| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Procedures for maintaining information about logical memory blocks. |
| 4 | * |
| 5 | * Peter Bergner, IBM Corp. June 2001. |
| 6 | * Copyright (C) 2001 Peter Bergner. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/kernel.h> |
| 10 | #include <linux/slab.h> |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/bitops.h> |
| 13 | #include <linux/poison.h> |
| 14 | #include <linux/pfn.h> |
| 15 | #include <linux/debugfs.h> |
| 16 | #include <linux/kmemleak.h> |
| 17 | #include <linux/seq_file.h> |
| 18 | #include <linux/memblock.h> |
| 19 | #include <linux/mutex.h> |
| 20 | |
| 21 | #ifdef CONFIG_KEXEC_HANDOVER |
| 22 | #include <linux/libfdt.h> |
| 23 | #include <linux/kexec_handover.h> |
| 24 | #endif /* CONFIG_KEXEC_HANDOVER */ |
| 25 | |
| 26 | #include <asm/sections.h> |
| 27 | #include <linux/io.h> |
| 28 | |
| 29 | #include "internal.h" |
| 30 | |
| 31 | #define INIT_MEMBLOCK_REGIONS 128 |
| 32 | #define INIT_PHYSMEM_REGIONS 4 |
| 33 | |
| 34 | #ifndef INIT_MEMBLOCK_RESERVED_REGIONS |
| 35 | # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS |
| 36 | #endif |
| 37 | |
| 38 | #ifndef INIT_MEMBLOCK_MEMORY_REGIONS |
| 39 | #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS |
| 40 | #endif |
| 41 | |
| 42 | /** |
| 43 | * DOC: memblock overview |
| 44 | * |
| 45 | * Memblock is a method of managing memory regions during the early |
| 46 | * boot period when the usual kernel memory allocators are not up and |
| 47 | * running. |
| 48 | * |
| 49 | * Memblock views the system memory as collections of contiguous |
| 50 | * regions. There are several types of these collections: |
| 51 | * |
| 52 | * * ``memory`` - describes the physical memory available to the |
| 53 | * kernel; this may differ from the actual physical memory installed |
| 54 | * in the system, for instance when the memory is restricted with |
| 55 | * ``mem=`` command line parameter |
| 56 | * * ``reserved`` - describes the regions that were allocated |
| 57 | * * ``physmem`` - describes the actual physical memory available during |
| 58 | * boot regardless of the possible restrictions and memory hot(un)plug; |
| 59 | * the ``physmem`` type is only available on some architectures. |
| 60 | * |
| 61 | * Each region is represented by struct memblock_region that |
| 62 | * defines the region extents, its attributes and NUMA node id on NUMA |
| 63 | * systems. Every memory type is described by the struct memblock_type |
| 64 | * which contains an array of memory regions along with |
| 65 | * the allocator metadata. The "memory" and "reserved" types are nicely |
| 66 | * wrapped with struct memblock. This structure is statically |
| 67 | * initialized at build time. The region arrays are initially sized to |
| 68 | * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and |
| 69 | * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array |
| 70 | * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. |
| 71 | * The memblock_allow_resize() enables automatic resizing of the region |
| 72 | * arrays during addition of new regions. This feature should be used |
| 73 | * with care so that memory allocated for the region array will not |
| 74 | * overlap with areas that should be reserved, for example initrd. |
| 75 | * |
| 76 | * The early architecture setup should tell memblock what the physical |
| 77 | * memory layout is by using memblock_add() or memblock_add_node() |
| 78 | * functions. The first function does not assign the region to a NUMA |
| 79 | * node and it is appropriate for UMA systems. Yet, it is possible to |
| 80 | * use it on NUMA systems as well and assign the region to a NUMA node |
| 81 | * later in the setup process using memblock_set_node(). The |
| 82 | * memblock_add_node() performs such an assignment directly. |
| 83 | * |
| 84 | * Once memblock is setup the memory can be allocated using one of the |
| 85 | * API variants: |
| 86 | * |
| 87 | * * memblock_phys_alloc*() - these functions return the **physical** |
| 88 | * address of the allocated memory |
| 89 | * * memblock_alloc*() - these functions return the **virtual** address |
| 90 | * of the allocated memory. |
| 91 | * |
| 92 | * Note, that both API variants use implicit assumptions about allowed |
| 93 | * memory ranges and the fallback methods. Consult the documentation |
| 94 | * of memblock_alloc_internal() and memblock_alloc_range_nid() |
| 95 | * functions for more elaborate description. |
| 96 | * |
| 97 | * As the system boot progresses, the architecture specific mem_init() |
| 98 | * function frees all the memory to the buddy page allocator. |
| 99 | * |
| 100 | * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the |
| 101 | * memblock data structures (except "physmem") will be discarded after the |
| 102 | * system initialization completes. |
| 103 | */ |
| 104 | |
| 105 | #ifndef CONFIG_NUMA |
| 106 | struct pglist_data __refdata contig_page_data; |
| 107 | EXPORT_SYMBOL(contig_page_data); |
| 108 | #endif |
| 109 | |
| 110 | unsigned long max_low_pfn; |
| 111 | unsigned long min_low_pfn; |
| 112 | unsigned long max_pfn; |
| 113 | unsigned long long max_possible_pfn; |
| 114 | |
| 115 | #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH |
| 116 | /* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */ |
| 117 | static bool kho_scratch_only; |
| 118 | #else |
| 119 | #define kho_scratch_only false |
| 120 | #endif |
| 121 | |
| 122 | static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; |
| 123 | static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; |
| 124 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 125 | static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; |
| 126 | #endif |
| 127 | |
| 128 | struct memblock memblock __initdata_memblock = { |
| 129 | .memory.regions = memblock_memory_init_regions, |
| 130 | .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS, |
| 131 | .memory.name = "memory", |
| 132 | |
| 133 | .reserved.regions = memblock_reserved_init_regions, |
| 134 | .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, |
| 135 | .reserved.name = "reserved", |
| 136 | |
| 137 | .bottom_up = false, |
| 138 | .current_limit = MEMBLOCK_ALLOC_ANYWHERE, |
| 139 | }; |
| 140 | |
| 141 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 142 | struct memblock_type physmem = { |
| 143 | .regions = memblock_physmem_init_regions, |
| 144 | .max = INIT_PHYSMEM_REGIONS, |
| 145 | .name = "physmem", |
| 146 | }; |
| 147 | #endif |
| 148 | |
| 149 | /* |
| 150 | * keep a pointer to &memblock.memory in the text section to use it in |
| 151 | * __next_mem_range() and its helpers. |
| 152 | * For architectures that do not keep memblock data after init, this |
| 153 | * pointer will be reset to NULL at memblock_discard() |
| 154 | */ |
| 155 | static __refdata struct memblock_type *memblock_memory = &memblock.memory; |
| 156 | |
| 157 | #define for_each_memblock_type(i, memblock_type, rgn) \ |
| 158 | for (i = 0, rgn = &memblock_type->regions[0]; \ |
| 159 | i < memblock_type->cnt; \ |
| 160 | i++, rgn = &memblock_type->regions[i]) |
| 161 | |
| 162 | #define memblock_dbg(fmt, ...) \ |
| 163 | do { \ |
| 164 | if (memblock_debug) \ |
| 165 | pr_info(fmt, ##__VA_ARGS__); \ |
| 166 | } while (0) |
| 167 | |
| 168 | static int memblock_debug __initdata_memblock; |
| 169 | static bool system_has_some_mirror __initdata_memblock; |
| 170 | static int memblock_can_resize __initdata_memblock; |
| 171 | static int memblock_memory_in_slab __initdata_memblock; |
| 172 | static int memblock_reserved_in_slab __initdata_memblock; |
| 173 | |
| 174 | bool __init_memblock memblock_has_mirror(void) |
| 175 | { |
| 176 | return system_has_some_mirror; |
| 177 | } |
| 178 | |
| 179 | static enum memblock_flags __init_memblock choose_memblock_flags(void) |
| 180 | { |
| 181 | /* skip non-scratch memory for kho early boot allocations */ |
| 182 | if (kho_scratch_only) |
| 183 | return MEMBLOCK_KHO_SCRATCH; |
| 184 | |
| 185 | return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; |
| 186 | } |
| 187 | |
| 188 | /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ |
| 189 | static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) |
| 190 | { |
| 191 | return *size = min(*size, PHYS_ADDR_MAX - base); |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * Address comparison utilities |
| 196 | */ |
| 197 | unsigned long __init_memblock |
| 198 | memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, |
| 199 | phys_addr_t size2) |
| 200 | { |
| 201 | return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); |
| 202 | } |
| 203 | |
| 204 | bool __init_memblock memblock_overlaps_region(struct memblock_type *type, |
| 205 | phys_addr_t base, phys_addr_t size) |
| 206 | { |
| 207 | unsigned long i; |
| 208 | |
| 209 | memblock_cap_size(base, &size); |
| 210 | |
| 211 | for (i = 0; i < type->cnt; i++) |
| 212 | if (memblock_addrs_overlap(base, size, type->regions[i].base, |
| 213 | type->regions[i].size)) |
| 214 | return true; |
| 215 | return false; |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * __memblock_find_range_bottom_up - find free area utility in bottom-up |
| 220 | * @start: start of candidate range |
| 221 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| 222 | * %MEMBLOCK_ALLOC_ACCESSIBLE |
| 223 | * @size: size of free area to find |
| 224 | * @align: alignment of free area to find |
| 225 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 226 | * @flags: pick from blocks based on memory attributes |
| 227 | * |
| 228 | * Utility called from memblock_find_in_range_node(), find free area bottom-up. |
| 229 | * |
| 230 | * Return: |
| 231 | * Found address on success, 0 on failure. |
| 232 | */ |
| 233 | static phys_addr_t __init_memblock |
| 234 | __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, |
| 235 | phys_addr_t size, phys_addr_t align, int nid, |
| 236 | enum memblock_flags flags) |
| 237 | { |
| 238 | phys_addr_t this_start, this_end, cand; |
| 239 | u64 i; |
| 240 | |
| 241 | for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { |
| 242 | this_start = clamp(this_start, start, end); |
| 243 | this_end = clamp(this_end, start, end); |
| 244 | |
| 245 | cand = round_up(this_start, align); |
| 246 | if (cand < this_end && this_end - cand >= size) |
| 247 | return cand; |
| 248 | } |
| 249 | |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | /** |
| 254 | * __memblock_find_range_top_down - find free area utility, in top-down |
| 255 | * @start: start of candidate range |
| 256 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| 257 | * %MEMBLOCK_ALLOC_ACCESSIBLE |
| 258 | * @size: size of free area to find |
| 259 | * @align: alignment of free area to find |
| 260 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 261 | * @flags: pick from blocks based on memory attributes |
| 262 | * |
| 263 | * Utility called from memblock_find_in_range_node(), find free area top-down. |
| 264 | * |
| 265 | * Return: |
| 266 | * Found address on success, 0 on failure. |
| 267 | */ |
| 268 | static phys_addr_t __init_memblock |
| 269 | __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, |
| 270 | phys_addr_t size, phys_addr_t align, int nid, |
| 271 | enum memblock_flags flags) |
| 272 | { |
| 273 | phys_addr_t this_start, this_end, cand; |
| 274 | u64 i; |
| 275 | |
| 276 | for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, |
| 277 | NULL) { |
| 278 | this_start = clamp(this_start, start, end); |
| 279 | this_end = clamp(this_end, start, end); |
| 280 | |
| 281 | if (this_end < size) |
| 282 | continue; |
| 283 | |
| 284 | cand = round_down(this_end - size, align); |
| 285 | if (cand >= this_start) |
| 286 | return cand; |
| 287 | } |
| 288 | |
| 289 | return 0; |
| 290 | } |
| 291 | |
| 292 | /** |
| 293 | * memblock_find_in_range_node - find free area in given range and node |
| 294 | * @size: size of free area to find |
| 295 | * @align: alignment of free area to find |
| 296 | * @start: start of candidate range |
| 297 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| 298 | * %MEMBLOCK_ALLOC_ACCESSIBLE |
| 299 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 300 | * @flags: pick from blocks based on memory attributes |
| 301 | * |
| 302 | * Find @size free area aligned to @align in the specified range and node. |
| 303 | * |
| 304 | * Return: |
| 305 | * Found address on success, 0 on failure. |
| 306 | */ |
| 307 | static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, |
| 308 | phys_addr_t align, phys_addr_t start, |
| 309 | phys_addr_t end, int nid, |
| 310 | enum memblock_flags flags) |
| 311 | { |
| 312 | /* pump up @end */ |
| 313 | if (end == MEMBLOCK_ALLOC_ACCESSIBLE || |
| 314 | end == MEMBLOCK_ALLOC_NOLEAKTRACE) |
| 315 | end = memblock.current_limit; |
| 316 | |
| 317 | /* avoid allocating the first page */ |
