroup_put(struct mem_cgroup *memcg);
391
392/* Writing them here to avoid exposing memcg's inner layout */
393#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
394#include <net/sock.h>
395#include <net/ip.h>
396
397static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
398void sock_update_memcg(struct sock *sk)
399{
400 if (mem_cgroup_sockets_enabled) {
401 struct mem_cgroup *memcg;
402
403 BUG_ON(!sk->sk_prot->proto_cgroup);
404
405 /* Socket cloning can throw us here with sk_cgrp already
406 * filled. It won't however, necessarily happen from
407 * process context. So the test for root memcg given
408 * the current task's memcg won't help us in this case.
409 *
410 * Respecting the original socket's memcg is a better
411 * decision in this case.
412 */
413 if (sk->sk_cgrp) {
414 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
415 mem_cgroup_get(sk->sk_cgrp->memcg);
416 return;
417 }
418
419 rcu_read_lock();
420 memcg = mem_cgroup_from_task(current);
421 if (!mem_cgroup_is_root(memcg)) {
422 mem_cgroup_get(memcg);
423 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
424 }
425 rcu_read_unlock();
426 }
427}
428EXPORT_SYMBOL(sock_update_memcg);
429
430void sock_release_memcg(struct sock *sk)
431{
432 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
433 struct mem_cgroup *memcg;
434 WARN_ON(!sk->sk_cgrp->memcg);
435 memcg = sk->sk_cgrp->memcg;
436 mem_cgroup_put(memcg);
437 }
438}
439
440#ifdef CONFIG_INET
441struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
442{
443 if (!memcg || mem_cgroup_is_root(memcg))
444 return NULL;
445
446 return &memcg->tcp_mem.cg_proto;
447}
448EXPORT_SYMBOL(tcp_proto_cgroup);
449#endif /* CONFIG_INET */
450#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
451
452static void drain_all_stock_async(struct mem_cgroup *memcg);
453
454static struct mem_cgroup_per_zone *
455mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
456{
457 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
458}
459
460struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
461{
462 return &memcg->css;
463}
464
465static struct mem_cgroup_per_zone *
466page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
467{
468 int nid = page_to_nid(page);
469 int zid = page_zonenum(page);
470
471 return mem_cgroup_zoneinfo(memcg, nid, zid);
472}
473
474static struct mem_cgroup_tree_per_zone *
475soft_limit_tree_node_zone(int nid, int zid)
476{
477 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
478}
479
480static struct mem_cgroup_tree_per_zone *
481soft_limit_tree_from_page(struct page *page)
482{
483 int nid = page_to_nid(page);
484 int zid = page_zonenum(page);
485
486 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
487}
488
489static void
490__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
491 struct mem_cgroup_per_zone *mz,
492 struct mem_cgroup_tree_per_zone *mctz,
493 unsigned long long new_usage_in_excess)
494{
495 struct rb_node **p = &mctz->rb_root.rb_node;
496 struct rb_node *parent = NULL;
497 struct mem_cgroup_per_zone *mz_node;
498
499 if (mz->on_tree)
500 return;
501
502 mz->usage_in_excess = new_usage_in_excess;
503 if (!mz->usage_in_excess)
504 return;
505 while (*p) {
506 parent = *p;
507 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
508 tree_node);
509 if (mz->usage_in_excess < mz_node->usage_in_excess)
510 p = &(*p)->rb_left;
511 /*
512 * We can't avoid mem cgroups that are over their soft
513 * limit by the same amount
514 */
515 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
516 p = &(*p)->rb_right;
517 }
518 rb_link_node(&mz->tree_node, parent, p);
519 rb_insert_color(&mz->tree_node, &mctz->rb_root);
520 mz->on_tree = true;
521}
522
523static void
524__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
525 struct mem_cgroup_per_zone *mz,
526 struct mem_cgroup_tree_per_zone *mctz)
527{
528 if (!mz->on_tree)
529 return;
530 rb_erase(&mz->tree_node, &mctz->rb_root);
531 mz->on_tree = false;
532}
533
534static void
535mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
536 struct mem_cgroup_per_zone *mz,
537 struct mem_cgroup_tree_per_zone *mctz)
538{
539 spin_lock(&mctz->lock);
540 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
541 spin_unlock(&mctz->lock);
542}
543
544
545static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
546{
547 unsigned long long excess;
548 struct mem_cgroup_per_zone *mz;
549 struct mem_cgroup_tree_per_zone *mctz;
550 int nid = page_to_nid(page);
551 int zid = page_zonenum(page);
552 mctz = soft_limit_tree_from_page(page);
553
554 /*
555 * Necessary to update all ancestors when hierarchy is used.
556 * because their event counter is not touched.
557 */
558 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
559 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
560 excess = res_counter_soft_limit_excess(&memcg->res);
561 /*
562 * We have to update the tree if mz is on RB-tree or
563 * mem is over its softlimit.
564 */
565 if (excess || mz->on_tree) {
566 spin_lock(&mctz->lock);
567 /* if on-tree, remove it */
568 if (mz->on_tree)
569 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
570 /*
571 * Insert again. mz->usage_in_excess will be updated.
572 * If excess is 0, no tree ops.
573 */
574 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
575 spin_unlock(&mctz->lock);
576 }
577 }
578}
579
580static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
581{
582 int node, zone;
583 struct mem_cgroup_per_zone *mz;
584 struct mem_cgroup_tree_per_zone *mctz;
585
586 for_each_node(node) {
587 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
588 mz = mem_cgroup_zoneinfo(memcg, node, zone);
589 mctz = soft_limit_tree_node_zone(node, zone);
590 mem_cgroup_remove_exceeded(memcg, mz, mctz);
591 }
592 }
593}
594
595static struct mem_cgroup_per_zone *
596__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
597{
598 struct rb_node *rightmost = NULL;
599 struct mem_cgroup_per_zone *mz;
600
601retry:
602 mz = NULL;
603 rightmost = rb_last(&mctz->rb_root);
604 if (!rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
608 /*
609 * Remove the node now but someone else can add it back,
610 * we will to add it back at the end of reclaim to its correct
611 * position in the tree.
612 */
613 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
614 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
615 !css_tryget(&mz->memcg->css))
616 goto retry;
617done:
618 return mz;
619}
620
621static struct mem_cgroup_per_zone *
622mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
623{
624 struct mem_cgroup_per_zone *mz;
625
626 spin_lock(&mctz->lock);
627 mz = __mem_cgroup_largest_soft_limit_node(mctz);
628 spin_unlock(&mctz->lock);
629 return mz;
630}
631
632/*
633 * Implementation Note: reading percpu statistics for memcg.
634 *
635 * Both of vmstat[] and percpu_counter has threshold and do periodic
636 * synchronization to implement "quick" read. There are trade-off between
637 * reading cost and precision of value. Then, we may have a chance to implement
638 * a periodic synchronizion of counter in memcg's counter.
639 *
640 * But this _read() function is used for user interface now. The user accounts
641 * memory usage by memory cgroup and he _always_ requires exact value because
642 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
643 * have to visit all online cpus and make sum. So, for now, unnecessary
644 * synchronization is not implemented. (just implemented for cpu hotplug)
645 *
646 * If there are kernel internal actions which can make use of some not-exact
647 * value, and reading all cpu value can be performance bottleneck in some
648 * common workload, threashold and synchonization as vmstat[] should be
649 * implemented.
650 */
651static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
652 enum mem_cgroup_stat_index idx)
653{
654 long val = 0;
655 int cpu;
656
657 get_online_cpus();
658 for_each_online_cpu(cpu)
659 val += per_cpu(memcg->stat->count[idx], cpu);
660#ifdef CONFIG_HOTPLUG_CPU
661 spin_lock(&memcg->pcp_counter_lock);
662 val += memcg->nocpu_base.count[idx];
663 spin_unlock(&memcg->pcp_counter_lock);
664#endif
665 put_online_cpus();
666 return val;
667}
668
669static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
670 bool charge)
671{
672 int val = (charge) ? 1 : -1;
673 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
674}
675
676static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
677 enum mem_cgroup_events_index idx)
678{
679 unsigned long val = 0;
680 int cpu;
681
682 for_each_online_cpu(cpu)
683 val += per_cpu(memcg->stat->events[idx], cpu);
684#ifdef CONFIG_HOTPLUG_CPU
685 spin_lock(&memcg->pcp_counter_lock);
686 val += memcg->nocpu_base.events[idx];
687 spin_unlock(&memcg->pcp_counter_lock);
688#endif
689 return val;
690}
691
692static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
693 bool anon, int nr_pages)
694{
695 preempt_disable();
696
697 /*
698 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
699 * counted as CACHE even if it's on ANON LRU.
700 */
701 if (anon)
702 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
703 nr_pages);
704 else
705 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
706 nr_pages);
707
708 /* pagein of a big page is an event. So, ignore page size */
709 if (nr_pages > 0)
710 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
711 else {
712 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
713 nr_pages = -nr_pages; /* for event */
714 }
715
716 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
717
718 preempt_enable();
719}
720
721unsigned long
722mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
723 unsigned int lru_mask)
724{
725 struct mem_cgroup_per_zone *mz;
726 enum lru_list lru;
727 unsigned long ret = 0;
728
729 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
730
731 for_each_lru(lru) {
732 if (BIT(lru) & lru_mask)
733 ret += mz->lru_size[lru];
734 }
735 return ret;
736}
737
738static unsigned long
739mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
740 int nid, unsigned int lru_mask)
741{
742 u64 total = 0;
743 int zid;
744
745 for (zid = 0; zid < MAX_NR_ZONES; zid++)
746 total += mem_cgroup_zone_nr_lru_pages(memcg,
747 nid, zid, lru_mask);
748
749 return total;
750}
751
752static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
753 unsigned int lru_mask)
754{
755 int nid;
756 u64 total = 0;
757
758 for_each_node_state(nid, N_HIGH_MEMORY)
759 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
760 return total;
761}
762
763static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
764 enum mem_cgroup_events_target target)
765{
766 unsigned long val, next;
767
768 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
769 next = __this_cpu_read(memcg->stat->targets[target]);
770 /* from time_after() in jiffies.h */
771 if ((long)next - (long)val < 0) {
772 switch (target) {
773 case MEM_CGROUP_TARGET_THRESH:
774 next = val + THRESHOLDS_EVENTS_TARGET;
775 break;
776 case MEM_CGROUP_TARGET_SOFTLIMIT:
777 next = val + SOFTLIMIT_EVENTS_TARGET;
778 break;
779 case MEM_CGROUP_TARGET_NUMAINFO:
780 next = val + NUMAINFO_EVENTS_TARGET;
781 break;
782 default:
783 break;
784 }
785 __this_cpu_write(memcg->stat->targets[target], next);
786 return true;
787 }
788 return false;
789}
790
791/*
792 * Check events in order.
793 *
794 */
795static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
796{
797 preempt_disable();
798 /* threshold event is triggered in finer grain than soft limit */
799 if (unlikely(mem_cgroup_event_ratelimit(memcg,
800 MEM_CGROUP_TARGET_THRESH))) {
801 bool do_softlimit;
802 bool do_numainfo __maybe_unused;
803
804 do_softlimit = mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_SOFTLIMIT);
806#if MAX_NUMNODES > 1
807 do_numainfo = mem_cgroup_event_ratelimit(memcg,
808 MEM_CGROUP_TARGET_NUMAINFO);
809#endif
810 preempt_enable();
811
812 mem_cgroup_threshold(memcg);
813 if (unlikely(do_softlimit))
814 mem_cgroup_update_tree(memcg, page);
815#if MAX_NUMNODES > 1
816 if (unlikely(do_numainfo))
817 atomic_inc(&memcg->numainfo_events);
818#endif
819 } else
820 preempt_enable();
821}
822
823struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
824{
825 return container_of(cgroup_subsys_state(cont,
826 mem_cgroup_subsys_id), struct mem_cgroup,
827 css);
828}
829
830struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
831{
832 /*
833 * mm_update_next_owner() may clear mm->owner to NULL
834 * if it races with swapoff, page migration, etc.
835 * So this can be called with p == NULL.
836 */
837 if (unlikely(!p))
838 return NULL;
839
840 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
841 struct mem_cgroup, css);
842}
843
844struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
845{
846 struct mem_cgroup *memcg = NULL;
847
848 if (!mm)
849 return NULL;
850 /*
851 * Because we have no locks, mm->owner's may be being moved to other
852 * cgroup. We use css_tryget() here even if this looks
853 * pessimistic (rather than adding locks here).
854 */
855 rcu_read_lock();
856 do {
857 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
858 if (unlikely(!memcg))
859 break;
860 } while (!css_tryget(&memcg->css));
861 rcu_read_unlock();
862 return memcg;
863}
864
865/**
866 * mem_cgroup_iter - iterate over memory cgroup hierarchy
867 * @root: hierarchy root
868 * @prev: previously returned memcg, NULL on first invocation
869 * @reclaim: cookie for shared reclaim walks, NULL for full walks
870 *
871 * Returns references to children of the hierarchy below @root, or
872 * @root itself, or %NULL after a full round-trip.
873 *
874 * Caller must pass the return value in @prev on subsequent
875 * invocations for reference counting, or use mem_cgroup_iter_break()
876 * to cancel a hierarchy walk before the round-trip is complete.
877 *
878 * Reclaimers can specify a zone and a priority level in @reclaim to
879 * divide up the memcgs in the hierarchy among all concurrent
880 * reclaimers operating on the same zone and priority.
881 */
882struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
883 struct mem_cgroup *prev,
884 struct mem_cgroup_reclaim_cookie *reclaim)
885{
886 struct mem_cgroup *memcg = NULL;
887 int id = 0;
888
889 if (mem_cgroup_disabled())
890 return NULL;
891
892 if (!root)
893 root = root_mem_cgroup;
894
895 if (prev && !reclaim)
896 id = css_id(&prev->css);
897
898 if (prev && prev != root)
899 css_put(&prev->css);
900
901 if (!root->use_hierarchy && root != root_mem_cgroup) {
902 if (prev)
903 return NULL;
904 return root;
905 }
906
907 while (!memcg) {
908 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
909 struct cgroup_subsys_state *css;
910
911 if (reclaim) {
912 int nid = zone_to_nid(reclaim->zone);
913 int zid = zone_idx(reclaim->zone);
914 struct mem_cgroup_per_zone *mz;
915
916 mz = mem_cgroup_zoneinfo(root, nid, zid);
917 iter = &mz->reclaim_iter[reclaim->priority];
918 if (prev && reclaim->generation != iter->generation)
919 return NULL;
920 id = iter->position;
921 }
922
923 rcu_read_lock();
924 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
925 if (css) {
926 if (css == &root->css || css_tryget(css))
927 memcg = container_of(css,
928 struct mem_cgroup, css);
929 } else
930 id = 0;
931 rcu_read_unlock();
932
933 if (reclaim) {
934 iter->position = id;
935 if (!css)
936 iter->generation++;
937 else if (!prev && memcg)
938 reclaim->generation = iter->generation;
939 }
940
941 if (prev && !css)
942 return NULL;
943 }
944 return memcg;
945}
946
947/**
948 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
949 * @root: hierarchy root
950 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
951 */
952void mem_cgroup_iter_break(struct mem_cgroup *root,
953 struct mem_cgroup *prev)
954{
955 if (!root)
956 root = root_mem_cgroup;
957 if (prev && prev != root)
958 css_put(&prev->css);
959}
960
961/*
962 * Iteration constructs for visiting all cgroups (under a tree). If
963 * loops are exited prematurely (break), mem_cgroup_iter_break() must
964 * be used for reference counting.
965 */
966#define for_each_mem_cgroup_tree(iter, root) \
967 for (iter = mem_cgroup_iter(root, NULL, NULL); \
968 iter != NULL; \
969 iter = mem_cgroup_iter(root, iter, NULL))
970
971#define for_each_mem_cgroup(iter) \
972 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
973 iter != NULL; \
974 iter = mem_cgroup_iter(NULL, iter, NULL))
975
976static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
977{
978 return (memcg == root_mem_cgroup);
979}
980
981void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
982{
983 struct mem_cgroup *memcg;
984
985 if (!mm)
986 return;
987
988 rcu_read_lock();
989 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
990 if (unlikely(!memcg))
991 goto out;
992
993 switch (idx) {
994 case PGFAULT:
995 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
996 break;
997 case PGMAJFAULT:
998 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
999 break;
1000 default:
1001 BUG();
1002 }
1003out:
1004 rcu_read_unlock();
1005}
1006EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1007
1008/**
1009 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1010 * @zone: zone of the wanted lruvec
1011 * @mem: memcg of the wanted lruvec
1012 *
1013 * Returns the lru list vector holding pages for the given @zone and
1014 * @mem. This can be the global zone lruvec, if the memory controller
1015 * is disabled.
1016 */
1017struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1018 struct mem_cgroup *memcg)
1019{
1020 struct mem_cgroup_per_zone *mz;
1021
1022 if (mem_cgroup_disabled())
1023 return &zone->lruvec;
1024
1025 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1026 return &mz->lruvec;
1027}
1028
1029/*
1030 * Following LRU functions are allowed to be used without PCG_LOCK.
1031 * Operations are called by routine of global LRU independently from memcg.
1032 * What we have to take care of here is validness of pc->mem_cgroup.
1033 *
1034 * Changes to pc->mem_cgroup happens when
1035 * 1. charge
1036 * 2. moving account
1037 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1038 * It is added to LRU before charge.
1039 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1040 * When moving account, the page is not on LRU. It's isolated.
1041 */
1042
1043/**
1044 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1045 * @zone: zone of the page
1046 * @page: the page
1047 * @lru: current lru
1048 *
1049 * This function accounts for @page being added to @lru, and returns
1050 * the lruvec for the given @zone and the memcg @page is charged to.
1051 *
1052 * The callsite is then responsible for physically linking the page to
1053 * the returned lruvec->lists[@lru].
1054 */
1055struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1056 enum lru_list lru)
1057{
1058 struct mem_cgroup_per_zone *mz;
1059 struct mem_cgroup *memcg;
1060 struct page_cgroup *pc;
1061
1062 if (mem_cgroup_disabled())
1063 return &zone->lruvec;
1064
1065 pc = lookup_page_cgroup(page);
1066 memcg = pc->mem_cgroup;
1067
1068 /*
1069 * Surreptitiously switch any uncharged page to root:
1070 * an uncharged page off lru does nothing to secure
1071 * its former mem_cgroup from sudden removal.
1072 *
1073 * Our caller holds lru_lock, and PageCgroupUsed is updated
1074 * under page_cgroup lock: between them, they make all uses
1075 * of pc->mem_cgroup safe.
