mm: don't call __page_cache_release for hugetlb
[linux-2.6-block.git] / mm / hugetlb.c
... / ...
CommitLineData
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/rmap.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/page-isolation.h>
26#include <linux/jhash.h>
27
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/tlb.h>
31
32#include <linux/io.h>
33#include <linux/hugetlb.h>
34#include <linux/hugetlb_cgroup.h>
35#include <linux/node.h>
36#include "internal.h"
37
38int hugepages_treat_as_movable;
39
40int hugetlb_max_hstate __read_mostly;
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
44__initdata LIST_HEAD(huge_boot_pages);
45
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
49static unsigned long __initdata default_hstate_size;
50
51/*
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
54 */
55DEFINE_SPINLOCK(hugetlb_lock);
56
57/*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
64/* Forward declaration */
65static int hugetlb_acct_memory(struct hstate *h, long delta);
66
67static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
68{
69 bool free = (spool->count == 0) && (spool->used_hpages == 0);
70
71 spin_unlock(&spool->lock);
72
73 /* If no pages are used, and no other handles to the subpool
74 * remain, give up any reservations mased on minimum size and
75 * free the subpool */
76 if (free) {
77 if (spool->min_hpages != -1)
78 hugetlb_acct_memory(spool->hstate,
79 -spool->min_hpages);
80 kfree(spool);
81 }
82}
83
84struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
85 long min_hpages)
86{
87 struct hugepage_subpool *spool;
88
89 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90 if (!spool)
91 return NULL;
92
93 spin_lock_init(&spool->lock);
94 spool->count = 1;
95 spool->max_hpages = max_hpages;
96 spool->hstate = h;
97 spool->min_hpages = min_hpages;
98
99 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
100 kfree(spool);
101 return NULL;
102 }
103 spool->rsv_hpages = min_hpages;
104
105 return spool;
106}
107
108void hugepage_put_subpool(struct hugepage_subpool *spool)
109{
110 spin_lock(&spool->lock);
111 BUG_ON(!spool->count);
112 spool->count--;
113 unlock_or_release_subpool(spool);
114}
115
116/*
117 * Subpool accounting for allocating and reserving pages.
118 * Return -ENOMEM if there are not enough resources to satisfy the
119 * the request. Otherwise, return the number of pages by which the
120 * global pools must be adjusted (upward). The returned value may
121 * only be different than the passed value (delta) in the case where
122 * a subpool minimum size must be manitained.
123 */
124static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
125 long delta)
126{
127 long ret = delta;
128
129 if (!spool)
130 return ret;
131
132 spin_lock(&spool->lock);
133
134 if (spool->max_hpages != -1) { /* maximum size accounting */
135 if ((spool->used_hpages + delta) <= spool->max_hpages)
136 spool->used_hpages += delta;
137 else {
138 ret = -ENOMEM;
139 goto unlock_ret;
140 }
141 }
142
143 if (spool->min_hpages != -1) { /* minimum size accounting */
144 if (delta > spool->rsv_hpages) {
145 /*
146 * Asking for more reserves than those already taken on
147 * behalf of subpool. Return difference.
148 */
149 ret = delta - spool->rsv_hpages;
150 spool->rsv_hpages = 0;
151 } else {
152 ret = 0; /* reserves already accounted for */
153 spool->rsv_hpages -= delta;
154 }
155 }
156
157unlock_ret:
158 spin_unlock(&spool->lock);
159 return ret;
160}
161
162/*
163 * Subpool accounting for freeing and unreserving pages.
164 * Return the number of global page reservations that must be dropped.
165 * The return value may only be different than the passed value (delta)
166 * in the case where a subpool minimum size must be maintained.
167 */
168static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
169 long delta)
170{
171 long ret = delta;
172
173 if (!spool)
174 return delta;
175
176 spin_lock(&spool->lock);
177
178 if (spool->max_hpages != -1) /* maximum size accounting */
179 spool->used_hpages -= delta;
180
181 if (spool->min_hpages != -1) { /* minimum size accounting */
182 if (spool->rsv_hpages + delta <= spool->min_hpages)
183 ret = 0;
184 else
185 ret = spool->rsv_hpages + delta - spool->min_hpages;
186
187 spool->rsv_hpages += delta;
188 if (spool->rsv_hpages > spool->min_hpages)
189 spool->rsv_hpages = spool->min_hpages;
190 }
191
192 /*
193 * If hugetlbfs_put_super couldn't free spool due to an outstanding
194 * quota reference, free it now.
195 */
196 unlock_or_release_subpool(spool);
197
198 return ret;
199}
200
201static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
202{
203 return HUGETLBFS_SB(inode->i_sb)->spool;
204}
205
206static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
207{
208 return subpool_inode(file_inode(vma->vm_file));
209}
210
211/*
212 * Region tracking -- allows tracking of reservations and instantiated pages
213 * across the pages in a mapping.
214 *
215 * The region data structures are embedded into a resv_map and
216 * protected by a resv_map's lock
217 */
218struct file_region {
219 struct list_head link;
220 long from;
221 long to;
222};
223
224static long region_add(struct resv_map *resv, long f, long t)
225{
226 struct list_head *head = &resv->regions;
227 struct file_region *rg, *nrg, *trg;
228
229 spin_lock(&resv->lock);
230 /* Locate the region we are either in or before. */
231 list_for_each_entry(rg, head, link)
232 if (f <= rg->to)
233 break;
234
235 /* Round our left edge to the current segment if it encloses us. */
236 if (f > rg->from)
237 f = rg->from;
238
239 /* Check for and consume any regions we now overlap with. */
240 nrg = rg;
241 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
242 if (&rg->link == head)
243 break;
244 if (rg->from > t)
245 break;
246
247 /* If this area reaches higher then extend our area to
248 * include it completely. If this is not the first area
249 * which we intend to reuse, free it. */
250 if (rg->to > t)
251 t = rg->to;
252 if (rg != nrg) {
253 list_del(&rg->link);
254 kfree(rg);
255 }
256 }
257 nrg->from = f;
258 nrg->to = t;
259 spin_unlock(&resv->lock);
260 return 0;
261}
262
263static long region_chg(struct resv_map *resv, long f, long t)
264{
265 struct list_head *head = &resv->regions;
266 struct file_region *rg, *nrg = NULL;
267 long chg = 0;
268
269retry:
270 spin_lock(&resv->lock);
271 /* Locate the region we are before or in. */
272 list_for_each_entry(rg, head, link)
273 if (f <= rg->to)
274 break;
275
276 /* If we are below the current region then a new region is required.
277 * Subtle, allocate a new region at the position but make it zero
278 * size such that we can guarantee to record the reservation. */
279 if (&rg->link == head || t < rg->from) {
280 if (!nrg) {
281 spin_unlock(&resv->lock);
282 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
283 if (!nrg)
284 return -ENOMEM;
285
286 nrg->from = f;
287 nrg->to = f;
288 INIT_LIST_HEAD(&nrg->link);
289 goto retry;
290 }
291
292 list_add(&nrg->link, rg->link.prev);
293 chg = t - f;
294 goto out_nrg;
295 }
296
297 /* Round our left edge to the current segment if it encloses us. */
298 if (f > rg->from)
299 f = rg->from;
300 chg = t - f;
301
302 /* Check for and consume any regions we now overlap with. */
303 list_for_each_entry(rg, rg->link.prev, link) {
304 if (&rg->link == head)
305 break;
306 if (rg->from > t)
307 goto out;
308
309 /* We overlap with this area, if it extends further than
310 * us then we must extend ourselves. Account for its
311 * existing reservation. */
312 if (rg->to > t) {
313 chg += rg->to - t;
314 t = rg->to;
315 }
316 chg -= rg->to - rg->from;
317 }
318
319out:
320 spin_unlock(&resv->lock);
321 /* We already know we raced and no longer need the new region */
322 kfree(nrg);
323 return chg;
324out_nrg:
325 spin_unlock(&resv->lock);
326 return chg;
327}
328
329static long region_truncate(struct resv_map *resv, long end)
330{
331 struct list_head *head = &resv->regions;
332 struct file_region *rg, *trg;
333 long chg = 0;
334
335 spin_lock(&resv->lock);
336 /* Locate the region we are either in or before. */
337 list_for_each_entry(rg, head, link)
338 if (end <= rg->to)
339 break;
340 if (&rg->link == head)
341 goto out;
342
343 /* If we are in the middle of a region then adjust it. */
344 if (end > rg->from) {
345 chg = rg->to - end;
346 rg->to = end;
347 rg = list_entry(rg->link.next, typeof(*rg), link);
348 }
349
350 /* Drop any remaining regions. */
351 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
352 if (&rg->link == head)
353 break;
354 chg += rg->to - rg->from;
355 list_del(&rg->link);
356 kfree(rg);
357 }
358
359out:
360 spin_unlock(&resv->lock);
361 return chg;
362}
363
364static long region_count(struct resv_map *resv, long f, long t)
365{
366 struct list_head *head = &resv->regions;
367 struct file_region *rg;
368 long chg = 0;
369
370 spin_lock(&resv->lock);
371 /* Locate each segment we overlap with, and count that overlap. */
372 list_for_each_entry(rg, head, link) {
373 long seg_from;
374 long seg_to;
375
376 if (rg->to <= f)
377 continue;
378 if (rg->from >= t)
379 break;
380
381 seg_from = max(rg->from, f);
382 seg_to = min(rg->to, t);
383
384 chg += seg_to - seg_from;
385 }
386 spin_unlock(&resv->lock);
387
388 return chg;
389}
390
391/*
392 * Convert the address within this vma to the page offset within
393 * the mapping, in pagecache page units; huge pages here.
394 */
395static pgoff_t vma_hugecache_offset(struct hstate *h,
396 struct vm_area_struct *vma, unsigned long address)
397{
398 return ((address - vma->vm_start) >> huge_page_shift(h)) +
399 (vma->vm_pgoff >> huge_page_order(h));
400}
401
402pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
403 unsigned long address)
404{
405 return vma_hugecache_offset(hstate_vma(vma), vma, address);
406}
407
408/*
409 * Return the size of the pages allocated when backing a VMA. In the majority
410 * cases this will be same size as used by the page table entries.
411 */
412unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
413{
414 struct hstate *hstate;
415
416 if (!is_vm_hugetlb_page(vma))
417 return PAGE_SIZE;
418
419 hstate = hstate_vma(vma);
420
421 return 1UL << huge_page_shift(hstate);
422}
423EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
424
425/*
426 * Return the page size being used by the MMU to back a VMA. In the majority
427 * of cases, the page size used by the kernel matches the MMU size. On
428 * architectures where it differs, an architecture-specific version of this
429 * function is required.
430 */
431#ifndef vma_mmu_pagesize
432unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
433{
434 return vma_kernel_pagesize(vma);
435}
436#endif
437
438/*
439 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
440 * bits of the reservation map pointer, which are always clear due to
441 * alignment.
442 */
443#define HPAGE_RESV_OWNER (1UL << 0)
444#define HPAGE_RESV_UNMAPPED (1UL << 1)
445#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
446
447/*
448 * These helpers are used to track how many pages are reserved for
449 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
450 * is guaranteed to have their future faults succeed.
451 *
452 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
453 * the reserve counters are updated with the hugetlb_lock held. It is safe
454 * to reset the VMA at fork() time as it is not in use yet and there is no
455 * chance of the global counters getting corrupted as a result of the values.
456 *
457 * The private mapping reservation is represented in a subtly different
458 * manner to a shared mapping. A shared mapping has a region map associated
459 * with the underlying file, this region map represents the backing file
460 * pages which have ever had a reservation assigned which this persists even
461 * after the page is instantiated. A private mapping has a region map
462 * associated with the original mmap which is attached to all VMAs which
463 * reference it, this region map represents those offsets which have consumed
464 * reservation ie. where pages have been instantiated.
465 */
466static unsigned long get_vma_private_data(struct vm_area_struct *vma)
467{
468 return (unsigned long)vma->vm_private_data;
469}
470
471static void set_vma_private_data(struct vm_area_struct *vma,
472 unsigned long value)
473{
474 vma->vm_private_data = (void *)value;
475}
476
477struct resv_map *resv_map_alloc(void)
478{
479 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
480 if (!resv_map)
481 return NULL;
482
483 kref_init(&resv_map->refs);
484 spin_lock_init(&resv_map->lock);
485 INIT_LIST_HEAD(&resv_map->regions);
486
487 return resv_map;
488}
489
490void resv_map_release(struct kref *ref)
491{
492 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
493
494 /* Clear out any active regions before we release the map. */
495 region_truncate(resv_map, 0);
496 kfree(resv_map);
497}
498
499static inline struct resv_map *inode_resv_map(struct inode *inode)
500{
501 return inode->i_mapping->private_data;
502}
503
504static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
505{
506 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
507 if (vma->vm_flags & VM_MAYSHARE) {
508 struct address_space *mapping = vma->vm_file->f_mapping;
509 struct inode *inode = mapping->host;
510
511 return inode_resv_map(inode);
512
513 } else {
514 return (struct resv_map *)(get_vma_private_data(vma) &
515 ~HPAGE_RESV_MASK);
516 }
517}
518
519static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
520{
521 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
522 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
523
524 set_vma_private_data(vma, (get_vma_private_data(vma) &
525 HPAGE_RESV_MASK) | (unsigned long)map);
526}
527
528static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
529{
530 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
531 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
532
533 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
534}
535
536static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
537{
538 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
539
540 return (get_vma_private_data(vma) & flag) != 0;
541}
542
543/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
544void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
545{
546 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
547 if (!(vma->vm_flags & VM_MAYSHARE))
548 vma->vm_private_data = (void *)0;
549}
550
551/* Returns true if the VMA has associated reserve pages */
552static int vma_has_reserves(struct vm_area_struct *vma, long chg)
553{
554 if (vma->vm_flags & VM_NORESERVE) {
555 /*
556 * This address is already reserved by other process(chg == 0),
557 * so, we should decrement reserved count. Without decrementing,
558 * reserve count remains after releasing inode, because this
559 * allocated page will go into page cache and is regarded as
560 * coming from reserved pool in releasing step. Currently, we
561 * don't have any other solution to deal with this situation
562 * properly, so add work-around here.
563 */
564 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
565 return 1;
566 else
567 return 0;
568 }
569
570 /* Shared mappings always use reserves */
571 if (vma->vm_flags & VM_MAYSHARE)
572 return 1;
573
574 /*
575 * Only the process that called mmap() has reserves for
576 * private mappings.