| 318 | start = max_t(phys_addr_t, start, PAGE_SIZE); |
| 319 | end = max(start, end); |
| 320 | |
| 321 | if (memblock_bottom_up()) |
| 322 | return __memblock_find_range_bottom_up(start, end, size, align, |
| 323 | nid, flags); |
| 324 | else |
| 325 | return __memblock_find_range_top_down(start, end, size, align, |
| 326 | nid, flags); |
| 327 | } |
| 328 | |
| 329 | /** |
| 330 | * memblock_find_in_range - find free area in given range |
| 331 | * @start: start of candidate range |
| 332 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| 333 | * %MEMBLOCK_ALLOC_ACCESSIBLE |
| 334 | * @size: size of free area to find |
| 335 | * @align: alignment of free area to find |
| 336 | * |
| 337 | * Find @size free area aligned to @align in the specified range. |
| 338 | * |
| 339 | * Return: |
| 340 | * Found address on success, 0 on failure. |
| 341 | */ |
| 342 | static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, |
| 343 | phys_addr_t end, phys_addr_t size, |
| 344 | phys_addr_t align) |
| 345 | { |
| 346 | phys_addr_t ret; |
| 347 | enum memblock_flags flags = choose_memblock_flags(); |
| 348 | |
| 349 | again: |
| 350 | ret = memblock_find_in_range_node(size, align, start, end, |
| 351 | NUMA_NO_NODE, flags); |
| 352 | |
| 353 | if (!ret && (flags & MEMBLOCK_MIRROR)) { |
| 354 | pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", |
| 355 | &size); |
| 356 | flags &= ~MEMBLOCK_MIRROR; |
| 357 | goto again; |
| 358 | } |
| 359 | |
| 360 | return ret; |
| 361 | } |
| 362 | |
| 363 | static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) |
| 364 | { |
| 365 | type->total_size -= type->regions[r].size; |
| 366 | memmove(&type->regions[r], &type->regions[r + 1], |
| 367 | (type->cnt - (r + 1)) * sizeof(type->regions[r])); |
| 368 | type->cnt--; |
| 369 | |
| 370 | /* Special case for empty arrays */ |
| 371 | if (type->cnt == 0) { |
| 372 | WARN_ON(type->total_size != 0); |
| 373 | type->regions[0].base = 0; |
| 374 | type->regions[0].size = 0; |
| 375 | type->regions[0].flags = 0; |
| 376 | memblock_set_region_node(&type->regions[0], MAX_NUMNODES); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | #ifndef CONFIG_ARCH_KEEP_MEMBLOCK |
| 381 | /** |
| 382 | * memblock_discard - discard memory and reserved arrays if they were allocated |
| 383 | */ |
| 384 | void __init memblock_discard(void) |
| 385 | { |
| 386 | phys_addr_t addr, size; |
| 387 | |
| 388 | if (memblock.reserved.regions != memblock_reserved_init_regions) { |
| 389 | addr = __pa(memblock.reserved.regions); |
| 390 | size = PAGE_ALIGN(sizeof(struct memblock_region) * |
| 391 | memblock.reserved.max); |
| 392 | if (memblock_reserved_in_slab) |
| 393 | kfree(memblock.reserved.regions); |
| 394 | else |
| 395 | memblock_free_late(addr, size); |
| 396 | } |
| 397 | |
| 398 | if (memblock.memory.regions != memblock_memory_init_regions) { |
| 399 | addr = __pa(memblock.memory.regions); |
| 400 | size = PAGE_ALIGN(sizeof(struct memblock_region) * |
| 401 | memblock.memory.max); |
| 402 | if (memblock_memory_in_slab) |
| 403 | kfree(memblock.memory.regions); |
| 404 | else |
| 405 | memblock_free_late(addr, size); |
| 406 | } |
| 407 | |
| 408 | memblock_memory = NULL; |
| 409 | } |
| 410 | #endif |
| 411 | |
| 412 | /** |
| 413 | * memblock_double_array - double the size of the memblock regions array |
| 414 | * @type: memblock type of the regions array being doubled |
| 415 | * @new_area_start: starting address of memory range to avoid overlap with |
| 416 | * @new_area_size: size of memory range to avoid overlap with |
| 417 | * |
| 418 | * Double the size of the @type regions array. If memblock is being used to |
| 419 | * allocate memory for a new reserved regions array and there is a previously |
| 420 | * allocated memory range [@new_area_start, @new_area_start + @new_area_size] |
| 421 | * waiting to be reserved, ensure the memory used by the new array does |
| 422 | * not overlap. |
| 423 | * |
| 424 | * Return: |
| 425 | * 0 on success, -1 on failure. |
| 426 | */ |
| 427 | static int __init_memblock memblock_double_array(struct memblock_type *type, |
| 428 | phys_addr_t new_area_start, |
| 429 | phys_addr_t new_area_size) |
| 430 | { |
| 431 | struct memblock_region *new_array, *old_array; |
| 432 | phys_addr_t old_alloc_size, new_alloc_size; |
| 433 | phys_addr_t old_size, new_size, addr, new_end; |
| 434 | int use_slab = slab_is_available(); |
| 435 | int *in_slab; |
| 436 | |
| 437 | /* We don't allow resizing until we know about the reserved regions |
| 438 | * of memory that aren't suitable for allocation |
| 439 | */ |
| 440 | if (!memblock_can_resize) |
| 441 | panic("memblock: cannot resize %s array\n", type->name); |
| 442 | |
| 443 | /* Calculate new doubled size */ |
| 444 | old_size = type->max * sizeof(struct memblock_region); |
| 445 | new_size = old_size << 1; |
| 446 | /* |
| 447 | * We need to allocated new one align to PAGE_SIZE, |
| 448 | * so we can free them completely later. |
| 449 | */ |
| 450 | old_alloc_size = PAGE_ALIGN(old_size); |
| 451 | new_alloc_size = PAGE_ALIGN(new_size); |
| 452 | |
| 453 | /* Retrieve the slab flag */ |
| 454 | if (type == &memblock.memory) |
| 455 | in_slab = &memblock_memory_in_slab; |
| 456 | else |
| 457 | in_slab = &memblock_reserved_in_slab; |
| 458 | |
| 459 | /* Try to find some space for it */ |
| 460 | if (use_slab) { |
| 461 | new_array = kmalloc(new_size, GFP_KERNEL); |
| 462 | addr = new_array ? __pa(new_array) : 0; |
| 463 | } else { |
| 464 | /* only exclude range when trying to double reserved.regions */ |
| 465 | if (type != &memblock.reserved) |
| 466 | new_area_start = new_area_size = 0; |
| 467 | |
| 468 | addr = memblock_find_in_range(new_area_start + new_area_size, |
| 469 | memblock.current_limit, |
| 470 | new_alloc_size, PAGE_SIZE); |
| 471 | if (!addr && new_area_size) |
| 472 | addr = memblock_find_in_range(0, |
| 473 | min(new_area_start, memblock.current_limit), |
| 474 | new_alloc_size, PAGE_SIZE); |
| 475 | |
| 476 | if (addr) { |
| 477 | /* The memory may not have been accepted, yet. */ |
| 478 | accept_memory(addr, new_alloc_size); |
| 479 | |
| 480 | new_array = __va(addr); |
| 481 | } else { |
| 482 | new_array = NULL; |
| 483 | } |
| 484 | } |
| 485 | if (!addr) { |
| 486 | pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", |
| 487 | type->name, type->max, type->max * 2); |
| 488 | return -1; |
| 489 | } |
| 490 | |
| 491 | new_end = addr + new_size - 1; |
| 492 | memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", |
| 493 | type->name, type->max * 2, &addr, &new_end); |
| 494 | |
| 495 | /* |
| 496 | * Found space, we now need to move the array over before we add the |
| 497 | * reserved region since it may be our reserved array itself that is |
| 498 | * full. |
| 499 | */ |
| 500 | memcpy(new_array, type->regions, old_size); |
| 501 | memset(new_array + type->max, 0, old_size); |
| 502 | old_array = type->regions; |
| 503 | type->regions = new_array; |
| 504 | type->max <<= 1; |
| 505 | |
| 506 | /* Free old array. We needn't free it if the array is the static one */ |
| 507 | if (*in_slab) |
| 508 | kfree(old_array); |
| 509 | else if (old_array != memblock_memory_init_regions && |
| 510 | old_array != memblock_reserved_init_regions) |
| 511 | memblock_free(old_array, old_alloc_size); |
| 512 | |
| 513 | /* |
| 514 | * Reserve the new array if that comes from the memblock. Otherwise, we |
| 515 | * needn't do it |
| 516 | */ |
| 517 | if (!use_slab) |
| 518 | BUG_ON(memblock_reserve_kern(addr, new_alloc_size)); |
| 519 | |
| 520 | /* Update slab flag */ |
| 521 | *in_slab = use_slab; |
| 522 | |
| 523 | return 0; |
| 524 | } |
| 525 | |
| 526 | /** |
| 527 | * memblock_merge_regions - merge neighboring compatible regions |
| 528 | * @type: memblock type to scan |
| 529 | * @start_rgn: start scanning from (@start_rgn - 1) |
| 530 | * @end_rgn: end scanning at (@end_rgn - 1) |
| 531 | * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn) |
| 532 | */ |
| 533 | static void __init_memblock memblock_merge_regions(struct memblock_type *type, |
| 534 | unsigned long start_rgn, |
| 535 | unsigned long end_rgn) |
| 536 | { |
| 537 | int i = 0; |
| 538 | if (start_rgn) |
| 539 | i = start_rgn - 1; |
| 540 | end_rgn = min(end_rgn, type->cnt - 1); |
| 541 | while (i < end_rgn) { |
| 542 | struct memblock_region *this = &type->regions[i]; |
| 543 | struct memblock_region *next = &type->regions[i + 1]; |
| 544 | |
| 545 | if (this->base + this->size != next->base || |
| 546 | memblock_get_region_node(this) != |
| 547 | memblock_get_region_node(next) || |
| 548 | this->flags != next->flags) { |
| 549 | BUG_ON(this->base + this->size > next->base); |
| 550 | i++; |
| 551 | continue; |
| 552 | } |
| 553 | |
| 554 | this->size += next->size; |
| 555 | /* move forward from next + 1, index of which is i + 2 */ |
| 556 | memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); |
| 557 | type->cnt--; |
| 558 | end_rgn--; |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | /** |
| 563 | * memblock_insert_region - insert new memblock region |
| 564 | * @type: memblock type to insert into |
| 565 | * @idx: index for the insertion point |
| 566 | * @base: base address of the new region |
| 567 | * @size: size of the new region |
| 568 | * @nid: node id of the new region |
| 569 | * @flags: flags of the new region |
| 570 | * |
| 571 | * Insert new memblock region [@base, @base + @size) into @type at @idx. |
| 572 | * @type must already have extra room to accommodate the new region. |
| 573 | */ |
| 574 | static void __init_memblock memblock_insert_region(struct memblock_type *type, |
| 575 | int idx, phys_addr_t base, |
| 576 | phys_addr_t size, |
| 577 | int nid, |
| 578 | enum memblock_flags flags) |
| 579 | { |
| 580 | struct memblock_region *rgn = &type->regions[idx]; |
| 581 | |
| 582 | BUG_ON(type->cnt >= type->max); |
| 583 | memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); |
| 584 | rgn->base = base; |
| 585 | rgn->size = size; |
| 586 | rgn->flags = flags; |
| 587 | memblock_set_region_node(rgn, nid); |
| 588 | type->cnt++; |
| 589 | type->total_size += size; |
| 590 | } |
| 591 | |
| 592 | /** |
| 593 | * memblock_add_range - add new memblock region |
| 594 | * @type: memblock type to add new region into |
| 595 | * @base: base address of the new region |
| 596 | * @size: size of the new region |
| 597 | * @nid: nid of the new region |
| 598 | * @flags: flags of the new region |
| 599 | * |
| 600 | * Add new memblock region [@base, @base + @size) into @type. The new region |
| 601 | * is allowed to overlap with existing ones - overlaps don't affect already |
| 602 | * existing regions. @type is guaranteed to be minimal (all neighbouring |
| 603 | * compatible regions are merged) after the addition. |
| 604 | * |
| 605 | * Return: |
| 606 | * 0 on success, -errno on failure. |
| 607 | */ |
| 608 | static int __init_memblock memblock_add_range(struct memblock_type *type, |
| 609 | phys_addr_t base, phys_addr_t size, |
| 610 | int nid, enum memblock_flags flags) |
| 611 | { |
| 612 | bool insert = false; |
| 613 | phys_addr_t obase = base; |
| 614 | phys_addr_t end = base + memblock_cap_size(base, &size); |
| 615 | int idx, nr_new, start_rgn = -1, end_rgn; |
| 616 | struct memblock_region *rgn; |
| 617 | |
| 618 | if (!size) |
| 619 | return 0; |
| 620 | |
| 621 | /* special case for empty array */ |
| 622 | if (type->regions[0].size == 0) { |
| 623 | WARN_ON(type->cnt != 0 || type->total_size); |
| 624 | type->regions[0].base = base; |
| 625 | type->regions[0].size = size; |
| 626 | type->regions[0].flags = flags; |
| 627 | memblock_set_region_node(&type->regions[0], nid); |
| 628 | type->total_size = size; |
| 629 | type->cnt = 1; |
| 630 | return 0; |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * The worst case is when new range overlaps all existing regions, |
| 635 | * then we'll need type->cnt + 1 empty regions in @type. So if |
| 636 | * type->cnt * 2 + 1 is less than or equal to type->max, we know |
| 637 | * that there is enough empty regions in @type, and we can insert |
| 638 | * regions directly. |
| 639 | */ |
| 640 | if (type->cnt * 2 + 1 <= type->max) |
| 641 | insert = true; |
| 642 | |
| 643 | repeat: |
| 644 | /* |
| 645 | * The following is executed twice. Once with %false @insert and |
| 646 | * then with %true. The first counts the number of regions needed |
| 647 | * to accommodate the new area. The second actually inserts them. |
| 648 | */ |
| 649 | base = obase; |
| 650 | nr_new = 0; |
| 651 | |
| 652 | for_each_memblock_type(idx, type, rgn) { |
| 653 | phys_addr_t rbase = rgn->base; |
| 654 | phys_addr_t rend = rbase + rgn->size; |
| 655 | |
| 656 | if (rbase >= end) |
| 657 | break; |
| 658 | if (rend <= base) |
| 659 | continue; |
| 660 | /* |
| 661 | * @rgn overlaps. If it separates the lower part of new |
