mm: hugetlb: call huge_pte_alloc() only if ptep is null
[linux-2.6-block.git] / mm / hugetlb.c
... / ...
CommitLineData
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/rmap.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/page-isolation.h>
26#include <linux/jhash.h>
27
28#include <asm/page.h>
29#include <asm/pgtable.h>
30#include <asm/tlb.h>
31
32#include <linux/io.h>
33#include <linux/hugetlb.h>
34#include <linux/hugetlb_cgroup.h>
35#include <linux/node.h>
36#include "internal.h"
37
38int hugepages_treat_as_movable;
39
40int hugetlb_max_hstate __read_mostly;
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49__initdata LIST_HEAD(huge_boot_pages);
50
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
54static unsigned long __initdata default_hstate_size;
55
56/*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60DEFINE_SPINLOCK(hugetlb_lock);
61
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
86 }
87}
88
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
91{
92 struct hugepage_subpool *spool;
93
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
131{
132 long ret = delta;
133
134 if (!spool)
135 return ret;
136
137 spin_lock(&spool->lock);
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
146 }
147
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162unlock_ret:
163 spin_unlock(&spool->lock);
164 return ret;
165}
166
167/*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 long delta)
175{
176 long ret = delta;
177
178 if (!spool)
179 return delta;
180
181 spin_lock(&spool->lock);
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
201 unlock_or_release_subpool(spool);
202
203 return ret;
204}
205
206static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207{
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209}
210
211static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212{
213 return subpool_inode(file_inode(vma->vm_file));
214}
215
216/*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
219 *
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
234 */
235struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239};
240
241/*
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
251 *
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
254 */
255static long region_add(struct resv_map *resv, long f, long t)
256{
257 struct list_head *head = &resv->regions;
258 struct file_region *rg, *nrg, *trg;
259 long add = 0;
260
261 spin_lock(&resv->lock);
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
266
267 /*
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
272 */
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
275
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
280
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
284
285 add += t - f;
286 goto out_locked;
287 }
288
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
292
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
300
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
310 */
311 add -= (rg->to - rg->from);
312 list_del(&rg->link);
313 kfree(rg);
314 }
315 }
316
317 add += (nrg->from - f); /* Added to beginning of region */
318 nrg->from = f;
319 add += t - nrg->to; /* Added to end of region */
320 nrg->to = t;
321
322out_locked:
323 resv->adds_in_progress--;
324 spin_unlock(&resv->lock);
325 VM_BUG_ON(add < 0);
326 return add;
327}
328
329/*
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
341 *
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
345 *
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
350 */
351static long region_chg(struct resv_map *resv, long f, long t)
352{
353 struct list_head *head = &resv->regions;
354 struct file_region *rg, *nrg = NULL;
355 long chg = 0;
356
357retry:
358 spin_lock(&resv->lock);
359retry_locked:
360 resv->adds_in_progress++;
361
362 /*
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
365 */
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
368
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
373
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg)
376 return -ENOMEM;
377
378 spin_lock(&resv->lock);
379 list_add(&trg->link, &resv->region_cache);
380 resv->region_cache_count++;
381 goto retry_locked;
382 }
383
384 /* Locate the region we are before or in. */
385 list_for_each_entry(rg, head, link)
386 if (f <= rg->to)
387 break;
388
389 /* If we are below the current region then a new region is required.
390 * Subtle, allocate a new region at the position but make it zero
391 * size such that we can guarantee to record the reservation. */
392 if (&rg->link == head || t < rg->from) {
393 if (!nrg) {
394 resv->adds_in_progress--;
395 spin_unlock(&resv->lock);
396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397 if (!nrg)
398 return -ENOMEM;
399
400 nrg->from = f;
401 nrg->to = f;
402 INIT_LIST_HEAD(&nrg->link);
403 goto retry;
404 }
405
406 list_add(&nrg->link, rg->link.prev);
407 chg = t - f;
408 goto out_nrg;
409 }
410
411 /* Round our left edge to the current segment if it encloses us. */
412 if (f > rg->from)
413 f = rg->from;
414 chg = t - f;
415
416 /* Check for and consume any regions we now overlap with. */
417 list_for_each_entry(rg, rg->link.prev, link) {
418 if (&rg->link == head)
419 break;
420 if (rg->from > t)
421 goto out;
422
423 /* We overlap with this area, if it extends further than
424 * us then we must extend ourselves. Account for its
425 * existing reservation. */
426 if (rg->to > t) {
427 chg += rg->to - t;
428 t = rg->to;
429 }
430 chg -= rg->to - rg->from;
431 }
432
433out:
434 spin_unlock(&resv->lock);
435 /* We already know we raced and no longer need the new region */
436 kfree(nrg);
437 return chg;
438out_nrg:
439 spin_unlock(&resv->lock);
440 return chg;
441}
442
443/*
444 * Abort the in progress add operation. The adds_in_progress field
445 * of the resv_map keeps track of the operations in progress between
446 * calls to region_chg and region_add. Operations are sometimes
447 * aborted after the call to region_chg. In such cases, region_abort
448 * is called to decrement the adds_in_progress counter.
449 *
450 * NOTE: The range arguments [f, t) are not needed or used in this
451 * routine. They are kept to make reading the calling code easier as
452 * arguments will match the associated region_chg call.
453 */
454static void region_abort(struct resv_map *resv, long f, long t)
455{
456 spin_lock(&resv->lock);
457 VM_BUG_ON(!resv->region_cache_count);
458 resv->adds_in_progress--;
459 spin_unlock(&resv->lock);
460}
461
462/*
463 * Delete the specified range [f, t) from the reserve map. If the
464 * t parameter is LONG_MAX, this indicates that ALL regions after f
465 * should be deleted. Locate the regions which intersect [f, t)
466 * and either trim, delete or split the existing regions.
467 *
468 * Returns the number of huge pages deleted from the reserve map.
469 * In the normal case, the return value is zero or more. In the
470 * case where a region must be split, a new region descriptor must
471 * be allocated. If the allocation fails, -ENOMEM will be returned.
472 * NOTE: If the parameter t == LONG_MAX, then we will never split
473 * a region and possibly return -ENOMEM. Callers specifying
474 * t == LONG_MAX do not need to check for -ENOMEM error.
475 */
476static long region_del(struct resv_map *resv, long f, long t)
477{
478 struct list_head *head = &resv->regions;
479 struct file_region *rg, *trg;
480 struct file_region *nrg = NULL;
481 long del = 0;
482
483retry:
484 spin_lock(&resv->lock);
485 list_for_each_entry_safe(rg, trg, head, link) {
486 if (rg->to <= f)
487 continue;
488 if (rg->from >= t)
489 break;
490
491 if (f > rg->from && t < rg->to) { /* Must split region */
492 /*
493 * Check for an entry in the cache before dropping
494 * lock and attempting allocation.
495 */
496 if (!nrg &&
497 resv->region_cache_count > resv->adds_in_progress) {
498 nrg = list_first_entry(&resv->region_cache,
499 struct file_region,
500 link);
501 list_del(&nrg->link);
502 resv->region_cache_count--;
503 }
504
505 if (!nrg) {
506 spin_unlock(&resv->lock);
507 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508 if (!nrg)
509 return -ENOMEM;
510 goto retry;
511 }
512
513 del += t - f;
514
515 /* New entry for end of split region */
516 nrg->from = t;
517 nrg->to = rg->to;
518 INIT_LIST_HEAD(&nrg->link);
519
520 /* Original entry is trimmed */
521 rg->to = f;
522
523 list_add(&nrg->link, &rg->link);
524 nrg = NULL;
525 break;
526 }
527
528 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529 del += rg->to - rg->from;
530 list_del(&rg->link);
531 kfree(rg);
532 continue;
533 }
534
535 if (f <= rg->from) { /* Trim beginning of region */
536 del += t - rg->from;
537 rg->from = t;
538 } else { /* Trim end of region */
539 del += rg->to - f;
540 rg->to = f;
541 }
542 }
543
544 spin_unlock(&resv->lock);
545 kfree(nrg);
546 return del;
547}
548
549/*
550 * A rare out of memory error was encountered which prevented removal of
551 * the reserve map region for a page. The huge page itself was free'ed
552 * and removed from the page cache. This routine will adjust the subpool
553 * usage count, and the global reserve count if needed. By incrementing
554 * these counts, the reserve map entry which could not be deleted will
555 * appear as a "reserved" entry instead of simply dangling with incorrect
556 * counts.
557 */
558void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559{
560 struct hugepage_subpool *spool = subpool_inode(inode);
561 long rsv_adjust;
562
563 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564 if (restore_reserve && rsv_adjust) {
565 struct hstate *h = hstate_inode(inode);
566
567 hugetlb_acct_memory(h, 1);
568 }
569}
570
571/*
572 * Count and return the number of huge pages in the reserve map
573 * that intersect with the range [f, t).
574 */
575static long region_count(struct resv_map *resv, long f, long t)
576{
577 struct list_head *head = &resv->regions;
578 struct file_region *rg;
579 long chg = 0;
580
581 spin_lock(&resv->lock);
582 /* Locate each segment we overlap with, and count that overlap. */
583 list_for_each_entry(rg, head, link) {
584 long seg_from;
585 long seg_to;
586
587 if (rg->to <= f)
588 continue;
589 if (rg->from >= t)
590 break;
591
592 seg_from = max(rg->from, f);
593 seg_to = min(rg->to, t);
594
595 chg += seg_to - seg_from;
596 }
597 spin_unlock(&resv->lock);
598
599 return chg;
600}
601
602/*
603 * Convert the address within this vma to the page offset within
604 * the mapping, in pagecache page units; huge pages here.
605 */
606static pgoff_t vma_hugecache_offset(struct hstate *h,
607 struct vm_area_struct *vma, unsigned long address)
608{
609 return ((address - vma->vm_start) >> huge_page_shift(h)) +
610 (vma->vm_pgoff >> huge_page_order(h));
611}
612
613pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614 unsigned long address)
615{
616 return vma_hugecache_offset(hstate_vma(vma), vma, address);
617}
618
619/*
620 * Return the size of the pages allocated when backing a VMA. In the majority
621 * cases this will be same size as used by the page table entries.
622 */
623unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624{
625 struct hstate *hstate;
626
627 if (!is_vm_hugetlb_page(vma))
628 return PAGE_SIZE;
629
630 hstate = hstate_vma(vma);
631
632 return 1UL << huge_page_shift(hstate);
633}
634EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636/*
637 * Return the page size being used by the MMU to back a VMA. In the majority
638 * of cases, the page size used by the kernel matches the MMU size. On
639 * architectures where it differs, an architecture-specific version of this
640 * function is required.
641 */
642#ifndef vma_mmu_pagesize
643unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644{
645 return vma_kernel_pagesize(vma);
646}
647#endif
648
649/*
650 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
651 * bits of the reservation map pointer, which are always clear due to
652 * alignment.
653 */
654#define HPAGE_RESV_OWNER (1UL << 0)
655#define HPAGE_RESV_UNMAPPED (1UL << 1)
656#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658/*
659 * These helpers are used to track how many pages are reserved for
660 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661 * is guaranteed to have their future faults succeed.
662 *
663 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664 * the reserve counters are updated with the hugetlb_lock held. It is safe
665 * to reset the VMA at fork() time as it is not in use yet and there is no
666 * chance of the global counters getting corrupted as a result of the values.
667 *
668 * The private mapping reservation is represented in a subtly different
669 * manner to a shared mapping. A shared mapping has a region map associated
670 * with the underlying file, this region map represents the backing file
671 * pages which have ever had a reservation assigned which this persists even
672 * after the page is instantiated. A private mapping has a region map
673 * associated with the original mmap which is attached to all VMAs which
674 * reference it, this region map represents those offsets which have consumed
675 * reservation ie. where pages have been instantiated.
676 */
677static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678{
679 return (unsigned long)vma->vm_private_data;
680}
681
682static void set_vma_private_data(struct vm_area_struct *vma,
683 unsigned long value)
684{
685 vma->vm_private_data = (void *)value;
686}
687
688struct resv_map *resv_map_alloc(void)
689{
690 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693 if (!resv_map || !rg) {
694 kfree(resv_map);
695 kfree(rg);
696 return NULL;
697 }
698
699 kref_init(&resv_map->refs);
700 spin_lock_init(&resv_map->lock);
701 INIT_LIST_HEAD(&resv_map->regions);
702
703 resv_map->adds_in_progress = 0;
704
705 INIT_LIST_HEAD(&resv_map->region_cache);
706 list_add(&rg->link, &resv_map->region_cache);
707 resv_map->region_cache_count = 1;
708
709 return resv_map;
710}
711
712void resv_map_release(struct kref *ref)
713{
714 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 struct list_head *head = &resv_map->region_cache;
716 struct file_region *rg, *trg;
717
718 /* Clear out any active regions before we release the map. */
719 region_del(resv_map, 0, LONG_MAX);
720
721 /* ... and any entries left in the cache */
722 list_for_each_entry_safe(rg, trg, head, link) {
723 list_del(&rg->link);
724 kfree(rg);
725 }
726
727 VM_BUG_ON(resv_map->adds_in_progress);
728
729 kfree(resv_map);
730}
731
732static inline struct resv_map *inode_resv_map(struct inode *inode)
733{
734 return inode->i_mapping->private_data;
735}
736
737static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738{
739 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 if (vma->vm_flags & VM_MAYSHARE) {
741 struct address_space *mapping = vma->vm_file->f_mapping;
742 struct inode *inode = mapping->host;
743
744 return inode_resv_map(inode);
745
746 } else {
747 return (struct resv_map *)(get_vma_private_data(vma) &
748 ~HPAGE_RESV_MASK);
749 }
750}
751
752static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753{
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757 set_vma_private_data(vma, (get_vma_private_data(vma) &
758 HPAGE_RESV_MASK) | (unsigned long)map);
759}
760
761static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762{
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767}
768
769static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770{
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773 return (get_vma_private_data(vma) & flag) != 0;
774}
775
776/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778{
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 if (!(vma->vm_flags & VM_MAYSHARE))
781 vma->vm_private_data = (void *)0;
782}
783
784/* Returns true if the VMA has associated reserve pages */
785static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786{
787 if (vma->vm_flags & VM_NORESERVE) {
788 /*
789 * This address is already reserved by other process(chg == 0),
790 * so, we should decrement reserved count. Without decrementing,
791 * reserve count remains after releasing inode, because this
792 * allocated page will go into page cache and is regarded as
793 * coming from reserved pool in releasing step. Currently, we
794 * don't have any other solution to deal with this situation
795 * properly, so add work-around here.
796 */
797 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798 return true;
799 else
800 return false;
801 }
802
803 /* Shared mappings always use reserves */
804 if (vma->vm_flags & VM_MAYSHARE) {
805 /*
806 * We know VM_NORESERVE is not set. Therefore, there SHOULD
807 * be a region map for all pages. The only situation where
808 * there is no region map is if a hole was punched via
809 * fallocate. In this case, there really are no reverves to
810 * use. This situation is indicated if chg != 0.
811 */
812 if (chg)
813 return false;
814 else
815 return true;
816 }
817
818 /*
819 * Only the process that called mmap() has reserves for
820 * private mappings.
821 */
822 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823 return true;
824
825 return false;
826}
827
828static void enqueue_huge_page(struct hstate *h, struct page *page)
829{
830 int nid = page_to_nid(page);
831 list_move(&page->lru, &h->hugepage_freelists[nid]);
832 h->free_huge_pages++;
833 h->free_huge_pages_node[nid]++;
834}
835
836static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837{
838 struct page *page;
839
840 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841 if (!is_migrate_isolate_page(page))
842 break;
843 /*
844 * if 'non-isolated free hugepage' not found on the list,
845 * the allocation fails.
