hugetlb: rework hstate_next_node_* functions
[linux-2.6-block.git] / mm / hugetlb.c
... / ...
CommitLineData
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/seq_file.h>
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
13#include <linux/mmu_notifier.h>
14#include <linux/nodemask.h>
15#include <linux/pagemap.h>
16#include <linux/mempolicy.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/io.h>
25
26#include <linux/hugetlb.h>
27#include "internal.h"
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
32
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
37__initdata LIST_HEAD(huge_boot_pages);
38
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
42static unsigned long __initdata default_hstate_size;
43
44#define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
51
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
65 */
66struct file_region {
67 struct list_head link;
68 long from;
69 long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74 struct file_region *rg, *nrg, *trg;
75
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
80
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
84
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
92
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
101 }
102 }
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110 struct file_region *rg, *nrg;
111 long chg = 0;
112
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
117
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
129
130 return t - f;
131 }
132
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
137
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
144
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
151 }
152 chg -= rg->to - rg->from;
153 }
154 return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159 struct file_region *rg, *trg;
160 long chg = 0;
161
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
168
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
174 }
175
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 return chg;
185}
186
187static long region_count(struct list_head *head, long f, long t)
188{
189 struct file_region *rg;
190 long chg = 0;
191
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
196
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
201
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
204
205 chg += seg_to - seg_from;
206 }
207
208 return chg;
209}
210
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
217{
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
220}
221
222/*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227{
228 struct hstate *hstate;
229
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
232
233 hstate = hstate_vma(vma);
234
235 return 1UL << (hstate->order + PAGE_SHIFT);
236}
237EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238
239/*
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
244 */
245#ifndef vma_mmu_pagesize
246unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247{
248 return vma_kernel_pagesize(vma);
249}
250#endif
251
252/*
253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
255 * alignment.
256 */
257#define HPAGE_RESV_OWNER (1UL << 0)
258#define HPAGE_RESV_UNMAPPED (1UL << 1)
259#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260
261/*
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
265 *
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
270 *
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping. A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated. A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
279 */
280static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281{
282 return (unsigned long)vma->vm_private_data;
283}
284
285static void set_vma_private_data(struct vm_area_struct *vma,
286 unsigned long value)
287{
288 vma->vm_private_data = (void *)value;
289}
290
291struct resv_map {
292 struct kref refs;
293 struct list_head regions;
294};
295
296static struct resv_map *resv_map_alloc(void)
297{
298 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299 if (!resv_map)
300 return NULL;
301
302 kref_init(&resv_map->refs);
303 INIT_LIST_HEAD(&resv_map->regions);
304
305 return resv_map;
306}
307
308static void resv_map_release(struct kref *ref)
309{
310 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311
312 /* Clear out any active regions before we release the map. */
313 region_truncate(&resv_map->regions, 0);
314 kfree(resv_map);
315}
316
317static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318{
319 VM_BUG_ON(!is_vm_hugetlb_page(vma));
320 if (!(vma->vm_flags & VM_MAYSHARE))
321 return (struct resv_map *)(get_vma_private_data(vma) &
322 ~HPAGE_RESV_MASK);
323 return NULL;
324}
325
326static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327{
328 VM_BUG_ON(!is_vm_hugetlb_page(vma));
329 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330
331 set_vma_private_data(vma, (get_vma_private_data(vma) &
332 HPAGE_RESV_MASK) | (unsigned long)map);
333}
334
335static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336{
337 VM_BUG_ON(!is_vm_hugetlb_page(vma));
338 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339
340 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341}
342
343static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344{
345 VM_BUG_ON(!is_vm_hugetlb_page(vma));
346
347 return (get_vma_private_data(vma) & flag) != 0;
348}
349
350/* Decrement the reserved pages in the hugepage pool by one */
351static void decrement_hugepage_resv_vma(struct hstate *h,
352 struct vm_area_struct *vma)
353{
354 if (vma->vm_flags & VM_NORESERVE)
355 return;
356
357 if (vma->vm_flags & VM_MAYSHARE) {
358 /* Shared mappings always use reserves */
359 h->resv_huge_pages--;
360 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361 /*
362 * Only the process that called mmap() has reserves for
363 * private mappings.
364 */
365 h->resv_huge_pages--;
366 }
367}
368
369/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371{
372 VM_BUG_ON(!is_vm_hugetlb_page(vma));
373 if (!(vma->vm_flags & VM_MAYSHARE))
374 vma->vm_private_data = (void *)0;
375}
376
377/* Returns true if the VMA has associated reserve pages */
378static int vma_has_reserves(struct vm_area_struct *vma)
379{
380 if (vma->vm_flags & VM_MAYSHARE)
381 return 1;
382 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383 return 1;
384 return 0;
385}
386
387static void clear_gigantic_page(struct page *page,
388 unsigned long addr, unsigned long sz)
389{
390 int i;
391 struct page *p = page;
392
393 might_sleep();
394 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395 cond_resched();
396 clear_user_highpage(p, addr + i * PAGE_SIZE);
397 }
398}
399static void clear_huge_page(struct page *page,
400 unsigned long addr, unsigned long sz)
401{
402 int i;
403
404 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405 clear_gigantic_page(page, addr, sz);
406 return;
407 }
408
409 might_sleep();
410 for (i = 0; i < sz/PAGE_SIZE; i++) {
411 cond_resched();
412 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413 }
414}
415
416static void copy_gigantic_page(struct page *dst, struct page *src,
417 unsigned long addr, struct vm_area_struct *vma)
418{
419 int i;
420 struct hstate *h = hstate_vma(vma);
421 struct page *dst_base = dst;
422 struct page *src_base = src;
423 might_sleep();
424 for (i = 0; i < pages_per_huge_page(h); ) {
425 cond_resched();
426 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427
428 i++;
429 dst = mem_map_next(dst, dst_base, i);
430 src = mem_map_next(src, src_base, i);
431 }
432}
433static void copy_huge_page(struct page *dst, struct page *src,
434 unsigned long addr, struct vm_area_struct *vma)
435{
436 int i;
437 struct hstate *h = hstate_vma(vma);
438
439 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440 copy_gigantic_page(dst, src, addr, vma);
441 return;
442 }
443
444 might_sleep();
445 for (i = 0; i < pages_per_huge_page(h); i++) {
446 cond_resched();
447 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448 }
449}
450
451static void enqueue_huge_page(struct hstate *h, struct page *page)
452{
453 int nid = page_to_nid(page);
454 list_add(&page->lru, &h->hugepage_freelists[nid]);
455 h->free_huge_pages++;
456 h->free_huge_pages_node[nid]++;
457}
458
459static struct page *dequeue_huge_page_vma(struct hstate *h,
460 struct vm_area_struct *vma,
461 unsigned long address, int avoid_reserve)
462{
463 int nid;
464 struct page *page = NULL;
465 struct mempolicy *mpol;
466 nodemask_t *nodemask;
467 struct zonelist *zonelist = huge_zonelist(vma, address,
468 htlb_alloc_mask, &mpol, &nodemask);
469 struct zone *zone;
470 struct zoneref *z;
471
472 /*
473 * A child process with MAP_PRIVATE mappings created by their parent
474 * have no page reserves. This check ensures that reservations are
475 * not "stolen". The child may still get SIGKILLed
476 */
477 if (!vma_has_reserves(vma) &&
478 h->free_huge_pages - h->resv_huge_pages == 0)
479 return NULL;
480
481 /* If reserves cannot be used, ensure enough pages are in the pool */
482 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483 return NULL;
484
485 for_each_zone_zonelist_nodemask(zone, z, zonelist,
486 MAX_NR_ZONES - 1, nodemask) {
487 nid = zone_to_nid(zone);
488 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489 !list_empty(&h->hugepage_freelists[nid])) {
490 page = list_entry(h->hugepage_freelists[nid].next,
491 struct page, lru);
492 list_del(&page->lru);
493 h->free_huge_pages--;
494 h->free_huge_pages_node[nid]--;
495
496 if (!avoid_reserve)
497 decrement_hugepage_resv_vma(h, vma);
498
499 break;
500 }
501 }
502 mpol_cond_put(mpol);
503 return page;
504}
505
506static void update_and_free_page(struct hstate *h, struct page *page)
507{
508 int i;
509
510 VM_BUG_ON(h->order >= MAX_ORDER);
511
512 h->nr_huge_pages--;
513 h->nr_huge_pages_node[page_to_nid(page)]--;
514 for (i = 0; i < pages_per_huge_page(h); i++) {
515 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
516 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
517 1 << PG_private | 1<< PG_writeback);
518 }
519 set_compound_page_dtor(page, NULL);
520 set_page_refcounted(page);
521 arch_release_hugepage(page);
522 __free_pages(page, huge_page_order(h));
523}
524
525struct hstate *size_to_hstate(unsigned long size)
526{
527 struct hstate *h;
528
529 for_each_hstate(h) {
530 if (huge_page_size(h) == size)
531 return h;
532 }
533 return NULL;
534}
535
536static void free_huge_page(struct page *page)
537{
538 /*
539 * Can't pass hstate in here because it is called from the
540 * compound page destructor.