| 662 | * area, insert that portion. |
| 663 | */ |
| 664 | if (rbase > base) { |
| 665 | #ifdef CONFIG_NUMA |
| 666 | WARN_ON(nid != memblock_get_region_node(rgn)); |
| 667 | #endif |
| 668 | WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags); |
| 669 | nr_new++; |
| 670 | if (insert) { |
| 671 | if (start_rgn == -1) |
| 672 | start_rgn = idx; |
| 673 | end_rgn = idx + 1; |
| 674 | memblock_insert_region(type, idx++, base, |
| 675 | rbase - base, nid, |
| 676 | flags); |
| 677 | } |
| 678 | } |
| 679 | /* area below @rend is dealt with, forget about it */ |
| 680 | base = min(rend, end); |
| 681 | } |
| 682 | |
| 683 | /* insert the remaining portion */ |
| 684 | if (base < end) { |
| 685 | nr_new++; |
| 686 | if (insert) { |
| 687 | if (start_rgn == -1) |
| 688 | start_rgn = idx; |
| 689 | end_rgn = idx + 1; |
| 690 | memblock_insert_region(type, idx, base, end - base, |
| 691 | nid, flags); |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | if (!nr_new) |
| 696 | return 0; |
| 697 | |
| 698 | /* |
| 699 | * If this was the first round, resize array and repeat for actual |
| 700 | * insertions; otherwise, merge and return. |
| 701 | */ |
| 702 | if (!insert) { |
| 703 | while (type->cnt + nr_new > type->max) |
| 704 | if (memblock_double_array(type, obase, size) < 0) |
| 705 | return -ENOMEM; |
| 706 | insert = true; |
| 707 | goto repeat; |
| 708 | } else { |
| 709 | memblock_merge_regions(type, start_rgn, end_rgn); |
| 710 | return 0; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | /** |
| 715 | * memblock_add_node - add new memblock region within a NUMA node |
| 716 | * @base: base address of the new region |
| 717 | * @size: size of the new region |
| 718 | * @nid: nid of the new region |
| 719 | * @flags: flags of the new region |
| 720 | * |
| 721 | * Add new memblock region [@base, @base + @size) to the "memory" |
| 722 | * type. See memblock_add_range() description for mode details |
| 723 | * |
| 724 | * Return: |
| 725 | * 0 on success, -errno on failure. |
| 726 | */ |
| 727 | int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, |
| 728 | int nid, enum memblock_flags flags) |
| 729 | { |
| 730 | phys_addr_t end = base + size - 1; |
| 731 | |
| 732 | memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, |
| 733 | &base, &end, nid, flags, (void *)_RET_IP_); |
| 734 | |
| 735 | return memblock_add_range(&memblock.memory, base, size, nid, flags); |
| 736 | } |
| 737 | |
| 738 | /** |
| 739 | * memblock_add - add new memblock region |
| 740 | * @base: base address of the new region |
| 741 | * @size: size of the new region |
| 742 | * |
| 743 | * Add new memblock region [@base, @base + @size) to the "memory" |
| 744 | * type. See memblock_add_range() description for mode details |
| 745 | * |
| 746 | * Return: |
| 747 | * 0 on success, -errno on failure. |
| 748 | */ |
| 749 | int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) |
| 750 | { |
| 751 | phys_addr_t end = base + size - 1; |
| 752 | |
| 753 | memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| 754 | &base, &end, (void *)_RET_IP_); |
| 755 | |
| 756 | return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); |
| 757 | } |
| 758 | |
| 759 | /** |
| 760 | * memblock_validate_numa_coverage - check if amount of memory with |
| 761 | * no node ID assigned is less than a threshold |
| 762 | * @threshold_bytes: maximal memory size that can have unassigned node |
| 763 | * ID (in bytes). |
| 764 | * |
| 765 | * A buggy firmware may report memory that does not belong to any node. |
| 766 | * Check if amount of such memory is below @threshold_bytes. |
| 767 | * |
| 768 | * Return: true on success, false on failure. |
| 769 | */ |
| 770 | bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes) |
| 771 | { |
| 772 | unsigned long nr_pages = 0; |
| 773 | unsigned long start_pfn, end_pfn, mem_size_mb; |
| 774 | int nid, i; |
| 775 | |
| 776 | /* calculate lose page */ |
| 777 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { |
| 778 | if (!numa_valid_node(nid)) |
| 779 | nr_pages += end_pfn - start_pfn; |
| 780 | } |
| 781 | |
| 782 | if ((nr_pages << PAGE_SHIFT) > threshold_bytes) { |
| 783 | mem_size_mb = memblock_phys_mem_size() >> 20; |
| 784 | pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n", |
| 785 | (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb); |
| 786 | return false; |
| 787 | } |
| 788 | |
| 789 | return true; |
| 790 | } |
| 791 | |
| 792 | |
| 793 | /** |
| 794 | * memblock_isolate_range - isolate given range into disjoint memblocks |
| 795 | * @type: memblock type to isolate range for |
| 796 | * @base: base of range to isolate |
| 797 | * @size: size of range to isolate |
| 798 | * @start_rgn: out parameter for the start of isolated region |
| 799 | * @end_rgn: out parameter for the end of isolated region |
| 800 | * |
| 801 | * Walk @type and ensure that regions don't cross the boundaries defined by |
| 802 | * [@base, @base + @size). Crossing regions are split at the boundaries, |
| 803 | * which may create at most two more regions. The index of the first |
| 804 | * region inside the range is returned in *@start_rgn and the index of the |
| 805 | * first region after the range is returned in *@end_rgn. |
| 806 | * |
| 807 | * Return: |
| 808 | * 0 on success, -errno on failure. |
| 809 | */ |
| 810 | static int __init_memblock memblock_isolate_range(struct memblock_type *type, |
| 811 | phys_addr_t base, phys_addr_t size, |
| 812 | int *start_rgn, int *end_rgn) |
| 813 | { |
| 814 | phys_addr_t end = base + memblock_cap_size(base, &size); |
| 815 | int idx; |
| 816 | struct memblock_region *rgn; |
| 817 | |
| 818 | *start_rgn = *end_rgn = 0; |
| 819 | |
| 820 | if (!size) |
| 821 | return 0; |
| 822 | |
| 823 | /* we'll create at most two more regions */ |
| 824 | while (type->cnt + 2 > type->max) |
| 825 | if (memblock_double_array(type, base, size) < 0) |
| 826 | return -ENOMEM; |
| 827 | |
| 828 | for_each_memblock_type(idx, type, rgn) { |
| 829 | phys_addr_t rbase = rgn->base; |
| 830 | phys_addr_t rend = rbase + rgn->size; |
| 831 | |
| 832 | if (rbase >= end) |
| 833 | break; |
| 834 | if (rend <= base) |
| 835 | continue; |
| 836 | |
| 837 | if (rbase < base) { |
| 838 | /* |
| 839 | * @rgn intersects from below. Split and continue |
| 840 | * to process the next region - the new top half. |
| 841 | */ |
| 842 | rgn->base = base; |
| 843 | rgn->size -= base - rbase; |
| 844 | type->total_size -= base - rbase; |
| 845 | memblock_insert_region(type, idx, rbase, base - rbase, |
| 846 | memblock_get_region_node(rgn), |
| 847 | rgn->flags); |
| 848 | } else if (rend > end) { |
| 849 | /* |
| 850 | * @rgn intersects from above. Split and redo the |
| 851 | * current region - the new bottom half. |
| 852 | */ |
| 853 | rgn->base = end; |
| 854 | rgn->size -= end - rbase; |
| 855 | type->total_size -= end - rbase; |
| 856 | memblock_insert_region(type, idx--, rbase, end - rbase, |
| 857 | memblock_get_region_node(rgn), |
| 858 | rgn->flags); |
| 859 | } else { |
| 860 | /* @rgn is fully contained, record it */ |
| 861 | if (!*end_rgn) |
| 862 | *start_rgn = idx; |
| 863 | *end_rgn = idx + 1; |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | return 0; |
| 868 | } |
| 869 | |
| 870 | static int __init_memblock memblock_remove_range(struct memblock_type *type, |
| 871 | phys_addr_t base, phys_addr_t size) |
| 872 | { |
| 873 | int start_rgn, end_rgn; |
| 874 | int i, ret; |
| 875 | |
| 876 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| 877 | if (ret) |
| 878 | return ret; |
| 879 | |
| 880 | for (i = end_rgn - 1; i >= start_rgn; i--) |
| 881 | memblock_remove_region(type, i); |
| 882 | return 0; |
| 883 | } |
| 884 | |
| 885 | int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) |
| 886 | { |
| 887 | phys_addr_t end = base + size - 1; |
| 888 | |
| 889 | memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| 890 | &base, &end, (void *)_RET_IP_); |
| 891 | |
| 892 | return memblock_remove_range(&memblock.memory, base, size); |
| 893 | } |
| 894 | |
| 895 | /** |
| 896 | * memblock_free - free boot memory allocation |
| 897 | * @ptr: starting address of the boot memory allocation |
| 898 | * @size: size of the boot memory block in bytes |
| 899 | * |
| 900 | * Free boot memory block previously allocated by memblock_alloc_xx() API. |
| 901 | * The freeing memory will not be released to the buddy allocator. |
| 902 | */ |
| 903 | void __init_memblock memblock_free(void *ptr, size_t size) |
| 904 | { |
| 905 | if (ptr) |
| 906 | memblock_phys_free(__pa(ptr), size); |
| 907 | } |
| 908 | |
| 909 | /** |
| 910 | * memblock_phys_free - free boot memory block |
| 911 | * @base: phys starting address of the boot memory block |
| 912 | * @size: size of the boot memory block in bytes |
| 913 | * |
| 914 | * Free boot memory block previously allocated by memblock_phys_alloc_xx() API. |
| 915 | * The freeing memory will not be released to the buddy allocator. |
| 916 | */ |
| 917 | int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) |
| 918 | { |
| 919 | phys_addr_t end = base + size - 1; |
| 920 | |
| 921 | memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| 922 | &base, &end, (void *)_RET_IP_); |
| 923 | |
| 924 | kmemleak_free_part_phys(base, size); |
| 925 | return memblock_remove_range(&memblock.reserved, base, size); |
| 926 | } |
| 927 | |
| 928 | int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size, |
| 929 | int nid, enum memblock_flags flags) |
| 930 | { |
| 931 | phys_addr_t end = base + size - 1; |
| 932 | |
| 933 | memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, |
| 934 | &base, &end, nid, flags, (void *)_RET_IP_); |
| 935 | |
| 936 | return memblock_add_range(&memblock.reserved, base, size, nid, flags); |
| 937 | } |
| 938 | |
| 939 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 940 | int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) |
| 941 | { |
| 942 | phys_addr_t end = base + size - 1; |
| 943 | |
| 944 | memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, |
| 945 | &base, &end, (void *)_RET_IP_); |
| 946 | |
| 947 | return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); |
| 948 | } |
| 949 | #endif |
| 950 | |
| 951 | #ifdef CONFIG_MEMBLOCK_KHO_SCRATCH |
| 952 | __init void memblock_set_kho_scratch_only(void) |
| 953 | { |
| 954 | kho_scratch_only = true; |
| 955 | } |
| 956 | |
| 957 | __init void memblock_clear_kho_scratch_only(void) |
| 958 | { |
| 959 | kho_scratch_only = false; |
| 960 | } |
| 961 | |
| 962 | __init void memmap_init_kho_scratch_pages(void) |
| 963 | { |
| 964 | phys_addr_t start, end; |
| 965 | unsigned long pfn; |
| 966 | int nid; |
| 967 | u64 i; |
| 968 | |
| 969 | if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) |
| 970 | return; |
| 971 | |
| 972 | /* |
| 973 | * Initialize struct pages for free scratch memory. |
| 974 | * The struct pages for reserved scratch memory will be set up in |
| 975 | * reserve_bootmem_region() |
| 976 | */ |
| 977 | __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, |
| 978 | MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) { |
| 979 | for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++) |
| 980 | init_deferred_page(pfn, nid); |
| 981 | } |
| 982 | } |
| 983 | #endif |
| 984 | |
| 985 | /** |
| 986 | * memblock_setclr_flag - set or clear flag for a memory region |
| 987 | * @type: memblock type to set/clear flag for |
| 988 | * @base: base address of the region |
| 989 | * @size: size of the region |
| 990 | * @set: set or clear the flag |
| 991 | * @flag: the flag to update |
| 992 | * |
| 993 | * This function isolates region [@base, @base + @size), and sets/clears flag |
| 994 | * |
| 995 | * Return: 0 on success, -errno on failure. |
| 996 | */ |
| 997 | static int __init_memblock memblock_setclr_flag(struct memblock_type *type, |
| 998 | phys_addr_t base, phys_addr_t size, int set, int flag) |
| 999 | { |
| 1000 | int i, ret, start_rgn, end_rgn; |
| 1001 | |
| 1002 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| 1003 | if (ret) |
| 1004 | return ret; |
| 1005 | |
| 1006 | for (i = start_rgn; i < end_rgn; i++) { |
| 1007 | struct memblock_region *r = &type->regions[i]; |
| 1008 | |
| 1009 | if (set) |
| 1010 | r->flags |= flag; |
| 1011 | else |
| 1012 | r->flags &= ~flag; |
| 1013 | } |
| 1014 | |
| 1015 | memblock_merge_regions(type, start_rgn, end_rgn); |
| 1016 | return 0; |
| 1017 | } |
| 1018 | |
| 1019 | /** |
| 1020 | * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. |
| 1021 | * @base: the base phys addr of the region |
| 1022 | * @size: the size of the region |
| 1023 | * |
| 1024 | * Return: 0 on success, -errno on failure. |
| 1025 | */ |
| 1026 | int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) |
| 1027 | { |
| 1028 | return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG); |