846 */
847 if (&h->hugepage_freelists[nid] == &page->lru)
848 return NULL;
849 list_move(&page->lru, &h->hugepage_activelist);
850 set_page_refcounted(page);
851 h->free_huge_pages--;
852 h->free_huge_pages_node[nid]--;
853 return page;
854}
855
856/* Movability of hugepages depends on migration support. */
857static inline gfp_t htlb_alloc_mask(struct hstate *h)
858{
859 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860 return GFP_HIGHUSER_MOVABLE;
861 else
862 return GFP_HIGHUSER;
863}
864
865static struct page *dequeue_huge_page_vma(struct hstate *h,
866 struct vm_area_struct *vma,
867 unsigned long address, int avoid_reserve,
868 long chg)
869{
870 struct page *page = NULL;
871 struct mempolicy *mpol;
872 nodemask_t *nodemask;
873 struct zonelist *zonelist;
874 struct zone *zone;
875 struct zoneref *z;
876 unsigned int cpuset_mems_cookie;
877
878 /*
879 * A child process with MAP_PRIVATE mappings created by their parent
880 * have no page reserves. This check ensures that reservations are
881 * not "stolen". The child may still get SIGKILLed
882 */
883 if (!vma_has_reserves(vma, chg) &&
884 h->free_huge_pages - h->resv_huge_pages == 0)
885 goto err;
886
887 /* If reserves cannot be used, ensure enough pages are in the pool */
888 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889 goto err;
890
891retry_cpuset:
892 cpuset_mems_cookie = read_mems_allowed_begin();
893 zonelist = huge_zonelist(vma, address,
894 htlb_alloc_mask(h), &mpol, &nodemask);
895
896 for_each_zone_zonelist_nodemask(zone, z, zonelist,
897 MAX_NR_ZONES - 1, nodemask) {
898 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899 page = dequeue_huge_page_node(h, zone_to_nid(zone));
900 if (page) {
901 if (avoid_reserve)
902 break;
903 if (!vma_has_reserves(vma, chg))
904 break;
905
906 SetPagePrivate(page);
907 h->resv_huge_pages--;
908 break;
909 }
910 }
911 }
912
913 mpol_cond_put(mpol);
914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915 goto retry_cpuset;
916 return page;
917
918err:
919 return NULL;
920}
921
922/*
923 * common helper functions for hstate_next_node_to_{alloc|free}.
924 * We may have allocated or freed a huge page based on a different
925 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926 * be outside of *nodes_allowed. Ensure that we use an allowed
927 * node for alloc or free.
928 */
929static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930{
931 nid = next_node(nid, *nodes_allowed);
932 if (nid == MAX_NUMNODES)
933 nid = first_node(*nodes_allowed);
934 VM_BUG_ON(nid >= MAX_NUMNODES);
935
936 return nid;
937}
938
939static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940{
941 if (!node_isset(nid, *nodes_allowed))
942 nid = next_node_allowed(nid, nodes_allowed);
943 return nid;
944}
945
946/*
947 * returns the previously saved node ["this node"] from which to
948 * allocate a persistent huge page for the pool and advance the
949 * next node from which to allocate, handling wrap at end of node
950 * mask.
951 */
952static int hstate_next_node_to_alloc(struct hstate *h,
953 nodemask_t *nodes_allowed)
954{
955 int nid;
956
957 VM_BUG_ON(!nodes_allowed);
958
959 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962 return nid;
963}
964
965/*
966 * helper for free_pool_huge_page() - return the previously saved
967 * node ["this node"] from which to free a huge page. Advance the
968 * next node id whether or not we find a free huge page to free so
969 * that the next attempt to free addresses the next node.
970 */
971static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972{
973 int nid;
974
975 VM_BUG_ON(!nodes_allowed);
976
977 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980 return nid;
981}
982
983#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
984 for (nr_nodes = nodes_weight(*mask); \
985 nr_nodes > 0 && \
986 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
987 nr_nodes--)
988
989#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
990 for (nr_nodes = nodes_weight(*mask); \
991 nr_nodes > 0 && \
992 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
993 nr_nodes--)
994
995#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996static void destroy_compound_gigantic_page(struct page *page,
997 unsigned int order)
998{
999 int i;
1000 int nr_pages = 1 << order;
1001 struct page *p = page + 1;
1002
1003 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004 clear_compound_head(p);
1005 set_page_refcounted(p);
1006 }
1007
1008 set_compound_order(page, 0);
1009 __ClearPageHead(page);
1010}
1011
1012static void free_gigantic_page(struct page *page, unsigned int order)
1013{
1014 free_contig_range(page_to_pfn(page), 1 << order);
1015}
1016
1017static int __alloc_gigantic_page(unsigned long start_pfn,
1018 unsigned long nr_pages)
1019{
1020 unsigned long end_pfn = start_pfn + nr_pages;
1021 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1022}
1023
1024static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1025 unsigned long nr_pages)
1026{
1027 unsigned long i, end_pfn = start_pfn + nr_pages;
1028 struct page *page;
1029
1030 for (i = start_pfn; i < end_pfn; i++) {
1031 if (!pfn_valid(i))
1032 return false;
1033
1034 page = pfn_to_page(i);
1035
1036 if (PageReserved(page))
1037 return false;
1038
1039 if (page_count(page) > 0)
1040 return false;
1041
1042 if (PageHuge(page))
1043 return false;
1044 }
1045
1046 return true;
1047}
1048
1049static bool zone_spans_last_pfn(const struct zone *zone,
1050 unsigned long start_pfn, unsigned long nr_pages)
1051{
1052 unsigned long last_pfn = start_pfn + nr_pages - 1;
1053 return zone_spans_pfn(zone, last_pfn);
1054}
1055
1056static struct page *alloc_gigantic_page(int nid, unsigned int order)
1057{
1058 unsigned long nr_pages = 1 << order;
1059 unsigned long ret, pfn, flags;
1060 struct zone *z;
1061
1062 z = NODE_DATA(nid)->node_zones;
1063 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1064 spin_lock_irqsave(&z->lock, flags);
1065
1066 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1067 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1068 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1069 /*
1070 * We release the zone lock here because
1071 * alloc_contig_range() will also lock the zone
1072 * at some point. If there's an allocation
1073 * spinning on this lock, it may win the race
1074 * and cause alloc_contig_range() to fail...
1075 */
1076 spin_unlock_irqrestore(&z->lock, flags);
1077 ret = __alloc_gigantic_page(pfn, nr_pages);
1078 if (!ret)
1079 return pfn_to_page(pfn);
1080 spin_lock_irqsave(&z->lock, flags);
1081 }
1082 pfn += nr_pages;
1083 }
1084
1085 spin_unlock_irqrestore(&z->lock, flags);
1086 }
1087
1088 return NULL;
1089}
1090
1091static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1092static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1093
1094static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1095{
1096 struct page *page;
1097
1098 page = alloc_gigantic_page(nid, huge_page_order(h));
1099 if (page) {
1100 prep_compound_gigantic_page(page, huge_page_order(h));
1101 prep_new_huge_page(h, page, nid);
1102 }
1103
1104 return page;
1105}
1106
1107static int alloc_fresh_gigantic_page(struct hstate *h,
1108 nodemask_t *nodes_allowed)
1109{
1110 struct page *page = NULL;
1111 int nr_nodes, node;
1112
1113 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1114 page = alloc_fresh_gigantic_page_node(h, node);
1115 if (page)
1116 return 1;
1117 }
1118
1119 return 0;
1120}
1121
1122static inline bool gigantic_page_supported(void) { return true; }
1123#else
1124static inline bool gigantic_page_supported(void) { return false; }
1125static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1126static inline void destroy_compound_gigantic_page(struct page *page,
1127 unsigned int order) { }
1128static inline int alloc_fresh_gigantic_page(struct hstate *h,
1129 nodemask_t *nodes_allowed) { return 0; }
1130#endif
1131
1132static void update_and_free_page(struct hstate *h, struct page *page)
1133{
1134 int i;
1135
1136 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1137 return;
1138
1139 h->nr_huge_pages--;
1140 h->nr_huge_pages_node[page_to_nid(page)]--;
1141 for (i = 0; i < pages_per_huge_page(h); i++) {
1142 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1143 1 << PG_referenced | 1 << PG_dirty |
1144 1 << PG_active | 1 << PG_private |
1145 1 << PG_writeback);
1146 }
1147 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1148 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1149 set_page_refcounted(page);
1150 if (hstate_is_gigantic(h)) {
1151 destroy_compound_gigantic_page(page, huge_page_order(h));
1152 free_gigantic_page(page, huge_page_order(h));
1153 } else {
1154 __free_pages(page, huge_page_order(h));
1155 }
1156}
1157
1158struct hstate *size_to_hstate(unsigned long size)
1159{
1160 struct hstate *h;
1161
1162 for_each_hstate(h) {
1163 if (huge_page_size(h) == size)
1164 return h;
1165 }
1166 return NULL;
1167}
1168
1169/*
1170 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1171 * to hstate->hugepage_activelist.)
1172 *
1173 * This function can be called for tail pages, but never returns true for them.
1174 */
1175bool page_huge_active(struct page *page)
1176{
1177 VM_BUG_ON_PAGE(!PageHuge(page), page);
1178 return PageHead(page) && PagePrivate(&page[1]);
1179}
1180
1181/* never called for tail page */
1182static void set_page_huge_active(struct page *page)
1183{
1184 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1185 SetPagePrivate(&page[1]);
1186}
1187
1188static void clear_page_huge_active(struct page *page)
1189{
1190 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1191 ClearPagePrivate(&page[1]);
1192}
1193
1194void free_huge_page(struct page *page)
1195{
1196 /*
1197 * Can't pass hstate in here because it is called from the
1198 * compound page destructor.
1199 */
1200 struct hstate *h = page_hstate(page);
1201 int nid = page_to_nid(page);
1202 struct hugepage_subpool *spool =
1203 (struct hugepage_subpool *)page_private(page);
1204 bool restore_reserve;
1205
1206 set_page_private(page, 0);
1207 page->mapping = NULL;
1208 BUG_ON(page_count(page));
1209 BUG_ON(page_mapcount(page));
1210 restore_reserve = PagePrivate(page);
1211 ClearPagePrivate(page);
1212
1213 /*
1214 * A return code of zero implies that the subpool will be under its
1215 * minimum size if the reservation is not restored after page is free.
1216 * Therefore, force restore_reserve operation.
1217 */
1218 if (hugepage_subpool_put_pages(spool, 1) == 0)
1219 restore_reserve = true;
1220
1221 spin_lock(&hugetlb_lock);
1222 clear_page_huge_active(page);
1223 hugetlb_cgroup_uncharge_page(hstate_index(h),
1224 pages_per_huge_page(h), page);
1225 if (restore_reserve)
1226 h->resv_huge_pages++;
1227
1228 if (h->surplus_huge_pages_node[nid]) {
1229 /* remove the page from active list */
1230 list_del(&page->lru);
1231 update_and_free_page(h, page);
1232 h->surplus_huge_pages--;
1233 h->surplus_huge_pages_node[nid]--;
1234 } else {
1235 arch_clear_hugepage_flags(page);
1236 enqueue_huge_page(h, page);
1237 }
1238 spin_unlock(&hugetlb_lock);
1239}
1240
1241static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1242{
1243 INIT_LIST_HEAD(&page->lru);
1244 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1245 spin_lock(&hugetlb_lock);
1246 set_hugetlb_cgroup(page, NULL);
1247 h->nr_huge_pages++;
1248 h->nr_huge_pages_node[nid]++;
1249 spin_unlock(&hugetlb_lock);
1250 put_page(page); /* free it into the hugepage allocator */
1251}
1252
1253static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1254{
1255 int i;
1256 int nr_pages = 1 << order;
1257 struct page *p = page + 1;
1258
1259 /* we rely on prep_new_huge_page to set the destructor */
1260 set_compound_order(page, order);
1261 __SetPageHead(page);
1262 __ClearPageReserved(page);
1263 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1264 /*
1265 * For gigantic hugepages allocated through bootmem at
1266 * boot, it's safer to be consistent with the not-gigantic
1267 * hugepages and clear the PG_reserved bit from all tail pages
1268 * too. Otherwse drivers using get_user_pages() to access tail
1269 * pages may get the reference counting wrong if they see
1270 * PG_reserved set on a tail page (despite the head page not
1271 * having PG_reserved set). Enforcing this consistency between
1272 * head and tail pages allows drivers to optimize away a check
1273 * on the head page when they need know if put_page() is needed
1274 * after get_user_pages().
1275 */
1276 __ClearPageReserved(p);
1277 set_page_count(p, 0);
1278 set_compound_head(p, page);
1279 }
1280}
1281
1282/*
1283 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1284 * transparent huge pages. See the PageTransHuge() documentation for more
1285 * details.
1286 */
1287int PageHuge(struct page *page)
1288{
1289 if (!PageCompound(page))
1290 return 0;
1291
1292 page = compound_head(page);
1293 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1294}
1295EXPORT_SYMBOL_GPL(PageHuge);
1296
1297/*
1298 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1299 * normal or transparent huge pages.
1300 */
1301int PageHeadHuge(struct page *page_head)
1302{
1303 if (!PageHead(page_head))
1304 return 0;
1305
1306 return get_compound_page_dtor(page_head) == free_huge_page;
1307}
1308
1309pgoff_t __basepage_index(struct page *page)
1310{
1311 struct page *page_head = compound_head(page);
1312 pgoff_t index = page_index(page_head);
1313 unsigned long compound_idx;
1314
1315 if (!PageHuge(page_head))
1316 return page_index(page);
1317
1318 if (compound_order(page_head) >= MAX_ORDER)
1319 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1320 else
1321 compound_idx = page - page_head;
1322
1323 return (index << compound_order(page_head)) + compound_idx;
1324}
1325
1326static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1327{
1328 struct page *page;
1329
1330 page = __alloc_pages_node(nid,
1331 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1332 __GFP_REPEAT|__GFP_NOWARN,
1333 huge_page_order(h));
1334 if (page) {
1335 prep_new_huge_page(h, page, nid);
1336 }
1337
1338 return page;
1339}
1340
1341static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1342{
1343 struct page *page;
1344 int nr_nodes, node;
1345 int ret = 0;
1346
1347 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1348 page = alloc_fresh_huge_page_node(h, node);
1349 if (page) {
1350 ret = 1;
1351 break;
1352 }
1353 }
1354
1355 if (ret)
1356 count_vm_event(HTLB_BUDDY_PGALLOC);
1357 else
1358 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1359
1360 return ret;
1361}
1362
1363/*
1364 * Free huge page from pool from next node to free.
1365 * Attempt to keep persistent huge pages more or less
1366 * balanced over allowed nodes.
1367 * Called with hugetlb_lock locked.
1368 */
1369static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1370 bool acct_surplus)
1371{
1372 int nr_nodes, node;
1373 int ret = 0;
1374
1375 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1376 /*
1377 * If we're returning unused surplus pages, only examine
1378 * nodes with surplus pages.
1379 */
1380 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1381 !list_empty(&h->hugepage_freelists[node])) {
1382 struct page *page =
1383 list_entry(h->hugepage_freelists[node].next,
1384 struct page, lru);
1385 list_del(&page->lru);
1386 h->free_huge_pages--;
1387 h->free_huge_pages_node[node]--;
1388 if (acct_surplus) {
1389 h->surplus_huge_pages--;
1390 h->surplus_huge_pages_node[node]--;
1391 }
1392 update_and_free_page(h, page);
1393 ret = 1;
1394 break;
1395 }
1396 }
1397
1398 return ret;
1399}
1400
1401/*
1402 * Dissolve a given free hugepage into free buddy pages. This function does
1403 * nothing for in-use (including surplus) hugepages.