1076 */
1077 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1078 pc->mem_cgroup = memcg = root_mem_cgroup;
1079
1080 mz = page_cgroup_zoneinfo(memcg, page);
1081 /* compound_order() is stabilized through lru_lock */
1082 mz->lru_size[lru] += 1 << compound_order(page);
1083 return &mz->lruvec;
1084}
1085
1086/**
1087 * mem_cgroup_lru_del_list - account for removing an lru page
1088 * @page: the page
1089 * @lru: target lru
1090 *
1091 * This function accounts for @page being removed from @lru.
1092 *
1093 * The callsite is then responsible for physically unlinking
1094 * @page->lru.
1095 */
1096void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1097{
1098 struct mem_cgroup_per_zone *mz;
1099 struct mem_cgroup *memcg;
1100 struct page_cgroup *pc;
1101
1102 if (mem_cgroup_disabled())
1103 return;
1104
1105 pc = lookup_page_cgroup(page);
1106 memcg = pc->mem_cgroup;
1107 VM_BUG_ON(!memcg);
1108 mz = page_cgroup_zoneinfo(memcg, page);
1109 /* huge page split is done under lru_lock. so, we have no races. */
1110 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1111 mz->lru_size[lru] -= 1 << compound_order(page);
1112}
1113
1114void mem_cgroup_lru_del(struct page *page)
1115{
1116 mem_cgroup_lru_del_list(page, page_lru(page));
1117}
1118
1119/**
1120 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1121 * @zone: zone of the page
1122 * @page: the page
1123 * @from: current lru
1124 * @to: target lru
1125 *
1126 * This function accounts for @page being moved between the lrus @from
1127 * and @to, and returns the lruvec for the given @zone and the memcg
1128 * @page is charged to.
1129 *
1130 * The callsite is then responsible for physically relinking
1131 * @page->lru to the returned lruvec->lists[@to].
1132 */
1133struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1134 struct page *page,
1135 enum lru_list from,
1136 enum lru_list to)
1137{
1138 /* XXX: Optimize this, especially for @from == @to */
1139 mem_cgroup_lru_del_list(page, from);
1140 return mem_cgroup_lru_add_list(zone, page, to);
1141}
1142
1143/*
1144 * Checks whether given mem is same or in the root_mem_cgroup's
1145 * hierarchy subtree
1146 */
1147static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1148 struct mem_cgroup *memcg)
1149{
1150 if (root_memcg != memcg) {
1151 return (root_memcg->use_hierarchy &&
1152 css_is_ancestor(&memcg->css, &root_memcg->css));
1153 }
1154
1155 return true;
1156}
1157
1158int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1159{
1160 int ret;
1161 struct mem_cgroup *curr = NULL;
1162 struct task_struct *p;
1163
1164 p = find_lock_task_mm(task);
1165 if (p) {
1166 curr = try_get_mem_cgroup_from_mm(p->mm);
1167 task_unlock(p);
1168 } else {
1169 /*
1170 * All threads may have already detached their mm's, but the oom
1171 * killer still needs to detect if they have already been oom
1172 * killed to prevent needlessly killing additional tasks.
1173 */
1174 task_lock(task);
1175 curr = mem_cgroup_from_task(task);
1176 if (curr)
1177 css_get(&curr->css);
1178 task_unlock(task);
1179 }
1180 if (!curr)
1181 return 0;
1182 /*
1183 * We should check use_hierarchy of "memcg" not "curr". Because checking
1184 * use_hierarchy of "curr" here make this function true if hierarchy is
1185 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1186 * hierarchy(even if use_hierarchy is disabled in "memcg").
1187 */
1188 ret = mem_cgroup_same_or_subtree(memcg, curr);
1189 css_put(&curr->css);
1190 return ret;
1191}
1192
1193int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1194{
1195 unsigned long inactive_ratio;
1196 int nid = zone_to_nid(zone);
1197 int zid = zone_idx(zone);
1198 unsigned long inactive;
1199 unsigned long active;
1200 unsigned long gb;
1201
1202 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1203 BIT(LRU_INACTIVE_ANON));
1204 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1205 BIT(LRU_ACTIVE_ANON));
1206
1207 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1208 if (gb)
1209 inactive_ratio = int_sqrt(10 * gb);
1210 else
1211 inactive_ratio = 1;
1212
1213 return inactive * inactive_ratio < active;
1214}
1215
1216int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1217{
1218 unsigned long active;
1219 unsigned long inactive;
1220 int zid = zone_idx(zone);
1221 int nid = zone_to_nid(zone);
1222
1223 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1224 BIT(LRU_INACTIVE_FILE));
1225 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1226 BIT(LRU_ACTIVE_FILE));
1227
1228 return (active > inactive);
1229}
1230
1231struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1232 struct zone *zone)
1233{
1234 int nid = zone_to_nid(zone);
1235 int zid = zone_idx(zone);
1236 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1237
1238 return &mz->reclaim_stat;
1239}
1240
1241struct zone_reclaim_stat *
1242mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1243{
1244 struct page_cgroup *pc;
1245 struct mem_cgroup_per_zone *mz;
1246
1247 if (mem_cgroup_disabled())
1248 return NULL;
1249
1250 pc = lookup_page_cgroup(page);
1251 if (!PageCgroupUsed(pc))
1252 return NULL;
1253 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1254 smp_rmb();
1255 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1256 return &mz->reclaim_stat;
1257}
1258
1259#define mem_cgroup_from_res_counter(counter, member) \
1260 container_of(counter, struct mem_cgroup, member)
1261
1262/**
1263 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1264 * @mem: the memory cgroup
1265 *
1266 * Returns the maximum amount of memory @mem can be charged with, in
1267 * pages.
1268 */
1269static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270{
1271 unsigned long long margin;
1272
1273 margin = res_counter_margin(&memcg->res);
1274 if (do_swap_account)
1275 margin = min(margin, res_counter_margin(&memcg->memsw));
1276 return margin >> PAGE_SHIFT;
1277}
1278
1279int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1280{
1281 struct cgroup *cgrp = memcg->css.cgroup;
1282
1283 /* root ? */
1284 if (cgrp->parent == NULL)
1285 return vm_swappiness;
1286
1287 return memcg->swappiness;
1288}
1289
1290static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1291{
1292 int cpu;
1293
1294 get_online_cpus();
1295 spin_lock(&memcg->pcp_counter_lock);
1296 for_each_online_cpu(cpu)
1297 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1298 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1299 spin_unlock(&memcg->pcp_counter_lock);
1300 put_online_cpus();
1301
1302 synchronize_rcu();
1303}
1304
1305static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1306{
1307 int cpu;
1308
1309 if (!memcg)
1310 return;
1311 get_online_cpus();
1312 spin_lock(&memcg->pcp_counter_lock);
1313 for_each_online_cpu(cpu)
1314 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1315 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1316 spin_unlock(&memcg->pcp_counter_lock);
1317 put_online_cpus();
1318}
1319/*
1320 * 2 routines for checking "mem" is under move_account() or not.
1321 *
1322 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1323 * for avoiding race in accounting. If true,
1324 * pc->mem_cgroup may be overwritten.
1325 *
1326 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1327 * under hierarchy of moving cgroups. This is for
1328 * waiting at hith-memory prressure caused by "move".
1329 */
1330
1331static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1332{
1333 VM_BUG_ON(!rcu_read_lock_held());
1334 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1335}
1336
1337static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1338{
1339 struct mem_cgroup *from;
1340 struct mem_cgroup *to;
1341 bool ret = false;
1342 /*
1343 * Unlike task_move routines, we access mc.to, mc.from not under
1344 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1345 */
1346 spin_lock(&mc.lock);
1347 from = mc.from;
1348 to = mc.to;
1349 if (!from)
1350 goto unlock;
1351
1352 ret = mem_cgroup_same_or_subtree(memcg, from)
1353 || mem_cgroup_same_or_subtree(memcg, to);
1354unlock:
1355 spin_unlock(&mc.lock);
1356 return ret;
1357}
1358
1359static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1360{
1361 if (mc.moving_task && current != mc.moving_task) {
1362 if (mem_cgroup_under_move(memcg)) {
1363 DEFINE_WAIT(wait);
1364 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1365 /* moving charge context might have finished. */
1366 if (mc.moving_task)
1367 schedule();
1368 finish_wait(&mc.waitq, &wait);
1369 return true;
1370 }
1371 }
1372 return false;
1373}
1374
1375/**
1376 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1377 * @memcg: The memory cgroup that went over limit
1378 * @p: Task that is going to be killed
1379 *
1380 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381 * enabled
1382 */
1383void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1384{
1385 struct cgroup *task_cgrp;
1386 struct cgroup *mem_cgrp;
1387 /*
1388 * Need a buffer in BSS, can't rely on allocations. The code relies
1389 * on the assumption that OOM is serialized for memory controller.
1390 * If this assumption is broken, revisit this code.
1391 */
1392 static char memcg_name[PATH_MAX];
1393 int ret;
1394
1395 if (!memcg || !p)
1396 return;
1397
1398 rcu_read_lock();
1399
1400 mem_cgrp = memcg->css.cgroup;
1401 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1402
1403 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1404 if (ret < 0) {
1405 /*
1406 * Unfortunately, we are unable to convert to a useful name
1407 * But we'll still print out the usage information
1408 */
1409 rcu_read_unlock();
1410 goto done;
1411 }
1412 rcu_read_unlock();
1413
1414 printk(KERN_INFO "Task in %s killed", memcg_name);
1415
1416 rcu_read_lock();
1417 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1418 if (ret < 0) {
1419 rcu_read_unlock();
1420 goto done;
1421 }
1422 rcu_read_unlock();
1423
1424 /*
1425 * Continues from above, so we don't need an KERN_ level
1426 */
1427 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1428done:
1429
1430 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1431 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1432 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1433 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1434 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1435 "failcnt %llu\n",
1436 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1437 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1438 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1439}
1440
1441/*
1442 * This function returns the number of memcg under hierarchy tree. Returns
1443 * 1(self count) if no children.
1444 */
1445static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1446{
1447 int num = 0;
1448 struct mem_cgroup *iter;
1449
1450 for_each_mem_cgroup_tree(iter, memcg)
1451 num++;
1452 return num;
1453}
1454
1455/*
1456 * Return the memory (and swap, if configured) limit for a memcg.
1457 */
1458u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1459{
1460 u64 limit;
1461 u64 memsw;
1462
1463 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1464 limit += total_swap_pages << PAGE_SHIFT;
1465
1466 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1467 /*
1468 * If memsw is finite and limits the amount of swap space available
1469 * to this memcg, return that limit.
1470 */
1471 return min(limit, memsw);
1472}
1473
1474static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1475 gfp_t gfp_mask,
1476 unsigned long flags)
1477{
1478 unsigned long total = 0;
1479 bool noswap = false;
1480 int loop;
1481
1482 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1483 noswap = true;
1484 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1485 noswap = true;
1486
1487 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1488 if (loop)
1489 drain_all_stock_async(memcg);
1490 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1491 /*
1492 * Allow limit shrinkers, which are triggered directly
1493 * by userspace, to catch signals and stop reclaim
1494 * after minimal progress, regardless of the margin.
1495 */
1496 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1497 break;
1498 if (mem_cgroup_margin(memcg))
1499 break;
1500 /*
1501 * If nothing was reclaimed after two attempts, there
1502 * may be no reclaimable pages in this hierarchy.
1503 */
1504 if (loop && !total)
1505 break;
1506 }
1507 return total;
1508}
1509
1510/**
1511 * test_mem_cgroup_node_reclaimable
1512 * @mem: the target memcg
1513 * @nid: the node ID to be checked.
1514 * @noswap : specify true here if the user wants flle only information.
1515 *
1516 * This function returns whether the specified memcg contains any
1517 * reclaimable pages on a node. Returns true if there are any reclaimable
1518 * pages in the node.
1519 */
1520static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1521 int nid, bool noswap)
1522{
1523 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1524 return true;
1525 if (noswap || !total_swap_pages)
1526 return false;
1527 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1528 return true;
1529 return false;
1530
1531}
1532#if MAX_NUMNODES > 1
1533
1534/*
1535 * Always updating the nodemask is not very good - even if we have an empty
1536 * list or the wrong list here, we can start from some node and traverse all
1537 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1538 *
1539 */
1540static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1541{
1542 int nid;
1543 /*
1544 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1545 * pagein/pageout changes since the last update.
1546 */
1547 if (!atomic_read(&memcg->numainfo_events))
1548 return;
1549 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1550 return;
1551
1552 /* make a nodemask where this memcg uses memory from */
1553 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1554
1555 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1556
1557 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1558 node_clear(nid, memcg->scan_nodes);
1559 }
1560
1561 atomic_set(&memcg->numainfo_events, 0);
1562 atomic_set(&memcg->numainfo_updating, 0);
1563}
1564
1565/*
1566 * Selecting a node where we start reclaim from. Because what we need is just
1567 * reducing usage counter, start from anywhere is O,K. Considering
1568 * memory reclaim from current node, there are pros. and cons.
1569 *
1570 * Freeing memory from current node means freeing memory from a node which
1571 * we'll use or we've used. So, it may make LRU bad. And if several threads
1572 * hit limits, it will see a contention on a node. But freeing from remote
1573 * node means more costs for memory reclaim because of memory latency.
1574 *
1575 * Now, we use round-robin. Better algorithm is welcomed.
1576 */
1577int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1578{
1579 int node;
1580
1581 mem_cgroup_may_update_nodemask(memcg);
1582 node = memcg->last_scanned_node;
1583
1584 node = next_node(node, memcg->scan_nodes);
1585 if (node == MAX_NUMNODES)
1586 node = first_node(memcg->scan_nodes);
1587 /*
1588 * We call this when we hit limit, not when pages are added to LRU.
1589 * No LRU may hold pages because all pages are UNEVICTABLE or
1590 * memcg is too small and all pages are not on LRU. In that case,
1591 * we use curret node.
1592 */
1593 if (unlikely(node == MAX_NUMNODES))
1594 node = numa_node_id();
1595
1596 memcg->last_scanned_node = node;
1597 return node;
1598}
1599
1600/*
1601 * Check all nodes whether it contains reclaimable pages or not.
1602 * For quick scan, we make use of scan_nodes. This will allow us to skip
1603 * unused nodes. But scan_nodes is lazily updated and may not cotain
1604 * enough new information. We need to do double check.
1605 */
1606bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1607{
1608 int nid;
1609
1610 /*
1611 * quick check...making use of scan_node.
1612 * We can skip unused nodes.
1613 */
1614 if (!nodes_empty(memcg->scan_nodes)) {
1615 for (nid = first_node(memcg->scan_nodes);
1616 nid < MAX_NUMNODES;
1617 nid = next_node(nid, memcg->scan_nodes)) {
1618
1619 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1620 return true;
1621 }
1622 }
1623 /*
1624 * Check rest of nodes.
1625 */
1626 for_each_node_state(nid, N_HIGH_MEMORY) {
1627 if (node_isset(nid, memcg->scan_nodes))
1628 continue;
1629 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1630 return true;
1631 }
1632 return false;
1633}
1634
1635#else
1636int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1637{
1638 return 0;
1639}
1640
1641bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1642{
1643 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1644}
1645#endif
1646
1647static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1648 struct zone *zone,
1649 gfp_t gfp_mask,
1650 unsigned long *total_scanned)
1651{
1652 struct mem_cgroup *victim = NULL;
1653 int total = 0;
1654 int loop = 0;
1655 unsigned long excess;
1656 unsigned long nr_scanned;
1657 struct mem_cgroup_reclaim_cookie reclaim = {
1658 .zone = zone,
1659 .priority = 0,
1660 };
1661
1662 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1663
1664 while (1) {
1665 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1666 if (!victim) {
1667 loop++;
1668 if (loop >= 2) {
1669 /*
1670 * If we have not been able to reclaim
1671 * anything, it might because there are
1672 * no reclaimable pages under this hierarchy
1673 */
1674 if (!total)
1675 break;
1676 /*
1677 * We want to do more targeted reclaim.
1678 * excess >> 2 is not to excessive so as to
1679 * reclaim too much, nor too less that we keep
1680 * coming back to reclaim from this cgroup
1681 */
1682 if (total >= (excess >> 2) ||
1683 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1684 break;
1685 }
1686 continue;
1687 }
1688 if (!mem_cgroup_reclaimable(victim, false))
1689 continue;
1690 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1691 zone, &nr_scanned);
1692 *total_scanned += nr_scanned;
1693 if (!res_counter_soft_limit_excess(&root_memcg->res))
1694 break;
1695 }
1696 mem_cgroup_iter_break(root_memcg, victim);
1697 return total;
1698}
1699
1700/*
1701 * Check OOM-Killer is already running under our hierarchy.
1702 * If someone is running, return false.
1703 * Has to be called with memcg_oom_lock
1704 */
1705static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1706{
1707 struct mem_cgroup *iter, *failed = NULL;
1708
1709 for_each_mem_cgroup_tree(iter, memcg) {
1710 if (iter->oom_lock) {
1711 /*
1712 * this subtree of our hierarchy is already locked
1713 * so we cannot give a lock.
1714 */
1715 failed = iter;
1716 mem_cgroup_iter_break(memcg, iter);
1717 break;
1718 } else
1719 iter->oom_lock = true;
1720 }
1721
1722 if (!failed)
1723 return true;
1724
1725 /*
1726 * OK, we failed to lock the whole subtree so we have to clean up
1727 * what we set up to the failing subtree
1728 */
1729 for_each_mem_cgroup_tree(iter, memcg) {
1730 if (iter == failed) {
1731 mem_cgroup_iter_break(memcg, iter);
1732 break;
1733 }
1734 iter->oom_lock = false;
1735 }
1736 return false;
1737}
1738
1739/*
1740 * Has to be called with memcg_oom_lock
1741 */
1742static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1743{
1744 struct mem_cgroup *iter;
1745
1746 for_each_mem_cgroup_tree(iter, memcg)
1747 iter->oom_lock = false;
1748 return 0;
1749}
1750
1751static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1752{
1753 struct mem_cgroup *iter;
1754
1755 for_each_mem_cgroup_tree(iter, memcg)
1756 atomic_inc(&iter->under_oom);
1757}
1758
1759static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1760{
1761 struct mem_cgroup *iter;
1762
1763 /*
1764 * When a new child is created while the hierarchy is under oom,
1765 * mem_cgroup_oom_lock() may not be called. We have to use
1766 * atomic_add_unless() here.
1767 */
1768 for_each_mem_cgroup_tree(iter, memcg)
1769 atomic_add_unless(&iter->under_oom, -1, 0);
1770}
1771
1772static DEFINE_SPINLOCK(memcg_oom_lock);
1773static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1774
1775struct oom_wait_info {
1776 struct mem_cgroup *memcg;
1777 wait_queue_t wait;
1778};
1779
1780static int memcg_oom_wake_function(wait_queue_t *wait,
1781 unsigned mode, int sync, void *arg)
1782{
1783 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1784 struct mem_cgroup *oom_wait_memcg;
1785 struct oom_wait_info *oom_wait_info;
1786
1787 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1788 oom_wait_memcg = oom_wait_info->memcg;
1789
1790 /*
1791 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1792 * Then we can use css_is_ancestor without taking care of RCU.