577 */
578 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
579 return 1;
580
581 return 0;
582}
583
584static void enqueue_huge_page(struct hstate *h, struct page *page)
585{
586 int nid = page_to_nid(page);
587 list_move(&page->lru, &h->hugepage_freelists[nid]);
588 h->free_huge_pages++;
589 h->free_huge_pages_node[nid]++;
590}
591
592static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
593{
594 struct page *page;
595
596 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
597 if (!is_migrate_isolate_page(page))
598 break;
599 /*
600 * if 'non-isolated free hugepage' not found on the list,
601 * the allocation fails.
602 */
603 if (&h->hugepage_freelists[nid] == &page->lru)
604 return NULL;
605 list_move(&page->lru, &h->hugepage_activelist);
606 set_page_refcounted(page);
607 h->free_huge_pages--;
608 h->free_huge_pages_node[nid]--;
609 return page;
610}
611
612/* Movability of hugepages depends on migration support. */
613static inline gfp_t htlb_alloc_mask(struct hstate *h)
614{
615 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
616 return GFP_HIGHUSER_MOVABLE;
617 else
618 return GFP_HIGHUSER;
619}
620
621static struct page *dequeue_huge_page_vma(struct hstate *h,
622 struct vm_area_struct *vma,
623 unsigned long address, int avoid_reserve,
624 long chg)
625{
626 struct page *page = NULL;
627 struct mempolicy *mpol;
628 nodemask_t *nodemask;
629 struct zonelist *zonelist;
630 struct zone *zone;
631 struct zoneref *z;
632 unsigned int cpuset_mems_cookie;
633
634 /*
635 * A child process with MAP_PRIVATE mappings created by their parent
636 * have no page reserves. This check ensures that reservations are
637 * not "stolen". The child may still get SIGKILLed
638 */
639 if (!vma_has_reserves(vma, chg) &&
640 h->free_huge_pages - h->resv_huge_pages == 0)
641 goto err;
642
643 /* If reserves cannot be used, ensure enough pages are in the pool */
644 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
645 goto err;
646
647retry_cpuset:
648 cpuset_mems_cookie = read_mems_allowed_begin();
649 zonelist = huge_zonelist(vma, address,
650 htlb_alloc_mask(h), &mpol, &nodemask);
651
652 for_each_zone_zonelist_nodemask(zone, z, zonelist,
653 MAX_NR_ZONES - 1, nodemask) {
654 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
655 page = dequeue_huge_page_node(h, zone_to_nid(zone));
656 if (page) {
657 if (avoid_reserve)
658 break;
659 if (!vma_has_reserves(vma, chg))
660 break;
661
662 SetPagePrivate(page);
663 h->resv_huge_pages--;
664 break;
665 }
666 }
667 }
668
669 mpol_cond_put(mpol);
670 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
671 goto retry_cpuset;
672 return page;
673
674err:
675 return NULL;
676}
677
678/*
679 * common helper functions for hstate_next_node_to_{alloc|free}.
680 * We may have allocated or freed a huge page based on a different
681 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
682 * be outside of *nodes_allowed. Ensure that we use an allowed
683 * node for alloc or free.
684 */
685static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
686{
687 nid = next_node(nid, *nodes_allowed);
688 if (nid == MAX_NUMNODES)
689 nid = first_node(*nodes_allowed);
690 VM_BUG_ON(nid >= MAX_NUMNODES);
691
692 return nid;
693}
694
695static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
696{
697 if (!node_isset(nid, *nodes_allowed))
698 nid = next_node_allowed(nid, nodes_allowed);
699 return nid;
700}
701
702/*
703 * returns the previously saved node ["this node"] from which to
704 * allocate a persistent huge page for the pool and advance the
705 * next node from which to allocate, handling wrap at end of node
706 * mask.
707 */
708static int hstate_next_node_to_alloc(struct hstate *h,
709 nodemask_t *nodes_allowed)
710{
711 int nid;
712
713 VM_BUG_ON(!nodes_allowed);
714
715 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
716 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
717
718 return nid;
719}
720
721/*
722 * helper for free_pool_huge_page() - return the previously saved
723 * node ["this node"] from which to free a huge page. Advance the
724 * next node id whether or not we find a free huge page to free so
725 * that the next attempt to free addresses the next node.
726 */
727static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
728{
729 int nid;
730
731 VM_BUG_ON(!nodes_allowed);
732
733 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
734 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
735
736 return nid;
737}
738
739#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
740 for (nr_nodes = nodes_weight(*mask); \
741 nr_nodes > 0 && \
742 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
743 nr_nodes--)
744
745#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
746 for (nr_nodes = nodes_weight(*mask); \
747 nr_nodes > 0 && \
748 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
749 nr_nodes--)
750
751#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
752static void destroy_compound_gigantic_page(struct page *page,
753 unsigned long order)
754{
755 int i;
756 int nr_pages = 1 << order;
757 struct page *p = page + 1;
758
759 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
760 __ClearPageTail(p);
761 set_page_refcounted(p);
762 p->first_page = NULL;
763 }
764
765 set_compound_order(page, 0);
766 __ClearPageHead(page);
767}
768
769static void free_gigantic_page(struct page *page, unsigned order)
770{
771 free_contig_range(page_to_pfn(page), 1 << order);
772}
773
774static int __alloc_gigantic_page(unsigned long start_pfn,
775 unsigned long nr_pages)
776{
777 unsigned long end_pfn = start_pfn + nr_pages;
778 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
779}
780
781static bool pfn_range_valid_gigantic(unsigned long start_pfn,
782 unsigned long nr_pages)
783{
784 unsigned long i, end_pfn = start_pfn + nr_pages;
785 struct page *page;
786
787 for (i = start_pfn; i < end_pfn; i++) {
788 if (!pfn_valid(i))
789 return false;
790
791 page = pfn_to_page(i);
792
793 if (PageReserved(page))
794 return false;
795
796 if (page_count(page) > 0)
797 return false;
798
799 if (PageHuge(page))
800 return false;
801 }
802
803 return true;
804}
805
806static bool zone_spans_last_pfn(const struct zone *zone,
807 unsigned long start_pfn, unsigned long nr_pages)
808{
809 unsigned long last_pfn = start_pfn + nr_pages - 1;
810 return zone_spans_pfn(zone, last_pfn);
811}
812
813static struct page *alloc_gigantic_page(int nid, unsigned order)
814{
815 unsigned long nr_pages = 1 << order;
816 unsigned long ret, pfn, flags;
817 struct zone *z;
818
819 z = NODE_DATA(nid)->node_zones;
820 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
821 spin_lock_irqsave(&z->lock, flags);
822
823 pfn = ALIGN(z->zone_start_pfn, nr_pages);
824 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
825 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
826 /*
827 * We release the zone lock here because
828 * alloc_contig_range() will also lock the zone
829 * at some point. If there's an allocation
830 * spinning on this lock, it may win the race
831 * and cause alloc_contig_range() to fail...
832 */
833 spin_unlock_irqrestore(&z->lock, flags);
834 ret = __alloc_gigantic_page(pfn, nr_pages);
835 if (!ret)
836 return pfn_to_page(pfn);
837 spin_lock_irqsave(&z->lock, flags);
838 }
839 pfn += nr_pages;
840 }
841
842 spin_unlock_irqrestore(&z->lock, flags);
843 }
844
845 return NULL;
846}
847
848static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
849static void prep_compound_gigantic_page(struct page *page, unsigned long order);
850
851static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
852{
853 struct page *page;
854
855 page = alloc_gigantic_page(nid, huge_page_order(h));
856 if (page) {
857 prep_compound_gigantic_page(page, huge_page_order(h));
858 prep_new_huge_page(h, page, nid);
859 }
860
861 return page;
862}
863
864static int alloc_fresh_gigantic_page(struct hstate *h,
865 nodemask_t *nodes_allowed)
866{
867 struct page *page = NULL;
868 int nr_nodes, node;
869
870 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
871 page = alloc_fresh_gigantic_page_node(h, node);
872 if (page)
873 return 1;
874 }
875
876 return 0;
877}
878
879static inline bool gigantic_page_supported(void) { return true; }
880#else
881static inline bool gigantic_page_supported(void) { return false; }
882static inline void free_gigantic_page(struct page *page, unsigned order) { }
883static inline void destroy_compound_gigantic_page(struct page *page,
884 unsigned long order) { }
885static inline int alloc_fresh_gigantic_page(struct hstate *h,
886 nodemask_t *nodes_allowed) { return 0; }
887#endif
888
889static void update_and_free_page(struct hstate *h, struct page *page)
890{
891 int i;
892
893 if (hstate_is_gigantic(h) && !gigantic_page_supported())
894 return;
895
896 h->nr_huge_pages--;
897 h->nr_huge_pages_node[page_to_nid(page)]--;
898 for (i = 0; i < pages_per_huge_page(h); i++) {
899 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
900 1 << PG_referenced | 1 << PG_dirty |
901 1 << PG_active | 1 << PG_private |
902 1 << PG_writeback);
903 }
904 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
905 set_compound_page_dtor(page, NULL);
906 set_page_refcounted(page);
907 if (hstate_is_gigantic(h)) {
908 destroy_compound_gigantic_page(page, huge_page_order(h));
909 free_gigantic_page(page, huge_page_order(h));
910 } else {
911 arch_release_hugepage(page);
912 __free_pages(page, huge_page_order(h));
913 }
914}
915
916struct hstate *size_to_hstate(unsigned long size)
917{
918 struct hstate *h;
919
920 for_each_hstate(h) {
921 if (huge_page_size(h) == size)
922 return h;
923 }
924 return NULL;
925}
926
927void free_huge_page(struct page *page)
928{
929 /*
930 * Can't pass hstate in here because it is called from the
931 * compound page destructor.
932 */
933 struct hstate *h = page_hstate(page);
934 int nid = page_to_nid(page);
935 struct hugepage_subpool *spool =
936 (struct hugepage_subpool *)page_private(page);
937 bool restore_reserve;
938
939 set_page_private(page, 0);
940 page->mapping = NULL;
941 BUG_ON(page_count(page));
942 BUG_ON(page_mapcount(page));
943 restore_reserve = PagePrivate(page);
944 ClearPagePrivate(page);
945
946 /*
947 * A return code of zero implies that the subpool will be under its
948 * minimum size if the reservation is not restored after page is free.
949 * Therefore, force restore_reserve operation.
950 */
951 if (hugepage_subpool_put_pages(spool, 1) == 0)
952 restore_reserve = true;
953
954 spin_lock(&hugetlb_lock);
955 hugetlb_cgroup_uncharge_page(hstate_index(h),
956 pages_per_huge_page(h), page);
957 if (restore_reserve)
958 h->resv_huge_pages++;
959
960 if (h->surplus_huge_pages_node[nid]) {
961 /* remove the page from active list */
962 list_del(&page->lru);
963 update_and_free_page(h, page);
964 h->surplus_huge_pages--;
965 h->surplus_huge_pages_node[nid]--;
966 } else {
967 arch_clear_hugepage_flags(page);
968 enqueue_huge_page(h, page);
969 }
970 spin_unlock(&hugetlb_lock);
971}
972
973static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
974{
975 INIT_LIST_HEAD(&page->lru);
976 set_compound_page_dtor(page, free_huge_page);
977 spin_lock(&hugetlb_lock);
978 set_hugetlb_cgroup(page, NULL);
979 h->nr_huge_pages++;
980 h->nr_huge_pages_node[nid]++;
981 spin_unlock(&hugetlb_lock);
982 put_page(page); /* free it into the hugepage allocator */
983}
984
985static void prep_compound_gigantic_page(struct page *page, unsigned long order)
986{
987 int i;
988 int nr_pages = 1 << order;
989 struct page *p = page + 1;
990
991 /* we rely on prep_new_huge_page to set the destructor */
992 set_compound_order(page, order);
993 __SetPageHead(page);
994 __ClearPageReserved(page);
995 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
996 /*
997 * For gigantic hugepages allocated through bootmem at
998 * boot, it's safer to be consistent with the not-gigantic
999 * hugepages and clear the PG_reserved bit from all tail pages
1000 * too. Otherwse drivers using get_user_pages() to access tail
1001 * pages may get the reference counting wrong if they see
1002 * PG_reserved set on a tail page (despite the head page not
1003 * having PG_reserved set). Enforcing this consistency between
1004 * head and tail pages allows drivers to optimize away a check
1005 * on the head page when they need know if put_page() is needed
1006 * after get_user_pages().
1007 */
1008 __ClearPageReserved(p);
1009 set_page_count(p, 0);
1010 p->first_page = page;
1011 /* Make sure p->first_page is always valid for PageTail() */
1012 smp_wmb();
1013 __SetPageTail(p);
1014 }
1015}
1016
1017/*
1018 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1019 * transparent huge pages. See the PageTransHuge() documentation for more
1020 * details.
1021 */
1022int PageHuge(struct page *page)
1023{
1024 if (!PageCompound(page))
1025 return 0;
1026
1027 page = compound_head(page);
1028 return get_compound_page_dtor(page) == free_huge_page;
1029}
1030EXPORT_SYMBOL_GPL(PageHuge);
1031
1032/*
1033 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1034 * normal or transparent huge pages.
1035 */
1036int PageHeadHuge(struct page *page_head)
1037{
1038 if (!PageHead(page_head))
1039 return 0;
1040
1041 return get_compound_page_dtor(page_head) == free_huge_page;
1042}
1043
1044pgoff_t __basepage_index(struct page *page)
1045{
1046 struct page *page_head = compound_head(page);
1047 pgoff_t index = page_index(page_head);
1048 unsigned long compound_idx;
1049
1050 if (!PageHuge(page_head))
1051 return page_index(page);
1052
1053 if (compound_order(page_head) >= MAX_ORDER)
1054 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1055 else
1056 compound_idx = page - page_head;
1057
1058 return (index << compound_order(page_head)) + compound_idx;
1059}
1060
1061static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1062{
1063 struct page *page;
1064
1065 page = alloc_pages_exact_node(nid,
1066 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1067 __GFP_REPEAT|__GFP_NOWARN,
1068 huge_page_order(h));
1069 if (page) {
1070 if (arch_prepare_hugepage(page)) {
1071 __free_pages(page, huge_page_order(h));
1072 return NULL;
1073 }
1074 prep_new_huge_page(h, page, nid);
1075 }
1076
1077 return page;
1078}
1079
1080static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1081{
1082 struct page *page;
1083 int nr_nodes, node;
1084 int ret = 0;
1085
1086 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1087 page = alloc_fresh_huge_page_node(h, node);
1088 if (page) {
1089 ret = 1;
1090 break;
1091 }
1092 }
1093
1094 if (ret)
1095 count_vm_event(HTLB_BUDDY_PGALLOC);
1096 else
1097 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1098
1099 return ret;
1100}
1101
1102/*
1103 * Free huge page from pool from next node to free.
1104 * Attempt to keep persistent huge pages more or less
1105 * balanced over allowed nodes.