1404 */
1405static void dissolve_free_huge_page(struct page *page)
1406{
1407 spin_lock(&hugetlb_lock);
1408 if (PageHuge(page) && !page_count(page)) {
1409 struct hstate *h = page_hstate(page);
1410 int nid = page_to_nid(page);
1411 list_del(&page->lru);
1412 h->free_huge_pages--;
1413 h->free_huge_pages_node[nid]--;
1414 update_and_free_page(h, page);
1415 }
1416 spin_unlock(&hugetlb_lock);
1417}
1418
1419/*
1420 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1421 * make specified memory blocks removable from the system.
1422 * Note that start_pfn should aligned with (minimum) hugepage size.
1423 */
1424void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1425{
1426 unsigned long pfn;
1427
1428 if (!hugepages_supported())
1429 return;
1430
1431 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1432 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1433 dissolve_free_huge_page(pfn_to_page(pfn));
1434}
1435
1436/*
1437 * There are 3 ways this can get called:
1438 * 1. With vma+addr: we use the VMA's memory policy
1439 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1440 * page from any node, and let the buddy allocator itself figure
1441 * it out.
1442 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1443 * strictly from 'nid'
1444 */
1445static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1446 struct vm_area_struct *vma, unsigned long addr, int nid)
1447{
1448 int order = huge_page_order(h);
1449 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1450 unsigned int cpuset_mems_cookie;
1451
1452 /*
1453 * We need a VMA to get a memory policy. If we do not
1454 * have one, we use the 'nid' argument.
1455 *
1456 * The mempolicy stuff below has some non-inlined bits
1457 * and calls ->vm_ops. That makes it hard to optimize at
1458 * compile-time, even when NUMA is off and it does
1459 * nothing. This helps the compiler optimize it out.
1460 */
1461 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1462 /*
1463 * If a specific node is requested, make sure to
1464 * get memory from there, but only when a node
1465 * is explicitly specified.
1466 */
1467 if (nid != NUMA_NO_NODE)
1468 gfp |= __GFP_THISNODE;
1469 /*
1470 * Make sure to call something that can handle
1471 * nid=NUMA_NO_NODE
1472 */
1473 return alloc_pages_node(nid, gfp, order);
1474 }
1475
1476 /*
1477 * OK, so we have a VMA. Fetch the mempolicy and try to
1478 * allocate a huge page with it. We will only reach this
1479 * when CONFIG_NUMA=y.
1480 */
1481 do {
1482 struct page *page;
1483 struct mempolicy *mpol;
1484 struct zonelist *zl;
1485 nodemask_t *nodemask;
1486
1487 cpuset_mems_cookie = read_mems_allowed_begin();
1488 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1489 mpol_cond_put(mpol);
1490 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1491 if (page)
1492 return page;
1493 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1494
1495 return NULL;
1496}
1497
1498/*
1499 * There are two ways to allocate a huge page:
1500 * 1. When you have a VMA and an address (like a fault)
1501 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1502 *
1503 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1504 * this case which signifies that the allocation should be done with
1505 * respect for the VMA's memory policy.
1506 *
1507 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1508 * implies that memory policies will not be taken in to account.
1509 */
1510static struct page *__alloc_buddy_huge_page(struct hstate *h,
1511 struct vm_area_struct *vma, unsigned long addr, int nid)
1512{
1513 struct page *page;
1514 unsigned int r_nid;
1515
1516 if (hstate_is_gigantic(h))
1517 return NULL;
1518
1519 /*
1520 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1521 * This makes sure the caller is picking _one_ of the modes with which
1522 * we can call this function, not both.
1523 */
1524 if (vma || (addr != -1)) {
1525 VM_WARN_ON_ONCE(addr == -1);
1526 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1527 }
1528 /*
1529 * Assume we will successfully allocate the surplus page to
1530 * prevent racing processes from causing the surplus to exceed
1531 * overcommit
1532 *
1533 * This however introduces a different race, where a process B
1534 * tries to grow the static hugepage pool while alloc_pages() is
1535 * called by process A. B will only examine the per-node
1536 * counters in determining if surplus huge pages can be
1537 * converted to normal huge pages in adjust_pool_surplus(). A
1538 * won't be able to increment the per-node counter, until the
1539 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1540 * no more huge pages can be converted from surplus to normal
1541 * state (and doesn't try to convert again). Thus, we have a
1542 * case where a surplus huge page exists, the pool is grown, and
1543 * the surplus huge page still exists after, even though it
1544 * should just have been converted to a normal huge page. This
1545 * does not leak memory, though, as the hugepage will be freed
1546 * once it is out of use. It also does not allow the counters to
1547 * go out of whack in adjust_pool_surplus() as we don't modify
1548 * the node values until we've gotten the hugepage and only the
1549 * per-node value is checked there.
1550 */
1551 spin_lock(&hugetlb_lock);
1552 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1553 spin_unlock(&hugetlb_lock);
1554 return NULL;
1555 } else {
1556 h->nr_huge_pages++;
1557 h->surplus_huge_pages++;
1558 }
1559 spin_unlock(&hugetlb_lock);
1560
1561 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1562
1563 spin_lock(&hugetlb_lock);
1564 if (page) {
1565 INIT_LIST_HEAD(&page->lru);
1566 r_nid = page_to_nid(page);
1567 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1568 set_hugetlb_cgroup(page, NULL);
1569 /*
1570 * We incremented the global counters already
1571 */
1572 h->nr_huge_pages_node[r_nid]++;
1573 h->surplus_huge_pages_node[r_nid]++;
1574 __count_vm_event(HTLB_BUDDY_PGALLOC);
1575 } else {
1576 h->nr_huge_pages--;
1577 h->surplus_huge_pages--;
1578 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1579 }
1580 spin_unlock(&hugetlb_lock);
1581
1582 return page;
1583}
1584
1585/*
1586 * Allocate a huge page from 'nid'. Note, 'nid' may be
1587 * NUMA_NO_NODE, which means that it may be allocated
1588 * anywhere.
1589 */
1590static
1591struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1592{
1593 unsigned long addr = -1;
1594
1595 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1596}
1597
1598/*
1599 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1600 */
1601static
1602struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1603 struct vm_area_struct *vma, unsigned long addr)
1604{
1605 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1606}
1607
1608/*
1609 * This allocation function is useful in the context where vma is irrelevant.
1610 * E.g. soft-offlining uses this function because it only cares physical
1611 * address of error page.
1612 */
1613struct page *alloc_huge_page_node(struct hstate *h, int nid)
1614{
1615 struct page *page = NULL;
1616
1617 spin_lock(&hugetlb_lock);
1618 if (h->free_huge_pages - h->resv_huge_pages > 0)
1619 page = dequeue_huge_page_node(h, nid);
1620 spin_unlock(&hugetlb_lock);
1621
1622 if (!page)
1623 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1624
1625 return page;
1626}
1627
1628/*
1629 * Increase the hugetlb pool such that it can accommodate a reservation
1630 * of size 'delta'.
1631 */
1632static int gather_surplus_pages(struct hstate *h, int delta)
1633{
1634 struct list_head surplus_list;
1635 struct page *page, *tmp;
1636 int ret, i;
1637 int needed, allocated;
1638 bool alloc_ok = true;
1639
1640 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1641 if (needed <= 0) {
1642 h->resv_huge_pages += delta;
1643 return 0;
1644 }
1645
1646 allocated = 0;
1647 INIT_LIST_HEAD(&surplus_list);
1648
1649 ret = -ENOMEM;
1650retry:
1651 spin_unlock(&hugetlb_lock);
1652 for (i = 0; i < needed; i++) {
1653 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1654 if (!page) {
1655 alloc_ok = false;
1656 break;
1657 }
1658 list_add(&page->lru, &surplus_list);
1659 }
1660 allocated += i;
1661
1662 /*
1663 * After retaking hugetlb_lock, we need to recalculate 'needed'
1664 * because either resv_huge_pages or free_huge_pages may have changed.
1665 */
1666 spin_lock(&hugetlb_lock);
1667 needed = (h->resv_huge_pages + delta) -
1668 (h->free_huge_pages + allocated);
1669 if (needed > 0) {
1670 if (alloc_ok)
1671 goto retry;
1672 /*
1673 * We were not able to allocate enough pages to
1674 * satisfy the entire reservation so we free what
1675 * we've allocated so far.
1676 */
1677 goto free;
1678 }
1679 /*
1680 * The surplus_list now contains _at_least_ the number of extra pages
1681 * needed to accommodate the reservation. Add the appropriate number
1682 * of pages to the hugetlb pool and free the extras back to the buddy
1683 * allocator. Commit the entire reservation here to prevent another
1684 * process from stealing the pages as they are added to the pool but
1685 * before they are reserved.
1686 */
1687 needed += allocated;
1688 h->resv_huge_pages += delta;
1689 ret = 0;
1690
1691 /* Free the needed pages to the hugetlb pool */
1692 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1693 if ((--needed) < 0)
1694 break;
1695 /*
1696 * This page is now managed by the hugetlb allocator and has
1697 * no users -- drop the buddy allocator's reference.
1698 */
1699 put_page_testzero(page);
1700 VM_BUG_ON_PAGE(page_count(page), page);
1701 enqueue_huge_page(h, page);
1702 }
1703free:
1704 spin_unlock(&hugetlb_lock);
1705
1706 /* Free unnecessary surplus pages to the buddy allocator */
1707 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1708 put_page(page);
1709 spin_lock(&hugetlb_lock);
1710
1711 return ret;
1712}
1713
1714/*
1715 * When releasing a hugetlb pool reservation, any surplus pages that were
1716 * allocated to satisfy the reservation must be explicitly freed if they were
1717 * never used.
1718 * Called with hugetlb_lock held.
1719 */
1720static void return_unused_surplus_pages(struct hstate *h,
1721 unsigned long unused_resv_pages)
1722{
1723 unsigned long nr_pages;
1724
1725 /* Uncommit the reservation */
1726 h->resv_huge_pages -= unused_resv_pages;
1727
1728 /* Cannot return gigantic pages currently */
1729 if (hstate_is_gigantic(h))
1730 return;
1731
1732 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1733
1734 /*
1735 * We want to release as many surplus pages as possible, spread
1736 * evenly across all nodes with memory. Iterate across these nodes
1737 * until we can no longer free unreserved surplus pages. This occurs
1738 * when the nodes with surplus pages have no free pages.
1739 * free_pool_huge_page() will balance the the freed pages across the
1740 * on-line nodes with memory and will handle the hstate accounting.
1741 */
1742 while (nr_pages--) {
1743 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1744 break;
1745 cond_resched_lock(&hugetlb_lock);
1746 }
1747}
1748
1749
1750/*
1751 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1752 * are used by the huge page allocation routines to manage reservations.
1753 *
1754 * vma_needs_reservation is called to determine if the huge page at addr
1755 * within the vma has an associated reservation. If a reservation is
1756 * needed, the value 1 is returned. The caller is then responsible for
1757 * managing the global reservation and subpool usage counts. After
1758 * the huge page has been allocated, vma_commit_reservation is called
1759 * to add the page to the reservation map. If the page allocation fails,
1760 * the reservation must be ended instead of committed. vma_end_reservation
1761 * is called in such cases.
1762 *
1763 * In the normal case, vma_commit_reservation returns the same value
1764 * as the preceding vma_needs_reservation call. The only time this
1765 * is not the case is if a reserve map was changed between calls. It
1766 * is the responsibility of the caller to notice the difference and
1767 * take appropriate action.
1768 */
1769enum vma_resv_mode {
1770 VMA_NEEDS_RESV,
1771 VMA_COMMIT_RESV,
1772 VMA_END_RESV,
1773};
1774static long __vma_reservation_common(struct hstate *h,
1775 struct vm_area_struct *vma, unsigned long addr,
1776 enum vma_resv_mode mode)
1777{
1778 struct resv_map *resv;
1779 pgoff_t idx;
1780 long ret;
1781
1782 resv = vma_resv_map(vma);
1783 if (!resv)
1784 return 1;
1785
1786 idx = vma_hugecache_offset(h, vma, addr);
1787 switch (mode) {
1788 case VMA_NEEDS_RESV:
1789 ret = region_chg(resv, idx, idx + 1);
1790 break;
1791 case VMA_COMMIT_RESV:
1792 ret = region_add(resv, idx, idx + 1);
1793 break;
1794 case VMA_END_RESV:
1795 region_abort(resv, idx, idx + 1);
1796 ret = 0;
1797 break;
1798 default:
1799 BUG();
1800 }
1801
1802 if (vma->vm_flags & VM_MAYSHARE)
1803 return ret;
1804 else
1805 return ret < 0 ? ret : 0;
1806}
1807
1808static long vma_needs_reservation(struct hstate *h,
1809 struct vm_area_struct *vma, unsigned long addr)
1810{
1811 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1812}
1813
1814static long vma_commit_reservation(struct hstate *h,
1815 struct vm_area_struct *vma, unsigned long addr)
1816{
1817 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1818}
1819
1820static void vma_end_reservation(struct hstate *h,
1821 struct vm_area_struct *vma, unsigned long addr)
1822{
1823 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1824}
1825
1826struct page *alloc_huge_page(struct vm_area_struct *vma,
1827 unsigned long addr, int avoid_reserve)
1828{
1829 struct hugepage_subpool *spool = subpool_vma(vma);
1830 struct hstate *h = hstate_vma(vma);
1831 struct page *page;
1832 long map_chg, map_commit;
1833 long gbl_chg;
1834 int ret, idx;
1835 struct hugetlb_cgroup *h_cg;
1836
1837 idx = hstate_index(h);
1838 /*
1839 * Examine the region/reserve map to determine if the process
1840 * has a reservation for the page to be allocated. A return
1841 * code of zero indicates a reservation exists (no change).
1842 */
1843 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1844 if (map_chg < 0)
1845 return ERR_PTR(-ENOMEM);
1846
1847 /*
1848 * Processes that did not create the mapping will have no
1849 * reserves as indicated by the region/reserve map. Check
1850 * that the allocation will not exceed the subpool limit.
1851 * Allocations for MAP_NORESERVE mappings also need to be
1852 * checked against any subpool limit.
1853 */
1854 if (map_chg || avoid_reserve) {
1855 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1856 if (gbl_chg < 0) {
1857 vma_end_reservation(h, vma, addr);
1858 return ERR_PTR(-ENOSPC);
1859 }
1860
1861 /*
1862 * Even though there was no reservation in the region/reserve
1863 * map, there could be reservations associated with the
1864 * subpool that can be used. This would be indicated if the
1865 * return value of hugepage_subpool_get_pages() is zero.
1866 * However, if avoid_reserve is specified we still avoid even
1867 * the subpool reservations.
1868 */
1869 if (avoid_reserve)
1870 gbl_chg = 1;
1871 }
1872
1873 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1874 if (ret)
1875 goto out_subpool_put;
1876
1877 spin_lock(&hugetlb_lock);
1878 /*
1879 * glb_chg is passed to indicate whether or not a page must be taken
1880 * from the global free pool (global change). gbl_chg == 0 indicates
1881 * a reservation exists for the allocation.