| 1029 | } |
| 1030 | |
| 1031 | /** |
| 1032 | * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. |
| 1033 | * @base: the base phys addr of the region |
| 1034 | * @size: the size of the region |
| 1035 | * |
| 1036 | * Return: 0 on success, -errno on failure. |
| 1037 | */ |
| 1038 | int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) |
| 1039 | { |
| 1040 | return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG); |
| 1041 | } |
| 1042 | |
| 1043 | /** |
| 1044 | * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. |
| 1045 | * @base: the base phys addr of the region |
| 1046 | * @size: the size of the region |
| 1047 | * |
| 1048 | * Return: 0 on success, -errno on failure. |
| 1049 | */ |
| 1050 | int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) |
| 1051 | { |
| 1052 | if (!mirrored_kernelcore) |
| 1053 | return 0; |
| 1054 | |
| 1055 | system_has_some_mirror = true; |
| 1056 | |
| 1057 | return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR); |
| 1058 | } |
| 1059 | |
| 1060 | /** |
| 1061 | * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. |
| 1062 | * @base: the base phys addr of the region |
| 1063 | * @size: the size of the region |
| 1064 | * |
| 1065 | * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the |
| 1066 | * direct mapping of the physical memory. These regions will still be |
| 1067 | * covered by the memory map. The struct page representing NOMAP memory |
| 1068 | * frames in the memory map will be PageReserved() |
| 1069 | * |
| 1070 | * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from |
| 1071 | * memblock, the caller must inform kmemleak to ignore that memory |
| 1072 | * |
| 1073 | * Return: 0 on success, -errno on failure. |
| 1074 | */ |
| 1075 | int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) |
| 1076 | { |
| 1077 | return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP); |
| 1078 | } |
| 1079 | |
| 1080 | /** |
| 1081 | * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. |
| 1082 | * @base: the base phys addr of the region |
| 1083 | * @size: the size of the region |
| 1084 | * |
| 1085 | * Return: 0 on success, -errno on failure. |
| 1086 | */ |
| 1087 | int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) |
| 1088 | { |
| 1089 | return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP); |
| 1090 | } |
| 1091 | |
| 1092 | /** |
| 1093 | * memblock_reserved_mark_noinit - Mark a reserved memory region with flag |
| 1094 | * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized |
| 1095 | * for this region. |
| 1096 | * @base: the base phys addr of the region |
| 1097 | * @size: the size of the region |
| 1098 | * |
| 1099 | * struct pages will not be initialized for reserved memory regions marked with |
| 1100 | * %MEMBLOCK_RSRV_NOINIT. |
| 1101 | * |
| 1102 | * Return: 0 on success, -errno on failure. |
| 1103 | */ |
| 1104 | int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size) |
| 1105 | { |
| 1106 | return memblock_setclr_flag(&memblock.reserved, base, size, 1, |
| 1107 | MEMBLOCK_RSRV_NOINIT); |
| 1108 | } |
| 1109 | |
| 1110 | /** |
| 1111 | * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH. |
| 1112 | * @base: the base phys addr of the region |
| 1113 | * @size: the size of the region |
| 1114 | * |
| 1115 | * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered |
| 1116 | * for allocations during early boot with kexec handover. |
| 1117 | * |
| 1118 | * Return: 0 on success, -errno on failure. |
| 1119 | */ |
| 1120 | __init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size) |
| 1121 | { |
| 1122 | return memblock_setclr_flag(&memblock.memory, base, size, 1, |
| 1123 | MEMBLOCK_KHO_SCRATCH); |
| 1124 | } |
| 1125 | |
| 1126 | /** |
| 1127 | * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a |
| 1128 | * specified region. |
| 1129 | * @base: the base phys addr of the region |
| 1130 | * @size: the size of the region |
| 1131 | * |
| 1132 | * Return: 0 on success, -errno on failure. |
| 1133 | */ |
| 1134 | __init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size) |
| 1135 | { |
| 1136 | return memblock_setclr_flag(&memblock.memory, base, size, 0, |
| 1137 | MEMBLOCK_KHO_SCRATCH); |
| 1138 | } |
| 1139 | |
| 1140 | static bool should_skip_region(struct memblock_type *type, |
| 1141 | struct memblock_region *m, |
| 1142 | int nid, int flags) |
| 1143 | { |
| 1144 | int m_nid = memblock_get_region_node(m); |
| 1145 | |
| 1146 | /* we never skip regions when iterating memblock.reserved or physmem */ |
| 1147 | if (type != memblock_memory) |
| 1148 | return false; |
| 1149 | |
| 1150 | /* only memory regions are associated with nodes, check it */ |
| 1151 | if (numa_valid_node(nid) && nid != m_nid) |
| 1152 | return true; |
| 1153 | |
| 1154 | /* skip hotpluggable memory regions if needed */ |
| 1155 | if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && |
| 1156 | !(flags & MEMBLOCK_HOTPLUG)) |
| 1157 | return true; |
| 1158 | |
| 1159 | /* if we want mirror memory skip non-mirror memory regions */ |
| 1160 | if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) |
| 1161 | return true; |
| 1162 | |
| 1163 | /* skip nomap memory unless we were asked for it explicitly */ |
| 1164 | if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) |
| 1165 | return true; |
| 1166 | |
| 1167 | /* skip driver-managed memory unless we were asked for it explicitly */ |
| 1168 | if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) |
| 1169 | return true; |
| 1170 | |
| 1171 | /* |
| 1172 | * In early alloc during kexec handover, we can only consider |
| 1173 | * MEMBLOCK_KHO_SCRATCH regions for the allocations |
| 1174 | */ |
| 1175 | if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m)) |
| 1176 | return true; |
| 1177 | |
| 1178 | return false; |
| 1179 | } |
| 1180 | |
| 1181 | /** |
| 1182 | * __next_mem_range - next function for for_each_free_mem_range() etc. |
| 1183 | * @idx: pointer to u64 loop variable |
| 1184 | * @nid: node selector, %NUMA_NO_NODE for all nodes |
| 1185 | * @flags: pick from blocks based on memory attributes |
| 1186 | * @type_a: pointer to memblock_type from where the range is taken |
| 1187 | * @type_b: pointer to memblock_type which excludes memory from being taken |
| 1188 | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| 1189 | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| 1190 | * @out_nid: ptr to int for nid of the range, can be %NULL |
| 1191 | * |
| 1192 | * Find the first area from *@idx which matches @nid, fill the out |
| 1193 | * parameters, and update *@idx for the next iteration. The lower 32bit of |
| 1194 | * *@idx contains index into type_a and the upper 32bit indexes the |
| 1195 | * areas before each region in type_b. For example, if type_b regions |
| 1196 | * look like the following, |
| 1197 | * |
| 1198 | * 0:[0-16), 1:[32-48), 2:[128-130) |
| 1199 | * |
| 1200 | * The upper 32bit indexes the following regions. |
| 1201 | * |
| 1202 | * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) |
| 1203 | * |
| 1204 | * As both region arrays are sorted, the function advances the two indices |
| 1205 | * in lockstep and returns each intersection. |
| 1206 | */ |
| 1207 | void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, |
| 1208 | struct memblock_type *type_a, |
| 1209 | struct memblock_type *type_b, phys_addr_t *out_start, |
| 1210 | phys_addr_t *out_end, int *out_nid) |
| 1211 | { |
| 1212 | int idx_a = *idx & 0xffffffff; |
| 1213 | int idx_b = *idx >> 32; |
| 1214 | |
| 1215 | for (; idx_a < type_a->cnt; idx_a++) { |
| 1216 | struct memblock_region *m = &type_a->regions[idx_a]; |
| 1217 | |
| 1218 | phys_addr_t m_start = m->base; |
| 1219 | phys_addr_t m_end = m->base + m->size; |
| 1220 | int m_nid = memblock_get_region_node(m); |
| 1221 | |
| 1222 | if (should_skip_region(type_a, m, nid, flags)) |
| 1223 | continue; |
| 1224 | |
| 1225 | if (!type_b) { |
| 1226 | if (out_start) |
| 1227 | *out_start = m_start; |
| 1228 | if (out_end) |
| 1229 | *out_end = m_end; |
| 1230 | if (out_nid) |
| 1231 | *out_nid = m_nid; |
| 1232 | idx_a++; |
| 1233 | *idx = (u32)idx_a | (u64)idx_b << 32; |
| 1234 | return; |
| 1235 | } |
| 1236 | |
| 1237 | /* scan areas before each reservation */ |
| 1238 | for (; idx_b < type_b->cnt + 1; idx_b++) { |
| 1239 | struct memblock_region *r; |
| 1240 | phys_addr_t r_start; |
| 1241 | phys_addr_t r_end; |
| 1242 | |
| 1243 | r = &type_b->regions[idx_b]; |
| 1244 | r_start = idx_b ? r[-1].base + r[-1].size : 0; |
| 1245 | r_end = idx_b < type_b->cnt ? |
| 1246 | r->base : PHYS_ADDR_MAX; |
| 1247 | |
| 1248 | /* |
| 1249 | * if idx_b advanced past idx_a, |
| 1250 | * break out to advance idx_a |
| 1251 | */ |
| 1252 | if (r_start >= m_end) |
| 1253 | break; |
| 1254 | /* if the two regions intersect, we're done */ |
| 1255 | if (m_start < r_end) { |
| 1256 | if (out_start) |
| 1257 | *out_start = |
| 1258 | max(m_start, r_start); |
| 1259 | if (out_end) |
| 1260 | *out_end = min(m_end, r_end); |
| 1261 | if (out_nid) |
| 1262 | *out_nid = m_nid; |
| 1263 | /* |
| 1264 | * The region which ends first is |
| 1265 | * advanced for the next iteration. |
| 1266 | */ |
| 1267 | if (m_end <= r_end) |
| 1268 | idx_a++; |
| 1269 | else |
| 1270 | idx_b++; |
| 1271 | *idx = (u32)idx_a | (u64)idx_b << 32; |
| 1272 | return; |
| 1273 | } |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | /* signal end of iteration */ |
| 1278 | *idx = ULLONG_MAX; |
| 1279 | } |
| 1280 | |
| 1281 | /** |
| 1282 | * __next_mem_range_rev - generic next function for for_each_*_range_rev() |
| 1283 | * |
| 1284 | * @idx: pointer to u64 loop variable |
| 1285 | * @nid: node selector, %NUMA_NO_NODE for all nodes |
| 1286 | * @flags: pick from blocks based on memory attributes |
| 1287 | * @type_a: pointer to memblock_type from where the range is taken |
| 1288 | * @type_b: pointer to memblock_type which excludes memory from being taken |
| 1289 | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| 1290 | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| 1291 | * @out_nid: ptr to int for nid of the range, can be %NULL |
| 1292 | * |
| 1293 | * Finds the next range from type_a which is not marked as unsuitable |
| 1294 | * in type_b. |
| 1295 | * |
| 1296 | * Reverse of __next_mem_range(). |
| 1297 | */ |
| 1298 | void __init_memblock __next_mem_range_rev(u64 *idx, int nid, |
| 1299 | enum memblock_flags flags, |
| 1300 | struct memblock_type *type_a, |
| 1301 | struct memblock_type *type_b, |
| 1302 | phys_addr_t *out_start, |
| 1303 | phys_addr_t *out_end, int *out_nid) |
| 1304 | { |
| 1305 | int idx_a = *idx & 0xffffffff; |
| 1306 | int idx_b = *idx >> 32; |
| 1307 | |
| 1308 | if (*idx == (u64)ULLONG_MAX) { |
| 1309 | idx_a = type_a->cnt - 1; |
| 1310 | if (type_b != NULL) |
| 1311 | idx_b = type_b->cnt; |
| 1312 | else |
| 1313 | idx_b = 0; |
| 1314 | } |
| 1315 | |
| 1316 | for (; idx_a >= 0; idx_a--) { |
| 1317 | struct memblock_region *m = &type_a->regions[idx_a]; |
| 1318 | |
| 1319 | phys_addr_t m_start = m->base; |
| 1320 | phys_addr_t m_end = m->base + m->size; |
| 1321 | int m_nid = memblock_get_region_node(m); |
| 1322 | |
| 1323 | if (should_skip_region(type_a, m, nid, flags)) |
| 1324 | continue; |
| 1325 | |
| 1326 | if (!type_b) { |
| 1327 | if (out_start) |
| 1328 | *out_start = m_start; |
| 1329 | if (out_end) |
| 1330 | *out_end = m_end; |
| 1331 | if (out_nid) |
| 1332 | *out_nid = m_nid; |
| 1333 | idx_a--; |
| 1334 | *idx = (u32)idx_a | (u64)idx_b << 32; |
| 1335 | return; |
| 1336 | } |
| 1337 | |
| 1338 | /* scan areas before each reservation */ |
| 1339 | for (; idx_b >= 0; idx_b--) { |
| 1340 | struct memblock_region *r; |
| 1341 | phys_addr_t r_start; |
| 1342 | phys_addr_t r_end; |
| 1343 | |
| 1344 | r = &type_b->regions[idx_b]; |
| 1345 | r_start = idx_b ? r[-1].base + r[-1].size : 0; |
| 1346 | r_end = idx_b < type_b->cnt ? |
| 1347 | r->base : PHYS_ADDR_MAX; |
| 1348 | /* |
| 1349 | * if idx_b advanced past idx_a, |
| 1350 | * break out to advance idx_a |
| 1351 | */ |
| 1352 | |
| 1353 | if (r_end <= m_start) |
| 1354 | break; |
| 1355 | /* if the two regions intersect, we're done */ |
| 1356 | if (m_end > r_start) { |
| 1357 | if (out_start) |
| 1358 | *out_start = max(m_start, r_start); |
| 1359 | if (out_end) |
| 1360 | *out_end = min(m_end, r_end); |
| 1361 | if (out_nid) |
| 1362 | *out_nid = m_nid; |
| 1363 | if (m_start >= r_start) |
| 1364 | idx_a--; |
| 1365 | else |
| 1366 | idx_b--; |
| 1367 | *idx = (u32)idx_a | (u64)idx_b << 32; |
| 1368 | return; |
| 1369 | } |
| 1370 | } |
| 1371 | } |
| 1372 | /* signal end of iteration */ |
| 1373 | *idx = ULLONG_MAX; |
| 1374 | } |
| 1375 | |
| 1376 | /* |
| 1377 | * Common iterator interface used to define for_each_mem_pfn_range(). |
| 1378 | */ |
| 1379 | void __init_memblock __next_mem_pfn_range(int *idx, int nid, |
