| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2009 Red Hat, Inc. |
| 4 | */ |
| 5 | |
| 6 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 7 | |
| 8 | #include <linux/mm.h> |
| 9 | #include <linux/sched.h> |
| 10 | #include <linux/sched/mm.h> |
| 11 | #include <linux/sched/numa_balancing.h> |
| 12 | #include <linux/highmem.h> |
| 13 | #include <linux/hugetlb.h> |
| 14 | #include <linux/mmu_notifier.h> |
| 15 | #include <linux/rmap.h> |
| 16 | #include <linux/swap.h> |
| 17 | #include <linux/shrinker.h> |
| 18 | #include <linux/mm_inline.h> |
| 19 | #include <linux/swapops.h> |
| 20 | #include <linux/backing-dev.h> |
| 21 | #include <linux/dax.h> |
| 22 | #include <linux/mm_types.h> |
| 23 | #include <linux/khugepaged.h> |
| 24 | #include <linux/freezer.h> |
| 25 | #include <linux/pfn_t.h> |
| 26 | #include <linux/mman.h> |
| 27 | #include <linux/memremap.h> |
| 28 | #include <linux/pagemap.h> |
| 29 | #include <linux/debugfs.h> |
| 30 | #include <linux/migrate.h> |
| 31 | #include <linux/hashtable.h> |
| 32 | #include <linux/userfaultfd_k.h> |
| 33 | #include <linux/page_idle.h> |
| 34 | #include <linux/shmem_fs.h> |
| 35 | #include <linux/oom.h> |
| 36 | #include <linux/numa.h> |
| 37 | #include <linux/page_owner.h> |
| 38 | #include <linux/sched/sysctl.h> |
| 39 | #include <linux/memory-tiers.h> |
| 40 | #include <linux/compat.h> |
| 41 | #include <linux/pgalloc_tag.h> |
| 42 | #include <linux/pagewalk.h> |
| 43 | |
| 44 | #include <asm/tlb.h> |
| 45 | #include <asm/pgalloc.h> |
| 46 | #include "internal.h" |
| 47 | #include "swap.h" |
| 48 | |
| 49 | #define CREATE_TRACE_POINTS |
| 50 | #include <trace/events/thp.h> |
| 51 | |
| 52 | /* |
| 53 | * By default, transparent hugepage support is disabled in order to avoid |
| 54 | * risking an increased memory footprint for applications that are not |
| 55 | * guaranteed to benefit from it. When transparent hugepage support is |
| 56 | * enabled, it is for all mappings, and khugepaged scans all mappings. |
| 57 | * Defrag is invoked by khugepaged hugepage allocations and by page faults |
| 58 | * for all hugepage allocations. |
| 59 | */ |
| 60 | unsigned long transparent_hugepage_flags __read_mostly = |
| 61 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS |
| 62 | (1<<TRANSPARENT_HUGEPAGE_FLAG)| |
| 63 | #endif |
| 64 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE |
| 65 | (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| |
| 66 | #endif |
| 67 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| |
| 68 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| |
| 69 | (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| 70 | |
| 71 | static struct shrinker *deferred_split_shrinker; |
| 72 | static unsigned long deferred_split_count(struct shrinker *shrink, |
| 73 | struct shrink_control *sc); |
| 74 | static unsigned long deferred_split_scan(struct shrinker *shrink, |
| 75 | struct shrink_control *sc); |
| 76 | static bool split_underused_thp = true; |
| 77 | |
| 78 | static atomic_t huge_zero_refcount; |
| 79 | struct folio *huge_zero_folio __read_mostly; |
| 80 | unsigned long huge_zero_pfn __read_mostly = ~0UL; |
| 81 | unsigned long huge_anon_orders_always __read_mostly; |
| 82 | unsigned long huge_anon_orders_madvise __read_mostly; |
| 83 | unsigned long huge_anon_orders_inherit __read_mostly; |
| 84 | static bool anon_orders_configured __initdata; |
| 85 | |
| 86 | static inline bool file_thp_enabled(struct vm_area_struct *vma) |
| 87 | { |
| 88 | struct inode *inode; |
| 89 | |
| 90 | if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) |
| 91 | return false; |
| 92 | |
| 93 | if (!vma->vm_file) |
| 94 | return false; |
| 95 | |
| 96 | inode = file_inode(vma->vm_file); |
| 97 | |
| 98 | return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode); |
| 99 | } |
| 100 | |
| 101 | unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, |
| 102 | unsigned long vm_flags, |
| 103 | unsigned long tva_flags, |
| 104 | unsigned long orders) |
| 105 | { |
| 106 | bool smaps = tva_flags & TVA_SMAPS; |
| 107 | bool in_pf = tva_flags & TVA_IN_PF; |
| 108 | bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; |
| 109 | unsigned long supported_orders; |
| 110 | |
| 111 | /* Check the intersection of requested and supported orders. */ |
| 112 | if (vma_is_anonymous(vma)) |
| 113 | supported_orders = THP_ORDERS_ALL_ANON; |
| 114 | else if (vma_is_special_huge(vma)) |
| 115 | supported_orders = THP_ORDERS_ALL_SPECIAL; |
| 116 | else |
| 117 | supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; |
| 118 | |
| 119 | orders &= supported_orders; |
| 120 | if (!orders) |
| 121 | return 0; |
| 122 | |
| 123 | if (!vma->vm_mm) /* vdso */ |
| 124 | return 0; |
| 125 | |
| 126 | if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags)) |
| 127 | return 0; |
| 128 | |
| 129 | /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ |
| 130 | if (vma_is_dax(vma)) |
| 131 | return in_pf ? orders : 0; |
| 132 | |
| 133 | /* |
| 134 | * khugepaged special VMA and hugetlb VMA. |
| 135 | * Must be checked after dax since some dax mappings may have |
| 136 | * VM_MIXEDMAP set. |
| 137 | */ |
| 138 | if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) |
| 139 | return 0; |
| 140 | |
| 141 | /* |
| 142 | * Check alignment for file vma and size for both file and anon vma by |
| 143 | * filtering out the unsuitable orders. |
| 144 | * |
| 145 | * Skip the check for page fault. Huge fault does the check in fault |
| 146 | * handlers. |
| 147 | */ |
| 148 | if (!in_pf) { |
| 149 | int order = highest_order(orders); |
| 150 | unsigned long addr; |
| 151 | |
| 152 | while (orders) { |
| 153 | addr = vma->vm_end - (PAGE_SIZE << order); |
| 154 | if (thp_vma_suitable_order(vma, addr, order)) |
| 155 | break; |
| 156 | order = next_order(&orders, order); |
| 157 | } |
| 158 | |
| 159 | if (!orders) |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * Enabled via shmem mount options or sysfs settings. |
| 165 | * Must be done before hugepage flags check since shmem has its |
| 166 | * own flags. |
| 167 | */ |
| 168 | if (!in_pf && shmem_file(vma->vm_file)) |
| 169 | return shmem_allowable_huge_orders(file_inode(vma->vm_file), |
| 170 | vma, vma->vm_pgoff, 0, |
| 171 | !enforce_sysfs); |
| 172 | |
| 173 | if (!vma_is_anonymous(vma)) { |
| 174 | /* |
| 175 | * Enforce sysfs THP requirements as necessary. Anonymous vmas |
| 176 | * were already handled in thp_vma_allowable_orders(). |
| 177 | */ |
| 178 | if (enforce_sysfs && |
| 179 | (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && |
| 180 | !hugepage_global_always()))) |
| 181 | return 0; |
| 182 | |
| 183 | /* |
| 184 | * Trust that ->huge_fault() handlers know what they are doing |
| 185 | * in fault path. |
| 186 | */ |
| 187 | if (((in_pf || smaps)) && vma->vm_ops->huge_fault) |
| 188 | return orders; |
| 189 | /* Only regular file is valid in collapse path */ |
| 190 | if (((!in_pf || smaps)) && file_thp_enabled(vma)) |
| 191 | return orders; |
| 192 | return 0; |
| 193 | } |
| 194 | |
| 195 | if (vma_is_temporary_stack(vma)) |
| 196 | return 0; |
| 197 | |
| 198 | /* |
| 199 | * THPeligible bit of smaps should show 1 for proper VMAs even |
| 200 | * though anon_vma is not initialized yet. |
| 201 | * |
| 202 | * Allow page fault since anon_vma may be not initialized until |
| 203 | * the first page fault. |
| 204 | */ |
| 205 | if (!vma->anon_vma) |
| 206 | return (smaps || in_pf) ? orders : 0; |
| 207 | |
| 208 | return orders; |
| 209 | } |
| 210 | |
| 211 | static bool get_huge_zero_page(void) |
| 212 | { |
| 213 | struct folio *zero_folio; |
| 214 | retry: |
| 215 | if (likely(atomic_inc_not_zero(&huge_zero_refcount))) |
| 216 | return true; |
| 217 | |
| 218 | zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, |
| 219 | HPAGE_PMD_ORDER); |
| 220 | if (!zero_folio) { |
| 221 | count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); |
| 222 | return false; |
| 223 | } |
| 224 | /* Ensure zero folio won't have large_rmappable flag set. */ |
| 225 | folio_clear_large_rmappable(zero_folio); |
| 226 | preempt_disable(); |
| 227 | if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { |
| 228 | preempt_enable(); |
| 229 | folio_put(zero_folio); |
| 230 | goto retry; |
| 231 | } |
| 232 | WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); |
| 233 | |
| 234 | /* We take additional reference here. It will be put back by shrinker */ |
| 235 | atomic_set(&huge_zero_refcount, 2); |
| 236 | preempt_enable(); |
| 237 | count_vm_event(THP_ZERO_PAGE_ALLOC); |
| 238 | return true; |
| 239 | } |
| 240 | |
| 241 | static void put_huge_zero_page(void) |
| 242 | { |
| 243 | /* |
| 244 | * Counter should never go to zero here. Only shrinker can put |
| 245 | * last reference. |
| 246 | */ |
| 247 | BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); |
| 248 | } |
| 249 | |
| 250 | struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) |
| 251 | { |
| 252 | if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| 253 | return READ_ONCE(huge_zero_folio); |
| 254 | |
| 255 | if (!get_huge_zero_page()) |
| 256 | return NULL; |
| 257 | |
| 258 | if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| 259 | put_huge_zero_page(); |
| 260 | |
| 261 | return READ_ONCE(huge_zero_folio); |
| 262 | } |
| 263 | |
| 264 | void mm_put_huge_zero_folio(struct mm_struct *mm) |
| 265 | { |
| 266 | if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) |
| 267 | put_huge_zero_page(); |
| 268 | } |
| 269 | |
| 270 | static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, |
| 271 | struct shrink_control *sc) |
| 272 | { |
| 273 | /* we can free zero page only if last reference remains */ |
| 274 | return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; |
| 275 | } |
| 276 | |
| 277 | static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, |
| 278 | struct shrink_control *sc) |
| 279 | { |
| 280 | if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { |
| 281 | struct folio *zero_folio = xchg(&huge_zero_folio, NULL); |
| 282 | BUG_ON(zero_folio == NULL); |
| 283 | WRITE_ONCE(huge_zero_pfn, ~0UL); |
| 284 | folio_put(zero_folio); |
| 285 | return HPAGE_PMD_NR; |
| 286 | } |
| 287 | |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | static struct shrinker *huge_zero_page_shrinker; |
| 292 | |
| 293 | #ifdef CONFIG_SYSFS |
| 294 | static ssize_t enabled_show(struct kobject *kobj, |
| 295 | struct kobj_attribute *attr, char *buf) |
| 296 | { |
| 297 | const char *output; |
| 298 | |
| 299 | if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) |
| 300 | output = "[always] madvise never"; |
| 301 | else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| 302 | &transparent_hugepage_flags)) |
| 303 | output = "always [madvise] never"; |
| 304 | else |
| 305 | output = "always madvise [never]"; |
| 306 | |
| 307 | return sysfs_emit(buf, "%s\n", output); |
| 308 | } |
| 309 | |
| 310 | static ssize_t enabled_store(struct kobject *kobj, |
| 311 | struct kobj_attribute *attr, |
| 312 | const char *buf, size_t count) |
| 313 | { |
| 314 | ssize_t ret = count; |
| 315 | |
| 316 | if (sysfs_streq(buf, "always")) { |
| 317 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 318 | set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); |
| 319 | } else if (sysfs_streq(buf, "madvise")) { |
| 320 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); |
| 321 | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 322 | } else if (sysfs_streq(buf, "never")) { |
| 323 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); |
| 324 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 325 | } else |
| 326 | ret = -EINVAL; |
| 327 | |
| 328 | if (ret > 0) { |
| 329 | int err = start_stop_khugepaged(); |
| 330 | if (err) |
| 331 | ret = err; |
| 332 | } |
| 333 | return ret; |
| 334 | } |
| 335 | |
| 336 | static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); |
| 337 | |
| 338 | ssize_t single_hugepage_flag_show(struct kobject *kobj, |
| 339 | struct kobj_attribute *attr, char *buf, |
| 340 | enum transparent_hugepage_flag flag) |
| 341 | { |
| 342 | return sysfs_emit(buf, "%d\n", |
| 343 | !!test_bit(flag, &transparent_hugepage_flags)); |
| 344 | } |
| 345 | |
| 346 | ssize_t single_hugepage_flag_store(struct kobject *kobj, |
| 347 | struct kobj_attribute *attr, |
| 348 | const char *buf, size_t count, |
| 349 | enum transparent_hugepage_flag flag) |
| 350 | { |
| 351 | unsigned long value; |
| 352 | int ret; |
| 353 | |
| 354 | ret = kstrtoul(buf, 10, &value); |
| 355 | if (ret < 0) |
| 356 | return ret; |
| 357 | if (value > 1) |
| 358 | return -EINVAL; |
| 359 | |
| 360 | if (value) |
| 361 | set_bit(flag, &transparent_hugepage_flags); |
| 362 | else |
| 363 | clear_bit(flag, &transparent_hugepage_flags); |
| 364 | |
| 365 | return count; |
| 366 | } |
| 367 | |
| 368 | static ssize_t defrag_show(struct kobject *kobj, |
| 369 | struct kobj_attribute *attr, char *buf) |
| 370 | { |
| 371 | const char *output; |
| 372 | |
| 373 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, |
| 374 | &transparent_hugepage_flags)) |
| 375 | output = "[always] defer defer+madvise madvise never"; |
| 376 | else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, |
| 377 | &transparent_hugepage_flags)) |
| 378 | output = "always [defer] defer+madvise madvise never"; |
| 379 | else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, |
| 380 | &transparent_hugepage_flags)) |
| 381 | output = "always defer [defer+madvise] madvise never"; |
| 382 | else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, |
| 383 | &transparent_hugepage_flags)) |
| 384 | output = "always defer defer+madvise [madvise] never"; |
| 385 | else |
| 386 | output = "always defer defer+madvise madvise [never]"; |
| 387 | |
| 388 | return sysfs_emit(buf, "%s\n", output); |
| 389 | } |
| 390 | |
| 391 | static ssize_t defrag_store(struct kobject *kobj, |
| 392 | struct kobj_attribute *attr, |
| 393 | const char *buf, size_t count) |
| 394 | { |
| 395 | if (sysfs_streq(buf, "always")) { |
| 396 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 397 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 398 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 399 | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 400 | } else if (sysfs_streq(buf, "defer+madvise")) { |
| 401 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 402 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 403 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 404 | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 405 | } else if (sysfs_streq(buf, "defer")) { |
| 406 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 407 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 408 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 409 | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 410 | } else if (sysfs_streq(buf, "madvise")) { |
| 411 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 412 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 413 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 414 | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 415 | } else if (sysfs_streq(buf, "never")) { |
| 416 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); |
| 417 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); |
| 418 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); |
| 419 | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); |
| 420 | } else |
| 421 | return -EINVAL; |
| 422 | |
| 423 | return count; |
| 424 | } |
| 425 | static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); |
| 426 | |
| 427 | static ssize_t use_zero_page_show(struct kobject *kobj, |
| 428 | struct kobj_attribute *attr, char *buf) |
| 429 | { |
| 430 | return single_hugepage_flag_show(kobj, attr, buf, |
| 431 | TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| 432 | } |
| 433 | static ssize_t use_zero_page_store(struct kobject *kobj, |
| 434 | struct kobj_attribute *attr, const char *buf, size_t count) |
| 435 | { |
| 436 | return single_hugepage_flag_store(kobj, attr, buf, count, |
| 437 | TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); |
| 438 | } |
| 439 | static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); |
| 440 | |
| 441 | static ssize_t hpage_pmd_size_show(struct kobject *kobj, |
| 442 | struct kobj_attribute *attr, char *buf) |
| 443 | { |
| 444 | return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); |
| 445 | } |
| 446 | static struct kobj_attribute hpage_pmd_size_attr = |
| 447 | __ATTR_RO(hpage_pmd_size); |
| 448 | |
| 449 | static ssize_t split_underused_thp_show(struct kobject *kobj, |
| 450 | struct kobj_attribute *attr, char *buf) |
| 451 | { |
| 452 | return sysfs_emit(buf, "%d\n", split_underused_thp); |
| 453 | } |
| 454 | |
| 455 | static ssize_t split_underused_thp_store(struct kobject *kobj, |
| 456 | struct kobj_attribute *attr, |
| 457 | const char *buf, size_t count) |
| 458 | { |
| 459 | int err = kstrtobool(buf, &split_underused_thp); |
| 460 | |
| 461 | if (err < 0) |
| 462 | return err; |
| 463 | |
| 464 | return count; |
| 465 | } |
| 466 | |
| 467 | static struct kobj_attribute split_underused_thp_attr = __ATTR( |
| 468 | shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store); |
| 469 | |
| 470 | static struct attribute *hugepage_attr[] = { |
| 471 | &enabled_attr.attr, |
| 472 | &defrag_attr.attr, |
| 473 | &use_zero_page_attr.attr, |
| 474 | &hpage_pmd_size_attr.attr, |
| 475 | #ifdef CONFIG_SHMEM |
| 476 | &shmem_enabled_attr.attr, |
| 477 | #endif |
| 478 | &split_underused_thp_attr.attr, |
| 479 | NULL, |
| 480 | }; |
| 481 | |
| 482 | static const struct attribute_group hugepage_attr_group = { |
| 483 | .attrs = hugepage_attr, |
| 484 | }; |
| 485 | |
| 486 | static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); |
| 487 | static void thpsize_release(struct kobject *kobj); |
| 488 | static DEFINE_SPINLOCK(huge_anon_orders_lock); |
| 489 | static LIST_HEAD(thpsize_list); |
| 490 | |
| 491 | static ssize_t anon_enabled_show(struct kobject *kobj, |
| 492 | struct kobj_attribute *attr, char *buf) |
| 493 | { |
| 494 | int order = to_thpsize(kobj)->order; |
| 495 | const char *output; |
| 496 | |
| 497 | if (test_bit(order, &huge_anon_orders_always)) |
| 498 | output = "[always] inherit madvise never"; |
| 499 | else if (test_bit(order, &huge_anon_orders_inherit)) |
| 500 | output = "always [inherit] madvise never"; |
| 501 | else if (test_bit(order, &huge_anon_orders_madvise)) |
| 502 | output = "always inherit [madvise] never"; |
| 503 | else |
| 504 | output = "always inherit madvise [never]"; |
| 505 | |
| 506 | return sysfs_emit(buf, "%s\n", output); |
| 507 | } |
| 508 | |
| 509 | static ssize_t anon_enabled_store(struct kobject *kobj, |
| 510 | struct kobj_attribute *attr, |
| 511 | const char *buf, size_t count) |
| 512 | { |
| 513 | int order = to_thpsize(kobj)->order; |
| 514 | ssize_t ret = count; |
| 515 | |
| 516 | if (sysfs_streq(buf, "always")) { |
| 517 | spin_lock(&huge_anon_orders_lock); |
| 518 | clear_bit(order, &huge_anon_orders_inherit); |
| 519 | clear_bit(order, &huge_anon_orders_madvise); |