1793 */
1794 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1795 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1796 return 0;
1797 return autoremove_wake_function(wait, mode, sync, arg);
1798}
1799
1800static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1801{
1802 /* for filtering, pass "memcg" as argument. */
1803 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1804}
1805
1806static void memcg_oom_recover(struct mem_cgroup *memcg)
1807{
1808 if (memcg && atomic_read(&memcg->under_oom))
1809 memcg_wakeup_oom(memcg);
1810}
1811
1812/*
1813 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1814 */
1815bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1816{
1817 struct oom_wait_info owait;
1818 bool locked, need_to_kill;
1819
1820 owait.memcg = memcg;
1821 owait.wait.flags = 0;
1822 owait.wait.func = memcg_oom_wake_function;
1823 owait.wait.private = current;
1824 INIT_LIST_HEAD(&owait.wait.task_list);
1825 need_to_kill = true;
1826 mem_cgroup_mark_under_oom(memcg);
1827
1828 /* At first, try to OOM lock hierarchy under memcg.*/
1829 spin_lock(&memcg_oom_lock);
1830 locked = mem_cgroup_oom_lock(memcg);
1831 /*
1832 * Even if signal_pending(), we can't quit charge() loop without
1833 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1834 * under OOM is always welcomed, use TASK_KILLABLE here.
1835 */
1836 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1837 if (!locked || memcg->oom_kill_disable)
1838 need_to_kill = false;
1839 if (locked)
1840 mem_cgroup_oom_notify(memcg);
1841 spin_unlock(&memcg_oom_lock);
1842
1843 if (need_to_kill) {
1844 finish_wait(&memcg_oom_waitq, &owait.wait);
1845 mem_cgroup_out_of_memory(memcg, mask, order);
1846 } else {
1847 schedule();
1848 finish_wait(&memcg_oom_waitq, &owait.wait);
1849 }
1850 spin_lock(&memcg_oom_lock);
1851 if (locked)
1852 mem_cgroup_oom_unlock(memcg);
1853 memcg_wakeup_oom(memcg);
1854 spin_unlock(&memcg_oom_lock);
1855
1856 mem_cgroup_unmark_under_oom(memcg);
1857
1858 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1859 return false;
1860 /* Give chance to dying process */
1861 schedule_timeout_uninterruptible(1);
1862 return true;
1863}
1864
1865/*
1866 * Currently used to update mapped file statistics, but the routine can be
1867 * generalized to update other statistics as well.
1868 *
1869 * Notes: Race condition
1870 *
1871 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1872 * it tends to be costly. But considering some conditions, we doesn't need
1873 * to do so _always_.
1874 *
1875 * Considering "charge", lock_page_cgroup() is not required because all
1876 * file-stat operations happen after a page is attached to radix-tree. There
1877 * are no race with "charge".
1878 *
1879 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1880 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1881 * if there are race with "uncharge". Statistics itself is properly handled
1882 * by flags.
1883 *
1884 * Considering "move", this is an only case we see a race. To make the race
1885 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1886 * possibility of race condition. If there is, we take a lock.
1887 */
1888
1889void mem_cgroup_update_page_stat(struct page *page,
1890 enum mem_cgroup_page_stat_item idx, int val)
1891{
1892 struct mem_cgroup *memcg;
1893 struct page_cgroup *pc = lookup_page_cgroup(page);
1894 bool need_unlock = false;
1895 unsigned long uninitialized_var(flags);
1896
1897 if (mem_cgroup_disabled())
1898 return;
1899
1900 rcu_read_lock();
1901 memcg = pc->mem_cgroup;
1902 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1903 goto out;
1904 /* pc->mem_cgroup is unstable ? */
1905 if (unlikely(mem_cgroup_stealed(memcg))) {
1906 /* take a lock against to access pc->mem_cgroup */
1907 move_lock_page_cgroup(pc, &flags);
1908 need_unlock = true;
1909 memcg = pc->mem_cgroup;
1910 if (!memcg || !PageCgroupUsed(pc))
1911 goto out;
1912 }
1913
1914 switch (idx) {
1915 case MEMCG_NR_FILE_MAPPED:
1916 if (val > 0)
1917 SetPageCgroupFileMapped(pc);
1918 else if (!page_mapped(page))
1919 ClearPageCgroupFileMapped(pc);
1920 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1921 break;
1922 default:
1923 BUG();
1924 }
1925
1926 this_cpu_add(memcg->stat->count[idx], val);
1927
1928out:
1929 if (unlikely(need_unlock))
1930 move_unlock_page_cgroup(pc, &flags);
1931 rcu_read_unlock();
1932}
1933
1934/*
1935 * size of first charge trial. "32" comes from vmscan.c's magic value.
1936 * TODO: maybe necessary to use big numbers in big irons.
1937 */
1938#define CHARGE_BATCH 32U
1939struct memcg_stock_pcp {
1940 struct mem_cgroup *cached; /* this never be root cgroup */
1941 unsigned int nr_pages;
1942 struct work_struct work;
1943 unsigned long flags;
1944#define FLUSHING_CACHED_CHARGE (0)
1945};
1946static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1947static DEFINE_MUTEX(percpu_charge_mutex);
1948
1949/*
1950 * Try to consume stocked charge on this cpu. If success, one page is consumed
1951 * from local stock and true is returned. If the stock is 0 or charges from a
1952 * cgroup which is not current target, returns false. This stock will be
1953 * refilled.
1954 */
1955static bool consume_stock(struct mem_cgroup *memcg)
1956{
1957 struct memcg_stock_pcp *stock;
1958 bool ret = true;
1959
1960 stock = &get_cpu_var(memcg_stock);
1961 if (memcg == stock->cached && stock->nr_pages)
1962 stock->nr_pages--;
1963 else /* need to call res_counter_charge */
1964 ret = false;
1965 put_cpu_var(memcg_stock);
1966 return ret;
1967}
1968
1969/*
1970 * Returns stocks cached in percpu to res_counter and reset cached information.
1971 */
1972static void drain_stock(struct memcg_stock_pcp *stock)
1973{
1974 struct mem_cgroup *old = stock->cached;
1975
1976 if (stock->nr_pages) {
1977 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1978
1979 res_counter_uncharge(&old->res, bytes);
1980 if (do_swap_account)
1981 res_counter_uncharge(&old->memsw, bytes);
1982 stock->nr_pages = 0;
1983 }
1984 stock->cached = NULL;
1985}
1986
1987/*
1988 * This must be called under preempt disabled or must be called by
1989 * a thread which is pinned to local cpu.
1990 */
1991static void drain_local_stock(struct work_struct *dummy)
1992{
1993 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1994 drain_stock(stock);
1995 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1996}
1997
1998/*
1999 * Cache charges(val) which is from res_counter, to local per_cpu area.
2000 * This will be consumed by consume_stock() function, later.
2001 */
2002static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2003{
2004 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2005
2006 if (stock->cached != memcg) { /* reset if necessary */
2007 drain_stock(stock);
2008 stock->cached = memcg;
2009 }
2010 stock->nr_pages += nr_pages;
2011 put_cpu_var(memcg_stock);
2012}
2013
2014/*
2015 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2016 * of the hierarchy under it. sync flag says whether we should block
2017 * until the work is done.
2018 */
2019static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2020{
2021 int cpu, curcpu;
2022
2023 /* Notify other cpus that system-wide "drain" is running */
2024 get_online_cpus();
2025 curcpu = get_cpu();
2026 for_each_online_cpu(cpu) {
2027 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2028 struct mem_cgroup *memcg;
2029
2030 memcg = stock->cached;
2031 if (!memcg || !stock->nr_pages)
2032 continue;
2033 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2034 continue;
2035 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2036 if (cpu == curcpu)
2037 drain_local_stock(&stock->work);
2038 else
2039 schedule_work_on(cpu, &stock->work);
2040 }
2041 }
2042 put_cpu();
2043
2044 if (!sync)
2045 goto out;
2046
2047 for_each_online_cpu(cpu) {
2048 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2049 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2050 flush_work(&stock->work);
2051 }
2052out:
2053 put_online_cpus();
2054}
2055
2056/*
2057 * Tries to drain stocked charges in other cpus. This function is asynchronous
2058 * and just put a work per cpu for draining localy on each cpu. Caller can
2059 * expects some charges will be back to res_counter later but cannot wait for
2060 * it.
2061 */
2062static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2063{
2064 /*
2065 * If someone calls draining, avoid adding more kworker runs.
2066 */
2067 if (!mutex_trylock(&percpu_charge_mutex))
2068 return;
2069 drain_all_stock(root_memcg, false);
2070 mutex_unlock(&percpu_charge_mutex);
2071}
2072
2073/* This is a synchronous drain interface. */
2074static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2075{
2076 /* called when force_empty is called */
2077 mutex_lock(&percpu_charge_mutex);
2078 drain_all_stock(root_memcg, true);
2079 mutex_unlock(&percpu_charge_mutex);
2080}
2081
2082/*
2083 * This function drains percpu counter value from DEAD cpu and
2084 * move it to local cpu. Note that this function can be preempted.
2085 */
2086static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2087{
2088 int i;
2089
2090 spin_lock(&memcg->pcp_counter_lock);
2091 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2092 long x = per_cpu(memcg->stat->count[i], cpu);
2093
2094 per_cpu(memcg->stat->count[i], cpu) = 0;
2095 memcg->nocpu_base.count[i] += x;
2096 }
2097 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2098 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2099
2100 per_cpu(memcg->stat->events[i], cpu) = 0;
2101 memcg->nocpu_base.events[i] += x;
2102 }
2103 /* need to clear ON_MOVE value, works as a kind of lock. */
2104 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2105 spin_unlock(&memcg->pcp_counter_lock);
2106}
2107
2108static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2109{
2110 int idx = MEM_CGROUP_ON_MOVE;
2111
2112 spin_lock(&memcg->pcp_counter_lock);
2113 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2114 spin_unlock(&memcg->pcp_counter_lock);
2115}
2116
2117static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2118 unsigned long action,
2119 void *hcpu)
2120{
2121 int cpu = (unsigned long)hcpu;
2122 struct memcg_stock_pcp *stock;
2123 struct mem_cgroup *iter;
2124
2125 if ((action == CPU_ONLINE)) {
2126 for_each_mem_cgroup(iter)
2127 synchronize_mem_cgroup_on_move(iter, cpu);
2128 return NOTIFY_OK;
2129 }
2130
2131 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2132 return NOTIFY_OK;
2133
2134 for_each_mem_cgroup(iter)
2135 mem_cgroup_drain_pcp_counter(iter, cpu);
2136
2137 stock = &per_cpu(memcg_stock, cpu);
2138 drain_stock(stock);
2139 return NOTIFY_OK;
2140}
2141
2142
2143/* See __mem_cgroup_try_charge() for details */
2144enum {
2145 CHARGE_OK, /* success */
2146 CHARGE_RETRY, /* need to retry but retry is not bad */
2147 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2148 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2149 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2150};
2151
2152static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2153 unsigned int nr_pages, bool oom_check)
2154{
2155 unsigned long csize = nr_pages * PAGE_SIZE;
2156 struct mem_cgroup *mem_over_limit;
2157 struct res_counter *fail_res;
2158 unsigned long flags = 0;
2159 int ret;
2160
2161 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2162
2163 if (likely(!ret)) {
2164 if (!do_swap_account)
2165 return CHARGE_OK;
2166 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2167 if (likely(!ret))
2168 return CHARGE_OK;
2169
2170 res_counter_uncharge(&memcg->res, csize);
2171 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2172 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2173 } else
2174 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2175 /*
2176 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2177 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2178 *
2179 * Never reclaim on behalf of optional batching, retry with a
2180 * single page instead.
2181 */
2182 if (nr_pages == CHARGE_BATCH)
2183 return CHARGE_RETRY;
2184
2185 if (!(gfp_mask & __GFP_WAIT))
2186 return CHARGE_WOULDBLOCK;
2187
2188 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2189 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2190 return CHARGE_RETRY;
2191 /*
2192 * Even though the limit is exceeded at this point, reclaim
2193 * may have been able to free some pages. Retry the charge
2194 * before killing the task.
2195 *
2196 * Only for regular pages, though: huge pages are rather
2197 * unlikely to succeed so close to the limit, and we fall back
2198 * to regular pages anyway in case of failure.
2199 */
2200 if (nr_pages == 1 && ret)
2201 return CHARGE_RETRY;
2202
2203 /*
2204 * At task move, charge accounts can be doubly counted. So, it's
2205 * better to wait until the end of task_move if something is going on.
2206 */
2207 if (mem_cgroup_wait_acct_move(mem_over_limit))
2208 return CHARGE_RETRY;
2209
2210 /* If we don't need to call oom-killer at el, return immediately */
2211 if (!oom_check)
2212 return CHARGE_NOMEM;
2213 /* check OOM */
2214 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2215 return CHARGE_OOM_DIE;
2216
2217 return CHARGE_RETRY;
2218}
2219
2220/*
2221 * __mem_cgroup_try_charge() does
2222 * 1. detect memcg to be charged against from passed *mm and *ptr,
2223 * 2. update res_counter
2224 * 3. call memory reclaim if necessary.
2225 *
2226 * In some special case, if the task is fatal, fatal_signal_pending() or
2227 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2228 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2229 * as possible without any hazards. 2: all pages should have a valid
2230 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2231 * pointer, that is treated as a charge to root_mem_cgroup.
2232 *
2233 * So __mem_cgroup_try_charge() will return
2234 * 0 ... on success, filling *ptr with a valid memcg pointer.
2235 * -ENOMEM ... charge failure because of resource limits.
2236 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2237 *
2238 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2239 * the oom-killer can be invoked.
2240 */
2241static int __mem_cgroup_try_charge(struct mm_struct *mm,
2242 gfp_t gfp_mask,
2243 unsigned int nr_pages,
2244 struct mem_cgroup **ptr,
2245 bool oom)
2246{
2247 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2248 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2249 struct mem_cgroup *memcg = NULL;
2250 int ret;
2251
2252 /*
2253 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2254 * in system level. So, allow to go ahead dying process in addition to
2255 * MEMDIE process.
2256 */
2257 if (unlikely(test_thread_flag(TIF_MEMDIE)
2258 || fatal_signal_pending(current)))
2259 goto bypass;
2260
2261 /*
2262 * We always charge the cgroup the mm_struct belongs to.
2263 * The mm_struct's mem_cgroup changes on task migration if the
2264 * thread group leader migrates. It's possible that mm is not
2265 * set, if so charge the init_mm (happens for pagecache usage).
2266 */
2267 if (!*ptr && !mm)
2268 *ptr = root_mem_cgroup;
2269again:
2270 if (*ptr) { /* css should be a valid one */
2271 memcg = *ptr;
2272 VM_BUG_ON(css_is_removed(&memcg->css));
2273 if (mem_cgroup_is_root(memcg))
2274 goto done;
2275 if (nr_pages == 1 && consume_stock(memcg))
2276 goto done;
2277 css_get(&memcg->css);
2278 } else {
2279 struct task_struct *p;
2280
2281 rcu_read_lock();
2282 p = rcu_dereference(mm->owner);
2283 /*
2284 * Because we don't have task_lock(), "p" can exit.
2285 * In that case, "memcg" can point to root or p can be NULL with
2286 * race with swapoff. Then, we have small risk of mis-accouning.
2287 * But such kind of mis-account by race always happens because
2288 * we don't have cgroup_mutex(). It's overkill and we allo that
2289 * small race, here.
2290 * (*) swapoff at el will charge against mm-struct not against
2291 * task-struct. So, mm->owner can be NULL.
2292 */
2293 memcg = mem_cgroup_from_task(p);
2294 if (!memcg)
2295 memcg = root_mem_cgroup;
2296 if (mem_cgroup_is_root(memcg)) {
2297 rcu_read_unlock();
2298 goto done;
2299 }
2300 if (nr_pages == 1 && consume_stock(memcg)) {
2301 /*
2302 * It seems dagerous to access memcg without css_get().
2303 * But considering how consume_stok works, it's not
2304 * necessary. If consume_stock success, some charges
2305 * from this memcg are cached on this cpu. So, we
2306 * don't need to call css_get()/css_tryget() before
2307 * calling consume_stock().
2308 */
2309 rcu_read_unlock();
2310 goto done;
2311 }
2312 /* after here, we may be blocked. we need to get refcnt */
2313 if (!css_tryget(&memcg->css)) {
2314 rcu_read_unlock();
2315 goto again;
2316 }
2317 rcu_read_unlock();
2318 }
2319
2320 do {
2321 bool oom_check;
2322
2323 /* If killed, bypass charge */
2324 if (fatal_signal_pending(current)) {
2325 css_put(&memcg->css);
2326 goto bypass;
2327 }
2328
2329 oom_check = false;
2330 if (oom && !nr_oom_retries) {
2331 oom_check = true;
2332 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2333 }
2334
2335 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2336 switch (ret) {
2337 case CHARGE_OK:
2338 break;
2339 case CHARGE_RETRY: /* not in OOM situation but retry */
2340 batch = nr_pages;
2341 css_put(&memcg->css);
2342 memcg = NULL;
2343 goto again;
2344 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2345 css_put(&memcg->css);
2346 goto nomem;
2347 case CHARGE_NOMEM: /* OOM routine works */
2348 if (!oom) {
2349 css_put(&memcg->css);
2350 goto nomem;
2351 }
2352 /* If oom, we never return -ENOMEM */
2353 nr_oom_retries--;
2354 break;
2355 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2356 css_put(&memcg->css);
2357 goto bypass;
2358 }
2359 } while (ret != CHARGE_OK);
2360
2361 if (batch > nr_pages)
2362 refill_stock(memcg, batch - nr_pages);
2363 css_put(&memcg->css);
2364done:
2365 *ptr = memcg;
2366 return 0;
2367nomem:
2368 *ptr = NULL;
2369 return -ENOMEM;
2370bypass:
2371 *ptr = root_mem_cgroup;
2372 return -EINTR;
2373}
2374
2375/*
2376 * Somemtimes we have to undo a charge we got by try_charge().
2377 * This function is for that and do uncharge, put css's refcnt.
2378 * gotten by try_charge().
2379 */
2380static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2381 unsigned int nr_pages)
2382{
2383 if (!mem_cgroup_is_root(memcg)) {
2384 unsigned long bytes = nr_pages * PAGE_SIZE;
2385
2386 res_counter_uncharge(&memcg->res, bytes);
2387 if (do_swap_account)
2388 res_counter_uncharge(&memcg->memsw, bytes);
2389 }
2390}
2391
2392/*
2393 * A helper function to get mem_cgroup from ID. must be called under
2394 * rcu_read_lock(). The caller must check css_is_removed() or some if
2395 * it's concern. (dropping refcnt from swap can be called against removed
2396 * memcg.)