| 1380 | unsigned long *out_start_pfn, |
| 1381 | unsigned long *out_end_pfn, int *out_nid) |
| 1382 | { |
| 1383 | struct memblock_type *type = &memblock.memory; |
| 1384 | struct memblock_region *r; |
| 1385 | int r_nid; |
| 1386 | |
| 1387 | while (++*idx < type->cnt) { |
| 1388 | r = &type->regions[*idx]; |
| 1389 | r_nid = memblock_get_region_node(r); |
| 1390 | |
| 1391 | if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) |
| 1392 | continue; |
| 1393 | if (!numa_valid_node(nid) || nid == r_nid) |
| 1394 | break; |
| 1395 | } |
| 1396 | if (*idx >= type->cnt) { |
| 1397 | *idx = -1; |
| 1398 | return; |
| 1399 | } |
| 1400 | |
| 1401 | if (out_start_pfn) |
| 1402 | *out_start_pfn = PFN_UP(r->base); |
| 1403 | if (out_end_pfn) |
| 1404 | *out_end_pfn = PFN_DOWN(r->base + r->size); |
| 1405 | if (out_nid) |
| 1406 | *out_nid = r_nid; |
| 1407 | } |
| 1408 | |
| 1409 | /** |
| 1410 | * memblock_set_node - set node ID on memblock regions |
| 1411 | * @base: base of area to set node ID for |
| 1412 | * @size: size of area to set node ID for |
| 1413 | * @type: memblock type to set node ID for |
| 1414 | * @nid: node ID to set |
| 1415 | * |
| 1416 | * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. |
| 1417 | * Regions which cross the area boundaries are split as necessary. |
| 1418 | * |
| 1419 | * Return: |
| 1420 | * 0 on success, -errno on failure. |
| 1421 | */ |
| 1422 | int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, |
| 1423 | struct memblock_type *type, int nid) |
| 1424 | { |
| 1425 | #ifdef CONFIG_NUMA |
| 1426 | int start_rgn, end_rgn; |
| 1427 | int i, ret; |
| 1428 | |
| 1429 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| 1430 | if (ret) |
| 1431 | return ret; |
| 1432 | |
| 1433 | for (i = start_rgn; i < end_rgn; i++) |
| 1434 | memblock_set_region_node(&type->regions[i], nid); |
| 1435 | |
| 1436 | memblock_merge_regions(type, start_rgn, end_rgn); |
| 1437 | #endif |
| 1438 | return 0; |
| 1439 | } |
| 1440 | |
| 1441 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| 1442 | /** |
| 1443 | * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() |
| 1444 | * |
| 1445 | * @idx: pointer to u64 loop variable |
| 1446 | * @zone: zone in which all of the memory blocks reside |
| 1447 | * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL |
| 1448 | * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL |
| 1449 | * |
| 1450 | * This function is meant to be a zone/pfn specific wrapper for the |
| 1451 | * for_each_mem_range type iterators. Specifically they are used in the |
| 1452 | * deferred memory init routines and as such we were duplicating much of |
| 1453 | * this logic throughout the code. So instead of having it in multiple |
| 1454 | * locations it seemed like it would make more sense to centralize this to |
| 1455 | * one new iterator that does everything they need. |
| 1456 | */ |
| 1457 | void __init_memblock |
| 1458 | __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, |
| 1459 | unsigned long *out_spfn, unsigned long *out_epfn) |
| 1460 | { |
| 1461 | int zone_nid = zone_to_nid(zone); |
| 1462 | phys_addr_t spa, epa; |
| 1463 | |
| 1464 | __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, |
| 1465 | &memblock.memory, &memblock.reserved, |
| 1466 | &spa, &epa, NULL); |
| 1467 | |
| 1468 | while (*idx != U64_MAX) { |
| 1469 | unsigned long epfn = PFN_DOWN(epa); |
| 1470 | unsigned long spfn = PFN_UP(spa); |
| 1471 | |
| 1472 | /* |
| 1473 | * Verify the end is at least past the start of the zone and |
| 1474 | * that we have at least one PFN to initialize. |
| 1475 | */ |
| 1476 | if (zone->zone_start_pfn < epfn && spfn < epfn) { |
| 1477 | /* if we went too far just stop searching */ |
| 1478 | if (zone_end_pfn(zone) <= spfn) { |
| 1479 | *idx = U64_MAX; |
| 1480 | break; |
| 1481 | } |
| 1482 | |
| 1483 | if (out_spfn) |
| 1484 | *out_spfn = max(zone->zone_start_pfn, spfn); |
| 1485 | if (out_epfn) |
| 1486 | *out_epfn = min(zone_end_pfn(zone), epfn); |
| 1487 | |
| 1488 | return; |
| 1489 | } |
| 1490 | |
| 1491 | __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, |
| 1492 | &memblock.memory, &memblock.reserved, |
| 1493 | &spa, &epa, NULL); |
| 1494 | } |
| 1495 | |
| 1496 | /* signal end of iteration */ |
| 1497 | if (out_spfn) |
| 1498 | *out_spfn = ULONG_MAX; |
| 1499 | if (out_epfn) |
| 1500 | *out_epfn = 0; |
| 1501 | } |
| 1502 | |
| 1503 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| 1504 | |
| 1505 | /** |
| 1506 | * memblock_alloc_range_nid - allocate boot memory block |
| 1507 | * @size: size of memory block to be allocated in bytes |
| 1508 | * @align: alignment of the region and block's size |
| 1509 | * @start: the lower bound of the memory region to allocate (phys address) |
| 1510 | * @end: the upper bound of the memory region to allocate (phys address) |
| 1511 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1512 | * @exact_nid: control the allocation fall back to other nodes |
| 1513 | * |
| 1514 | * The allocation is performed from memory region limited by |
| 1515 | * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. |
| 1516 | * |
| 1517 | * If the specified node can not hold the requested memory and @exact_nid |
| 1518 | * is false, the allocation falls back to any node in the system. |
| 1519 | * |
| 1520 | * For systems with memory mirroring, the allocation is attempted first |
| 1521 | * from the regions with mirroring enabled and then retried from any |
| 1522 | * memory region. |
| 1523 | * |
| 1524 | * In addition, function using kmemleak_alloc_phys for allocated boot |
| 1525 | * memory block, it is never reported as leaks. |
| 1526 | * |
| 1527 | * Return: |
| 1528 | * Physical address of allocated memory block on success, %0 on failure. |
| 1529 | */ |
| 1530 | phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, |
| 1531 | phys_addr_t align, phys_addr_t start, |
| 1532 | phys_addr_t end, int nid, |
| 1533 | bool exact_nid) |
| 1534 | { |
| 1535 | enum memblock_flags flags = choose_memblock_flags(); |
| 1536 | phys_addr_t found; |
| 1537 | |
| 1538 | /* |
| 1539 | * Detect any accidental use of these APIs after slab is ready, as at |
| 1540 | * this moment memblock may be deinitialized already and its |
| 1541 | * internal data may be destroyed (after execution of memblock_free_all) |
| 1542 | */ |
| 1543 | if (WARN_ON_ONCE(slab_is_available())) { |
| 1544 | void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid); |
| 1545 | |
| 1546 | return vaddr ? virt_to_phys(vaddr) : 0; |
| 1547 | } |
| 1548 | |
| 1549 | if (!align) { |
| 1550 | /* Can't use WARNs this early in boot on powerpc */ |
| 1551 | dump_stack(); |
| 1552 | align = SMP_CACHE_BYTES; |
| 1553 | } |
| 1554 | |
| 1555 | again: |
| 1556 | found = memblock_find_in_range_node(size, align, start, end, nid, |
| 1557 | flags); |
| 1558 | if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN)) |
| 1559 | goto done; |
| 1560 | |
| 1561 | if (numa_valid_node(nid) && !exact_nid) { |
| 1562 | found = memblock_find_in_range_node(size, align, start, |
| 1563 | end, NUMA_NO_NODE, |
| 1564 | flags); |
| 1565 | if (found && !memblock_reserve_kern(found, size)) |
| 1566 | goto done; |
| 1567 | } |
| 1568 | |
| 1569 | if (flags & MEMBLOCK_MIRROR) { |
| 1570 | flags &= ~MEMBLOCK_MIRROR; |
| 1571 | pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", |
| 1572 | &size); |
| 1573 | goto again; |
| 1574 | } |
| 1575 | |
| 1576 | return 0; |
| 1577 | |
| 1578 | done: |
| 1579 | /* |
| 1580 | * Skip kmemleak for those places like kasan_init() and |
| 1581 | * early_pgtable_alloc() due to high volume. |
| 1582 | */ |
| 1583 | if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) |
| 1584 | /* |
| 1585 | * Memblock allocated blocks are never reported as |
| 1586 | * leaks. This is because many of these blocks are |
| 1587 | * only referred via the physical address which is |
| 1588 | * not looked up by kmemleak. |
| 1589 | */ |
| 1590 | kmemleak_alloc_phys(found, size, 0); |
| 1591 | |
| 1592 | /* |
| 1593 | * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, |
| 1594 | * require memory to be accepted before it can be used by the |
| 1595 | * guest. |
| 1596 | * |
| 1597 | * Accept the memory of the allocated buffer. |
| 1598 | */ |
| 1599 | accept_memory(found, size); |
| 1600 | |
| 1601 | return found; |
| 1602 | } |
| 1603 | |
| 1604 | /** |
| 1605 | * memblock_phys_alloc_range - allocate a memory block inside specified range |
| 1606 | * @size: size of memory block to be allocated in bytes |
| 1607 | * @align: alignment of the region and block's size |
| 1608 | * @start: the lower bound of the memory region to allocate (physical address) |
| 1609 | * @end: the upper bound of the memory region to allocate (physical address) |
| 1610 | * |
| 1611 | * Allocate @size bytes in the between @start and @end. |
| 1612 | * |
| 1613 | * Return: physical address of the allocated memory block on success, |
| 1614 | * %0 on failure. |
| 1615 | */ |
| 1616 | phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, |
| 1617 | phys_addr_t align, |
| 1618 | phys_addr_t start, |
| 1619 | phys_addr_t end) |
| 1620 | { |
| 1621 | memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", |
| 1622 | __func__, (u64)size, (u64)align, &start, &end, |
| 1623 | (void *)_RET_IP_); |
| 1624 | return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, |
| 1625 | false); |
| 1626 | } |
| 1627 | |
| 1628 | /** |
| 1629 | * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node |
| 1630 | * @size: size of memory block to be allocated in bytes |
| 1631 | * @align: alignment of the region and block's size |
| 1632 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1633 | * |
| 1634 | * Allocates memory block from the specified NUMA node. If the node |
| 1635 | * has no available memory, attempts to allocated from any node in the |
| 1636 | * system. |
| 1637 | * |
| 1638 | * Return: physical address of the allocated memory block on success, |
| 1639 | * %0 on failure. |
| 1640 | */ |
| 1641 | phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) |
| 1642 | { |
| 1643 | return memblock_alloc_range_nid(size, align, 0, |
| 1644 | MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); |
| 1645 | } |
| 1646 | |
| 1647 | /** |
| 1648 | * memblock_alloc_internal - allocate boot memory block |
| 1649 | * @size: size of memory block to be allocated in bytes |
| 1650 | * @align: alignment of the region and block's size |
| 1651 | * @min_addr: the lower bound of the memory region to allocate (phys address) |
| 1652 | * @max_addr: the upper bound of the memory region to allocate (phys address) |
| 1653 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1654 | * @exact_nid: control the allocation fall back to other nodes |
| 1655 | * |
| 1656 | * Allocates memory block using memblock_alloc_range_nid() and |
| 1657 | * converts the returned physical address to virtual. |
| 1658 | * |
| 1659 | * The @min_addr limit is dropped if it can not be satisfied and the allocation |
| 1660 | * will fall back to memory below @min_addr. Other constraints, such |
| 1661 | * as node and mirrored memory will be handled again in |
| 1662 | * memblock_alloc_range_nid(). |
| 1663 | * |
| 1664 | * Return: |
| 1665 | * Virtual address of allocated memory block on success, NULL on failure. |
| 1666 | */ |
| 1667 | static void * __init memblock_alloc_internal( |
| 1668 | phys_addr_t size, phys_addr_t align, |
| 1669 | phys_addr_t min_addr, phys_addr_t max_addr, |
| 1670 | int nid, bool exact_nid) |
| 1671 | { |
| 1672 | phys_addr_t alloc; |
| 1673 | |
| 1674 | |
| 1675 | if (max_addr > memblock.current_limit) |
| 1676 | max_addr = memblock.current_limit; |
| 1677 | |
| 1678 | alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, |
| 1679 | exact_nid); |
| 1680 | |
| 1681 | /* retry allocation without lower limit */ |
| 1682 | if (!alloc && min_addr) |
| 1683 | alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, |
| 1684 | exact_nid); |
| 1685 | |
| 1686 | if (!alloc) |
| 1687 | return NULL; |
| 1688 | |
| 1689 | return phys_to_virt(alloc); |
| 1690 | } |
| 1691 | |
| 1692 | /** |
| 1693 | * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node |
| 1694 | * without zeroing memory |
| 1695 | * @size: size of memory block to be allocated in bytes |
| 1696 | * @align: alignment of the region and block's size |
| 1697 | * @min_addr: the lower bound of the memory region from where the allocation |
| 1698 | * is preferred (phys address) |
| 1699 | * @max_addr: the upper bound of the memory region from where the allocation |
| 1700 | * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to |
| 1701 | * allocate only from memory limited by memblock.current_limit value |
| 1702 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1703 | * |
| 1704 | * Public function, provides additional debug information (including caller |