| 520 | set_bit(order, &huge_anon_orders_always); |
| 521 | spin_unlock(&huge_anon_orders_lock); |
| 522 | } else if (sysfs_streq(buf, "inherit")) { |
| 523 | spin_lock(&huge_anon_orders_lock); |
| 524 | clear_bit(order, &huge_anon_orders_always); |
| 525 | clear_bit(order, &huge_anon_orders_madvise); |
| 526 | set_bit(order, &huge_anon_orders_inherit); |
| 527 | spin_unlock(&huge_anon_orders_lock); |
| 528 | } else if (sysfs_streq(buf, "madvise")) { |
| 529 | spin_lock(&huge_anon_orders_lock); |
| 530 | clear_bit(order, &huge_anon_orders_always); |
| 531 | clear_bit(order, &huge_anon_orders_inherit); |
| 532 | set_bit(order, &huge_anon_orders_madvise); |
| 533 | spin_unlock(&huge_anon_orders_lock); |
| 534 | } else if (sysfs_streq(buf, "never")) { |
| 535 | spin_lock(&huge_anon_orders_lock); |
| 536 | clear_bit(order, &huge_anon_orders_always); |
| 537 | clear_bit(order, &huge_anon_orders_inherit); |
| 538 | clear_bit(order, &huge_anon_orders_madvise); |
| 539 | spin_unlock(&huge_anon_orders_lock); |
| 540 | } else |
| 541 | ret = -EINVAL; |
| 542 | |
| 543 | if (ret > 0) { |
| 544 | int err; |
| 545 | |
| 546 | err = start_stop_khugepaged(); |
| 547 | if (err) |
| 548 | ret = err; |
| 549 | } |
| 550 | return ret; |
| 551 | } |
| 552 | |
| 553 | static struct kobj_attribute anon_enabled_attr = |
| 554 | __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store); |
| 555 | |
| 556 | static struct attribute *anon_ctrl_attrs[] = { |
| 557 | &anon_enabled_attr.attr, |
| 558 | NULL, |
| 559 | }; |
| 560 | |
| 561 | static const struct attribute_group anon_ctrl_attr_grp = { |
| 562 | .attrs = anon_ctrl_attrs, |
| 563 | }; |
| 564 | |
| 565 | static struct attribute *file_ctrl_attrs[] = { |
| 566 | #ifdef CONFIG_SHMEM |
| 567 | &thpsize_shmem_enabled_attr.attr, |
| 568 | #endif |
| 569 | NULL, |
| 570 | }; |
| 571 | |
| 572 | static const struct attribute_group file_ctrl_attr_grp = { |
| 573 | .attrs = file_ctrl_attrs, |
| 574 | }; |
| 575 | |
| 576 | static struct attribute *any_ctrl_attrs[] = { |
| 577 | NULL, |
| 578 | }; |
| 579 | |
| 580 | static const struct attribute_group any_ctrl_attr_grp = { |
| 581 | .attrs = any_ctrl_attrs, |
| 582 | }; |
| 583 | |
| 584 | static const struct kobj_type thpsize_ktype = { |
| 585 | .release = &thpsize_release, |
| 586 | .sysfs_ops = &kobj_sysfs_ops, |
| 587 | }; |
| 588 | |
| 589 | DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; |
| 590 | |
| 591 | static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) |
| 592 | { |
| 593 | unsigned long sum = 0; |
| 594 | int cpu; |
| 595 | |
| 596 | for_each_possible_cpu(cpu) { |
| 597 | struct mthp_stat *this = &per_cpu(mthp_stats, cpu); |
| 598 | |
| 599 | sum += this->stats[order][item]; |
| 600 | } |
| 601 | |
| 602 | return sum; |
| 603 | } |
| 604 | |
| 605 | #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ |
| 606 | static ssize_t _name##_show(struct kobject *kobj, \ |
| 607 | struct kobj_attribute *attr, char *buf) \ |
| 608 | { \ |
| 609 | int order = to_thpsize(kobj)->order; \ |
| 610 | \ |
| 611 | return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ |
| 612 | } \ |
| 613 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) |
| 614 | |
| 615 | DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); |
| 616 | DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); |
| 617 | DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); |
| 618 | DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT); |
| 619 | DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN); |
| 620 | DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK); |
| 621 | DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE); |
| 622 | DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); |
| 623 | DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); |
| 624 | #ifdef CONFIG_SHMEM |
| 625 | DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); |
| 626 | DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); |
| 627 | DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); |
| 628 | #endif |
| 629 | DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); |
| 630 | DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); |
| 631 | DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); |
| 632 | DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON); |
| 633 | DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED); |
| 634 | |
| 635 | static struct attribute *anon_stats_attrs[] = { |
| 636 | &anon_fault_alloc_attr.attr, |
| 637 | &anon_fault_fallback_attr.attr, |
| 638 | &anon_fault_fallback_charge_attr.attr, |
| 639 | #ifndef CONFIG_SHMEM |
| 640 | &zswpout_attr.attr, |
| 641 | &swpin_attr.attr, |
| 642 | &swpin_fallback_attr.attr, |
| 643 | &swpin_fallback_charge_attr.attr, |
| 644 | &swpout_attr.attr, |
| 645 | &swpout_fallback_attr.attr, |
| 646 | #endif |
| 647 | &split_deferred_attr.attr, |
| 648 | &nr_anon_attr.attr, |
| 649 | &nr_anon_partially_mapped_attr.attr, |
| 650 | NULL, |
| 651 | }; |
| 652 | |
| 653 | static struct attribute_group anon_stats_attr_grp = { |
| 654 | .name = "stats", |
| 655 | .attrs = anon_stats_attrs, |
| 656 | }; |
| 657 | |
| 658 | static struct attribute *file_stats_attrs[] = { |
| 659 | #ifdef CONFIG_SHMEM |
| 660 | &shmem_alloc_attr.attr, |
| 661 | &shmem_fallback_attr.attr, |
| 662 | &shmem_fallback_charge_attr.attr, |
| 663 | #endif |
| 664 | NULL, |
| 665 | }; |
| 666 | |
| 667 | static struct attribute_group file_stats_attr_grp = { |
| 668 | .name = "stats", |
| 669 | .attrs = file_stats_attrs, |
| 670 | }; |
| 671 | |
| 672 | static struct attribute *any_stats_attrs[] = { |
| 673 | #ifdef CONFIG_SHMEM |
| 674 | &zswpout_attr.attr, |
| 675 | &swpin_attr.attr, |
| 676 | &swpin_fallback_attr.attr, |
| 677 | &swpin_fallback_charge_attr.attr, |
| 678 | &swpout_attr.attr, |
| 679 | &swpout_fallback_attr.attr, |
| 680 | #endif |
| 681 | &split_attr.attr, |
| 682 | &split_failed_attr.attr, |
| 683 | NULL, |
| 684 | }; |
| 685 | |
| 686 | static struct attribute_group any_stats_attr_grp = { |
| 687 | .name = "stats", |
| 688 | .attrs = any_stats_attrs, |
| 689 | }; |
| 690 | |
| 691 | static int sysfs_add_group(struct kobject *kobj, |
| 692 | const struct attribute_group *grp) |
| 693 | { |
| 694 | int ret = -ENOENT; |
| 695 | |
| 696 | /* |
| 697 | * If the group is named, try to merge first, assuming the subdirectory |
| 698 | * was already created. This avoids the warning emitted by |
| 699 | * sysfs_create_group() if the directory already exists. |
| 700 | */ |
| 701 | if (grp->name) |
| 702 | ret = sysfs_merge_group(kobj, grp); |
| 703 | if (ret) |
| 704 | ret = sysfs_create_group(kobj, grp); |
| 705 | |
| 706 | return ret; |
| 707 | } |
| 708 | |
| 709 | static struct thpsize *thpsize_create(int order, struct kobject *parent) |
| 710 | { |
| 711 | unsigned long size = (PAGE_SIZE << order) / SZ_1K; |
| 712 | struct thpsize *thpsize; |
| 713 | int ret = -ENOMEM; |
| 714 | |
| 715 | thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); |
| 716 | if (!thpsize) |
| 717 | goto err; |
| 718 | |
| 719 | thpsize->order = order; |
| 720 | |
| 721 | ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, |
| 722 | "hugepages-%lukB", size); |
| 723 | if (ret) { |
| 724 | kfree(thpsize); |
| 725 | goto err; |
| 726 | } |
| 727 | |
| 728 | |
| 729 | ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp); |
| 730 | if (ret) |
| 731 | goto err_put; |
| 732 | |
| 733 | ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp); |
| 734 | if (ret) |
| 735 | goto err_put; |
| 736 | |
| 737 | if (BIT(order) & THP_ORDERS_ALL_ANON) { |
| 738 | ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp); |
| 739 | if (ret) |
| 740 | goto err_put; |
| 741 | |
| 742 | ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp); |
| 743 | if (ret) |
| 744 | goto err_put; |
| 745 | } |
| 746 | |
| 747 | if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) { |
| 748 | ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp); |
| 749 | if (ret) |
| 750 | goto err_put; |
| 751 | |
| 752 | ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp); |
| 753 | if (ret) |
| 754 | goto err_put; |
| 755 | } |
| 756 | |
| 757 | return thpsize; |
| 758 | err_put: |
| 759 | kobject_put(&thpsize->kobj); |
| 760 | err: |
| 761 | return ERR_PTR(ret); |
| 762 | } |
| 763 | |
| 764 | static void thpsize_release(struct kobject *kobj) |
| 765 | { |
| 766 | kfree(to_thpsize(kobj)); |
| 767 | } |
| 768 | |
| 769 | static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) |
| 770 | { |
| 771 | int err; |
| 772 | struct thpsize *thpsize; |
| 773 | unsigned long orders; |
| 774 | int order; |
| 775 | |
| 776 | /* |
| 777 | * Default to setting PMD-sized THP to inherit the global setting and |
| 778 | * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time |
| 779 | * constant so we have to do this here. |
| 780 | */ |
| 781 | if (!anon_orders_configured) |
| 782 | huge_anon_orders_inherit = BIT(PMD_ORDER); |
| 783 | |
| 784 | *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); |
| 785 | if (unlikely(!*hugepage_kobj)) { |
| 786 | pr_err("failed to create transparent hugepage kobject\n"); |
| 787 | return -ENOMEM; |
| 788 | } |
| 789 | |
| 790 | err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); |
| 791 | if (err) { |
| 792 | pr_err("failed to register transparent hugepage group\n"); |
| 793 | goto delete_obj; |
| 794 | } |
| 795 | |
| 796 | err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); |
| 797 | if (err) { |
| 798 | pr_err("failed to register transparent hugepage group\n"); |
| 799 | goto remove_hp_group; |
| 800 | } |
| 801 | |
| 802 | orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT; |
| 803 | order = highest_order(orders); |
| 804 | while (orders) { |
| 805 | thpsize = thpsize_create(order, *hugepage_kobj); |
| 806 | if (IS_ERR(thpsize)) { |
| 807 | pr_err("failed to create thpsize for order %d\n", order); |
| 808 | err = PTR_ERR(thpsize); |
| 809 | goto remove_all; |
| 810 | } |
| 811 | list_add(&thpsize->node, &thpsize_list); |
| 812 | order = next_order(&orders, order); |
| 813 | } |
| 814 | |
| 815 | return 0; |
| 816 | |
| 817 | remove_all: |
| 818 | hugepage_exit_sysfs(*hugepage_kobj); |
| 819 | return err; |
| 820 | remove_hp_group: |
| 821 | sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); |
| 822 | delete_obj: |
| 823 | kobject_put(*hugepage_kobj); |
| 824 | return err; |
| 825 | } |
| 826 | |
| 827 | static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) |
| 828 | { |
| 829 | struct thpsize *thpsize, *tmp; |
| 830 | |
| 831 | list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { |
| 832 | list_del(&thpsize->node); |
| 833 | kobject_put(&thpsize->kobj); |
| 834 | } |
| 835 | |
| 836 | sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); |
| 837 | sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); |
| 838 | kobject_put(hugepage_kobj); |
| 839 | } |
| 840 | #else |
| 841 | static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) |
| 842 | { |
| 843 | return 0; |
| 844 | } |
| 845 | |
| 846 | static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) |
| 847 | { |
| 848 | } |
| 849 | #endif /* CONFIG_SYSFS */ |
| 850 | |
| 851 | static int __init thp_shrinker_init(void) |
| 852 | { |
| 853 | huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); |
| 854 | if (!huge_zero_page_shrinker) |
| 855 | return -ENOMEM; |
| 856 | |
| 857 | deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | |
| 858 | SHRINKER_MEMCG_AWARE | |
| 859 | SHRINKER_NONSLAB, |
| 860 | "thp-deferred_split"); |
| 861 | if (!deferred_split_shrinker) { |
| 862 | shrinker_free(huge_zero_page_shrinker); |
| 863 | return -ENOMEM; |
| 864 | } |
| 865 | |
| 866 | huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; |
| 867 | huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; |
| 868 | shrinker_register(huge_zero_page_shrinker); |
| 869 | |
| 870 | deferred_split_shrinker->count_objects = deferred_split_count; |
| 871 | deferred_split_shrinker->scan_objects = deferred_split_scan; |
| 872 | shrinker_register(deferred_split_shrinker); |
| 873 | |
| 874 | return 0; |
| 875 | } |
| 876 | |
| 877 | static void __init thp_shrinker_exit(void) |
| 878 | { |
| 879 | shrinker_free(huge_zero_page_shrinker); |
| 880 | shrinker_free(deferred_split_shrinker); |
| 881 | } |
| 882 | |
| 883 | static int __init hugepage_init(void) |
| 884 | { |
| 885 | int err; |
| 886 | struct kobject *hugepage_kobj; |
| 887 | |
| 888 | if (!has_transparent_hugepage()) { |
| 889 | transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; |
| 890 | return -EINVAL; |
| 891 | } |
| 892 | |
| 893 | /* |
| 894 | * hugepages can't be allocated by the buddy allocator |
| 895 | */ |
| 896 | MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); |
| 897 | |
| 898 | err = hugepage_init_sysfs(&hugepage_kobj); |
| 899 | if (err) |
| 900 | goto err_sysfs; |
| 901 | |
| 902 | err = khugepaged_init(); |
| 903 | if (err) |
| 904 | goto err_slab; |
| 905 | |
| 906 | err = thp_shrinker_init(); |
| 907 | if (err) |
| 908 | goto err_shrinker; |
| 909 | |
| 910 | /* |
| 911 | * By default disable transparent hugepages on smaller systems, |
| 912 | * where the extra memory used could hurt more than TLB overhead |
| 913 | * is likely to save. The admin can still enable it through /sys. |
| 914 | */ |
| 915 | if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { |
| 916 | transparent_hugepage_flags = 0; |
| 917 | return 0; |
| 918 | } |
| 919 | |
| 920 | err = start_stop_khugepaged(); |
| 921 | if (err) |
| 922 | goto err_khugepaged; |
| 923 | |
| 924 | return 0; |
| 925 | err_khugepaged: |
| 926 | thp_shrinker_exit(); |
| 927 | err_shrinker: |
| 928 | khugepaged_destroy(); |
| 929 | err_slab: |
| 930 | hugepage_exit_sysfs(hugepage_kobj); |
| 931 | err_sysfs: |
| 932 | return err; |
| 933 | } |
| 934 | subsys_initcall(hugepage_init); |
| 935 | |
| 936 | static int __init setup_transparent_hugepage(char *str) |
| 937 | { |
| 938 | int ret = 0; |
| 939 | if (!str) |
| 940 | goto out; |
| 941 | if (!strcmp(str, "always")) { |
| 942 | set_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| 943 | &transparent_hugepage_flags); |
| 944 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| 945 | &transparent_hugepage_flags); |
| 946 | ret = 1; |
| 947 | } else if (!strcmp(str, "madvise")) { |
| 948 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| 949 | &transparent_hugepage_flags); |
| 950 | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| 951 | &transparent_hugepage_flags); |
| 952 | ret = 1; |
| 953 | } else if (!strcmp(str, "never")) { |
| 954 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, |
| 955 | &transparent_hugepage_flags); |
| 956 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, |
| 957 | &transparent_hugepage_flags); |
| 958 | ret = 1; |
| 959 | } |
| 960 | out: |
| 961 | if (!ret) |
| 962 | pr_warn("transparent_hugepage= cannot parse, ignored\n"); |
| 963 | return ret; |
| 964 | } |
| 965 | __setup("transparent_hugepage=", setup_transparent_hugepage); |
| 966 | |
| 967 | static char str_dup[PAGE_SIZE] __initdata; |
| 968 | static int __init setup_thp_anon(char *str) |
| 969 | { |
| 970 | char *token, *range, *policy, *subtoken; |
| 971 | unsigned long always, inherit, madvise; |
| 972 | char *start_size, *end_size; |
| 973 | int start, end, nr; |
| 974 | char *p; |
| 975 | |
| 976 | if (!str || strlen(str) + 1 > PAGE_SIZE) |
| 977 | goto err; |
| 978 | strscpy(str_dup, str); |
| 979 | |
| 980 | always = huge_anon_orders_always; |
| 981 | madvise = huge_anon_orders_madvise; |
| 982 | inherit = huge_anon_orders_inherit; |
| 983 | p = str_dup; |
| 984 | while ((token = strsep(&p, ";")) != NULL) { |
| 985 | range = strsep(&token, ":"); |
| 986 | policy = token; |
| 987 | |
| 988 | if (!policy) |
| 989 | goto err; |
| 990 | |
| 991 | while ((subtoken = strsep(&range, ",")) != NULL) { |
| 992 | if (strchr(subtoken, '-')) { |
| 993 | start_size = strsep(&subtoken, "-"); |
| 994 | end_size = subtoken; |
| 995 | |
| 996 | start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON); |
| 997 | end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON); |
| 998 | } else { |
| 999 | start_size = end_size = subtoken; |
| 1000 | start = end = get_order_from_str(subtoken, |
| 1001 | THP_ORDERS_ALL_ANON); |
| 1002 | } |
| 1003 | |
| 1004 | if (start == -EINVAL) { |
| 1005 | pr_err("invalid size %s in thp_anon boot parameter\n", start_size); |
| 1006 | goto err; |
| 1007 | } |
| 1008 | |
| 1009 | if (end == -EINVAL) { |
| 1010 | pr_err("invalid size %s in thp_anon boot parameter\n", end_size); |
| 1011 | goto err; |
| 1012 | } |
| 1013 | |
| 1014 | if (start < 0 || end < 0 || start > end) |
| 1015 | goto err; |
| 1016 | |
| 1017 | nr = end - start + 1; |
| 1018 | if (!strcmp(policy, "always")) { |
| 1019 | bitmap_set(&always, start, nr); |
| 1020 | bitmap_clear(&inherit, start, nr); |
| 1021 | bitmap_clear(&madvise, start, nr); |
| 1022 | } else if (!strcmp(policy, "madvise")) { |
| 1023 | bitmap_set(&madvise, start, nr); |
| 1024 | bitmap_clear(&inherit, start, nr); |
| 1025 | bitmap_clear(&always, start, nr); |
| 1026 | } else if (!strcmp(policy, "inherit")) { |
| 1027 | bitmap_set(&inherit, start, nr); |
| 1028 | bitmap_clear(&madvise, start, nr); |
| 1029 | bitmap_clear(&always, start, nr); |
| 1030 | } else if (!strcmp(policy, "never")) { |
| 1031 | bitmap_clear(&inherit, start, nr); |
| 1032 | bitmap_clear(&madvise, start, nr); |
| 1033 | bitmap_clear(&always, start, nr); |
| 1034 | } else { |
| 1035 | pr_err("invalid policy %s in thp_anon boot parameter\n", policy); |
| 1036 | goto err; |
| 1037 | } |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | huge_anon_orders_always = always; |
| 1042 | huge_anon_orders_madvise = madvise; |
| 1043 | huge_anon_orders_inherit = inherit; |
| 1044 | anon_orders_configured = true; |
| 1045 | return 1; |
| 1046 | |
| 1047 | err: |
| 1048 | pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str); |
| 1049 | return 0; |
| 1050 | } |
| 1051 | __setup("thp_anon=", setup_thp_anon); |
| 1052 | |
| 1053 | pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) |
| 1054 | { |
| 1055 | if (likely(vma->vm_flags & VM_WRITE)) |
| 1056 | pmd = pmd_mkwrite(pmd, vma); |
| 1057 | return pmd; |
| 1058 | } |
| 1059 | |
| 1060 | #ifdef CONFIG_MEMCG |
| 1061 | static inline |
| 1062 | struct deferred_split *get_deferred_split_queue(struct folio *folio) |
| 1063 | { |
| 1064 | struct mem_cgroup *memcg = folio_memcg(folio); |
| 1065 | struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); |
| 1066 | |
| 1067 | if (memcg) |
| 1068 | return &memcg->deferred_split_queue; |
| 1069 | else |
| 1070 | return &pgdat->deferred_split_queue; |
| 1071 | } |
| 1072 | #else |
| 1073 | static inline |
| 1074 | struct deferred_split *get_deferred_split_queue(struct folio *folio) |
| 1075 | { |
| 1076 | struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); |
| 1077 | |
| 1078 | return &pgdat->deferred_split_queue; |
| 1079 | } |
| 1080 | #endif |
| 1081 | |
| 1082 | static inline bool is_transparent_hugepage(const struct folio *folio) |
| 1083 | { |