2397 */
2398static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2399{
2400 struct cgroup_subsys_state *css;
2401
2402 /* ID 0 is unused ID */
2403 if (!id)
2404 return NULL;
2405 css = css_lookup(&mem_cgroup_subsys, id);
2406 if (!css)
2407 return NULL;
2408 return container_of(css, struct mem_cgroup, css);
2409}
2410
2411struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2412{
2413 struct mem_cgroup *memcg = NULL;
2414 struct page_cgroup *pc;
2415 unsigned short id;
2416 swp_entry_t ent;
2417
2418 VM_BUG_ON(!PageLocked(page));
2419
2420 pc = lookup_page_cgroup(page);
2421 lock_page_cgroup(pc);
2422 if (PageCgroupUsed(pc)) {
2423 memcg = pc->mem_cgroup;
2424 if (memcg && !css_tryget(&memcg->css))
2425 memcg = NULL;
2426 } else if (PageSwapCache(page)) {
2427 ent.val = page_private(page);
2428 id = lookup_swap_cgroup_id(ent);
2429 rcu_read_lock();
2430 memcg = mem_cgroup_lookup(id);
2431 if (memcg && !css_tryget(&memcg->css))
2432 memcg = NULL;
2433 rcu_read_unlock();
2434 }
2435 unlock_page_cgroup(pc);
2436 return memcg;
2437}
2438
2439static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2440 struct page *page,
2441 unsigned int nr_pages,
2442 struct page_cgroup *pc,
2443 enum charge_type ctype,
2444 bool lrucare)
2445{
2446 struct zone *uninitialized_var(zone);
2447 bool was_on_lru = false;
2448 bool anon;
2449
2450 lock_page_cgroup(pc);
2451 if (unlikely(PageCgroupUsed(pc))) {
2452 unlock_page_cgroup(pc);
2453 __mem_cgroup_cancel_charge(memcg, nr_pages);
2454 return;
2455 }
2456 /*
2457 * we don't need page_cgroup_lock about tail pages, becase they are not
2458 * accessed by any other context at this point.
2459 */
2460
2461 /*
2462 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2463 * may already be on some other mem_cgroup's LRU. Take care of it.
2464 */
2465 if (lrucare) {
2466 zone = page_zone(page);
2467 spin_lock_irq(&zone->lru_lock);
2468 if (PageLRU(page)) {
2469 ClearPageLRU(page);
2470 del_page_from_lru_list(zone, page, page_lru(page));
2471 was_on_lru = true;
2472 }
2473 }
2474
2475 pc->mem_cgroup = memcg;
2476 /*
2477 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 * before USED bit, we need memory barrier here.
2481 * See mem_cgroup_add_lru_list(), etc.
2482 */
2483 smp_wmb();
2484 SetPageCgroupUsed(pc);
2485
2486 if (lrucare) {
2487 if (was_on_lru) {
2488 VM_BUG_ON(PageLRU(page));
2489 SetPageLRU(page);
2490 add_page_to_lru_list(zone, page, page_lru(page));
2491 }
2492 spin_unlock_irq(&zone->lru_lock);
2493 }
2494
2495 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2496 anon = true;
2497 else
2498 anon = false;
2499
2500 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2501 unlock_page_cgroup(pc);
2502
2503 /*
2504 * "charge_statistics" updated event counter. Then, check it.
2505 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2506 * if they exceeds softlimit.
2507 */
2508 memcg_check_events(memcg, page);
2509}
2510
2511#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2512
2513#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2514 (1 << PCG_MIGRATION))
2515/*
2516 * Because tail pages are not marked as "used", set it. We're under
2517 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2518 * charge/uncharge will be never happen and move_account() is done under
2519 * compound_lock(), so we don't have to take care of races.
2520 */
2521void mem_cgroup_split_huge_fixup(struct page *head)
2522{
2523 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2524 struct page_cgroup *pc;
2525 int i;
2526
2527 if (mem_cgroup_disabled())
2528 return;
2529 for (i = 1; i < HPAGE_PMD_NR; i++) {
2530 pc = head_pc + i;
2531 pc->mem_cgroup = head_pc->mem_cgroup;
2532 smp_wmb();/* see __commit_charge() */
2533 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2534 }
2535}
2536#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2537
2538/**
2539 * mem_cgroup_move_account - move account of the page
2540 * @page: the page
2541 * @nr_pages: number of regular pages (>1 for huge pages)
2542 * @pc: page_cgroup of the page.
2543 * @from: mem_cgroup which the page is moved from.
2544 * @to: mem_cgroup which the page is moved to. @from != @to.
2545 * @uncharge: whether we should call uncharge and css_put against @from.
2546 *
2547 * The caller must confirm following.
2548 * - page is not on LRU (isolate_page() is useful.)
2549 * - compound_lock is held when nr_pages > 1
2550 *
2551 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2552 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2553 * true, this function does "uncharge" from old cgroup, but it doesn't if
2554 * @uncharge is false, so a caller should do "uncharge".
2555 */
2556static int mem_cgroup_move_account(struct page *page,
2557 unsigned int nr_pages,
2558 struct page_cgroup *pc,
2559 struct mem_cgroup *from,
2560 struct mem_cgroup *to,
2561 bool uncharge)
2562{
2563 unsigned long flags;
2564 int ret;
2565 bool anon = PageAnon(page);
2566
2567 VM_BUG_ON(from == to);
2568 VM_BUG_ON(PageLRU(page));
2569 /*
2570 * The page is isolated from LRU. So, collapse function
2571 * will not handle this page. But page splitting can happen.
2572 * Do this check under compound_page_lock(). The caller should
2573 * hold it.
2574 */
2575 ret = -EBUSY;
2576 if (nr_pages > 1 && !PageTransHuge(page))
2577 goto out;
2578
2579 lock_page_cgroup(pc);
2580
2581 ret = -EINVAL;
2582 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2583 goto unlock;
2584
2585 move_lock_page_cgroup(pc, &flags);
2586
2587 if (PageCgroupFileMapped(pc)) {
2588 /* Update mapped_file data for mem_cgroup */
2589 preempt_disable();
2590 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2591 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2592 preempt_enable();
2593 }
2594 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2595 if (uncharge)
2596 /* This is not "cancel", but cancel_charge does all we need. */
2597 __mem_cgroup_cancel_charge(from, nr_pages);
2598
2599 /* caller should have done css_get */
2600 pc->mem_cgroup = to;
2601 mem_cgroup_charge_statistics(to, anon, nr_pages);
2602 /*
2603 * We charges against "to" which may not have any tasks. Then, "to"
2604 * can be under rmdir(). But in current implementation, caller of
2605 * this function is just force_empty() and move charge, so it's
2606 * guaranteed that "to" is never removed. So, we don't check rmdir
2607 * status here.
2608 */
2609 move_unlock_page_cgroup(pc, &flags);
2610 ret = 0;
2611unlock:
2612 unlock_page_cgroup(pc);
2613 /*
2614 * check events
2615 */
2616 memcg_check_events(to, page);
2617 memcg_check_events(from, page);
2618out:
2619 return ret;
2620}
2621
2622/*
2623 * move charges to its parent.
2624 */
2625
2626static int mem_cgroup_move_parent(struct page *page,
2627 struct page_cgroup *pc,
2628 struct mem_cgroup *child,
2629 gfp_t gfp_mask)
2630{
2631 struct cgroup *cg = child->css.cgroup;
2632 struct cgroup *pcg = cg->parent;
2633 struct mem_cgroup *parent;
2634 unsigned int nr_pages;
2635 unsigned long uninitialized_var(flags);
2636 int ret;
2637
2638 /* Is ROOT ? */
2639 if (!pcg)
2640 return -EINVAL;
2641
2642 ret = -EBUSY;
2643 if (!get_page_unless_zero(page))
2644 goto out;
2645 if (isolate_lru_page(page))
2646 goto put;
2647
2648 nr_pages = hpage_nr_pages(page);
2649
2650 parent = mem_cgroup_from_cont(pcg);
2651 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2652 if (ret)
2653 goto put_back;
2654
2655 if (nr_pages > 1)
2656 flags = compound_lock_irqsave(page);
2657
2658 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2659 if (ret)
2660 __mem_cgroup_cancel_charge(parent, nr_pages);
2661
2662 if (nr_pages > 1)
2663 compound_unlock_irqrestore(page, flags);
2664put_back:
2665 putback_lru_page(page);
2666put:
2667 put_page(page);
2668out:
2669 return ret;
2670}
2671
2672/*
2673 * Charge the memory controller for page usage.
2674 * Return
2675 * 0 if the charge was successful
2676 * < 0 if the cgroup is over its limit
2677 */
2678static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2679 gfp_t gfp_mask, enum charge_type ctype)
2680{
2681 struct mem_cgroup *memcg = NULL;
2682 unsigned int nr_pages = 1;
2683 struct page_cgroup *pc;
2684 bool oom = true;
2685 int ret;
2686
2687 if (PageTransHuge(page)) {
2688 nr_pages <<= compound_order(page);
2689 VM_BUG_ON(!PageTransHuge(page));
2690 /*
2691 * Never OOM-kill a process for a huge page. The
2692 * fault handler will fall back to regular pages.
2693 */
2694 oom = false;
2695 }
2696
2697 pc = lookup_page_cgroup(page);
2698 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2699 if (ret == -ENOMEM)
2700 return ret;
2701 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2702 return 0;
2703}
2704
2705int mem_cgroup_newpage_charge(struct page *page,
2706 struct mm_struct *mm, gfp_t gfp_mask)
2707{
2708 if (mem_cgroup_disabled())
2709 return 0;
2710 VM_BUG_ON(page_mapped(page));
2711 VM_BUG_ON(page->mapping && !PageAnon(page));
2712 VM_BUG_ON(!mm);
2713 return mem_cgroup_charge_common(page, mm, gfp_mask,
2714 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2715}
2716
2717static void
2718__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2719 enum charge_type ctype);
2720
2721int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2722 gfp_t gfp_mask)
2723{
2724 struct mem_cgroup *memcg = NULL;
2725 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2726 int ret;
2727
2728 if (mem_cgroup_disabled())
2729 return 0;
2730 if (PageCompound(page))
2731 return 0;
2732
2733 if (unlikely(!mm))
2734 mm = &init_mm;
2735 if (!page_is_file_cache(page))
2736 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2737
2738 if (!PageSwapCache(page))
2739 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2740 else { /* page is swapcache/shmem */
2741 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2742 if (!ret)
2743 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2744 }
2745 return ret;
2746}
2747
2748/*
2749 * While swap-in, try_charge -> commit or cancel, the page is locked.
2750 * And when try_charge() successfully returns, one refcnt to memcg without
2751 * struct page_cgroup is acquired. This refcnt will be consumed by
2752 * "commit()" or removed by "cancel()"
2753 */
2754int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2755 struct page *page,
2756 gfp_t mask, struct mem_cgroup **memcgp)
2757{
2758 struct mem_cgroup *memcg;
2759 int ret;
2760
2761 *memcgp = NULL;
2762
2763 if (mem_cgroup_disabled())
2764 return 0;
2765
2766 if (!do_swap_account)
2767 goto charge_cur_mm;
2768 /*
2769 * A racing thread's fault, or swapoff, may have already updated
2770 * the pte, and even removed page from swap cache: in those cases
2771 * do_swap_page()'s pte_same() test will fail; but there's also a
2772 * KSM case which does need to charge the page.
2773 */
2774 if (!PageSwapCache(page))
2775 goto charge_cur_mm;
2776 memcg = try_get_mem_cgroup_from_page(page);
2777 if (!memcg)
2778 goto charge_cur_mm;
2779 *memcgp = memcg;
2780 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2781 css_put(&memcg->css);
2782 if (ret == -EINTR)
2783 ret = 0;
2784 return ret;
2785charge_cur_mm:
2786 if (unlikely(!mm))
2787 mm = &init_mm;
2788 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2789 if (ret == -EINTR)
2790 ret = 0;
2791 return ret;
2792}
2793
2794static void
2795__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2796 enum charge_type ctype)
2797{
2798 struct page_cgroup *pc;
2799
2800 if (mem_cgroup_disabled())
2801 return;
2802 if (!memcg)
2803 return;
2804 cgroup_exclude_rmdir(&memcg->css);
2805
2806 pc = lookup_page_cgroup(page);
2807 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2808 /*
2809 * Now swap is on-memory. This means this page may be
2810 * counted both as mem and swap....double count.
2811 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2812 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2813 * may call delete_from_swap_cache() before reach here.
2814 */
2815 if (do_swap_account && PageSwapCache(page)) {
2816 swp_entry_t ent = {.val = page_private(page)};
2817 struct mem_cgroup *swap_memcg;
2818 unsigned short id;
2819
2820 id = swap_cgroup_record(ent, 0);
2821 rcu_read_lock();
2822 swap_memcg = mem_cgroup_lookup(id);
2823 if (swap_memcg) {
2824 /*
2825 * This recorded memcg can be obsolete one. So, avoid
2826 * calling css_tryget
2827 */
2828 if (!mem_cgroup_is_root(swap_memcg))
2829 res_counter_uncharge(&swap_memcg->memsw,
2830 PAGE_SIZE);
2831 mem_cgroup_swap_statistics(swap_memcg, false);
2832 mem_cgroup_put(swap_memcg);
2833 }
2834 rcu_read_unlock();
2835 }
2836 /*
2837 * At swapin, we may charge account against cgroup which has no tasks.
2838 * So, rmdir()->pre_destroy() can be called while we do this charge.
2839 * In that case, we need to call pre_destroy() again. check it here.
2840 */
2841 cgroup_release_and_wakeup_rmdir(&memcg->css);
2842}
2843
2844void mem_cgroup_commit_charge_swapin(struct page *page,
2845 struct mem_cgroup *memcg)
2846{
2847 __mem_cgroup_commit_charge_swapin(page, memcg,
2848 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2849}
2850
2851void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2852{
2853 if (mem_cgroup_disabled())
2854 return;
2855 if (!memcg)
2856 return;
2857 __mem_cgroup_cancel_charge(memcg, 1);
2858}
2859
2860static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2861 unsigned int nr_pages,
2862 const enum charge_type ctype)
2863{
2864 struct memcg_batch_info *batch = NULL;
2865 bool uncharge_memsw = true;
2866
2867 /* If swapout, usage of swap doesn't decrease */
2868 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2869 uncharge_memsw = false;
2870
2871 batch = &current->memcg_batch;
2872 /*
2873 * In usual, we do css_get() when we remember memcg pointer.
2874 * But in this case, we keep res->usage until end of a series of
2875 * uncharges. Then, it's ok to ignore memcg's refcnt.
2876 */
2877 if (!batch->memcg)
2878 batch->memcg = memcg;
2879 /*
2880 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2881 * In those cases, all pages freed continuously can be expected to be in
2882 * the same cgroup and we have chance to coalesce uncharges.
2883 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2884 * because we want to do uncharge as soon as possible.
2885 */
2886
2887 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2888 goto direct_uncharge;
2889
2890 if (nr_pages > 1)
2891 goto direct_uncharge;
2892
2893 /*
2894 * In typical case, batch->memcg == mem. This means we can
2895 * merge a series of uncharges to an uncharge of res_counter.
2896 * If not, we uncharge res_counter ony by one.
2897 */
2898 if (batch->memcg != memcg)
2899 goto direct_uncharge;
2900 /* remember freed charge and uncharge it later */
2901 batch->nr_pages++;
2902 if (uncharge_memsw)
2903 batch->memsw_nr_pages++;
2904 return;
2905direct_uncharge:
2906 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2907 if (uncharge_memsw)
2908 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2909 if (unlikely(batch->memcg != memcg))
2910 memcg_oom_recover(memcg);
2911}
2912
2913/*
2914 * uncharge if !page_mapped(page)
2915 */
2916static struct mem_cgroup *
2917__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2918{
2919 struct mem_cgroup *memcg = NULL;
2920 unsigned int nr_pages = 1;
2921 struct page_cgroup *pc;
2922 bool anon;
2923
2924 if (mem_cgroup_disabled())
2925 return NULL;
2926
2927 if (PageSwapCache(page))
2928 return NULL;
2929
2930 if (PageTransHuge(page)) {
2931 nr_pages <<= compound_order(page);
2932 VM_BUG_ON(!PageTransHuge(page));
2933 }
2934 /*
2935 * Check if our page_cgroup is valid
2936 */
2937 pc = lookup_page_cgroup(page);
2938 if (unlikely(!PageCgroupUsed(pc)))
2939 return NULL;
2940
2941 lock_page_cgroup(pc);
2942
2943 memcg = pc->mem_cgroup;
2944
2945 if (!PageCgroupUsed(pc))
2946 goto unlock_out;
2947
2948 anon = PageAnon(page);
2949
2950 switch (ctype) {
2951 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2952 anon = true;
2953 /* fallthrough */
2954 case MEM_CGROUP_CHARGE_TYPE_DROP:
2955 /* See mem_cgroup_prepare_migration() */
2956 if (page_mapped(page) || PageCgroupMigration(pc))
2957 goto unlock_out;
2958 break;
2959 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2960 if (!PageAnon(page)) { /* Shared memory */
2961 if (page->mapping && !page_is_file_cache(page))
2962 goto unlock_out;
2963 } else if (page_mapped(page)) /* Anon */
2964 goto unlock_out;
2965 break;
2966 default:
2967 break;
2968 }
2969
2970 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2971
2972 ClearPageCgroupUsed(pc);
2973 /*
2974 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2975 * freed from LRU. This is safe because uncharged page is expected not
2976 * to be reused (freed soon). Exception is SwapCache, it's handled by
2977 * special functions.
2978 */
2979
2980 unlock_page_cgroup(pc);
2981 /*
2982 * even after unlock, we have memcg->res.usage here and this memcg
2983 * will never be freed.
2984 */
2985 memcg_check_events(memcg, page);
2986 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2987 mem_cgroup_swap_statistics(memcg, true);
2988 mem_cgroup_get(memcg);
2989 }
2990 if (!mem_cgroup_is_root(memcg))
2991 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2992
2993 return memcg;
2994
2995unlock_out:
2996 unlock_page_cgroup(pc);
2997 return NULL;
2998}
2999
3000void mem_cgroup_uncharge_page(struct page *page)
3001{
3002 /* early check. */
3003 if (page_mapped(page))
3004 return;
3005 VM_BUG_ON(page->mapping && !PageAnon(page));
3006 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3007}
3008
3009void mem_cgroup_uncharge_cache_page(struct page *page)
3010{
3011 VM_BUG_ON(page_mapped(page));
3012 VM_BUG_ON(page->mapping);
3013 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3014}
3015
3016/*
3017 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3018 * In that cases, pages are freed continuously and we can expect pages
3019 * are in the same memcg. All these calls itself limits the number of
3020 * pages freed at once, then uncharge_start/end() is called properly.