1882 */
1883 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1884 if (!page) {
1885 spin_unlock(&hugetlb_lock);
1886 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1887 if (!page)
1888 goto out_uncharge_cgroup;
1889 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1890 SetPagePrivate(page);
1891 h->resv_huge_pages--;
1892 }
1893 spin_lock(&hugetlb_lock);
1894 list_move(&page->lru, &h->hugepage_activelist);
1895 /* Fall through */
1896 }
1897 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1898 spin_unlock(&hugetlb_lock);
1899
1900 set_page_private(page, (unsigned long)spool);
1901
1902 map_commit = vma_commit_reservation(h, vma, addr);
1903 if (unlikely(map_chg > map_commit)) {
1904 /*
1905 * The page was added to the reservation map between
1906 * vma_needs_reservation and vma_commit_reservation.
1907 * This indicates a race with hugetlb_reserve_pages.
1908 * Adjust for the subpool count incremented above AND
1909 * in hugetlb_reserve_pages for the same page. Also,
1910 * the reservation count added in hugetlb_reserve_pages
1911 * no longer applies.
1912 */
1913 long rsv_adjust;
1914
1915 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1916 hugetlb_acct_memory(h, -rsv_adjust);
1917 }
1918 return page;
1919
1920out_uncharge_cgroup:
1921 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1922out_subpool_put:
1923 if (map_chg || avoid_reserve)
1924 hugepage_subpool_put_pages(spool, 1);
1925 vma_end_reservation(h, vma, addr);
1926 return ERR_PTR(-ENOSPC);
1927}
1928
1929/*
1930 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1931 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1932 * where no ERR_VALUE is expected to be returned.
1933 */
1934struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1935 unsigned long addr, int avoid_reserve)
1936{
1937 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1938 if (IS_ERR(page))
1939 page = NULL;
1940 return page;
1941}
1942
1943int __weak alloc_bootmem_huge_page(struct hstate *h)
1944{
1945 struct huge_bootmem_page *m;
1946 int nr_nodes, node;
1947
1948 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1949 void *addr;
1950
1951 addr = memblock_virt_alloc_try_nid_nopanic(
1952 huge_page_size(h), huge_page_size(h),
1953 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1954 if (addr) {
1955 /*
1956 * Use the beginning of the huge page to store the
1957 * huge_bootmem_page struct (until gather_bootmem
1958 * puts them into the mem_map).
1959 */
1960 m = addr;
1961 goto found;
1962 }
1963 }
1964 return 0;
1965
1966found:
1967 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1968 /* Put them into a private list first because mem_map is not up yet */
1969 list_add(&m->list, &huge_boot_pages);
1970 m->hstate = h;
1971 return 1;
1972}
1973
1974static void __init prep_compound_huge_page(struct page *page,
1975 unsigned int order)
1976{
1977 if (unlikely(order > (MAX_ORDER - 1)))
1978 prep_compound_gigantic_page(page, order);
1979 else
1980 prep_compound_page(page, order);
1981}
1982
1983/* Put bootmem huge pages into the standard lists after mem_map is up */
1984static void __init gather_bootmem_prealloc(void)
1985{
1986 struct huge_bootmem_page *m;
1987
1988 list_for_each_entry(m, &huge_boot_pages, list) {
1989 struct hstate *h = m->hstate;
1990 struct page *page;
1991
1992#ifdef CONFIG_HIGHMEM
1993 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1994 memblock_free_late(__pa(m),
1995 sizeof(struct huge_bootmem_page));
1996#else
1997 page = virt_to_page(m);
1998#endif
1999 WARN_ON(page_count(page) != 1);
2000 prep_compound_huge_page(page, h->order);
2001 WARN_ON(PageReserved(page));
2002 prep_new_huge_page(h, page, page_to_nid(page));
2003 /*
2004 * If we had gigantic hugepages allocated at boot time, we need
2005 * to restore the 'stolen' pages to totalram_pages in order to
2006 * fix confusing memory reports from free(1) and another
2007 * side-effects, like CommitLimit going negative.
2008 */
2009 if (hstate_is_gigantic(h))
2010 adjust_managed_page_count(page, 1 << h->order);
2011 }
2012}
2013
2014static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2015{
2016 unsigned long i;
2017
2018 for (i = 0; i < h->max_huge_pages; ++i) {
2019 if (hstate_is_gigantic(h)) {
2020 if (!alloc_bootmem_huge_page(h))
2021 break;
2022 } else if (!alloc_fresh_huge_page(h,
2023 &node_states[N_MEMORY]))
2024 break;
2025 }
2026 h->max_huge_pages = i;
2027}
2028
2029static void __init hugetlb_init_hstates(void)
2030{
2031 struct hstate *h;
2032
2033 for_each_hstate(h) {
2034 if (minimum_order > huge_page_order(h))
2035 minimum_order = huge_page_order(h);
2036
2037 /* oversize hugepages were init'ed in early boot */
2038 if (!hstate_is_gigantic(h))
2039 hugetlb_hstate_alloc_pages(h);
2040 }
2041 VM_BUG_ON(minimum_order == UINT_MAX);
2042}
2043
2044static char * __init memfmt(char *buf, unsigned long n)
2045{
2046 if (n >= (1UL << 30))
2047 sprintf(buf, "%lu GB", n >> 30);
2048 else if (n >= (1UL << 20))
2049 sprintf(buf, "%lu MB", n >> 20);
2050 else
2051 sprintf(buf, "%lu KB", n >> 10);
2052 return buf;
2053}
2054
2055static void __init report_hugepages(void)
2056{
2057 struct hstate *h;
2058
2059 for_each_hstate(h) {
2060 char buf[32];
2061 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2062 memfmt(buf, huge_page_size(h)),
2063 h->free_huge_pages);
2064 }
2065}
2066
2067#ifdef CONFIG_HIGHMEM
2068static void try_to_free_low(struct hstate *h, unsigned long count,
2069 nodemask_t *nodes_allowed)
2070{
2071 int i;
2072
2073 if (hstate_is_gigantic(h))
2074 return;
2075
2076 for_each_node_mask(i, *nodes_allowed) {
2077 struct page *page, *next;
2078 struct list_head *freel = &h->hugepage_freelists[i];
2079 list_for_each_entry_safe(page, next, freel, lru) {
2080 if (count >= h->nr_huge_pages)
2081 return;
2082 if (PageHighMem(page))
2083 continue;
2084 list_del(&page->lru);
2085 update_and_free_page(h, page);
2086 h->free_huge_pages--;
2087 h->free_huge_pages_node[page_to_nid(page)]--;
2088 }
2089 }
2090}
2091#else
2092static inline void try_to_free_low(struct hstate *h, unsigned long count,
2093 nodemask_t *nodes_allowed)
2094{
2095}
2096#endif
2097
2098/*
2099 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2100 * balanced by operating on them in a round-robin fashion.
2101 * Returns 1 if an adjustment was made.
2102 */
2103static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2104 int delta)
2105{
2106 int nr_nodes, node;
2107
2108 VM_BUG_ON(delta != -1 && delta != 1);
2109
2110 if (delta < 0) {
2111 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2112 if (h->surplus_huge_pages_node[node])
2113 goto found;
2114 }
2115 } else {
2116 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2117 if (h->surplus_huge_pages_node[node] <
2118 h->nr_huge_pages_node[node])
2119 goto found;
2120 }
2121 }
2122 return 0;
2123
2124found:
2125 h->surplus_huge_pages += delta;
2126 h->surplus_huge_pages_node[node] += delta;
2127 return 1;
2128}
2129
2130#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2131static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2132 nodemask_t *nodes_allowed)
2133{
2134 unsigned long min_count, ret;
2135
2136 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2137 return h->max_huge_pages;
2138
2139 /*
2140 * Increase the pool size
2141 * First take pages out of surplus state. Then make up the
2142 * remaining difference by allocating fresh huge pages.
2143 *
2144 * We might race with __alloc_buddy_huge_page() here and be unable
2145 * to convert a surplus huge page to a normal huge page. That is
2146 * not critical, though, it just means the overall size of the
2147 * pool might be one hugepage larger than it needs to be, but
2148 * within all the constraints specified by the sysctls.
2149 */
2150 spin_lock(&hugetlb_lock);
2151 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2152 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2153 break;
2154 }
2155
2156 while (count > persistent_huge_pages(h)) {
2157 /*
2158 * If this allocation races such that we no longer need the
2159 * page, free_huge_page will handle it by freeing the page
2160 * and reducing the surplus.
2161 */
2162 spin_unlock(&hugetlb_lock);
2163 if (hstate_is_gigantic(h))
2164 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2165 else
2166 ret = alloc_fresh_huge_page(h, nodes_allowed);
2167 spin_lock(&hugetlb_lock);
2168 if (!ret)
2169 goto out;
2170
2171 /* Bail for signals. Probably ctrl-c from user */
2172 if (signal_pending(current))
2173 goto out;
2174 }
2175
2176 /*
2177 * Decrease the pool size
2178 * First return free pages to the buddy allocator (being careful
2179 * to keep enough around to satisfy reservations). Then place
2180 * pages into surplus state as needed so the pool will shrink
2181 * to the desired size as pages become free.
2182 *
2183 * By placing pages into the surplus state independent of the
2184 * overcommit value, we are allowing the surplus pool size to
2185 * exceed overcommit. There are few sane options here. Since
2186 * __alloc_buddy_huge_page() is checking the global counter,
2187 * though, we'll note that we're not allowed to exceed surplus
2188 * and won't grow the pool anywhere else. Not until one of the
2189 * sysctls are changed, or the surplus pages go out of use.
2190 */
2191 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2192 min_count = max(count, min_count);
2193 try_to_free_low(h, min_count, nodes_allowed);
2194 while (min_count < persistent_huge_pages(h)) {
2195 if (!free_pool_huge_page(h, nodes_allowed, 0))
2196 break;
2197 cond_resched_lock(&hugetlb_lock);
2198 }
2199 while (count < persistent_huge_pages(h)) {
2200 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2201 break;
2202 }
2203out:
2204 ret = persistent_huge_pages(h);
2205 spin_unlock(&hugetlb_lock);
2206 return ret;
2207}
2208
2209#define HSTATE_ATTR_RO(_name) \
2210 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2211
2212#define HSTATE_ATTR(_name) \
2213 static struct kobj_attribute _name##_attr = \
2214 __ATTR(_name, 0644, _name##_show, _name##_store)
2215
2216static struct kobject *hugepages_kobj;
2217static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2218
2219static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2220
2221static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2222{
2223 int i;
2224
2225 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2226 if (hstate_kobjs[i] == kobj) {
2227 if (nidp)
2228 *nidp = NUMA_NO_NODE;
2229 return &hstates[i];
2230 }
2231
2232 return kobj_to_node_hstate(kobj, nidp);
2233}
2234
2235static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2236 struct kobj_attribute *attr, char *buf)
2237{
2238 struct hstate *h;
2239 unsigned long nr_huge_pages;
2240 int nid;
2241
2242 h = kobj_to_hstate(kobj, &nid);
2243 if (nid == NUMA_NO_NODE)
2244 nr_huge_pages = h->nr_huge_pages;
2245 else
2246 nr_huge_pages = h->nr_huge_pages_node[nid];
2247
2248 return sprintf(buf, "%lu\n", nr_huge_pages);
2249}
2250
2251static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2252 struct hstate *h, int nid,
2253 unsigned long count, size_t len)
2254{
2255 int err;
2256 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2257
2258 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2259 err = -EINVAL;
2260 goto out;
2261 }
2262
2263 if (nid == NUMA_NO_NODE) {
2264 /*
2265 * global hstate attribute
2266 */
2267 if (!(obey_mempolicy &&
2268 init_nodemask_of_mempolicy(nodes_allowed))) {
2269 NODEMASK_FREE(nodes_allowed);
2270 nodes_allowed = &node_states[N_MEMORY];
2271 }
2272 } else if (nodes_allowed) {
2273 /*
2274 * per node hstate attribute: adjust count to global,
2275 * but restrict alloc/free to the specified node.
2276 */
2277 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2278 init_nodemask_of_node(nodes_allowed, nid);
2279 } else
2280 nodes_allowed = &node_states[N_MEMORY];
2281
2282 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2283
2284 if (nodes_allowed != &node_states[N_MEMORY])
2285 NODEMASK_FREE(nodes_allowed);
2286
2287 return len;
2288out:
2289 NODEMASK_FREE(nodes_allowed);
2290 return err;
2291}
2292
2293static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2294 struct kobject *kobj, const char *buf,
2295 size_t len)
2296{
2297 struct hstate *h;
2298 unsigned long count;
2299 int nid;
2300 int err;
2301
2302 err = kstrtoul(buf, 10, &count);
2303 if (err)
2304 return err;
2305
2306 h = kobj_to_hstate(kobj, &nid);
2307 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2308}
2309
2310static ssize_t nr_hugepages_show(struct kobject *kobj,
2311 struct kobj_attribute *attr, char *buf)
2312{
2313 return nr_hugepages_show_common(kobj, attr, buf);
2314}
2315
2316static ssize_t nr_hugepages_store(struct kobject *kobj,
2317 struct kobj_attribute *attr, const char *buf, size_t len)
2318{
2319 return nr_hugepages_store_common(false, kobj, buf, len);
2320}
2321HSTATE_ATTR(nr_hugepages);
2322
2323#ifdef CONFIG_NUMA
2324
2325/*
2326 * hstate attribute for optionally mempolicy-based constraint on persistent
2327 * huge page alloc/free.
2328 */
2329static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2330 struct kobj_attribute *attr, char *buf)
2331{
2332 return nr_hugepages_show_common(kobj, attr, buf);
2333}
2334
2335static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2336 struct kobj_attribute *attr, const char *buf, size_t len)
2337{
2338 return nr_hugepages_store_common(true, kobj, buf, len);
2339}
2340HSTATE_ATTR(nr_hugepages_mempolicy);
2341#endif
2342
2343
2344static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2345 struct kobj_attribute *attr, char *buf)
2346{
2347 struct hstate *h = kobj_to_hstate(kobj, NULL);
2348 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2349}
2350
2351static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2352 struct kobj_attribute *attr, const char *buf, size_t count)
2353{
2354 int err;
2355 unsigned long input;
2356 struct hstate *h = kobj_to_hstate(kobj, NULL);
2357
2358 if (hstate_is_gigantic(h))
2359 return -EINVAL;
2360
2361 err = kstrtoul(buf, 10, &input);
2362 if (err)
2363 return err;
2364
2365 spin_lock(&hugetlb_lock);
2366 h->nr_overcommit_huge_pages = input;
2367 spin_unlock(&hugetlb_lock);
2368
2369 return count;
2370}
2371HSTATE_ATTR(nr_overcommit_hugepages);
2372
2373static ssize_t free_hugepages_show(struct kobject *kobj,
2374 struct kobj_attribute *attr, char *buf)
2375{
2376 struct hstate *h;
2377 unsigned long free_huge_pages;
2378 int nid;
2379
2380 h = kobj_to_hstate(kobj, &nid);
2381 if (nid == NUMA_NO_NODE)
2382 free_huge_pages = h->free_huge_pages;
2383 else
2384 free_huge_pages = h->free_huge_pages_node[nid];
2385
2386 return sprintf(buf, "%lu\n", free_huge_pages);
2387}
2388HSTATE_ATTR_RO(free_hugepages);
2389
2390static ssize_t resv_hugepages_show(struct kobject *kobj,
2391 struct kobj_attribute *attr, char *buf)
2392{
2393 struct hstate *h = kobj_to_hstate(kobj, NULL);
2394 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2395}
2396HSTATE_ATTR_RO(resv_hugepages);
2397
2398static ssize_t surplus_hugepages_show(struct kobject *kobj,
2399 struct kobj_attribute *attr, char *buf)
2400{
2401 struct hstate *h;
2402 unsigned long surplus_huge_pages;
2403 int nid;
2404
2405 h = kobj_to_hstate(kobj, &nid);
2406 if (nid == NUMA_NO_NODE)
2407 surplus_huge_pages = h->surplus_huge_pages;
2408 else
2409 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2410
2411 return sprintf(buf, "%lu\n", surplus_huge_pages);
2412}
2413HSTATE_ATTR_RO(surplus_hugepages);
2414
2415static struct attribute *hstate_attrs[] = {
2416 &nr_hugepages_attr.attr,
2417 &nr_overcommit_hugepages_attr.attr,
2418 &free_hugepages_attr.attr,
2419 &resv_hugepages_attr.attr,
2420 &surplus_hugepages_attr.attr,
2421#ifdef CONFIG_NUMA
2422 &nr_hugepages_mempolicy_attr.attr,
2423#endif
2424 NULL,
2425};
2426
2427static struct attribute_group hstate_attr_group = {
2428 .attrs = hstate_attrs,
2429};
2430
2431static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2432 struct kobject **hstate_kobjs,
2433 struct attribute_group *hstate_attr_group)
2434{
2435 int retval;
2436 int hi = hstate_index(h);
2437
2438 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2439 if (!hstate_kobjs[hi])
2440 return -ENOMEM;
2441
2442 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2443 if (retval)
2444 kobject_put(hstate_kobjs[hi]);
2445
2446 return retval;
2447}
2448
2449static void __init hugetlb_sysfs_init(void)
2450{
2451 struct hstate *h;
2452 int err;
2453
2454 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2455 if (!hugepages_kobj)
2456 return;
2457
2458 for_each_hstate(h) {
2459 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2460 hstate_kobjs, &hstate_attr_group);
2461 if (err)
2462 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2463 }
2464}
2465
2466#ifdef CONFIG_NUMA
2467
2468/*
2469 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2470 * with node devices in node_devices[] using a parallel array. The array
2471 * index of a node device or _hstate == node id.