| 1705 | * info), if enabled. Does not zero allocated memory. |
| 1706 | * |
| 1707 | * Return: |
| 1708 | * Virtual address of allocated memory block on success, NULL on failure. |
| 1709 | */ |
| 1710 | void * __init memblock_alloc_exact_nid_raw( |
| 1711 | phys_addr_t size, phys_addr_t align, |
| 1712 | phys_addr_t min_addr, phys_addr_t max_addr, |
| 1713 | int nid) |
| 1714 | { |
| 1715 | memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", |
| 1716 | __func__, (u64)size, (u64)align, nid, &min_addr, |
| 1717 | &max_addr, (void *)_RET_IP_); |
| 1718 | |
| 1719 | return memblock_alloc_internal(size, align, min_addr, max_addr, nid, |
| 1720 | true); |
| 1721 | } |
| 1722 | |
| 1723 | /** |
| 1724 | * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing |
| 1725 | * memory and without panicking |
| 1726 | * @size: size of memory block to be allocated in bytes |
| 1727 | * @align: alignment of the region and block's size |
| 1728 | * @min_addr: the lower bound of the memory region from where the allocation |
| 1729 | * is preferred (phys address) |
| 1730 | * @max_addr: the upper bound of the memory region from where the allocation |
| 1731 | * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to |
| 1732 | * allocate only from memory limited by memblock.current_limit value |
| 1733 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1734 | * |
| 1735 | * Public function, provides additional debug information (including caller |
| 1736 | * info), if enabled. Does not zero allocated memory, does not panic if request |
| 1737 | * cannot be satisfied. |
| 1738 | * |
| 1739 | * Return: |
| 1740 | * Virtual address of allocated memory block on success, NULL on failure. |
| 1741 | */ |
| 1742 | void * __init memblock_alloc_try_nid_raw( |
| 1743 | phys_addr_t size, phys_addr_t align, |
| 1744 | phys_addr_t min_addr, phys_addr_t max_addr, |
| 1745 | int nid) |
| 1746 | { |
| 1747 | memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", |
| 1748 | __func__, (u64)size, (u64)align, nid, &min_addr, |
| 1749 | &max_addr, (void *)_RET_IP_); |
| 1750 | |
| 1751 | return memblock_alloc_internal(size, align, min_addr, max_addr, nid, |
| 1752 | false); |
| 1753 | } |
| 1754 | |
| 1755 | /** |
| 1756 | * memblock_alloc_try_nid - allocate boot memory block |
| 1757 | * @size: size of memory block to be allocated in bytes |
| 1758 | * @align: alignment of the region and block's size |
| 1759 | * @min_addr: the lower bound of the memory region from where the allocation |
| 1760 | * is preferred (phys address) |
| 1761 | * @max_addr: the upper bound of the memory region from where the allocation |
| 1762 | * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to |
| 1763 | * allocate only from memory limited by memblock.current_limit value |
| 1764 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1765 | * |
| 1766 | * Public function, provides additional debug information (including caller |
| 1767 | * info), if enabled. This function zeroes the allocated memory. |
| 1768 | * |
| 1769 | * Return: |
| 1770 | * Virtual address of allocated memory block on success, NULL on failure. |
| 1771 | */ |
| 1772 | void * __init memblock_alloc_try_nid( |
| 1773 | phys_addr_t size, phys_addr_t align, |
| 1774 | phys_addr_t min_addr, phys_addr_t max_addr, |
| 1775 | int nid) |
| 1776 | { |
| 1777 | void *ptr; |
| 1778 | |
| 1779 | memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", |
| 1780 | __func__, (u64)size, (u64)align, nid, &min_addr, |
| 1781 | &max_addr, (void *)_RET_IP_); |
| 1782 | ptr = memblock_alloc_internal(size, align, |
| 1783 | min_addr, max_addr, nid, false); |
| 1784 | if (ptr) |
| 1785 | memset(ptr, 0, size); |
| 1786 | |
| 1787 | return ptr; |
| 1788 | } |
| 1789 | |
| 1790 | /** |
| 1791 | * __memblock_alloc_or_panic - Try to allocate memory and panic on failure |
| 1792 | * @size: size of memory block to be allocated in bytes |
| 1793 | * @align: alignment of the region and block's size |
| 1794 | * @func: caller func name |
| 1795 | * |
| 1796 | * This function attempts to allocate memory using memblock_alloc, |
| 1797 | * and in case of failure, it calls panic with the formatted message. |
| 1798 | * This function should not be used directly, please use the macro memblock_alloc_or_panic. |
| 1799 | */ |
| 1800 | void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align, |
| 1801 | const char *func) |
| 1802 | { |
| 1803 | void *addr = memblock_alloc(size, align); |
| 1804 | |
| 1805 | if (unlikely(!addr)) |
| 1806 | panic("%s: Failed to allocate %pap bytes\n", func, &size); |
| 1807 | return addr; |
| 1808 | } |
| 1809 | |
| 1810 | /** |
| 1811 | * memblock_free_late - free pages directly to buddy allocator |
| 1812 | * @base: phys starting address of the boot memory block |
| 1813 | * @size: size of the boot memory block in bytes |
| 1814 | * |
| 1815 | * This is only useful when the memblock allocator has already been torn |
| 1816 | * down, but we are still initializing the system. Pages are released directly |
| 1817 | * to the buddy allocator. |
| 1818 | */ |
| 1819 | void __init memblock_free_late(phys_addr_t base, phys_addr_t size) |
| 1820 | { |
| 1821 | phys_addr_t cursor, end; |
| 1822 | |
| 1823 | end = base + size - 1; |
| 1824 | memblock_dbg("%s: [%pa-%pa] %pS\n", |
| 1825 | __func__, &base, &end, (void *)_RET_IP_); |
| 1826 | kmemleak_free_part_phys(base, size); |
| 1827 | cursor = PFN_UP(base); |
| 1828 | end = PFN_DOWN(base + size); |
| 1829 | |
| 1830 | for (; cursor < end; cursor++) { |
| 1831 | memblock_free_pages(pfn_to_page(cursor), cursor, 0); |
| 1832 | totalram_pages_inc(); |
| 1833 | } |
| 1834 | } |
| 1835 | |
| 1836 | /* |
| 1837 | * Remaining API functions |
| 1838 | */ |
| 1839 | |
| 1840 | phys_addr_t __init_memblock memblock_phys_mem_size(void) |
| 1841 | { |
| 1842 | return memblock.memory.total_size; |
| 1843 | } |
| 1844 | |
| 1845 | phys_addr_t __init_memblock memblock_reserved_size(void) |
| 1846 | { |
| 1847 | return memblock.reserved.total_size; |
| 1848 | } |
| 1849 | |
| 1850 | phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid) |
| 1851 | { |
| 1852 | struct memblock_region *r; |
| 1853 | phys_addr_t total = 0; |
| 1854 | |
| 1855 | for_each_reserved_mem_region(r) { |
| 1856 | phys_addr_t size = r->size; |
| 1857 | |
| 1858 | if (r->base > limit) |
| 1859 | break; |
| 1860 | |
| 1861 | if (r->base + r->size > limit) |
| 1862 | size = limit - r->base; |
| 1863 | |
| 1864 | if (nid == memblock_get_region_node(r) || !numa_valid_node(nid)) |
| 1865 | if (r->flags & MEMBLOCK_RSRV_KERN) |
| 1866 | total += size; |
| 1867 | } |
| 1868 | |
| 1869 | return total; |
| 1870 | } |
| 1871 | |
| 1872 | /** |
| 1873 | * memblock_estimated_nr_free_pages - return estimated number of free pages |
| 1874 | * from memblock point of view |
| 1875 | * |
| 1876 | * During bootup, subsystems might need a rough estimate of the number of free |
| 1877 | * pages in the whole system, before precise numbers are available from the |
| 1878 | * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers |
| 1879 | * obtained from the buddy might be very imprecise during bootup. |
| 1880 | * |
| 1881 | * Return: |
| 1882 | * An estimated number of free pages from memblock point of view. |
| 1883 | */ |
| 1884 | unsigned long __init memblock_estimated_nr_free_pages(void) |
| 1885 | { |
| 1886 | return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size()); |
| 1887 | } |
| 1888 | |
| 1889 | /* lowest address */ |
| 1890 | phys_addr_t __init_memblock memblock_start_of_DRAM(void) |
| 1891 | { |
| 1892 | return memblock.memory.regions[0].base; |
| 1893 | } |
| 1894 | |
| 1895 | phys_addr_t __init_memblock memblock_end_of_DRAM(void) |
| 1896 | { |
| 1897 | int idx = memblock.memory.cnt - 1; |
| 1898 | |
| 1899 | return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); |
| 1900 | } |
| 1901 | |
| 1902 | static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) |
| 1903 | { |
| 1904 | phys_addr_t max_addr = PHYS_ADDR_MAX; |
| 1905 | struct memblock_region *r; |
| 1906 | |
| 1907 | /* |
| 1908 | * translate the memory @limit size into the max address within one of |
| 1909 | * the memory memblock regions, if the @limit exceeds the total size |
| 1910 | * of those regions, max_addr will keep original value PHYS_ADDR_MAX |
| 1911 | */ |
| 1912 | for_each_mem_region(r) { |
| 1913 | if (limit <= r->size) { |
| 1914 | max_addr = r->base + limit; |
| 1915 | break; |
| 1916 | } |
| 1917 | limit -= r->size; |
| 1918 | } |
| 1919 | |
| 1920 | return max_addr; |
| 1921 | } |
| 1922 | |
| 1923 | void __init memblock_enforce_memory_limit(phys_addr_t limit) |
| 1924 | { |
| 1925 | phys_addr_t max_addr; |
| 1926 | |
| 1927 | if (!limit) |
| 1928 | return; |
| 1929 | |
| 1930 | max_addr = __find_max_addr(limit); |
| 1931 | |
| 1932 | /* @limit exceeds the total size of the memory, do nothing */ |
| 1933 | if (max_addr == PHYS_ADDR_MAX) |
| 1934 | return; |
| 1935 | |
| 1936 | /* truncate both memory and reserved regions */ |
| 1937 | memblock_remove_range(&memblock.memory, max_addr, |
| 1938 | PHYS_ADDR_MAX); |
| 1939 | memblock_remove_range(&memblock.reserved, max_addr, |
| 1940 | PHYS_ADDR_MAX); |
| 1941 | } |
| 1942 | |
| 1943 | void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) |
| 1944 | { |
| 1945 | int start_rgn, end_rgn; |
| 1946 | int i, ret; |
| 1947 | |
| 1948 | if (!size) |
| 1949 | return; |
| 1950 | |
| 1951 | if (!memblock_memory->total_size) { |
| 1952 | pr_warn("%s: No memory registered yet\n", __func__); |
| 1953 | return; |
| 1954 | } |
| 1955 | |
| 1956 | ret = memblock_isolate_range(&memblock.memory, base, size, |
| 1957 | &start_rgn, &end_rgn); |
| 1958 | if (ret) |
| 1959 | return; |
| 1960 | |
| 1961 | /* remove all the MAP regions */ |
| 1962 | for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) |
| 1963 | if (!memblock_is_nomap(&memblock.memory.regions[i])) |
| 1964 | memblock_remove_region(&memblock.memory, i); |
| 1965 | |
| 1966 | for (i = start_rgn - 1; i >= 0; i--) |
| 1967 | if (!memblock_is_nomap(&memblock.memory.regions[i])) |
| 1968 | memblock_remove_region(&memblock.memory, i); |
| 1969 | |
| 1970 | /* truncate the reserved regions */ |
| 1971 | memblock_remove_range(&memblock.reserved, 0, base); |
| 1972 | memblock_remove_range(&memblock.reserved, |
| 1973 | base + size, PHYS_ADDR_MAX); |
| 1974 | } |
| 1975 | |
| 1976 | void __init memblock_mem_limit_remove_map(phys_addr_t limit) |
| 1977 | { |
| 1978 | phys_addr_t max_addr; |
| 1979 | |
| 1980 | if (!limit) |
| 1981 | return; |
| 1982 | |
| 1983 | max_addr = __find_max_addr(limit); |
| 1984 | |
| 1985 | /* @limit exceeds the total size of the memory, do nothing */ |
| 1986 | if (max_addr == PHYS_ADDR_MAX) |
| 1987 | return; |
| 1988 | |
| 1989 | memblock_cap_memory_range(0, max_addr); |
| 1990 | } |
| 1991 | |
| 1992 | static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) |
| 1993 | { |
| 1994 | unsigned int left = 0, right = type->cnt; |
| 1995 | |
| 1996 | do { |
| 1997 | unsigned int mid = (right + left) / 2; |
| 1998 | |
| 1999 | if (addr < type->regions[mid].base) |
| 2000 | right = mid; |
| 2001 | else if (addr >= (type->regions[mid].base + |
| 2002 | type->regions[mid].size)) |
| 2003 | left = mid + 1; |
| 2004 | else |
| 2005 | return mid; |
| 2006 | } while (left < right); |
| 2007 | return -1; |
| 2008 | } |
| 2009 | |
| 2010 | bool __init_memblock memblock_is_reserved(phys_addr_t addr) |
| 2011 | { |
| 2012 | return memblock_search(&memblock.reserved, addr) != -1; |
| 2013 | } |
| 2014 | |
| 2015 | bool __init_memblock memblock_is_memory(phys_addr_t addr) |
| 2016 | { |
| 2017 | return memblock_search(&memblock.memory, addr) != -1; |
| 2018 | } |
| 2019 | |
| 2020 | bool __init_memblock memblock_is_map_memory(phys_addr_t addr) |
| 2021 | { |
| 2022 | int i = memblock_search(&memblock.memory, addr); |
| 2023 | |
| 2024 | if (i == -1) |
| 2025 | return false; |
| 2026 | return !memblock_is_nomap(&memblock.memory.regions[i]); |
| 2027 | } |
| 2028 | |
| 2029 | int __init_memblock memblock_search_pfn_nid(unsigned long pfn, |
| 2030 | unsigned long *start_pfn, unsigned long *end_pfn) |
| 2031 | { |
| 2032 | struct memblock_type *type = &memblock.memory; |
| 2033 | int mid = memblock_search(type, PFN_PHYS(pfn)); |
| 2034 | |
| 2035 | if (mid == -1) |
| 2036 | return NUMA_NO_NODE; |
| 2037 | |
| 2038 | *start_pfn = PFN_DOWN(type->regions[mid].base); |
| 2039 | *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); |
| 2040 | |
| 2041 | return memblock_get_region_node(&type->regions[mid]); |
| 2042 | } |
| 2043 | |
| 2044 | /** |
| 2045 | * memblock_is_region_memory - check if a region is a subset of memory |
| 2046 | * @base: base of region to check |
| 2047 | * @size: size of region to check |
| 2048 | * |
| 2049 | * Check if the region [@base, @base + @size) is a subset of a memory block. |