3021 * This may be called prural(2) times in a context,
3022 */
3023
3024void mem_cgroup_uncharge_start(void)
3025{
3026 current->memcg_batch.do_batch++;
3027 /* We can do nest. */
3028 if (current->memcg_batch.do_batch == 1) {
3029 current->memcg_batch.memcg = NULL;
3030 current->memcg_batch.nr_pages = 0;
3031 current->memcg_batch.memsw_nr_pages = 0;
3032 }
3033}
3034
3035void mem_cgroup_uncharge_end(void)
3036{
3037 struct memcg_batch_info *batch = &current->memcg_batch;
3038
3039 if (!batch->do_batch)
3040 return;
3041
3042 batch->do_batch--;
3043 if (batch->do_batch) /* If stacked, do nothing. */
3044 return;
3045
3046 if (!batch->memcg)
3047 return;
3048 /*
3049 * This "batch->memcg" is valid without any css_get/put etc...
3050 * bacause we hide charges behind us.
3051 */
3052 if (batch->nr_pages)
3053 res_counter_uncharge(&batch->memcg->res,
3054 batch->nr_pages * PAGE_SIZE);
3055 if (batch->memsw_nr_pages)
3056 res_counter_uncharge(&batch->memcg->memsw,
3057 batch->memsw_nr_pages * PAGE_SIZE);
3058 memcg_oom_recover(batch->memcg);
3059 /* forget this pointer (for sanity check) */
3060 batch->memcg = NULL;
3061}
3062
3063#ifdef CONFIG_SWAP
3064/*
3065 * called after __delete_from_swap_cache() and drop "page" account.
3066 * memcg information is recorded to swap_cgroup of "ent"
3067 */
3068void
3069mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3070{
3071 struct mem_cgroup *memcg;
3072 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3073
3074 if (!swapout) /* this was a swap cache but the swap is unused ! */
3075 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3076
3077 memcg = __mem_cgroup_uncharge_common(page, ctype);
3078
3079 /*
3080 * record memcg information, if swapout && memcg != NULL,
3081 * mem_cgroup_get() was called in uncharge().
3082 */
3083 if (do_swap_account && swapout && memcg)
3084 swap_cgroup_record(ent, css_id(&memcg->css));
3085}
3086#endif
3087
3088#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3089/*
3090 * called from swap_entry_free(). remove record in swap_cgroup and
3091 * uncharge "memsw" account.
3092 */
3093void mem_cgroup_uncharge_swap(swp_entry_t ent)
3094{
3095 struct mem_cgroup *memcg;
3096 unsigned short id;
3097
3098 if (!do_swap_account)
3099 return;
3100
3101 id = swap_cgroup_record(ent, 0);
3102 rcu_read_lock();
3103 memcg = mem_cgroup_lookup(id);
3104 if (memcg) {
3105 /*
3106 * We uncharge this because swap is freed.
3107 * This memcg can be obsolete one. We avoid calling css_tryget
3108 */
3109 if (!mem_cgroup_is_root(memcg))
3110 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3111 mem_cgroup_swap_statistics(memcg, false);
3112 mem_cgroup_put(memcg);
3113 }
3114 rcu_read_unlock();
3115}
3116
3117/**
3118 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3119 * @entry: swap entry to be moved
3120 * @from: mem_cgroup which the entry is moved from
3121 * @to: mem_cgroup which the entry is moved to
3122 * @need_fixup: whether we should fixup res_counters and refcounts.
3123 *
3124 * It succeeds only when the swap_cgroup's record for this entry is the same
3125 * as the mem_cgroup's id of @from.
3126 *
3127 * Returns 0 on success, -EINVAL on failure.
3128 *
3129 * The caller must have charged to @to, IOW, called res_counter_charge() about
3130 * both res and memsw, and called css_get().
3131 */
3132static int mem_cgroup_move_swap_account(swp_entry_t entry,
3133 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3134{
3135 unsigned short old_id, new_id;
3136
3137 old_id = css_id(&from->css);
3138 new_id = css_id(&to->css);
3139
3140 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3141 mem_cgroup_swap_statistics(from, false);
3142 mem_cgroup_swap_statistics(to, true);
3143 /*
3144 * This function is only called from task migration context now.
3145 * It postpones res_counter and refcount handling till the end
3146 * of task migration(mem_cgroup_clear_mc()) for performance
3147 * improvement. But we cannot postpone mem_cgroup_get(to)
3148 * because if the process that has been moved to @to does
3149 * swap-in, the refcount of @to might be decreased to 0.
3150 */
3151 mem_cgroup_get(to);
3152 if (need_fixup) {
3153 if (!mem_cgroup_is_root(from))
3154 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3155 mem_cgroup_put(from);
3156 /*
3157 * we charged both to->res and to->memsw, so we should
3158 * uncharge to->res.
3159 */
3160 if (!mem_cgroup_is_root(to))
3161 res_counter_uncharge(&to->res, PAGE_SIZE);
3162 }
3163 return 0;
3164 }
3165 return -EINVAL;
3166}
3167#else
3168static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3169 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3170{
3171 return -EINVAL;
3172}
3173#endif
3174
3175/*
3176 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3177 * page belongs to.
3178 */
3179int mem_cgroup_prepare_migration(struct page *page,
3180 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3181{
3182 struct mem_cgroup *memcg = NULL;
3183 struct page_cgroup *pc;
3184 enum charge_type ctype;
3185 int ret = 0;
3186
3187 *memcgp = NULL;
3188
3189 VM_BUG_ON(PageTransHuge(page));
3190 if (mem_cgroup_disabled())
3191 return 0;
3192
3193 pc = lookup_page_cgroup(page);
3194 lock_page_cgroup(pc);
3195 if (PageCgroupUsed(pc)) {
3196 memcg = pc->mem_cgroup;
3197 css_get(&memcg->css);
3198 /*
3199 * At migrating an anonymous page, its mapcount goes down
3200 * to 0 and uncharge() will be called. But, even if it's fully
3201 * unmapped, migration may fail and this page has to be
3202 * charged again. We set MIGRATION flag here and delay uncharge
3203 * until end_migration() is called
3204 *
3205 * Corner Case Thinking
3206 * A)
3207 * When the old page was mapped as Anon and it's unmap-and-freed
3208 * while migration was ongoing.
3209 * If unmap finds the old page, uncharge() of it will be delayed
3210 * until end_migration(). If unmap finds a new page, it's
3211 * uncharged when it make mapcount to be 1->0. If unmap code
3212 * finds swap_migration_entry, the new page will not be mapped
3213 * and end_migration() will find it(mapcount==0).
3214 *
3215 * B)
3216 * When the old page was mapped but migraion fails, the kernel
3217 * remaps it. A charge for it is kept by MIGRATION flag even
3218 * if mapcount goes down to 0. We can do remap successfully
3219 * without charging it again.
3220 *
3221 * C)
3222 * The "old" page is under lock_page() until the end of
3223 * migration, so, the old page itself will not be swapped-out.
3224 * If the new page is swapped out before end_migraton, our
3225 * hook to usual swap-out path will catch the event.
3226 */
3227 if (PageAnon(page))
3228 SetPageCgroupMigration(pc);
3229 }
3230 unlock_page_cgroup(pc);
3231 /*
3232 * If the page is not charged at this point,
3233 * we return here.
3234 */
3235 if (!memcg)
3236 return 0;
3237
3238 *memcgp = memcg;
3239 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3240 css_put(&memcg->css);/* drop extra refcnt */
3241 if (ret) {
3242 if (PageAnon(page)) {
3243 lock_page_cgroup(pc);
3244 ClearPageCgroupMigration(pc);
3245 unlock_page_cgroup(pc);
3246 /*
3247 * The old page may be fully unmapped while we kept it.
3248 */
3249 mem_cgroup_uncharge_page(page);
3250 }
3251 /* we'll need to revisit this error code (we have -EINTR) */
3252 return -ENOMEM;
3253 }
3254 /*
3255 * We charge new page before it's used/mapped. So, even if unlock_page()
3256 * is called before end_migration, we can catch all events on this new
3257 * page. In the case new page is migrated but not remapped, new page's
3258 * mapcount will be finally 0 and we call uncharge in end_migration().
3259 */
3260 pc = lookup_page_cgroup(newpage);
3261 if (PageAnon(page))
3262 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3263 else if (page_is_file_cache(page))
3264 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3265 else
3266 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3267 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3268 return ret;
3269}
3270
3271/* remove redundant charge if migration failed*/
3272void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3273 struct page *oldpage, struct page *newpage, bool migration_ok)
3274{
3275 struct page *used, *unused;
3276 struct page_cgroup *pc;
3277 bool anon;
3278
3279 if (!memcg)
3280 return;
3281 /* blocks rmdir() */
3282 cgroup_exclude_rmdir(&memcg->css);
3283 if (!migration_ok) {
3284 used = oldpage;
3285 unused = newpage;
3286 } else {
3287 used = newpage;
3288 unused = oldpage;
3289 }
3290 /*
3291 * We disallowed uncharge of pages under migration because mapcount
3292 * of the page goes down to zero, temporarly.
3293 * Clear the flag and check the page should be charged.
3294 */
3295 pc = lookup_page_cgroup(oldpage);
3296 lock_page_cgroup(pc);
3297 ClearPageCgroupMigration(pc);
3298 unlock_page_cgroup(pc);
3299 anon = PageAnon(used);
3300 __mem_cgroup_uncharge_common(unused,
3301 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3302 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3303
3304 /*
3305 * If a page is a file cache, radix-tree replacement is very atomic
3306 * and we can skip this check. When it was an Anon page, its mapcount
3307 * goes down to 0. But because we added MIGRATION flage, it's not
3308 * uncharged yet. There are several case but page->mapcount check
3309 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3310 * check. (see prepare_charge() also)
3311 */
3312 if (anon)
3313 mem_cgroup_uncharge_page(used);
3314 /*
3315 * At migration, we may charge account against cgroup which has no
3316 * tasks.
3317 * So, rmdir()->pre_destroy() can be called while we do this charge.
3318 * In that case, we need to call pre_destroy() again. check it here.
3319 */
3320 cgroup_release_and_wakeup_rmdir(&memcg->css);
3321}
3322
3323/*
3324 * At replace page cache, newpage is not under any memcg but it's on
3325 * LRU. So, this function doesn't touch res_counter but handles LRU
3326 * in correct way. Both pages are locked so we cannot race with uncharge.
3327 */
3328void mem_cgroup_replace_page_cache(struct page *oldpage,
3329 struct page *newpage)
3330{
3331 struct mem_cgroup *memcg;
3332 struct page_cgroup *pc;
3333 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3334
3335 if (mem_cgroup_disabled())
3336 return;
3337
3338 pc = lookup_page_cgroup(oldpage);
3339 /* fix accounting on old pages */
3340 lock_page_cgroup(pc);
3341 memcg = pc->mem_cgroup;
3342 mem_cgroup_charge_statistics(memcg, false, -1);
3343 ClearPageCgroupUsed(pc);
3344 unlock_page_cgroup(pc);
3345
3346 if (PageSwapBacked(oldpage))
3347 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3348
3349 /*
3350 * Even if newpage->mapping was NULL before starting replacement,
3351 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3352 * LRU while we overwrite pc->mem_cgroup.
3353 */
3354 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3355}
3356
3357#ifdef CONFIG_DEBUG_VM
3358static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3359{
3360 struct page_cgroup *pc;
3361
3362 pc = lookup_page_cgroup(page);
3363 /*
3364 * Can be NULL while feeding pages into the page allocator for
3365 * the first time, i.e. during boot or memory hotplug;
3366 * or when mem_cgroup_disabled().
3367 */
3368 if (likely(pc) && PageCgroupUsed(pc))
3369 return pc;
3370 return NULL;
3371}
3372
3373bool mem_cgroup_bad_page_check(struct page *page)
3374{
3375 if (mem_cgroup_disabled())
3376 return false;
3377
3378 return lookup_page_cgroup_used(page) != NULL;
3379}
3380
3381void mem_cgroup_print_bad_page(struct page *page)
3382{
3383 struct page_cgroup *pc;
3384
3385 pc = lookup_page_cgroup_used(page);
3386 if (pc) {
3387 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3388 pc, pc->flags, pc->mem_cgroup);
3389 }
3390}
3391#endif
3392
3393static DEFINE_MUTEX(set_limit_mutex);
3394
3395static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3396 unsigned long long val)
3397{
3398 int retry_count;
3399 u64 memswlimit, memlimit;
3400 int ret = 0;
3401 int children = mem_cgroup_count_children(memcg);
3402 u64 curusage, oldusage;
3403 int enlarge;
3404
3405 /*
3406 * For keeping hierarchical_reclaim simple, how long we should retry
3407 * is depends on callers. We set our retry-count to be function
3408 * of # of children which we should visit in this loop.
3409 */
3410 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3411
3412 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3413
3414 enlarge = 0;
3415 while (retry_count) {
3416 if (signal_pending(current)) {
3417 ret = -EINTR;
3418 break;
3419 }
3420 /*
3421 * Rather than hide all in some function, I do this in
3422 * open coded manner. You see what this really does.
3423 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3424 */
3425 mutex_lock(&set_limit_mutex);
3426 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3427 if (memswlimit < val) {
3428 ret = -EINVAL;
3429 mutex_unlock(&set_limit_mutex);
3430 break;
3431 }
3432
3433 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3434 if (memlimit < val)
3435 enlarge = 1;
3436
3437 ret = res_counter_set_limit(&memcg->res, val);
3438 if (!ret) {
3439 if (memswlimit == val)
3440 memcg->memsw_is_minimum = true;
3441 else
3442 memcg->memsw_is_minimum = false;
3443 }
3444 mutex_unlock(&set_limit_mutex);
3445
3446 if (!ret)
3447 break;
3448
3449 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3450 MEM_CGROUP_RECLAIM_SHRINK);
3451 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3452 /* Usage is reduced ? */
3453 if (curusage >= oldusage)
3454 retry_count--;
3455 else
3456 oldusage = curusage;
3457 }
3458 if (!ret && enlarge)
3459 memcg_oom_recover(memcg);
3460
3461 return ret;
3462}
3463
3464static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3465 unsigned long long val)
3466{
3467 int retry_count;
3468 u64 memlimit, memswlimit, oldusage, curusage;
3469 int children = mem_cgroup_count_children(memcg);
3470 int ret = -EBUSY;
3471 int enlarge = 0;
3472
3473 /* see mem_cgroup_resize_res_limit */
3474 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3475 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3476 while (retry_count) {
3477 if (signal_pending(current)) {
3478 ret = -EINTR;
3479 break;
3480 }
3481 /*
3482 * Rather than hide all in some function, I do this in
3483 * open coded manner. You see what this really does.
3484 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3485 */
3486 mutex_lock(&set_limit_mutex);
3487 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3488 if (memlimit > val) {
3489 ret = -EINVAL;
3490 mutex_unlock(&set_limit_mutex);
3491 break;
3492 }
3493 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3494 if (memswlimit < val)
3495 enlarge = 1;
3496 ret = res_counter_set_limit(&memcg->memsw, val);
3497 if (!ret) {
3498 if (memlimit == val)
3499 memcg->memsw_is_minimum = true;
3500 else
3501 memcg->memsw_is_minimum = false;
3502 }
3503 mutex_unlock(&set_limit_mutex);
3504
3505 if (!ret)
3506 break;
3507
3508 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3509 MEM_CGROUP_RECLAIM_NOSWAP |
3510 MEM_CGROUP_RECLAIM_SHRINK);
3511 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3512 /* Usage is reduced ? */
3513 if (curusage >= oldusage)
3514 retry_count--;
3515 else
3516 oldusage = curusage;
3517 }
3518 if (!ret && enlarge)
3519 memcg_oom_recover(memcg);
3520 return ret;
3521}
3522
3523unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3524 gfp_t gfp_mask,
3525 unsigned long *total_scanned)
3526{
3527 unsigned long nr_reclaimed = 0;
3528 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3529 unsigned long reclaimed;
3530 int loop = 0;
3531 struct mem_cgroup_tree_per_zone *mctz;
3532 unsigned long long excess;
3533 unsigned long nr_scanned;
3534
3535 if (order > 0)
3536 return 0;
3537
3538 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3539 /*
3540 * This loop can run a while, specially if mem_cgroup's continuously
3541 * keep exceeding their soft limit and putting the system under
3542 * pressure
3543 */
3544 do {
3545 if (next_mz)
3546 mz = next_mz;
3547 else
3548 mz = mem_cgroup_largest_soft_limit_node(mctz);
3549 if (!mz)
3550 break;
3551
3552 nr_scanned = 0;
3553 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3554 gfp_mask, &nr_scanned);
3555 nr_reclaimed += reclaimed;
3556 *total_scanned += nr_scanned;
3557 spin_lock(&mctz->lock);
3558
3559 /*
3560 * If we failed to reclaim anything from this memory cgroup
3561 * it is time to move on to the next cgroup
3562 */
3563 next_mz = NULL;
3564 if (!reclaimed) {
3565 do {
3566 /*
3567 * Loop until we find yet another one.
3568 *
3569 * By the time we get the soft_limit lock
3570 * again, someone might have aded the
3571 * group back on the RB tree. Iterate to
3572 * make sure we get a different mem.
3573 * mem_cgroup_largest_soft_limit_node returns
3574 * NULL if no other cgroup is present on
3575 * the tree
3576 */
3577 next_mz =
3578 __mem_cgroup_largest_soft_limit_node(mctz);
3579 if (next_mz == mz)
3580 css_put(&next_mz->memcg->css);
3581 else /* next_mz == NULL or other memcg */
3582 break;
3583 } while (1);
3584 }
3585 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3586 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3587 /*
3588 * One school of thought says that we should not add
3589 * back the node to the tree if reclaim returns 0.
3590 * But our reclaim could return 0, simply because due
3591 * to priority we are exposing a smaller subset of
3592 * memory to reclaim from. Consider this as a longer
3593 * term TODO.
3594 */
3595 /* If excess == 0, no tree ops */
3596 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3597 spin_unlock(&mctz->lock);
3598 css_put(&mz->memcg->css);
3599 loop++;
3600 /*
3601 * Could not reclaim anything and there are no more
3602 * mem cgroups to try or we seem to be looping without
3603 * reclaiming anything.
3604 */
3605 if (!nr_reclaimed &&
3606 (next_mz == NULL ||
3607 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3608 break;
3609 } while (!nr_reclaimed);
3610 if (next_mz)
3611 css_put(&next_mz->memcg->css);
3612 return nr_reclaimed;
3613}
3614
3615/*
3616 * This routine traverse page_cgroup in given list and drop them all.