1106 * Called with hugetlb_lock locked.
1107 */
1108static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1109 bool acct_surplus)
1110{
1111 int nr_nodes, node;
1112 int ret = 0;
1113
1114 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1115 /*
1116 * If we're returning unused surplus pages, only examine
1117 * nodes with surplus pages.
1118 */
1119 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1120 !list_empty(&h->hugepage_freelists[node])) {
1121 struct page *page =
1122 list_entry(h->hugepage_freelists[node].next,
1123 struct page, lru);
1124 list_del(&page->lru);
1125 h->free_huge_pages--;
1126 h->free_huge_pages_node[node]--;
1127 if (acct_surplus) {
1128 h->surplus_huge_pages--;
1129 h->surplus_huge_pages_node[node]--;
1130 }
1131 update_and_free_page(h, page);
1132 ret = 1;
1133 break;
1134 }
1135 }
1136
1137 return ret;
1138}
1139
1140/*
1141 * Dissolve a given free hugepage into free buddy pages. This function does
1142 * nothing for in-use (including surplus) hugepages.
1143 */
1144static void dissolve_free_huge_page(struct page *page)
1145{
1146 spin_lock(&hugetlb_lock);
1147 if (PageHuge(page) && !page_count(page)) {
1148 struct hstate *h = page_hstate(page);
1149 int nid = page_to_nid(page);
1150 list_del(&page->lru);
1151 h->free_huge_pages--;
1152 h->free_huge_pages_node[nid]--;
1153 update_and_free_page(h, page);
1154 }
1155 spin_unlock(&hugetlb_lock);
1156}
1157
1158/*
1159 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1160 * make specified memory blocks removable from the system.
1161 * Note that start_pfn should aligned with (minimum) hugepage size.
1162 */
1163void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1164{
1165 unsigned int order = 8 * sizeof(void *);
1166 unsigned long pfn;
1167 struct hstate *h;
1168
1169 if (!hugepages_supported())
1170 return;
1171
1172 /* Set scan step to minimum hugepage size */
1173 for_each_hstate(h)
1174 if (order > huge_page_order(h))
1175 order = huge_page_order(h);
1176 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1177 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1178 dissolve_free_huge_page(pfn_to_page(pfn));
1179}
1180
1181static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1182{
1183 struct page *page;
1184 unsigned int r_nid;
1185
1186 if (hstate_is_gigantic(h))
1187 return NULL;
1188
1189 /*
1190 * Assume we will successfully allocate the surplus page to
1191 * prevent racing processes from causing the surplus to exceed
1192 * overcommit
1193 *
1194 * This however introduces a different race, where a process B
1195 * tries to grow the static hugepage pool while alloc_pages() is
1196 * called by process A. B will only examine the per-node
1197 * counters in determining if surplus huge pages can be
1198 * converted to normal huge pages in adjust_pool_surplus(). A
1199 * won't be able to increment the per-node counter, until the
1200 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1201 * no more huge pages can be converted from surplus to normal
1202 * state (and doesn't try to convert again). Thus, we have a
1203 * case where a surplus huge page exists, the pool is grown, and
1204 * the surplus huge page still exists after, even though it
1205 * should just have been converted to a normal huge page. This
1206 * does not leak memory, though, as the hugepage will be freed
1207 * once it is out of use. It also does not allow the counters to
1208 * go out of whack in adjust_pool_surplus() as we don't modify
1209 * the node values until we've gotten the hugepage and only the
1210 * per-node value is checked there.
1211 */
1212 spin_lock(&hugetlb_lock);
1213 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1214 spin_unlock(&hugetlb_lock);
1215 return NULL;
1216 } else {
1217 h->nr_huge_pages++;
1218 h->surplus_huge_pages++;
1219 }
1220 spin_unlock(&hugetlb_lock);
1221
1222 if (nid == NUMA_NO_NODE)
1223 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1224 __GFP_REPEAT|__GFP_NOWARN,
1225 huge_page_order(h));
1226 else
1227 page = alloc_pages_exact_node(nid,
1228 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1229 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1230
1231 if (page && arch_prepare_hugepage(page)) {
1232 __free_pages(page, huge_page_order(h));
1233 page = NULL;
1234 }
1235
1236 spin_lock(&hugetlb_lock);
1237 if (page) {
1238 INIT_LIST_HEAD(&page->lru);
1239 r_nid = page_to_nid(page);
1240 set_compound_page_dtor(page, free_huge_page);
1241 set_hugetlb_cgroup(page, NULL);
1242 /*
1243 * We incremented the global counters already
1244 */
1245 h->nr_huge_pages_node[r_nid]++;
1246 h->surplus_huge_pages_node[r_nid]++;
1247 __count_vm_event(HTLB_BUDDY_PGALLOC);
1248 } else {
1249 h->nr_huge_pages--;
1250 h->surplus_huge_pages--;
1251 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1252 }
1253 spin_unlock(&hugetlb_lock);
1254
1255 return page;
1256}
1257
1258/*
1259 * This allocation function is useful in the context where vma is irrelevant.
1260 * E.g. soft-offlining uses this function because it only cares physical
1261 * address of error page.
1262 */
1263struct page *alloc_huge_page_node(struct hstate *h, int nid)
1264{
1265 struct page *page = NULL;
1266
1267 spin_lock(&hugetlb_lock);
1268 if (h->free_huge_pages - h->resv_huge_pages > 0)
1269 page = dequeue_huge_page_node(h, nid);
1270 spin_unlock(&hugetlb_lock);
1271
1272 if (!page)
1273 page = alloc_buddy_huge_page(h, nid);
1274
1275 return page;
1276}
1277
1278/*
1279 * Increase the hugetlb pool such that it can accommodate a reservation
1280 * of size 'delta'.
1281 */
1282static int gather_surplus_pages(struct hstate *h, int delta)
1283{
1284 struct list_head surplus_list;
1285 struct page *page, *tmp;
1286 int ret, i;
1287 int needed, allocated;
1288 bool alloc_ok = true;
1289
1290 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1291 if (needed <= 0) {
1292 h->resv_huge_pages += delta;
1293 return 0;
1294 }
1295
1296 allocated = 0;
1297 INIT_LIST_HEAD(&surplus_list);
1298
1299 ret = -ENOMEM;
1300retry:
1301 spin_unlock(&hugetlb_lock);
1302 for (i = 0; i < needed; i++) {
1303 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1304 if (!page) {
1305 alloc_ok = false;
1306 break;
1307 }
1308 list_add(&page->lru, &surplus_list);
1309 }
1310 allocated += i;
1311
1312 /*
1313 * After retaking hugetlb_lock, we need to recalculate 'needed'
1314 * because either resv_huge_pages or free_huge_pages may have changed.
1315 */
1316 spin_lock(&hugetlb_lock);
1317 needed = (h->resv_huge_pages + delta) -
1318 (h->free_huge_pages + allocated);
1319 if (needed > 0) {
1320 if (alloc_ok)
1321 goto retry;
1322 /*
1323 * We were not able to allocate enough pages to
1324 * satisfy the entire reservation so we free what
1325 * we've allocated so far.
1326 */
1327 goto free;
1328 }
1329 /*
1330 * The surplus_list now contains _at_least_ the number of extra pages
1331 * needed to accommodate the reservation. Add the appropriate number
1332 * of pages to the hugetlb pool and free the extras back to the buddy
1333 * allocator. Commit the entire reservation here to prevent another
1334 * process from stealing the pages as they are added to the pool but
1335 * before they are reserved.
1336 */
1337 needed += allocated;
1338 h->resv_huge_pages += delta;
1339 ret = 0;
1340
1341 /* Free the needed pages to the hugetlb pool */
1342 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1343 if ((--needed) < 0)
1344 break;
1345 /*
1346 * This page is now managed by the hugetlb allocator and has
1347 * no users -- drop the buddy allocator's reference.
1348 */
1349 put_page_testzero(page);
1350 VM_BUG_ON_PAGE(page_count(page), page);
1351 enqueue_huge_page(h, page);
1352 }
1353free:
1354 spin_unlock(&hugetlb_lock);
1355
1356 /* Free unnecessary surplus pages to the buddy allocator */
1357 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1358 put_page(page);
1359 spin_lock(&hugetlb_lock);
1360
1361 return ret;
1362}
1363
1364/*
1365 * When releasing a hugetlb pool reservation, any surplus pages that were
1366 * allocated to satisfy the reservation must be explicitly freed if they were
1367 * never used.
1368 * Called with hugetlb_lock held.
1369 */
1370static void return_unused_surplus_pages(struct hstate *h,
1371 unsigned long unused_resv_pages)
1372{
1373 unsigned long nr_pages;
1374
1375 /* Uncommit the reservation */
1376 h->resv_huge_pages -= unused_resv_pages;
1377
1378 /* Cannot return gigantic pages currently */
1379 if (hstate_is_gigantic(h))
1380 return;
1381
1382 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1383
1384 /*
1385 * We want to release as many surplus pages as possible, spread
1386 * evenly across all nodes with memory. Iterate across these nodes
1387 * until we can no longer free unreserved surplus pages. This occurs
1388 * when the nodes with surplus pages have no free pages.
1389 * free_pool_huge_page() will balance the the freed pages across the
1390 * on-line nodes with memory and will handle the hstate accounting.
1391 */
1392 while (nr_pages--) {
1393 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1394 break;
1395 cond_resched_lock(&hugetlb_lock);
1396 }
1397}
1398
1399/*
1400 * Determine if the huge page at addr within the vma has an associated
1401 * reservation. Where it does not we will need to logically increase
1402 * reservation and actually increase subpool usage before an allocation
1403 * can occur. Where any new reservation would be required the
1404 * reservation change is prepared, but not committed. Once the page
1405 * has been allocated from the subpool and instantiated the change should
1406 * be committed via vma_commit_reservation. No action is required on
1407 * failure.
1408 */
1409static long vma_needs_reservation(struct hstate *h,
1410 struct vm_area_struct *vma, unsigned long addr)
1411{
1412 struct resv_map *resv;
1413 pgoff_t idx;
1414 long chg;
1415
1416 resv = vma_resv_map(vma);
1417 if (!resv)
1418 return 1;
1419
1420 idx = vma_hugecache_offset(h, vma, addr);
1421 chg = region_chg(resv, idx, idx + 1);
1422
1423 if (vma->vm_flags & VM_MAYSHARE)
1424 return chg;
1425 else
1426 return chg < 0 ? chg : 0;
1427}
1428static void vma_commit_reservation(struct hstate *h,
1429 struct vm_area_struct *vma, unsigned long addr)
1430{
1431 struct resv_map *resv;
1432 pgoff_t idx;
1433
1434 resv = vma_resv_map(vma);
1435 if (!resv)
1436 return;
1437
1438 idx = vma_hugecache_offset(h, vma, addr);
1439 region_add(resv, idx, idx + 1);
1440}
1441
1442static struct page *alloc_huge_page(struct vm_area_struct *vma,
1443 unsigned long addr, int avoid_reserve)
1444{
1445 struct hugepage_subpool *spool = subpool_vma(vma);
1446 struct hstate *h = hstate_vma(vma);
1447 struct page *page;
1448 long chg;
1449 int ret, idx;
1450 struct hugetlb_cgroup *h_cg;
1451
1452 idx = hstate_index(h);
1453 /*
1454 * Processes that did not create the mapping will have no
1455 * reserves and will not have accounted against subpool
1456 * limit. Check that the subpool limit can be made before
1457 * satisfying the allocation MAP_NORESERVE mappings may also
1458 * need pages and subpool limit allocated allocated if no reserve
1459 * mapping overlaps.
1460 */
1461 chg = vma_needs_reservation(h, vma, addr);
1462 if (chg < 0)
1463 return ERR_PTR(-ENOMEM);
1464 if (chg || avoid_reserve)
1465 if (hugepage_subpool_get_pages(spool, 1) < 0)
1466 return ERR_PTR(-ENOSPC);
1467
1468 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1469 if (ret)
1470 goto out_subpool_put;
1471
1472 spin_lock(&hugetlb_lock);
1473 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1474 if (!page) {
1475 spin_unlock(&hugetlb_lock);
1476 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1477 if (!page)
1478 goto out_uncharge_cgroup;
1479
1480 spin_lock(&hugetlb_lock);
1481 list_move(&page->lru, &h->hugepage_activelist);
1482 /* Fall through */
1483 }
1484 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1485 spin_unlock(&hugetlb_lock);
1486
1487 set_page_private(page, (unsigned long)spool);
1488
1489 vma_commit_reservation(h, vma, addr);
1490 return page;
1491
1492out_uncharge_cgroup:
1493 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1494out_subpool_put:
1495 if (chg || avoid_reserve)
1496 hugepage_subpool_put_pages(spool, 1);
1497 return ERR_PTR(-ENOSPC);
1498}
1499
1500/*
1501 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1502 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1503 * where no ERR_VALUE is expected to be returned.
1504 */
1505struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1506 unsigned long addr, int avoid_reserve)
1507{
1508 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1509 if (IS_ERR(page))
1510 page = NULL;
1511 return page;
1512}
1513
1514int __weak alloc_bootmem_huge_page(struct hstate *h)
1515{
1516 struct huge_bootmem_page *m;
1517 int nr_nodes, node;
1518
1519 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1520 void *addr;
1521
1522 addr = memblock_virt_alloc_try_nid_nopanic(
1523 huge_page_size(h), huge_page_size(h),
1524 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1525 if (addr) {
1526 /*
1527 * Use the beginning of the huge page to store the
1528 * huge_bootmem_page struct (until gather_bootmem
1529 * puts them into the mem_map).
1530 */
1531 m = addr;
1532 goto found;
1533 }
1534 }
1535 return 0;
1536
1537found:
1538 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1539 /* Put them into a private list first because mem_map is not up yet */
1540 list_add(&m->list, &huge_boot_pages);
1541 m->hstate = h;
1542 return 1;
1543}
1544
1545static void __init prep_compound_huge_page(struct page *page, int order)
1546{
1547 if (unlikely(order > (MAX_ORDER - 1)))
1548 prep_compound_gigantic_page(page, order);
1549 else
1550 prep_compound_page(page, order);
1551}
1552
1553/* Put bootmem huge pages into the standard lists after mem_map is up */
1554static void __init gather_bootmem_prealloc(void)
1555{
1556 struct huge_bootmem_page *m;
1557
1558 list_for_each_entry(m, &huge_boot_pages, list) {
1559 struct hstate *h = m->hstate;
1560 struct page *page;
1561
1562#ifdef CONFIG_HIGHMEM
1563 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1564 memblock_free_late(__pa(m),
1565 sizeof(struct huge_bootmem_page));
1566#else
1567 page = virt_to_page(m);
1568#endif
1569 WARN_ON(page_count(page) != 1);
1570 prep_compound_huge_page(page, h->order);
1571 WARN_ON(PageReserved(page));
1572 prep_new_huge_page(h, page, page_to_nid(page));
1573 /*
1574 * If we had gigantic hugepages allocated at boot time, we need
1575 * to restore the 'stolen' pages to totalram_pages in order to
1576 * fix confusing memory reports from free(1) and another
1577 * side-effects, like CommitLimit going negative.