541 */
542 struct hstate *h = page_hstate(page);
543 int nid = page_to_nid(page);
544 struct address_space *mapping;
545
546 mapping = (struct address_space *) page_private(page);
547 set_page_private(page, 0);
548 BUG_ON(page_count(page));
549 INIT_LIST_HEAD(&page->lru);
550
551 spin_lock(&hugetlb_lock);
552 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553 update_and_free_page(h, page);
554 h->surplus_huge_pages--;
555 h->surplus_huge_pages_node[nid]--;
556 } else {
557 enqueue_huge_page(h, page);
558 }
559 spin_unlock(&hugetlb_lock);
560 if (mapping)
561 hugetlb_put_quota(mapping, 1);
562}
563
564static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
565{
566 set_compound_page_dtor(page, free_huge_page);
567 spin_lock(&hugetlb_lock);
568 h->nr_huge_pages++;
569 h->nr_huge_pages_node[nid]++;
570 spin_unlock(&hugetlb_lock);
571 put_page(page); /* free it into the hugepage allocator */
572}
573
574static void prep_compound_gigantic_page(struct page *page, unsigned long order)
575{
576 int i;
577 int nr_pages = 1 << order;
578 struct page *p = page + 1;
579
580 /* we rely on prep_new_huge_page to set the destructor */
581 set_compound_order(page, order);
582 __SetPageHead(page);
583 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
584 __SetPageTail(p);
585 p->first_page = page;
586 }
587}
588
589int PageHuge(struct page *page)
590{
591 compound_page_dtor *dtor;
592
593 if (!PageCompound(page))
594 return 0;
595
596 page = compound_head(page);
597 dtor = get_compound_page_dtor(page);
598
599 return dtor == free_huge_page;
600}
601
602static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
603{
604 struct page *page;
605
606 if (h->order >= MAX_ORDER)
607 return NULL;
608
609 page = alloc_pages_exact_node(nid,
610 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
611 __GFP_REPEAT|__GFP_NOWARN,
612 huge_page_order(h));
613 if (page) {
614 if (arch_prepare_hugepage(page)) {
615 __free_pages(page, huge_page_order(h));
616 return NULL;
617 }
618 prep_new_huge_page(h, page, nid);
619 }
620
621 return page;
622}
623
624/*
625 * common helper function for hstate_next_node_to_{alloc|free}.
626 * return next node in node_online_map, wrapping at end.
627 */
628static int next_node_allowed(int nid)
629{
630 nid = next_node(nid, node_online_map);
631 if (nid == MAX_NUMNODES)
632 nid = first_node(node_online_map);
633 VM_BUG_ON(nid >= MAX_NUMNODES);
634
635 return nid;
636}
637
638/*
639 * Use a helper variable to find the next node and then
640 * copy it back to next_nid_to_alloc afterwards:
641 * otherwise there's a window in which a racer might
642 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
643 * But we don't need to use a spin_lock here: it really
644 * doesn't matter if occasionally a racer chooses the
645 * same nid as we do. Move nid forward in the mask even
646 * if we just successfully allocated a hugepage so that
647 * the next caller gets hugepages on the next node.
648 */
649static int hstate_next_node_to_alloc(struct hstate *h)
650{
651 int nid, next_nid;
652
653 nid = h->next_nid_to_alloc;
654 next_nid = next_node_allowed(nid);
655 h->next_nid_to_alloc = next_nid;
656 return nid;
657}
658
659static int alloc_fresh_huge_page(struct hstate *h)
660{
661 struct page *page;
662 int start_nid;
663 int next_nid;
664 int ret = 0;
665
666 start_nid = hstate_next_node_to_alloc(h);
667 next_nid = start_nid;
668
669 do {
670 page = alloc_fresh_huge_page_node(h, next_nid);
671 if (page) {
672 ret = 1;
673 break;
674 }
675 next_nid = hstate_next_node_to_alloc(h);
676 } while (next_nid != start_nid);
677
678 if (ret)
679 count_vm_event(HTLB_BUDDY_PGALLOC);
680 else
681 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
682
683 return ret;
684}
685
686/*
687 * helper for free_pool_huge_page() - return the next node
688 * from which to free a huge page. Advance the next node id
689 * whether or not we find a free huge page to free so that the
690 * next attempt to free addresses the next node.
691 */
692static int hstate_next_node_to_free(struct hstate *h)
693{
694 int nid, next_nid;
695
696 nid = h->next_nid_to_free;
697 next_nid = next_node_allowed(nid);
698 h->next_nid_to_free = next_nid;
699 return nid;
700}
701
702/*
703 * Free huge page from pool from next node to free.
704 * Attempt to keep persistent huge pages more or less
705 * balanced over allowed nodes.
706 * Called with hugetlb_lock locked.
707 */
708static int free_pool_huge_page(struct hstate *h, bool acct_surplus)
709{
710 int start_nid;
711 int next_nid;
712 int ret = 0;
713
714 start_nid = hstate_next_node_to_free(h);
715 next_nid = start_nid;
716
717 do {
718 /*
719 * If we're returning unused surplus pages, only examine
720 * nodes with surplus pages.
721 */
722 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
723 !list_empty(&h->hugepage_freelists[next_nid])) {
724 struct page *page =
725 list_entry(h->hugepage_freelists[next_nid].next,
726 struct page, lru);
727 list_del(&page->lru);
728 h->free_huge_pages--;
729 h->free_huge_pages_node[next_nid]--;
730 if (acct_surplus) {
731 h->surplus_huge_pages--;
732 h->surplus_huge_pages_node[next_nid]--;
733 }
734 update_and_free_page(h, page);
735 ret = 1;
736 break;
737 }
738 next_nid = hstate_next_node_to_free(h);
739 } while (next_nid != start_nid);
740
741 return ret;
742}
743
744static struct page *alloc_buddy_huge_page(struct hstate *h,
745 struct vm_area_struct *vma, unsigned long address)
746{
747 struct page *page;
748 unsigned int nid;
749
750 if (h->order >= MAX_ORDER)
751 return NULL;
752
753 /*
754 * Assume we will successfully allocate the surplus page to
755 * prevent racing processes from causing the surplus to exceed
756 * overcommit
757 *
758 * This however introduces a different race, where a process B
759 * tries to grow the static hugepage pool while alloc_pages() is
760 * called by process A. B will only examine the per-node
761 * counters in determining if surplus huge pages can be
762 * converted to normal huge pages in adjust_pool_surplus(). A
763 * won't be able to increment the per-node counter, until the
764 * lock is dropped by B, but B doesn't drop hugetlb_lock until
765 * no more huge pages can be converted from surplus to normal
766 * state (and doesn't try to convert again). Thus, we have a
767 * case where a surplus huge page exists, the pool is grown, and
768 * the surplus huge page still exists after, even though it
769 * should just have been converted to a normal huge page. This
770 * does not leak memory, though, as the hugepage will be freed
771 * once it is out of use. It also does not allow the counters to
772 * go out of whack in adjust_pool_surplus() as we don't modify
773 * the node values until we've gotten the hugepage and only the
774 * per-node value is checked there.
775 */
776 spin_lock(&hugetlb_lock);
777 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
778 spin_unlock(&hugetlb_lock);
779 return NULL;
780 } else {
781 h->nr_huge_pages++;
782 h->surplus_huge_pages++;
783 }
784 spin_unlock(&hugetlb_lock);
785
786 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
787 __GFP_REPEAT|__GFP_NOWARN,
788 huge_page_order(h));
789
790 if (page && arch_prepare_hugepage(page)) {
791 __free_pages(page, huge_page_order(h));
792 return NULL;
793 }
794
795 spin_lock(&hugetlb_lock);
796 if (page) {
797 /*
798 * This page is now managed by the hugetlb allocator and has
799 * no users -- drop the buddy allocator's reference.