3617 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3618 */
3619static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3620 int node, int zid, enum lru_list lru)
3621{
3622 struct mem_cgroup_per_zone *mz;
3623 unsigned long flags, loop;
3624 struct list_head *list;
3625 struct page *busy;
3626 struct zone *zone;
3627 int ret = 0;
3628
3629 zone = &NODE_DATA(node)->node_zones[zid];
3630 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3631 list = &mz->lruvec.lists[lru];
3632
3633 loop = mz->lru_size[lru];
3634 /* give some margin against EBUSY etc...*/
3635 loop += 256;
3636 busy = NULL;
3637 while (loop--) {
3638 struct page_cgroup *pc;
3639 struct page *page;
3640
3641 ret = 0;
3642 spin_lock_irqsave(&zone->lru_lock, flags);
3643 if (list_empty(list)) {
3644 spin_unlock_irqrestore(&zone->lru_lock, flags);
3645 break;
3646 }
3647 page = list_entry(list->prev, struct page, lru);
3648 if (busy == page) {
3649 list_move(&page->lru, list);
3650 busy = NULL;
3651 spin_unlock_irqrestore(&zone->lru_lock, flags);
3652 continue;
3653 }
3654 spin_unlock_irqrestore(&zone->lru_lock, flags);
3655
3656 pc = lookup_page_cgroup(page);
3657
3658 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3659 if (ret == -ENOMEM || ret == -EINTR)
3660 break;
3661
3662 if (ret == -EBUSY || ret == -EINVAL) {
3663 /* found lock contention or "pc" is obsolete. */
3664 busy = page;
3665 cond_resched();
3666 } else
3667 busy = NULL;
3668 }
3669
3670 if (!ret && !list_empty(list))
3671 return -EBUSY;
3672 return ret;
3673}
3674
3675/*
3676 * make mem_cgroup's charge to be 0 if there is no task.
3677 * This enables deleting this mem_cgroup.
3678 */
3679static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3680{
3681 int ret;
3682 int node, zid, shrink;
3683 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3684 struct cgroup *cgrp = memcg->css.cgroup;
3685
3686 css_get(&memcg->css);
3687
3688 shrink = 0;
3689 /* should free all ? */
3690 if (free_all)
3691 goto try_to_free;
3692move_account:
3693 do {
3694 ret = -EBUSY;
3695 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3696 goto out;
3697 ret = -EINTR;
3698 if (signal_pending(current))
3699 goto out;
3700 /* This is for making all *used* pages to be on LRU. */
3701 lru_add_drain_all();
3702 drain_all_stock_sync(memcg);
3703 ret = 0;
3704 mem_cgroup_start_move(memcg);
3705 for_each_node_state(node, N_HIGH_MEMORY) {
3706 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3707 enum lru_list lru;
3708 for_each_lru(lru) {
3709 ret = mem_cgroup_force_empty_list(memcg,
3710 node, zid, lru);
3711 if (ret)
3712 break;
3713 }
3714 }
3715 if (ret)
3716 break;
3717 }
3718 mem_cgroup_end_move(memcg);
3719 memcg_oom_recover(memcg);
3720 /* it seems parent cgroup doesn't have enough mem */
3721 if (ret == -ENOMEM)
3722 goto try_to_free;
3723 cond_resched();
3724 /* "ret" should also be checked to ensure all lists are empty. */
3725 } while (memcg->res.usage > 0 || ret);
3726out:
3727 css_put(&memcg->css);
3728 return ret;
3729
3730try_to_free:
3731 /* returns EBUSY if there is a task or if we come here twice. */
3732 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3733 ret = -EBUSY;
3734 goto out;
3735 }
3736 /* we call try-to-free pages for make this cgroup empty */
3737 lru_add_drain_all();
3738 /* try to free all pages in this cgroup */
3739 shrink = 1;
3740 while (nr_retries && memcg->res.usage > 0) {
3741 int progress;
3742
3743 if (signal_pending(current)) {
3744 ret = -EINTR;
3745 goto out;
3746 }
3747 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3748 false);
3749 if (!progress) {
3750 nr_retries--;
3751 /* maybe some writeback is necessary */
3752 congestion_wait(BLK_RW_ASYNC, HZ/10);
3753 }
3754
3755 }
3756 lru_add_drain();
3757 /* try move_account...there may be some *locked* pages. */
3758 goto move_account;
3759}
3760
3761int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3762{
3763 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3764}
3765
3766
3767static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3768{
3769 return mem_cgroup_from_cont(cont)->use_hierarchy;
3770}
3771
3772static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3773 u64 val)
3774{
3775 int retval = 0;
3776 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3777 struct cgroup *parent = cont->parent;
3778 struct mem_cgroup *parent_memcg = NULL;
3779
3780 if (parent)
3781 parent_memcg = mem_cgroup_from_cont(parent);
3782
3783 cgroup_lock();
3784 /*
3785 * If parent's use_hierarchy is set, we can't make any modifications
3786 * in the child subtrees. If it is unset, then the change can
3787 * occur, provided the current cgroup has no children.
3788 *
3789 * For the root cgroup, parent_mem is NULL, we allow value to be
3790 * set if there are no children.
3791 */
3792 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3793 (val == 1 || val == 0)) {
3794 if (list_empty(&cont->children))
3795 memcg->use_hierarchy = val;
3796 else
3797 retval = -EBUSY;
3798 } else
3799 retval = -EINVAL;
3800 cgroup_unlock();
3801
3802 return retval;
3803}
3804
3805
3806static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3807 enum mem_cgroup_stat_index idx)
3808{
3809 struct mem_cgroup *iter;
3810 long val = 0;
3811
3812 /* Per-cpu values can be negative, use a signed accumulator */
3813 for_each_mem_cgroup_tree(iter, memcg)
3814 val += mem_cgroup_read_stat(iter, idx);
3815
3816 if (val < 0) /* race ? */
3817 val = 0;
3818 return val;
3819}
3820
3821static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3822{
3823 u64 val;
3824
3825 if (!mem_cgroup_is_root(memcg)) {
3826 if (!swap)
3827 return res_counter_read_u64(&memcg->res, RES_USAGE);
3828 else
3829 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3830 }
3831
3832 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3833 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3834
3835 if (swap)
3836 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3837
3838 return val << PAGE_SHIFT;
3839}
3840
3841static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3842{
3843 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3844 u64 val;
3845 int type, name;
3846
3847 type = MEMFILE_TYPE(cft->private);
3848 name = MEMFILE_ATTR(cft->private);
3849 switch (type) {
3850 case _MEM:
3851 if (name == RES_USAGE)
3852 val = mem_cgroup_usage(memcg, false);
3853 else
3854 val = res_counter_read_u64(&memcg->res, name);
3855 break;
3856 case _MEMSWAP:
3857 if (name == RES_USAGE)
3858 val = mem_cgroup_usage(memcg, true);
3859 else
3860 val = res_counter_read_u64(&memcg->memsw, name);
3861 break;
3862 default:
3863 BUG();
3864 break;
3865 }
3866 return val;
3867}
3868/*
3869 * The user of this function is...
3870 * RES_LIMIT.
3871 */
3872static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3873 const char *buffer)
3874{
3875 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3876 int type, name;
3877 unsigned long long val;
3878 int ret;
3879
3880 type = MEMFILE_TYPE(cft->private);
3881 name = MEMFILE_ATTR(cft->private);
3882 switch (name) {
3883 case RES_LIMIT:
3884 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3885 ret = -EINVAL;
3886 break;
3887 }
3888 /* This function does all necessary parse...reuse it */
3889 ret = res_counter_memparse_write_strategy(buffer, &val);
3890 if (ret)
3891 break;
3892 if (type == _MEM)
3893 ret = mem_cgroup_resize_limit(memcg, val);
3894 else
3895 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3896 break;
3897 case RES_SOFT_LIMIT:
3898 ret = res_counter_memparse_write_strategy(buffer, &val);
3899 if (ret)
3900 break;
3901 /*
3902 * For memsw, soft limits are hard to implement in terms
3903 * of semantics, for now, we support soft limits for
3904 * control without swap
3905 */
3906 if (type == _MEM)
3907 ret = res_counter_set_soft_limit(&memcg->res, val);
3908 else
3909 ret = -EINVAL;
3910 break;
3911 default:
3912 ret = -EINVAL; /* should be BUG() ? */
3913 break;
3914 }
3915 return ret;
3916}
3917
3918static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3919 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3920{
3921 struct cgroup *cgroup;
3922 unsigned long long min_limit, min_memsw_limit, tmp;
3923
3924 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3925 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3926 cgroup = memcg->css.cgroup;
3927 if (!memcg->use_hierarchy)
3928 goto out;
3929
3930 while (cgroup->parent) {
3931 cgroup = cgroup->parent;
3932 memcg = mem_cgroup_from_cont(cgroup);
3933 if (!memcg->use_hierarchy)
3934 break;
3935 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3936 min_limit = min(min_limit, tmp);
3937 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3938 min_memsw_limit = min(min_memsw_limit, tmp);
3939 }
3940out:
3941 *mem_limit = min_limit;
3942 *memsw_limit = min_memsw_limit;
3943}
3944
3945static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3946{
3947 struct mem_cgroup *memcg;
3948 int type, name;
3949
3950 memcg = mem_cgroup_from_cont(cont);
3951 type = MEMFILE_TYPE(event);
3952 name = MEMFILE_ATTR(event);
3953 switch (name) {
3954 case RES_MAX_USAGE:
3955 if (type == _MEM)
3956 res_counter_reset_max(&memcg->res);
3957 else
3958 res_counter_reset_max(&memcg->memsw);
3959 break;
3960 case RES_FAILCNT:
3961 if (type == _MEM)
3962 res_counter_reset_failcnt(&memcg->res);
3963 else
3964 res_counter_reset_failcnt(&memcg->memsw);
3965 break;
3966 }
3967
3968 return 0;
3969}
3970
3971static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3972 struct cftype *cft)
3973{
3974 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3975}
3976
3977#ifdef CONFIG_MMU
3978static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3979 struct cftype *cft, u64 val)
3980{
3981 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3982
3983 if (val >= (1 << NR_MOVE_TYPE))
3984 return -EINVAL;
3985 /*
3986 * We check this value several times in both in can_attach() and
3987 * attach(), so we need cgroup lock to prevent this value from being
3988 * inconsistent.
3989 */
3990 cgroup_lock();
3991 memcg->move_charge_at_immigrate = val;
3992 cgroup_unlock();
3993
3994 return 0;
3995}
3996#else
3997static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3998 struct cftype *cft, u64 val)
3999{
4000 return -ENOSYS;
4001}
4002#endif
4003
4004
4005/* For read statistics */
4006enum {
4007 MCS_CACHE,
4008 MCS_RSS,
4009 MCS_FILE_MAPPED,
4010 MCS_PGPGIN,
4011 MCS_PGPGOUT,
4012 MCS_SWAP,
4013 MCS_PGFAULT,
4014 MCS_PGMAJFAULT,
4015 MCS_INACTIVE_ANON,
4016 MCS_ACTIVE_ANON,
4017 MCS_INACTIVE_FILE,
4018 MCS_ACTIVE_FILE,
4019 MCS_UNEVICTABLE,
4020 NR_MCS_STAT,
4021};
4022
4023struct mcs_total_stat {
4024 s64 stat[NR_MCS_STAT];
4025};
4026
4027struct {
4028 char *local_name;
4029 char *total_name;
4030} memcg_stat_strings[NR_MCS_STAT] = {
4031 {"cache", "total_cache"},
4032 {"rss", "total_rss"},
4033 {"mapped_file", "total_mapped_file"},
4034 {"pgpgin", "total_pgpgin"},
4035 {"pgpgout", "total_pgpgout"},
4036 {"swap", "total_swap"},
4037 {"pgfault", "total_pgfault"},
4038 {"pgmajfault", "total_pgmajfault"},
4039 {"inactive_anon", "total_inactive_anon"},
4040 {"active_anon", "total_active_anon"},
4041 {"inactive_file", "total_inactive_file"},
4042 {"active_file", "total_active_file"},
4043 {"unevictable", "total_unevictable"}
4044};
4045
4046
4047static void
4048mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4049{
4050 s64 val;
4051
4052 /* per cpu stat */
4053 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4054 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4055 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4056 s->stat[MCS_RSS] += val * PAGE_SIZE;
4057 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4058 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4059 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4060 s->stat[MCS_PGPGIN] += val;
4061 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4062 s->stat[MCS_PGPGOUT] += val;
4063 if (do_swap_account) {
4064 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4065 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4066 }
4067 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4068 s->stat[MCS_PGFAULT] += val;
4069 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4070 s->stat[MCS_PGMAJFAULT] += val;
4071
4072 /* per zone stat */
4073 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4074 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4075 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4076 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4077 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4078 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4079 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4080 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4081 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4082 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4083}
4084
4085static void
4086mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4087{
4088 struct mem_cgroup *iter;
4089
4090 for_each_mem_cgroup_tree(iter, memcg)
4091 mem_cgroup_get_local_stat(iter, s);
4092}
4093
4094#ifdef CONFIG_NUMA
4095static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4096{
4097 int nid;
4098 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4099 unsigned long node_nr;
4100 struct cgroup *cont = m->private;
4101 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4102
4103 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4104 seq_printf(m, "total=%lu", total_nr);
4105 for_each_node_state(nid, N_HIGH_MEMORY) {
4106 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4107 seq_printf(m, " N%d=%lu", nid, node_nr);
4108 }
4109 seq_putc(m, '\n');
4110
4111 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4112 seq_printf(m, "file=%lu", file_nr);
4113 for_each_node_state(nid, N_HIGH_MEMORY) {
4114 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4115 LRU_ALL_FILE);
4116 seq_printf(m, " N%d=%lu", nid, node_nr);
4117 }
4118 seq_putc(m, '\n');
4119
4120 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4121 seq_printf(m, "anon=%lu", anon_nr);
4122 for_each_node_state(nid, N_HIGH_MEMORY) {
4123 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4124 LRU_ALL_ANON);
4125 seq_printf(m, " N%d=%lu", nid, node_nr);
4126 }
4127 seq_putc(m, '\n');
4128
4129 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4130 seq_printf(m, "unevictable=%lu", unevictable_nr);
4131 for_each_node_state(nid, N_HIGH_MEMORY) {
4132 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4133 BIT(LRU_UNEVICTABLE));
4134 seq_printf(m, " N%d=%lu", nid, node_nr);
4135 }
4136 seq_putc(m, '\n');
4137 return 0;
4138}
4139#endif /* CONFIG_NUMA */
4140
4141static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4142 struct cgroup_map_cb *cb)
4143{
4144 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4145 struct mcs_total_stat mystat;
4146 int i;
4147
4148 memset(&mystat, 0, sizeof(mystat));
4149 mem_cgroup_get_local_stat(memcg, &mystat);
4150
4151
4152 for (i = 0; i < NR_MCS_STAT; i++) {
4153 if (i == MCS_SWAP && !do_swap_account)
4154 continue;
4155 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4156 }
4157
4158 /* Hierarchical information */
4159 {
4160 unsigned long long limit, memsw_limit;
4161 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4162 cb->fill(cb, "hierarchical_memory_limit", limit);
4163 if (do_swap_account)
4164 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4165 }
4166
4167 memset(&mystat, 0, sizeof(mystat));
4168 mem_cgroup_get_total_stat(memcg, &mystat);
4169 for (i = 0; i < NR_MCS_STAT; i++) {
4170 if (i == MCS_SWAP && !do_swap_account)
4171 continue;
4172 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4173 }
4174
4175#ifdef CONFIG_DEBUG_VM
4176 {
4177 int nid, zid;
4178 struct mem_cgroup_per_zone *mz;
4179 unsigned long recent_rotated[2] = {0, 0};
4180 unsigned long recent_scanned[2] = {0, 0};
4181
4182 for_each_online_node(nid)
4183 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4184 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4185
4186 recent_rotated[0] +=
4187 mz->reclaim_stat.recent_rotated[0];
4188 recent_rotated[1] +=
4189 mz->reclaim_stat.recent_rotated[1];
4190 recent_scanned[0] +=
4191 mz->reclaim_stat.recent_scanned[0];
4192 recent_scanned[1] +=
4193 mz->reclaim_stat.recent_scanned[1];
4194 }
4195 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4196 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4197 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4198 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4199 }
4200#endif
4201
4202 return 0;
4203}
4204
4205static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4206{
4207 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4208
4209 return mem_cgroup_swappiness(memcg);
4210}
4211
4212static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4213 u64 val)
4214{
4215 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4216 struct mem_cgroup *parent;
4217
4218 if (val > 100)
4219 return -EINVAL;
4220
4221 if (cgrp->parent == NULL)
4222 return -EINVAL;
4223
4224 parent = mem_cgroup_from_cont(cgrp->parent);
4225
4226 cgroup_lock();
4227
4228 /* If under hierarchy, only empty-root can set this value */
4229 if ((parent->use_hierarchy) ||
4230 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4231 cgroup_unlock();
4232 return -EINVAL;
4233 }
4234
4235 memcg->swappiness = val;
4236
4237 cgroup_unlock();
4238
4239 return 0;
4240}
4241
4242static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4243{
4244 struct mem_cgroup_threshold_ary *t;
4245 u64 usage;
4246 int i;
4247
4248 rcu_read_lock();
4249 if (!swap)
4250 t = rcu_dereference(memcg->thresholds.primary);
4251 else
4252 t = rcu_dereference(memcg->memsw_thresholds.primary);
4253
4254 if (!t)
4255 goto unlock;
4256
4257 usage = mem_cgroup_usage(memcg, swap);
4258
4259 /*
4260 * current_threshold points to threshold just below usage.
4261 * If it's not true, a threshold was crossed after last
4262 * call of __mem_cgroup_threshold().
4263 */
4264 i = t->current_threshold;
4265
4266 /*
4267 * Iterate backward over array of thresholds starting from
4268 * current_threshold and check if a threshold is crossed.
4269 * If none of thresholds below usage is crossed, we read
4270 * only one element of the array here.
4271 */
4272 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4273 eventfd_signal(t->entries[i].eventfd, 1);
4274
4275 /* i = current_threshold + 1 */
4276 i++;
4277
4278 /*
4279 * Iterate forward over array of thresholds starting from
4280 * current_threshold+1 and check if a threshold is crossed.
4281 * If none of thresholds above usage is crossed, we read
4282 * only one element of the array here.