| 1084 | if (!folio_test_large(folio)) |
| 1085 | return false; |
| 1086 | |
| 1087 | return is_huge_zero_folio(folio) || |
| 1088 | folio_test_large_rmappable(folio); |
| 1089 | } |
| 1090 | |
| 1091 | static unsigned long __thp_get_unmapped_area(struct file *filp, |
| 1092 | unsigned long addr, unsigned long len, |
| 1093 | loff_t off, unsigned long flags, unsigned long size, |
| 1094 | vm_flags_t vm_flags) |
| 1095 | { |
| 1096 | loff_t off_end = off + len; |
| 1097 | loff_t off_align = round_up(off, size); |
| 1098 | unsigned long len_pad, ret, off_sub; |
| 1099 | |
| 1100 | if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) |
| 1101 | return 0; |
| 1102 | |
| 1103 | if (off_end <= off_align || (off_end - off_align) < size) |
| 1104 | return 0; |
| 1105 | |
| 1106 | len_pad = len + size; |
| 1107 | if (len_pad < len || (off + len_pad) < off) |
| 1108 | return 0; |
| 1109 | |
| 1110 | ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, |
| 1111 | off >> PAGE_SHIFT, flags, vm_flags); |
| 1112 | |
| 1113 | /* |
| 1114 | * The failure might be due to length padding. The caller will retry |
| 1115 | * without the padding. |
| 1116 | */ |
| 1117 | if (IS_ERR_VALUE(ret)) |
| 1118 | return 0; |
| 1119 | |
| 1120 | /* |
| 1121 | * Do not try to align to THP boundary if allocation at the address |
| 1122 | * hint succeeds. |
| 1123 | */ |
| 1124 | if (ret == addr) |
| 1125 | return addr; |
| 1126 | |
| 1127 | off_sub = (off - ret) & (size - 1); |
| 1128 | |
| 1129 | if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) |
| 1130 | return ret + size; |
| 1131 | |
| 1132 | ret += off_sub; |
| 1133 | return ret; |
| 1134 | } |
| 1135 | |
| 1136 | unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, |
| 1137 | unsigned long len, unsigned long pgoff, unsigned long flags, |
| 1138 | vm_flags_t vm_flags) |
| 1139 | { |
| 1140 | unsigned long ret; |
| 1141 | loff_t off = (loff_t)pgoff << PAGE_SHIFT; |
| 1142 | |
| 1143 | ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); |
| 1144 | if (ret) |
| 1145 | return ret; |
| 1146 | |
| 1147 | return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, |
| 1148 | vm_flags); |
| 1149 | } |
| 1150 | |
| 1151 | unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, |
| 1152 | unsigned long len, unsigned long pgoff, unsigned long flags) |
| 1153 | { |
| 1154 | return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); |
| 1155 | } |
| 1156 | EXPORT_SYMBOL_GPL(thp_get_unmapped_area); |
| 1157 | |
| 1158 | static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma, |
| 1159 | unsigned long addr) |
| 1160 | { |
| 1161 | gfp_t gfp = vma_thp_gfp_mask(vma); |
| 1162 | const int order = HPAGE_PMD_ORDER; |
| 1163 | struct folio *folio; |
| 1164 | |
| 1165 | folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK); |
| 1166 | |
| 1167 | if (unlikely(!folio)) { |
| 1168 | count_vm_event(THP_FAULT_FALLBACK); |
| 1169 | count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); |
| 1170 | return NULL; |
| 1171 | } |
| 1172 | |
| 1173 | VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); |
| 1174 | if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { |
| 1175 | folio_put(folio); |
| 1176 | count_vm_event(THP_FAULT_FALLBACK); |
| 1177 | count_vm_event(THP_FAULT_FALLBACK_CHARGE); |
| 1178 | count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); |
| 1179 | count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); |
| 1180 | return NULL; |
| 1181 | } |
| 1182 | folio_throttle_swaprate(folio, gfp); |
| 1183 | |
| 1184 | /* |
| 1185 | * When a folio is not zeroed during allocation (__GFP_ZERO not used) |
| 1186 | * or user folios require special handling, folio_zero_user() is used to |
| 1187 | * make sure that the page corresponding to the faulting address will be |
| 1188 | * hot in the cache after zeroing. |
| 1189 | */ |
| 1190 | if (user_alloc_needs_zeroing()) |
| 1191 | folio_zero_user(folio, addr); |
| 1192 | /* |
| 1193 | * The memory barrier inside __folio_mark_uptodate makes sure that |
| 1194 | * folio_zero_user writes become visible before the set_pmd_at() |
| 1195 | * write. |
| 1196 | */ |
| 1197 | __folio_mark_uptodate(folio); |
| 1198 | return folio; |
| 1199 | } |
| 1200 | |
| 1201 | static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd, |
| 1202 | struct vm_area_struct *vma, unsigned long haddr) |
| 1203 | { |
| 1204 | pmd_t entry; |
| 1205 | |
| 1206 | entry = folio_mk_pmd(folio, vma->vm_page_prot); |
| 1207 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| 1208 | folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); |
| 1209 | folio_add_lru_vma(folio, vma); |
| 1210 | set_pmd_at(vma->vm_mm, haddr, pmd, entry); |
| 1211 | update_mmu_cache_pmd(vma, haddr, pmd); |
| 1212 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| 1213 | count_vm_event(THP_FAULT_ALLOC); |
| 1214 | count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); |
| 1215 | count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); |
| 1216 | } |
| 1217 | |
| 1218 | static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf) |
| 1219 | { |
| 1220 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 1221 | struct vm_area_struct *vma = vmf->vma; |
| 1222 | struct folio *folio; |
| 1223 | pgtable_t pgtable; |
| 1224 | vm_fault_t ret = 0; |
| 1225 | |
| 1226 | folio = vma_alloc_anon_folio_pmd(vma, vmf->address); |
| 1227 | if (unlikely(!folio)) |
| 1228 | return VM_FAULT_FALLBACK; |
| 1229 | |
| 1230 | pgtable = pte_alloc_one(vma->vm_mm); |
| 1231 | if (unlikely(!pgtable)) { |
| 1232 | ret = VM_FAULT_OOM; |
| 1233 | goto release; |
| 1234 | } |
| 1235 | |
| 1236 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 1237 | if (unlikely(!pmd_none(*vmf->pmd))) { |
| 1238 | goto unlock_release; |
| 1239 | } else { |
| 1240 | ret = check_stable_address_space(vma->vm_mm); |
| 1241 | if (ret) |
| 1242 | goto unlock_release; |
| 1243 | |
| 1244 | /* Deliver the page fault to userland */ |
| 1245 | if (userfaultfd_missing(vma)) { |
| 1246 | spin_unlock(vmf->ptl); |
| 1247 | folio_put(folio); |
| 1248 | pte_free(vma->vm_mm, pgtable); |
| 1249 | ret = handle_userfault(vmf, VM_UFFD_MISSING); |
| 1250 | VM_BUG_ON(ret & VM_FAULT_FALLBACK); |
| 1251 | return ret; |
| 1252 | } |
| 1253 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); |
| 1254 | map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); |
| 1255 | mm_inc_nr_ptes(vma->vm_mm); |
| 1256 | deferred_split_folio(folio, false); |
| 1257 | spin_unlock(vmf->ptl); |
| 1258 | } |
| 1259 | |
| 1260 | return 0; |
| 1261 | unlock_release: |
| 1262 | spin_unlock(vmf->ptl); |
| 1263 | release: |
| 1264 | if (pgtable) |
| 1265 | pte_free(vma->vm_mm, pgtable); |
| 1266 | folio_put(folio); |
| 1267 | return ret; |
| 1268 | |
| 1269 | } |
| 1270 | |
| 1271 | /* |
| 1272 | * always: directly stall for all thp allocations |
| 1273 | * defer: wake kswapd and fail if not immediately available |
| 1274 | * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise |
| 1275 | * fail if not immediately available |
| 1276 | * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately |
| 1277 | * available |
| 1278 | * never: never stall for any thp allocation |
| 1279 | */ |
| 1280 | gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) |
| 1281 | { |
| 1282 | const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); |
| 1283 | |
| 1284 | /* Always do synchronous compaction */ |
| 1285 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) |
| 1286 | return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); |
| 1287 | |
| 1288 | /* Kick kcompactd and fail quickly */ |
| 1289 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) |
| 1290 | return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; |
| 1291 | |
| 1292 | /* Synchronous compaction if madvised, otherwise kick kcompactd */ |
| 1293 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) |
| 1294 | return GFP_TRANSHUGE_LIGHT | |
| 1295 | (vma_madvised ? __GFP_DIRECT_RECLAIM : |
| 1296 | __GFP_KSWAPD_RECLAIM); |
| 1297 | |
| 1298 | /* Only do synchronous compaction if madvised */ |
| 1299 | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) |
| 1300 | return GFP_TRANSHUGE_LIGHT | |
| 1301 | (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); |
| 1302 | |
| 1303 | return GFP_TRANSHUGE_LIGHT; |
| 1304 | } |
| 1305 | |
| 1306 | /* Caller must hold page table lock. */ |
| 1307 | static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, |
| 1308 | struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, |
| 1309 | struct folio *zero_folio) |
| 1310 | { |
| 1311 | pmd_t entry; |
| 1312 | entry = folio_mk_pmd(zero_folio, vma->vm_page_prot); |
| 1313 | pgtable_trans_huge_deposit(mm, pmd, pgtable); |
| 1314 | set_pmd_at(mm, haddr, pmd, entry); |
| 1315 | mm_inc_nr_ptes(mm); |
| 1316 | } |
| 1317 | |
| 1318 | vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) |
| 1319 | { |
| 1320 | struct vm_area_struct *vma = vmf->vma; |
| 1321 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 1322 | vm_fault_t ret; |
| 1323 | |
| 1324 | if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) |
| 1325 | return VM_FAULT_FALLBACK; |
| 1326 | ret = vmf_anon_prepare(vmf); |
| 1327 | if (ret) |
| 1328 | return ret; |
| 1329 | khugepaged_enter_vma(vma, vma->vm_flags); |
| 1330 | |
| 1331 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
| 1332 | !mm_forbids_zeropage(vma->vm_mm) && |
| 1333 | transparent_hugepage_use_zero_page()) { |
| 1334 | pgtable_t pgtable; |
| 1335 | struct folio *zero_folio; |
| 1336 | vm_fault_t ret; |
| 1337 | |
| 1338 | pgtable = pte_alloc_one(vma->vm_mm); |
| 1339 | if (unlikely(!pgtable)) |
| 1340 | return VM_FAULT_OOM; |
| 1341 | zero_folio = mm_get_huge_zero_folio(vma->vm_mm); |
| 1342 | if (unlikely(!zero_folio)) { |
| 1343 | pte_free(vma->vm_mm, pgtable); |
| 1344 | count_vm_event(THP_FAULT_FALLBACK); |
| 1345 | return VM_FAULT_FALLBACK; |
| 1346 | } |
| 1347 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 1348 | ret = 0; |
| 1349 | if (pmd_none(*vmf->pmd)) { |
| 1350 | ret = check_stable_address_space(vma->vm_mm); |
| 1351 | if (ret) { |
| 1352 | spin_unlock(vmf->ptl); |
| 1353 | pte_free(vma->vm_mm, pgtable); |
| 1354 | } else if (userfaultfd_missing(vma)) { |
| 1355 | spin_unlock(vmf->ptl); |
| 1356 | pte_free(vma->vm_mm, pgtable); |
| 1357 | ret = handle_userfault(vmf, VM_UFFD_MISSING); |
| 1358 | VM_BUG_ON(ret & VM_FAULT_FALLBACK); |
| 1359 | } else { |
| 1360 | set_huge_zero_folio(pgtable, vma->vm_mm, vma, |
| 1361 | haddr, vmf->pmd, zero_folio); |
| 1362 | update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); |
| 1363 | spin_unlock(vmf->ptl); |
| 1364 | } |
| 1365 | } else { |
| 1366 | spin_unlock(vmf->ptl); |
| 1367 | pte_free(vma->vm_mm, pgtable); |
| 1368 | } |
| 1369 | return ret; |
| 1370 | } |
| 1371 | |
| 1372 | return __do_huge_pmd_anonymous_page(vmf); |
| 1373 | } |
| 1374 | |
| 1375 | static int insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 1376 | pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, |
| 1377 | pgtable_t pgtable) |
| 1378 | { |
| 1379 | struct mm_struct *mm = vma->vm_mm; |
| 1380 | pmd_t entry; |
| 1381 | |
| 1382 | lockdep_assert_held(pmd_lockptr(mm, pmd)); |
| 1383 | |
| 1384 | if (!pmd_none(*pmd)) { |
| 1385 | if (write) { |
| 1386 | if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { |
| 1387 | WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); |
| 1388 | return -EEXIST; |
| 1389 | } |
| 1390 | entry = pmd_mkyoung(*pmd); |
| 1391 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| 1392 | if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) |
| 1393 | update_mmu_cache_pmd(vma, addr, pmd); |
| 1394 | } |
| 1395 | |
| 1396 | return -EEXIST; |
| 1397 | } |
| 1398 | |
| 1399 | entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); |
| 1400 | if (pfn_t_devmap(pfn)) |
| 1401 | entry = pmd_mkdevmap(entry); |
| 1402 | else |
| 1403 | entry = pmd_mkspecial(entry); |
| 1404 | if (write) { |
| 1405 | entry = pmd_mkyoung(pmd_mkdirty(entry)); |
| 1406 | entry = maybe_pmd_mkwrite(entry, vma); |
| 1407 | } |
| 1408 | |
| 1409 | if (pgtable) { |
| 1410 | pgtable_trans_huge_deposit(mm, pmd, pgtable); |
| 1411 | mm_inc_nr_ptes(mm); |
| 1412 | } |
| 1413 | |
| 1414 | set_pmd_at(mm, addr, pmd, entry); |
| 1415 | update_mmu_cache_pmd(vma, addr, pmd); |
| 1416 | return 0; |
| 1417 | } |
| 1418 | |
| 1419 | /** |
| 1420 | * vmf_insert_pfn_pmd - insert a pmd size pfn |
| 1421 | * @vmf: Structure describing the fault |
| 1422 | * @pfn: pfn to insert |
| 1423 | * @write: whether it's a write fault |
| 1424 | * |
| 1425 | * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. |
| 1426 | * |
| 1427 | * Return: vm_fault_t value. |
| 1428 | */ |
| 1429 | vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) |
| 1430 | { |
| 1431 | unsigned long addr = vmf->address & PMD_MASK; |
| 1432 | struct vm_area_struct *vma = vmf->vma; |
| 1433 | pgprot_t pgprot = vma->vm_page_prot; |
| 1434 | pgtable_t pgtable = NULL; |
| 1435 | spinlock_t *ptl; |
| 1436 | int error; |
| 1437 | |
| 1438 | /* |
| 1439 | * If we had pmd_special, we could avoid all these restrictions, |
| 1440 | * but we need to be consistent with PTEs and architectures that |
| 1441 | * can't support a 'special' bit. |
| 1442 | */ |
| 1443 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && |
| 1444 | !pfn_t_devmap(pfn)); |
| 1445 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == |
| 1446 | (VM_PFNMAP|VM_MIXEDMAP)); |
| 1447 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); |
| 1448 | |
| 1449 | if (addr < vma->vm_start || addr >= vma->vm_end) |
| 1450 | return VM_FAULT_SIGBUS; |
| 1451 | |
| 1452 | if (arch_needs_pgtable_deposit()) { |
| 1453 | pgtable = pte_alloc_one(vma->vm_mm); |
| 1454 | if (!pgtable) |
| 1455 | return VM_FAULT_OOM; |
| 1456 | } |
| 1457 | |
| 1458 | pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot); |
| 1459 | |
| 1460 | ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 1461 | error = insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, |
| 1462 | pgtable); |
| 1463 | spin_unlock(ptl); |
| 1464 | if (error && pgtable) |
| 1465 | pte_free(vma->vm_mm, pgtable); |
| 1466 | |
| 1467 | return VM_FAULT_NOPAGE; |
| 1468 | } |
| 1469 | EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); |
| 1470 | |
| 1471 | vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio, |
| 1472 | bool write) |
| 1473 | { |
| 1474 | struct vm_area_struct *vma = vmf->vma; |
| 1475 | unsigned long addr = vmf->address & PMD_MASK; |
| 1476 | struct mm_struct *mm = vma->vm_mm; |
| 1477 | spinlock_t *ptl; |
| 1478 | pgtable_t pgtable = NULL; |
| 1479 | int error; |
| 1480 | |
| 1481 | if (addr < vma->vm_start || addr >= vma->vm_end) |
| 1482 | return VM_FAULT_SIGBUS; |
| 1483 | |
| 1484 | if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER)) |
| 1485 | return VM_FAULT_SIGBUS; |
| 1486 | |
| 1487 | if (arch_needs_pgtable_deposit()) { |
| 1488 | pgtable = pte_alloc_one(vma->vm_mm); |
| 1489 | if (!pgtable) |
| 1490 | return VM_FAULT_OOM; |
| 1491 | } |
| 1492 | |
| 1493 | ptl = pmd_lock(mm, vmf->pmd); |
| 1494 | if (pmd_none(*vmf->pmd)) { |
| 1495 | folio_get(folio); |
| 1496 | folio_add_file_rmap_pmd(folio, &folio->page, vma); |
| 1497 | add_mm_counter(mm, mm_counter_file(folio), HPAGE_PMD_NR); |
| 1498 | } |
| 1499 | error = insert_pfn_pmd(vma, addr, vmf->pmd, |
| 1500 | pfn_to_pfn_t(folio_pfn(folio)), vma->vm_page_prot, |
| 1501 | write, pgtable); |
| 1502 | spin_unlock(ptl); |
| 1503 | if (error && pgtable) |
| 1504 | pte_free(mm, pgtable); |
| 1505 | |
| 1506 | return VM_FAULT_NOPAGE; |
| 1507 | } |
| 1508 | EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd); |
| 1509 | |
| 1510 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 1511 | static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) |
| 1512 | { |
| 1513 | if (likely(vma->vm_flags & VM_WRITE)) |
| 1514 | pud = pud_mkwrite(pud); |
| 1515 | return pud; |
| 1516 | } |
| 1517 | |
| 1518 | static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, |
| 1519 | pud_t *pud, pfn_t pfn, bool write) |
| 1520 | { |
| 1521 | struct mm_struct *mm = vma->vm_mm; |
| 1522 | pgprot_t prot = vma->vm_page_prot; |
| 1523 | pud_t entry; |
| 1524 | |
| 1525 | if (!pud_none(*pud)) { |
| 1526 | if (write) { |
| 1527 | if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn))) |
| 1528 | return; |
| 1529 | entry = pud_mkyoung(*pud); |
| 1530 | entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); |
| 1531 | if (pudp_set_access_flags(vma, addr, pud, entry, 1)) |
| 1532 | update_mmu_cache_pud(vma, addr, pud); |
| 1533 | } |
| 1534 | return; |
| 1535 | } |
| 1536 | |
| 1537 | entry = pud_mkhuge(pfn_t_pud(pfn, prot)); |
| 1538 | if (pfn_t_devmap(pfn)) |
| 1539 | entry = pud_mkdevmap(entry); |
| 1540 | else |
| 1541 | entry = pud_mkspecial(entry); |
| 1542 | if (write) { |
| 1543 | entry = pud_mkyoung(pud_mkdirty(entry)); |
| 1544 | entry = maybe_pud_mkwrite(entry, vma); |
| 1545 | } |
| 1546 | set_pud_at(mm, addr, pud, entry); |
| 1547 | update_mmu_cache_pud(vma, addr, pud); |
| 1548 | } |
| 1549 | |
| 1550 | /** |
| 1551 | * vmf_insert_pfn_pud - insert a pud size pfn |
| 1552 | * @vmf: Structure describing the fault |
| 1553 | * @pfn: pfn to insert |
| 1554 | * @write: whether it's a write fault |
| 1555 | * |
| 1556 | * Insert a pud size pfn. See vmf_insert_pfn() for additional info. |
| 1557 | * |
| 1558 | * Return: vm_fault_t value. |
| 1559 | */ |
| 1560 | vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) |
| 1561 | { |
| 1562 | unsigned long addr = vmf->address & PUD_MASK; |
| 1563 | struct vm_area_struct *vma = vmf->vma; |
| 1564 | pgprot_t pgprot = vma->vm_page_prot; |
| 1565 | spinlock_t *ptl; |
| 1566 | |
| 1567 | /* |
| 1568 | * If we had pud_special, we could avoid all these restrictions, |
| 1569 | * but we need to be consistent with PTEs and architectures that |
| 1570 | * can't support a 'special' bit. |
| 1571 | */ |
| 1572 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && |
| 1573 | !pfn_t_devmap(pfn)); |
| 1574 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == |
| 1575 | (VM_PFNMAP|VM_MIXEDMAP)); |
| 1576 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); |
| 1577 | |
| 1578 | if (addr < vma->vm_start || addr >= vma->vm_end) |
| 1579 | return VM_FAULT_SIGBUS; |
| 1580 | |
| 1581 | pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot); |
| 1582 | |
| 1583 | ptl = pud_lock(vma->vm_mm, vmf->pud); |
| 1584 | insert_pfn_pud(vma, addr, vmf->pud, pfn, write); |
| 1585 | spin_unlock(ptl); |
| 1586 | |
| 1587 | return VM_FAULT_NOPAGE; |
| 1588 | } |
| 1589 | EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); |
| 1590 | |
| 1591 | /** |
| 1592 | * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry |
| 1593 | * @vmf: Structure describing the fault |
| 1594 | * @folio: folio to insert |
| 1595 | * @write: whether it's a write fault |
| 1596 | * |
| 1597 | * Return: vm_fault_t value. |
| 1598 | */ |
| 1599 | vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio, |
| 1600 | bool write) |
| 1601 | { |
| 1602 | struct vm_area_struct *vma = vmf->vma; |