800 */
801 put_page_testzero(page);
802 VM_BUG_ON(page_count(page));
803 nid = page_to_nid(page);
804 set_compound_page_dtor(page, free_huge_page);
805 /*
806 * We incremented the global counters already
807 */
808 h->nr_huge_pages_node[nid]++;
809 h->surplus_huge_pages_node[nid]++;
810 __count_vm_event(HTLB_BUDDY_PGALLOC);
811 } else {
812 h->nr_huge_pages--;
813 h->surplus_huge_pages--;
814 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
815 }
816 spin_unlock(&hugetlb_lock);
817
818 return page;
819}
820
821/*
822 * Increase the hugetlb pool such that it can accomodate a reservation
823 * of size 'delta'.
824 */
825static int gather_surplus_pages(struct hstate *h, int delta)
826{
827 struct list_head surplus_list;
828 struct page *page, *tmp;
829 int ret, i;
830 int needed, allocated;
831
832 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
833 if (needed <= 0) {
834 h->resv_huge_pages += delta;
835 return 0;
836 }
837
838 allocated = 0;
839 INIT_LIST_HEAD(&surplus_list);
840
841 ret = -ENOMEM;
842retry:
843 spin_unlock(&hugetlb_lock);
844 for (i = 0; i < needed; i++) {
845 page = alloc_buddy_huge_page(h, NULL, 0);
846 if (!page) {
847 /*
848 * We were not able to allocate enough pages to
849 * satisfy the entire reservation so we free what
850 * we've allocated so far.
851 */
852 spin_lock(&hugetlb_lock);
853 needed = 0;
854 goto free;
855 }
856
857 list_add(&page->lru, &surplus_list);
858 }
859 allocated += needed;
860
861 /*
862 * After retaking hugetlb_lock, we need to recalculate 'needed'
863 * because either resv_huge_pages or free_huge_pages may have changed.
864 */
865 spin_lock(&hugetlb_lock);
866 needed = (h->resv_huge_pages + delta) -
867 (h->free_huge_pages + allocated);
868 if (needed > 0)
869 goto retry;
870
871 /*
872 * The surplus_list now contains _at_least_ the number of extra pages
873 * needed to accomodate the reservation. Add the appropriate number
874 * of pages to the hugetlb pool and free the extras back to the buddy
875 * allocator. Commit the entire reservation here to prevent another
876 * process from stealing the pages as they are added to the pool but
877 * before they are reserved.
878 */
879 needed += allocated;
880 h->resv_huge_pages += delta;
881 ret = 0;
882free:
883 /* Free the needed pages to the hugetlb pool */
884 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
885 if ((--needed) < 0)
886 break;
887 list_del(&page->lru);
888 enqueue_huge_page(h, page);
889 }
890
891 /* Free unnecessary surplus pages to the buddy allocator */
892 if (!list_empty(&surplus_list)) {
893 spin_unlock(&hugetlb_lock);
894 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
895 list_del(&page->lru);
896 /*
897 * The page has a reference count of zero already, so
898 * call free_huge_page directly instead of using
899 * put_page. This must be done with hugetlb_lock
900 * unlocked which is safe because free_huge_page takes
901 * hugetlb_lock before deciding how to free the page.
902 */
903 free_huge_page(page);
904 }
905 spin_lock(&hugetlb_lock);
906 }
907
908 return ret;
909}
910
911/*
912 * When releasing a hugetlb pool reservation, any surplus pages that were
913 * allocated to satisfy the reservation must be explicitly freed if they were
914 * never used.
915 * Called with hugetlb_lock held.
916 */
917static void return_unused_surplus_pages(struct hstate *h,
918 unsigned long unused_resv_pages)
919{
920 unsigned long nr_pages;
921
922 /* Uncommit the reservation */
923 h->resv_huge_pages -= unused_resv_pages;
924
925 /* Cannot return gigantic pages currently */
926 if (h->order >= MAX_ORDER)
927 return;
928
929 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
930
931 /*
932 * We want to release as many surplus pages as possible, spread
933 * evenly across all nodes. Iterate across all nodes until we
934 * can no longer free unreserved surplus pages. This occurs when
935 * the nodes with surplus pages have no free pages.
936 * free_pool_huge_page() will balance the the frees across the
937 * on-line nodes for us and will handle the hstate accounting.
938 */
939 while (nr_pages--) {
940 if (!free_pool_huge_page(h, 1))
941 break;
942 }
943}
944
945/*
946 * Determine if the huge page at addr within the vma has an associated
947 * reservation. Where it does not we will need to logically increase
948 * reservation and actually increase quota before an allocation can occur.
949 * Where any new reservation would be required the reservation change is
950 * prepared, but not committed. Once the page has been quota'd allocated
951 * an instantiated the change should be committed via vma_commit_reservation.
952 * No action is required on failure.
953 */
954static long vma_needs_reservation(struct hstate *h,
955 struct vm_area_struct *vma, unsigned long addr)
956{
957 struct address_space *mapping = vma->vm_file->f_mapping;
958 struct inode *inode = mapping->host;
959
960 if (vma->vm_flags & VM_MAYSHARE) {
961 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
962 return region_chg(&inode->i_mapping->private_list,
963 idx, idx + 1);
964
965 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
966 return 1;
967
968 } else {
969 long err;
970 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
971 struct resv_map *reservations = vma_resv_map(vma);
972
973 err = region_chg(&reservations->regions, idx, idx + 1);
974 if (err < 0)
975 return err;
976 return 0;
977 }
978}
979static void vma_commit_reservation(struct hstate *h,
980 struct vm_area_struct *vma, unsigned long addr)
981{
982 struct address_space *mapping = vma->vm_file->f_mapping;
983 struct inode *inode = mapping->host;
984
985 if (vma->vm_flags & VM_MAYSHARE) {
986 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
987 region_add(&inode->i_mapping->private_list, idx, idx + 1);
988
989 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
990 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 struct resv_map *reservations = vma_resv_map(vma);
992
993 /* Mark this page used in the map. */
994 region_add(&reservations->regions, idx, idx + 1);
995 }
996}
997
998static struct page *alloc_huge_page(struct vm_area_struct *vma,
999 unsigned long addr, int avoid_reserve)
1000{
1001 struct hstate *h = hstate_vma(vma);
1002 struct page *page;
1003 struct address_space *mapping = vma->vm_file->f_mapping;
1004 struct inode *inode = mapping->host;
1005 long chg;
1006
1007 /*
1008 * Processes that did not create the mapping will have no reserves and
1009 * will not have accounted against quota. Check that the quota can be
1010 * made before satisfying the allocation
1011 * MAP_NORESERVE mappings may also need pages and quota allocated
1012 * if no reserve mapping overlaps.
1013 */
1014 chg = vma_needs_reservation(h, vma, addr);
1015 if (chg < 0)
1016 return ERR_PTR(chg);
1017 if (chg)
1018 if (hugetlb_get_quota(inode->i_mapping, chg))
1019 return ERR_PTR(-ENOSPC);
1020
1021 spin_lock(&hugetlb_lock);
1022 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1023 spin_unlock(&hugetlb_lock);
1024
1025 if (!page) {
1026 page = alloc_buddy_huge_page(h, vma, addr);
1027 if (!page) {
1028 hugetlb_put_quota(inode->i_mapping, chg);
1029 return ERR_PTR(-VM_FAULT_OOM);
1030 }
1031 }
1032
1033 set_page_refcounted(page);
1034 set_page_private(page, (unsigned long) mapping);
1035
1036 vma_commit_reservation(h, vma, addr);
1037
1038 return page;
1039}
1040
1041int __weak alloc_bootmem_huge_page(struct hstate *h)
1042{
1043 struct huge_bootmem_page *m;
1044 int nr_nodes = nodes_weight(node_online_map);
1045
1046 while (nr_nodes) {
1047 void *addr;
1048
1049 addr = __alloc_bootmem_node_nopanic(
1050 NODE_DATA(hstate_next_node_to_alloc(h)),
1051 huge_page_size(h), huge_page_size(h), 0);
1052
1053 if (addr) {
1054 /*
1055 * Use the beginning of the huge page to store the
1056 * huge_bootmem_page struct (until gather_bootmem
1057 * puts them into the mem_map).