4283 */
4284 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4285 eventfd_signal(t->entries[i].eventfd, 1);
4286
4287 /* Update current_threshold */
4288 t->current_threshold = i - 1;
4289unlock:
4290 rcu_read_unlock();
4291}
4292
4293static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4294{
4295 while (memcg) {
4296 __mem_cgroup_threshold(memcg, false);
4297 if (do_swap_account)
4298 __mem_cgroup_threshold(memcg, true);
4299
4300 memcg = parent_mem_cgroup(memcg);
4301 }
4302}
4303
4304static int compare_thresholds(const void *a, const void *b)
4305{
4306 const struct mem_cgroup_threshold *_a = a;
4307 const struct mem_cgroup_threshold *_b = b;
4308
4309 return _a->threshold - _b->threshold;
4310}
4311
4312static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4313{
4314 struct mem_cgroup_eventfd_list *ev;
4315
4316 list_for_each_entry(ev, &memcg->oom_notify, list)
4317 eventfd_signal(ev->eventfd, 1);
4318 return 0;
4319}
4320
4321static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4322{
4323 struct mem_cgroup *iter;
4324
4325 for_each_mem_cgroup_tree(iter, memcg)
4326 mem_cgroup_oom_notify_cb(iter);
4327}
4328
4329static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4330 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4331{
4332 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4333 struct mem_cgroup_thresholds *thresholds;
4334 struct mem_cgroup_threshold_ary *new;
4335 int type = MEMFILE_TYPE(cft->private);
4336 u64 threshold, usage;
4337 int i, size, ret;
4338
4339 ret = res_counter_memparse_write_strategy(args, &threshold);
4340 if (ret)
4341 return ret;
4342
4343 mutex_lock(&memcg->thresholds_lock);
4344
4345 if (type == _MEM)
4346 thresholds = &memcg->thresholds;
4347 else if (type == _MEMSWAP)
4348 thresholds = &memcg->memsw_thresholds;
4349 else
4350 BUG();
4351
4352 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4353
4354 /* Check if a threshold crossed before adding a new one */
4355 if (thresholds->primary)
4356 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4357
4358 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4359
4360 /* Allocate memory for new array of thresholds */
4361 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4362 GFP_KERNEL);
4363 if (!new) {
4364 ret = -ENOMEM;
4365 goto unlock;
4366 }
4367 new->size = size;
4368
4369 /* Copy thresholds (if any) to new array */
4370 if (thresholds->primary) {
4371 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4372 sizeof(struct mem_cgroup_threshold));
4373 }
4374
4375 /* Add new threshold */
4376 new->entries[size - 1].eventfd = eventfd;
4377 new->entries[size - 1].threshold = threshold;
4378
4379 /* Sort thresholds. Registering of new threshold isn't time-critical */
4380 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4381 compare_thresholds, NULL);
4382
4383 /* Find current threshold */
4384 new->current_threshold = -1;
4385 for (i = 0; i < size; i++) {
4386 if (new->entries[i].threshold < usage) {
4387 /*
4388 * new->current_threshold will not be used until
4389 * rcu_assign_pointer(), so it's safe to increment
4390 * it here.
4391 */
4392 ++new->current_threshold;
4393 }
4394 }
4395
4396 /* Free old spare buffer and save old primary buffer as spare */
4397 kfree(thresholds->spare);
4398 thresholds->spare = thresholds->primary;
4399
4400 rcu_assign_pointer(thresholds->primary, new);
4401
4402 /* To be sure that nobody uses thresholds */
4403 synchronize_rcu();
4404
4405unlock:
4406 mutex_unlock(&memcg->thresholds_lock);
4407
4408 return ret;
4409}
4410
4411static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4412 struct cftype *cft, struct eventfd_ctx *eventfd)
4413{
4414 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4415 struct mem_cgroup_thresholds *thresholds;
4416 struct mem_cgroup_threshold_ary *new;
4417 int type = MEMFILE_TYPE(cft->private);
4418 u64 usage;
4419 int i, j, size;
4420
4421 mutex_lock(&memcg->thresholds_lock);
4422 if (type == _MEM)
4423 thresholds = &memcg->thresholds;
4424 else if (type == _MEMSWAP)
4425 thresholds = &memcg->memsw_thresholds;
4426 else
4427 BUG();
4428
4429 /*
4430 * Something went wrong if we trying to unregister a threshold
4431 * if we don't have thresholds
4432 */
4433 BUG_ON(!thresholds);
4434
4435 if (!thresholds->primary)
4436 goto unlock;
4437
4438 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4439
4440 /* Check if a threshold crossed before removing */
4441 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4442
4443 /* Calculate new number of threshold */
4444 size = 0;
4445 for (i = 0; i < thresholds->primary->size; i++) {
4446 if (thresholds->primary->entries[i].eventfd != eventfd)
4447 size++;
4448 }
4449
4450 new = thresholds->spare;
4451
4452 /* Set thresholds array to NULL if we don't have thresholds */
4453 if (!size) {
4454 kfree(new);
4455 new = NULL;
4456 goto swap_buffers;
4457 }
4458
4459 new->size = size;
4460
4461 /* Copy thresholds and find current threshold */
4462 new->current_threshold = -1;
4463 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4464 if (thresholds->primary->entries[i].eventfd == eventfd)
4465 continue;
4466
4467 new->entries[j] = thresholds->primary->entries[i];
4468 if (new->entries[j].threshold < usage) {
4469 /*
4470 * new->current_threshold will not be used
4471 * until rcu_assign_pointer(), so it's safe to increment
4472 * it here.
4473 */
4474 ++new->current_threshold;
4475 }
4476 j++;
4477 }
4478
4479swap_buffers:
4480 /* Swap primary and spare array */
4481 thresholds->spare = thresholds->primary;
4482 rcu_assign_pointer(thresholds->primary, new);
4483
4484 /* To be sure that nobody uses thresholds */
4485 synchronize_rcu();
4486unlock:
4487 mutex_unlock(&memcg->thresholds_lock);
4488}
4489
4490static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4491 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4492{
4493 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4494 struct mem_cgroup_eventfd_list *event;
4495 int type = MEMFILE_TYPE(cft->private);
4496
4497 BUG_ON(type != _OOM_TYPE);
4498 event = kmalloc(sizeof(*event), GFP_KERNEL);
4499 if (!event)
4500 return -ENOMEM;
4501
4502 spin_lock(&memcg_oom_lock);
4503
4504 event->eventfd = eventfd;
4505 list_add(&event->list, &memcg->oom_notify);
4506
4507 /* already in OOM ? */
4508 if (atomic_read(&memcg->under_oom))
4509 eventfd_signal(eventfd, 1);
4510 spin_unlock(&memcg_oom_lock);
4511
4512 return 0;
4513}
4514
4515static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4516 struct cftype *cft, struct eventfd_ctx *eventfd)
4517{
4518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4519 struct mem_cgroup_eventfd_list *ev, *tmp;
4520 int type = MEMFILE_TYPE(cft->private);
4521
4522 BUG_ON(type != _OOM_TYPE);
4523
4524 spin_lock(&memcg_oom_lock);
4525
4526 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4527 if (ev->eventfd == eventfd) {
4528 list_del(&ev->list);
4529 kfree(ev);
4530 }
4531 }
4532
4533 spin_unlock(&memcg_oom_lock);
4534}
4535
4536static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4537 struct cftype *cft, struct cgroup_map_cb *cb)
4538{
4539 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4540
4541 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4542
4543 if (atomic_read(&memcg->under_oom))
4544 cb->fill(cb, "under_oom", 1);
4545 else
4546 cb->fill(cb, "under_oom", 0);
4547 return 0;
4548}
4549
4550static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4551 struct cftype *cft, u64 val)
4552{
4553 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4554 struct mem_cgroup *parent;
4555
4556 /* cannot set to root cgroup and only 0 and 1 are allowed */
4557 if (!cgrp->parent || !((val == 0) || (val == 1)))
4558 return -EINVAL;
4559
4560 parent = mem_cgroup_from_cont(cgrp->parent);
4561
4562 cgroup_lock();
4563 /* oom-kill-disable is a flag for subhierarchy. */
4564 if ((parent->use_hierarchy) ||
4565 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4566 cgroup_unlock();
4567 return -EINVAL;
4568 }
4569 memcg->oom_kill_disable = val;
4570 if (!val)
4571 memcg_oom_recover(memcg);
4572 cgroup_unlock();
4573 return 0;
4574}
4575
4576#ifdef CONFIG_NUMA
4577static const struct file_operations mem_control_numa_stat_file_operations = {
4578 .read = seq_read,
4579 .llseek = seq_lseek,
4580 .release = single_release,
4581};
4582
4583static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4584{
4585 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4586
4587 file->f_op = &mem_control_numa_stat_file_operations;
4588 return single_open(file, mem_control_numa_stat_show, cont);
4589}
4590#endif /* CONFIG_NUMA */
4591
4592#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4593static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4594{
4595 /*
4596 * Part of this would be better living in a separate allocation
4597 * function, leaving us with just the cgroup tree population work.
4598 * We, however, depend on state such as network's proto_list that
4599 * is only initialized after cgroup creation. I found the less
4600 * cumbersome way to deal with it to defer it all to populate time
4601 */
4602 return mem_cgroup_sockets_init(cont, ss);
4603};
4604
4605static void kmem_cgroup_destroy(struct cgroup *cont)
4606{
4607 mem_cgroup_sockets_destroy(cont);
4608}
4609#else
4610static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4611{
4612 return 0;
4613}
4614
4615static void kmem_cgroup_destroy(struct cgroup *cont)
4616{
4617}
4618#endif
4619
4620static struct cftype mem_cgroup_files[] = {
4621 {
4622 .name = "usage_in_bytes",
4623 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4624 .read_u64 = mem_cgroup_read,
4625 .register_event = mem_cgroup_usage_register_event,
4626 .unregister_event = mem_cgroup_usage_unregister_event,
4627 },
4628 {
4629 .name = "max_usage_in_bytes",
4630 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4631 .trigger = mem_cgroup_reset,
4632 .read_u64 = mem_cgroup_read,
4633 },
4634 {
4635 .name = "limit_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4637 .write_string = mem_cgroup_write,
4638 .read_u64 = mem_cgroup_read,
4639 },
4640 {
4641 .name = "soft_limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4643 .write_string = mem_cgroup_write,
4644 .read_u64 = mem_cgroup_read,
4645 },
4646 {
4647 .name = "failcnt",
4648 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4649 .trigger = mem_cgroup_reset,
4650 .read_u64 = mem_cgroup_read,
4651 },
4652 {
4653 .name = "stat",
4654 .read_map = mem_control_stat_show,
4655 },
4656 {
4657 .name = "force_empty",
4658 .trigger = mem_cgroup_force_empty_write,
4659 },
4660 {
4661 .name = "use_hierarchy",
4662 .write_u64 = mem_cgroup_hierarchy_write,
4663 .read_u64 = mem_cgroup_hierarchy_read,
4664 },
4665 {
4666 .name = "swappiness",
4667 .read_u64 = mem_cgroup_swappiness_read,
4668 .write_u64 = mem_cgroup_swappiness_write,
4669 },
4670 {
4671 .name = "move_charge_at_immigrate",
4672 .read_u64 = mem_cgroup_move_charge_read,
4673 .write_u64 = mem_cgroup_move_charge_write,
4674 },
4675 {
4676 .name = "oom_control",
4677 .read_map = mem_cgroup_oom_control_read,
4678 .write_u64 = mem_cgroup_oom_control_write,
4679 .register_event = mem_cgroup_oom_register_event,
4680 .unregister_event = mem_cgroup_oom_unregister_event,
4681 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4682 },
4683#ifdef CONFIG_NUMA
4684 {
4685 .name = "numa_stat",
4686 .open = mem_control_numa_stat_open,
4687 .mode = S_IRUGO,
4688 },
4689#endif
4690};
4691
4692#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4693static struct cftype memsw_cgroup_files[] = {
4694 {
4695 .name = "memsw.usage_in_bytes",
4696 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4697 .read_u64 = mem_cgroup_read,
4698 .register_event = mem_cgroup_usage_register_event,
4699 .unregister_event = mem_cgroup_usage_unregister_event,
4700 },
4701 {
4702 .name = "memsw.max_usage_in_bytes",
4703 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4704 .trigger = mem_cgroup_reset,
4705 .read_u64 = mem_cgroup_read,
4706 },
4707 {
4708 .name = "memsw.limit_in_bytes",
4709 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4710 .write_string = mem_cgroup_write,
4711 .read_u64 = mem_cgroup_read,
4712 },
4713 {
4714 .name = "memsw.failcnt",
4715 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4716 .trigger = mem_cgroup_reset,
4717 .read_u64 = mem_cgroup_read,
4718 },
4719};
4720
4721static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4722{
4723 if (!do_swap_account)
4724 return 0;
4725 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4726 ARRAY_SIZE(memsw_cgroup_files));
4727};
4728#else
4729static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4730{
4731 return 0;
4732}
4733#endif
4734
4735static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4736{
4737 struct mem_cgroup_per_node *pn;
4738 struct mem_cgroup_per_zone *mz;
4739 enum lru_list lru;
4740 int zone, tmp = node;
4741 /*
4742 * This routine is called against possible nodes.
4743 * But it's BUG to call kmalloc() against offline node.
4744 *
4745 * TODO: this routine can waste much memory for nodes which will
4746 * never be onlined. It's better to use memory hotplug callback
4747 * function.
4748 */
4749 if (!node_state(node, N_NORMAL_MEMORY))
4750 tmp = -1;
4751 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4752 if (!pn)
4753 return 1;
4754
4755 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4756 mz = &pn->zoneinfo[zone];
4757 for_each_lru(lru)
4758 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4759 mz->usage_in_excess = 0;
4760 mz->on_tree = false;
4761 mz->memcg = memcg;
4762 }
4763 memcg->info.nodeinfo[node] = pn;
4764 return 0;
4765}
4766
4767static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4768{
4769 kfree(memcg->info.nodeinfo[node]);
4770}
4771
4772static struct mem_cgroup *mem_cgroup_alloc(void)
4773{
4774 struct mem_cgroup *memcg;
4775 int size = sizeof(struct mem_cgroup);
4776
4777 /* Can be very big if MAX_NUMNODES is very big */
4778 if (size < PAGE_SIZE)
4779 memcg = kzalloc(size, GFP_KERNEL);
4780 else
4781 memcg = vzalloc(size);
4782
4783 if (!memcg)
4784 return NULL;
4785
4786 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4787 if (!memcg->stat)
4788 goto out_free;
4789 spin_lock_init(&memcg->pcp_counter_lock);
4790 return memcg;
4791
4792out_free:
4793 if (size < PAGE_SIZE)
4794 kfree(memcg);
4795 else
4796 vfree(memcg);
4797 return NULL;
4798}
4799
4800/*
4801 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4802 * but in process context. The work_freeing structure is overlaid
4803 * on the rcu_freeing structure, which itself is overlaid on memsw.
4804 */
4805static void vfree_work(struct work_struct *work)
4806{
4807 struct mem_cgroup *memcg;
4808
4809 memcg = container_of(work, struct mem_cgroup, work_freeing);
4810 vfree(memcg);
4811}
4812static void vfree_rcu(struct rcu_head *rcu_head)
4813{
4814 struct mem_cgroup *memcg;
4815
4816 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4817 INIT_WORK(&memcg->work_freeing, vfree_work);
4818 schedule_work(&memcg->work_freeing);
4819}
4820
4821/*
4822 * At destroying mem_cgroup, references from swap_cgroup can remain.
4823 * (scanning all at force_empty is too costly...)
4824 *
4825 * Instead of clearing all references at force_empty, we remember
4826 * the number of reference from swap_cgroup and free mem_cgroup when
4827 * it goes down to 0.
4828 *
4829 * Removal of cgroup itself succeeds regardless of refs from swap.
4830 */
4831
4832static void __mem_cgroup_free(struct mem_cgroup *memcg)
4833{
4834 int node;
4835
4836 mem_cgroup_remove_from_trees(memcg);
4837 free_css_id(&mem_cgroup_subsys, &memcg->css);
4838
4839 for_each_node(node)
4840 free_mem_cgroup_per_zone_info(memcg, node);
4841
4842 free_percpu(memcg->stat);
4843 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4844 kfree_rcu(memcg, rcu_freeing);
4845 else
4846 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4847}
4848
4849static void mem_cgroup_get(struct mem_cgroup *memcg)
4850{
4851 atomic_inc(&memcg->refcnt);
4852}
4853
4854static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4855{
4856 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4857 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4858 __mem_cgroup_free(memcg);
4859 if (parent)
4860 mem_cgroup_put(parent);
4861 }
4862}
4863
4864static void mem_cgroup_put(struct mem_cgroup *memcg)
4865{
4866 __mem_cgroup_put(memcg, 1);
4867}
4868
4869/*
4870 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4871 */
4872struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4873{
4874 if (!memcg->res.parent)
4875 return NULL;
4876 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4877}
4878EXPORT_SYMBOL(parent_mem_cgroup);
4879
4880#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4881static void __init enable_swap_cgroup(void)
4882{
4883 if (!mem_cgroup_disabled() && really_do_swap_account)
4884 do_swap_account = 1;
4885}
4886#else
4887static void __init enable_swap_cgroup(void)
4888{
4889}
4890#endif
4891
4892static int mem_cgroup_soft_limit_tree_init(void)
4893{
4894 struct mem_cgroup_tree_per_node *rtpn;
4895 struct mem_cgroup_tree_per_zone *rtpz;
4896 int tmp, node, zone;
4897
4898 for_each_node(node) {
4899 tmp = node;
4900 if (!node_state(node, N_NORMAL_MEMORY))
4901 tmp = -1;
4902 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4903 if (!rtpn)
4904 goto err_cleanup;
4905
4906 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4907
4908 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4909 rtpz = &rtpn->rb_tree_per_zone[zone];
4910 rtpz->rb_root = RB_ROOT;
4911 spin_lock_init(&rtpz->lock);
4912 }
4913 }
4914 return 0;
4915
4916err_cleanup:
4917 for_each_node(node) {
4918 if (!soft_limit_tree.rb_tree_per_node[node])
4919 break;
4920 kfree(soft_limit_tree.rb_tree_per_node[node]);
4921 soft_limit_tree.rb_tree_per_node[node] = NULL;
4922 }
4923 return 1;
4924
4925}
4926
4927static struct cgroup_subsys_state * __ref
4928mem_cgroup_create(struct cgroup *cont)
4929{
4930 struct mem_cgroup *memcg, *parent;
4931 long error = -ENOMEM;
4932 int node;
4933
4934 memcg = mem_cgroup_alloc();
4935 if (!memcg)
4936 return ERR_PTR(error);
4937
4938 for_each_node(node)
4939 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4940 goto free_out;
4941
4942 /* root ? */
4943 if (cont->parent == NULL) {
4944 int cpu;
4945 enable_swap_cgroup();
4946 parent = NULL;
4947 if (mem_cgroup_soft_limit_tree_init())
4948 goto free_out;
4949 root_mem_cgroup = memcg;
4950 for_each_possible_cpu(cpu) {
4951 struct memcg_stock_pcp *stock =
4952 &per_cpu(memcg_stock, cpu);
4953 INIT_WORK(&stock->work, drain_local_stock);
4954 }
4955 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4956 } else {
4957 parent = mem_cgroup_from_cont(cont->parent);
4958 memcg->use_hierarchy = parent->use_hierarchy;
4959 memcg->oom_kill_disable = parent->oom_kill_disable;
4960 }
4961
4962 if (parent && parent->use_hierarchy) {
4963 res_counter_init(&memcg->res, &parent->res);
4964 res_counter_init(&memcg->memsw, &parent->memsw);
4965 /*
4966 * We increment refcnt of the parent to ensure that we can
4967 * safely access it on res_counter_charge/uncharge.