| 1603 | unsigned long addr = vmf->address & PUD_MASK; |
| 1604 | pud_t *pud = vmf->pud; |
| 1605 | struct mm_struct *mm = vma->vm_mm; |
| 1606 | spinlock_t *ptl; |
| 1607 | |
| 1608 | if (addr < vma->vm_start || addr >= vma->vm_end) |
| 1609 | return VM_FAULT_SIGBUS; |
| 1610 | |
| 1611 | if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER)) |
| 1612 | return VM_FAULT_SIGBUS; |
| 1613 | |
| 1614 | ptl = pud_lock(mm, pud); |
| 1615 | |
| 1616 | /* |
| 1617 | * If there is already an entry present we assume the folio is |
| 1618 | * already mapped, hence no need to take another reference. We |
| 1619 | * still call insert_pfn_pud() though in case the mapping needs |
| 1620 | * upgrading to writeable. |
| 1621 | */ |
| 1622 | if (pud_none(*vmf->pud)) { |
| 1623 | folio_get(folio); |
| 1624 | folio_add_file_rmap_pud(folio, &folio->page, vma); |
| 1625 | add_mm_counter(mm, mm_counter_file(folio), HPAGE_PUD_NR); |
| 1626 | } |
| 1627 | insert_pfn_pud(vma, addr, vmf->pud, pfn_to_pfn_t(folio_pfn(folio)), |
| 1628 | write); |
| 1629 | spin_unlock(ptl); |
| 1630 | |
| 1631 | return VM_FAULT_NOPAGE; |
| 1632 | } |
| 1633 | EXPORT_SYMBOL_GPL(vmf_insert_folio_pud); |
| 1634 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 1635 | |
| 1636 | void touch_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 1637 | pmd_t *pmd, bool write) |
| 1638 | { |
| 1639 | pmd_t _pmd; |
| 1640 | |
| 1641 | _pmd = pmd_mkyoung(*pmd); |
| 1642 | if (write) |
| 1643 | _pmd = pmd_mkdirty(_pmd); |
| 1644 | if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, |
| 1645 | pmd, _pmd, write)) |
| 1646 | update_mmu_cache_pmd(vma, addr, pmd); |
| 1647 | } |
| 1648 | |
| 1649 | struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 1650 | pmd_t *pmd, int flags, struct dev_pagemap **pgmap) |
| 1651 | { |
| 1652 | unsigned long pfn = pmd_pfn(*pmd); |
| 1653 | struct mm_struct *mm = vma->vm_mm; |
| 1654 | struct page *page; |
| 1655 | int ret; |
| 1656 | |
| 1657 | assert_spin_locked(pmd_lockptr(mm, pmd)); |
| 1658 | |
| 1659 | if (flags & FOLL_WRITE && !pmd_write(*pmd)) |
| 1660 | return NULL; |
| 1661 | |
| 1662 | if (pmd_present(*pmd) && pmd_devmap(*pmd)) |
| 1663 | /* pass */; |
| 1664 | else |
| 1665 | return NULL; |
| 1666 | |
| 1667 | if (flags & FOLL_TOUCH) |
| 1668 | touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); |
| 1669 | |
| 1670 | /* |
| 1671 | * device mapped pages can only be returned if the |
| 1672 | * caller will manage the page reference count. |
| 1673 | */ |
| 1674 | if (!(flags & (FOLL_GET | FOLL_PIN))) |
| 1675 | return ERR_PTR(-EEXIST); |
| 1676 | |
| 1677 | pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; |
| 1678 | *pgmap = get_dev_pagemap(pfn, *pgmap); |
| 1679 | if (!*pgmap) |
| 1680 | return ERR_PTR(-EFAULT); |
| 1681 | page = pfn_to_page(pfn); |
| 1682 | ret = try_grab_folio(page_folio(page), 1, flags); |
| 1683 | if (ret) |
| 1684 | page = ERR_PTR(ret); |
| 1685 | |
| 1686 | return page; |
| 1687 | } |
| 1688 | |
| 1689 | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 1690 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, |
| 1691 | struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) |
| 1692 | { |
| 1693 | spinlock_t *dst_ptl, *src_ptl; |
| 1694 | struct page *src_page; |
| 1695 | struct folio *src_folio; |
| 1696 | pmd_t pmd; |
| 1697 | pgtable_t pgtable = NULL; |
| 1698 | int ret = -ENOMEM; |
| 1699 | |
| 1700 | pmd = pmdp_get_lockless(src_pmd); |
| 1701 | if (unlikely(pmd_present(pmd) && pmd_special(pmd))) { |
| 1702 | dst_ptl = pmd_lock(dst_mm, dst_pmd); |
| 1703 | src_ptl = pmd_lockptr(src_mm, src_pmd); |
| 1704 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
| 1705 | /* |
| 1706 | * No need to recheck the pmd, it can't change with write |
| 1707 | * mmap lock held here. |
| 1708 | * |
| 1709 | * Meanwhile, making sure it's not a CoW VMA with writable |
| 1710 | * mapping, otherwise it means either the anon page wrongly |
| 1711 | * applied special bit, or we made the PRIVATE mapping be |
| 1712 | * able to wrongly write to the backend MMIO. |
| 1713 | */ |
| 1714 | VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd)); |
| 1715 | goto set_pmd; |
| 1716 | } |
| 1717 | |
| 1718 | /* Skip if can be re-fill on fault */ |
| 1719 | if (!vma_is_anonymous(dst_vma)) |
| 1720 | return 0; |
| 1721 | |
| 1722 | pgtable = pte_alloc_one(dst_mm); |
| 1723 | if (unlikely(!pgtable)) |
| 1724 | goto out; |
| 1725 | |
| 1726 | dst_ptl = pmd_lock(dst_mm, dst_pmd); |
| 1727 | src_ptl = pmd_lockptr(src_mm, src_pmd); |
| 1728 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
| 1729 | |
| 1730 | ret = -EAGAIN; |
| 1731 | pmd = *src_pmd; |
| 1732 | |
| 1733 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 1734 | if (unlikely(is_swap_pmd(pmd))) { |
| 1735 | swp_entry_t entry = pmd_to_swp_entry(pmd); |
| 1736 | |
| 1737 | VM_BUG_ON(!is_pmd_migration_entry(pmd)); |
| 1738 | if (!is_readable_migration_entry(entry)) { |
| 1739 | entry = make_readable_migration_entry( |
| 1740 | swp_offset(entry)); |
| 1741 | pmd = swp_entry_to_pmd(entry); |
| 1742 | if (pmd_swp_soft_dirty(*src_pmd)) |
| 1743 | pmd = pmd_swp_mksoft_dirty(pmd); |
| 1744 | if (pmd_swp_uffd_wp(*src_pmd)) |
| 1745 | pmd = pmd_swp_mkuffd_wp(pmd); |
| 1746 | set_pmd_at(src_mm, addr, src_pmd, pmd); |
| 1747 | } |
| 1748 | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| 1749 | mm_inc_nr_ptes(dst_mm); |
| 1750 | pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); |
| 1751 | if (!userfaultfd_wp(dst_vma)) |
| 1752 | pmd = pmd_swp_clear_uffd_wp(pmd); |
| 1753 | set_pmd_at(dst_mm, addr, dst_pmd, pmd); |
| 1754 | ret = 0; |
| 1755 | goto out_unlock; |
| 1756 | } |
| 1757 | #endif |
| 1758 | |
| 1759 | if (unlikely(!pmd_trans_huge(pmd))) { |
| 1760 | pte_free(dst_mm, pgtable); |
| 1761 | goto out_unlock; |
| 1762 | } |
| 1763 | /* |
| 1764 | * When page table lock is held, the huge zero pmd should not be |
| 1765 | * under splitting since we don't split the page itself, only pmd to |
| 1766 | * a page table. |
| 1767 | */ |
| 1768 | if (is_huge_zero_pmd(pmd)) { |
| 1769 | /* |
| 1770 | * mm_get_huge_zero_folio() will never allocate a new |
| 1771 | * folio here, since we already have a zero page to |
| 1772 | * copy. It just takes a reference. |
| 1773 | */ |
| 1774 | mm_get_huge_zero_folio(dst_mm); |
| 1775 | goto out_zero_page; |
| 1776 | } |
| 1777 | |
| 1778 | src_page = pmd_page(pmd); |
| 1779 | VM_BUG_ON_PAGE(!PageHead(src_page), src_page); |
| 1780 | src_folio = page_folio(src_page); |
| 1781 | |
| 1782 | folio_get(src_folio); |
| 1783 | if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) { |
| 1784 | /* Page maybe pinned: split and retry the fault on PTEs. */ |
| 1785 | folio_put(src_folio); |
| 1786 | pte_free(dst_mm, pgtable); |
| 1787 | spin_unlock(src_ptl); |
| 1788 | spin_unlock(dst_ptl); |
| 1789 | __split_huge_pmd(src_vma, src_pmd, addr, false); |
| 1790 | return -EAGAIN; |
| 1791 | } |
| 1792 | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); |
| 1793 | out_zero_page: |
| 1794 | mm_inc_nr_ptes(dst_mm); |
| 1795 | pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); |
| 1796 | pmdp_set_wrprotect(src_mm, addr, src_pmd); |
| 1797 | if (!userfaultfd_wp(dst_vma)) |
| 1798 | pmd = pmd_clear_uffd_wp(pmd); |
| 1799 | pmd = pmd_wrprotect(pmd); |
| 1800 | set_pmd: |
| 1801 | pmd = pmd_mkold(pmd); |
| 1802 | set_pmd_at(dst_mm, addr, dst_pmd, pmd); |
| 1803 | |
| 1804 | ret = 0; |
| 1805 | out_unlock: |
| 1806 | spin_unlock(src_ptl); |
| 1807 | spin_unlock(dst_ptl); |
| 1808 | out: |
| 1809 | return ret; |
| 1810 | } |
| 1811 | |
| 1812 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 1813 | void touch_pud(struct vm_area_struct *vma, unsigned long addr, |
| 1814 | pud_t *pud, bool write) |
| 1815 | { |
| 1816 | pud_t _pud; |
| 1817 | |
| 1818 | _pud = pud_mkyoung(*pud); |
| 1819 | if (write) |
| 1820 | _pud = pud_mkdirty(_pud); |
| 1821 | if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, |
| 1822 | pud, _pud, write)) |
| 1823 | update_mmu_cache_pud(vma, addr, pud); |
| 1824 | } |
| 1825 | |
| 1826 | int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 1827 | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, |
| 1828 | struct vm_area_struct *vma) |
| 1829 | { |
| 1830 | spinlock_t *dst_ptl, *src_ptl; |
| 1831 | pud_t pud; |
| 1832 | int ret; |
| 1833 | |
| 1834 | dst_ptl = pud_lock(dst_mm, dst_pud); |
| 1835 | src_ptl = pud_lockptr(src_mm, src_pud); |
| 1836 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
| 1837 | |
| 1838 | ret = -EAGAIN; |
| 1839 | pud = *src_pud; |
| 1840 | if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) |
| 1841 | goto out_unlock; |
| 1842 | |
| 1843 | /* |
| 1844 | * TODO: once we support anonymous pages, use |
| 1845 | * folio_try_dup_anon_rmap_*() and split if duplicating fails. |
| 1846 | */ |
| 1847 | if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) { |
| 1848 | pudp_set_wrprotect(src_mm, addr, src_pud); |
| 1849 | pud = pud_wrprotect(pud); |
| 1850 | } |
| 1851 | pud = pud_mkold(pud); |
| 1852 | set_pud_at(dst_mm, addr, dst_pud, pud); |
| 1853 | |
| 1854 | ret = 0; |
| 1855 | out_unlock: |
| 1856 | spin_unlock(src_ptl); |
| 1857 | spin_unlock(dst_ptl); |
| 1858 | return ret; |
| 1859 | } |
| 1860 | |
| 1861 | void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) |
| 1862 | { |
| 1863 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
| 1864 | |
| 1865 | vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); |
| 1866 | if (unlikely(!pud_same(*vmf->pud, orig_pud))) |
| 1867 | goto unlock; |
| 1868 | |
| 1869 | touch_pud(vmf->vma, vmf->address, vmf->pud, write); |
| 1870 | unlock: |
| 1871 | spin_unlock(vmf->ptl); |
| 1872 | } |
| 1873 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 1874 | |
| 1875 | void huge_pmd_set_accessed(struct vm_fault *vmf) |
| 1876 | { |
| 1877 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
| 1878 | |
| 1879 | vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); |
| 1880 | if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) |
| 1881 | goto unlock; |
| 1882 | |
| 1883 | touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); |
| 1884 | |
| 1885 | unlock: |
| 1886 | spin_unlock(vmf->ptl); |
| 1887 | } |
| 1888 | |
| 1889 | static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf) |
| 1890 | { |
| 1891 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 1892 | struct vm_area_struct *vma = vmf->vma; |
| 1893 | struct mmu_notifier_range range; |
| 1894 | struct folio *folio; |
| 1895 | vm_fault_t ret = 0; |
| 1896 | |
| 1897 | folio = vma_alloc_anon_folio_pmd(vma, vmf->address); |
| 1898 | if (unlikely(!folio)) |
| 1899 | return VM_FAULT_FALLBACK; |
| 1900 | |
| 1901 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr, |
| 1902 | haddr + HPAGE_PMD_SIZE); |
| 1903 | mmu_notifier_invalidate_range_start(&range); |
| 1904 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 1905 | if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) |
| 1906 | goto release; |
| 1907 | ret = check_stable_address_space(vma->vm_mm); |
| 1908 | if (ret) |
| 1909 | goto release; |
| 1910 | (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd); |
| 1911 | map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); |
| 1912 | goto unlock; |
| 1913 | release: |
| 1914 | folio_put(folio); |
| 1915 | unlock: |
| 1916 | spin_unlock(vmf->ptl); |
| 1917 | mmu_notifier_invalidate_range_end(&range); |
| 1918 | return ret; |
| 1919 | } |
| 1920 | |
| 1921 | vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) |
| 1922 | { |
| 1923 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; |
| 1924 | struct vm_area_struct *vma = vmf->vma; |
| 1925 | struct folio *folio; |
| 1926 | struct page *page; |
| 1927 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 1928 | pmd_t orig_pmd = vmf->orig_pmd; |
| 1929 | |
| 1930 | vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); |
| 1931 | VM_BUG_ON_VMA(!vma->anon_vma, vma); |
| 1932 | |
| 1933 | if (is_huge_zero_pmd(orig_pmd)) { |
| 1934 | vm_fault_t ret = do_huge_zero_wp_pmd(vmf); |
| 1935 | |
| 1936 | if (!(ret & VM_FAULT_FALLBACK)) |
| 1937 | return ret; |
| 1938 | |
| 1939 | /* Fallback to splitting PMD if THP cannot be allocated */ |
| 1940 | goto fallback; |
| 1941 | } |
| 1942 | |
| 1943 | spin_lock(vmf->ptl); |
| 1944 | |
| 1945 | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { |
| 1946 | spin_unlock(vmf->ptl); |
| 1947 | return 0; |
| 1948 | } |
| 1949 | |
| 1950 | page = pmd_page(orig_pmd); |
| 1951 | folio = page_folio(page); |
| 1952 | VM_BUG_ON_PAGE(!PageHead(page), page); |
| 1953 | |
| 1954 | /* Early check when only holding the PT lock. */ |
| 1955 | if (PageAnonExclusive(page)) |
| 1956 | goto reuse; |
| 1957 | |
| 1958 | if (!folio_trylock(folio)) { |
| 1959 | folio_get(folio); |
| 1960 | spin_unlock(vmf->ptl); |
| 1961 | folio_lock(folio); |
| 1962 | spin_lock(vmf->ptl); |
| 1963 | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { |
| 1964 | spin_unlock(vmf->ptl); |
| 1965 | folio_unlock(folio); |
| 1966 | folio_put(folio); |
| 1967 | return 0; |
| 1968 | } |
| 1969 | folio_put(folio); |
| 1970 | } |
| 1971 | |
| 1972 | /* Recheck after temporarily dropping the PT lock. */ |
| 1973 | if (PageAnonExclusive(page)) { |
| 1974 | folio_unlock(folio); |
| 1975 | goto reuse; |
| 1976 | } |
| 1977 | |
| 1978 | /* |
| 1979 | * See do_wp_page(): we can only reuse the folio exclusively if |
| 1980 | * there are no additional references. Note that we always drain |
| 1981 | * the LRU cache immediately after adding a THP. |
| 1982 | */ |
| 1983 | if (folio_ref_count(folio) > |
| 1984 | 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) |
| 1985 | goto unlock_fallback; |
| 1986 | if (folio_test_swapcache(folio)) |
| 1987 | folio_free_swap(folio); |
| 1988 | if (folio_ref_count(folio) == 1) { |
| 1989 | pmd_t entry; |
| 1990 | |
| 1991 | folio_move_anon_rmap(folio, vma); |
| 1992 | SetPageAnonExclusive(page); |
| 1993 | folio_unlock(folio); |
| 1994 | reuse: |
| 1995 | if (unlikely(unshare)) { |
| 1996 | spin_unlock(vmf->ptl); |
| 1997 | return 0; |
| 1998 | } |
| 1999 | entry = pmd_mkyoung(orig_pmd); |
| 2000 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
| 2001 | if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) |
| 2002 | update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); |
| 2003 | spin_unlock(vmf->ptl); |
| 2004 | return 0; |
| 2005 | } |
| 2006 | |
| 2007 | unlock_fallback: |
| 2008 | folio_unlock(folio); |
| 2009 | spin_unlock(vmf->ptl); |
| 2010 | fallback: |
| 2011 | __split_huge_pmd(vma, vmf->pmd, vmf->address, false); |
| 2012 | return VM_FAULT_FALLBACK; |
| 2013 | } |
| 2014 | |
| 2015 | static inline bool can_change_pmd_writable(struct vm_area_struct *vma, |
| 2016 | unsigned long addr, pmd_t pmd) |
| 2017 | { |
| 2018 | struct page *page; |
| 2019 | |
| 2020 | if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) |
| 2021 | return false; |
| 2022 | |
| 2023 | /* Don't touch entries that are not even readable (NUMA hinting). */ |
| 2024 | if (pmd_protnone(pmd)) |
| 2025 | return false; |
| 2026 | |
| 2027 | /* Do we need write faults for softdirty tracking? */ |
| 2028 | if (pmd_needs_soft_dirty_wp(vma, pmd)) |
| 2029 | return false; |
| 2030 | |
| 2031 | /* Do we need write faults for uffd-wp tracking? */ |
| 2032 | if (userfaultfd_huge_pmd_wp(vma, pmd)) |
| 2033 | return false; |
| 2034 | |
| 2035 | if (!(vma->vm_flags & VM_SHARED)) { |
| 2036 | /* See can_change_pte_writable(). */ |
| 2037 | page = vm_normal_page_pmd(vma, addr, pmd); |
| 2038 | return page && PageAnon(page) && PageAnonExclusive(page); |
| 2039 | } |
| 2040 | |
| 2041 | /* See can_change_pte_writable(). */ |
| 2042 | return pmd_dirty(pmd); |
| 2043 | } |
| 2044 | |
| 2045 | /* NUMA hinting page fault entry point for trans huge pmds */ |
| 2046 | vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) |
| 2047 | { |
| 2048 | struct vm_area_struct *vma = vmf->vma; |
| 2049 | struct folio *folio; |
| 2050 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; |
| 2051 | int nid = NUMA_NO_NODE; |
| 2052 | int target_nid, last_cpupid; |
| 2053 | pmd_t pmd, old_pmd; |
| 2054 | bool writable = false; |
| 2055 | int flags = 0; |
| 2056 | |
| 2057 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 2058 | old_pmd = pmdp_get(vmf->pmd); |
| 2059 | |
| 2060 | if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) { |
| 2061 | spin_unlock(vmf->ptl); |
| 2062 | return 0; |
| 2063 | } |
| 2064 | |
| 2065 | pmd = pmd_modify(old_pmd, vma->vm_page_prot); |
| 2066 | |
| 2067 | /* |
| 2068 | * Detect now whether the PMD could be writable; this information |
| 2069 | * is only valid while holding the PT lock. |
| 2070 | */ |
| 2071 | writable = pmd_write(pmd); |
| 2072 | if (!writable && vma_wants_manual_pte_write_upgrade(vma) && |
| 2073 | can_change_pmd_writable(vma, vmf->address, pmd)) |
| 2074 | writable = true; |
| 2075 | |
| 2076 | folio = vm_normal_folio_pmd(vma, haddr, pmd); |
| 2077 | if (!folio) |
| 2078 | goto out_map; |
| 2079 | |
| 2080 | nid = folio_nid(folio); |
| 2081 | |
| 2082 | target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable, |
| 2083 | &last_cpupid); |
| 2084 | if (target_nid == NUMA_NO_NODE) |
| 2085 | goto out_map; |
| 2086 | if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { |
| 2087 | flags |= TNF_MIGRATE_FAIL; |
| 2088 | goto out_map; |
| 2089 | } |
| 2090 | /* The folio is isolated and isolation code holds a folio reference. */ |
| 2091 | spin_unlock(vmf->ptl); |
| 2092 | writable = false; |
| 2093 | |
| 2094 | if (!migrate_misplaced_folio(folio, target_nid)) { |
| 2095 | flags |= TNF_MIGRATED; |
| 2096 | nid = target_nid; |
| 2097 | task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); |
| 2098 | return 0; |
| 2099 | } |
| 2100 | |
| 2101 | flags |= TNF_MIGRATE_FAIL; |
| 2102 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
| 2103 | if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) { |
| 2104 | spin_unlock(vmf->ptl); |
| 2105 | return 0; |
| 2106 | } |
| 2107 | out_map: |
| 2108 | /* Restore the PMD */ |
| 2109 | pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot); |
| 2110 | pmd = pmd_mkyoung(pmd); |
| 2111 | if (writable) |
| 2112 | pmd = pmd_mkwrite(pmd, vma); |
| 2113 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); |
| 2114 | update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); |
| 2115 | spin_unlock(vmf->ptl); |
| 2116 | |
| 2117 | if (nid != NUMA_NO_NODE) |
| 2118 | task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); |
| 2119 | return 0; |
| 2120 | } |
| 2121 | |
| 2122 | /* |
| 2123 | * Return true if we do MADV_FREE successfully on entire pmd page. |
| 2124 | * Otherwise, return false. |
| 2125 | */ |
| 2126 | bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 2127 | pmd_t *pmd, unsigned long addr, unsigned long next) |
| 2128 | { |
| 2129 | spinlock_t *ptl; |
| 2130 | pmd_t orig_pmd; |
| 2131 | struct folio *folio; |
| 2132 | struct mm_struct *mm = tlb->mm; |
| 2133 | bool ret = false; |
| 2134 | |
| 2135 | tlb_change_page_size(tlb, HPAGE_PMD_SIZE); |
| 2136 | |
| 2137 | ptl = pmd_trans_huge_lock(pmd, vma); |
| 2138 | if (!ptl) |