1578 */
1579 if (hstate_is_gigantic(h))
1580 adjust_managed_page_count(page, 1 << h->order);
1581 }
1582}
1583
1584static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1585{
1586 unsigned long i;
1587
1588 for (i = 0; i < h->max_huge_pages; ++i) {
1589 if (hstate_is_gigantic(h)) {
1590 if (!alloc_bootmem_huge_page(h))
1591 break;
1592 } else if (!alloc_fresh_huge_page(h,
1593 &node_states[N_MEMORY]))
1594 break;
1595 }
1596 h->max_huge_pages = i;
1597}
1598
1599static void __init hugetlb_init_hstates(void)
1600{
1601 struct hstate *h;
1602
1603 for_each_hstate(h) {
1604 /* oversize hugepages were init'ed in early boot */
1605 if (!hstate_is_gigantic(h))
1606 hugetlb_hstate_alloc_pages(h);
1607 }
1608}
1609
1610static char * __init memfmt(char *buf, unsigned long n)
1611{
1612 if (n >= (1UL << 30))
1613 sprintf(buf, "%lu GB", n >> 30);
1614 else if (n >= (1UL << 20))
1615 sprintf(buf, "%lu MB", n >> 20);
1616 else
1617 sprintf(buf, "%lu KB", n >> 10);
1618 return buf;
1619}
1620
1621static void __init report_hugepages(void)
1622{
1623 struct hstate *h;
1624
1625 for_each_hstate(h) {
1626 char buf[32];
1627 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1628 memfmt(buf, huge_page_size(h)),
1629 h->free_huge_pages);
1630 }
1631}
1632
1633#ifdef CONFIG_HIGHMEM
1634static void try_to_free_low(struct hstate *h, unsigned long count,
1635 nodemask_t *nodes_allowed)
1636{
1637 int i;
1638
1639 if (hstate_is_gigantic(h))
1640 return;
1641
1642 for_each_node_mask(i, *nodes_allowed) {
1643 struct page *page, *next;
1644 struct list_head *freel = &h->hugepage_freelists[i];
1645 list_for_each_entry_safe(page, next, freel, lru) {
1646 if (count >= h->nr_huge_pages)
1647 return;
1648 if (PageHighMem(page))
1649 continue;
1650 list_del(&page->lru);
1651 update_and_free_page(h, page);
1652 h->free_huge_pages--;
1653 h->free_huge_pages_node[page_to_nid(page)]--;
1654 }
1655 }
1656}
1657#else
1658static inline void try_to_free_low(struct hstate *h, unsigned long count,
1659 nodemask_t *nodes_allowed)
1660{
1661}
1662#endif
1663
1664/*
1665 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1666 * balanced by operating on them in a round-robin fashion.
1667 * Returns 1 if an adjustment was made.
1668 */
1669static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1670 int delta)
1671{
1672 int nr_nodes, node;
1673
1674 VM_BUG_ON(delta != -1 && delta != 1);
1675
1676 if (delta < 0) {
1677 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1678 if (h->surplus_huge_pages_node[node])
1679 goto found;
1680 }
1681 } else {
1682 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1683 if (h->surplus_huge_pages_node[node] <
1684 h->nr_huge_pages_node[node])
1685 goto found;
1686 }
1687 }
1688 return 0;
1689
1690found:
1691 h->surplus_huge_pages += delta;
1692 h->surplus_huge_pages_node[node] += delta;
1693 return 1;
1694}
1695
1696#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1697static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1698 nodemask_t *nodes_allowed)
1699{
1700 unsigned long min_count, ret;
1701
1702 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1703 return h->max_huge_pages;
1704
1705 /*
1706 * Increase the pool size
1707 * First take pages out of surplus state. Then make up the
1708 * remaining difference by allocating fresh huge pages.
1709 *
1710 * We might race with alloc_buddy_huge_page() here and be unable
1711 * to convert a surplus huge page to a normal huge page. That is
1712 * not critical, though, it just means the overall size of the
1713 * pool might be one hugepage larger than it needs to be, but
1714 * within all the constraints specified by the sysctls.
1715 */
1716 spin_lock(&hugetlb_lock);
1717 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1718 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1719 break;
1720 }
1721
1722 while (count > persistent_huge_pages(h)) {
1723 /*
1724 * If this allocation races such that we no longer need the
1725 * page, free_huge_page will handle it by freeing the page
1726 * and reducing the surplus.
1727 */
1728 spin_unlock(&hugetlb_lock);
1729 if (hstate_is_gigantic(h))
1730 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1731 else
1732 ret = alloc_fresh_huge_page(h, nodes_allowed);
1733 spin_lock(&hugetlb_lock);
1734 if (!ret)
1735 goto out;
1736
1737 /* Bail for signals. Probably ctrl-c from user */
1738 if (signal_pending(current))
1739 goto out;
1740 }
1741
1742 /*
1743 * Decrease the pool size
1744 * First return free pages to the buddy allocator (being careful
1745 * to keep enough around to satisfy reservations). Then place
1746 * pages into surplus state as needed so the pool will shrink
1747 * to the desired size as pages become free.
1748 *
1749 * By placing pages into the surplus state independent of the
1750 * overcommit value, we are allowing the surplus pool size to
1751 * exceed overcommit. There are few sane options here. Since
1752 * alloc_buddy_huge_page() is checking the global counter,
1753 * though, we'll note that we're not allowed to exceed surplus
1754 * and won't grow the pool anywhere else. Not until one of the
1755 * sysctls are changed, or the surplus pages go out of use.
1756 */
1757 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1758 min_count = max(count, min_count);
1759 try_to_free_low(h, min_count, nodes_allowed);
1760 while (min_count < persistent_huge_pages(h)) {
1761 if (!free_pool_huge_page(h, nodes_allowed, 0))
1762 break;
1763 cond_resched_lock(&hugetlb_lock);
1764 }
1765 while (count < persistent_huge_pages(h)) {
1766 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1767 break;
1768 }
1769out:
1770 ret = persistent_huge_pages(h);
1771 spin_unlock(&hugetlb_lock);
1772 return ret;
1773}
1774
1775#define HSTATE_ATTR_RO(_name) \
1776 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1777
1778#define HSTATE_ATTR(_name) \
1779 static struct kobj_attribute _name##_attr = \
1780 __ATTR(_name, 0644, _name##_show, _name##_store)
1781
1782static struct kobject *hugepages_kobj;
1783static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1784
1785static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1786
1787static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1788{
1789 int i;
1790
1791 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1792 if (hstate_kobjs[i] == kobj) {
1793 if (nidp)
1794 *nidp = NUMA_NO_NODE;
1795 return &hstates[i];
1796 }
1797
1798 return kobj_to_node_hstate(kobj, nidp);
1799}
1800
1801static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1802 struct kobj_attribute *attr, char *buf)
1803{
1804 struct hstate *h;
1805 unsigned long nr_huge_pages;
1806 int nid;
1807
1808 h = kobj_to_hstate(kobj, &nid);
1809 if (nid == NUMA_NO_NODE)
1810 nr_huge_pages = h->nr_huge_pages;
1811 else
1812 nr_huge_pages = h->nr_huge_pages_node[nid];
1813
1814 return sprintf(buf, "%lu\n", nr_huge_pages);
1815}
1816
1817static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1818 struct hstate *h, int nid,
1819 unsigned long count, size_t len)
1820{
1821 int err;
1822 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1823
1824 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1825 err = -EINVAL;
1826 goto out;
1827 }
1828
1829 if (nid == NUMA_NO_NODE) {
1830 /*
1831 * global hstate attribute
1832 */
1833 if (!(obey_mempolicy &&
1834 init_nodemask_of_mempolicy(nodes_allowed))) {
1835 NODEMASK_FREE(nodes_allowed);
1836 nodes_allowed = &node_states[N_MEMORY];
1837 }
1838 } else if (nodes_allowed) {
1839 /*
1840 * per node hstate attribute: adjust count to global,
1841 * but restrict alloc/free to the specified node.
1842 */
1843 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1844 init_nodemask_of_node(nodes_allowed, nid);
1845 } else
1846 nodes_allowed = &node_states[N_MEMORY];
1847
1848 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1849
1850 if (nodes_allowed != &node_states[N_MEMORY])
1851 NODEMASK_FREE(nodes_allowed);
1852
1853 return len;
1854out:
1855 NODEMASK_FREE(nodes_allowed);
1856 return err;
1857}
1858
1859static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1860 struct kobject *kobj, const char *buf,
1861 size_t len)
1862{
1863 struct hstate *h;
1864 unsigned long count;
1865 int nid;
1866 int err;
1867
1868 err = kstrtoul(buf, 10, &count);
1869 if (err)
1870 return err;
1871
1872 h = kobj_to_hstate(kobj, &nid);
1873 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1874}
1875
1876static ssize_t nr_hugepages_show(struct kobject *kobj,
1877 struct kobj_attribute *attr, char *buf)
1878{
1879 return nr_hugepages_show_common(kobj, attr, buf);
1880}
1881
1882static ssize_t nr_hugepages_store(struct kobject *kobj,
1883 struct kobj_attribute *attr, const char *buf, size_t len)
1884{
1885 return nr_hugepages_store_common(false, kobj, buf, len);
1886}
1887HSTATE_ATTR(nr_hugepages);
1888
1889#ifdef CONFIG_NUMA
1890
1891/*
1892 * hstate attribute for optionally mempolicy-based constraint on persistent
1893 * huge page alloc/free.
1894 */
1895static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1896 struct kobj_attribute *attr, char *buf)
1897{
1898 return nr_hugepages_show_common(kobj, attr, buf);
1899}
1900
1901static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1902 struct kobj_attribute *attr, const char *buf, size_t len)
1903{
1904 return nr_hugepages_store_common(true, kobj, buf, len);
1905}
1906HSTATE_ATTR(nr_hugepages_mempolicy);
1907#endif
1908
1909
1910static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1911 struct kobj_attribute *attr, char *buf)
1912{
1913 struct hstate *h = kobj_to_hstate(kobj, NULL);
1914 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1915}
1916
1917static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1918 struct kobj_attribute *attr, const char *buf, size_t count)
1919{
1920 int err;
1921 unsigned long input;
1922 struct hstate *h = kobj_to_hstate(kobj, NULL);
1923
1924 if (hstate_is_gigantic(h))
1925 return -EINVAL;
1926
1927 err = kstrtoul(buf, 10, &input);
1928 if (err)
1929 return err;
1930
1931 spin_lock(&hugetlb_lock);
1932 h->nr_overcommit_huge_pages = input;
1933 spin_unlock(&hugetlb_lock);
1934
1935 return count;
1936}
1937HSTATE_ATTR(nr_overcommit_hugepages);
1938
1939static ssize_t free_hugepages_show(struct kobject *kobj,
1940 struct kobj_attribute *attr, char *buf)
1941{
1942 struct hstate *h;
1943 unsigned long free_huge_pages;
1944 int nid;
1945
1946 h = kobj_to_hstate(kobj, &nid);
1947 if (nid == NUMA_NO_NODE)
1948 free_huge_pages = h->free_huge_pages;
1949 else
1950 free_huge_pages = h->free_huge_pages_node[nid];
1951
1952 return sprintf(buf, "%lu\n", free_huge_pages);
1953}
1954HSTATE_ATTR_RO(free_hugepages);
1955
1956static ssize_t resv_hugepages_show(struct kobject *kobj,
1957 struct kobj_attribute *attr, char *buf)
1958{
1959 struct hstate *h = kobj_to_hstate(kobj, NULL);
1960 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1961}
1962HSTATE_ATTR_RO(resv_hugepages);
1963
1964static ssize_t surplus_hugepages_show(struct kobject *kobj,
1965 struct kobj_attribute *attr, char *buf)
1966{
1967 struct hstate *h;
1968 unsigned long surplus_huge_pages;
1969 int nid;
1970
1971 h = kobj_to_hstate(kobj, &nid);
1972 if (nid == NUMA_NO_NODE)
1973 surplus_huge_pages = h->surplus_huge_pages;
1974 else
1975 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1976
1977 return sprintf(buf, "%lu\n", surplus_huge_pages);
1978}
1979HSTATE_ATTR_RO(surplus_hugepages);
1980
1981static struct attribute *hstate_attrs[] = {
1982 &nr_hugepages_attr.attr,
1983 &nr_overcommit_hugepages_attr.attr,
1984 &free_hugepages_attr.attr,
1985 &resv_hugepages_attr.attr,
1986 &surplus_hugepages_attr.attr,
1987#ifdef CONFIG_NUMA
1988 &nr_hugepages_mempolicy_attr.attr,
1989#endif
1990 NULL,
1991};
1992
1993static struct attribute_group hstate_attr_group = {
1994 .attrs = hstate_attrs,
1995};
1996
1997static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1998 struct kobject **hstate_kobjs,
1999 struct attribute_group *hstate_attr_group)
2000{
2001 int retval;
2002 int hi = hstate_index(h);
2003
2004 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2005 if (!hstate_kobjs[hi])
2006 return -ENOMEM;
2007
2008 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2009 if (retval)
2010 kobject_put(hstate_kobjs[hi]);
2011
2012 return retval;
2013}
2014
2015static void __init hugetlb_sysfs_init(void)
2016{
2017 struct hstate *h;
2018 int err;
2019
2020 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2021 if (!hugepages_kobj)
2022 return;
2023
2024 for_each_hstate(h) {
2025 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2026 hstate_kobjs, &hstate_attr_group);
2027 if (err)
2028 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2029 }
2030}
2031
2032#ifdef CONFIG_NUMA
2033
2034/*
2035 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2036 * with node devices in node_devices[] using a parallel array. The array
2037 * index of a node device or _hstate == node id.
2038 * This is here to avoid any static dependency of the node device driver, in
2039 * the base kernel, on the hugetlb module.
2040 */
2041struct node_hstate {
2042 struct kobject *hugepages_kobj;
2043 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2044};
2045struct node_hstate node_hstates[MAX_NUMNODES];
2046
2047/*
2048 * A subset of global hstate attributes for node devices
2049 */
2050static struct attribute *per_node_hstate_attrs[] = {
2051 &nr_hugepages_attr.attr,
2052 &free_hugepages_attr.attr,
2053 &surplus_hugepages_attr.attr,
2054 NULL,
2055};
2056
2057static struct attribute_group per_node_hstate_attr_group = {
2058 .attrs = per_node_hstate_attrs,
2059};
2060
2061/*
2062 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2063 * Returns node id via non-NULL nidp.