2472 * This is here to avoid any static dependency of the node device driver, in
2473 * the base kernel, on the hugetlb module.
2474 */
2475struct node_hstate {
2476 struct kobject *hugepages_kobj;
2477 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2478};
2479static struct node_hstate node_hstates[MAX_NUMNODES];
2480
2481/*
2482 * A subset of global hstate attributes for node devices
2483 */
2484static struct attribute *per_node_hstate_attrs[] = {
2485 &nr_hugepages_attr.attr,
2486 &free_hugepages_attr.attr,
2487 &surplus_hugepages_attr.attr,
2488 NULL,
2489};
2490
2491static struct attribute_group per_node_hstate_attr_group = {
2492 .attrs = per_node_hstate_attrs,
2493};
2494
2495/*
2496 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2497 * Returns node id via non-NULL nidp.
2498 */
2499static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2500{
2501 int nid;
2502
2503 for (nid = 0; nid < nr_node_ids; nid++) {
2504 struct node_hstate *nhs = &node_hstates[nid];
2505 int i;
2506 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2507 if (nhs->hstate_kobjs[i] == kobj) {
2508 if (nidp)
2509 *nidp = nid;
2510 return &hstates[i];
2511 }
2512 }
2513
2514 BUG();
2515 return NULL;
2516}
2517
2518/*
2519 * Unregister hstate attributes from a single node device.
2520 * No-op if no hstate attributes attached.
2521 */
2522static void hugetlb_unregister_node(struct node *node)
2523{
2524 struct hstate *h;
2525 struct node_hstate *nhs = &node_hstates[node->dev.id];
2526
2527 if (!nhs->hugepages_kobj)
2528 return; /* no hstate attributes */
2529
2530 for_each_hstate(h) {
2531 int idx = hstate_index(h);
2532 if (nhs->hstate_kobjs[idx]) {
2533 kobject_put(nhs->hstate_kobjs[idx]);
2534 nhs->hstate_kobjs[idx] = NULL;
2535 }
2536 }
2537
2538 kobject_put(nhs->hugepages_kobj);
2539 nhs->hugepages_kobj = NULL;
2540}
2541
2542/*
2543 * hugetlb module exit: unregister hstate attributes from node devices
2544 * that have them.
2545 */
2546static void hugetlb_unregister_all_nodes(void)
2547{
2548 int nid;
2549
2550 /*
2551 * disable node device registrations.
2552 */
2553 register_hugetlbfs_with_node(NULL, NULL);
2554
2555 /*
2556 * remove hstate attributes from any nodes that have them.
2557 */
2558 for (nid = 0; nid < nr_node_ids; nid++)
2559 hugetlb_unregister_node(node_devices[nid]);
2560}
2561
2562/*
2563 * Register hstate attributes for a single node device.
2564 * No-op if attributes already registered.
2565 */
2566static void hugetlb_register_node(struct node *node)
2567{
2568 struct hstate *h;
2569 struct node_hstate *nhs = &node_hstates[node->dev.id];
2570 int err;
2571
2572 if (nhs->hugepages_kobj)
2573 return; /* already allocated */
2574
2575 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2576 &node->dev.kobj);
2577 if (!nhs->hugepages_kobj)
2578 return;
2579
2580 for_each_hstate(h) {
2581 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2582 nhs->hstate_kobjs,
2583 &per_node_hstate_attr_group);
2584 if (err) {
2585 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2586 h->name, node->dev.id);
2587 hugetlb_unregister_node(node);
2588 break;
2589 }
2590 }
2591}
2592
2593/*
2594 * hugetlb init time: register hstate attributes for all registered node
2595 * devices of nodes that have memory. All on-line nodes should have
2596 * registered their associated device by this time.
2597 */
2598static void __init hugetlb_register_all_nodes(void)
2599{
2600 int nid;
2601
2602 for_each_node_state(nid, N_MEMORY) {
2603 struct node *node = node_devices[nid];
2604 if (node->dev.id == nid)
2605 hugetlb_register_node(node);
2606 }
2607
2608 /*
2609 * Let the node device driver know we're here so it can
2610 * [un]register hstate attributes on node hotplug.
2611 */
2612 register_hugetlbfs_with_node(hugetlb_register_node,
2613 hugetlb_unregister_node);
2614}
2615#else /* !CONFIG_NUMA */
2616
2617static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2618{
2619 BUG();
2620 if (nidp)
2621 *nidp = -1;
2622 return NULL;
2623}
2624
2625static void hugetlb_unregister_all_nodes(void) { }
2626
2627static void hugetlb_register_all_nodes(void) { }
2628
2629#endif
2630
2631static void __exit hugetlb_exit(void)
2632{
2633 struct hstate *h;
2634
2635 hugetlb_unregister_all_nodes();
2636
2637 for_each_hstate(h) {
2638 kobject_put(hstate_kobjs[hstate_index(h)]);
2639 }
2640
2641 kobject_put(hugepages_kobj);
2642 kfree(hugetlb_fault_mutex_table);
2643}
2644module_exit(hugetlb_exit);
2645
2646static int __init hugetlb_init(void)
2647{
2648 int i;
2649
2650 if (!hugepages_supported())
2651 return 0;
2652
2653 if (!size_to_hstate(default_hstate_size)) {
2654 default_hstate_size = HPAGE_SIZE;
2655 if (!size_to_hstate(default_hstate_size))
2656 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2657 }
2658 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2659 if (default_hstate_max_huge_pages)
2660 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2661
2662 hugetlb_init_hstates();
2663 gather_bootmem_prealloc();
2664 report_hugepages();
2665
2666 hugetlb_sysfs_init();
2667 hugetlb_register_all_nodes();
2668 hugetlb_cgroup_file_init();
2669
2670#ifdef CONFIG_SMP
2671 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2672#else
2673 num_fault_mutexes = 1;
2674#endif
2675 hugetlb_fault_mutex_table =
2676 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2677 BUG_ON(!hugetlb_fault_mutex_table);
2678
2679 for (i = 0; i < num_fault_mutexes; i++)
2680 mutex_init(&hugetlb_fault_mutex_table[i]);
2681 return 0;
2682}
2683module_init(hugetlb_init);
2684
2685/* Should be called on processing a hugepagesz=... option */
2686void __init hugetlb_add_hstate(unsigned int order)
2687{
2688 struct hstate *h;
2689 unsigned long i;
2690
2691 if (size_to_hstate(PAGE_SIZE << order)) {
2692 pr_warning("hugepagesz= specified twice, ignoring\n");
2693 return;
2694 }
2695 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2696 BUG_ON(order == 0);
2697 h = &hstates[hugetlb_max_hstate++];
2698 h->order = order;
2699 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2700 h->nr_huge_pages = 0;
2701 h->free_huge_pages = 0;
2702 for (i = 0; i < MAX_NUMNODES; ++i)
2703 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2704 INIT_LIST_HEAD(&h->hugepage_activelist);
2705 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2706 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2707 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2708 huge_page_size(h)/1024);
2709
2710 parsed_hstate = h;
2711}
2712
2713static int __init hugetlb_nrpages_setup(char *s)
2714{
2715 unsigned long *mhp;
2716 static unsigned long *last_mhp;
2717
2718 /*
2719 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2720 * so this hugepages= parameter goes to the "default hstate".
2721 */
2722 if (!hugetlb_max_hstate)
2723 mhp = &default_hstate_max_huge_pages;
2724 else
2725 mhp = &parsed_hstate->max_huge_pages;
2726
2727 if (mhp == last_mhp) {
2728 pr_warning("hugepages= specified twice without "
2729 "interleaving hugepagesz=, ignoring\n");
2730 return 1;
2731 }
2732
2733 if (sscanf(s, "%lu", mhp) <= 0)
2734 *mhp = 0;
2735
2736 /*
2737 * Global state is always initialized later in hugetlb_init.
2738 * But we need to allocate >= MAX_ORDER hstates here early to still
2739 * use the bootmem allocator.
2740 */
2741 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2742 hugetlb_hstate_alloc_pages(parsed_hstate);
2743
2744 last_mhp = mhp;
2745
2746 return 1;
2747}
2748__setup("hugepages=", hugetlb_nrpages_setup);
2749
2750static int __init hugetlb_default_setup(char *s)
2751{
2752 default_hstate_size = memparse(s, &s);
2753 return 1;
2754}
2755__setup("default_hugepagesz=", hugetlb_default_setup);
2756
2757static unsigned int cpuset_mems_nr(unsigned int *array)
2758{
2759 int node;
2760 unsigned int nr = 0;
2761
2762 for_each_node_mask(node, cpuset_current_mems_allowed)
2763 nr += array[node];
2764
2765 return nr;
2766}
2767
2768#ifdef CONFIG_SYSCTL
2769static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2770 struct ctl_table *table, int write,
2771 void __user *buffer, size_t *length, loff_t *ppos)
2772{
2773 struct hstate *h = &default_hstate;
2774 unsigned long tmp = h->max_huge_pages;
2775 int ret;
2776
2777 if (!hugepages_supported())
2778 return -ENOTSUPP;
2779
2780 table->data = &tmp;
2781 table->maxlen = sizeof(unsigned long);
2782 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2783 if (ret)
2784 goto out;
2785
2786 if (write)
2787 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2788 NUMA_NO_NODE, tmp, *length);
2789out:
2790 return ret;
2791}
2792
2793int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2794 void __user *buffer, size_t *length, loff_t *ppos)
2795{
2796
2797 return hugetlb_sysctl_handler_common(false, table, write,
2798 buffer, length, ppos);
2799}
2800
2801#ifdef CONFIG_NUMA
2802int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2803 void __user *buffer, size_t *length, loff_t *ppos)
2804{
2805 return hugetlb_sysctl_handler_common(true, table, write,
2806 buffer, length, ppos);
2807}
2808#endif /* CONFIG_NUMA */
2809
2810int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2811 void __user *buffer,
2812 size_t *length, loff_t *ppos)
2813{
2814 struct hstate *h = &default_hstate;
2815 unsigned long tmp;
2816 int ret;
2817
2818 if (!hugepages_supported())
2819 return -ENOTSUPP;
2820
2821 tmp = h->nr_overcommit_huge_pages;
2822
2823 if (write && hstate_is_gigantic(h))
2824 return -EINVAL;
2825
2826 table->data = &tmp;
2827 table->maxlen = sizeof(unsigned long);
2828 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2829 if (ret)
2830 goto out;
2831
2832 if (write) {
2833 spin_lock(&hugetlb_lock);
2834 h->nr_overcommit_huge_pages = tmp;
2835 spin_unlock(&hugetlb_lock);
2836 }
2837out:
2838 return ret;
2839}
2840
2841#endif /* CONFIG_SYSCTL */
2842
2843void hugetlb_report_meminfo(struct seq_file *m)
2844{
2845 struct hstate *h = &default_hstate;
2846 if (!hugepages_supported())
2847 return;
2848 seq_printf(m,
2849 "HugePages_Total: %5lu\n"
2850 "HugePages_Free: %5lu\n"
2851 "HugePages_Rsvd: %5lu\n"
2852 "HugePages_Surp: %5lu\n"
2853 "Hugepagesize: %8lu kB\n",
2854 h->nr_huge_pages,
2855 h->free_huge_pages,
2856 h->resv_huge_pages,
2857 h->surplus_huge_pages,
2858 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2859}
2860
2861int hugetlb_report_node_meminfo(int nid, char *buf)
2862{
2863 struct hstate *h = &default_hstate;
2864 if (!hugepages_supported())
2865 return 0;
2866 return sprintf(buf,
2867 "Node %d HugePages_Total: %5u\n"
2868 "Node %d HugePages_Free: %5u\n"
2869 "Node %d HugePages_Surp: %5u\n",
2870 nid, h->nr_huge_pages_node[nid],
2871 nid, h->free_huge_pages_node[nid],
2872 nid, h->surplus_huge_pages_node[nid]);
2873}
2874
2875void hugetlb_show_meminfo(void)
2876{
2877 struct hstate *h;
2878 int nid;
2879
2880 if (!hugepages_supported())
2881 return;
2882
2883 for_each_node_state(nid, N_MEMORY)
2884 for_each_hstate(h)
2885 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2886 nid,
2887 h->nr_huge_pages_node[nid],
2888 h->free_huge_pages_node[nid],
2889 h->surplus_huge_pages_node[nid],
2890 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2891}
2892
2893void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2894{
2895 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2896 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2897}
2898
2899/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2900unsigned long hugetlb_total_pages(void)
2901{
2902 struct hstate *h;
2903 unsigned long nr_total_pages = 0;
2904
2905 for_each_hstate(h)
2906 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2907 return nr_total_pages;
2908}
2909
2910static int hugetlb_acct_memory(struct hstate *h, long delta)
2911{
2912 int ret = -ENOMEM;
2913
2914 spin_lock(&hugetlb_lock);
2915 /*
2916 * When cpuset is configured, it breaks the strict hugetlb page
2917 * reservation as the accounting is done on a global variable. Such
2918 * reservation is completely rubbish in the presence of cpuset because
2919 * the reservation is not checked against page availability for the
2920 * current cpuset. Application can still potentially OOM'ed by kernel
2921 * with lack of free htlb page in cpuset that the task is in.
2922 * Attempt to enforce strict accounting with cpuset is almost
2923 * impossible (or too ugly) because cpuset is too fluid that
2924 * task or memory node can be dynamically moved between cpusets.
2925 *
2926 * The change of semantics for shared hugetlb mapping with cpuset is
2927 * undesirable. However, in order to preserve some of the semantics,
2928 * we fall back to check against current free page availability as
2929 * a best attempt and hopefully to minimize the impact of changing
2930 * semantics that cpuset has.