1058 */
1059 m = addr;
1060 goto found;
1061 }
1062 nr_nodes--;
1063 }
1064 return 0;
1065
1066found:
1067 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1068 /* Put them into a private list first because mem_map is not up yet */
1069 list_add(&m->list, &huge_boot_pages);
1070 m->hstate = h;
1071 return 1;
1072}
1073
1074static void prep_compound_huge_page(struct page *page, int order)
1075{
1076 if (unlikely(order > (MAX_ORDER - 1)))
1077 prep_compound_gigantic_page(page, order);
1078 else
1079 prep_compound_page(page, order);
1080}
1081
1082/* Put bootmem huge pages into the standard lists after mem_map is up */
1083static void __init gather_bootmem_prealloc(void)
1084{
1085 struct huge_bootmem_page *m;
1086
1087 list_for_each_entry(m, &huge_boot_pages, list) {
1088 struct page *page = virt_to_page(m);
1089 struct hstate *h = m->hstate;
1090 __ClearPageReserved(page);
1091 WARN_ON(page_count(page) != 1);
1092 prep_compound_huge_page(page, h->order);
1093 prep_new_huge_page(h, page, page_to_nid(page));
1094 }
1095}
1096
1097static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1098{
1099 unsigned long i;
1100
1101 for (i = 0; i < h->max_huge_pages; ++i) {
1102 if (h->order >= MAX_ORDER) {
1103 if (!alloc_bootmem_huge_page(h))
1104 break;
1105 } else if (!alloc_fresh_huge_page(h))
1106 break;
1107 }
1108 h->max_huge_pages = i;
1109}
1110
1111static void __init hugetlb_init_hstates(void)
1112{
1113 struct hstate *h;
1114
1115 for_each_hstate(h) {
1116 /* oversize hugepages were init'ed in early boot */
1117 if (h->order < MAX_ORDER)
1118 hugetlb_hstate_alloc_pages(h);
1119 }
1120}
1121
1122static char * __init memfmt(char *buf, unsigned long n)
1123{
1124 if (n >= (1UL << 30))
1125 sprintf(buf, "%lu GB", n >> 30);
1126 else if (n >= (1UL << 20))
1127 sprintf(buf, "%lu MB", n >> 20);
1128 else
1129 sprintf(buf, "%lu KB", n >> 10);
1130 return buf;
1131}
1132
1133static void __init report_hugepages(void)
1134{
1135 struct hstate *h;
1136
1137 for_each_hstate(h) {
1138 char buf[32];
1139 printk(KERN_INFO "HugeTLB registered %s page size, "
1140 "pre-allocated %ld pages\n",
1141 memfmt(buf, huge_page_size(h)),
1142 h->free_huge_pages);
1143 }
1144}
1145
1146#ifdef CONFIG_HIGHMEM
1147static void try_to_free_low(struct hstate *h, unsigned long count)
1148{
1149 int i;
1150
1151 if (h->order >= MAX_ORDER)
1152 return;
1153
1154 for (i = 0; i < MAX_NUMNODES; ++i) {
1155 struct page *page, *next;
1156 struct list_head *freel = &h->hugepage_freelists[i];
1157 list_for_each_entry_safe(page, next, freel, lru) {
1158 if (count >= h->nr_huge_pages)
1159 return;
1160 if (PageHighMem(page))
1161 continue;
1162 list_del(&page->lru);
1163 update_and_free_page(h, page);
1164 h->free_huge_pages--;
1165 h->free_huge_pages_node[page_to_nid(page)]--;
1166 }
1167 }
1168}
1169#else
1170static inline void try_to_free_low(struct hstate *h, unsigned long count)
1171{
1172}
1173#endif
1174
1175/*
1176 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1177 * balanced by operating on them in a round-robin fashion.
1178 * Returns 1 if an adjustment was made.
1179 */
1180static int adjust_pool_surplus(struct hstate *h, int delta)
1181{
1182 int start_nid, next_nid;
1183 int ret = 0;
1184
1185 VM_BUG_ON(delta != -1 && delta != 1);
1186
1187 if (delta < 0)
1188 start_nid = hstate_next_node_to_alloc(h);
1189 else
1190 start_nid = hstate_next_node_to_free(h);
1191 next_nid = start_nid;
1192
1193 do {
1194 int nid = next_nid;
1195 if (delta < 0) {
1196 /*
1197 * To shrink on this node, there must be a surplus page
1198 */
1199 if (!h->surplus_huge_pages_node[nid]) {
1200 next_nid = hstate_next_node_to_alloc(h);
1201 continue;
1202 }
1203 }
1204 if (delta > 0) {
1205 /*
1206 * Surplus cannot exceed the total number of pages
1207 */
1208 if (h->surplus_huge_pages_node[nid] >=
1209 h->nr_huge_pages_node[nid]) {
1210 next_nid = hstate_next_node_to_free(h);
1211 continue;
1212 }
1213 }
1214
1215 h->surplus_huge_pages += delta;
1216 h->surplus_huge_pages_node[nid] += delta;
1217 ret = 1;
1218 break;
1219 } while (next_nid != start_nid);
1220
1221 return ret;
1222}
1223
1224#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1225static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1226{
1227 unsigned long min_count, ret;
1228
1229 if (h->order >= MAX_ORDER)
1230 return h->max_huge_pages;
1231
1232 /*
1233 * Increase the pool size
1234 * First take pages out of surplus state. Then make up the
1235 * remaining difference by allocating fresh huge pages.
1236 *
1237 * We might race with alloc_buddy_huge_page() here and be unable
1238 * to convert a surplus huge page to a normal huge page. That is
1239 * not critical, though, it just means the overall size of the
1240 * pool might be one hugepage larger than it needs to be, but
1241 * within all the constraints specified by the sysctls.
1242 */
1243 spin_lock(&hugetlb_lock);
1244 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1245 if (!adjust_pool_surplus(h, -1))
1246 break;
1247 }
1248
1249 while (count > persistent_huge_pages(h)) {
1250 /*
1251 * If this allocation races such that we no longer need the
1252 * page, free_huge_page will handle it by freeing the page
1253 * and reducing the surplus.
1254 */
1255 spin_unlock(&hugetlb_lock);
1256 ret = alloc_fresh_huge_page(h);
1257 spin_lock(&hugetlb_lock);
1258 if (!ret)
1259 goto out;
1260
1261 }
1262
1263 /*
1264 * Decrease the pool size
1265 * First return free pages to the buddy allocator (being careful
1266 * to keep enough around to satisfy reservations). Then place
1267 * pages into surplus state as needed so the pool will shrink
1268 * to the desired size as pages become free.
1269 *
1270 * By placing pages into the surplus state independent of the
1271 * overcommit value, we are allowing the surplus pool size to
1272 * exceed overcommit. There are few sane options here. Since
1273 * alloc_buddy_huge_page() is checking the global counter,
1274 * though, we'll note that we're not allowed to exceed surplus
1275 * and won't grow the pool anywhere else. Not until one of the
1276 * sysctls are changed, or the surplus pages go out of use.