2064 */
2065static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2066{
2067 int nid;
2068
2069 for (nid = 0; nid < nr_node_ids; nid++) {
2070 struct node_hstate *nhs = &node_hstates[nid];
2071 int i;
2072 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2073 if (nhs->hstate_kobjs[i] == kobj) {
2074 if (nidp)
2075 *nidp = nid;
2076 return &hstates[i];
2077 }
2078 }
2079
2080 BUG();
2081 return NULL;
2082}
2083
2084/*
2085 * Unregister hstate attributes from a single node device.
2086 * No-op if no hstate attributes attached.
2087 */
2088static void hugetlb_unregister_node(struct node *node)
2089{
2090 struct hstate *h;
2091 struct node_hstate *nhs = &node_hstates[node->dev.id];
2092
2093 if (!nhs->hugepages_kobj)
2094 return; /* no hstate attributes */
2095
2096 for_each_hstate(h) {
2097 int idx = hstate_index(h);
2098 if (nhs->hstate_kobjs[idx]) {
2099 kobject_put(nhs->hstate_kobjs[idx]);
2100 nhs->hstate_kobjs[idx] = NULL;
2101 }
2102 }
2103
2104 kobject_put(nhs->hugepages_kobj);
2105 nhs->hugepages_kobj = NULL;
2106}
2107
2108/*
2109 * hugetlb module exit: unregister hstate attributes from node devices
2110 * that have them.
2111 */
2112static void hugetlb_unregister_all_nodes(void)
2113{
2114 int nid;
2115
2116 /*
2117 * disable node device registrations.
2118 */
2119 register_hugetlbfs_with_node(NULL, NULL);
2120
2121 /*
2122 * remove hstate attributes from any nodes that have them.
2123 */
2124 for (nid = 0; nid < nr_node_ids; nid++)
2125 hugetlb_unregister_node(node_devices[nid]);
2126}
2127
2128/*
2129 * Register hstate attributes for a single node device.
2130 * No-op if attributes already registered.
2131 */
2132static void hugetlb_register_node(struct node *node)
2133{
2134 struct hstate *h;
2135 struct node_hstate *nhs = &node_hstates[node->dev.id];
2136 int err;
2137
2138 if (nhs->hugepages_kobj)
2139 return; /* already allocated */
2140
2141 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2142 &node->dev.kobj);
2143 if (!nhs->hugepages_kobj)
2144 return;
2145
2146 for_each_hstate(h) {
2147 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2148 nhs->hstate_kobjs,
2149 &per_node_hstate_attr_group);
2150 if (err) {
2151 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2152 h->name, node->dev.id);
2153 hugetlb_unregister_node(node);
2154 break;
2155 }
2156 }
2157}
2158
2159/*
2160 * hugetlb init time: register hstate attributes for all registered node
2161 * devices of nodes that have memory. All on-line nodes should have
2162 * registered their associated device by this time.
2163 */
2164static void __init hugetlb_register_all_nodes(void)
2165{
2166 int nid;
2167
2168 for_each_node_state(nid, N_MEMORY) {
2169 struct node *node = node_devices[nid];
2170 if (node->dev.id == nid)
2171 hugetlb_register_node(node);
2172 }
2173
2174 /*
2175 * Let the node device driver know we're here so it can
2176 * [un]register hstate attributes on node hotplug.
2177 */
2178 register_hugetlbfs_with_node(hugetlb_register_node,
2179 hugetlb_unregister_node);
2180}
2181#else /* !CONFIG_NUMA */
2182
2183static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2184{
2185 BUG();
2186 if (nidp)
2187 *nidp = -1;
2188 return NULL;
2189}
2190
2191static void hugetlb_unregister_all_nodes(void) { }
2192
2193static void hugetlb_register_all_nodes(void) { }
2194
2195#endif
2196
2197static void __exit hugetlb_exit(void)
2198{
2199 struct hstate *h;
2200
2201 hugetlb_unregister_all_nodes();
2202
2203 for_each_hstate(h) {
2204 kobject_put(hstate_kobjs[hstate_index(h)]);
2205 }
2206
2207 kobject_put(hugepages_kobj);
2208 kfree(htlb_fault_mutex_table);
2209}
2210module_exit(hugetlb_exit);
2211
2212static int __init hugetlb_init(void)
2213{
2214 int i;
2215
2216 if (!hugepages_supported())
2217 return 0;
2218
2219 if (!size_to_hstate(default_hstate_size)) {
2220 default_hstate_size = HPAGE_SIZE;
2221 if (!size_to_hstate(default_hstate_size))
2222 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2223 }
2224 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2225 if (default_hstate_max_huge_pages)
2226 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2227
2228 hugetlb_init_hstates();
2229 gather_bootmem_prealloc();
2230 report_hugepages();
2231
2232 hugetlb_sysfs_init();
2233 hugetlb_register_all_nodes();
2234 hugetlb_cgroup_file_init();
2235
2236#ifdef CONFIG_SMP
2237 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2238#else
2239 num_fault_mutexes = 1;
2240#endif
2241 htlb_fault_mutex_table =
2242 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2243 BUG_ON(!htlb_fault_mutex_table);
2244
2245 for (i = 0; i < num_fault_mutexes; i++)
2246 mutex_init(&htlb_fault_mutex_table[i]);
2247 return 0;
2248}
2249module_init(hugetlb_init);
2250
2251/* Should be called on processing a hugepagesz=... option */
2252void __init hugetlb_add_hstate(unsigned order)
2253{
2254 struct hstate *h;
2255 unsigned long i;
2256
2257 if (size_to_hstate(PAGE_SIZE << order)) {
2258 pr_warning("hugepagesz= specified twice, ignoring\n");
2259 return;
2260 }
2261 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2262 BUG_ON(order == 0);
2263 h = &hstates[hugetlb_max_hstate++];
2264 h->order = order;
2265 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2266 h->nr_huge_pages = 0;
2267 h->free_huge_pages = 0;
2268 for (i = 0; i < MAX_NUMNODES; ++i)
2269 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2270 INIT_LIST_HEAD(&h->hugepage_activelist);
2271 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2272 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2273 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2274 huge_page_size(h)/1024);
2275
2276 parsed_hstate = h;
2277}
2278
2279static int __init hugetlb_nrpages_setup(char *s)
2280{
2281 unsigned long *mhp;
2282 static unsigned long *last_mhp;
2283
2284 /*
2285 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2286 * so this hugepages= parameter goes to the "default hstate".
2287 */
2288 if (!hugetlb_max_hstate)
2289 mhp = &default_hstate_max_huge_pages;
2290 else
2291 mhp = &parsed_hstate->max_huge_pages;
2292
2293 if (mhp == last_mhp) {
2294 pr_warning("hugepages= specified twice without "
2295 "interleaving hugepagesz=, ignoring\n");
2296 return 1;
2297 }
2298
2299 if (sscanf(s, "%lu", mhp) <= 0)
2300 *mhp = 0;
2301
2302 /*
2303 * Global state is always initialized later in hugetlb_init.
2304 * But we need to allocate >= MAX_ORDER hstates here early to still
2305 * use the bootmem allocator.
2306 */
2307 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2308 hugetlb_hstate_alloc_pages(parsed_hstate);
2309
2310 last_mhp = mhp;
2311
2312 return 1;
2313}
2314__setup("hugepages=", hugetlb_nrpages_setup);
2315
2316static int __init hugetlb_default_setup(char *s)
2317{
2318 default_hstate_size = memparse(s, &s);
2319 return 1;
2320}
2321__setup("default_hugepagesz=", hugetlb_default_setup);
2322
2323static unsigned int cpuset_mems_nr(unsigned int *array)
2324{
2325 int node;
2326 unsigned int nr = 0;
2327
2328 for_each_node_mask(node, cpuset_current_mems_allowed)
2329 nr += array[node];
2330
2331 return nr;
2332}
2333
2334#ifdef CONFIG_SYSCTL
2335static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2336 struct ctl_table *table, int write,
2337 void __user *buffer, size_t *length, loff_t *ppos)
2338{
2339 struct hstate *h = &default_hstate;
2340 unsigned long tmp = h->max_huge_pages;
2341 int ret;
2342
2343 if (!hugepages_supported())
2344 return -ENOTSUPP;
2345
2346 table->data = &tmp;
2347 table->maxlen = sizeof(unsigned long);
2348 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2349 if (ret)
2350 goto out;
2351
2352 if (write)
2353 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2354 NUMA_NO_NODE, tmp, *length);
2355out:
2356 return ret;
2357}
2358
2359int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2360 void __user *buffer, size_t *length, loff_t *ppos)
2361{
2362
2363 return hugetlb_sysctl_handler_common(false, table, write,
2364 buffer, length, ppos);
2365}
2366
2367#ifdef CONFIG_NUMA
2368int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2369 void __user *buffer, size_t *length, loff_t *ppos)
2370{
2371 return hugetlb_sysctl_handler_common(true, table, write,
2372 buffer, length, ppos);
2373}
2374#endif /* CONFIG_NUMA */
2375
2376int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2377 void __user *buffer,
2378 size_t *length, loff_t *ppos)
2379{
2380 struct hstate *h = &default_hstate;
2381 unsigned long tmp;
2382 int ret;
2383
2384 if (!hugepages_supported())
2385 return -ENOTSUPP;
2386
2387 tmp = h->nr_overcommit_huge_pages;
2388
2389 if (write && hstate_is_gigantic(h))
2390 return -EINVAL;
2391
2392 table->data = &tmp;
2393 table->maxlen = sizeof(unsigned long);
2394 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2395 if (ret)
2396 goto out;
2397
2398 if (write) {
2399 spin_lock(&hugetlb_lock);
2400 h->nr_overcommit_huge_pages = tmp;
2401 spin_unlock(&hugetlb_lock);
2402 }
2403out:
2404 return ret;
2405}
2406
2407#endif /* CONFIG_SYSCTL */
2408
2409void hugetlb_report_meminfo(struct seq_file *m)
2410{
2411 struct hstate *h = &default_hstate;
2412 if (!hugepages_supported())
2413 return;
2414 seq_printf(m,
2415 "HugePages_Total: %5lu\n"
2416 "HugePages_Free: %5lu\n"
2417 "HugePages_Rsvd: %5lu\n"
2418 "HugePages_Surp: %5lu\n"
2419 "Hugepagesize: %8lu kB\n",
2420 h->nr_huge_pages,
2421 h->free_huge_pages,
2422 h->resv_huge_pages,
2423 h->surplus_huge_pages,
2424 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2425}
2426
2427int hugetlb_report_node_meminfo(int nid, char *buf)
2428{
2429 struct hstate *h = &default_hstate;
2430 if (!hugepages_supported())
2431 return 0;
2432 return sprintf(buf,
2433 "Node %d HugePages_Total: %5u\n"
2434 "Node %d HugePages_Free: %5u\n"
2435 "Node %d HugePages_Surp: %5u\n",
2436 nid, h->nr_huge_pages_node[nid],
2437 nid, h->free_huge_pages_node[nid],
2438 nid, h->surplus_huge_pages_node[nid]);
2439}
2440
2441void hugetlb_show_meminfo(void)
2442{
2443 struct hstate *h;
2444 int nid;
2445
2446 if (!hugepages_supported())
2447 return;
2448
2449 for_each_node_state(nid, N_MEMORY)
2450 for_each_hstate(h)
2451 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2452 nid,
2453 h->nr_huge_pages_node[nid],
2454 h->free_huge_pages_node[nid],
2455 h->surplus_huge_pages_node[nid],
2456 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2457}
2458
2459/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2460unsigned long hugetlb_total_pages(void)
2461{
2462 struct hstate *h;
2463 unsigned long nr_total_pages = 0;
2464
2465 for_each_hstate(h)
2466 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2467 return nr_total_pages;
2468}
2469
2470static int hugetlb_acct_memory(struct hstate *h, long delta)
2471{
2472 int ret = -ENOMEM;
2473
2474 spin_lock(&hugetlb_lock);
2475 /*
2476 * When cpuset is configured, it breaks the strict hugetlb page
2477 * reservation as the accounting is done on a global variable. Such
2478 * reservation is completely rubbish in the presence of cpuset because
2479 * the reservation is not checked against page availability for the
2480 * current cpuset. Application can still potentially OOM'ed by kernel
2481 * with lack of free htlb page in cpuset that the task is in.
2482 * Attempt to enforce strict accounting with cpuset is almost
2483 * impossible (or too ugly) because cpuset is too fluid that
2484 * task or memory node can be dynamically moved between cpusets.
2485 *
2486 * The change of semantics for shared hugetlb mapping with cpuset is
2487 * undesirable. However, in order to preserve some of the semantics,
2488 * we fall back to check against current free page availability as
2489 * a best attempt and hopefully to minimize the impact of changing
2490 * semantics that cpuset has.
2491 */
2492 if (delta > 0) {
2493 if (gather_surplus_pages(h, delta) < 0)
2494 goto out;
2495
2496 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2497 return_unused_surplus_pages(h, delta);
2498 goto out;
2499 }
2500 }
2501
2502 ret = 0;
2503 if (delta < 0)
2504 return_unused_surplus_pages(h, (unsigned long) -delta);
2505
2506out:
2507 spin_unlock(&hugetlb_lock);
2508 return ret;
2509}
2510
2511static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2512{
2513 struct resv_map *resv = vma_resv_map(vma);
2514
2515 /*
2516 * This new VMA should share its siblings reservation map if present.
2517 * The VMA will only ever have a valid reservation map pointer where
2518 * it is being copied for another still existing VMA. As that VMA
2519 * has a reference to the reservation map it cannot disappear until
2520 * after this open call completes. It is therefore safe to take a
2521 * new reference here without additional locking.
2522 */
2523 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2524 kref_get(&resv->refs);
2525}
2526
2527static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2528{
2529 struct hstate *h = hstate_vma(vma);
2530 struct resv_map *resv = vma_resv_map(vma);
2531 struct hugepage_subpool *spool = subpool_vma(vma);
2532 unsigned long reserve, start, end;
2533 long gbl_reserve;
2534
2535 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2536 return;
2537
2538 start = vma_hugecache_offset(h, vma, vma->vm_start);
2539 end = vma_hugecache_offset(h, vma, vma->vm_end);
2540
2541 reserve = (end - start) - region_count(resv, start, end);
2542
2543 kref_put(&resv->refs, resv_map_release);
2544
2545 if (reserve) {
2546 /*
2547 * Decrement reserve counts. The global reserve count may be
2548 * adjusted if the subpool has a minimum size.