| 2139 | goto out_unlocked; |
| 2140 | |
| 2141 | orig_pmd = *pmd; |
| 2142 | if (is_huge_zero_pmd(orig_pmd)) |
| 2143 | goto out; |
| 2144 | |
| 2145 | if (unlikely(!pmd_present(orig_pmd))) { |
| 2146 | VM_BUG_ON(thp_migration_supported() && |
| 2147 | !is_pmd_migration_entry(orig_pmd)); |
| 2148 | goto out; |
| 2149 | } |
| 2150 | |
| 2151 | folio = pmd_folio(orig_pmd); |
| 2152 | /* |
| 2153 | * If other processes are mapping this folio, we couldn't discard |
| 2154 | * the folio unless they all do MADV_FREE so let's skip the folio. |
| 2155 | */ |
| 2156 | if (folio_maybe_mapped_shared(folio)) |
| 2157 | goto out; |
| 2158 | |
| 2159 | if (!folio_trylock(folio)) |
| 2160 | goto out; |
| 2161 | |
| 2162 | /* |
| 2163 | * If user want to discard part-pages of THP, split it so MADV_FREE |
| 2164 | * will deactivate only them. |
| 2165 | */ |
| 2166 | if (next - addr != HPAGE_PMD_SIZE) { |
| 2167 | folio_get(folio); |
| 2168 | spin_unlock(ptl); |
| 2169 | split_folio(folio); |
| 2170 | folio_unlock(folio); |
| 2171 | folio_put(folio); |
| 2172 | goto out_unlocked; |
| 2173 | } |
| 2174 | |
| 2175 | if (folio_test_dirty(folio)) |
| 2176 | folio_clear_dirty(folio); |
| 2177 | folio_unlock(folio); |
| 2178 | |
| 2179 | if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { |
| 2180 | pmdp_invalidate(vma, addr, pmd); |
| 2181 | orig_pmd = pmd_mkold(orig_pmd); |
| 2182 | orig_pmd = pmd_mkclean(orig_pmd); |
| 2183 | |
| 2184 | set_pmd_at(mm, addr, pmd, orig_pmd); |
| 2185 | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
| 2186 | } |
| 2187 | |
| 2188 | folio_mark_lazyfree(folio); |
| 2189 | ret = true; |
| 2190 | out: |
| 2191 | spin_unlock(ptl); |
| 2192 | out_unlocked: |
| 2193 | return ret; |
| 2194 | } |
| 2195 | |
| 2196 | static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) |
| 2197 | { |
| 2198 | pgtable_t pgtable; |
| 2199 | |
| 2200 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
| 2201 | pte_free(mm, pgtable); |
| 2202 | mm_dec_nr_ptes(mm); |
| 2203 | } |
| 2204 | |
| 2205 | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 2206 | pmd_t *pmd, unsigned long addr) |
| 2207 | { |
| 2208 | pmd_t orig_pmd; |
| 2209 | spinlock_t *ptl; |
| 2210 | |
| 2211 | tlb_change_page_size(tlb, HPAGE_PMD_SIZE); |
| 2212 | |
| 2213 | ptl = __pmd_trans_huge_lock(pmd, vma); |
| 2214 | if (!ptl) |
| 2215 | return 0; |
| 2216 | /* |
| 2217 | * For architectures like ppc64 we look at deposited pgtable |
| 2218 | * when calling pmdp_huge_get_and_clear. So do the |
| 2219 | * pgtable_trans_huge_withdraw after finishing pmdp related |
| 2220 | * operations. |
| 2221 | */ |
| 2222 | orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, |
| 2223 | tlb->fullmm); |
| 2224 | arch_check_zapped_pmd(vma, orig_pmd); |
| 2225 | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); |
| 2226 | if (!vma_is_dax(vma) && vma_is_special_huge(vma)) { |
| 2227 | if (arch_needs_pgtable_deposit()) |
| 2228 | zap_deposited_table(tlb->mm, pmd); |
| 2229 | spin_unlock(ptl); |
| 2230 | } else if (is_huge_zero_pmd(orig_pmd)) { |
| 2231 | if (!vma_is_dax(vma) || arch_needs_pgtable_deposit()) |
| 2232 | zap_deposited_table(tlb->mm, pmd); |
| 2233 | spin_unlock(ptl); |
| 2234 | } else { |
| 2235 | struct folio *folio = NULL; |
| 2236 | int flush_needed = 1; |
| 2237 | |
| 2238 | if (pmd_present(orig_pmd)) { |
| 2239 | struct page *page = pmd_page(orig_pmd); |
| 2240 | |
| 2241 | folio = page_folio(page); |
| 2242 | folio_remove_rmap_pmd(folio, page, vma); |
| 2243 | WARN_ON_ONCE(folio_mapcount(folio) < 0); |
| 2244 | VM_BUG_ON_PAGE(!PageHead(page), page); |
| 2245 | } else if (thp_migration_supported()) { |
| 2246 | swp_entry_t entry; |
| 2247 | |
| 2248 | VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); |
| 2249 | entry = pmd_to_swp_entry(orig_pmd); |
| 2250 | folio = pfn_swap_entry_folio(entry); |
| 2251 | flush_needed = 0; |
| 2252 | } else |
| 2253 | WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); |
| 2254 | |
| 2255 | if (folio_test_anon(folio)) { |
| 2256 | zap_deposited_table(tlb->mm, pmd); |
| 2257 | add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); |
| 2258 | } else { |
| 2259 | if (arch_needs_pgtable_deposit()) |
| 2260 | zap_deposited_table(tlb->mm, pmd); |
| 2261 | add_mm_counter(tlb->mm, mm_counter_file(folio), |
| 2262 | -HPAGE_PMD_NR); |
| 2263 | |
| 2264 | /* |
| 2265 | * Use flush_needed to indicate whether the PMD entry |
| 2266 | * is present, instead of checking pmd_present() again. |
| 2267 | */ |
| 2268 | if (flush_needed && pmd_young(orig_pmd) && |
| 2269 | likely(vma_has_recency(vma))) |
| 2270 | folio_mark_accessed(folio); |
| 2271 | } |
| 2272 | |
| 2273 | spin_unlock(ptl); |
| 2274 | if (flush_needed) |
| 2275 | tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); |
| 2276 | } |
| 2277 | return 1; |
| 2278 | } |
| 2279 | |
| 2280 | #ifndef pmd_move_must_withdraw |
| 2281 | static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, |
| 2282 | spinlock_t *old_pmd_ptl, |
| 2283 | struct vm_area_struct *vma) |
| 2284 | { |
| 2285 | /* |
| 2286 | * With split pmd lock we also need to move preallocated |
| 2287 | * PTE page table if new_pmd is on different PMD page table. |
| 2288 | * |
| 2289 | * We also don't deposit and withdraw tables for file pages. |
| 2290 | */ |
| 2291 | return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); |
| 2292 | } |
| 2293 | #endif |
| 2294 | |
| 2295 | static pmd_t move_soft_dirty_pmd(pmd_t pmd) |
| 2296 | { |
| 2297 | #ifdef CONFIG_MEM_SOFT_DIRTY |
| 2298 | if (unlikely(is_pmd_migration_entry(pmd))) |
| 2299 | pmd = pmd_swp_mksoft_dirty(pmd); |
| 2300 | else if (pmd_present(pmd)) |
| 2301 | pmd = pmd_mksoft_dirty(pmd); |
| 2302 | #endif |
| 2303 | return pmd; |
| 2304 | } |
| 2305 | |
| 2306 | static pmd_t clear_uffd_wp_pmd(pmd_t pmd) |
| 2307 | { |
| 2308 | if (pmd_present(pmd)) |
| 2309 | pmd = pmd_clear_uffd_wp(pmd); |
| 2310 | else if (is_swap_pmd(pmd)) |
| 2311 | pmd = pmd_swp_clear_uffd_wp(pmd); |
| 2312 | |
| 2313 | return pmd; |
| 2314 | } |
| 2315 | |
| 2316 | bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, |
| 2317 | unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) |
| 2318 | { |
| 2319 | spinlock_t *old_ptl, *new_ptl; |
| 2320 | pmd_t pmd; |
| 2321 | struct mm_struct *mm = vma->vm_mm; |
| 2322 | bool force_flush = false; |
| 2323 | |
| 2324 | /* |
| 2325 | * The destination pmd shouldn't be established, free_pgtables() |
| 2326 | * should have released it; but move_page_tables() might have already |
| 2327 | * inserted a page table, if racing against shmem/file collapse. |
| 2328 | */ |
| 2329 | if (!pmd_none(*new_pmd)) { |
| 2330 | VM_BUG_ON(pmd_trans_huge(*new_pmd)); |
| 2331 | return false; |
| 2332 | } |
| 2333 | |
| 2334 | /* |
| 2335 | * We don't have to worry about the ordering of src and dst |
| 2336 | * ptlocks because exclusive mmap_lock prevents deadlock. |
| 2337 | */ |
| 2338 | old_ptl = __pmd_trans_huge_lock(old_pmd, vma); |
| 2339 | if (old_ptl) { |
| 2340 | new_ptl = pmd_lockptr(mm, new_pmd); |
| 2341 | if (new_ptl != old_ptl) |
| 2342 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
| 2343 | pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); |
| 2344 | if (pmd_present(pmd)) |
| 2345 | force_flush = true; |
| 2346 | VM_BUG_ON(!pmd_none(*new_pmd)); |
| 2347 | |
| 2348 | if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { |
| 2349 | pgtable_t pgtable; |
| 2350 | pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); |
| 2351 | pgtable_trans_huge_deposit(mm, new_pmd, pgtable); |
| 2352 | } |
| 2353 | pmd = move_soft_dirty_pmd(pmd); |
| 2354 | if (vma_has_uffd_without_event_remap(vma)) |
| 2355 | pmd = clear_uffd_wp_pmd(pmd); |
| 2356 | set_pmd_at(mm, new_addr, new_pmd, pmd); |
| 2357 | if (force_flush) |
| 2358 | flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); |
| 2359 | if (new_ptl != old_ptl) |
| 2360 | spin_unlock(new_ptl); |
| 2361 | spin_unlock(old_ptl); |
| 2362 | return true; |
| 2363 | } |
| 2364 | return false; |
| 2365 | } |
| 2366 | |
| 2367 | /* |
| 2368 | * Returns |
| 2369 | * - 0 if PMD could not be locked |
| 2370 | * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary |
| 2371 | * or if prot_numa but THP migration is not supported |
| 2372 | * - HPAGE_PMD_NR if protections changed and TLB flush necessary |
| 2373 | */ |
| 2374 | int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 2375 | pmd_t *pmd, unsigned long addr, pgprot_t newprot, |
| 2376 | unsigned long cp_flags) |
| 2377 | { |
| 2378 | struct mm_struct *mm = vma->vm_mm; |
| 2379 | spinlock_t *ptl; |
| 2380 | pmd_t oldpmd, entry; |
| 2381 | bool prot_numa = cp_flags & MM_CP_PROT_NUMA; |
| 2382 | bool uffd_wp = cp_flags & MM_CP_UFFD_WP; |
| 2383 | bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; |
| 2384 | int ret = 1; |
| 2385 | |
| 2386 | tlb_change_page_size(tlb, HPAGE_PMD_SIZE); |
| 2387 | |
| 2388 | if (prot_numa && !thp_migration_supported()) |
| 2389 | return 1; |
| 2390 | |
| 2391 | ptl = __pmd_trans_huge_lock(pmd, vma); |
| 2392 | if (!ptl) |
| 2393 | return 0; |
| 2394 | |
| 2395 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 2396 | if (is_swap_pmd(*pmd)) { |
| 2397 | swp_entry_t entry = pmd_to_swp_entry(*pmd); |
| 2398 | struct folio *folio = pfn_swap_entry_folio(entry); |
| 2399 | pmd_t newpmd; |
| 2400 | |
| 2401 | VM_BUG_ON(!is_pmd_migration_entry(*pmd)); |
| 2402 | if (is_writable_migration_entry(entry)) { |
| 2403 | /* |
| 2404 | * A protection check is difficult so |
| 2405 | * just be safe and disable write |
| 2406 | */ |
| 2407 | if (folio_test_anon(folio)) |
| 2408 | entry = make_readable_exclusive_migration_entry(swp_offset(entry)); |
| 2409 | else |
| 2410 | entry = make_readable_migration_entry(swp_offset(entry)); |
| 2411 | newpmd = swp_entry_to_pmd(entry); |
| 2412 | if (pmd_swp_soft_dirty(*pmd)) |
| 2413 | newpmd = pmd_swp_mksoft_dirty(newpmd); |
| 2414 | } else { |
| 2415 | newpmd = *pmd; |
| 2416 | } |
| 2417 | |
| 2418 | if (uffd_wp) |
| 2419 | newpmd = pmd_swp_mkuffd_wp(newpmd); |
| 2420 | else if (uffd_wp_resolve) |
| 2421 | newpmd = pmd_swp_clear_uffd_wp(newpmd); |
| 2422 | if (!pmd_same(*pmd, newpmd)) |
| 2423 | set_pmd_at(mm, addr, pmd, newpmd); |
| 2424 | goto unlock; |
| 2425 | } |
| 2426 | #endif |
| 2427 | |
| 2428 | if (prot_numa) { |
| 2429 | struct folio *folio; |
| 2430 | bool toptier; |
| 2431 | /* |
| 2432 | * Avoid trapping faults against the zero page. The read-only |
| 2433 | * data is likely to be read-cached on the local CPU and |
| 2434 | * local/remote hits to the zero page are not interesting. |
| 2435 | */ |
| 2436 | if (is_huge_zero_pmd(*pmd)) |
| 2437 | goto unlock; |
| 2438 | |
| 2439 | if (pmd_protnone(*pmd)) |
| 2440 | goto unlock; |
| 2441 | |
| 2442 | folio = pmd_folio(*pmd); |
| 2443 | toptier = node_is_toptier(folio_nid(folio)); |
| 2444 | /* |
| 2445 | * Skip scanning top tier node if normal numa |
| 2446 | * balancing is disabled |
| 2447 | */ |
| 2448 | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && |
| 2449 | toptier) |
| 2450 | goto unlock; |
| 2451 | |
| 2452 | if (folio_use_access_time(folio)) |
| 2453 | folio_xchg_access_time(folio, |
| 2454 | jiffies_to_msecs(jiffies)); |
| 2455 | } |
| 2456 | /* |
| 2457 | * In case prot_numa, we are under mmap_read_lock(mm). It's critical |
| 2458 | * to not clear pmd intermittently to avoid race with MADV_DONTNEED |
| 2459 | * which is also under mmap_read_lock(mm): |
| 2460 | * |
| 2461 | * CPU0: CPU1: |
| 2462 | * change_huge_pmd(prot_numa=1) |
| 2463 | * pmdp_huge_get_and_clear_notify() |
| 2464 | * madvise_dontneed() |
| 2465 | * zap_pmd_range() |
| 2466 | * pmd_trans_huge(*pmd) == 0 (without ptl) |
| 2467 | * // skip the pmd |
| 2468 | * set_pmd_at(); |
| 2469 | * // pmd is re-established |
| 2470 | * |
| 2471 | * The race makes MADV_DONTNEED miss the huge pmd and don't clear it |
| 2472 | * which may break userspace. |
| 2473 | * |
| 2474 | * pmdp_invalidate_ad() is required to make sure we don't miss |
| 2475 | * dirty/young flags set by hardware. |
| 2476 | */ |
| 2477 | oldpmd = pmdp_invalidate_ad(vma, addr, pmd); |
| 2478 | |
| 2479 | entry = pmd_modify(oldpmd, newprot); |
| 2480 | if (uffd_wp) |
| 2481 | entry = pmd_mkuffd_wp(entry); |
| 2482 | else if (uffd_wp_resolve) |
| 2483 | /* |
| 2484 | * Leave the write bit to be handled by PF interrupt |
| 2485 | * handler, then things like COW could be properly |
| 2486 | * handled. |
| 2487 | */ |
| 2488 | entry = pmd_clear_uffd_wp(entry); |
| 2489 | |
| 2490 | /* See change_pte_range(). */ |
| 2491 | if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && |
| 2492 | can_change_pmd_writable(vma, addr, entry)) |
| 2493 | entry = pmd_mkwrite(entry, vma); |
| 2494 | |
| 2495 | ret = HPAGE_PMD_NR; |
| 2496 | set_pmd_at(mm, addr, pmd, entry); |
| 2497 | |
| 2498 | if (huge_pmd_needs_flush(oldpmd, entry)) |
| 2499 | tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); |
| 2500 | unlock: |
| 2501 | spin_unlock(ptl); |
| 2502 | return ret; |
| 2503 | } |
| 2504 | |
| 2505 | /* |
| 2506 | * Returns: |
| 2507 | * |
| 2508 | * - 0: if pud leaf changed from under us |
| 2509 | * - 1: if pud can be skipped |
| 2510 | * - HPAGE_PUD_NR: if pud was successfully processed |
| 2511 | */ |
| 2512 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 2513 | int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 2514 | pud_t *pudp, unsigned long addr, pgprot_t newprot, |
| 2515 | unsigned long cp_flags) |
| 2516 | { |
| 2517 | struct mm_struct *mm = vma->vm_mm; |
| 2518 | pud_t oldpud, entry; |
| 2519 | spinlock_t *ptl; |
| 2520 | |
| 2521 | tlb_change_page_size(tlb, HPAGE_PUD_SIZE); |
| 2522 | |
| 2523 | /* NUMA balancing doesn't apply to dax */ |
| 2524 | if (cp_flags & MM_CP_PROT_NUMA) |
| 2525 | return 1; |
| 2526 | |
| 2527 | /* |
| 2528 | * Huge entries on userfault-wp only works with anonymous, while we |
| 2529 | * don't have anonymous PUDs yet. |
| 2530 | */ |
| 2531 | if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL)) |
| 2532 | return 1; |
| 2533 | |
| 2534 | ptl = __pud_trans_huge_lock(pudp, vma); |
| 2535 | if (!ptl) |
| 2536 | return 0; |
| 2537 | |
| 2538 | /* |
| 2539 | * Can't clear PUD or it can race with concurrent zapping. See |
| 2540 | * change_huge_pmd(). |
| 2541 | */ |
| 2542 | oldpud = pudp_invalidate(vma, addr, pudp); |
| 2543 | entry = pud_modify(oldpud, newprot); |
| 2544 | set_pud_at(mm, addr, pudp, entry); |
| 2545 | tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE); |
| 2546 | |
| 2547 | spin_unlock(ptl); |
| 2548 | return HPAGE_PUD_NR; |
| 2549 | } |
| 2550 | #endif |
| 2551 | |
| 2552 | #ifdef CONFIG_USERFAULTFD |
| 2553 | /* |
| 2554 | * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by |
| 2555 | * the caller, but it must return after releasing the page_table_lock. |
| 2556 | * Just move the page from src_pmd to dst_pmd if possible. |
| 2557 | * Return zero if succeeded in moving the page, -EAGAIN if it needs to be |
| 2558 | * repeated by the caller, or other errors in case of failure. |
| 2559 | */ |
| 2560 | int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, |
| 2561 | struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, |
| 2562 | unsigned long dst_addr, unsigned long src_addr) |
| 2563 | { |
| 2564 | pmd_t _dst_pmd, src_pmdval; |
| 2565 | struct page *src_page; |
| 2566 | struct folio *src_folio; |
| 2567 | struct anon_vma *src_anon_vma; |
| 2568 | spinlock_t *src_ptl, *dst_ptl; |
| 2569 | pgtable_t src_pgtable; |
| 2570 | struct mmu_notifier_range range; |
| 2571 | int err = 0; |
| 2572 | |
| 2573 | src_pmdval = *src_pmd; |
| 2574 | src_ptl = pmd_lockptr(mm, src_pmd); |
| 2575 | |
| 2576 | lockdep_assert_held(src_ptl); |
| 2577 | vma_assert_locked(src_vma); |
| 2578 | vma_assert_locked(dst_vma); |
| 2579 | |
| 2580 | /* Sanity checks before the operation */ |
| 2581 | if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || |
| 2582 | WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { |
| 2583 | spin_unlock(src_ptl); |
| 2584 | return -EINVAL; |
| 2585 | } |
| 2586 | |
| 2587 | if (!pmd_trans_huge(src_pmdval)) { |
| 2588 | spin_unlock(src_ptl); |
| 2589 | if (is_pmd_migration_entry(src_pmdval)) { |
| 2590 | pmd_migration_entry_wait(mm, &src_pmdval); |
| 2591 | return -EAGAIN; |
| 2592 | } |
| 2593 | return -ENOENT; |
| 2594 | } |
| 2595 | |
| 2596 | src_page = pmd_page(src_pmdval); |
| 2597 | |
| 2598 | if (!is_huge_zero_pmd(src_pmdval)) { |
| 2599 | if (unlikely(!PageAnonExclusive(src_page))) { |
| 2600 | spin_unlock(src_ptl); |
| 2601 | return -EBUSY; |
| 2602 | } |
| 2603 | |
| 2604 | src_folio = page_folio(src_page); |
| 2605 | folio_get(src_folio); |
| 2606 | } else |
| 2607 | src_folio = NULL; |
| 2608 | |
| 2609 | spin_unlock(src_ptl); |
| 2610 | |
| 2611 | flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); |
| 2612 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, |
| 2613 | src_addr + HPAGE_PMD_SIZE); |
| 2614 | mmu_notifier_invalidate_range_start(&range); |
| 2615 | |
| 2616 | if (src_folio) { |
| 2617 | folio_lock(src_folio); |
| 2618 | |
| 2619 | /* |
| 2620 | * split_huge_page walks the anon_vma chain without the page |
| 2621 | * lock. Serialize against it with the anon_vma lock, the page |
| 2622 | * lock is not enough. |
| 2623 | */ |
| 2624 | src_anon_vma = folio_get_anon_vma(src_folio); |
| 2625 | if (!src_anon_vma) { |
| 2626 | err = -EAGAIN; |
| 2627 | goto unlock_folio; |
| 2628 | } |
| 2629 | anon_vma_lock_write(src_anon_vma); |
| 2630 | } else |
| 2631 | src_anon_vma = NULL; |
| 2632 | |
| 2633 | dst_ptl = pmd_lockptr(mm, dst_pmd); |
| 2634 | double_pt_lock(src_ptl, dst_ptl); |
| 2635 | if (unlikely(!pmd_same(*src_pmd, src_pmdval) || |
| 2636 | !pmd_same(*dst_pmd, dst_pmdval))) { |
| 2637 | err = -EAGAIN; |
| 2638 | goto unlock_ptls; |
| 2639 | } |
| 2640 | if (src_folio) { |
| 2641 | if (folio_maybe_dma_pinned(src_folio) || |
| 2642 | !PageAnonExclusive(&src_folio->page)) { |
| 2643 | err = -EBUSY; |
| 2644 | goto unlock_ptls; |
| 2645 | } |
| 2646 | |
| 2647 | if (WARN_ON_ONCE(!folio_test_head(src_folio)) || |
| 2648 | WARN_ON_ONCE(!folio_test_anon(src_folio))) { |
| 2649 | err = -EBUSY; |
| 2650 | goto unlock_ptls; |
| 2651 | } |
| 2652 | |
| 2653 | src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); |
| 2654 | /* Folio got pinned from under us. Put it back and fail the move. */ |
| 2655 | if (folio_maybe_dma_pinned(src_folio)) { |
| 2656 | set_pmd_at(mm, src_addr, src_pmd, src_pmdval); |
| 2657 | err = -EBUSY; |
| 2658 | goto unlock_ptls; |
| 2659 | } |
| 2660 | |
| 2661 | folio_move_anon_rmap(src_folio, dst_vma); |
| 2662 | src_folio->index = linear_page_index(dst_vma, dst_addr); |
| 2663 | |
| 2664 | _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot); |
| 2665 | /* Follow mremap() behavior and treat the entry dirty after the move */ |
| 2666 | _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); |
| 2667 | } else { |
| 2668 | src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); |
| 2669 | _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot); |
| 2670 | } |
| 2671 | set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); |
| 2672 | |