1277 */
1278 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1279 min_count = max(count, min_count);
1280 try_to_free_low(h, min_count);
1281 while (min_count < persistent_huge_pages(h)) {
1282 if (!free_pool_huge_page(h, 0))
1283 break;
1284 }
1285 while (count < persistent_huge_pages(h)) {
1286 if (!adjust_pool_surplus(h, 1))
1287 break;
1288 }
1289out:
1290 ret = persistent_huge_pages(h);
1291 spin_unlock(&hugetlb_lock);
1292 return ret;
1293}
1294
1295#define HSTATE_ATTR_RO(_name) \
1296 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1297
1298#define HSTATE_ATTR(_name) \
1299 static struct kobj_attribute _name##_attr = \
1300 __ATTR(_name, 0644, _name##_show, _name##_store)
1301
1302static struct kobject *hugepages_kobj;
1303static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1304
1305static struct hstate *kobj_to_hstate(struct kobject *kobj)
1306{
1307 int i;
1308 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1309 if (hstate_kobjs[i] == kobj)
1310 return &hstates[i];
1311 BUG();
1312 return NULL;
1313}
1314
1315static ssize_t nr_hugepages_show(struct kobject *kobj,
1316 struct kobj_attribute *attr, char *buf)
1317{
1318 struct hstate *h = kobj_to_hstate(kobj);
1319 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1320}
1321static ssize_t nr_hugepages_store(struct kobject *kobj,
1322 struct kobj_attribute *attr, const char *buf, size_t count)
1323{
1324 int err;
1325 unsigned long input;
1326 struct hstate *h = kobj_to_hstate(kobj);
1327
1328 err = strict_strtoul(buf, 10, &input);
1329 if (err)
1330 return 0;
1331
1332 h->max_huge_pages = set_max_huge_pages(h, input);
1333
1334 return count;
1335}
1336HSTATE_ATTR(nr_hugepages);
1337
1338static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1339 struct kobj_attribute *attr, char *buf)
1340{
1341 struct hstate *h = kobj_to_hstate(kobj);
1342 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1343}
1344static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1345 struct kobj_attribute *attr, const char *buf, size_t count)
1346{
1347 int err;
1348 unsigned long input;
1349 struct hstate *h = kobj_to_hstate(kobj);
1350
1351 err = strict_strtoul(buf, 10, &input);
1352 if (err)
1353 return 0;
1354
1355 spin_lock(&hugetlb_lock);
1356 h->nr_overcommit_huge_pages = input;
1357 spin_unlock(&hugetlb_lock);
1358
1359 return count;
1360}
1361HSTATE_ATTR(nr_overcommit_hugepages);
1362
1363static ssize_t free_hugepages_show(struct kobject *kobj,
1364 struct kobj_attribute *attr, char *buf)
1365{
1366 struct hstate *h = kobj_to_hstate(kobj);
1367 return sprintf(buf, "%lu\n", h->free_huge_pages);
1368}
1369HSTATE_ATTR_RO(free_hugepages);
1370
1371static ssize_t resv_hugepages_show(struct kobject *kobj,
1372 struct kobj_attribute *attr, char *buf)
1373{
1374 struct hstate *h = kobj_to_hstate(kobj);
1375 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1376}
1377HSTATE_ATTR_RO(resv_hugepages);
1378
1379static ssize_t surplus_hugepages_show(struct kobject *kobj,
1380 struct kobj_attribute *attr, char *buf)
1381{
1382 struct hstate *h = kobj_to_hstate(kobj);
1383 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1384}
1385HSTATE_ATTR_RO(surplus_hugepages);
1386
1387static struct attribute *hstate_attrs[] = {
1388 &nr_hugepages_attr.attr,
1389 &nr_overcommit_hugepages_attr.attr,
1390 &free_hugepages_attr.attr,
1391 &resv_hugepages_attr.attr,
1392 &surplus_hugepages_attr.attr,
1393 NULL,
1394};
1395
1396static struct attribute_group hstate_attr_group = {
1397 .attrs = hstate_attrs,
1398};
1399
1400static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1401{
1402 int retval;
1403
1404 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1405 hugepages_kobj);
1406 if (!hstate_kobjs[h - hstates])
1407 return -ENOMEM;
1408
1409 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1410 &hstate_attr_group);
1411 if (retval)
1412 kobject_put(hstate_kobjs[h - hstates]);
1413
1414 return retval;
1415}
1416
1417static void __init hugetlb_sysfs_init(void)
1418{
1419 struct hstate *h;
1420 int err;
1421
1422 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1423 if (!hugepages_kobj)
1424 return;
1425
1426 for_each_hstate(h) {
1427 err = hugetlb_sysfs_add_hstate(h);
1428 if (err)
1429 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1430 h->name);
1431 }
1432}
1433
1434static void __exit hugetlb_exit(void)
1435{
1436 struct hstate *h;
1437
1438 for_each_hstate(h) {
1439 kobject_put(hstate_kobjs[h - hstates]);
1440 }
1441
1442 kobject_put(hugepages_kobj);
1443}
1444module_exit(hugetlb_exit);
1445
1446static int __init hugetlb_init(void)
1447{
1448 /* Some platform decide whether they support huge pages at boot
1449 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1450 * there is no such support
1451 */
1452 if (HPAGE_SHIFT == 0)
1453 return 0;
1454
1455 if (!size_to_hstate(default_hstate_size)) {
1456 default_hstate_size = HPAGE_SIZE;
1457 if (!size_to_hstate(default_hstate_size))
1458 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1459 }
1460 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1461 if (default_hstate_max_huge_pages)
1462 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1463
1464 hugetlb_init_hstates();
1465
1466 gather_bootmem_prealloc();
1467
1468 report_hugepages();
1469
1470 hugetlb_sysfs_init();
1471
1472 return 0;
1473}
1474module_init(hugetlb_init);
1475
1476/* Should be called on processing a hugepagesz=... option */
1477void __init hugetlb_add_hstate(unsigned order)
1478{
1479 struct hstate *h;
1480 unsigned long i;
1481
1482 if (size_to_hstate(PAGE_SIZE << order)) {
1483 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1484 return;
1485 }
1486 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1487 BUG_ON(order == 0);
1488 h = &hstates[max_hstate++];
1489 h->order = order;
1490 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1491 h->nr_huge_pages = 0;
1492 h->free_huge_pages = 0;
1493 for (i = 0; i < MAX_NUMNODES; ++i)
1494 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1495 h->next_nid_to_alloc = first_node(node_online_map);
1496 h->next_nid_to_free = first_node(node_online_map);
1497 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1498 huge_page_size(h)/1024);
1499
1500 parsed_hstate = h;
1501}
1502
1503static int __init hugetlb_nrpages_setup(char *s)
1504{
1505 unsigned long *mhp;
1506 static unsigned long *last_mhp;
1507
1508 /*
1509 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1510 * so this hugepages= parameter goes to the "default hstate".
1511 */
1512 if (!max_hstate)
1513 mhp = &default_hstate_max_huge_pages;
1514 else
1515 mhp = &parsed_hstate->max_huge_pages;
1516
1517 if (mhp == last_mhp) {
1518 printk(KERN_WARNING "hugepages= specified twice without "
1519 "interleaving hugepagesz=, ignoring\n");
1520 return 1;
1521 }
1522
1523 if (sscanf(s, "%lu", mhp) <= 0)
1524 *mhp = 0;
1525
1526 /*
1527 * Global state is always initialized later in hugetlb_init.
1528 * But we need to allocate >= MAX_ORDER hstates here early to still
1529 * use the bootmem allocator.
1530 */
1531 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1532 hugetlb_hstate_alloc_pages(parsed_hstate);
1533
1534 last_mhp = mhp;
1535
1536 return 1;
1537}
1538__setup("hugepages=", hugetlb_nrpages_setup);
1539
1540static int __init hugetlb_default_setup(char *s)
1541{
1542 default_hstate_size = memparse(s, &s);
1543 return 1;
1544}
1545__setup("default_hugepagesz=", hugetlb_default_setup);
1546
1547static unsigned int cpuset_mems_nr(unsigned int *array)
1548{
1549 int node;
1550 unsigned int nr = 0;
1551
1552 for_each_node_mask(node, cpuset_current_mems_allowed)
1553 nr += array[node];
1554
1555 return nr;
1556}
1557
1558#ifdef CONFIG_SYSCTL
1559int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1560 void __user *buffer,
1561 size_t *length, loff_t *ppos)
1562{
1563 struct hstate *h = &default_hstate;
1564 unsigned long tmp;
1565
1566 if (!write)
1567 tmp = h->max_huge_pages;
1568
1569 table->data = &tmp;
1570 table->maxlen = sizeof(unsigned long);
1571 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1572
1573 if (write)
1574 h->max_huge_pages = set_max_huge_pages(h, tmp);
1575
1576 return 0;
1577}
1578
1579int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1580 void __user *buffer,
1581 size_t *length, loff_t *ppos)
1582{
1583 proc_dointvec(table, write, buffer, length, ppos);
1584 if (hugepages_treat_as_movable)
1585 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1586 else
1587 htlb_alloc_mask = GFP_HIGHUSER;
1588 return 0;
1589}
1590
1591int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1592 void __user *buffer,
1593 size_t *length, loff_t *ppos)
1594{
1595 struct hstate *h = &default_hstate;
1596 unsigned long tmp;
1597
1598 if (!write)
1599 tmp = h->nr_overcommit_huge_pages;
1600
1601 table->data = &tmp;
1602 table->maxlen = sizeof(unsigned long);
1603 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1604
1605 if (write) {
1606 spin_lock(&hugetlb_lock);
1607 h->nr_overcommit_huge_pages = tmp;
1608 spin_unlock(&hugetlb_lock);
1609 }
1610
1611 return 0;
1612}
1613
1614#endif /* CONFIG_SYSCTL */
1615
1616void hugetlb_report_meminfo(struct seq_file *m)
1617{
1618 struct hstate *h = &default_hstate;
1619 seq_printf(m,
1620 "HugePages_Total: %5lu\n"
1621 "HugePages_Free: %5lu\n"
1622 "HugePages_Rsvd: %5lu\n"
1623 "HugePages_Surp: %5lu\n"
1624 "Hugepagesize: %8lu kB\n",
1625 h->nr_huge_pages,
1626 h->free_huge_pages,
1627 h->resv_huge_pages,
1628 h->surplus_huge_pages,
1629 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1630}
1631
1632int hugetlb_report_node_meminfo(int nid, char *buf)
1633{
1634 struct hstate *h = &default_hstate;
1635 return sprintf(buf,
1636 "Node %d HugePages_Total: %5u\n"
1637 "Node %d HugePages_Free: %5u\n"
1638 "Node %d HugePages_Surp: %5u\n",
1639 nid, h->nr_huge_pages_node[nid],
1640 nid, h->free_huge_pages_node[nid],
1641 nid, h->surplus_huge_pages_node[nid]);
1642}
1643
1644/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1645unsigned long hugetlb_total_pages(void)
1646{
1647 struct hstate *h = &default_hstate;
1648 return h->nr_huge_pages * pages_per_huge_page(h);
1649}
1650
1651static int hugetlb_acct_memory(struct hstate *h, long delta)
1652{
1653 int ret = -ENOMEM;
1654
1655 spin_lock(&hugetlb_lock);
1656 /*
1657 * When cpuset is configured, it breaks the strict hugetlb page
1658 * reservation as the accounting is done on a global variable. Such
1659 * reservation is completely rubbish in the presence of cpuset because
1660 * the reservation is not checked against page availability for the
1661 * current cpuset. Application can still potentially OOM'ed by kernel
1662 * with lack of free htlb page in cpuset that the task is in.