2549 */
2550 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2551 hugetlb_acct_memory(h, -gbl_reserve);
2552 }
2553}
2554
2555/*
2556 * We cannot handle pagefaults against hugetlb pages at all. They cause
2557 * handle_mm_fault() to try to instantiate regular-sized pages in the
2558 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2559 * this far.
2560 */
2561static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2562{
2563 BUG();
2564 return 0;
2565}
2566
2567const struct vm_operations_struct hugetlb_vm_ops = {
2568 .fault = hugetlb_vm_op_fault,
2569 .open = hugetlb_vm_op_open,
2570 .close = hugetlb_vm_op_close,
2571};
2572
2573static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2574 int writable)
2575{
2576 pte_t entry;
2577
2578 if (writable) {
2579 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2580 vma->vm_page_prot)));
2581 } else {
2582 entry = huge_pte_wrprotect(mk_huge_pte(page,
2583 vma->vm_page_prot));
2584 }
2585 entry = pte_mkyoung(entry);
2586 entry = pte_mkhuge(entry);
2587 entry = arch_make_huge_pte(entry, vma, page, writable);
2588
2589 return entry;
2590}
2591
2592static void set_huge_ptep_writable(struct vm_area_struct *vma,
2593 unsigned long address, pte_t *ptep)
2594{
2595 pte_t entry;
2596
2597 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2598 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2599 update_mmu_cache(vma, address, ptep);
2600}
2601
2602static int is_hugetlb_entry_migration(pte_t pte)
2603{
2604 swp_entry_t swp;
2605
2606 if (huge_pte_none(pte) || pte_present(pte))
2607 return 0;
2608 swp = pte_to_swp_entry(pte);
2609 if (non_swap_entry(swp) && is_migration_entry(swp))
2610 return 1;
2611 else
2612 return 0;
2613}
2614
2615static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2616{
2617 swp_entry_t swp;
2618
2619 if (huge_pte_none(pte) || pte_present(pte))
2620 return 0;
2621 swp = pte_to_swp_entry(pte);
2622 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2623 return 1;
2624 else
2625 return 0;
2626}
2627
2628int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2629 struct vm_area_struct *vma)
2630{
2631 pte_t *src_pte, *dst_pte, entry;
2632 struct page *ptepage;
2633 unsigned long addr;
2634 int cow;
2635 struct hstate *h = hstate_vma(vma);
2636 unsigned long sz = huge_page_size(h);
2637 unsigned long mmun_start; /* For mmu_notifiers */
2638 unsigned long mmun_end; /* For mmu_notifiers */
2639 int ret = 0;
2640
2641 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2642
2643 mmun_start = vma->vm_start;
2644 mmun_end = vma->vm_end;
2645 if (cow)
2646 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2647
2648 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2649 spinlock_t *src_ptl, *dst_ptl;
2650 src_pte = huge_pte_offset(src, addr);
2651 if (!src_pte)
2652 continue;
2653 dst_pte = huge_pte_alloc(dst, addr, sz);
2654 if (!dst_pte) {
2655 ret = -ENOMEM;
2656 break;
2657 }
2658
2659 /* If the pagetables are shared don't copy or take references */
2660 if (dst_pte == src_pte)
2661 continue;
2662
2663 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2664 src_ptl = huge_pte_lockptr(h, src, src_pte);
2665 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2666 entry = huge_ptep_get(src_pte);
2667 if (huge_pte_none(entry)) { /* skip none entry */
2668 ;
2669 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2670 is_hugetlb_entry_hwpoisoned(entry))) {
2671 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2672
2673 if (is_write_migration_entry(swp_entry) && cow) {
2674 /*
2675 * COW mappings require pages in both
2676 * parent and child to be set to read.
2677 */
2678 make_migration_entry_read(&swp_entry);
2679 entry = swp_entry_to_pte(swp_entry);
2680 set_huge_pte_at(src, addr, src_pte, entry);
2681 }
2682 set_huge_pte_at(dst, addr, dst_pte, entry);
2683 } else {
2684 if (cow) {
2685 huge_ptep_set_wrprotect(src, addr, src_pte);
2686 mmu_notifier_invalidate_range(src, mmun_start,
2687 mmun_end);
2688 }
2689 entry = huge_ptep_get(src_pte);
2690 ptepage = pte_page(entry);
2691 get_page(ptepage);
2692 page_dup_rmap(ptepage);
2693 set_huge_pte_at(dst, addr, dst_pte, entry);
2694 }
2695 spin_unlock(src_ptl);
2696 spin_unlock(dst_ptl);
2697 }
2698
2699 if (cow)
2700 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2701
2702 return ret;
2703}
2704
2705void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2706 unsigned long start, unsigned long end,
2707 struct page *ref_page)
2708{
2709 int force_flush = 0;
2710 struct mm_struct *mm = vma->vm_mm;
2711 unsigned long address;
2712 pte_t *ptep;
2713 pte_t pte;
2714 spinlock_t *ptl;
2715 struct page *page;
2716 struct hstate *h = hstate_vma(vma);
2717 unsigned long sz = huge_page_size(h);
2718 const unsigned long mmun_start = start; /* For mmu_notifiers */
2719 const unsigned long mmun_end = end; /* For mmu_notifiers */
2720
2721 WARN_ON(!is_vm_hugetlb_page(vma));
2722 BUG_ON(start & ~huge_page_mask(h));
2723 BUG_ON(end & ~huge_page_mask(h));
2724
2725 tlb_start_vma(tlb, vma);
2726 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2727 address = start;
2728again:
2729 for (; address < end; address += sz) {
2730 ptep = huge_pte_offset(mm, address);
2731 if (!ptep)
2732 continue;
2733
2734 ptl = huge_pte_lock(h, mm, ptep);
2735 if (huge_pmd_unshare(mm, &address, ptep))
2736 goto unlock;
2737
2738 pte = huge_ptep_get(ptep);
2739 if (huge_pte_none(pte))
2740 goto unlock;
2741
2742 /*
2743 * Migrating hugepage or HWPoisoned hugepage is already
2744 * unmapped and its refcount is dropped, so just clear pte here.
2745 */
2746 if (unlikely(!pte_present(pte))) {
2747 huge_pte_clear(mm, address, ptep);
2748 goto unlock;
2749 }
2750
2751 page = pte_page(pte);
2752 /*
2753 * If a reference page is supplied, it is because a specific
2754 * page is being unmapped, not a range. Ensure the page we
2755 * are about to unmap is the actual page of interest.
2756 */
2757 if (ref_page) {
2758 if (page != ref_page)
2759 goto unlock;
2760
2761 /*
2762 * Mark the VMA as having unmapped its page so that
2763 * future faults in this VMA will fail rather than
2764 * looking like data was lost
2765 */
2766 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2767 }
2768
2769 pte = huge_ptep_get_and_clear(mm, address, ptep);
2770 tlb_remove_tlb_entry(tlb, ptep, address);
2771 if (huge_pte_dirty(pte))
2772 set_page_dirty(page);
2773
2774 page_remove_rmap(page);
2775 force_flush = !__tlb_remove_page(tlb, page);
2776 if (force_flush) {
2777 address += sz;
2778 spin_unlock(ptl);
2779 break;
2780 }
2781 /* Bail out after unmapping reference page if supplied */
2782 if (ref_page) {
2783 spin_unlock(ptl);
2784 break;
2785 }
2786unlock:
2787 spin_unlock(ptl);
2788 }
2789 /*
2790 * mmu_gather ran out of room to batch pages, we break out of
2791 * the PTE lock to avoid doing the potential expensive TLB invalidate
2792 * and page-free while holding it.
2793 */
2794 if (force_flush) {
2795 force_flush = 0;
2796 tlb_flush_mmu(tlb);
2797 if (address < end && !ref_page)
2798 goto again;
2799 }
2800 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2801 tlb_end_vma(tlb, vma);
2802}
2803
2804void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2805 struct vm_area_struct *vma, unsigned long start,
2806 unsigned long end, struct page *ref_page)
2807{
2808 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2809
2810 /*
2811 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2812 * test will fail on a vma being torn down, and not grab a page table
2813 * on its way out. We're lucky that the flag has such an appropriate
2814 * name, and can in fact be safely cleared here. We could clear it
2815 * before the __unmap_hugepage_range above, but all that's necessary
2816 * is to clear it before releasing the i_mmap_rwsem. This works
2817 * because in the context this is called, the VMA is about to be
2818 * destroyed and the i_mmap_rwsem is held.
2819 */
2820 vma->vm_flags &= ~VM_MAYSHARE;
2821}
2822
2823void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2824 unsigned long end, struct page *ref_page)
2825{
2826 struct mm_struct *mm;
2827 struct mmu_gather tlb;
2828
2829 mm = vma->vm_mm;
2830
2831 tlb_gather_mmu(&tlb, mm, start, end);
2832 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2833 tlb_finish_mmu(&tlb, start, end);
2834}
2835
2836/*
2837 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2838 * mappping it owns the reserve page for. The intention is to unmap the page
2839 * from other VMAs and let the children be SIGKILLed if they are faulting the
2840 * same region.
2841 */
2842static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2843 struct page *page, unsigned long address)
2844{
2845 struct hstate *h = hstate_vma(vma);
2846 struct vm_area_struct *iter_vma;
2847 struct address_space *mapping;
2848 pgoff_t pgoff;
2849
2850 /*
2851 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2852 * from page cache lookup which is in HPAGE_SIZE units.
2853 */
2854 address = address & huge_page_mask(h);
2855 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2856 vma->vm_pgoff;
2857 mapping = file_inode(vma->vm_file)->i_mapping;
2858
2859 /*
2860 * Take the mapping lock for the duration of the table walk. As
2861 * this mapping should be shared between all the VMAs,
2862 * __unmap_hugepage_range() is called as the lock is already held
2863 */
2864 i_mmap_lock_write(mapping);
2865 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2866 /* Do not unmap the current VMA */
2867 if (iter_vma == vma)
2868 continue;
2869
2870 /*
2871 * Unmap the page from other VMAs without their own reserves.
2872 * They get marked to be SIGKILLed if they fault in these
2873 * areas. This is because a future no-page fault on this VMA
2874 * could insert a zeroed page instead of the data existing
2875 * from the time of fork. This would look like data corruption
2876 */
2877 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2878 unmap_hugepage_range(iter_vma, address,
2879 address + huge_page_size(h), page);
2880 }
2881 i_mmap_unlock_write(mapping);
2882}
2883
2884/*
2885 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2886 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2887 * cannot race with other handlers or page migration.
2888 * Keep the pte_same checks anyway to make transition from the mutex easier.
2889 */
2890static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2891 unsigned long address, pte_t *ptep, pte_t pte,
2892 struct page *pagecache_page, spinlock_t *ptl)
2893{
2894 struct hstate *h = hstate_vma(vma);
2895 struct page *old_page, *new_page;
2896 int ret = 0, outside_reserve = 0;
2897 unsigned long mmun_start; /* For mmu_notifiers */
2898 unsigned long mmun_end; /* For mmu_notifiers */
2899
2900 old_page = pte_page(pte);
2901
2902retry_avoidcopy:
2903 /* If no-one else is actually using this page, avoid the copy
2904 * and just make the page writable */
2905 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2906 page_move_anon_rmap(old_page, vma, address);
2907 set_huge_ptep_writable(vma, address, ptep);
2908 return 0;
2909 }
2910
2911 /*
2912 * If the process that created a MAP_PRIVATE mapping is about to
2913 * perform a COW due to a shared page count, attempt to satisfy
2914 * the allocation without using the existing reserves. The pagecache
2915 * page is used to determine if the reserve at this address was
2916 * consumed or not. If reserves were used, a partial faulted mapping
2917 * at the time of fork() could consume its reserves on COW instead
2918 * of the full address range.
2919 */
2920 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2921 old_page != pagecache_page)
2922 outside_reserve = 1;
2923
2924 page_cache_get(old_page);
2925
2926 /*
2927 * Drop page table lock as buddy allocator may be called. It will
2928 * be acquired again before returning to the caller, as expected.
2929 */
2930 spin_unlock(ptl);
2931 new_page = alloc_huge_page(vma, address, outside_reserve);
2932
2933 if (IS_ERR(new_page)) {
2934 /*
2935 * If a process owning a MAP_PRIVATE mapping fails to COW,
2936 * it is due to references held by a child and an insufficient
2937 * huge page pool. To guarantee the original mappers
2938 * reliability, unmap the page from child processes. The child
2939 * may get SIGKILLed if it later faults.
2940 */
2941 if (outside_reserve) {
2942 page_cache_release(old_page);
2943 BUG_ON(huge_pte_none(pte));
2944 unmap_ref_private(mm, vma, old_page, address);
2945 BUG_ON(huge_pte_none(pte));
2946 spin_lock(ptl);
2947 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2948 if (likely(ptep &&
2949 pte_same(huge_ptep_get(ptep), pte)))
2950 goto retry_avoidcopy;
2951 /*
2952 * race occurs while re-acquiring page table
2953 * lock, and our job is done.
2954 */
2955 return 0;
2956 }
2957
2958 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2959 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2960 goto out_release_old;
2961 }
2962
2963 /*
2964 * When the original hugepage is shared one, it does not have
2965 * anon_vma prepared.
2966 */
2967 if (unlikely(anon_vma_prepare(vma))) {
2968 ret = VM_FAULT_OOM;
2969 goto out_release_all;
2970 }
2971
2972 copy_user_huge_page(new_page, old_page, address, vma,
2973 pages_per_huge_page(h));
2974 __SetPageUptodate(new_page);
2975
2976 mmun_start = address & huge_page_mask(h);
2977 mmun_end = mmun_start + huge_page_size(h);
2978 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2979
2980 /*
2981 * Retake the page table lock to check for racing updates
2982 * before the page tables are altered
2983 */
2984 spin_lock(ptl);
2985 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2986 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2987 ClearPagePrivate(new_page);
2988
2989 /* Break COW */
2990 huge_ptep_clear_flush(vma, address, ptep);
2991 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2992 set_huge_pte_at(mm, address, ptep,
2993 make_huge_pte(vma, new_page, 1));
2994 page_remove_rmap(old_page);
2995 hugepage_add_new_anon_rmap(new_page, vma, address);
2996 /* Make the old page be freed below */
2997 new_page = old_page;
2998 }
2999 spin_unlock(ptl);
3000 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3001out_release_all:
3002 page_cache_release(new_page);
3003out_release_old:
3004 page_cache_release(old_page);
3005
3006 spin_lock(ptl); /* Caller expects lock to be held */
3007 return ret;
3008}
3009
3010/* Return the pagecache page at a given address within a VMA */
3011static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3012 struct vm_area_struct *vma, unsigned long address)
3013{
3014 struct address_space *mapping;
3015 pgoff_t idx;
3016
3017 mapping = vma->vm_file->f_mapping;
3018 idx = vma_hugecache_offset(h, vma, address);
3019
3020 return find_lock_page(mapping, idx);
3021}
3022
3023/*
3024 * Return whether there is a pagecache page to back given address within VMA.