2931 */
2932 if (delta > 0) {
2933 if (gather_surplus_pages(h, delta) < 0)
2934 goto out;
2935
2936 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2937 return_unused_surplus_pages(h, delta);
2938 goto out;
2939 }
2940 }
2941
2942 ret = 0;
2943 if (delta < 0)
2944 return_unused_surplus_pages(h, (unsigned long) -delta);
2945
2946out:
2947 spin_unlock(&hugetlb_lock);
2948 return ret;
2949}
2950
2951static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2952{
2953 struct resv_map *resv = vma_resv_map(vma);
2954
2955 /*
2956 * This new VMA should share its siblings reservation map if present.
2957 * The VMA will only ever have a valid reservation map pointer where
2958 * it is being copied for another still existing VMA. As that VMA
2959 * has a reference to the reservation map it cannot disappear until
2960 * after this open call completes. It is therefore safe to take a
2961 * new reference here without additional locking.
2962 */
2963 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2964 kref_get(&resv->refs);
2965}
2966
2967static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2968{
2969 struct hstate *h = hstate_vma(vma);
2970 struct resv_map *resv = vma_resv_map(vma);
2971 struct hugepage_subpool *spool = subpool_vma(vma);
2972 unsigned long reserve, start, end;
2973 long gbl_reserve;
2974
2975 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2976 return;
2977
2978 start = vma_hugecache_offset(h, vma, vma->vm_start);
2979 end = vma_hugecache_offset(h, vma, vma->vm_end);
2980
2981 reserve = (end - start) - region_count(resv, start, end);
2982
2983 kref_put(&resv->refs, resv_map_release);
2984
2985 if (reserve) {
2986 /*
2987 * Decrement reserve counts. The global reserve count may be
2988 * adjusted if the subpool has a minimum size.
2989 */
2990 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2991 hugetlb_acct_memory(h, -gbl_reserve);
2992 }
2993}
2994
2995/*
2996 * We cannot handle pagefaults against hugetlb pages at all. They cause
2997 * handle_mm_fault() to try to instantiate regular-sized pages in the
2998 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2999 * this far.
3000 */
3001static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3002{
3003 BUG();
3004 return 0;
3005}
3006
3007const struct vm_operations_struct hugetlb_vm_ops = {
3008 .fault = hugetlb_vm_op_fault,
3009 .open = hugetlb_vm_op_open,
3010 .close = hugetlb_vm_op_close,
3011};
3012
3013static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3014 int writable)
3015{
3016 pte_t entry;
3017
3018 if (writable) {
3019 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3020 vma->vm_page_prot)));
3021 } else {
3022 entry = huge_pte_wrprotect(mk_huge_pte(page,
3023 vma->vm_page_prot));
3024 }
3025 entry = pte_mkyoung(entry);
3026 entry = pte_mkhuge(entry);
3027 entry = arch_make_huge_pte(entry, vma, page, writable);
3028
3029 return entry;
3030}
3031
3032static void set_huge_ptep_writable(struct vm_area_struct *vma,
3033 unsigned long address, pte_t *ptep)
3034{
3035 pte_t entry;
3036
3037 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3038 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3039 update_mmu_cache(vma, address, ptep);
3040}
3041
3042static int is_hugetlb_entry_migration(pte_t pte)
3043{
3044 swp_entry_t swp;
3045
3046 if (huge_pte_none(pte) || pte_present(pte))
3047 return 0;
3048 swp = pte_to_swp_entry(pte);
3049 if (non_swap_entry(swp) && is_migration_entry(swp))
3050 return 1;
3051 else
3052 return 0;
3053}
3054
3055static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3056{
3057 swp_entry_t swp;
3058
3059 if (huge_pte_none(pte) || pte_present(pte))
3060 return 0;
3061 swp = pte_to_swp_entry(pte);
3062 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3063 return 1;
3064 else
3065 return 0;
3066}
3067
3068int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3069 struct vm_area_struct *vma)
3070{
3071 pte_t *src_pte, *dst_pte, entry;
3072 struct page *ptepage;
3073 unsigned long addr;
3074 int cow;
3075 struct hstate *h = hstate_vma(vma);
3076 unsigned long sz = huge_page_size(h);
3077 unsigned long mmun_start; /* For mmu_notifiers */
3078 unsigned long mmun_end; /* For mmu_notifiers */
3079 int ret = 0;
3080
3081 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3082
3083 mmun_start = vma->vm_start;
3084 mmun_end = vma->vm_end;
3085 if (cow)
3086 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3087
3088 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3089 spinlock_t *src_ptl, *dst_ptl;
3090 src_pte = huge_pte_offset(src, addr);
3091 if (!src_pte)
3092 continue;
3093 dst_pte = huge_pte_alloc(dst, addr, sz);
3094 if (!dst_pte) {
3095 ret = -ENOMEM;
3096 break;
3097 }
3098
3099 /* If the pagetables are shared don't copy or take references */
3100 if (dst_pte == src_pte)
3101 continue;
3102
3103 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3104 src_ptl = huge_pte_lockptr(h, src, src_pte);
3105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3106 entry = huge_ptep_get(src_pte);
3107 if (huge_pte_none(entry)) { /* skip none entry */
3108 ;
3109 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3110 is_hugetlb_entry_hwpoisoned(entry))) {
3111 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3112
3113 if (is_write_migration_entry(swp_entry) && cow) {
3114 /*
3115 * COW mappings require pages in both
3116 * parent and child to be set to read.
3117 */
3118 make_migration_entry_read(&swp_entry);
3119 entry = swp_entry_to_pte(swp_entry);
3120 set_huge_pte_at(src, addr, src_pte, entry);
3121 }
3122 set_huge_pte_at(dst, addr, dst_pte, entry);
3123 } else {
3124 if (cow) {
3125 huge_ptep_set_wrprotect(src, addr, src_pte);
3126 mmu_notifier_invalidate_range(src, mmun_start,
3127 mmun_end);
3128 }
3129 entry = huge_ptep_get(src_pte);
3130 ptepage = pte_page(entry);
3131 get_page(ptepage);
3132 page_dup_rmap(ptepage);
3133 set_huge_pte_at(dst, addr, dst_pte, entry);
3134 hugetlb_count_add(pages_per_huge_page(h), dst);
3135 }
3136 spin_unlock(src_ptl);
3137 spin_unlock(dst_ptl);
3138 }
3139
3140 if (cow)
3141 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3142
3143 return ret;
3144}
3145
3146void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3147 unsigned long start, unsigned long end,
3148 struct page *ref_page)
3149{
3150 int force_flush = 0;
3151 struct mm_struct *mm = vma->vm_mm;
3152 unsigned long address;
3153 pte_t *ptep;
3154 pte_t pte;
3155 spinlock_t *ptl;
3156 struct page *page;
3157 struct hstate *h = hstate_vma(vma);
3158 unsigned long sz = huge_page_size(h);
3159 const unsigned long mmun_start = start; /* For mmu_notifiers */
3160 const unsigned long mmun_end = end; /* For mmu_notifiers */
3161
3162 WARN_ON(!is_vm_hugetlb_page(vma));
3163 BUG_ON(start & ~huge_page_mask(h));
3164 BUG_ON(end & ~huge_page_mask(h));
3165
3166 tlb_start_vma(tlb, vma);
3167 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3168 address = start;
3169again:
3170 for (; address < end; address += sz) {
3171 ptep = huge_pte_offset(mm, address);
3172 if (!ptep)
3173 continue;
3174
3175 ptl = huge_pte_lock(h, mm, ptep);
3176 if (huge_pmd_unshare(mm, &address, ptep))
3177 goto unlock;
3178
3179 pte = huge_ptep_get(ptep);
3180 if (huge_pte_none(pte))
3181 goto unlock;
3182
3183 /*
3184 * Migrating hugepage or HWPoisoned hugepage is already
3185 * unmapped and its refcount is dropped, so just clear pte here.
3186 */
3187 if (unlikely(!pte_present(pte))) {
3188 huge_pte_clear(mm, address, ptep);
3189 goto unlock;
3190 }
3191
3192 page = pte_page(pte);
3193 /*
3194 * If a reference page is supplied, it is because a specific
3195 * page is being unmapped, not a range. Ensure the page we
3196 * are about to unmap is the actual page of interest.
3197 */
3198 if (ref_page) {
3199 if (page != ref_page)
3200 goto unlock;
3201
3202 /*
3203 * Mark the VMA as having unmapped its page so that
3204 * future faults in this VMA will fail rather than
3205 * looking like data was lost
3206 */
3207 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3208 }
3209
3210 pte = huge_ptep_get_and_clear(mm, address, ptep);
3211 tlb_remove_tlb_entry(tlb, ptep, address);
3212 if (huge_pte_dirty(pte))
3213 set_page_dirty(page);
3214
3215 hugetlb_count_sub(pages_per_huge_page(h), mm);
3216 page_remove_rmap(page);
3217 force_flush = !__tlb_remove_page(tlb, page);
3218 if (force_flush) {
3219 address += sz;
3220 spin_unlock(ptl);
3221 break;
3222 }
3223 /* Bail out after unmapping reference page if supplied */
3224 if (ref_page) {
3225 spin_unlock(ptl);
3226 break;
3227 }
3228unlock:
3229 spin_unlock(ptl);
3230 }
3231 /*
3232 * mmu_gather ran out of room to batch pages, we break out of
3233 * the PTE lock to avoid doing the potential expensive TLB invalidate
3234 * and page-free while holding it.
3235 */
3236 if (force_flush) {
3237 force_flush = 0;
3238 tlb_flush_mmu(tlb);
3239 if (address < end && !ref_page)
3240 goto again;
3241 }
3242 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3243 tlb_end_vma(tlb, vma);
3244}
3245
3246void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3247 struct vm_area_struct *vma, unsigned long start,
3248 unsigned long end, struct page *ref_page)
3249{
3250 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3251
3252 /*
3253 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3254 * test will fail on a vma being torn down, and not grab a page table
3255 * on its way out. We're lucky that the flag has such an appropriate
3256 * name, and can in fact be safely cleared here. We could clear it
3257 * before the __unmap_hugepage_range above, but all that's necessary
3258 * is to clear it before releasing the i_mmap_rwsem. This works
3259 * because in the context this is called, the VMA is about to be
3260 * destroyed and the i_mmap_rwsem is held.
3261 */
3262 vma->vm_flags &= ~VM_MAYSHARE;
3263}
3264
3265void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3266 unsigned long end, struct page *ref_page)
3267{
3268 struct mm_struct *mm;
3269 struct mmu_gather tlb;
3270
3271 mm = vma->vm_mm;
3272
3273 tlb_gather_mmu(&tlb, mm, start, end);
3274 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3275 tlb_finish_mmu(&tlb, start, end);
3276}
3277
3278/*
3279 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3280 * mappping it owns the reserve page for. The intention is to unmap the page
3281 * from other VMAs and let the children be SIGKILLed if they are faulting the
3282 * same region.
3283 */
3284static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3285 struct page *page, unsigned long address)
3286{
3287 struct hstate *h = hstate_vma(vma);
3288 struct vm_area_struct *iter_vma;
3289 struct address_space *mapping;
3290 pgoff_t pgoff;
3291
3292 /*
3293 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3294 * from page cache lookup which is in HPAGE_SIZE units.
3295 */
3296 address = address & huge_page_mask(h);
3297 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3298 vma->vm_pgoff;
3299 mapping = file_inode(vma->vm_file)->i_mapping;
3300
3301 /*
3302 * Take the mapping lock for the duration of the table walk. As
3303 * this mapping should be shared between all the VMAs,
3304 * __unmap_hugepage_range() is called as the lock is already held
3305 */
3306 i_mmap_lock_write(mapping);
3307 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3308 /* Do not unmap the current VMA */
3309 if (iter_vma == vma)
3310 continue;
3311
3312 /*
3313 * Shared VMAs have their own reserves and do not affect
3314 * MAP_PRIVATE accounting but it is possible that a shared
3315 * VMA is using the same page so check and skip such VMAs.
3316 */
3317 if (iter_vma->vm_flags & VM_MAYSHARE)
3318 continue;
3319
3320 /*
3321 * Unmap the page from other VMAs without their own reserves.
3322 * They get marked to be SIGKILLed if they fault in these
3323 * areas. This is because a future no-page fault on this VMA
3324 * could insert a zeroed page instead of the data existing
3325 * from the time of fork. This would look like data corruption
3326 */
3327 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3328 unmap_hugepage_range(iter_vma, address,
3329 address + huge_page_size(h), page);
3330 }
3331 i_mmap_unlock_write(mapping);
3332}
3333
3334/*
3335 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3336 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3337 * cannot race with other handlers or page migration.
3338 * Keep the pte_same checks anyway to make transition from the mutex easier.
3339 */
3340static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3341 unsigned long address, pte_t *ptep, pte_t pte,
3342 struct page *pagecache_page, spinlock_t *ptl)
3343{
3344 struct hstate *h = hstate_vma(vma);
3345 struct page *old_page, *new_page;
3346 int ret = 0, outside_reserve = 0;
3347 unsigned long mmun_start; /* For mmu_notifiers */
3348 unsigned long mmun_end; /* For mmu_notifiers */
3349
3350 old_page = pte_page(pte);
3351
3352retry_avoidcopy:
3353 /* If no-one else is actually using this page, avoid the copy
3354 * and just make the page writable */
3355 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3356 page_move_anon_rmap(old_page, vma, address);
3357 set_huge_ptep_writable(vma, address, ptep);
3358 return 0;
3359 }
3360
3361 /*
3362 * If the process that created a MAP_PRIVATE mapping is about to
3363 * perform a COW due to a shared page count, attempt to satisfy
3364 * the allocation without using the existing reserves. The pagecache
3365 * page is used to determine if the reserve at this address was
3366 * consumed or not. If reserves were used, a partial faulted mapping
3367 * at the time of fork() could consume its reserves on COW instead
3368 * of the full address range.
3369 */
3370 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3371 old_page != pagecache_page)
3372 outside_reserve = 1;
3373
3374 page_cache_get(old_page);
3375
3376 /*
3377 * Drop page table lock as buddy allocator may be called. It will
3378 * be acquired again before returning to the caller, as expected.
3379 */
3380 spin_unlock(ptl);
3381 new_page = alloc_huge_page(vma, address, outside_reserve);
3382
3383 if (IS_ERR(new_page)) {
3384 /*
3385 * If a process owning a MAP_PRIVATE mapping fails to COW,
3386 * it is due to references held by a child and an insufficient
3387 * huge page pool. To guarantee the original mappers
3388 * reliability, unmap the page from child processes. The child
3389 * may get SIGKILLed if it later faults.
3390 */
3391 if (outside_reserve) {
3392 page_cache_release(old_page);
3393 BUG_ON(huge_pte_none(pte));
3394 unmap_ref_private(mm, vma, old_page, address);
3395 BUG_ON(huge_pte_none(pte));
3396 spin_lock(ptl);
3397 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3398 if (likely(ptep &&
3399 pte_same(huge_ptep_get(ptep), pte)))
3400 goto retry_avoidcopy;
3401 /*
3402 * race occurs while re-acquiring page table
3403 * lock, and our job is done.
3404 */
3405 return 0;
3406 }
3407
3408 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3409 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3410 goto out_release_old;
3411 }
3412
3413 /*
3414 * When the original hugepage is shared one, it does not have
3415 * anon_vma prepared.