| 2673 | src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); |
| 2674 | pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); |
| 2675 | unlock_ptls: |
| 2676 | double_pt_unlock(src_ptl, dst_ptl); |
| 2677 | if (src_anon_vma) { |
| 2678 | anon_vma_unlock_write(src_anon_vma); |
| 2679 | put_anon_vma(src_anon_vma); |
| 2680 | } |
| 2681 | unlock_folio: |
| 2682 | /* unblock rmap walks */ |
| 2683 | if (src_folio) |
| 2684 | folio_unlock(src_folio); |
| 2685 | mmu_notifier_invalidate_range_end(&range); |
| 2686 | if (src_folio) |
| 2687 | folio_put(src_folio); |
| 2688 | return err; |
| 2689 | } |
| 2690 | #endif /* CONFIG_USERFAULTFD */ |
| 2691 | |
| 2692 | /* |
| 2693 | * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. |
| 2694 | * |
| 2695 | * Note that if it returns page table lock pointer, this routine returns without |
| 2696 | * unlocking page table lock. So callers must unlock it. |
| 2697 | */ |
| 2698 | spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) |
| 2699 | { |
| 2700 | spinlock_t *ptl; |
| 2701 | ptl = pmd_lock(vma->vm_mm, pmd); |
| 2702 | if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || |
| 2703 | pmd_devmap(*pmd))) |
| 2704 | return ptl; |
| 2705 | spin_unlock(ptl); |
| 2706 | return NULL; |
| 2707 | } |
| 2708 | |
| 2709 | /* |
| 2710 | * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. |
| 2711 | * |
| 2712 | * Note that if it returns page table lock pointer, this routine returns without |
| 2713 | * unlocking page table lock. So callers must unlock it. |
| 2714 | */ |
| 2715 | spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) |
| 2716 | { |
| 2717 | spinlock_t *ptl; |
| 2718 | |
| 2719 | ptl = pud_lock(vma->vm_mm, pud); |
| 2720 | if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) |
| 2721 | return ptl; |
| 2722 | spin_unlock(ptl); |
| 2723 | return NULL; |
| 2724 | } |
| 2725 | |
| 2726 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 2727 | int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 2728 | pud_t *pud, unsigned long addr) |
| 2729 | { |
| 2730 | spinlock_t *ptl; |
| 2731 | pud_t orig_pud; |
| 2732 | |
| 2733 | ptl = __pud_trans_huge_lock(pud, vma); |
| 2734 | if (!ptl) |
| 2735 | return 0; |
| 2736 | |
| 2737 | orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); |
| 2738 | arch_check_zapped_pud(vma, orig_pud); |
| 2739 | tlb_remove_pud_tlb_entry(tlb, pud, addr); |
| 2740 | if (!vma_is_dax(vma) && vma_is_special_huge(vma)) { |
| 2741 | spin_unlock(ptl); |
| 2742 | /* No zero page support yet */ |
| 2743 | } else { |
| 2744 | struct page *page = NULL; |
| 2745 | struct folio *folio; |
| 2746 | |
| 2747 | /* No support for anonymous PUD pages or migration yet */ |
| 2748 | VM_WARN_ON_ONCE(vma_is_anonymous(vma) || |
| 2749 | !pud_present(orig_pud)); |
| 2750 | |
| 2751 | page = pud_page(orig_pud); |
| 2752 | folio = page_folio(page); |
| 2753 | folio_remove_rmap_pud(folio, page, vma); |
| 2754 | add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR); |
| 2755 | |
| 2756 | spin_unlock(ptl); |
| 2757 | tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE); |
| 2758 | } |
| 2759 | return 1; |
| 2760 | } |
| 2761 | |
| 2762 | static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, |
| 2763 | unsigned long haddr) |
| 2764 | { |
| 2765 | struct folio *folio; |
| 2766 | struct page *page; |
| 2767 | pud_t old_pud; |
| 2768 | |
| 2769 | VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); |
| 2770 | VM_BUG_ON_VMA(vma->vm_start > haddr, vma); |
| 2771 | VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); |
| 2772 | VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); |
| 2773 | |
| 2774 | count_vm_event(THP_SPLIT_PUD); |
| 2775 | |
| 2776 | old_pud = pudp_huge_clear_flush(vma, haddr, pud); |
| 2777 | |
| 2778 | if (!vma_is_dax(vma)) |
| 2779 | return; |
| 2780 | |
| 2781 | page = pud_page(old_pud); |
| 2782 | folio = page_folio(page); |
| 2783 | |
| 2784 | if (!folio_test_dirty(folio) && pud_dirty(old_pud)) |
| 2785 | folio_mark_dirty(folio); |
| 2786 | if (!folio_test_referenced(folio) && pud_young(old_pud)) |
| 2787 | folio_set_referenced(folio); |
| 2788 | folio_remove_rmap_pud(folio, page, vma); |
| 2789 | folio_put(folio); |
| 2790 | add_mm_counter(vma->vm_mm, mm_counter_file(folio), |
| 2791 | -HPAGE_PUD_NR); |
| 2792 | } |
| 2793 | |
| 2794 | void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, |
| 2795 | unsigned long address) |
| 2796 | { |
| 2797 | spinlock_t *ptl; |
| 2798 | struct mmu_notifier_range range; |
| 2799 | |
| 2800 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, |
| 2801 | address & HPAGE_PUD_MASK, |
| 2802 | (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); |
| 2803 | mmu_notifier_invalidate_range_start(&range); |
| 2804 | ptl = pud_lock(vma->vm_mm, pud); |
| 2805 | if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) |
| 2806 | goto out; |
| 2807 | __split_huge_pud_locked(vma, pud, range.start); |
| 2808 | |
| 2809 | out: |
| 2810 | spin_unlock(ptl); |
| 2811 | mmu_notifier_invalidate_range_end(&range); |
| 2812 | } |
| 2813 | #else |
| 2814 | void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, |
| 2815 | unsigned long address) |
| 2816 | { |
| 2817 | } |
| 2818 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 2819 | |
| 2820 | static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, |
| 2821 | unsigned long haddr, pmd_t *pmd) |
| 2822 | { |
| 2823 | struct mm_struct *mm = vma->vm_mm; |
| 2824 | pgtable_t pgtable; |
| 2825 | pmd_t _pmd, old_pmd; |
| 2826 | unsigned long addr; |
| 2827 | pte_t *pte; |
| 2828 | int i; |
| 2829 | |
| 2830 | /* |
| 2831 | * Leave pmd empty until pte is filled note that it is fine to delay |
| 2832 | * notification until mmu_notifier_invalidate_range_end() as we are |
| 2833 | * replacing a zero pmd write protected page with a zero pte write |
| 2834 | * protected page. |
| 2835 | * |
| 2836 | * See Documentation/mm/mmu_notifier.rst |
| 2837 | */ |
| 2838 | old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); |
| 2839 | |
| 2840 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
| 2841 | pmd_populate(mm, &_pmd, pgtable); |
| 2842 | |
| 2843 | pte = pte_offset_map(&_pmd, haddr); |
| 2844 | VM_BUG_ON(!pte); |
| 2845 | for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { |
| 2846 | pte_t entry; |
| 2847 | |
| 2848 | entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); |
| 2849 | entry = pte_mkspecial(entry); |
| 2850 | if (pmd_uffd_wp(old_pmd)) |
| 2851 | entry = pte_mkuffd_wp(entry); |
| 2852 | VM_BUG_ON(!pte_none(ptep_get(pte))); |
| 2853 | set_pte_at(mm, addr, pte, entry); |
| 2854 | pte++; |
| 2855 | } |
| 2856 | pte_unmap(pte - 1); |
| 2857 | smp_wmb(); /* make pte visible before pmd */ |
| 2858 | pmd_populate(mm, pmd, pgtable); |
| 2859 | } |
| 2860 | |
| 2861 | static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, |
| 2862 | unsigned long haddr, bool freeze) |
| 2863 | { |
| 2864 | struct mm_struct *mm = vma->vm_mm; |
| 2865 | struct folio *folio; |
| 2866 | struct page *page; |
| 2867 | pgtable_t pgtable; |
| 2868 | pmd_t old_pmd, _pmd; |
| 2869 | bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; |
| 2870 | bool anon_exclusive = false, dirty = false; |
| 2871 | unsigned long addr; |
| 2872 | pte_t *pte; |
| 2873 | int i; |
| 2874 | |
| 2875 | VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); |
| 2876 | VM_BUG_ON_VMA(vma->vm_start > haddr, vma); |
| 2877 | VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); |
| 2878 | VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) |
| 2879 | && !pmd_devmap(*pmd)); |
| 2880 | |
| 2881 | count_vm_event(THP_SPLIT_PMD); |
| 2882 | |
| 2883 | if (!vma_is_anonymous(vma)) { |
| 2884 | old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); |
| 2885 | /* |
| 2886 | * We are going to unmap this huge page. So |
| 2887 | * just go ahead and zap it |
| 2888 | */ |
| 2889 | if (arch_needs_pgtable_deposit()) |
| 2890 | zap_deposited_table(mm, pmd); |
| 2891 | if (!vma_is_dax(vma) && vma_is_special_huge(vma)) |
| 2892 | return; |
| 2893 | if (unlikely(is_pmd_migration_entry(old_pmd))) { |
| 2894 | swp_entry_t entry; |
| 2895 | |
| 2896 | entry = pmd_to_swp_entry(old_pmd); |
| 2897 | folio = pfn_swap_entry_folio(entry); |
| 2898 | } else if (is_huge_zero_pmd(old_pmd)) { |
| 2899 | return; |
| 2900 | } else { |
| 2901 | page = pmd_page(old_pmd); |
| 2902 | folio = page_folio(page); |
| 2903 | if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) |
| 2904 | folio_mark_dirty(folio); |
| 2905 | if (!folio_test_referenced(folio) && pmd_young(old_pmd)) |
| 2906 | folio_set_referenced(folio); |
| 2907 | folio_remove_rmap_pmd(folio, page, vma); |
| 2908 | folio_put(folio); |
| 2909 | } |
| 2910 | add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); |
| 2911 | return; |
| 2912 | } |
| 2913 | |
| 2914 | if (is_huge_zero_pmd(*pmd)) { |
| 2915 | /* |
| 2916 | * FIXME: Do we want to invalidate secondary mmu by calling |
| 2917 | * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below |
| 2918 | * inside __split_huge_pmd() ? |
| 2919 | * |
| 2920 | * We are going from a zero huge page write protected to zero |
| 2921 | * small page also write protected so it does not seems useful |
| 2922 | * to invalidate secondary mmu at this time. |
| 2923 | */ |
| 2924 | return __split_huge_zero_page_pmd(vma, haddr, pmd); |
| 2925 | } |
| 2926 | |
| 2927 | pmd_migration = is_pmd_migration_entry(*pmd); |
| 2928 | if (unlikely(pmd_migration)) { |
| 2929 | swp_entry_t entry; |
| 2930 | |
| 2931 | old_pmd = *pmd; |
| 2932 | entry = pmd_to_swp_entry(old_pmd); |
| 2933 | page = pfn_swap_entry_to_page(entry); |
| 2934 | write = is_writable_migration_entry(entry); |
| 2935 | if (PageAnon(page)) |
| 2936 | anon_exclusive = is_readable_exclusive_migration_entry(entry); |
| 2937 | young = is_migration_entry_young(entry); |
| 2938 | dirty = is_migration_entry_dirty(entry); |
| 2939 | soft_dirty = pmd_swp_soft_dirty(old_pmd); |
| 2940 | uffd_wp = pmd_swp_uffd_wp(old_pmd); |
| 2941 | } else { |
| 2942 | /* |
| 2943 | * Up to this point the pmd is present and huge and userland has |
| 2944 | * the whole access to the hugepage during the split (which |
| 2945 | * happens in place). If we overwrite the pmd with the not-huge |
| 2946 | * version pointing to the pte here (which of course we could if |
| 2947 | * all CPUs were bug free), userland could trigger a small page |
| 2948 | * size TLB miss on the small sized TLB while the hugepage TLB |
| 2949 | * entry is still established in the huge TLB. Some CPU doesn't |
| 2950 | * like that. See |
| 2951 | * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum |
| 2952 | * 383 on page 105. Intel should be safe but is also warns that |
| 2953 | * it's only safe if the permission and cache attributes of the |
| 2954 | * two entries loaded in the two TLB is identical (which should |
| 2955 | * be the case here). But it is generally safer to never allow |
| 2956 | * small and huge TLB entries for the same virtual address to be |
| 2957 | * loaded simultaneously. So instead of doing "pmd_populate(); |
| 2958 | * flush_pmd_tlb_range();" we first mark the current pmd |
| 2959 | * notpresent (atomically because here the pmd_trans_huge must |
| 2960 | * remain set at all times on the pmd until the split is |
| 2961 | * complete for this pmd), then we flush the SMP TLB and finally |
| 2962 | * we write the non-huge version of the pmd entry with |
| 2963 | * pmd_populate. |
| 2964 | */ |
| 2965 | old_pmd = pmdp_invalidate(vma, haddr, pmd); |
| 2966 | page = pmd_page(old_pmd); |
| 2967 | folio = page_folio(page); |
| 2968 | if (pmd_dirty(old_pmd)) { |
| 2969 | dirty = true; |
| 2970 | folio_set_dirty(folio); |
| 2971 | } |
| 2972 | write = pmd_write(old_pmd); |
| 2973 | young = pmd_young(old_pmd); |
| 2974 | soft_dirty = pmd_soft_dirty(old_pmd); |
| 2975 | uffd_wp = pmd_uffd_wp(old_pmd); |
| 2976 | |
| 2977 | VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); |
| 2978 | VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); |
| 2979 | |
| 2980 | /* |
| 2981 | * Without "freeze", we'll simply split the PMD, propagating the |
| 2982 | * PageAnonExclusive() flag for each PTE by setting it for |
| 2983 | * each subpage -- no need to (temporarily) clear. |
| 2984 | * |
| 2985 | * With "freeze" we want to replace mapped pages by |
| 2986 | * migration entries right away. This is only possible if we |
| 2987 | * managed to clear PageAnonExclusive() -- see |
| 2988 | * set_pmd_migration_entry(). |
| 2989 | * |
| 2990 | * In case we cannot clear PageAnonExclusive(), split the PMD |
| 2991 | * only and let try_to_migrate_one() fail later. |
| 2992 | * |
| 2993 | * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. |
| 2994 | */ |
| 2995 | anon_exclusive = PageAnonExclusive(page); |
| 2996 | if (freeze && anon_exclusive && |
| 2997 | folio_try_share_anon_rmap_pmd(folio, page)) |
| 2998 | freeze = false; |
| 2999 | if (!freeze) { |
| 3000 | rmap_t rmap_flags = RMAP_NONE; |
| 3001 | |
| 3002 | folio_ref_add(folio, HPAGE_PMD_NR - 1); |
| 3003 | if (anon_exclusive) |
| 3004 | rmap_flags |= RMAP_EXCLUSIVE; |
| 3005 | folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, |
| 3006 | vma, haddr, rmap_flags); |
| 3007 | } |
| 3008 | } |
| 3009 | |
| 3010 | /* |
| 3011 | * Withdraw the table only after we mark the pmd entry invalid. |
| 3012 | * This's critical for some architectures (Power). |
| 3013 | */ |
| 3014 | pgtable = pgtable_trans_huge_withdraw(mm, pmd); |
| 3015 | pmd_populate(mm, &_pmd, pgtable); |
| 3016 | |
| 3017 | pte = pte_offset_map(&_pmd, haddr); |
| 3018 | VM_BUG_ON(!pte); |
| 3019 | |
| 3020 | /* |
| 3021 | * Note that NUMA hinting access restrictions are not transferred to |
| 3022 | * avoid any possibility of altering permissions across VMAs. |
| 3023 | */ |
| 3024 | if (freeze || pmd_migration) { |
| 3025 | for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { |
| 3026 | pte_t entry; |
| 3027 | swp_entry_t swp_entry; |
| 3028 | |
| 3029 | if (write) |
| 3030 | swp_entry = make_writable_migration_entry( |
| 3031 | page_to_pfn(page + i)); |
| 3032 | else if (anon_exclusive) |
| 3033 | swp_entry = make_readable_exclusive_migration_entry( |
| 3034 | page_to_pfn(page + i)); |
| 3035 | else |
| 3036 | swp_entry = make_readable_migration_entry( |
| 3037 | page_to_pfn(page + i)); |
| 3038 | if (young) |
| 3039 | swp_entry = make_migration_entry_young(swp_entry); |
| 3040 | if (dirty) |
| 3041 | swp_entry = make_migration_entry_dirty(swp_entry); |
| 3042 | entry = swp_entry_to_pte(swp_entry); |
| 3043 | if (soft_dirty) |
| 3044 | entry = pte_swp_mksoft_dirty(entry); |
| 3045 | if (uffd_wp) |
| 3046 | entry = pte_swp_mkuffd_wp(entry); |
| 3047 | |
| 3048 | VM_WARN_ON(!pte_none(ptep_get(pte + i))); |
| 3049 | set_pte_at(mm, addr, pte + i, entry); |
| 3050 | } |
| 3051 | } else { |
| 3052 | pte_t entry; |
| 3053 | |
| 3054 | entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); |
| 3055 | if (write) |
| 3056 | entry = pte_mkwrite(entry, vma); |
| 3057 | if (!young) |
| 3058 | entry = pte_mkold(entry); |
| 3059 | /* NOTE: this may set soft-dirty too on some archs */ |
| 3060 | if (dirty) |
| 3061 | entry = pte_mkdirty(entry); |
| 3062 | if (soft_dirty) |
| 3063 | entry = pte_mksoft_dirty(entry); |
| 3064 | if (uffd_wp) |
| 3065 | entry = pte_mkuffd_wp(entry); |
| 3066 | |
| 3067 | for (i = 0; i < HPAGE_PMD_NR; i++) |
| 3068 | VM_WARN_ON(!pte_none(ptep_get(pte + i))); |
| 3069 | |
| 3070 | set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); |
| 3071 | } |
| 3072 | pte_unmap(pte); |
| 3073 | |
| 3074 | if (!pmd_migration) |
| 3075 | folio_remove_rmap_pmd(folio, page, vma); |
| 3076 | if (freeze) |
| 3077 | put_page(page); |
| 3078 | |
| 3079 | smp_wmb(); /* make pte visible before pmd */ |
| 3080 | pmd_populate(mm, pmd, pgtable); |
| 3081 | } |
| 3082 | |
| 3083 | void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, |
| 3084 | pmd_t *pmd, bool freeze) |
| 3085 | { |
| 3086 | VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); |
| 3087 | if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || |
| 3088 | is_pmd_migration_entry(*pmd)) |
| 3089 | __split_huge_pmd_locked(vma, pmd, address, freeze); |
| 3090 | } |
| 3091 | |
| 3092 | void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
| 3093 | unsigned long address, bool freeze) |
| 3094 | { |
| 3095 | spinlock_t *ptl; |
| 3096 | struct mmu_notifier_range range; |
| 3097 | |
| 3098 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, |
| 3099 | address & HPAGE_PMD_MASK, |
| 3100 | (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); |
| 3101 | mmu_notifier_invalidate_range_start(&range); |
| 3102 | ptl = pmd_lock(vma->vm_mm, pmd); |
| 3103 | split_huge_pmd_locked(vma, range.start, pmd, freeze); |
| 3104 | spin_unlock(ptl); |
| 3105 | mmu_notifier_invalidate_range_end(&range); |
| 3106 | } |
| 3107 | |
| 3108 | void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, |
| 3109 | bool freeze) |
| 3110 | { |
| 3111 | pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); |
| 3112 | |
| 3113 | if (!pmd) |
| 3114 | return; |
| 3115 | |
| 3116 | __split_huge_pmd(vma, pmd, address, freeze); |
| 3117 | } |
| 3118 | |
| 3119 | static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) |
| 3120 | { |
| 3121 | /* |
| 3122 | * If the new address isn't hpage aligned and it could previously |
| 3123 | * contain an hugepage: check if we need to split an huge pmd. |
| 3124 | */ |
| 3125 | if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && |
| 3126 | range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), |
| 3127 | ALIGN(address, HPAGE_PMD_SIZE))) |
| 3128 | split_huge_pmd_address(vma, address, false); |
| 3129 | } |
| 3130 | |
| 3131 | void vma_adjust_trans_huge(struct vm_area_struct *vma, |
| 3132 | unsigned long start, |
| 3133 | unsigned long end, |
| 3134 | struct vm_area_struct *next) |
| 3135 | { |
| 3136 | /* Check if we need to split start first. */ |
| 3137 | split_huge_pmd_if_needed(vma, start); |
| 3138 | |
| 3139 | /* Check if we need to split end next. */ |
| 3140 | split_huge_pmd_if_needed(vma, end); |
| 3141 | |
| 3142 | /* If we're incrementing next->vm_start, we might need to split it. */ |
| 3143 | if (next) |
| 3144 | split_huge_pmd_if_needed(next, end); |
| 3145 | } |
| 3146 | |
| 3147 | static void unmap_folio(struct folio *folio) |
| 3148 | { |
| 3149 | enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | |
| 3150 | TTU_BATCH_FLUSH; |
| 3151 | |
| 3152 | VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); |
| 3153 | |
| 3154 | if (folio_test_pmd_mappable(folio)) |
| 3155 | ttu_flags |= TTU_SPLIT_HUGE_PMD; |
| 3156 | |
| 3157 | /* |
| 3158 | * Anon pages need migration entries to preserve them, but file |
| 3159 | * pages can simply be left unmapped, then faulted back on demand. |
| 3160 | * If that is ever changed (perhaps for mlock), update remap_page(). |
| 3161 | */ |
| 3162 | if (folio_test_anon(folio)) |
| 3163 | try_to_migrate(folio, ttu_flags); |
| 3164 | else |
| 3165 | try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); |
| 3166 | |
| 3167 | try_to_unmap_flush(); |
| 3168 | } |
| 3169 | |