1663 * Attempt to enforce strict accounting with cpuset is almost
1664 * impossible (or too ugly) because cpuset is too fluid that
1665 * task or memory node can be dynamically moved between cpusets.
1666 *
1667 * The change of semantics for shared hugetlb mapping with cpuset is
1668 * undesirable. However, in order to preserve some of the semantics,
1669 * we fall back to check against current free page availability as
1670 * a best attempt and hopefully to minimize the impact of changing
1671 * semantics that cpuset has.
1672 */
1673 if (delta > 0) {
1674 if (gather_surplus_pages(h, delta) < 0)
1675 goto out;
1676
1677 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1678 return_unused_surplus_pages(h, delta);
1679 goto out;
1680 }
1681 }
1682
1683 ret = 0;
1684 if (delta < 0)
1685 return_unused_surplus_pages(h, (unsigned long) -delta);
1686
1687out:
1688 spin_unlock(&hugetlb_lock);
1689 return ret;
1690}
1691
1692static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1693{
1694 struct resv_map *reservations = vma_resv_map(vma);
1695
1696 /*
1697 * This new VMA should share its siblings reservation map if present.
1698 * The VMA will only ever have a valid reservation map pointer where
1699 * it is being copied for another still existing VMA. As that VMA
1700 * has a reference to the reservation map it cannot dissappear until
1701 * after this open call completes. It is therefore safe to take a
1702 * new reference here without additional locking.
1703 */
1704 if (reservations)
1705 kref_get(&reservations->refs);
1706}
1707
1708static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1709{
1710 struct hstate *h = hstate_vma(vma);
1711 struct resv_map *reservations = vma_resv_map(vma);
1712 unsigned long reserve;
1713 unsigned long start;
1714 unsigned long end;
1715
1716 if (reservations) {
1717 start = vma_hugecache_offset(h, vma, vma->vm_start);
1718 end = vma_hugecache_offset(h, vma, vma->vm_end);
1719
1720 reserve = (end - start) -
1721 region_count(&reservations->regions, start, end);
1722
1723 kref_put(&reservations->refs, resv_map_release);
1724
1725 if (reserve) {
1726 hugetlb_acct_memory(h, -reserve);
1727 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1728 }
1729 }
1730}
1731
1732/*
1733 * We cannot handle pagefaults against hugetlb pages at all. They cause
1734 * handle_mm_fault() to try to instantiate regular-sized pages in the
1735 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1736 * this far.
1737 */
1738static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739{
1740 BUG();
1741 return 0;
1742}
1743
1744const struct vm_operations_struct hugetlb_vm_ops = {
1745 .fault = hugetlb_vm_op_fault,
1746 .open = hugetlb_vm_op_open,
1747 .close = hugetlb_vm_op_close,
1748};
1749
1750static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1751 int writable)
1752{
1753 pte_t entry;
1754
1755 if (writable) {
1756 entry =
1757 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1758 } else {
1759 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1760 }
1761 entry = pte_mkyoung(entry);
1762 entry = pte_mkhuge(entry);
1763
1764 return entry;
1765}
1766
1767static void set_huge_ptep_writable(struct vm_area_struct *vma,
1768 unsigned long address, pte_t *ptep)
1769{
1770 pte_t entry;
1771
1772 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1773 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1774 update_mmu_cache(vma, address, entry);
1775 }
1776}
1777
1778
1779int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1780 struct vm_area_struct *vma)
1781{
1782 pte_t *src_pte, *dst_pte, entry;
1783 struct page *ptepage;
1784 unsigned long addr;
1785 int cow;
1786 struct hstate *h = hstate_vma(vma);
1787 unsigned long sz = huge_page_size(h);
1788
1789 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1790
1791 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1792 src_pte = huge_pte_offset(src, addr);
1793 if (!src_pte)
1794 continue;
1795 dst_pte = huge_pte_alloc(dst, addr, sz);
1796 if (!dst_pte)
1797 goto nomem;
1798
1799 /* If the pagetables are shared don't copy or take references */
1800 if (dst_pte == src_pte)
1801 continue;
1802
1803 spin_lock(&dst->page_table_lock);
1804 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1805 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1806 if (cow)
1807 huge_ptep_set_wrprotect(src, addr, src_pte);
1808 entry = huge_ptep_get(src_pte);
1809 ptepage = pte_page(entry);
1810 get_page(ptepage);
1811 set_huge_pte_at(dst, addr, dst_pte, entry);
1812 }
1813 spin_unlock(&src->page_table_lock);
1814 spin_unlock(&dst->page_table_lock);
1815 }
1816 return 0;
1817
1818nomem:
1819 return -ENOMEM;
1820}
1821
1822void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1823 unsigned long end, struct page *ref_page)
1824{
1825 struct mm_struct *mm = vma->vm_mm;
1826 unsigned long address;
1827 pte_t *ptep;
1828 pte_t pte;
1829 struct page *page;
1830 struct page *tmp;
1831 struct hstate *h = hstate_vma(vma);
1832 unsigned long sz = huge_page_size(h);
1833
1834 /*
1835 * A page gathering list, protected by per file i_mmap_lock. The
1836 * lock is used to avoid list corruption from multiple unmapping
1837 * of the same page since we are using page->lru.
1838 */
1839 LIST_HEAD(page_list);
1840
1841 WARN_ON(!is_vm_hugetlb_page(vma));
1842 BUG_ON(start & ~huge_page_mask(h));
1843 BUG_ON(end & ~huge_page_mask(h));
1844
1845 mmu_notifier_invalidate_range_start(mm, start, end);
1846 spin_lock(&mm->page_table_lock);
1847 for (address = start; address < end; address += sz) {
1848 ptep = huge_pte_offset(mm, address);
1849 if (!ptep)
1850 continue;
1851
1852 if (huge_pmd_unshare(mm, &address, ptep))
1853 continue;
1854
1855 /*
1856 * If a reference page is supplied, it is because a specific
1857 * page is being unmapped, not a range. Ensure the page we
1858 * are about to unmap is the actual page of interest.
1859 */
1860 if (ref_page) {
1861 pte = huge_ptep_get(ptep);
1862 if (huge_pte_none(pte))
1863 continue;
1864 page = pte_page(pte);
1865 if (page != ref_page)
1866 continue;
1867
1868 /*
1869 * Mark the VMA as having unmapped its page so that
1870 * future faults in this VMA will fail rather than
1871 * looking like data was lost
1872 */
1873 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1874 }
1875
1876 pte = huge_ptep_get_and_clear(mm, address, ptep);
1877 if (huge_pte_none(pte))
1878 continue;
1879
1880 page = pte_page(pte);
1881 if (pte_dirty(pte))
1882 set_page_dirty(page);
1883 list_add(&page->lru, &page_list);
1884 }
1885 spin_unlock(&mm->page_table_lock);
1886 flush_tlb_range(vma, start, end);
1887 mmu_notifier_invalidate_range_end(mm, start, end);
1888 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1889 list_del(&page->lru);
1890 put_page(page);
1891 }
1892}
1893
1894void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1895 unsigned long end, struct page *ref_page)
1896{
1897 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1898 __unmap_hugepage_range(vma, start, end, ref_page);
1899 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1900}
1901
1902/*
1903 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1904 * mappping it owns the reserve page for. The intention is to unmap the page
1905 * from other VMAs and let the children be SIGKILLed if they are faulting the
1906 * same region.
1907 */
1908static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1909 struct page *page, unsigned long address)
1910{
1911 struct hstate *h = hstate_vma(vma);
1912 struct vm_area_struct *iter_vma;
1913 struct address_space *mapping;
1914 struct prio_tree_iter iter;
1915 pgoff_t pgoff;
1916
1917 /*
1918 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1919 * from page cache lookup which is in HPAGE_SIZE units.