| 2050 | * |
| 2051 | * Return: |
| 2052 | * 0 if false, non-zero if true |
| 2053 | */ |
| 2054 | bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) |
| 2055 | { |
| 2056 | int idx = memblock_search(&memblock.memory, base); |
| 2057 | phys_addr_t end = base + memblock_cap_size(base, &size); |
| 2058 | |
| 2059 | if (idx == -1) |
| 2060 | return false; |
| 2061 | return (memblock.memory.regions[idx].base + |
| 2062 | memblock.memory.regions[idx].size) >= end; |
| 2063 | } |
| 2064 | |
| 2065 | /** |
| 2066 | * memblock_is_region_reserved - check if a region intersects reserved memory |
| 2067 | * @base: base of region to check |
| 2068 | * @size: size of region to check |
| 2069 | * |
| 2070 | * Check if the region [@base, @base + @size) intersects a reserved |
| 2071 | * memory block. |
| 2072 | * |
| 2073 | * Return: |
| 2074 | * True if they intersect, false if not. |
| 2075 | */ |
| 2076 | bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) |
| 2077 | { |
| 2078 | return memblock_overlaps_region(&memblock.reserved, base, size); |
| 2079 | } |
| 2080 | |
| 2081 | void __init_memblock memblock_trim_memory(phys_addr_t align) |
| 2082 | { |
| 2083 | phys_addr_t start, end, orig_start, orig_end; |
| 2084 | struct memblock_region *r; |
| 2085 | |
| 2086 | for_each_mem_region(r) { |
| 2087 | orig_start = r->base; |
| 2088 | orig_end = r->base + r->size; |
| 2089 | start = round_up(orig_start, align); |
| 2090 | end = round_down(orig_end, align); |
| 2091 | |
| 2092 | if (start == orig_start && end == orig_end) |
| 2093 | continue; |
| 2094 | |
| 2095 | if (start < end) { |
| 2096 | r->base = start; |
| 2097 | r->size = end - start; |
| 2098 | } else { |
| 2099 | memblock_remove_region(&memblock.memory, |
| 2100 | r - memblock.memory.regions); |
| 2101 | r--; |
| 2102 | } |
| 2103 | } |
| 2104 | } |
| 2105 | |
| 2106 | void __init_memblock memblock_set_current_limit(phys_addr_t limit) |
| 2107 | { |
| 2108 | memblock.current_limit = limit; |
| 2109 | } |
| 2110 | |
| 2111 | phys_addr_t __init_memblock memblock_get_current_limit(void) |
| 2112 | { |
| 2113 | return memblock.current_limit; |
| 2114 | } |
| 2115 | |
| 2116 | static void __init_memblock memblock_dump(struct memblock_type *type) |
| 2117 | { |
| 2118 | phys_addr_t base, end, size; |
| 2119 | enum memblock_flags flags; |
| 2120 | int idx; |
| 2121 | struct memblock_region *rgn; |
| 2122 | |
| 2123 | pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); |
| 2124 | |
| 2125 | for_each_memblock_type(idx, type, rgn) { |
| 2126 | char nid_buf[32] = ""; |
| 2127 | |
| 2128 | base = rgn->base; |
| 2129 | size = rgn->size; |
| 2130 | end = base + size - 1; |
| 2131 | flags = rgn->flags; |
| 2132 | #ifdef CONFIG_NUMA |
| 2133 | if (numa_valid_node(memblock_get_region_node(rgn))) |
| 2134 | snprintf(nid_buf, sizeof(nid_buf), " on node %d", |
| 2135 | memblock_get_region_node(rgn)); |
| 2136 | #endif |
| 2137 | pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", |
| 2138 | type->name, idx, &base, &end, &size, nid_buf, flags); |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | static void __init_memblock __memblock_dump_all(void) |
| 2143 | { |
| 2144 | pr_info("MEMBLOCK configuration:\n"); |
| 2145 | pr_info(" memory size = %pa reserved size = %pa\n", |
| 2146 | &memblock.memory.total_size, |
| 2147 | &memblock.reserved.total_size); |
| 2148 | |
| 2149 | memblock_dump(&memblock.memory); |
| 2150 | memblock_dump(&memblock.reserved); |
| 2151 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 2152 | memblock_dump(&physmem); |
| 2153 | #endif |
| 2154 | } |
| 2155 | |
| 2156 | void __init_memblock memblock_dump_all(void) |
| 2157 | { |
| 2158 | if (memblock_debug) |
| 2159 | __memblock_dump_all(); |
| 2160 | } |
| 2161 | |
| 2162 | void __init memblock_allow_resize(void) |
| 2163 | { |
| 2164 | memblock_can_resize = 1; |
| 2165 | } |
| 2166 | |
| 2167 | static int __init early_memblock(char *p) |
| 2168 | { |
| 2169 | if (p && strstr(p, "debug")) |
| 2170 | memblock_debug = 1; |
| 2171 | return 0; |
| 2172 | } |
| 2173 | early_param("memblock", early_memblock); |
| 2174 | |
| 2175 | static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) |
| 2176 | { |
| 2177 | struct page *start_pg, *end_pg; |
| 2178 | phys_addr_t pg, pgend; |
| 2179 | |
| 2180 | /* |
| 2181 | * Convert start_pfn/end_pfn to a struct page pointer. |
| 2182 | */ |
| 2183 | start_pg = pfn_to_page(start_pfn - 1) + 1; |
| 2184 | end_pg = pfn_to_page(end_pfn - 1) + 1; |
| 2185 | |
| 2186 | /* |
| 2187 | * Convert to physical addresses, and round start upwards and end |
| 2188 | * downwards. |
| 2189 | */ |
| 2190 | pg = PAGE_ALIGN(__pa(start_pg)); |
| 2191 | pgend = PAGE_ALIGN_DOWN(__pa(end_pg)); |
| 2192 | |
| 2193 | /* |
| 2194 | * If there are free pages between these, free the section of the |
| 2195 | * memmap array. |
| 2196 | */ |
| 2197 | if (pg < pgend) |
| 2198 | memblock_phys_free(pg, pgend - pg); |
| 2199 | } |
| 2200 | |
| 2201 | /* |
| 2202 | * The mem_map array can get very big. Free the unused area of the memory map. |
| 2203 | */ |
| 2204 | static void __init free_unused_memmap(void) |
| 2205 | { |
| 2206 | unsigned long start, end, prev_end = 0; |
| 2207 | int i; |
| 2208 | |
| 2209 | if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || |
| 2210 | IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) |
| 2211 | return; |
| 2212 | |
| 2213 | /* |
| 2214 | * This relies on each bank being in address order. |
| 2215 | * The banks are sorted previously in bootmem_init(). |
| 2216 | */ |
| 2217 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { |
| 2218 | #ifdef CONFIG_SPARSEMEM |
| 2219 | /* |
| 2220 | * Take care not to free memmap entries that don't exist |
| 2221 | * due to SPARSEMEM sections which aren't present. |
| 2222 | */ |
| 2223 | start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); |
| 2224 | #endif |
| 2225 | /* |
| 2226 | * Align down here since many operations in VM subsystem |
| 2227 | * presume that there are no holes in the memory map inside |
| 2228 | * a pageblock |
| 2229 | */ |
| 2230 | start = pageblock_start_pfn(start); |
| 2231 | |
| 2232 | /* |
| 2233 | * If we had a previous bank, and there is a space |
| 2234 | * between the current bank and the previous, free it. |
| 2235 | */ |
| 2236 | if (prev_end && prev_end < start) |
| 2237 | free_memmap(prev_end, start); |
| 2238 | |
| 2239 | /* |
| 2240 | * Align up here since many operations in VM subsystem |
| 2241 | * presume that there are no holes in the memory map inside |
| 2242 | * a pageblock |
| 2243 | */ |
| 2244 | prev_end = pageblock_align(end); |
| 2245 | } |
| 2246 | |
| 2247 | #ifdef CONFIG_SPARSEMEM |
| 2248 | if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { |
| 2249 | prev_end = pageblock_align(end); |
| 2250 | free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); |
| 2251 | } |
| 2252 | #endif |
| 2253 | } |
| 2254 | |
| 2255 | static void __init __free_pages_memory(unsigned long start, unsigned long end) |
| 2256 | { |
| 2257 | int order; |
| 2258 | |
| 2259 | while (start < end) { |
| 2260 | /* |
| 2261 | * Free the pages in the largest chunks alignment allows. |
| 2262 | * |
| 2263 | * __ffs() behaviour is undefined for 0. start == 0 is |
| 2264 | * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for |
| 2265 | * the case. |
| 2266 | */ |
| 2267 | if (start) |
| 2268 | order = min_t(int, MAX_PAGE_ORDER, __ffs(start)); |
| 2269 | else |
| 2270 | order = MAX_PAGE_ORDER; |
| 2271 | |
| 2272 | while (start + (1UL << order) > end) |
| 2273 | order--; |
| 2274 | |
| 2275 | memblock_free_pages(pfn_to_page(start), start, order); |
| 2276 | |
| 2277 | start += (1UL << order); |
| 2278 | } |
| 2279 | } |
| 2280 | |
| 2281 | static unsigned long __init __free_memory_core(phys_addr_t start, |
| 2282 | phys_addr_t end) |
| 2283 | { |
| 2284 | unsigned long start_pfn = PFN_UP(start); |
| 2285 | unsigned long end_pfn = PFN_DOWN(end); |
| 2286 | |
| 2287 | if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn) |
| 2288 | end_pfn = max_low_pfn; |
| 2289 | |
| 2290 | if (start_pfn >= end_pfn) |
| 2291 | return 0; |
| 2292 | |
| 2293 | __free_pages_memory(start_pfn, end_pfn); |
| 2294 | |
| 2295 | return end_pfn - start_pfn; |
| 2296 | } |
| 2297 | |
| 2298 | static void __init memmap_init_reserved_pages(void) |
| 2299 | { |
| 2300 | struct memblock_region *region; |
| 2301 | phys_addr_t start, end; |
| 2302 | int nid; |
| 2303 | unsigned long max_reserved; |
| 2304 | |
| 2305 | /* |
| 2306 | * set nid on all reserved pages and also treat struct |
| 2307 | * pages for the NOMAP regions as PageReserved |
| 2308 | */ |
| 2309 | repeat: |
| 2310 | max_reserved = memblock.reserved.max; |
| 2311 | for_each_mem_region(region) { |
| 2312 | nid = memblock_get_region_node(region); |
| 2313 | start = region->base; |
| 2314 | end = start + region->size; |
| 2315 | |
| 2316 | if (memblock_is_nomap(region)) |
| 2317 | reserve_bootmem_region(start, end, nid); |
| 2318 | |
| 2319 | memblock_set_node(start, region->size, &memblock.reserved, nid); |
| 2320 | } |
| 2321 | /* |
| 2322 | * 'max' is changed means memblock.reserved has been doubled its |
| 2323 | * array, which may result a new reserved region before current |
| 2324 | * 'start'. Now we should repeat the procedure to set its node id. |
| 2325 | */ |
| 2326 | if (max_reserved != memblock.reserved.max) |
| 2327 | goto repeat; |
| 2328 | |
| 2329 | /* |
| 2330 | * initialize struct pages for reserved regions that don't have |
| 2331 | * the MEMBLOCK_RSRV_NOINIT flag set |
| 2332 | */ |
| 2333 | for_each_reserved_mem_region(region) { |
| 2334 | if (!memblock_is_reserved_noinit(region)) { |
| 2335 | nid = memblock_get_region_node(region); |
| 2336 | start = region->base; |
| 2337 | end = start + region->size; |
| 2338 | |
| 2339 | if (!numa_valid_node(nid)) |
| 2340 | nid = early_pfn_to_nid(PFN_DOWN(start)); |
| 2341 | |
| 2342 | reserve_bootmem_region(start, end, nid); |
| 2343 | } |
| 2344 | } |
| 2345 | } |
| 2346 | |
| 2347 | static unsigned long __init free_low_memory_core_early(void) |
| 2348 | { |
| 2349 | unsigned long count = 0; |
| 2350 | phys_addr_t start, end; |
| 2351 | u64 i; |
| 2352 | |
| 2353 | memblock_clear_hotplug(0, -1); |
| 2354 | |
| 2355 | memmap_init_reserved_pages(); |
| 2356 | |
| 2357 | /* |
| 2358 | * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id |
| 2359 | * because in some case like Node0 doesn't have RAM installed |
| 2360 | * low ram will be on Node1 |
| 2361 | */ |
| 2362 | for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, |
| 2363 | NULL) |
| 2364 | count += __free_memory_core(start, end); |
| 2365 | |
| 2366 | return count; |
| 2367 | } |
| 2368 | |
| 2369 | static int reset_managed_pages_done __initdata; |
| 2370 | |
| 2371 | static void __init reset_node_managed_pages(pg_data_t *pgdat) |
| 2372 | { |
| 2373 | struct zone *z; |
| 2374 | |
| 2375 | for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) |
| 2376 | atomic_long_set(&z->managed_pages, 0); |
| 2377 | } |
| 2378 | |
| 2379 | void __init reset_all_zones_managed_pages(void) |
| 2380 | { |
| 2381 | struct pglist_data *pgdat; |
| 2382 | |
| 2383 | if (reset_managed_pages_done) |
| 2384 | return; |
| 2385 | |
| 2386 | for_each_online_pgdat(pgdat) |
| 2387 | reset_node_managed_pages(pgdat); |
| 2388 | |
| 2389 | reset_managed_pages_done = 1; |
| 2390 | } |
| 2391 | |
| 2392 | /** |
| 2393 | * memblock_free_all - release free pages to the buddy allocator |
| 2394 | */ |
| 2395 | void __init memblock_free_all(void) |
| 2396 | { |
| 2397 | unsigned long pages; |
| 2398 | |
| 2399 | free_unused_memmap(); |
| 2400 | reset_all_zones_managed_pages(); |
| 2401 | |
| 2402 | memblock_clear_kho_scratch_only(); |
| 2403 | pages = free_low_memory_core_early(); |
| 2404 | totalram_pages_add(pages); |
| 2405 | } |
| 2406 | |
| 2407 | /* Keep a table to reserve named memory */ |
| 2408 | #define RESERVE_MEM_MAX_ENTRIES 8 |
| 2409 | #define RESERVE_MEM_NAME_SIZE 16 |
| 2410 | struct reserve_mem_table { |
| 2411 | char name[RESERVE_MEM_NAME_SIZE]; |
| 2412 | phys_addr_t start; |
| 2413 | phys_addr_t size; |
| 2414 | }; |
| 2415 | static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES]; |
| 2416 | static int reserved_mem_count; |
| 2417 | static DEFINE_MUTEX(reserve_mem_lock); |
| 2418 | |
| 2419 | /* Add wildcard region with a lookup name */ |
| 2420 | static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size, |
| 2421 | const char *name) |
| 2422 | { |
| 2423 | struct reserve_mem_table *map; |
| 2424 | |
| 2425 | map = &reserved_mem_table[reserved_mem_count++]; |
| 2426 | map->start = start; |
| 2427 | map->size = size; |
| 2428 | strscpy(map->name, name); |
| 2429 | } |
| 2430 | |
| 2431 | static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name) |
| 2432 | { |