| 3170 | static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, |
| 3171 | unsigned long addr, pmd_t *pmdp, |
| 3172 | struct folio *folio) |
| 3173 | { |
| 3174 | struct mm_struct *mm = vma->vm_mm; |
| 3175 | int ref_count, map_count; |
| 3176 | pmd_t orig_pmd = *pmdp; |
| 3177 | |
| 3178 | if (pmd_dirty(orig_pmd)) |
| 3179 | folio_set_dirty(folio); |
| 3180 | if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { |
| 3181 | folio_set_swapbacked(folio); |
| 3182 | return false; |
| 3183 | } |
| 3184 | |
| 3185 | orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); |
| 3186 | |
| 3187 | /* |
| 3188 | * Syncing against concurrent GUP-fast: |
| 3189 | * - clear PMD; barrier; read refcount |
| 3190 | * - inc refcount; barrier; read PMD |
| 3191 | */ |
| 3192 | smp_mb(); |
| 3193 | |
| 3194 | ref_count = folio_ref_count(folio); |
| 3195 | map_count = folio_mapcount(folio); |
| 3196 | |
| 3197 | /* |
| 3198 | * Order reads for folio refcount and dirty flag |
| 3199 | * (see comments in __remove_mapping()). |
| 3200 | */ |
| 3201 | smp_rmb(); |
| 3202 | |
| 3203 | /* |
| 3204 | * If the folio or its PMD is redirtied at this point, or if there |
| 3205 | * are unexpected references, we will give up to discard this folio |
| 3206 | * and remap it. |
| 3207 | * |
| 3208 | * The only folio refs must be one from isolation plus the rmap(s). |
| 3209 | */ |
| 3210 | if (pmd_dirty(orig_pmd)) |
| 3211 | folio_set_dirty(folio); |
| 3212 | if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { |
| 3213 | folio_set_swapbacked(folio); |
| 3214 | set_pmd_at(mm, addr, pmdp, orig_pmd); |
| 3215 | return false; |
| 3216 | } |
| 3217 | |
| 3218 | if (ref_count != map_count + 1) { |
| 3219 | set_pmd_at(mm, addr, pmdp, orig_pmd); |
| 3220 | return false; |
| 3221 | } |
| 3222 | |
| 3223 | folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); |
| 3224 | zap_deposited_table(mm, pmdp); |
| 3225 | add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); |
| 3226 | if (vma->vm_flags & VM_LOCKED) |
| 3227 | mlock_drain_local(); |
| 3228 | folio_put(folio); |
| 3229 | |
| 3230 | return true; |
| 3231 | } |
| 3232 | |
| 3233 | bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, |
| 3234 | pmd_t *pmdp, struct folio *folio) |
| 3235 | { |
| 3236 | VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); |
| 3237 | VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); |
| 3238 | VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); |
| 3239 | VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio); |
| 3240 | VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); |
| 3241 | |
| 3242 | return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); |
| 3243 | } |
| 3244 | |
| 3245 | static void remap_page(struct folio *folio, unsigned long nr, int flags) |
| 3246 | { |
| 3247 | int i = 0; |
| 3248 | |
| 3249 | /* If unmap_folio() uses try_to_migrate() on file, remove this check */ |
| 3250 | if (!folio_test_anon(folio)) |
| 3251 | return; |
| 3252 | for (;;) { |
| 3253 | remove_migration_ptes(folio, folio, RMP_LOCKED | flags); |
| 3254 | i += folio_nr_pages(folio); |
| 3255 | if (i >= nr) |
| 3256 | break; |
| 3257 | folio = folio_next(folio); |
| 3258 | } |
| 3259 | } |
| 3260 | |
| 3261 | static void lru_add_split_folio(struct folio *folio, struct folio *new_folio, |
| 3262 | struct lruvec *lruvec, struct list_head *list) |
| 3263 | { |
| 3264 | VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio); |
| 3265 | lockdep_assert_held(&lruvec->lru_lock); |
| 3266 | |
| 3267 | if (list) { |
| 3268 | /* page reclaim is reclaiming a huge page */ |
| 3269 | VM_WARN_ON(folio_test_lru(folio)); |
| 3270 | folio_get(new_folio); |
| 3271 | list_add_tail(&new_folio->lru, list); |
| 3272 | } else { |
| 3273 | /* head is still on lru (and we have it frozen) */ |
| 3274 | VM_WARN_ON(!folio_test_lru(folio)); |
| 3275 | if (folio_test_unevictable(folio)) |
| 3276 | new_folio->mlock_count = 0; |
| 3277 | else |
| 3278 | list_add_tail(&new_folio->lru, &folio->lru); |
| 3279 | folio_set_lru(new_folio); |
| 3280 | } |
| 3281 | } |
| 3282 | |
| 3283 | /* Racy check whether the huge page can be split */ |
| 3284 | bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) |
| 3285 | { |
| 3286 | int extra_pins; |
| 3287 | |
| 3288 | /* Additional pins from page cache */ |
| 3289 | if (folio_test_anon(folio)) |
| 3290 | extra_pins = folio_test_swapcache(folio) ? |
| 3291 | folio_nr_pages(folio) : 0; |
| 3292 | else |
| 3293 | extra_pins = folio_nr_pages(folio); |
| 3294 | if (pextra_pins) |
| 3295 | *pextra_pins = extra_pins; |
| 3296 | return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - |
| 3297 | caller_pins; |
| 3298 | } |
| 3299 | |
| 3300 | /* |
| 3301 | * It splits @folio into @new_order folios and copies the @folio metadata to |
| 3302 | * all the resulting folios. |
| 3303 | */ |
| 3304 | static void __split_folio_to_order(struct folio *folio, int old_order, |
| 3305 | int new_order) |
| 3306 | { |
| 3307 | long new_nr_pages = 1 << new_order; |
| 3308 | long nr_pages = 1 << old_order; |
| 3309 | long i; |
| 3310 | |
| 3311 | /* |
| 3312 | * Skip the first new_nr_pages, since the new folio from them have all |
| 3313 | * the flags from the original folio. |
| 3314 | */ |
| 3315 | for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) { |
| 3316 | struct page *new_head = &folio->page + i; |
| 3317 | |
| 3318 | /* |
| 3319 | * Careful: new_folio is not a "real" folio before we cleared PageTail. |
| 3320 | * Don't pass it around before clear_compound_head(). |
| 3321 | */ |
| 3322 | struct folio *new_folio = (struct folio *)new_head; |
| 3323 | |
| 3324 | VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head); |
| 3325 | |
| 3326 | /* |
| 3327 | * Clone page flags before unfreezing refcount. |
| 3328 | * |
| 3329 | * After successful get_page_unless_zero() might follow flags change, |
| 3330 | * for example lock_page() which set PG_waiters. |
| 3331 | * |
| 3332 | * Note that for mapped sub-pages of an anonymous THP, |
| 3333 | * PG_anon_exclusive has been cleared in unmap_folio() and is stored in |
| 3334 | * the migration entry instead from where remap_page() will restore it. |
| 3335 | * We can still have PG_anon_exclusive set on effectively unmapped and |
| 3336 | * unreferenced sub-pages of an anonymous THP: we can simply drop |
| 3337 | * PG_anon_exclusive (-> PG_mappedtodisk) for these here. |
| 3338 | */ |
| 3339 | new_folio->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; |
| 3340 | new_folio->flags |= (folio->flags & |
| 3341 | ((1L << PG_referenced) | |
| 3342 | (1L << PG_swapbacked) | |
| 3343 | (1L << PG_swapcache) | |
| 3344 | (1L << PG_mlocked) | |
| 3345 | (1L << PG_uptodate) | |
| 3346 | (1L << PG_active) | |
| 3347 | (1L << PG_workingset) | |
| 3348 | (1L << PG_locked) | |
| 3349 | (1L << PG_unevictable) | |
| 3350 | #ifdef CONFIG_ARCH_USES_PG_ARCH_2 |
| 3351 | (1L << PG_arch_2) | |
| 3352 | #endif |
| 3353 | #ifdef CONFIG_ARCH_USES_PG_ARCH_3 |
| 3354 | (1L << PG_arch_3) | |
| 3355 | #endif |
| 3356 | (1L << PG_dirty) | |
| 3357 | LRU_GEN_MASK | LRU_REFS_MASK)); |
| 3358 | |
| 3359 | new_folio->mapping = folio->mapping; |
| 3360 | new_folio->index = folio->index + i; |
| 3361 | |
| 3362 | /* |
| 3363 | * page->private should not be set in tail pages. Fix up and warn once |
| 3364 | * if private is unexpectedly set. |
| 3365 | */ |
| 3366 | if (unlikely(new_folio->private)) { |
| 3367 | VM_WARN_ON_ONCE_PAGE(true, new_head); |
| 3368 | new_folio->private = NULL; |
| 3369 | } |
| 3370 | |
| 3371 | if (folio_test_swapcache(folio)) |
| 3372 | new_folio->swap.val = folio->swap.val + i; |
| 3373 | |
| 3374 | /* Page flags must be visible before we make the page non-compound. */ |
| 3375 | smp_wmb(); |
| 3376 | |
| 3377 | /* |
| 3378 | * Clear PageTail before unfreezing page refcount. |
| 3379 | * |
| 3380 | * After successful get_page_unless_zero() might follow put_page() |
| 3381 | * which needs correct compound_head(). |
| 3382 | */ |
| 3383 | clear_compound_head(new_head); |
| 3384 | if (new_order) { |
| 3385 | prep_compound_page(new_head, new_order); |
| 3386 | folio_set_large_rmappable(new_folio); |
| 3387 | } |
| 3388 | |
| 3389 | if (folio_test_young(folio)) |
| 3390 | folio_set_young(new_folio); |
| 3391 | if (folio_test_idle(folio)) |
| 3392 | folio_set_idle(new_folio); |
| 3393 | #ifdef CONFIG_MEMCG |
| 3394 | new_folio->memcg_data = folio->memcg_data; |
| 3395 | #endif |
| 3396 | |
| 3397 | folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); |
| 3398 | } |
| 3399 | |
| 3400 | if (new_order) |
| 3401 | folio_set_order(folio, new_order); |
| 3402 | else |
| 3403 | ClearPageCompound(&folio->page); |
| 3404 | } |
| 3405 | |
| 3406 | /* |
| 3407 | * It splits an unmapped @folio to lower order smaller folios in two ways. |
| 3408 | * @folio: the to-be-split folio |
| 3409 | * @new_order: the smallest order of the after split folios (since buddy |
| 3410 | * allocator like split generates folios with orders from @folio's |
| 3411 | * order - 1 to new_order). |
| 3412 | * @split_at: in buddy allocator like split, the folio containing @split_at |
| 3413 | * will be split until its order becomes @new_order. |
| 3414 | * @lock_at: the folio containing @lock_at is left locked for caller. |
| 3415 | * @list: the after split folios will be added to @list if it is not NULL, |
| 3416 | * otherwise to LRU lists. |
| 3417 | * @end: the end of the file @folio maps to. -1 if @folio is anonymous memory. |
| 3418 | * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller |
| 3419 | * @mapping: @folio->mapping |
| 3420 | * @uniform_split: if the split is uniform or not (buddy allocator like split) |
| 3421 | * |
| 3422 | * |
| 3423 | * 1. uniform split: the given @folio into multiple @new_order small folios, |
| 3424 | * where all small folios have the same order. This is done when |
| 3425 | * uniform_split is true. |
| 3426 | * 2. buddy allocator like (non-uniform) split: the given @folio is split into |
| 3427 | * half and one of the half (containing the given page) is split into half |
| 3428 | * until the given @page's order becomes @new_order. This is done when |
| 3429 | * uniform_split is false. |
| 3430 | * |
| 3431 | * The high level flow for these two methods are: |
| 3432 | * 1. uniform split: a single __split_folio_to_order() is called to split the |
| 3433 | * @folio into @new_order, then we traverse all the resulting folios one by |
| 3434 | * one in PFN ascending order and perform stats, unfreeze, adding to list, |
| 3435 | * and file mapping index operations. |
| 3436 | * 2. non-uniform split: in general, folio_order - @new_order calls to |
| 3437 | * __split_folio_to_order() are made in a for loop to split the @folio |
| 3438 | * to one lower order at a time. The resulting small folios are processed |
| 3439 | * like what is done during the traversal in 1, except the one containing |
| 3440 | * @page, which is split in next for loop. |
| 3441 | * |
| 3442 | * After splitting, the caller's folio reference will be transferred to the |
| 3443 | * folio containing @page. The other folios may be freed if they are not mapped. |
| 3444 | * |
| 3445 | * In terms of locking, after splitting, |
| 3446 | * 1. uniform split leaves @page (or the folio contains it) locked; |
| 3447 | * 2. buddy allocator like (non-uniform) split leaves @folio locked. |
| 3448 | * |
| 3449 | * |
| 3450 | * For !uniform_split, when -ENOMEM is returned, the original folio might be |
| 3451 | * split. The caller needs to check the input folio. |
| 3452 | */ |
| 3453 | static int __split_unmapped_folio(struct folio *folio, int new_order, |
| 3454 | struct page *split_at, struct page *lock_at, |
| 3455 | struct list_head *list, pgoff_t end, |
| 3456 | struct xa_state *xas, struct address_space *mapping, |
| 3457 | bool uniform_split) |
| 3458 | { |
| 3459 | struct lruvec *lruvec; |
| 3460 | struct address_space *swap_cache = NULL; |
| 3461 | struct folio *origin_folio = folio; |
| 3462 | struct folio *next_folio = folio_next(folio); |
| 3463 | struct folio *new_folio; |
| 3464 | struct folio *next; |
| 3465 | int order = folio_order(folio); |
| 3466 | int split_order; |
| 3467 | int start_order = uniform_split ? new_order : order - 1; |
| 3468 | int nr_dropped = 0; |
| 3469 | int ret = 0; |
| 3470 | bool stop_split = false; |
| 3471 | |
| 3472 | if (folio_test_swapcache(folio)) { |
| 3473 | VM_BUG_ON(mapping); |
| 3474 | |
| 3475 | /* a swapcache folio can only be uniformly split to order-0 */ |
| 3476 | if (!uniform_split || new_order != 0) |
| 3477 | return -EINVAL; |
| 3478 | |
| 3479 | swap_cache = swap_address_space(folio->swap); |
| 3480 | xa_lock(&swap_cache->i_pages); |
| 3481 | } |
| 3482 | |
| 3483 | if (folio_test_anon(folio)) |
| 3484 | mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); |
| 3485 | |
| 3486 | /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ |
| 3487 | lruvec = folio_lruvec_lock(folio); |
| 3488 | |
| 3489 | folio_clear_has_hwpoisoned(folio); |
| 3490 | |
| 3491 | /* |
| 3492 | * split to new_order one order at a time. For uniform split, |
| 3493 | * folio is split to new_order directly. |
| 3494 | */ |
| 3495 | for (split_order = start_order; |
| 3496 | split_order >= new_order && !stop_split; |
| 3497 | split_order--) { |
| 3498 | int old_order = folio_order(folio); |
| 3499 | struct folio *release; |
| 3500 | struct folio *end_folio = folio_next(folio); |
| 3501 | |
| 3502 | /* order-1 anonymous folio is not supported */ |
| 3503 | if (folio_test_anon(folio) && split_order == 1) |
| 3504 | continue; |
| 3505 | if (uniform_split && split_order != new_order) |
| 3506 | continue; |
| 3507 | |
| 3508 | if (mapping) { |
| 3509 | /* |
| 3510 | * uniform split has xas_split_alloc() called before |
| 3511 | * irq is disabled to allocate enough memory, whereas |
| 3512 | * non-uniform split can handle ENOMEM. |
| 3513 | */ |
| 3514 | if (uniform_split) |
| 3515 | xas_split(xas, folio, old_order); |
| 3516 | else { |
| 3517 | xas_set_order(xas, folio->index, split_order); |
| 3518 | xas_try_split(xas, folio, old_order); |
| 3519 | if (xas_error(xas)) { |
| 3520 | ret = xas_error(xas); |
| 3521 | stop_split = true; |
| 3522 | goto after_split; |
| 3523 | } |
| 3524 | } |
| 3525 | } |
| 3526 | |
| 3527 | folio_split_memcg_refs(folio, old_order, split_order); |
| 3528 | split_page_owner(&folio->page, old_order, split_order); |
| 3529 | pgalloc_tag_split(folio, old_order, split_order); |
| 3530 | |
| 3531 | __split_folio_to_order(folio, old_order, split_order); |
| 3532 | |
| 3533 | after_split: |
| 3534 | /* |
| 3535 | * Iterate through after-split folios and perform related |
| 3536 | * operations. But in buddy allocator like split, the folio |
| 3537 | * containing the specified page is skipped until its order |
| 3538 | * is new_order, since the folio will be worked on in next |
| 3539 | * iteration. |
| 3540 | */ |
| 3541 | for (release = folio; release != end_folio; release = next) { |
| 3542 | next = folio_next(release); |
| 3543 | /* |
| 3544 | * for buddy allocator like split, the folio containing |
| 3545 | * page will be split next and should not be released, |
| 3546 | * until the folio's order is new_order or stop_split |
| 3547 | * is set to true by the above xas_split() failure. |
| 3548 | */ |
| 3549 | if (release == page_folio(split_at)) { |
| 3550 | folio = release; |
| 3551 | if (split_order != new_order && !stop_split) |
| 3552 | continue; |
| 3553 | } |
| 3554 | if (folio_test_anon(release)) { |
| 3555 | mod_mthp_stat(folio_order(release), |
| 3556 | MTHP_STAT_NR_ANON, 1); |
| 3557 | } |
| 3558 | |
| 3559 | /* |
| 3560 | * origin_folio should be kept frozon until page cache |
| 3561 | * entries are updated with all the other after-split |
| 3562 | * folios to prevent others seeing stale page cache |
| 3563 | * entries. |
| 3564 | */ |
| 3565 | if (release == origin_folio) |
| 3566 | continue; |
| 3567 | |
| 3568 | folio_ref_unfreeze(release, 1 + |
| 3569 | ((mapping || swap_cache) ? |
| 3570 | folio_nr_pages(release) : 0)); |
| 3571 | |
| 3572 | lru_add_split_folio(origin_folio, release, lruvec, |
| 3573 | list); |
| 3574 | |
| 3575 | /* Some pages can be beyond EOF: drop them from cache */ |
| 3576 | if (release->index >= end) { |
| 3577 | if (shmem_mapping(mapping)) |
| 3578 | nr_dropped += folio_nr_pages(release); |
| 3579 | else if (folio_test_clear_dirty(release)) |
| 3580 | folio_account_cleaned(release, |
| 3581 | inode_to_wb(mapping->host)); |
| 3582 | __filemap_remove_folio(release, NULL); |
| 3583 | folio_put_refs(release, folio_nr_pages(release)); |
| 3584 | } else if (mapping) { |
| 3585 | __xa_store(&mapping->i_pages, |
| 3586 | release->index, release, 0); |
| 3587 | } else if (swap_cache) { |
| 3588 | __xa_store(&swap_cache->i_pages, |
| 3589 | swap_cache_index(release->swap), |
| 3590 | release, 0); |
| 3591 | } |
| 3592 | } |
| 3593 | } |
| 3594 | |
| 3595 | /* |
| 3596 | * Unfreeze origin_folio only after all page cache entries, which used |
| 3597 | * to point to it, have been updated with new folios. Otherwise, |
| 3598 | * a parallel folio_try_get() can grab origin_folio and its caller can |
| 3599 | * see stale page cache entries. |
| 3600 | */ |
| 3601 | folio_ref_unfreeze(origin_folio, 1 + |
| 3602 | ((mapping || swap_cache) ? folio_nr_pages(origin_folio) : 0)); |
| 3603 | |
| 3604 | unlock_page_lruvec(lruvec); |
| 3605 | |
| 3606 | if (swap_cache) |
| 3607 | xa_unlock(&swap_cache->i_pages); |
| 3608 | if (mapping) |
| 3609 | xa_unlock(&mapping->i_pages); |
| 3610 | |
| 3611 | /* Caller disabled irqs, so they are still disabled here */ |
| 3612 | local_irq_enable(); |
| 3613 | |
| 3614 | if (nr_dropped) |
| 3615 | shmem_uncharge(mapping->host, nr_dropped); |
| 3616 | |
| 3617 | remap_page(origin_folio, 1 << order, |
| 3618 | folio_test_anon(origin_folio) ? |
| 3619 | RMP_USE_SHARED_ZEROPAGE : 0); |
| 3620 | |
| 3621 | /* |
| 3622 | * At this point, folio should contain the specified page. |
| 3623 | * For uniform split, it is left for caller to unlock. |
| 3624 | * For buddy allocator like split, the first after-split folio is left |
| 3625 | * for caller to unlock. |
| 3626 | */ |
| 3627 | for (new_folio = origin_folio; new_folio != next_folio; new_folio = next) { |
| 3628 | next = folio_next(new_folio); |
| 3629 | if (new_folio == page_folio(lock_at)) |
| 3630 | continue; |
| 3631 | |
| 3632 | folio_unlock(new_folio); |
| 3633 | /* |
| 3634 | * Subpages may be freed if there wasn't any mapping |
| 3635 | * like if add_to_swap() is running on a lru page that |
| 3636 | * had its mapping zapped. And freeing these pages |
| 3637 | * requires taking the lru_lock so we do the put_page |
| 3638 | * of the tail pages after the split is complete. |
| 3639 | */ |
| 3640 | free_folio_and_swap_cache(new_folio); |
| 3641 | } |
| 3642 | return ret; |
| 3643 | } |
| 3644 | |
| 3645 | bool non_uniform_split_supported(struct folio *folio, unsigned int new_order, |
| 3646 | bool warns) |
| 3647 | { |
| 3648 | if (folio_test_anon(folio)) { |
| 3649 | /* order-1 is not supported for anonymous THP. */ |
| 3650 | VM_WARN_ONCE(warns && new_order == 1, |