1920 */
1921 address = address & huge_page_mask(h);
1922 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1923 + (vma->vm_pgoff >> PAGE_SHIFT);
1924 mapping = (struct address_space *)page_private(page);
1925
1926 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1927 /* Do not unmap the current VMA */
1928 if (iter_vma == vma)
1929 continue;
1930
1931 /*
1932 * Unmap the page from other VMAs without their own reserves.
1933 * They get marked to be SIGKILLed if they fault in these
1934 * areas. This is because a future no-page fault on this VMA
1935 * could insert a zeroed page instead of the data existing
1936 * from the time of fork. This would look like data corruption
1937 */
1938 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1939 unmap_hugepage_range(iter_vma,
1940 address, address + huge_page_size(h),
1941 page);
1942 }
1943
1944 return 1;
1945}
1946
1947static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1948 unsigned long address, pte_t *ptep, pte_t pte,
1949 struct page *pagecache_page)
1950{
1951 struct hstate *h = hstate_vma(vma);
1952 struct page *old_page, *new_page;
1953 int avoidcopy;
1954 int outside_reserve = 0;
1955
1956 old_page = pte_page(pte);
1957
1958retry_avoidcopy:
1959 /* If no-one else is actually using this page, avoid the copy
1960 * and just make the page writable */
1961 avoidcopy = (page_count(old_page) == 1);
1962 if (avoidcopy) {
1963 set_huge_ptep_writable(vma, address, ptep);
1964 return 0;
1965 }
1966
1967 /*
1968 * If the process that created a MAP_PRIVATE mapping is about to
1969 * perform a COW due to a shared page count, attempt to satisfy
1970 * the allocation without using the existing reserves. The pagecache
1971 * page is used to determine if the reserve at this address was
1972 * consumed or not. If reserves were used, a partial faulted mapping
1973 * at the time of fork() could consume its reserves on COW instead
1974 * of the full address range.
1975 */
1976 if (!(vma->vm_flags & VM_MAYSHARE) &&
1977 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1978 old_page != pagecache_page)
1979 outside_reserve = 1;
1980
1981 page_cache_get(old_page);
1982 new_page = alloc_huge_page(vma, address, outside_reserve);
1983
1984 if (IS_ERR(new_page)) {
1985 page_cache_release(old_page);
1986
1987 /*
1988 * If a process owning a MAP_PRIVATE mapping fails to COW,
1989 * it is due to references held by a child and an insufficient
1990 * huge page pool. To guarantee the original mappers
1991 * reliability, unmap the page from child processes. The child
1992 * may get SIGKILLed if it later faults.
1993 */
1994 if (outside_reserve) {
1995 BUG_ON(huge_pte_none(pte));
1996 if (unmap_ref_private(mm, vma, old_page, address)) {
1997 BUG_ON(page_count(old_page) != 1);
1998 BUG_ON(huge_pte_none(pte));
1999 goto retry_avoidcopy;
2000 }
2001 WARN_ON_ONCE(1);
2002 }
2003
2004 return -PTR_ERR(new_page);
2005 }
2006
2007 spin_unlock(&mm->page_table_lock);
2008 copy_huge_page(new_page, old_page, address, vma);
2009 __SetPageUptodate(new_page);
2010 spin_lock(&mm->page_table_lock);
2011
2012 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2013 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2014 /* Break COW */
2015 huge_ptep_clear_flush(vma, address, ptep);
2016 set_huge_pte_at(mm, address, ptep,
2017 make_huge_pte(vma, new_page, 1));
2018 /* Make the old page be freed below */
2019 new_page = old_page;
2020 }
2021 page_cache_release(new_page);
2022 page_cache_release(old_page);
2023 return 0;
2024}
2025
2026/* Return the pagecache page at a given address within a VMA */
2027static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2028 struct vm_area_struct *vma, unsigned long address)
2029{
2030 struct address_space *mapping;
2031 pgoff_t idx;
2032
2033 mapping = vma->vm_file->f_mapping;
2034 idx = vma_hugecache_offset(h, vma, address);
2035
2036 return find_lock_page(mapping, idx);
2037}
2038
2039/*
2040 * Return whether there is a pagecache page to back given address within VMA.
2041 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2042 */
2043static bool hugetlbfs_pagecache_present(struct hstate *h,
2044 struct vm_area_struct *vma, unsigned long address)
2045{
2046 struct address_space *mapping;
2047 pgoff_t idx;
2048 struct page *page;
2049
2050 mapping = vma->vm_file->f_mapping;
2051 idx = vma_hugecache_offset(h, vma, address);
2052
2053 page = find_get_page(mapping, idx);
2054 if (page)
2055 put_page(page);
2056 return page != NULL;
2057}
2058
2059static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2060 unsigned long address, pte_t *ptep, unsigned int flags)
2061{
2062 struct hstate *h = hstate_vma(vma);
2063 int ret = VM_FAULT_SIGBUS;
2064 pgoff_t idx;
2065 unsigned long size;
2066 struct page *page;
2067 struct address_space *mapping;
2068 pte_t new_pte;
2069
2070 /*
2071 * Currently, we are forced to kill the process in the event the
2072 * original mapper has unmapped pages from the child due to a failed
2073 * COW. Warn that such a situation has occured as it may not be obvious
2074 */
2075 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2076 printk(KERN_WARNING
2077 "PID %d killed due to inadequate hugepage pool\n",
2078 current->pid);
2079 return ret;
2080 }
2081
2082 mapping = vma->vm_file->f_mapping;
2083 idx = vma_hugecache_offset(h, vma, address);
2084
2085 /*
2086 * Use page lock to guard against racing truncation
2087 * before we get page_table_lock.
2088 */
2089retry:
2090 page = find_lock_page(mapping, idx);
2091 if (!page) {
2092 size = i_size_read(mapping->host) >> huge_page_shift(h);
2093 if (idx >= size)
2094 goto out;
2095 page = alloc_huge_page(vma, address, 0);
2096 if (IS_ERR(page)) {
2097 ret = -PTR_ERR(page);
2098 goto out;
2099 }
2100 clear_huge_page(page, address, huge_page_size(h));
2101 __SetPageUptodate(page);
2102
2103 if (vma->vm_flags & VM_MAYSHARE) {
2104 int err;
2105 struct inode *inode = mapping->host;
2106
2107 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2108 if (err) {
2109 put_page(page);
2110 if (err == -EEXIST)
2111 goto retry;
2112 goto out;
2113 }
2114
2115 spin_lock(&inode->i_lock);
2116 inode->i_blocks += blocks_per_huge_page(h);
2117 spin_unlock(&inode->i_lock);
2118 } else
2119 lock_page(page);
2120 }
2121
2122 /*
2123 * If we are going to COW a private mapping later, we examine the
2124 * pending reservations for this page now. This will ensure that
2125 * any allocations necessary to record that reservation occur outside
2126 * the spinlock.
2127 */
2128 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2129 if (vma_needs_reservation(h, vma, address) < 0) {
2130 ret = VM_FAULT_OOM;
2131 goto backout_unlocked;
2132 }
2133
2134 spin_lock(&mm->page_table_lock);
2135 size = i_size_read(mapping->host) >> huge_page_shift(h);
2136 if (idx >= size)
2137 goto backout;
2138
2139 ret = 0;
2140 if (!huge_pte_none(huge_ptep_get(ptep)))
2141 goto backout;
2142
2143 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2144 && (vma->vm_flags & VM_SHARED)));
2145 set_huge_pte_at(mm, address, ptep, new_pte);
2146
2147 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2148 /* Optimization, do the COW without a second fault */
2149 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2150 }
2151
2152 spin_unlock(&mm->page_table_lock);
2153 unlock_page(page);
2154out:
2155 return ret;
2156
2157backout:
2158 spin_unlock(&mm->page_table_lock);
2159backout_unlocked:
2160 unlock_page(page);
2161 put_page(page);
2162 goto out;
2163}
2164
2165int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2166 unsigned long address, unsigned int flags)
2167{
2168 pte_t *ptep;
2169 pte_t entry;
2170 int ret;
2171 struct page *pagecache_page = NULL;
2172 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2173 struct hstate *h = hstate_vma(vma);
2174
2175 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2176 if (!ptep)
2177 return VM_FAULT_OOM;
2178
2179 /*
2180 * Serialize hugepage allocation and instantiation, so that we don't
2181 * get spurious allocation failures if two CPUs race to instantiate
2182 * the same page in the page cache.