3025 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3026 */
3027static bool hugetlbfs_pagecache_present(struct hstate *h,
3028 struct vm_area_struct *vma, unsigned long address)
3029{
3030 struct address_space *mapping;
3031 pgoff_t idx;
3032 struct page *page;
3033
3034 mapping = vma->vm_file->f_mapping;
3035 idx = vma_hugecache_offset(h, vma, address);
3036
3037 page = find_get_page(mapping, idx);
3038 if (page)
3039 put_page(page);
3040 return page != NULL;
3041}
3042
3043static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3044 struct address_space *mapping, pgoff_t idx,
3045 unsigned long address, pte_t *ptep, unsigned int flags)
3046{
3047 struct hstate *h = hstate_vma(vma);
3048 int ret = VM_FAULT_SIGBUS;
3049 int anon_rmap = 0;
3050 unsigned long size;
3051 struct page *page;
3052 pte_t new_pte;
3053 spinlock_t *ptl;
3054
3055 /*
3056 * Currently, we are forced to kill the process in the event the
3057 * original mapper has unmapped pages from the child due to a failed
3058 * COW. Warn that such a situation has occurred as it may not be obvious
3059 */
3060 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3061 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3062 current->pid);
3063 return ret;
3064 }
3065
3066 /*
3067 * Use page lock to guard against racing truncation
3068 * before we get page_table_lock.
3069 */
3070retry:
3071 page = find_lock_page(mapping, idx);
3072 if (!page) {
3073 size = i_size_read(mapping->host) >> huge_page_shift(h);
3074 if (idx >= size)
3075 goto out;
3076 page = alloc_huge_page(vma, address, 0);
3077 if (IS_ERR(page)) {
3078 ret = PTR_ERR(page);
3079 if (ret == -ENOMEM)
3080 ret = VM_FAULT_OOM;
3081 else
3082 ret = VM_FAULT_SIGBUS;
3083 goto out;
3084 }
3085 clear_huge_page(page, address, pages_per_huge_page(h));
3086 __SetPageUptodate(page);
3087
3088 if (vma->vm_flags & VM_MAYSHARE) {
3089 int err;
3090 struct inode *inode = mapping->host;
3091
3092 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3093 if (err) {
3094 put_page(page);
3095 if (err == -EEXIST)
3096 goto retry;
3097 goto out;
3098 }
3099 ClearPagePrivate(page);
3100
3101 spin_lock(&inode->i_lock);
3102 inode->i_blocks += blocks_per_huge_page(h);
3103 spin_unlock(&inode->i_lock);
3104 } else {
3105 lock_page(page);
3106 if (unlikely(anon_vma_prepare(vma))) {
3107 ret = VM_FAULT_OOM;
3108 goto backout_unlocked;
3109 }
3110 anon_rmap = 1;
3111 }
3112 } else {
3113 /*
3114 * If memory error occurs between mmap() and fault, some process
3115 * don't have hwpoisoned swap entry for errored virtual address.
3116 * So we need to block hugepage fault by PG_hwpoison bit check.
3117 */
3118 if (unlikely(PageHWPoison(page))) {
3119 ret = VM_FAULT_HWPOISON |
3120 VM_FAULT_SET_HINDEX(hstate_index(h));
3121 goto backout_unlocked;
3122 }
3123 }
3124
3125 /*
3126 * If we are going to COW a private mapping later, we examine the
3127 * pending reservations for this page now. This will ensure that
3128 * any allocations necessary to record that reservation occur outside
3129 * the spinlock.
3130 */
3131 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3132 if (vma_needs_reservation(h, vma, address) < 0) {
3133 ret = VM_FAULT_OOM;
3134 goto backout_unlocked;
3135 }
3136
3137 ptl = huge_pte_lockptr(h, mm, ptep);
3138 spin_lock(ptl);
3139 size = i_size_read(mapping->host) >> huge_page_shift(h);
3140 if (idx >= size)
3141 goto backout;
3142
3143 ret = 0;
3144 if (!huge_pte_none(huge_ptep_get(ptep)))
3145 goto backout;
3146
3147 if (anon_rmap) {
3148 ClearPagePrivate(page);
3149 hugepage_add_new_anon_rmap(page, vma, address);
3150 } else
3151 page_dup_rmap(page);
3152 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3153 && (vma->vm_flags & VM_SHARED)));
3154 set_huge_pte_at(mm, address, ptep, new_pte);
3155
3156 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3157 /* Optimization, do the COW without a second fault */
3158 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3159 }
3160
3161 spin_unlock(ptl);
3162 unlock_page(page);
3163out:
3164 return ret;
3165
3166backout:
3167 spin_unlock(ptl);
3168backout_unlocked:
3169 unlock_page(page);
3170 put_page(page);
3171 goto out;
3172}
3173
3174#ifdef CONFIG_SMP
3175static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3176 struct vm_area_struct *vma,
3177 struct address_space *mapping,
3178 pgoff_t idx, unsigned long address)
3179{
3180 unsigned long key[2];
3181 u32 hash;
3182
3183 if (vma->vm_flags & VM_SHARED) {
3184 key[0] = (unsigned long) mapping;
3185 key[1] = idx;
3186 } else {
3187 key[0] = (unsigned long) mm;
3188 key[1] = address >> huge_page_shift(h);
3189 }
3190
3191 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3192
3193 return hash & (num_fault_mutexes - 1);
3194}
3195#else
3196/*
3197 * For uniprocesor systems we always use a single mutex, so just
3198 * return 0 and avoid the hashing overhead.
3199 */
3200static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3201 struct vm_area_struct *vma,
3202 struct address_space *mapping,
3203 pgoff_t idx, unsigned long address)
3204{
3205 return 0;
3206}
3207#endif
3208
3209int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3210 unsigned long address, unsigned int flags)
3211{
3212 pte_t *ptep, entry;
3213 spinlock_t *ptl;
3214 int ret;
3215 u32 hash;
3216 pgoff_t idx;
3217 struct page *page = NULL;
3218 struct page *pagecache_page = NULL;
3219 struct hstate *h = hstate_vma(vma);
3220 struct address_space *mapping;
3221 int need_wait_lock = 0;
3222
3223 address &= huge_page_mask(h);
3224
3225 ptep = huge_pte_offset(mm, address);
3226 if (ptep) {
3227 entry = huge_ptep_get(ptep);
3228 if (unlikely(is_hugetlb_entry_migration(entry))) {
3229 migration_entry_wait_huge(vma, mm, ptep);
3230 return 0;
3231 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3232 return VM_FAULT_HWPOISON_LARGE |
3233 VM_FAULT_SET_HINDEX(hstate_index(h));
3234 }
3235
3236 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3237 if (!ptep)
3238 return VM_FAULT_OOM;
3239
3240 mapping = vma->vm_file->f_mapping;
3241 idx = vma_hugecache_offset(h, vma, address);
3242
3243 /*
3244 * Serialize hugepage allocation and instantiation, so that we don't
3245 * get spurious allocation failures if two CPUs race to instantiate
3246 * the same page in the page cache.
3247 */
3248 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3249 mutex_lock(&htlb_fault_mutex_table[hash]);
3250
3251 entry = huge_ptep_get(ptep);
3252 if (huge_pte_none(entry)) {
3253 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3254 goto out_mutex;
3255 }
3256
3257 ret = 0;
3258
3259 /*
3260 * entry could be a migration/hwpoison entry at this point, so this
3261 * check prevents the kernel from going below assuming that we have
3262 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3263 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3264 * handle it.
3265 */
3266 if (!pte_present(entry))
3267 goto out_mutex;
3268
3269 /*
3270 * If we are going to COW the mapping later, we examine the pending
3271 * reservations for this page now. This will ensure that any
3272 * allocations necessary to record that reservation occur outside the
3273 * spinlock. For private mappings, we also lookup the pagecache
3274 * page now as it is used to determine if a reservation has been
3275 * consumed.
3276 */
3277 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3278 if (vma_needs_reservation(h, vma, address) < 0) {
3279 ret = VM_FAULT_OOM;
3280 goto out_mutex;
3281 }
3282
3283 if (!(vma->vm_flags & VM_MAYSHARE))
3284 pagecache_page = hugetlbfs_pagecache_page(h,
3285 vma, address);
3286 }
3287
3288 ptl = huge_pte_lock(h, mm, ptep);
3289
3290 /* Check for a racing update before calling hugetlb_cow */
3291 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3292 goto out_ptl;
3293
3294 /*
3295 * hugetlb_cow() requires page locks of pte_page(entry) and
3296 * pagecache_page, so here we need take the former one
3297 * when page != pagecache_page or !pagecache_page.
3298 */
3299 page = pte_page(entry);
3300 if (page != pagecache_page)
3301 if (!trylock_page(page)) {
3302 need_wait_lock = 1;
3303 goto out_ptl;
3304 }
3305
3306 get_page(page);
3307
3308 if (flags & FAULT_FLAG_WRITE) {
3309 if (!huge_pte_write(entry)) {
3310 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3311 pagecache_page, ptl);
3312 goto out_put_page;
3313 }
3314 entry = huge_pte_mkdirty(entry);
3315 }
3316 entry = pte_mkyoung(entry);
3317 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3318 flags & FAULT_FLAG_WRITE))
3319 update_mmu_cache(vma, address, ptep);
3320out_put_page:
3321 if (page != pagecache_page)
3322 unlock_page(page);
3323 put_page(page);
3324out_ptl:
3325 spin_unlock(ptl);
3326
3327 if (pagecache_page) {
3328 unlock_page(pagecache_page);
3329 put_page(pagecache_page);
3330 }
3331out_mutex:
3332 mutex_unlock(&htlb_fault_mutex_table[hash]);
3333 /*
3334 * Generally it's safe to hold refcount during waiting page lock. But
3335 * here we just wait to defer the next page fault to avoid busy loop and
3336 * the page is not used after unlocked before returning from the current
3337 * page fault. So we are safe from accessing freed page, even if we wait
3338 * here without taking refcount.
3339 */
3340 if (need_wait_lock)
3341 wait_on_page_locked(page);
3342 return ret;
3343}
3344
3345long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3346 struct page **pages, struct vm_area_struct **vmas,
3347 unsigned long *position, unsigned long *nr_pages,
3348 long i, unsigned int flags)
3349{
3350 unsigned long pfn_offset;
3351 unsigned long vaddr = *position;
3352 unsigned long remainder = *nr_pages;
3353 struct hstate *h = hstate_vma(vma);
3354
3355 while (vaddr < vma->vm_end && remainder) {
3356 pte_t *pte;
3357 spinlock_t *ptl = NULL;
3358 int absent;
3359 struct page *page;
3360
3361 /*
3362 * If we have a pending SIGKILL, don't keep faulting pages and
3363 * potentially allocating memory.
3364 */
3365 if (unlikely(fatal_signal_pending(current))) {
3366 remainder = 0;
3367 break;
3368 }
3369
3370 /*
3371 * Some archs (sparc64, sh*) have multiple pte_ts to
3372 * each hugepage. We have to make sure we get the
3373 * first, for the page indexing below to work.
3374 *
3375 * Note that page table lock is not held when pte is null.
3376 */
3377 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3378 if (pte)
3379 ptl = huge_pte_lock(h, mm, pte);
3380 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3381
3382 /*
3383 * When coredumping, it suits get_dump_page if we just return
3384 * an error where there's an empty slot with no huge pagecache
3385 * to back it. This way, we avoid allocating a hugepage, and
3386 * the sparse dumpfile avoids allocating disk blocks, but its
3387 * huge holes still show up with zeroes where they need to be.
3388 */
3389 if (absent && (flags & FOLL_DUMP) &&
3390 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3391 if (pte)
3392 spin_unlock(ptl);
3393 remainder = 0;
3394 break;
3395 }
3396
3397 /*
3398 * We need call hugetlb_fault for both hugepages under migration
3399 * (in which case hugetlb_fault waits for the migration,) and
3400 * hwpoisoned hugepages (in which case we need to prevent the
3401 * caller from accessing to them.) In order to do this, we use
3402 * here is_swap_pte instead of is_hugetlb_entry_migration and
3403 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3404 * both cases, and because we can't follow correct pages
3405 * directly from any kind of swap entries.
3406 */
3407 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3408 ((flags & FOLL_WRITE) &&
3409 !huge_pte_write(huge_ptep_get(pte)))) {
3410 int ret;
3411
3412 if (pte)
3413 spin_unlock(ptl);
3414 ret = hugetlb_fault(mm, vma, vaddr,
3415 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3416 if (!(ret & VM_FAULT_ERROR))
3417 continue;
3418
3419 remainder = 0;
3420 break;
3421 }
3422
3423 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3424 page = pte_page(huge_ptep_get(pte));
3425same_page:
3426 if (pages) {
3427 pages[i] = mem_map_offset(page, pfn_offset);
3428 get_page_foll(pages[i]);
3429 }
3430
3431 if (vmas)
3432 vmas[i] = vma;
3433
3434 vaddr += PAGE_SIZE;
3435 ++pfn_offset;
3436 --remainder;
3437 ++i;
3438 if (vaddr < vma->vm_end && remainder &&
3439 pfn_offset < pages_per_huge_page(h)) {
3440 /*
3441 * We use pfn_offset to avoid touching the pageframes
3442 * of this compound page.