4968 * This refcnt will be decremented when freeing this
4969 * mem_cgroup(see mem_cgroup_put).
4970 */
4971 mem_cgroup_get(parent);
4972 } else {
4973 res_counter_init(&memcg->res, NULL);
4974 res_counter_init(&memcg->memsw, NULL);
4975 }
4976 memcg->last_scanned_node = MAX_NUMNODES;
4977 INIT_LIST_HEAD(&memcg->oom_notify);
4978
4979 if (parent)
4980 memcg->swappiness = mem_cgroup_swappiness(parent);
4981 atomic_set(&memcg->refcnt, 1);
4982 memcg->move_charge_at_immigrate = 0;
4983 mutex_init(&memcg->thresholds_lock);
4984 return &memcg->css;
4985free_out:
4986 __mem_cgroup_free(memcg);
4987 return ERR_PTR(error);
4988}
4989
4990static int mem_cgroup_pre_destroy(struct cgroup *cont)
4991{
4992 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4993
4994 return mem_cgroup_force_empty(memcg, false);
4995}
4996
4997static void mem_cgroup_destroy(struct cgroup *cont)
4998{
4999 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5000
5001 kmem_cgroup_destroy(cont);
5002
5003 mem_cgroup_put(memcg);
5004}
5005
5006static int mem_cgroup_populate(struct cgroup_subsys *ss,
5007 struct cgroup *cont)
5008{
5009 int ret;
5010
5011 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5012 ARRAY_SIZE(mem_cgroup_files));
5013
5014 if (!ret)
5015 ret = register_memsw_files(cont, ss);
5016
5017 if (!ret)
5018 ret = register_kmem_files(cont, ss);
5019
5020 return ret;
5021}
5022
5023#ifdef CONFIG_MMU
5024/* Handlers for move charge at task migration. */
5025#define PRECHARGE_COUNT_AT_ONCE 256
5026static int mem_cgroup_do_precharge(unsigned long count)
5027{
5028 int ret = 0;
5029 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5030 struct mem_cgroup *memcg = mc.to;
5031
5032 if (mem_cgroup_is_root(memcg)) {
5033 mc.precharge += count;
5034 /* we don't need css_get for root */
5035 return ret;
5036 }
5037 /* try to charge at once */
5038 if (count > 1) {
5039 struct res_counter *dummy;
5040 /*
5041 * "memcg" cannot be under rmdir() because we've already checked
5042 * by cgroup_lock_live_cgroup() that it is not removed and we
5043 * are still under the same cgroup_mutex. So we can postpone
5044 * css_get().
5045 */
5046 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5047 goto one_by_one;
5048 if (do_swap_account && res_counter_charge(&memcg->memsw,
5049 PAGE_SIZE * count, &dummy)) {
5050 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5051 goto one_by_one;
5052 }
5053 mc.precharge += count;
5054 return ret;
5055 }
5056one_by_one:
5057 /* fall back to one by one charge */
5058 while (count--) {
5059 if (signal_pending(current)) {
5060 ret = -EINTR;
5061 break;
5062 }
5063 if (!batch_count--) {
5064 batch_count = PRECHARGE_COUNT_AT_ONCE;
5065 cond_resched();
5066 }
5067 ret = __mem_cgroup_try_charge(NULL,
5068 GFP_KERNEL, 1, &memcg, false);
5069 if (ret)
5070 /* mem_cgroup_clear_mc() will do uncharge later */
5071 return ret;
5072 mc.precharge++;
5073 }
5074 return ret;
5075}
5076
5077/**
5078 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5079 * @vma: the vma the pte to be checked belongs
5080 * @addr: the address corresponding to the pte to be checked
5081 * @ptent: the pte to be checked
5082 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5083 *
5084 * Returns
5085 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5086 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5087 * move charge. if @target is not NULL, the page is stored in target->page
5088 * with extra refcnt got(Callers should handle it).
5089 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5090 * target for charge migration. if @target is not NULL, the entry is stored
5091 * in target->ent.
5092 *
5093 * Called with pte lock held.
5094 */
5095union mc_target {
5096 struct page *page;
5097 swp_entry_t ent;
5098};
5099
5100enum mc_target_type {
5101 MC_TARGET_NONE, /* not used */
5102 MC_TARGET_PAGE,
5103 MC_TARGET_SWAP,
5104};
5105
5106static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5107 unsigned long addr, pte_t ptent)
5108{
5109 struct page *page = vm_normal_page(vma, addr, ptent);
5110
5111 if (!page || !page_mapped(page))
5112 return NULL;
5113 if (PageAnon(page)) {
5114 /* we don't move shared anon */
5115 if (!move_anon() || page_mapcount(page) > 2)
5116 return NULL;
5117 } else if (!move_file())
5118 /* we ignore mapcount for file pages */
5119 return NULL;
5120 if (!get_page_unless_zero(page))
5121 return NULL;
5122
5123 return page;
5124}
5125
5126static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5127 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5128{
5129 int usage_count;
5130 struct page *page = NULL;
5131 swp_entry_t ent = pte_to_swp_entry(ptent);
5132
5133 if (!move_anon() || non_swap_entry(ent))
5134 return NULL;
5135 usage_count = mem_cgroup_count_swap_user(ent, &page);
5136 if (usage_count > 1) { /* we don't move shared anon */
5137 if (page)
5138 put_page(page);
5139 return NULL;
5140 }
5141 if (do_swap_account)
5142 entry->val = ent.val;
5143
5144 return page;
5145}
5146
5147static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5148 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5149{
5150 struct page *page = NULL;
5151 struct inode *inode;
5152 struct address_space *mapping;
5153 pgoff_t pgoff;
5154
5155 if (!vma->vm_file) /* anonymous vma */
5156 return NULL;
5157 if (!move_file())
5158 return NULL;
5159
5160 inode = vma->vm_file->f_path.dentry->d_inode;
5161 mapping = vma->vm_file->f_mapping;
5162 if (pte_none(ptent))
5163 pgoff = linear_page_index(vma, addr);
5164 else /* pte_file(ptent) is true */
5165 pgoff = pte_to_pgoff(ptent);
5166
5167 /* page is moved even if it's not RSS of this task(page-faulted). */
5168 page = find_get_page(mapping, pgoff);
5169
5170#ifdef CONFIG_SWAP
5171 /* shmem/tmpfs may report page out on swap: account for that too. */
5172 if (radix_tree_exceptional_entry(page)) {
5173 swp_entry_t swap = radix_to_swp_entry(page);
5174 if (do_swap_account)
5175 *entry = swap;
5176 page = find_get_page(&swapper_space, swap.val);
5177 }
5178#endif
5179 return page;
5180}
5181
5182static int is_target_pte_for_mc(struct vm_area_struct *vma,
5183 unsigned long addr, pte_t ptent, union mc_target *target)
5184{
5185 struct page *page = NULL;
5186 struct page_cgroup *pc;
5187 int ret = 0;
5188 swp_entry_t ent = { .val = 0 };
5189
5190 if (pte_present(ptent))
5191 page = mc_handle_present_pte(vma, addr, ptent);
5192 else if (is_swap_pte(ptent))
5193 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5194 else if (pte_none(ptent) || pte_file(ptent))
5195 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5196
5197 if (!page && !ent.val)
5198 return 0;
5199 if (page) {
5200 pc = lookup_page_cgroup(page);
5201 /*
5202 * Do only loose check w/o page_cgroup lock.
5203 * mem_cgroup_move_account() checks the pc is valid or not under
5204 * the lock.
5205 */
5206 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5207 ret = MC_TARGET_PAGE;
5208 if (target)
5209 target->page = page;
5210 }
5211 if (!ret || !target)
5212 put_page(page);
5213 }
5214 /* There is a swap entry and a page doesn't exist or isn't charged */
5215 if (ent.val && !ret &&
5216 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5217 ret = MC_TARGET_SWAP;
5218 if (target)
5219 target->ent = ent;
5220 }
5221 return ret;
5222}
5223
5224static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5225 unsigned long addr, unsigned long end,
5226 struct mm_walk *walk)
5227{
5228 struct vm_area_struct *vma = walk->private;
5229 pte_t *pte;
5230 spinlock_t *ptl;
5231
5232 split_huge_page_pmd(walk->mm, pmd);
5233 if (pmd_trans_unstable(pmd))
5234 return 0;
5235
5236 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5237 for (; addr != end; pte++, addr += PAGE_SIZE)
5238 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5239 mc.precharge++; /* increment precharge temporarily */
5240 pte_unmap_unlock(pte - 1, ptl);
5241 cond_resched();
5242
5243 return 0;
5244}
5245
5246static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5247{
5248 unsigned long precharge;
5249 struct vm_area_struct *vma;
5250
5251 down_read(&mm->mmap_sem);
5252 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5253 struct mm_walk mem_cgroup_count_precharge_walk = {
5254 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5255 .mm = mm,
5256 .private = vma,
5257 };
5258 if (is_vm_hugetlb_page(vma))
5259 continue;
5260 walk_page_range(vma->vm_start, vma->vm_end,
5261 &mem_cgroup_count_precharge_walk);
5262 }
5263 up_read(&mm->mmap_sem);
5264
5265 precharge = mc.precharge;
5266 mc.precharge = 0;
5267
5268 return precharge;
5269}
5270
5271static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5272{
5273 unsigned long precharge = mem_cgroup_count_precharge(mm);
5274
5275 VM_BUG_ON(mc.moving_task);
5276 mc.moving_task = current;
5277 return mem_cgroup_do_precharge(precharge);
5278}
5279
5280/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5281static void __mem_cgroup_clear_mc(void)
5282{
5283 struct mem_cgroup *from = mc.from;
5284 struct mem_cgroup *to = mc.to;
5285
5286 /* we must uncharge all the leftover precharges from mc.to */
5287 if (mc.precharge) {
5288 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5289 mc.precharge = 0;
5290 }
5291 /*
5292 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5293 * we must uncharge here.
5294 */
5295 if (mc.moved_charge) {
5296 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5297 mc.moved_charge = 0;
5298 }
5299 /* we must fixup refcnts and charges */
5300 if (mc.moved_swap) {
5301 /* uncharge swap account from the old cgroup */
5302 if (!mem_cgroup_is_root(mc.from))
5303 res_counter_uncharge(&mc.from->memsw,
5304 PAGE_SIZE * mc.moved_swap);
5305 __mem_cgroup_put(mc.from, mc.moved_swap);
5306
5307 if (!mem_cgroup_is_root(mc.to)) {
5308 /*
5309 * we charged both to->res and to->memsw, so we should
5310 * uncharge to->res.
5311 */
5312 res_counter_uncharge(&mc.to->res,
5313 PAGE_SIZE * mc.moved_swap);
5314 }
5315 /* we've already done mem_cgroup_get(mc.to) */
5316 mc.moved_swap = 0;
5317 }
5318 memcg_oom_recover(from);
5319 memcg_oom_recover(to);
5320 wake_up_all(&mc.waitq);
5321}
5322
5323static void mem_cgroup_clear_mc(void)
5324{
5325 struct mem_cgroup *from = mc.from;
5326
5327 /*
5328 * we must clear moving_task before waking up waiters at the end of
5329 * task migration.
5330 */
5331 mc.moving_task = NULL;
5332 __mem_cgroup_clear_mc();
5333 spin_lock(&mc.lock);
5334 mc.from = NULL;
5335 mc.to = NULL;
5336 spin_unlock(&mc.lock);
5337 mem_cgroup_end_move(from);
5338}
5339
5340static int mem_cgroup_can_attach(struct cgroup *cgroup,
5341 struct cgroup_taskset *tset)
5342{
5343 struct task_struct *p = cgroup_taskset_first(tset);
5344 int ret = 0;
5345 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5346
5347 if (memcg->move_charge_at_immigrate) {
5348 struct mm_struct *mm;
5349 struct mem_cgroup *from = mem_cgroup_from_task(p);
5350
5351 VM_BUG_ON(from == memcg);
5352
5353 mm = get_task_mm(p);
5354 if (!mm)
5355 return 0;
5356 /* We move charges only when we move a owner of the mm */
5357 if (mm->owner == p) {
5358 VM_BUG_ON(mc.from);
5359 VM_BUG_ON(mc.to);
5360 VM_BUG_ON(mc.precharge);
5361 VM_BUG_ON(mc.moved_charge);
5362 VM_BUG_ON(mc.moved_swap);
5363 mem_cgroup_start_move(from);
5364 spin_lock(&mc.lock);
5365 mc.from = from;
5366 mc.to = memcg;
5367 spin_unlock(&mc.lock);
5368 /* We set mc.moving_task later */
5369
5370 ret = mem_cgroup_precharge_mc(mm);
5371 if (ret)
5372 mem_cgroup_clear_mc();
5373 }
5374 mmput(mm);
5375 }
5376 return ret;
5377}
5378
5379static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5380 struct cgroup_taskset *tset)
5381{
5382 mem_cgroup_clear_mc();
5383}
5384
5385static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5386 unsigned long addr, unsigned long end,
5387 struct mm_walk *walk)
5388{
5389 int ret = 0;
5390 struct vm_area_struct *vma = walk->private;
5391 pte_t *pte;
5392 spinlock_t *ptl;
5393
5394 split_huge_page_pmd(walk->mm, pmd);
5395 if (pmd_trans_unstable(pmd))
5396 return 0;
5397retry:
5398 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5399 for (; addr != end; addr += PAGE_SIZE) {
5400 pte_t ptent = *(pte++);
5401 union mc_target target;
5402 int type;
5403 struct page *page;
5404 struct page_cgroup *pc;
5405 swp_entry_t ent;
5406
5407 if (!mc.precharge)
5408 break;
5409
5410 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5411 switch (type) {
5412 case MC_TARGET_PAGE:
5413 page = target.page;
5414 if (isolate_lru_page(page))
5415 goto put;
5416 pc = lookup_page_cgroup(page);
5417 if (!mem_cgroup_move_account(page, 1, pc,
5418 mc.from, mc.to, false)) {
5419 mc.precharge--;
5420 /* we uncharge from mc.from later. */
5421 mc.moved_charge++;
5422 }
5423 putback_lru_page(page);
5424put: /* is_target_pte_for_mc() gets the page */
5425 put_page(page);
5426 break;
5427 case MC_TARGET_SWAP:
5428 ent = target.ent;
5429 if (!mem_cgroup_move_swap_account(ent,
5430 mc.from, mc.to, false)) {
5431 mc.precharge--;
5432 /* we fixup refcnts and charges later. */
5433 mc.moved_swap++;
5434 }
5435 break;
5436 default:
5437 break;
5438 }
5439 }
5440 pte_unmap_unlock(pte - 1, ptl);
5441 cond_resched();
5442
5443 if (addr != end) {
5444 /*
5445 * We have consumed all precharges we got in can_attach().
5446 * We try charge one by one, but don't do any additional
5447 * charges to mc.to if we have failed in charge once in attach()
5448 * phase.
5449 */
5450 ret = mem_cgroup_do_precharge(1);
5451 if (!ret)
5452 goto retry;
5453 }
5454
5455 return ret;
5456}
5457
5458static void mem_cgroup_move_charge(struct mm_struct *mm)
5459{
5460 struct vm_area_struct *vma;
5461
5462 lru_add_drain_all();
5463retry:
5464 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5465 /*
5466 * Someone who are holding the mmap_sem might be waiting in
5467 * waitq. So we cancel all extra charges, wake up all waiters,
5468 * and retry. Because we cancel precharges, we might not be able
5469 * to move enough charges, but moving charge is a best-effort
5470 * feature anyway, so it wouldn't be a big problem.
5471 */
5472 __mem_cgroup_clear_mc();
5473 cond_resched();
5474 goto retry;
5475 }
5476 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5477 int ret;
5478 struct mm_walk mem_cgroup_move_charge_walk = {
5479 .pmd_entry = mem_cgroup_move_charge_pte_range,
5480 .mm = mm,
5481 .private = vma,
5482 };
5483 if (is_vm_hugetlb_page(vma))
5484 continue;
5485 ret = walk_page_range(vma->vm_start, vma->vm_end,
5486 &mem_cgroup_move_charge_walk);
5487 if (ret)
5488 /*
5489 * means we have consumed all precharges and failed in
5490 * doing additional charge. Just abandon here.
5491 */
5492 break;
5493 }
5494 up_read(&mm->mmap_sem);
5495}
5496
5497static void mem_cgroup_move_task(struct cgroup *cont,
5498 struct cgroup_taskset *tset)
5499{
5500 struct task_struct *p = cgroup_taskset_first(tset);
5501 struct mm_struct *mm = get_task_mm(p);
5502
5503 if (mm) {
5504 if (mc.to)
5505 mem_cgroup_move_charge(mm);
5506 put_swap_token(mm);
5507 mmput(mm);
5508 }
5509 if (mc.to)
5510 mem_cgroup_clear_mc();
5511}
5512#else /* !CONFIG_MMU */
5513static int mem_cgroup_can_attach(struct cgroup *cgroup,
5514 struct cgroup_taskset *tset)
5515{
5516 return 0;
5517}
5518static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5519 struct cgroup_taskset *tset)
5520{
5521}
5522static void mem_cgroup_move_task(struct cgroup *cont,
5523 struct cgroup_taskset *tset)
5524{
5525}
5526#endif
5527
5528struct cgroup_subsys mem_cgroup_subsys = {
5529 .name = "memory",
5530 .subsys_id = mem_cgroup_subsys_id,
5531 .create = mem_cgroup_create,
5532 .pre_destroy = mem_cgroup_pre_destroy,
5533 .destroy = mem_cgroup_destroy,
5534 .populate = mem_cgroup_populate,
5535 .can_attach = mem_cgroup_can_attach,
5536 .cancel_attach = mem_cgroup_cancel_attach,
5537 .attach = mem_cgroup_move_task,
5538 .early_init = 0,
5539 .use_id = 1,
5540};
5541
5542#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5543static int __init enable_swap_account(char *s)
5544{
5545 /* consider enabled if no parameter or 1 is given */
5546 if (!strcmp(s, "1"))
5547 really_do_swap_account = 1;
5548 else if (!strcmp(s, "0"))
5549 really_do_swap_account = 0;
5550 return 1;
5551}
5552__setup("swapaccount=", enable_swap_account);
5553
5554#endif