3416 */
3417 if (unlikely(anon_vma_prepare(vma))) {
3418 ret = VM_FAULT_OOM;
3419 goto out_release_all;
3420 }
3421
3422 copy_user_huge_page(new_page, old_page, address, vma,
3423 pages_per_huge_page(h));
3424 __SetPageUptodate(new_page);
3425 set_page_huge_active(new_page);
3426
3427 mmun_start = address & huge_page_mask(h);
3428 mmun_end = mmun_start + huge_page_size(h);
3429 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3430
3431 /*
3432 * Retake the page table lock to check for racing updates
3433 * before the page tables are altered
3434 */
3435 spin_lock(ptl);
3436 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3437 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3438 ClearPagePrivate(new_page);
3439
3440 /* Break COW */
3441 huge_ptep_clear_flush(vma, address, ptep);
3442 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3443 set_huge_pte_at(mm, address, ptep,
3444 make_huge_pte(vma, new_page, 1));
3445 page_remove_rmap(old_page);
3446 hugepage_add_new_anon_rmap(new_page, vma, address);
3447 /* Make the old page be freed below */
3448 new_page = old_page;
3449 }
3450 spin_unlock(ptl);
3451 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3452out_release_all:
3453 page_cache_release(new_page);
3454out_release_old:
3455 page_cache_release(old_page);
3456
3457 spin_lock(ptl); /* Caller expects lock to be held */
3458 return ret;
3459}
3460
3461/* Return the pagecache page at a given address within a VMA */
3462static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3463 struct vm_area_struct *vma, unsigned long address)
3464{
3465 struct address_space *mapping;
3466 pgoff_t idx;
3467
3468 mapping = vma->vm_file->f_mapping;
3469 idx = vma_hugecache_offset(h, vma, address);
3470
3471 return find_lock_page(mapping, idx);
3472}
3473
3474/*
3475 * Return whether there is a pagecache page to back given address within VMA.
3476 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3477 */
3478static bool hugetlbfs_pagecache_present(struct hstate *h,
3479 struct vm_area_struct *vma, unsigned long address)
3480{
3481 struct address_space *mapping;
3482 pgoff_t idx;
3483 struct page *page;
3484
3485 mapping = vma->vm_file->f_mapping;
3486 idx = vma_hugecache_offset(h, vma, address);
3487
3488 page = find_get_page(mapping, idx);
3489 if (page)
3490 put_page(page);
3491 return page != NULL;
3492}
3493
3494int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3495 pgoff_t idx)
3496{
3497 struct inode *inode = mapping->host;
3498 struct hstate *h = hstate_inode(inode);
3499 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3500
3501 if (err)
3502 return err;
3503 ClearPagePrivate(page);
3504
3505 spin_lock(&inode->i_lock);
3506 inode->i_blocks += blocks_per_huge_page(h);
3507 spin_unlock(&inode->i_lock);
3508 return 0;
3509}
3510
3511static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3512 struct address_space *mapping, pgoff_t idx,
3513 unsigned long address, pte_t *ptep, unsigned int flags)
3514{
3515 struct hstate *h = hstate_vma(vma);
3516 int ret = VM_FAULT_SIGBUS;
3517 int anon_rmap = 0;
3518 unsigned long size;
3519 struct page *page;
3520 pte_t new_pte;
3521 spinlock_t *ptl;
3522
3523 /*
3524 * Currently, we are forced to kill the process in the event the
3525 * original mapper has unmapped pages from the child due to a failed
3526 * COW. Warn that such a situation has occurred as it may not be obvious
3527 */
3528 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3529 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3530 current->pid);
3531 return ret;
3532 }
3533
3534 /*
3535 * Use page lock to guard against racing truncation
3536 * before we get page_table_lock.
3537 */
3538retry:
3539 page = find_lock_page(mapping, idx);
3540 if (!page) {
3541 size = i_size_read(mapping->host) >> huge_page_shift(h);
3542 if (idx >= size)
3543 goto out;
3544 page = alloc_huge_page(vma, address, 0);
3545 if (IS_ERR(page)) {
3546 ret = PTR_ERR(page);
3547 if (ret == -ENOMEM)
3548 ret = VM_FAULT_OOM;
3549 else
3550 ret = VM_FAULT_SIGBUS;
3551 goto out;
3552 }
3553 clear_huge_page(page, address, pages_per_huge_page(h));
3554 __SetPageUptodate(page);
3555 set_page_huge_active(page);
3556
3557 if (vma->vm_flags & VM_MAYSHARE) {
3558 int err = huge_add_to_page_cache(page, mapping, idx);
3559 if (err) {
3560 put_page(page);
3561 if (err == -EEXIST)
3562 goto retry;
3563 goto out;
3564 }
3565 } else {
3566 lock_page(page);
3567 if (unlikely(anon_vma_prepare(vma))) {
3568 ret = VM_FAULT_OOM;
3569 goto backout_unlocked;
3570 }
3571 anon_rmap = 1;
3572 }
3573 } else {
3574 /*
3575 * If memory error occurs between mmap() and fault, some process
3576 * don't have hwpoisoned swap entry for errored virtual address.
3577 * So we need to block hugepage fault by PG_hwpoison bit check.
3578 */
3579 if (unlikely(PageHWPoison(page))) {
3580 ret = VM_FAULT_HWPOISON |
3581 VM_FAULT_SET_HINDEX(hstate_index(h));
3582 goto backout_unlocked;
3583 }
3584 }
3585
3586 /*
3587 * If we are going to COW a private mapping later, we examine the
3588 * pending reservations for this page now. This will ensure that
3589 * any allocations necessary to record that reservation occur outside
3590 * the spinlock.
3591 */
3592 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3593 if (vma_needs_reservation(h, vma, address) < 0) {
3594 ret = VM_FAULT_OOM;
3595 goto backout_unlocked;
3596 }
3597 /* Just decrements count, does not deallocate */
3598 vma_end_reservation(h, vma, address);
3599 }
3600
3601 ptl = huge_pte_lockptr(h, mm, ptep);
3602 spin_lock(ptl);
3603 size = i_size_read(mapping->host) >> huge_page_shift(h);
3604 if (idx >= size)
3605 goto backout;
3606
3607 ret = 0;
3608 if (!huge_pte_none(huge_ptep_get(ptep)))
3609 goto backout;
3610
3611 if (anon_rmap) {
3612 ClearPagePrivate(page);
3613 hugepage_add_new_anon_rmap(page, vma, address);
3614 } else
3615 page_dup_rmap(page);
3616 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3617 && (vma->vm_flags & VM_SHARED)));
3618 set_huge_pte_at(mm, address, ptep, new_pte);
3619
3620 hugetlb_count_add(pages_per_huge_page(h), mm);
3621 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3622 /* Optimization, do the COW without a second fault */
3623 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3624 }
3625
3626 spin_unlock(ptl);
3627 unlock_page(page);
3628out:
3629 return ret;
3630
3631backout:
3632 spin_unlock(ptl);
3633backout_unlocked:
3634 unlock_page(page);
3635 put_page(page);
3636 goto out;
3637}
3638
3639#ifdef CONFIG_SMP
3640u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641 struct vm_area_struct *vma,
3642 struct address_space *mapping,
3643 pgoff_t idx, unsigned long address)
3644{
3645 unsigned long key[2];
3646 u32 hash;
3647
3648 if (vma->vm_flags & VM_SHARED) {
3649 key[0] = (unsigned long) mapping;
3650 key[1] = idx;
3651 } else {
3652 key[0] = (unsigned long) mm;
3653 key[1] = address >> huge_page_shift(h);
3654 }
3655
3656 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3657
3658 return hash & (num_fault_mutexes - 1);
3659}
3660#else
3661/*
3662 * For uniprocesor systems we always use a single mutex, so just
3663 * return 0 and avoid the hashing overhead.
3664 */
3665u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3666 struct vm_area_struct *vma,
3667 struct address_space *mapping,
3668 pgoff_t idx, unsigned long address)
3669{
3670 return 0;
3671}
3672#endif
3673
3674int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3675 unsigned long address, unsigned int flags)
3676{
3677 pte_t *ptep, entry;
3678 spinlock_t *ptl;
3679 int ret;
3680 u32 hash;
3681 pgoff_t idx;
3682 struct page *page = NULL;
3683 struct page *pagecache_page = NULL;
3684 struct hstate *h = hstate_vma(vma);
3685 struct address_space *mapping;
3686 int need_wait_lock = 0;
3687
3688 address &= huge_page_mask(h);
3689
3690 ptep = huge_pte_offset(mm, address);
3691 if (ptep) {
3692 entry = huge_ptep_get(ptep);
3693 if (unlikely(is_hugetlb_entry_migration(entry))) {
3694 migration_entry_wait_huge(vma, mm, ptep);
3695 return 0;
3696 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3697 return VM_FAULT_HWPOISON_LARGE |
3698 VM_FAULT_SET_HINDEX(hstate_index(h));
3699 } else {
3700 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3701 if (!ptep)
3702 return VM_FAULT_OOM;
3703 }
3704
3705 mapping = vma->vm_file->f_mapping;
3706 idx = vma_hugecache_offset(h, vma, address);
3707
3708 /*
3709 * Serialize hugepage allocation and instantiation, so that we don't
3710 * get spurious allocation failures if two CPUs race to instantiate
3711 * the same page in the page cache.
3712 */
3713 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3714 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3715
3716 entry = huge_ptep_get(ptep);
3717 if (huge_pte_none(entry)) {
3718 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3719 goto out_mutex;
3720 }
3721
3722 ret = 0;
3723
3724 /*
3725 * entry could be a migration/hwpoison entry at this point, so this
3726 * check prevents the kernel from going below assuming that we have
3727 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3728 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3729 * handle it.
3730 */
3731 if (!pte_present(entry))
3732 goto out_mutex;
3733
3734 /*
3735 * If we are going to COW the mapping later, we examine the pending
3736 * reservations for this page now. This will ensure that any
3737 * allocations necessary to record that reservation occur outside the
3738 * spinlock. For private mappings, we also lookup the pagecache
3739 * page now as it is used to determine if a reservation has been
3740 * consumed.
3741 */
3742 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3743 if (vma_needs_reservation(h, vma, address) < 0) {
3744 ret = VM_FAULT_OOM;
3745 goto out_mutex;
3746 }
3747 /* Just decrements count, does not deallocate */
3748 vma_end_reservation(h, vma, address);
3749
3750 if (!(vma->vm_flags & VM_MAYSHARE))
3751 pagecache_page = hugetlbfs_pagecache_page(h,
3752 vma, address);
3753 }
3754
3755 ptl = huge_pte_lock(h, mm, ptep);
3756
3757 /* Check for a racing update before calling hugetlb_cow */
3758 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3759 goto out_ptl;
3760
3761 /*
3762 * hugetlb_cow() requires page locks of pte_page(entry) and
3763 * pagecache_page, so here we need take the former one
3764 * when page != pagecache_page or !pagecache_page.
3765 */
3766 page = pte_page(entry);
3767 if (page != pagecache_page)
3768 if (!trylock_page(page)) {
3769 need_wait_lock = 1;
3770 goto out_ptl;
3771 }
3772
3773 get_page(page);
3774
3775 if (flags & FAULT_FLAG_WRITE) {
3776 if (!huge_pte_write(entry)) {
3777 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3778 pagecache_page, ptl);
3779 goto out_put_page;
3780 }
3781 entry = huge_pte_mkdirty(entry);
3782 }
3783 entry = pte_mkyoung(entry);
3784 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3785 flags & FAULT_FLAG_WRITE))
3786 update_mmu_cache(vma, address, ptep);
3787out_put_page:
3788 if (page != pagecache_page)
3789 unlock_page(page);
3790 put_page(page);
3791out_ptl:
3792 spin_unlock(ptl);
3793
3794 if (pagecache_page) {
3795 unlock_page(pagecache_page);
3796 put_page(pagecache_page);
3797 }
3798out_mutex:
3799 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3800 /*
3801 * Generally it's safe to hold refcount during waiting page lock. But
3802 * here we just wait to defer the next page fault to avoid busy loop and
3803 * the page is not used after unlocked before returning from the current
3804 * page fault. So we are safe from accessing freed page, even if we wait
3805 * here without taking refcount.
3806 */
3807 if (need_wait_lock)
3808 wait_on_page_locked(page);
3809 return ret;
3810}
3811
3812long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3813 struct page **pages, struct vm_area_struct **vmas,
3814 unsigned long *position, unsigned long *nr_pages,
3815 long i, unsigned int flags)
3816{
3817 unsigned long pfn_offset;
3818 unsigned long vaddr = *position;
3819 unsigned long remainder = *nr_pages;
3820 struct hstate *h = hstate_vma(vma);
3821
3822 while (vaddr < vma->vm_end && remainder) {
3823 pte_t *pte;
3824 spinlock_t *ptl = NULL;
3825 int absent;
3826 struct page *page;
3827
3828 /*
3829 * If we have a pending SIGKILL, don't keep faulting pages and
3830 * potentially allocating memory.
3831 */
3832 if (unlikely(fatal_signal_pending(current))) {
3833 remainder = 0;
3834 break;
3835 }
3836
3837 /*
3838 * Some archs (sparc64, sh*) have multiple pte_ts to
3839 * each hugepage. We have to make sure we get the
3840 * first, for the page indexing below to work.
3841 *
3842 * Note that page table lock is not held when pte is null.
3843 */
3844 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3845 if (pte)
3846 ptl = huge_pte_lock(h, mm, pte);
3847 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3848
3849 /*
3850 * When coredumping, it suits get_dump_page if we just return
3851 * an error where there's an empty slot with no huge pagecache
3852 * to back it. This way, we avoid allocating a hugepage, and
3853 * the sparse dumpfile avoids allocating disk blocks, but its
3854 * huge holes still show up with zeroes where they need to be.
3855 */
3856 if (absent && (flags & FOLL_DUMP) &&
3857 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3858 if (pte)
3859 spin_unlock(ptl);
3860 remainder = 0;
3861 break;
3862 }
3863
3864 /*
3865 * We need call hugetlb_fault for both hugepages under migration
3866 * (in which case hugetlb_fault waits for the migration,) and
3867 * hwpoisoned hugepages (in which case we need to prevent the
3868 * caller from accessing to them.) In order to do this, we use
3869 * here is_swap_pte instead of is_hugetlb_entry_migration and
3870 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3871 * both cases, and because we can't follow correct pages
3872 * directly from any kind of swap entries.
3873 */
3874 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3875 ((flags & FOLL_WRITE) &&
3876 !huge_pte_write(huge_ptep_get(pte)))) {
3877 int ret;
3878
3879 if (pte)
3880 spin_unlock(ptl);
3881 ret = hugetlb_fault(mm, vma, vaddr,
3882 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3883 if (!(ret & VM_FAULT_ERROR))
3884 continue;
3885
3886 remainder = 0;
3887 break;
3888 }
3889
3890 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3891 page = pte_page(huge_ptep_get(pte));
3892same_page:
3893 if (pages) {
3894 pages[i] = mem_map_offset(page, pfn_offset);
3895 get_page_foll(pages[i]);
3896 }
3897
3898 if (vmas)
3899 vmas[i] = vma;
3900
3901 vaddr += PAGE_SIZE;
3902 ++pfn_offset;
3903 --remainder;
3904 ++i;
3905 if (vaddr < vma->vm_end && remainder &&
3906 pfn_offset < pages_per_huge_page(h)) {
3907 /*
3908 * We use pfn_offset to avoid touching the pageframes
3909 * of this compound page.