3443 */
3444 goto same_page;
3445 }
3446 spin_unlock(ptl);
3447 }
3448 *nr_pages = remainder;
3449 *position = vaddr;
3450
3451 return i ? i : -EFAULT;
3452}
3453
3454unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3455 unsigned long address, unsigned long end, pgprot_t newprot)
3456{
3457 struct mm_struct *mm = vma->vm_mm;
3458 unsigned long start = address;
3459 pte_t *ptep;
3460 pte_t pte;
3461 struct hstate *h = hstate_vma(vma);
3462 unsigned long pages = 0;
3463
3464 BUG_ON(address >= end);
3465 flush_cache_range(vma, address, end);
3466
3467 mmu_notifier_invalidate_range_start(mm, start, end);
3468 i_mmap_lock_write(vma->vm_file->f_mapping);
3469 for (; address < end; address += huge_page_size(h)) {
3470 spinlock_t *ptl;
3471 ptep = huge_pte_offset(mm, address);
3472 if (!ptep)
3473 continue;
3474 ptl = huge_pte_lock(h, mm, ptep);
3475 if (huge_pmd_unshare(mm, &address, ptep)) {
3476 pages++;
3477 spin_unlock(ptl);
3478 continue;
3479 }
3480 pte = huge_ptep_get(ptep);
3481 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3482 spin_unlock(ptl);
3483 continue;
3484 }
3485 if (unlikely(is_hugetlb_entry_migration(pte))) {
3486 swp_entry_t entry = pte_to_swp_entry(pte);
3487
3488 if (is_write_migration_entry(entry)) {
3489 pte_t newpte;
3490
3491 make_migration_entry_read(&entry);
3492 newpte = swp_entry_to_pte(entry);
3493 set_huge_pte_at(mm, address, ptep, newpte);
3494 pages++;
3495 }
3496 spin_unlock(ptl);
3497 continue;
3498 }
3499 if (!huge_pte_none(pte)) {
3500 pte = huge_ptep_get_and_clear(mm, address, ptep);
3501 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3502 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3503 set_huge_pte_at(mm, address, ptep, pte);
3504 pages++;
3505 }
3506 spin_unlock(ptl);
3507 }
3508 /*
3509 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3510 * may have cleared our pud entry and done put_page on the page table:
3511 * once we release i_mmap_rwsem, another task can do the final put_page
3512 * and that page table be reused and filled with junk.
3513 */
3514 flush_tlb_range(vma, start, end);
3515 mmu_notifier_invalidate_range(mm, start, end);
3516 i_mmap_unlock_write(vma->vm_file->f_mapping);
3517 mmu_notifier_invalidate_range_end(mm, start, end);
3518
3519 return pages << h->order;
3520}
3521
3522int hugetlb_reserve_pages(struct inode *inode,
3523 long from, long to,
3524 struct vm_area_struct *vma,
3525 vm_flags_t vm_flags)
3526{
3527 long ret, chg;
3528 struct hstate *h = hstate_inode(inode);
3529 struct hugepage_subpool *spool = subpool_inode(inode);
3530 struct resv_map *resv_map;
3531 long gbl_reserve;
3532
3533 /*
3534 * Only apply hugepage reservation if asked. At fault time, an
3535 * attempt will be made for VM_NORESERVE to allocate a page
3536 * without using reserves
3537 */
3538 if (vm_flags & VM_NORESERVE)
3539 return 0;
3540
3541 /*
3542 * Shared mappings base their reservation on the number of pages that
3543 * are already allocated on behalf of the file. Private mappings need
3544 * to reserve the full area even if read-only as mprotect() may be
3545 * called to make the mapping read-write. Assume !vma is a shm mapping
3546 */
3547 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3548 resv_map = inode_resv_map(inode);
3549
3550 chg = region_chg(resv_map, from, to);
3551
3552 } else {
3553 resv_map = resv_map_alloc();
3554 if (!resv_map)
3555 return -ENOMEM;
3556
3557 chg = to - from;
3558
3559 set_vma_resv_map(vma, resv_map);
3560 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3561 }
3562
3563 if (chg < 0) {
3564 ret = chg;
3565 goto out_err;
3566 }
3567
3568 /*
3569 * There must be enough pages in the subpool for the mapping. If
3570 * the subpool has a minimum size, there may be some global
3571 * reservations already in place (gbl_reserve).
3572 */
3573 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3574 if (gbl_reserve < 0) {
3575 ret = -ENOSPC;
3576 goto out_err;
3577 }
3578
3579 /*
3580 * Check enough hugepages are available for the reservation.
3581 * Hand the pages back to the subpool if there are not
3582 */
3583 ret = hugetlb_acct_memory(h, gbl_reserve);
3584 if (ret < 0) {
3585 /* put back original number of pages, chg */
3586 (void)hugepage_subpool_put_pages(spool, chg);
3587 goto out_err;
3588 }
3589
3590 /*
3591 * Account for the reservations made. Shared mappings record regions
3592 * that have reservations as they are shared by multiple VMAs.
3593 * When the last VMA disappears, the region map says how much
3594 * the reservation was and the page cache tells how much of
3595 * the reservation was consumed. Private mappings are per-VMA and
3596 * only the consumed reservations are tracked. When the VMA
3597 * disappears, the original reservation is the VMA size and the
3598 * consumed reservations are stored in the map. Hence, nothing
3599 * else has to be done for private mappings here
3600 */
3601 if (!vma || vma->vm_flags & VM_MAYSHARE)
3602 region_add(resv_map, from, to);
3603 return 0;
3604out_err:
3605 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3606 kref_put(&resv_map->refs, resv_map_release);
3607 return ret;
3608}
3609
3610void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3611{
3612 struct hstate *h = hstate_inode(inode);
3613 struct resv_map *resv_map = inode_resv_map(inode);
3614 long chg = 0;
3615 struct hugepage_subpool *spool = subpool_inode(inode);
3616 long gbl_reserve;
3617
3618 if (resv_map)
3619 chg = region_truncate(resv_map, offset);
3620 spin_lock(&inode->i_lock);
3621 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3622 spin_unlock(&inode->i_lock);
3623
3624 /*
3625 * If the subpool has a minimum size, the number of global
3626 * reservations to be released may be adjusted.
3627 */
3628 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3629 hugetlb_acct_memory(h, -gbl_reserve);
3630}
3631
3632#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3633static unsigned long page_table_shareable(struct vm_area_struct *svma,
3634 struct vm_area_struct *vma,
3635 unsigned long addr, pgoff_t idx)
3636{
3637 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3638 svma->vm_start;
3639 unsigned long sbase = saddr & PUD_MASK;
3640 unsigned long s_end = sbase + PUD_SIZE;
3641
3642 /* Allow segments to share if only one is marked locked */
3643 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3644 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3645
3646 /*
3647 * match the virtual addresses, permission and the alignment of the
3648 * page table page.
3649 */
3650 if (pmd_index(addr) != pmd_index(saddr) ||
3651 vm_flags != svm_flags ||
3652 sbase < svma->vm_start || svma->vm_end < s_end)
3653 return 0;
3654
3655 return saddr;
3656}
3657
3658static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3659{
3660 unsigned long base = addr & PUD_MASK;
3661 unsigned long end = base + PUD_SIZE;
3662
3663 /*
3664 * check on proper vm_flags and page table alignment
3665 */
3666 if (vma->vm_flags & VM_MAYSHARE &&
3667 vma->vm_start <= base && end <= vma->vm_end)
3668 return 1;
3669 return 0;
3670}
3671
3672/*
3673 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3674 * and returns the corresponding pte. While this is not necessary for the
3675 * !shared pmd case because we can allocate the pmd later as well, it makes the
3676 * code much cleaner. pmd allocation is essential for the shared case because
3677 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3678 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3679 * bad pmd for sharing.
3680 */
3681pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3682{
3683 struct vm_area_struct *vma = find_vma(mm, addr);
3684 struct address_space *mapping = vma->vm_file->f_mapping;
3685 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3686 vma->vm_pgoff;
3687 struct vm_area_struct *svma;
3688 unsigned long saddr;
3689 pte_t *spte = NULL;
3690 pte_t *pte;
3691 spinlock_t *ptl;
3692
3693 if (!vma_shareable(vma, addr))
3694 return (pte_t *)pmd_alloc(mm, pud, addr);
3695
3696 i_mmap_lock_write(mapping);
3697 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3698 if (svma == vma)
3699 continue;
3700
3701 saddr = page_table_shareable(svma, vma, addr, idx);
3702 if (saddr) {
3703 spte = huge_pte_offset(svma->vm_mm, saddr);
3704 if (spte) {
3705 mm_inc_nr_pmds(mm);
3706 get_page(virt_to_page(spte));
3707 break;
3708 }
3709 }
3710 }
3711
3712 if (!spte)
3713 goto out;
3714
3715 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3716 spin_lock(ptl);
3717 if (pud_none(*pud)) {
3718 pud_populate(mm, pud,
3719 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3720 } else {
3721 put_page(virt_to_page(spte));
3722 mm_inc_nr_pmds(mm);
3723 }
3724 spin_unlock(ptl);
3725out:
3726 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3727 i_mmap_unlock_write(mapping);
3728 return pte;
3729}
3730
3731/*
3732 * unmap huge page backed by shared pte.
3733 *
3734 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3735 * indicated by page_count > 1, unmap is achieved by clearing pud and
3736 * decrementing the ref count. If count == 1, the pte page is not shared.
3737 *
3738 * called with page table lock held.
3739 *
3740 * returns: 1 successfully unmapped a shared pte page
3741 * 0 the underlying pte page is not shared, or it is the last user
3742 */
3743int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3744{
3745 pgd_t *pgd = pgd_offset(mm, *addr);
3746 pud_t *pud = pud_offset(pgd, *addr);
3747
3748 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3749 if (page_count(virt_to_page(ptep)) == 1)
3750 return 0;
3751
3752 pud_clear(pud);
3753 put_page(virt_to_page(ptep));
3754 mm_dec_nr_pmds(mm);
3755 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3756 return 1;
3757}
3758#define want_pmd_share() (1)
3759#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3760pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3761{
3762 return NULL;
3763}
3764#define want_pmd_share() (0)
3765#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3766
3767#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3768pte_t *huge_pte_alloc(struct mm_struct *mm,
3769 unsigned long addr, unsigned long sz)
3770{
3771 pgd_t *pgd;
3772 pud_t *pud;
3773 pte_t *pte = NULL;
3774
3775 pgd = pgd_offset(mm, addr);
3776 pud = pud_alloc(mm, pgd, addr);
3777 if (pud) {
3778 if (sz == PUD_SIZE) {
3779 pte = (pte_t *)pud;
3780 } else {
3781 BUG_ON(sz != PMD_SIZE);
3782 if (want_pmd_share() && pud_none(*pud))
3783 pte = huge_pmd_share(mm, addr, pud);
3784 else
3785 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3786 }
3787 }
3788 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3789
3790 return pte;
3791}
3792
3793pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3794{
3795 pgd_t *pgd;
3796 pud_t *pud;
3797 pmd_t *pmd = NULL;
3798
3799 pgd = pgd_offset(mm, addr);
3800 if (pgd_present(*pgd)) {
3801 pud = pud_offset(pgd, addr);
3802 if (pud_present(*pud)) {
3803 if (pud_huge(*pud))
3804 return (pte_t *)pud;
3805 pmd = pmd_offset(pud, addr);
3806 }
3807 }
3808 return (pte_t *) pmd;
3809}
3810
3811#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3812
3813/*
3814 * These functions are overwritable if your architecture needs its own
3815 * behavior.
3816 */
3817struct page * __weak
3818follow_huge_addr(struct mm_struct *mm, unsigned long address,
3819 int write)
3820{
3821 return ERR_PTR(-EINVAL);
3822}
3823
3824struct page * __weak
3825follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3826 pmd_t *pmd, int flags)
3827{
3828 struct page *page = NULL;
3829 spinlock_t *ptl;
3830retry:
3831 ptl = pmd_lockptr(mm, pmd);
3832 spin_lock(ptl);
3833 /*
3834 * make sure that the address range covered by this pmd is not
3835 * unmapped from other threads.
3836 */
3837 if (!pmd_huge(*pmd))
3838 goto out;
3839 if (pmd_present(*pmd)) {
3840 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3841 if (flags & FOLL_GET)
3842 get_page(page);
3843 } else {
3844 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3845 spin_unlock(ptl);
3846 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3847 goto retry;
3848 }
3849 /*
3850 * hwpoisoned entry is treated as no_page_table in
3851 * follow_page_mask().
3852 */
3853 }
3854out:
3855 spin_unlock(ptl);
3856 return page;
3857}
3858
3859struct page * __weak
3860follow_huge_pud(struct mm_struct *mm, unsigned long address,
3861 pud_t *pud, int flags)
3862{
3863 if (flags & FOLL_GET)
3864 return NULL;
3865
3866 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3867}
3868
3869#ifdef CONFIG_MEMORY_FAILURE
3870
3871/* Should be called in hugetlb_lock */
3872static int is_hugepage_on_freelist(struct page *hpage)
3873{
3874 struct page *page;
3875 struct page *tmp;
3876 struct hstate *h = page_hstate(hpage);
3877 int nid = page_to_nid(hpage);
3878
3879 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3880 if (page == hpage)
3881 return 1;
3882 return 0;
3883}
3884
3885/*
3886 * This function is called from memory failure code.
3887 * Assume the caller holds page lock of the head page.
3888 */
3889int dequeue_hwpoisoned_huge_page(struct page *hpage)
3890{
3891 struct hstate *h = page_hstate(hpage);
3892 int nid = page_to_nid(hpage);
3893 int ret = -EBUSY;
3894
3895 spin_lock(&hugetlb_lock);
3896 if (is_hugepage_on_freelist(hpage)) {
3897 /*
3898 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3899 * but dangling hpage->lru can trigger list-debug warnings
3900 * (this happens when we call unpoison_memory() on it),
3901 * so let it point to itself with list_del_init().
3902 */
3903 list_del_init(&hpage->lru);
3904 set_page_refcounted(hpage);
3905 h->free_huge_pages--;
3906 h->free_huge_pages_node[nid]--;
3907 ret = 0;
3908 }
3909 spin_unlock(&hugetlb_lock);
3910 return ret;
3911}
3912#endif
3913
3914bool isolate_huge_page(struct page *page, struct list_head *list)
3915{
3916 VM_BUG_ON_PAGE(!PageHead(page), page);
3917 if (!get_page_unless_zero(page))
3918 return false;
3919 spin_lock(&hugetlb_lock);
3920 list_move_tail(&page->lru, list);
3921 spin_unlock(&hugetlb_lock);
3922 return true;
3923}
3924
3925void putback_active_hugepage(struct page *page)
3926{
3927 VM_BUG_ON_PAGE(!PageHead(page), page);
3928 spin_lock(&hugetlb_lock);
3929 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3930 spin_unlock(&hugetlb_lock);
3931 put_page(page);
3932}
3933
3934bool is_hugepage_active(struct page *page)
3935{
3936 VM_BUG_ON_PAGE(!PageHuge(page), page);
3937 /*
3938 * This function can be called for a tail page because the caller,
3939 * scan_movable_pages, scans through a given pfn-range which typically
3940 * covers one memory block. In systems using gigantic hugepage (1GB
3941 * for x86_64,) a hugepage is larger than a memory block, and we don't
3942 * support migrating such large hugepages for now, so return false
3943 * when called for tail pages.
3944 */
3945 if (PageTail(page))
3946 return false;
3947 /*
3948 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3949 * so we should return false for them.
3950 */
3951 if (unlikely(PageHWPoison(page)))
3952 return false;
3953 return page_count(page) > 0;
3954}