2183 */
2184 mutex_lock(&hugetlb_instantiation_mutex);
2185 entry = huge_ptep_get(ptep);
2186 if (huge_pte_none(entry)) {
2187 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2188 goto out_mutex;
2189 }
2190
2191 ret = 0;
2192
2193 /*
2194 * If we are going to COW the mapping later, we examine the pending
2195 * reservations for this page now. This will ensure that any
2196 * allocations necessary to record that reservation occur outside the
2197 * spinlock. For private mappings, we also lookup the pagecache
2198 * page now as it is used to determine if a reservation has been
2199 * consumed.
2200 */
2201 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2202 if (vma_needs_reservation(h, vma, address) < 0) {
2203 ret = VM_FAULT_OOM;
2204 goto out_mutex;
2205 }
2206
2207 if (!(vma->vm_flags & VM_MAYSHARE))
2208 pagecache_page = hugetlbfs_pagecache_page(h,
2209 vma, address);
2210 }
2211
2212 spin_lock(&mm->page_table_lock);
2213 /* Check for a racing update before calling hugetlb_cow */
2214 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2215 goto out_page_table_lock;
2216
2217
2218 if (flags & FAULT_FLAG_WRITE) {
2219 if (!pte_write(entry)) {
2220 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2221 pagecache_page);
2222 goto out_page_table_lock;
2223 }
2224 entry = pte_mkdirty(entry);
2225 }
2226 entry = pte_mkyoung(entry);
2227 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2228 flags & FAULT_FLAG_WRITE))
2229 update_mmu_cache(vma, address, entry);
2230
2231out_page_table_lock:
2232 spin_unlock(&mm->page_table_lock);
2233
2234 if (pagecache_page) {
2235 unlock_page(pagecache_page);
2236 put_page(pagecache_page);
2237 }
2238
2239out_mutex:
2240 mutex_unlock(&hugetlb_instantiation_mutex);
2241
2242 return ret;
2243}
2244
2245/* Can be overriden by architectures */
2246__attribute__((weak)) struct page *
2247follow_huge_pud(struct mm_struct *mm, unsigned long address,
2248 pud_t *pud, int write)
2249{
2250 BUG();
2251 return NULL;
2252}
2253
2254int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2255 struct page **pages, struct vm_area_struct **vmas,
2256 unsigned long *position, int *length, int i,
2257 unsigned int flags)
2258{
2259 unsigned long pfn_offset;
2260 unsigned long vaddr = *position;
2261 int remainder = *length;
2262 struct hstate *h = hstate_vma(vma);
2263
2264 spin_lock(&mm->page_table_lock);
2265 while (vaddr < vma->vm_end && remainder) {
2266 pte_t *pte;
2267 int absent;
2268 struct page *page;
2269
2270 /*
2271 * Some archs (sparc64, sh*) have multiple pte_ts to
2272 * each hugepage. We have to make sure we get the
2273 * first, for the page indexing below to work.
2274 */
2275 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2276 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2277
2278 /*
2279 * When coredumping, it suits get_dump_page if we just return
2280 * an error where there's an empty slot with no huge pagecache
2281 * to back it. This way, we avoid allocating a hugepage, and
2282 * the sparse dumpfile avoids allocating disk blocks, but its
2283 * huge holes still show up with zeroes where they need to be.
2284 */
2285 if (absent && (flags & FOLL_DUMP) &&
2286 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2287 remainder = 0;
2288 break;
2289 }
2290
2291 if (absent ||
2292 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2293 int ret;
2294
2295 spin_unlock(&mm->page_table_lock);
2296 ret = hugetlb_fault(mm, vma, vaddr,
2297 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2298 spin_lock(&mm->page_table_lock);
2299 if (!(ret & VM_FAULT_ERROR))
2300 continue;
2301
2302 remainder = 0;
2303 break;
2304 }
2305
2306 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2307 page = pte_page(huge_ptep_get(pte));
2308same_page:
2309 if (pages) {
2310 pages[i] = mem_map_offset(page, pfn_offset);
2311 get_page(pages[i]);
2312 }
2313
2314 if (vmas)
2315 vmas[i] = vma;
2316
2317 vaddr += PAGE_SIZE;
2318 ++pfn_offset;
2319 --remainder;
2320 ++i;
2321 if (vaddr < vma->vm_end && remainder &&
2322 pfn_offset < pages_per_huge_page(h)) {
2323 /*
2324 * We use pfn_offset to avoid touching the pageframes
2325 * of this compound page.
2326 */
2327 goto same_page;
2328 }
2329 }
2330 spin_unlock(&mm->page_table_lock);
2331 *length = remainder;
2332 *position = vaddr;
2333
2334 return i ? i : -EFAULT;
2335}
2336
2337void hugetlb_change_protection(struct vm_area_struct *vma,
2338 unsigned long address, unsigned long end, pgprot_t newprot)
2339{
2340 struct mm_struct *mm = vma->vm_mm;
2341 unsigned long start = address;
2342 pte_t *ptep;
2343 pte_t pte;
2344 struct hstate *h = hstate_vma(vma);
2345
2346 BUG_ON(address >= end);
2347 flush_cache_range(vma, address, end);
2348
2349 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2350 spin_lock(&mm->page_table_lock);
2351 for (; address < end; address += huge_page_size(h)) {
2352 ptep = huge_pte_offset(mm, address);
2353 if (!ptep)
2354 continue;
2355 if (huge_pmd_unshare(mm, &address, ptep))
2356 continue;
2357 if (!huge_pte_none(huge_ptep_get(ptep))) {
2358 pte = huge_ptep_get_and_clear(mm, address, ptep);
2359 pte = pte_mkhuge(pte_modify(pte, newprot));
2360 set_huge_pte_at(mm, address, ptep, pte);
2361 }
2362 }
2363 spin_unlock(&mm->page_table_lock);
2364 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2365
2366 flush_tlb_range(vma, start, end);
2367}
2368
2369int hugetlb_reserve_pages(struct inode *inode,
2370 long from, long to,
2371 struct vm_area_struct *vma,
2372 int acctflag)
2373{
2374 long ret, chg;
2375 struct hstate *h = hstate_inode(inode);
2376
2377 /*
2378 * Only apply hugepage reservation if asked. At fault time, an
2379 * attempt will be made for VM_NORESERVE to allocate a page
2380 * and filesystem quota without using reserves
2381 */
2382 if (acctflag & VM_NORESERVE)
2383 return 0;
2384
2385 /*
2386 * Shared mappings base their reservation on the number of pages that
2387 * are already allocated on behalf of the file. Private mappings need
2388 * to reserve the full area even if read-only as mprotect() may be
2389 * called to make the mapping read-write. Assume !vma is a shm mapping
2390 */
2391 if (!vma || vma->vm_flags & VM_MAYSHARE)
2392 chg = region_chg(&inode->i_mapping->private_list, from, to);
2393 else {
2394 struct resv_map *resv_map = resv_map_alloc();
2395 if (!resv_map)
2396 return -ENOMEM;
2397
2398 chg = to - from;
2399
2400 set_vma_resv_map(vma, resv_map);
2401 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2402 }
2403
2404 if (chg < 0)
2405 return chg;
2406
2407 /* There must be enough filesystem quota for the mapping */
2408 if (hugetlb_get_quota(inode->i_mapping, chg))
2409 return -ENOSPC;
2410
2411 /*
2412 * Check enough hugepages are available for the reservation.
2413 * Hand back the quota if there are not
2414 */
2415 ret = hugetlb_acct_memory(h, chg);
2416 if (ret < 0) {
2417 hugetlb_put_quota(inode->i_mapping, chg);
2418 return ret;
2419 }
2420
2421 /*
2422 * Account for the reservations made. Shared mappings record regions
2423 * that have reservations as they are shared by multiple VMAs.
2424 * When the last VMA disappears, the region map says how much
2425 * the reservation was and the page cache tells how much of
2426 * the reservation was consumed. Private mappings are per-VMA and
2427 * only the consumed reservations are tracked. When the VMA
2428 * disappears, the original reservation is the VMA size and the
2429 * consumed reservations are stored in the map. Hence, nothing
2430 * else has to be done for private mappings here
2431 */
2432 if (!vma || vma->vm_flags & VM_MAYSHARE)
2433 region_add(&inode->i_mapping->private_list, from, to);
2434 return 0;
2435}
2436
2437void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2438{
2439 struct hstate *h = hstate_inode(inode);
2440 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2441
2442 spin_lock(&inode->i_lock);
2443 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2444 spin_unlock(&inode->i_lock);
2445
2446 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2447 hugetlb_acct_memory(h, -(chg - freed));
2448}