| 2433 | struct reserve_mem_table *map; |
| 2434 | int i; |
| 2435 | |
| 2436 | for (i = 0; i < reserved_mem_count; i++) { |
| 2437 | map = &reserved_mem_table[i]; |
| 2438 | if (!map->size) |
| 2439 | continue; |
| 2440 | if (strcmp(name, map->name) == 0) |
| 2441 | return map; |
| 2442 | } |
| 2443 | return NULL; |
| 2444 | } |
| 2445 | |
| 2446 | /** |
| 2447 | * reserve_mem_find_by_name - Find reserved memory region with a given name |
| 2448 | * @name: The name that is attached to a reserved memory region |
| 2449 | * @start: If found, holds the start address |
| 2450 | * @size: If found, holds the size of the address. |
| 2451 | * |
| 2452 | * @start and @size are only updated if @name is found. |
| 2453 | * |
| 2454 | * Returns: 1 if found or 0 if not found. |
| 2455 | */ |
| 2456 | int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size) |
| 2457 | { |
| 2458 | struct reserve_mem_table *map; |
| 2459 | |
| 2460 | guard(mutex)(&reserve_mem_lock); |
| 2461 | map = reserve_mem_find_by_name_nolock(name); |
| 2462 | if (!map) |
| 2463 | return 0; |
| 2464 | |
| 2465 | *start = map->start; |
| 2466 | *size = map->size; |
| 2467 | return 1; |
| 2468 | } |
| 2469 | EXPORT_SYMBOL_GPL(reserve_mem_find_by_name); |
| 2470 | |
| 2471 | /** |
| 2472 | * reserve_mem_release_by_name - Release reserved memory region with a given name |
| 2473 | * @name: The name that is attatched to a reserved memory region |
| 2474 | * |
| 2475 | * Forcibly release the pages in the reserved memory region so that those memory |
| 2476 | * can be used as free memory. After released the reserved region size becomes 0. |
| 2477 | * |
| 2478 | * Returns: 1 if released or 0 if not found. |
| 2479 | */ |
| 2480 | int reserve_mem_release_by_name(const char *name) |
| 2481 | { |
| 2482 | char buf[RESERVE_MEM_NAME_SIZE + 12]; |
| 2483 | struct reserve_mem_table *map; |
| 2484 | void *start, *end; |
| 2485 | |
| 2486 | guard(mutex)(&reserve_mem_lock); |
| 2487 | map = reserve_mem_find_by_name_nolock(name); |
| 2488 | if (!map) |
| 2489 | return 0; |
| 2490 | |
| 2491 | start = phys_to_virt(map->start); |
| 2492 | end = start + map->size - 1; |
| 2493 | snprintf(buf, sizeof(buf), "reserve_mem:%s", name); |
| 2494 | free_reserved_area(start, end, 0, buf); |
| 2495 | map->size = 0; |
| 2496 | |
| 2497 | return 1; |
| 2498 | } |
| 2499 | |
| 2500 | #ifdef CONFIG_KEXEC_HANDOVER |
| 2501 | #define MEMBLOCK_KHO_FDT "memblock" |
| 2502 | #define MEMBLOCK_KHO_NODE_COMPATIBLE "memblock-v1" |
| 2503 | #define RESERVE_MEM_KHO_NODE_COMPATIBLE "reserve-mem-v1" |
| 2504 | static struct page *kho_fdt; |
| 2505 | |
| 2506 | static int reserve_mem_kho_finalize(struct kho_serialization *ser) |
| 2507 | { |
| 2508 | int err = 0, i; |
| 2509 | |
| 2510 | for (i = 0; i < reserved_mem_count; i++) { |
| 2511 | struct reserve_mem_table *map = &reserved_mem_table[i]; |
| 2512 | |
| 2513 | err |= kho_preserve_phys(map->start, map->size); |
| 2514 | } |
| 2515 | |
| 2516 | err |= kho_preserve_folio(page_folio(kho_fdt)); |
| 2517 | err |= kho_add_subtree(ser, MEMBLOCK_KHO_FDT, page_to_virt(kho_fdt)); |
| 2518 | |
| 2519 | return notifier_from_errno(err); |
| 2520 | } |
| 2521 | |
| 2522 | static int reserve_mem_kho_notifier(struct notifier_block *self, |
| 2523 | unsigned long cmd, void *v) |
| 2524 | { |
| 2525 | switch (cmd) { |
| 2526 | case KEXEC_KHO_FINALIZE: |
| 2527 | return reserve_mem_kho_finalize((struct kho_serialization *)v); |
| 2528 | case KEXEC_KHO_ABORT: |
| 2529 | return NOTIFY_DONE; |
| 2530 | default: |
| 2531 | return NOTIFY_BAD; |
| 2532 | } |
| 2533 | } |
| 2534 | |
| 2535 | static struct notifier_block reserve_mem_kho_nb = { |
| 2536 | .notifier_call = reserve_mem_kho_notifier, |
| 2537 | }; |
| 2538 | |
| 2539 | static int __init prepare_kho_fdt(void) |
| 2540 | { |
| 2541 | int err = 0, i; |
| 2542 | void *fdt; |
| 2543 | |
| 2544 | kho_fdt = alloc_page(GFP_KERNEL); |
| 2545 | if (!kho_fdt) |
| 2546 | return -ENOMEM; |
| 2547 | |
| 2548 | fdt = page_to_virt(kho_fdt); |
| 2549 | |
| 2550 | err |= fdt_create(fdt, PAGE_SIZE); |
| 2551 | err |= fdt_finish_reservemap(fdt); |
| 2552 | |
| 2553 | err |= fdt_begin_node(fdt, ""); |
| 2554 | err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE); |
| 2555 | for (i = 0; i < reserved_mem_count; i++) { |
| 2556 | struct reserve_mem_table *map = &reserved_mem_table[i]; |
| 2557 | |
| 2558 | err |= fdt_begin_node(fdt, map->name); |
| 2559 | err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE); |
| 2560 | err |= fdt_property(fdt, "start", &map->start, sizeof(map->start)); |
| 2561 | err |= fdt_property(fdt, "size", &map->size, sizeof(map->size)); |
| 2562 | err |= fdt_end_node(fdt); |
| 2563 | } |
| 2564 | err |= fdt_end_node(fdt); |
| 2565 | |
| 2566 | err |= fdt_finish(fdt); |
| 2567 | |
| 2568 | if (err) { |
| 2569 | pr_err("failed to prepare memblock FDT for KHO: %d\n", err); |
| 2570 | put_page(kho_fdt); |
| 2571 | kho_fdt = NULL; |
| 2572 | } |
| 2573 | |
| 2574 | return err; |
| 2575 | } |
| 2576 | |
| 2577 | static int __init reserve_mem_init(void) |
| 2578 | { |
| 2579 | int err; |
| 2580 | |
| 2581 | if (!kho_is_enabled() || !reserved_mem_count) |
| 2582 | return 0; |
| 2583 | |
| 2584 | err = prepare_kho_fdt(); |
| 2585 | if (err) |
| 2586 | return err; |
| 2587 | |
| 2588 | err = register_kho_notifier(&reserve_mem_kho_nb); |
| 2589 | if (err) { |
| 2590 | put_page(kho_fdt); |
| 2591 | kho_fdt = NULL; |
| 2592 | } |
| 2593 | |
| 2594 | return err; |
| 2595 | } |
| 2596 | late_initcall(reserve_mem_init); |
| 2597 | |
| 2598 | static void *__init reserve_mem_kho_retrieve_fdt(void) |
| 2599 | { |
| 2600 | phys_addr_t fdt_phys; |
| 2601 | static void *fdt; |
| 2602 | int err; |
| 2603 | |
| 2604 | if (fdt) |
| 2605 | return fdt; |
| 2606 | |
| 2607 | err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys); |
| 2608 | if (err) { |
| 2609 | if (err != -ENOENT) |
| 2610 | pr_warn("failed to retrieve FDT '%s' from KHO: %d\n", |
| 2611 | MEMBLOCK_KHO_FDT, err); |
| 2612 | return NULL; |
| 2613 | } |
| 2614 | |
| 2615 | fdt = phys_to_virt(fdt_phys); |
| 2616 | |
| 2617 | err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE); |
| 2618 | if (err) { |
| 2619 | pr_warn("FDT '%s' is incompatible with '%s': %d\n", |
| 2620 | MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err); |
| 2621 | fdt = NULL; |
| 2622 | } |
| 2623 | |
| 2624 | return fdt; |
| 2625 | } |
| 2626 | |
| 2627 | static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size, |
| 2628 | phys_addr_t align) |
| 2629 | { |
| 2630 | int err, len_start, len_size, offset; |
| 2631 | const phys_addr_t *p_start, *p_size; |
| 2632 | const void *fdt; |
| 2633 | |
| 2634 | fdt = reserve_mem_kho_retrieve_fdt(); |
| 2635 | if (!fdt) |
| 2636 | return false; |
| 2637 | |
| 2638 | offset = fdt_subnode_offset(fdt, 0, name); |
| 2639 | if (offset < 0) { |
| 2640 | pr_warn("FDT '%s' has no child '%s': %d\n", |
| 2641 | MEMBLOCK_KHO_FDT, name, offset); |
| 2642 | return false; |
| 2643 | } |
| 2644 | err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE); |
| 2645 | if (err) { |
| 2646 | pr_warn("Node '%s' is incompatible with '%s': %d\n", |
| 2647 | name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err); |
| 2648 | return false; |
| 2649 | } |
| 2650 | |
| 2651 | p_start = fdt_getprop(fdt, offset, "start", &len_start); |
| 2652 | p_size = fdt_getprop(fdt, offset, "size", &len_size); |
| 2653 | if (!p_start || len_start != sizeof(*p_start) || !p_size || |
| 2654 | len_size != sizeof(*p_size)) { |
| 2655 | return false; |
| 2656 | } |
| 2657 | |
| 2658 | if (*p_start & (align - 1)) { |
| 2659 | pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n", |
| 2660 | name, (long)align, (long)*p_start); |
| 2661 | return false; |
| 2662 | } |
| 2663 | |
| 2664 | if (*p_size != size) { |
| 2665 | pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n", |
| 2666 | name, (long)*p_size, (long)size); |
| 2667 | return false; |
| 2668 | } |
| 2669 | |
| 2670 | reserved_mem_add(*p_start, size, name); |
| 2671 | pr_info("Revived memory reservation '%s' from KHO\n", name); |
| 2672 | |
| 2673 | return true; |
| 2674 | } |
| 2675 | #else |
| 2676 | static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size, |
| 2677 | phys_addr_t align) |
| 2678 | { |
| 2679 | return false; |
| 2680 | } |
| 2681 | #endif /* CONFIG_KEXEC_HANDOVER */ |
| 2682 | |
| 2683 | /* |
| 2684 | * Parse reserve_mem=nn:align:name |
| 2685 | */ |
| 2686 | static int __init reserve_mem(char *p) |
| 2687 | { |
| 2688 | phys_addr_t start, size, align, tmp; |
| 2689 | char *name; |
| 2690 | char *oldp; |
| 2691 | int len; |
| 2692 | |
| 2693 | if (!p) |
| 2694 | return -EINVAL; |
| 2695 | |
| 2696 | /* Check if there's room for more reserved memory */ |
| 2697 | if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES) |
| 2698 | return -EBUSY; |
| 2699 | |
| 2700 | oldp = p; |
| 2701 | size = memparse(p, &p); |
| 2702 | if (!size || p == oldp) |
| 2703 | return -EINVAL; |
| 2704 | |
| 2705 | if (*p != ':') |
| 2706 | return -EINVAL; |
| 2707 | |
| 2708 | align = memparse(p+1, &p); |
| 2709 | if (*p != ':') |
| 2710 | return -EINVAL; |
| 2711 | |
| 2712 | /* |
| 2713 | * memblock_phys_alloc() doesn't like a zero size align, |
| 2714 | * but it is OK for this command to have it. |
| 2715 | */ |
| 2716 | if (align < SMP_CACHE_BYTES) |
| 2717 | align = SMP_CACHE_BYTES; |
| 2718 | |
| 2719 | name = p + 1; |
| 2720 | len = strlen(name); |
| 2721 | |
| 2722 | /* name needs to have length but not too big */ |
| 2723 | if (!len || len >= RESERVE_MEM_NAME_SIZE) |
| 2724 | return -EINVAL; |
| 2725 | |
| 2726 | /* Make sure that name has text */ |
| 2727 | for (p = name; *p; p++) { |
| 2728 | if (!isspace(*p)) |
| 2729 | break; |
| 2730 | } |
| 2731 | if (!*p) |
| 2732 | return -EINVAL; |
| 2733 | |
| 2734 | /* Make sure the name is not already used */ |
| 2735 | if (reserve_mem_find_by_name(name, &start, &tmp)) |
| 2736 | return -EBUSY; |
| 2737 | |
| 2738 | /* Pick previous allocations up from KHO if available */ |
| 2739 | if (reserve_mem_kho_revive(name, size, align)) |
| 2740 | return 1; |
| 2741 | |
| 2742 | /* TODO: Allocation must be outside of scratch region */ |
| 2743 | start = memblock_phys_alloc(size, align); |
| 2744 | if (!start) |
| 2745 | return -ENOMEM; |
| 2746 | |
| 2747 | reserved_mem_add(start, size, name); |
| 2748 | |
| 2749 | return 1; |
| 2750 | } |
| 2751 | __setup("reserve_mem=", reserve_mem); |
| 2752 | |
| 2753 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) |
| 2754 | static const char * const flagname[] = { |
| 2755 | [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG", |
| 2756 | [ilog2(MEMBLOCK_MIRROR)] = "MIRROR", |
| 2757 | [ilog2(MEMBLOCK_NOMAP)] = "NOMAP", |
| 2758 | [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG", |
| 2759 | [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT", |
| 2760 | [ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN", |
| 2761 | [ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH", |
| 2762 | }; |
| 2763 | |
| 2764 | static int memblock_debug_show(struct seq_file *m, void *private) |
| 2765 | { |
| 2766 | struct memblock_type *type = m->private; |
| 2767 | struct memblock_region *reg; |
| 2768 | int i, j, nid; |
| 2769 | unsigned int count = ARRAY_SIZE(flagname); |
| 2770 | phys_addr_t end; |
| 2771 | |
| 2772 | for (i = 0; i < type->cnt; i++) { |
| 2773 | reg = &type->regions[i]; |
| 2774 | end = reg->base + reg->size - 1; |
| 2775 | nid = memblock_get_region_node(reg); |
| 2776 | |
| 2777 | seq_printf(m, "%4d: ", i); |
| 2778 | seq_printf(m, "%pa..%pa ", ®->base, &end); |
| 2779 | if (numa_valid_node(nid)) |
| 2780 | seq_printf(m, "%4d ", nid); |
| 2781 | else |
| 2782 | seq_printf(m, "%4c ", 'x'); |
| 2783 | if (reg->flags) { |
| 2784 | for (j = 0; j < count; j++) { |
| 2785 | if (reg->flags & (1U << j)) { |
| 2786 | seq_printf(m, "%s\n", flagname[j]); |
| 2787 | break; |
| 2788 | } |
| 2789 | } |
| 2790 | if (j == count) |
| 2791 | seq_printf(m, "%s\n", "UNKNOWN"); |
| 2792 | } else { |
| 2793 | seq_printf(m, "%s\n", "NONE"); |
| 2794 | } |
| 2795 | } |
| 2796 | return 0; |
| 2797 | } |
| 2798 | DEFINE_SHOW_ATTRIBUTE(memblock_debug); |
| 2799 | |
| 2800 | static int __init memblock_init_debugfs(void) |
| 2801 | { |
| 2802 | struct dentry *root = debugfs_create_dir("memblock", NULL); |
| 2803 | |
| 2804 | debugfs_create_file("memory", 0444, root, |
| 2805 | &memblock.memory, &memblock_debug_fops); |
| 2806 | debugfs_create_file("reserved", 0444, root, |
| 2807 | &memblock.reserved, &memblock_debug_fops); |
| 2808 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 2809 | debugfs_create_file("physmem", 0444, root, &physmem, |
| 2810 | &memblock_debug_fops); |
| 2811 | #endif |
| 2812 | |
| 2813 | return 0; |
| 2814 | } |
| 2815 | __initcall(memblock_init_debugfs); |
| 2816 | |
| 2817 | #endif /* CONFIG_DEBUG_FS */ |