3910 */
3911 goto same_page;
3912 }
3913 spin_unlock(ptl);
3914 }
3915 *nr_pages = remainder;
3916 *position = vaddr;
3917
3918 return i ? i : -EFAULT;
3919}
3920
3921unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3922 unsigned long address, unsigned long end, pgprot_t newprot)
3923{
3924 struct mm_struct *mm = vma->vm_mm;
3925 unsigned long start = address;
3926 pte_t *ptep;
3927 pte_t pte;
3928 struct hstate *h = hstate_vma(vma);
3929 unsigned long pages = 0;
3930
3931 BUG_ON(address >= end);
3932 flush_cache_range(vma, address, end);
3933
3934 mmu_notifier_invalidate_range_start(mm, start, end);
3935 i_mmap_lock_write(vma->vm_file->f_mapping);
3936 for (; address < end; address += huge_page_size(h)) {
3937 spinlock_t *ptl;
3938 ptep = huge_pte_offset(mm, address);
3939 if (!ptep)
3940 continue;
3941 ptl = huge_pte_lock(h, mm, ptep);
3942 if (huge_pmd_unshare(mm, &address, ptep)) {
3943 pages++;
3944 spin_unlock(ptl);
3945 continue;
3946 }
3947 pte = huge_ptep_get(ptep);
3948 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3949 spin_unlock(ptl);
3950 continue;
3951 }
3952 if (unlikely(is_hugetlb_entry_migration(pte))) {
3953 swp_entry_t entry = pte_to_swp_entry(pte);
3954
3955 if (is_write_migration_entry(entry)) {
3956 pte_t newpte;
3957
3958 make_migration_entry_read(&entry);
3959 newpte = swp_entry_to_pte(entry);
3960 set_huge_pte_at(mm, address, ptep, newpte);
3961 pages++;
3962 }
3963 spin_unlock(ptl);
3964 continue;
3965 }
3966 if (!huge_pte_none(pte)) {
3967 pte = huge_ptep_get_and_clear(mm, address, ptep);
3968 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3969 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3970 set_huge_pte_at(mm, address, ptep, pte);
3971 pages++;
3972 }
3973 spin_unlock(ptl);
3974 }
3975 /*
3976 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3977 * may have cleared our pud entry and done put_page on the page table:
3978 * once we release i_mmap_rwsem, another task can do the final put_page
3979 * and that page table be reused and filled with junk.
3980 */
3981 flush_tlb_range(vma, start, end);
3982 mmu_notifier_invalidate_range(mm, start, end);
3983 i_mmap_unlock_write(vma->vm_file->f_mapping);
3984 mmu_notifier_invalidate_range_end(mm, start, end);
3985
3986 return pages << h->order;
3987}
3988
3989int hugetlb_reserve_pages(struct inode *inode,
3990 long from, long to,
3991 struct vm_area_struct *vma,
3992 vm_flags_t vm_flags)
3993{
3994 long ret, chg;
3995 struct hstate *h = hstate_inode(inode);
3996 struct hugepage_subpool *spool = subpool_inode(inode);
3997 struct resv_map *resv_map;
3998 long gbl_reserve;
3999
4000 /*
4001 * Only apply hugepage reservation if asked. At fault time, an
4002 * attempt will be made for VM_NORESERVE to allocate a page
4003 * without using reserves
4004 */
4005 if (vm_flags & VM_NORESERVE)
4006 return 0;
4007
4008 /*
4009 * Shared mappings base their reservation on the number of pages that
4010 * are already allocated on behalf of the file. Private mappings need
4011 * to reserve the full area even if read-only as mprotect() may be
4012 * called to make the mapping read-write. Assume !vma is a shm mapping
4013 */
4014 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4015 resv_map = inode_resv_map(inode);
4016
4017 chg = region_chg(resv_map, from, to);
4018
4019 } else {
4020 resv_map = resv_map_alloc();
4021 if (!resv_map)
4022 return -ENOMEM;
4023
4024 chg = to - from;
4025
4026 set_vma_resv_map(vma, resv_map);
4027 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4028 }
4029
4030 if (chg < 0) {
4031 ret = chg;
4032 goto out_err;
4033 }
4034
4035 /*
4036 * There must be enough pages in the subpool for the mapping. If
4037 * the subpool has a minimum size, there may be some global
4038 * reservations already in place (gbl_reserve).
4039 */
4040 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4041 if (gbl_reserve < 0) {
4042 ret = -ENOSPC;
4043 goto out_err;
4044 }
4045
4046 /*
4047 * Check enough hugepages are available for the reservation.
4048 * Hand the pages back to the subpool if there are not
4049 */
4050 ret = hugetlb_acct_memory(h, gbl_reserve);
4051 if (ret < 0) {
4052 /* put back original number of pages, chg */
4053 (void)hugepage_subpool_put_pages(spool, chg);
4054 goto out_err;
4055 }
4056
4057 /*
4058 * Account for the reservations made. Shared mappings record regions
4059 * that have reservations as they are shared by multiple VMAs.
4060 * When the last VMA disappears, the region map says how much
4061 * the reservation was and the page cache tells how much of
4062 * the reservation was consumed. Private mappings are per-VMA and
4063 * only the consumed reservations are tracked. When the VMA
4064 * disappears, the original reservation is the VMA size and the
4065 * consumed reservations are stored in the map. Hence, nothing
4066 * else has to be done for private mappings here
4067 */
4068 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4069 long add = region_add(resv_map, from, to);
4070
4071 if (unlikely(chg > add)) {
4072 /*
4073 * pages in this range were added to the reserve
4074 * map between region_chg and region_add. This
4075 * indicates a race with alloc_huge_page. Adjust
4076 * the subpool and reserve counts modified above
4077 * based on the difference.
4078 */
4079 long rsv_adjust;
4080
4081 rsv_adjust = hugepage_subpool_put_pages(spool,
4082 chg - add);
4083 hugetlb_acct_memory(h, -rsv_adjust);
4084 }
4085 }
4086 return 0;
4087out_err:
4088 if (!vma || vma->vm_flags & VM_MAYSHARE)
4089 region_abort(resv_map, from, to);
4090 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4091 kref_put(&resv_map->refs, resv_map_release);
4092 return ret;
4093}
4094
4095long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4096 long freed)
4097{
4098 struct hstate *h = hstate_inode(inode);
4099 struct resv_map *resv_map = inode_resv_map(inode);
4100 long chg = 0;
4101 struct hugepage_subpool *spool = subpool_inode(inode);
4102 long gbl_reserve;
4103
4104 if (resv_map) {
4105 chg = region_del(resv_map, start, end);
4106 /*
4107 * region_del() can fail in the rare case where a region
4108 * must be split and another region descriptor can not be
4109 * allocated. If end == LONG_MAX, it will not fail.
4110 */
4111 if (chg < 0)
4112 return chg;
4113 }
4114
4115 spin_lock(&inode->i_lock);
4116 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4117 spin_unlock(&inode->i_lock);
4118
4119 /*
4120 * If the subpool has a minimum size, the number of global
4121 * reservations to be released may be adjusted.
4122 */
4123 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4124 hugetlb_acct_memory(h, -gbl_reserve);
4125
4126 return 0;
4127}
4128
4129#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4130static unsigned long page_table_shareable(struct vm_area_struct *svma,
4131 struct vm_area_struct *vma,
4132 unsigned long addr, pgoff_t idx)
4133{
4134 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4135 svma->vm_start;
4136 unsigned long sbase = saddr & PUD_MASK;
4137 unsigned long s_end = sbase + PUD_SIZE;
4138
4139 /* Allow segments to share if only one is marked locked */
4140 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4141 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4142
4143 /*
4144 * match the virtual addresses, permission and the alignment of the
4145 * page table page.
4146 */
4147 if (pmd_index(addr) != pmd_index(saddr) ||
4148 vm_flags != svm_flags ||
4149 sbase < svma->vm_start || svma->vm_end < s_end)
4150 return 0;
4151
4152 return saddr;
4153}
4154
4155static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4156{
4157 unsigned long base = addr & PUD_MASK;
4158 unsigned long end = base + PUD_SIZE;
4159
4160 /*
4161 * check on proper vm_flags and page table alignment
4162 */
4163 if (vma->vm_flags & VM_MAYSHARE &&
4164 vma->vm_start <= base && end <= vma->vm_end)
4165 return true;
4166 return false;
4167}
4168
4169/*
4170 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4171 * and returns the corresponding pte. While this is not necessary for the
4172 * !shared pmd case because we can allocate the pmd later as well, it makes the
4173 * code much cleaner. pmd allocation is essential for the shared case because
4174 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4175 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4176 * bad pmd for sharing.
4177 */
4178pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4179{
4180 struct vm_area_struct *vma = find_vma(mm, addr);
4181 struct address_space *mapping = vma->vm_file->f_mapping;
4182 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4183 vma->vm_pgoff;
4184 struct vm_area_struct *svma;
4185 unsigned long saddr;
4186 pte_t *spte = NULL;
4187 pte_t *pte;
4188 spinlock_t *ptl;
4189
4190 if (!vma_shareable(vma, addr))
4191 return (pte_t *)pmd_alloc(mm, pud, addr);
4192
4193 i_mmap_lock_write(mapping);
4194 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4195 if (svma == vma)
4196 continue;
4197
4198 saddr = page_table_shareable(svma, vma, addr, idx);
4199 if (saddr) {
4200 spte = huge_pte_offset(svma->vm_mm, saddr);
4201 if (spte) {
4202 mm_inc_nr_pmds(mm);
4203 get_page(virt_to_page(spte));
4204 break;
4205 }
4206 }
4207 }
4208
4209 if (!spte)
4210 goto out;
4211
4212 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4213 spin_lock(ptl);
4214 if (pud_none(*pud)) {
4215 pud_populate(mm, pud,
4216 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4217 } else {
4218 put_page(virt_to_page(spte));
4219 mm_inc_nr_pmds(mm);
4220 }
4221 spin_unlock(ptl);
4222out:
4223 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4224 i_mmap_unlock_write(mapping);
4225 return pte;
4226}
4227
4228/*
4229 * unmap huge page backed by shared pte.
4230 *
4231 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4232 * indicated by page_count > 1, unmap is achieved by clearing pud and
4233 * decrementing the ref count. If count == 1, the pte page is not shared.
4234 *
4235 * called with page table lock held.
4236 *
4237 * returns: 1 successfully unmapped a shared pte page
4238 * 0 the underlying pte page is not shared, or it is the last user
4239 */
4240int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4241{
4242 pgd_t *pgd = pgd_offset(mm, *addr);
4243 pud_t *pud = pud_offset(pgd, *addr);
4244
4245 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4246 if (page_count(virt_to_page(ptep)) == 1)
4247 return 0;
4248
4249 pud_clear(pud);
4250 put_page(virt_to_page(ptep));
4251 mm_dec_nr_pmds(mm);
4252 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4253 return 1;
4254}
4255#define want_pmd_share() (1)
4256#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4257pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4258{
4259 return NULL;
4260}
4261
4262int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4263{
4264 return 0;
4265}
4266#define want_pmd_share() (0)
4267#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4268
4269#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4270pte_t *huge_pte_alloc(struct mm_struct *mm,
4271 unsigned long addr, unsigned long sz)
4272{
4273 pgd_t *pgd;
4274 pud_t *pud;
4275 pte_t *pte = NULL;
4276
4277 pgd = pgd_offset(mm, addr);
4278 pud = pud_alloc(mm, pgd, addr);
4279 if (pud) {
4280 if (sz == PUD_SIZE) {
4281 pte = (pte_t *)pud;
4282 } else {
4283 BUG_ON(sz != PMD_SIZE);
4284 if (want_pmd_share() && pud_none(*pud))
4285 pte = huge_pmd_share(mm, addr, pud);
4286 else
4287 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4288 }
4289 }
4290 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4291
4292 return pte;
4293}
4294
4295pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4296{
4297 pgd_t *pgd;
4298 pud_t *pud;
4299 pmd_t *pmd = NULL;
4300
4301 pgd = pgd_offset(mm, addr);
4302 if (pgd_present(*pgd)) {
4303 pud = pud_offset(pgd, addr);
4304 if (pud_present(*pud)) {
4305 if (pud_huge(*pud))
4306 return (pte_t *)pud;
4307 pmd = pmd_offset(pud, addr);
4308 }
4309 }
4310 return (pte_t *) pmd;
4311}
4312
4313#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4314
4315/*
4316 * These functions are overwritable if your architecture needs its own
4317 * behavior.
4318 */
4319struct page * __weak
4320follow_huge_addr(struct mm_struct *mm, unsigned long address,
4321 int write)
4322{
4323 return ERR_PTR(-EINVAL);
4324}
4325
4326struct page * __weak
4327follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4328 pmd_t *pmd, int flags)
4329{
4330 struct page *page = NULL;
4331 spinlock_t *ptl;
4332retry:
4333 ptl = pmd_lockptr(mm, pmd);
4334 spin_lock(ptl);
4335 /*
4336 * make sure that the address range covered by this pmd is not
4337 * unmapped from other threads.
4338 */
4339 if (!pmd_huge(*pmd))
4340 goto out;
4341 if (pmd_present(*pmd)) {
4342 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4343 if (flags & FOLL_GET)
4344 get_page(page);
4345 } else {
4346 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4347 spin_unlock(ptl);
4348 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4349 goto retry;
4350 }
4351 /*
4352 * hwpoisoned entry is treated as no_page_table in
4353 * follow_page_mask().
4354 */
4355 }
4356out:
4357 spin_unlock(ptl);
4358 return page;
4359}
4360
4361struct page * __weak
4362follow_huge_pud(struct mm_struct *mm, unsigned long address,
4363 pud_t *pud, int flags)
4364{
4365 if (flags & FOLL_GET)
4366 return NULL;
4367
4368 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4369}
4370
4371#ifdef CONFIG_MEMORY_FAILURE
4372
4373/*
4374 * This function is called from memory failure code.
4375 * Assume the caller holds page lock of the head page.
4376 */
4377int dequeue_hwpoisoned_huge_page(struct page *hpage)
4378{
4379 struct hstate *h = page_hstate(hpage);
4380 int nid = page_to_nid(hpage);
4381 int ret = -EBUSY;
4382
4383 spin_lock(&hugetlb_lock);
4384 /*
4385 * Just checking !page_huge_active is not enough, because that could be
4386 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4387 */
4388 if (!page_huge_active(hpage) && !page_count(hpage)) {
4389 /*
4390 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4391 * but dangling hpage->lru can trigger list-debug warnings
4392 * (this happens when we call unpoison_memory() on it),
4393 * so let it point to itself with list_del_init().
4394 */
4395 list_del_init(&hpage->lru);
4396 set_page_refcounted(hpage);
4397 h->free_huge_pages--;
4398 h->free_huge_pages_node[nid]--;
4399 ret = 0;
4400 }
4401 spin_unlock(&hugetlb_lock);
4402 return ret;
4403}
4404#endif
4405
4406bool isolate_huge_page(struct page *page, struct list_head *list)
4407{
4408 bool ret = true;
4409
4410 VM_BUG_ON_PAGE(!PageHead(page), page);
4411 spin_lock(&hugetlb_lock);
4412 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4413 ret = false;
4414 goto unlock;
4415 }
4416 clear_page_huge_active(page);
4417 list_move_tail(&page->lru, list);
4418unlock:
4419 spin_unlock(&hugetlb_lock);
4420 return ret;
4421}
4422
4423void putback_active_hugepage(struct page *page)
4424{
4425 VM_BUG_ON_PAGE(!PageHead(page), page);
4426 spin_lock(&hugetlb_lock);
4427 set_page_huge_active(page);
4428 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4429 spin_unlock(&hugetlb_lock);
4430 put_page(page);
4431}