| 3651 | "Cannot split to order-1 folio"); |
| 3652 | return new_order != 1; |
| 3653 | } else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && |
| 3654 | !mapping_large_folio_support(folio->mapping)) { |
| 3655 | /* |
| 3656 | * No split if the file system does not support large folio. |
| 3657 | * Note that we might still have THPs in such mappings due to |
| 3658 | * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping |
| 3659 | * does not actually support large folios properly. |
| 3660 | */ |
| 3661 | VM_WARN_ONCE(warns, |
| 3662 | "Cannot split file folio to non-0 order"); |
| 3663 | return false; |
| 3664 | } |
| 3665 | |
| 3666 | /* Only swapping a whole PMD-mapped folio is supported */ |
| 3667 | if (folio_test_swapcache(folio)) { |
| 3668 | VM_WARN_ONCE(warns, |
| 3669 | "Cannot split swapcache folio to non-0 order"); |
| 3670 | return false; |
| 3671 | } |
| 3672 | |
| 3673 | return true; |
| 3674 | } |
| 3675 | |
| 3676 | /* See comments in non_uniform_split_supported() */ |
| 3677 | bool uniform_split_supported(struct folio *folio, unsigned int new_order, |
| 3678 | bool warns) |
| 3679 | { |
| 3680 | if (folio_test_anon(folio)) { |
| 3681 | VM_WARN_ONCE(warns && new_order == 1, |
| 3682 | "Cannot split to order-1 folio"); |
| 3683 | return new_order != 1; |
| 3684 | } else if (new_order) { |
| 3685 | if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && |
| 3686 | !mapping_large_folio_support(folio->mapping)) { |
| 3687 | VM_WARN_ONCE(warns, |
| 3688 | "Cannot split file folio to non-0 order"); |
| 3689 | return false; |
| 3690 | } |
| 3691 | } |
| 3692 | |
| 3693 | if (new_order && folio_test_swapcache(folio)) { |
| 3694 | VM_WARN_ONCE(warns, |
| 3695 | "Cannot split swapcache folio to non-0 order"); |
| 3696 | return false; |
| 3697 | } |
| 3698 | |
| 3699 | return true; |
| 3700 | } |
| 3701 | |
| 3702 | /* |
| 3703 | * __folio_split: split a folio at @split_at to a @new_order folio |
| 3704 | * @folio: folio to split |
| 3705 | * @new_order: the order of the new folio |
| 3706 | * @split_at: a page within the new folio |
| 3707 | * @lock_at: a page within @folio to be left locked to caller |
| 3708 | * @list: after-split folios will be put on it if non NULL |
| 3709 | * @uniform_split: perform uniform split or not (non-uniform split) |
| 3710 | * |
| 3711 | * It calls __split_unmapped_folio() to perform uniform and non-uniform split. |
| 3712 | * It is in charge of checking whether the split is supported or not and |
| 3713 | * preparing @folio for __split_unmapped_folio(). |
| 3714 | * |
| 3715 | * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be |
| 3716 | * split but not to @new_order, the caller needs to check) |
| 3717 | */ |
| 3718 | static int __folio_split(struct folio *folio, unsigned int new_order, |
| 3719 | struct page *split_at, struct page *lock_at, |
| 3720 | struct list_head *list, bool uniform_split) |
| 3721 | { |
| 3722 | struct deferred_split *ds_queue = get_deferred_split_queue(folio); |
| 3723 | XA_STATE(xas, &folio->mapping->i_pages, folio->index); |
| 3724 | bool is_anon = folio_test_anon(folio); |
| 3725 | struct address_space *mapping = NULL; |
| 3726 | struct anon_vma *anon_vma = NULL; |
| 3727 | int order = folio_order(folio); |
| 3728 | int extra_pins, ret; |
| 3729 | pgoff_t end; |
| 3730 | bool is_hzp; |
| 3731 | |
| 3732 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
| 3733 | VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); |
| 3734 | |
| 3735 | if (folio != page_folio(split_at) || folio != page_folio(lock_at)) |
| 3736 | return -EINVAL; |
| 3737 | |
| 3738 | if (new_order >= folio_order(folio)) |
| 3739 | return -EINVAL; |
| 3740 | |
| 3741 | if (uniform_split && !uniform_split_supported(folio, new_order, true)) |
| 3742 | return -EINVAL; |
| 3743 | |
| 3744 | if (!uniform_split && |
| 3745 | !non_uniform_split_supported(folio, new_order, true)) |
| 3746 | return -EINVAL; |
| 3747 | |
| 3748 | is_hzp = is_huge_zero_folio(folio); |
| 3749 | if (is_hzp) { |
| 3750 | pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); |
| 3751 | return -EBUSY; |
| 3752 | } |
| 3753 | |
| 3754 | if (folio_test_writeback(folio)) |
| 3755 | return -EBUSY; |
| 3756 | |
| 3757 | if (is_anon) { |
| 3758 | /* |
| 3759 | * The caller does not necessarily hold an mmap_lock that would |
| 3760 | * prevent the anon_vma disappearing so we first we take a |
| 3761 | * reference to it and then lock the anon_vma for write. This |
| 3762 | * is similar to folio_lock_anon_vma_read except the write lock |
| 3763 | * is taken to serialise against parallel split or collapse |
| 3764 | * operations. |
| 3765 | */ |
| 3766 | anon_vma = folio_get_anon_vma(folio); |
| 3767 | if (!anon_vma) { |
| 3768 | ret = -EBUSY; |
| 3769 | goto out; |
| 3770 | } |
| 3771 | end = -1; |
| 3772 | mapping = NULL; |
| 3773 | anon_vma_lock_write(anon_vma); |
| 3774 | } else { |
| 3775 | unsigned int min_order; |
| 3776 | gfp_t gfp; |
| 3777 | |
| 3778 | mapping = folio->mapping; |
| 3779 | |
| 3780 | /* Truncated ? */ |
| 3781 | /* |
| 3782 | * TODO: add support for large shmem folio in swap cache. |
| 3783 | * When shmem is in swap cache, mapping is NULL and |
| 3784 | * folio_test_swapcache() is true. |
| 3785 | */ |
| 3786 | if (!mapping) { |
| 3787 | ret = -EBUSY; |
| 3788 | goto out; |
| 3789 | } |
| 3790 | |
| 3791 | min_order = mapping_min_folio_order(folio->mapping); |
| 3792 | if (new_order < min_order) { |
| 3793 | VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u", |
| 3794 | min_order); |
| 3795 | ret = -EINVAL; |
| 3796 | goto out; |
| 3797 | } |
| 3798 | |
| 3799 | gfp = current_gfp_context(mapping_gfp_mask(mapping) & |
| 3800 | GFP_RECLAIM_MASK); |
| 3801 | |
| 3802 | if (!filemap_release_folio(folio, gfp)) { |
| 3803 | ret = -EBUSY; |
| 3804 | goto out; |
| 3805 | } |
| 3806 | |
| 3807 | if (uniform_split) { |
| 3808 | xas_set_order(&xas, folio->index, new_order); |
| 3809 | xas_split_alloc(&xas, folio, folio_order(folio), gfp); |
| 3810 | if (xas_error(&xas)) { |
| 3811 | ret = xas_error(&xas); |
| 3812 | goto out; |
| 3813 | } |
| 3814 | } |
| 3815 | |
| 3816 | anon_vma = NULL; |
| 3817 | i_mmap_lock_read(mapping); |
| 3818 | |
| 3819 | /* |
| 3820 | *__split_unmapped_folio() may need to trim off pages beyond |
| 3821 | * EOF: but on 32-bit, i_size_read() takes an irq-unsafe |
| 3822 | * seqlock, which cannot be nested inside the page tree lock. |
| 3823 | * So note end now: i_size itself may be changed at any moment, |
| 3824 | * but folio lock is good enough to serialize the trimming. |
| 3825 | */ |
| 3826 | end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); |
| 3827 | if (shmem_mapping(mapping)) |
| 3828 | end = shmem_fallocend(mapping->host, end); |
| 3829 | } |
| 3830 | |
| 3831 | /* |
| 3832 | * Racy check if we can split the page, before unmap_folio() will |
| 3833 | * split PMDs |
| 3834 | */ |
| 3835 | if (!can_split_folio(folio, 1, &extra_pins)) { |
| 3836 | ret = -EAGAIN; |
| 3837 | goto out_unlock; |
| 3838 | } |
| 3839 | |
| 3840 | unmap_folio(folio); |
| 3841 | |
| 3842 | /* block interrupt reentry in xa_lock and spinlock */ |
| 3843 | local_irq_disable(); |
| 3844 | if (mapping) { |
| 3845 | /* |
| 3846 | * Check if the folio is present in page cache. |
| 3847 | * We assume all tail are present too, if folio is there. |
| 3848 | */ |
| 3849 | xas_lock(&xas); |
| 3850 | xas_reset(&xas); |
| 3851 | if (xas_load(&xas) != folio) |
| 3852 | goto fail; |
| 3853 | } |
| 3854 | |
| 3855 | /* Prevent deferred_split_scan() touching ->_refcount */ |
| 3856 | spin_lock(&ds_queue->split_queue_lock); |
| 3857 | if (folio_ref_freeze(folio, 1 + extra_pins)) { |
| 3858 | if (folio_order(folio) > 1 && |
| 3859 | !list_empty(&folio->_deferred_list)) { |
| 3860 | ds_queue->split_queue_len--; |
| 3861 | if (folio_test_partially_mapped(folio)) { |
| 3862 | folio_clear_partially_mapped(folio); |
| 3863 | mod_mthp_stat(folio_order(folio), |
| 3864 | MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); |
| 3865 | } |
| 3866 | /* |
| 3867 | * Reinitialize page_deferred_list after removing the |
| 3868 | * page from the split_queue, otherwise a subsequent |
| 3869 | * split will see list corruption when checking the |
| 3870 | * page_deferred_list. |
| 3871 | */ |
| 3872 | list_del_init(&folio->_deferred_list); |
| 3873 | } |
| 3874 | spin_unlock(&ds_queue->split_queue_lock); |
| 3875 | if (mapping) { |
| 3876 | int nr = folio_nr_pages(folio); |
| 3877 | |
| 3878 | if (folio_test_pmd_mappable(folio) && |
| 3879 | new_order < HPAGE_PMD_ORDER) { |
| 3880 | if (folio_test_swapbacked(folio)) { |
| 3881 | __lruvec_stat_mod_folio(folio, |
| 3882 | NR_SHMEM_THPS, -nr); |
| 3883 | } else { |
| 3884 | __lruvec_stat_mod_folio(folio, |
| 3885 | NR_FILE_THPS, -nr); |
| 3886 | filemap_nr_thps_dec(mapping); |
| 3887 | } |
| 3888 | } |
| 3889 | } |
| 3890 | |
| 3891 | ret = __split_unmapped_folio(folio, new_order, |
| 3892 | split_at, lock_at, list, end, &xas, mapping, |
| 3893 | uniform_split); |
| 3894 | } else { |
| 3895 | spin_unlock(&ds_queue->split_queue_lock); |
| 3896 | fail: |
| 3897 | if (mapping) |
| 3898 | xas_unlock(&xas); |
| 3899 | local_irq_enable(); |
| 3900 | remap_page(folio, folio_nr_pages(folio), 0); |
| 3901 | ret = -EAGAIN; |
| 3902 | } |
| 3903 | |
| 3904 | out_unlock: |
| 3905 | if (anon_vma) { |
| 3906 | anon_vma_unlock_write(anon_vma); |
| 3907 | put_anon_vma(anon_vma); |
| 3908 | } |
| 3909 | if (mapping) |
| 3910 | i_mmap_unlock_read(mapping); |
| 3911 | out: |
| 3912 | xas_destroy(&xas); |
| 3913 | if (order == HPAGE_PMD_ORDER) |
| 3914 | count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); |
| 3915 | count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); |
| 3916 | return ret; |
| 3917 | } |
| 3918 | |
| 3919 | /* |
| 3920 | * This function splits a large folio into smaller folios of order @new_order. |
| 3921 | * @page can point to any page of the large folio to split. The split operation |
| 3922 | * does not change the position of @page. |
| 3923 | * |
| 3924 | * Prerequisites: |
| 3925 | * |
| 3926 | * 1) The caller must hold a reference on the @page's owning folio, also known |
| 3927 | * as the large folio. |
| 3928 | * |
| 3929 | * 2) The large folio must be locked. |
| 3930 | * |
| 3931 | * 3) The folio must not be pinned. Any unexpected folio references, including |
| 3932 | * GUP pins, will result in the folio not getting split; instead, the caller |
| 3933 | * will receive an -EAGAIN. |
| 3934 | * |
| 3935 | * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not |
| 3936 | * supported for non-file-backed folios, because folio->_deferred_list, which |
| 3937 | * is used by partially mapped folios, is stored in subpage 2, but an order-1 |
| 3938 | * folio only has subpages 0 and 1. File-backed order-1 folios are supported, |
| 3939 | * since they do not use _deferred_list. |
| 3940 | * |
| 3941 | * After splitting, the caller's folio reference will be transferred to @page, |
| 3942 | * resulting in a raised refcount of @page after this call. The other pages may |
| 3943 | * be freed if they are not mapped. |
| 3944 | * |
| 3945 | * If @list is null, tail pages will be added to LRU list, otherwise, to @list. |
| 3946 | * |
| 3947 | * Pages in @new_order will inherit the mapping, flags, and so on from the |
| 3948 | * huge page. |
| 3949 | * |
| 3950 | * Returns 0 if the huge page was split successfully. |
| 3951 | * |
| 3952 | * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if |
| 3953 | * the folio was concurrently removed from the page cache. |
| 3954 | * |
| 3955 | * Returns -EBUSY when trying to split the huge zeropage, if the folio is |
| 3956 | * under writeback, if fs-specific folio metadata cannot currently be |
| 3957 | * released, or if some unexpected race happened (e.g., anon VMA disappeared, |
| 3958 | * truncation). |
| 3959 | * |
| 3960 | * Callers should ensure that the order respects the address space mapping |
| 3961 | * min-order if one is set for non-anonymous folios. |
| 3962 | * |
| 3963 | * Returns -EINVAL when trying to split to an order that is incompatible |
| 3964 | * with the folio. Splitting to order 0 is compatible with all folios. |
| 3965 | */ |
| 3966 | int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, |
| 3967 | unsigned int new_order) |
| 3968 | { |
| 3969 | struct folio *folio = page_folio(page); |
| 3970 | |
| 3971 | return __folio_split(folio, new_order, &folio->page, page, list, true); |
| 3972 | } |
| 3973 | |
| 3974 | /* |
| 3975 | * folio_split: split a folio at @split_at to a @new_order folio |
| 3976 | * @folio: folio to split |
| 3977 | * @new_order: the order of the new folio |
| 3978 | * @split_at: a page within the new folio |
| 3979 | * |
| 3980 | * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be |
| 3981 | * split but not to @new_order, the caller needs to check) |
| 3982 | * |
| 3983 | * It has the same prerequisites and returns as |
| 3984 | * split_huge_page_to_list_to_order(). |
| 3985 | * |
| 3986 | * Split a folio at @split_at to a new_order folio, leave the |
| 3987 | * remaining subpages of the original folio as large as possible. For example, |
| 3988 | * in the case of splitting an order-9 folio at its third order-3 subpages to |
| 3989 | * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio. |
| 3990 | * After the split, there will be a group of folios with different orders and |
| 3991 | * the new folio containing @split_at is marked in bracket: |
| 3992 | * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8]. |
| 3993 | * |
| 3994 | * After split, folio is left locked for caller. |
| 3995 | */ |
| 3996 | int folio_split(struct folio *folio, unsigned int new_order, |
| 3997 | struct page *split_at, struct list_head *list) |
| 3998 | { |
| 3999 | return __folio_split(folio, new_order, split_at, &folio->page, list, |
| 4000 | false); |
| 4001 | } |
| 4002 | |
| 4003 | int min_order_for_split(struct folio *folio) |
| 4004 | { |
| 4005 | if (folio_test_anon(folio)) |
| 4006 | return 0; |
| 4007 | |
| 4008 | if (!folio->mapping) { |
| 4009 | if (folio_test_pmd_mappable(folio)) |
| 4010 | count_vm_event(THP_SPLIT_PAGE_FAILED); |
| 4011 | return -EBUSY; |
| 4012 | } |
| 4013 | |
| 4014 | return mapping_min_folio_order(folio->mapping); |
| 4015 | } |
| 4016 | |
| 4017 | int split_folio_to_list(struct folio *folio, struct list_head *list) |
| 4018 | { |
| 4019 | int ret = min_order_for_split(folio); |
| 4020 | |
| 4021 | if (ret < 0) |
| 4022 | return ret; |
| 4023 | |
| 4024 | return split_huge_page_to_list_to_order(&folio->page, list, ret); |
| 4025 | } |
| 4026 | |
| 4027 | /* |
| 4028 | * __folio_unqueue_deferred_split() is not to be called directly: |
| 4029 | * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h |
| 4030 | * limits its calls to those folios which may have a _deferred_list for |
| 4031 | * queueing THP splits, and that list is (racily observed to be) non-empty. |
| 4032 | * |
| 4033 | * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is |
| 4034 | * zero: because even when split_queue_lock is held, a non-empty _deferred_list |
| 4035 | * might be in use on deferred_split_scan()'s unlocked on-stack list. |
| 4036 | * |
| 4037 | * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is |
| 4038 | * therefore important to unqueue deferred split before changing folio memcg. |
| 4039 | */ |
| 4040 | bool __folio_unqueue_deferred_split(struct folio *folio) |
| 4041 | { |
| 4042 | struct deferred_split *ds_queue; |
| 4043 | unsigned long flags; |
| 4044 | bool unqueued = false; |
| 4045 | |
| 4046 | WARN_ON_ONCE(folio_ref_count(folio)); |
| 4047 | WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio)); |
| 4048 | |
| 4049 | ds_queue = get_deferred_split_queue(folio); |
| 4050 | spin_lock_irqsave(&ds_queue->split_queue_lock, flags); |
| 4051 | if (!list_empty(&folio->_deferred_list)) { |
| 4052 | ds_queue->split_queue_len--; |
| 4053 | if (folio_test_partially_mapped(folio)) { |
| 4054 | folio_clear_partially_mapped(folio); |
| 4055 | mod_mthp_stat(folio_order(folio), |
| 4056 | MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); |
| 4057 | } |
| 4058 | list_del_init(&folio->_deferred_list); |
| 4059 | unqueued = true; |
| 4060 | } |
| 4061 | spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); |
| 4062 | |
| 4063 | return unqueued; /* useful for debug warnings */ |
| 4064 | } |
| 4065 | |
| 4066 | /* partially_mapped=false won't clear PG_partially_mapped folio flag */ |
| 4067 | void deferred_split_folio(struct folio *folio, bool partially_mapped) |
| 4068 | { |
| 4069 | struct deferred_split *ds_queue = get_deferred_split_queue(folio); |
| 4070 | #ifdef CONFIG_MEMCG |
| 4071 | struct mem_cgroup *memcg = folio_memcg(folio); |
| 4072 | #endif |
| 4073 | unsigned long flags; |
| 4074 | |
| 4075 | /* |
| 4076 | * Order 1 folios have no space for a deferred list, but we also |
| 4077 | * won't waste much memory by not adding them to the deferred list. |
| 4078 | */ |
| 4079 | if (folio_order(folio) <= 1) |
| 4080 | return; |
| 4081 | |
| 4082 | if (!partially_mapped && !split_underused_thp) |
| 4083 | return; |
| 4084 | |
| 4085 | /* |
| 4086 | * Exclude swapcache: originally to avoid a corrupt deferred split |
| 4087 | * queue. Nowadays that is fully prevented by memcg1_swapout(); |
| 4088 | * but if page reclaim is already handling the same folio, it is |
| 4089 | * unnecessary to handle it again in the shrinker, so excluding |
| 4090 | * swapcache here may still be a useful optimization. |
| 4091 | */ |
| 4092 | if (folio_test_swapcache(folio)) |
| 4093 | return; |
| 4094 | |
| 4095 | spin_lock_irqsave(&ds_queue->split_queue_lock, flags); |
| 4096 | if (partially_mapped) { |
| 4097 | if (!folio_test_partially_mapped(folio)) { |
| 4098 | folio_set_partially_mapped(folio); |
| 4099 | if (folio_test_pmd_mappable(folio)) |
| 4100 | count_vm_event(THP_DEFERRED_SPLIT_PAGE); |
| 4101 | count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); |
| 4102 | mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1); |
| 4103 | |
| 4104 | } |
| 4105 | } else { |
| 4106 | /* partially mapped folios cannot become non-partially mapped */ |
| 4107 | VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio); |
| 4108 | } |
| 4109 | if (list_empty(&folio->_deferred_list)) { |
| 4110 | list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); |
| 4111 | ds_queue->split_queue_len++; |
| 4112 | #ifdef CONFIG_MEMCG |
| 4113 | if (memcg) |
| 4114 | set_shrinker_bit(memcg, folio_nid(folio), |
| 4115 | deferred_split_shrinker->id); |
| 4116 | #endif |
| 4117 | } |
| 4118 | spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); |
| 4119 | } |
| 4120 | |
| 4121 | static unsigned long deferred_split_count(struct shrinker *shrink, |
| 4122 | struct shrink_control *sc) |
| 4123 | { |
| 4124 | struct pglist_data *pgdata = NODE_DATA(sc->nid); |
| 4125 | struct deferred_split *ds_queue = &pgdata->deferred_split_queue; |
| 4126 | |
| 4127 | #ifdef CONFIG_MEMCG |
| 4128 | if (sc->memcg) |
| 4129 | ds_queue = &sc->memcg->deferred_split_queue; |
| 4130 | #endif |
| 4131 | return READ_ONCE(ds_queue->split_queue_len); |
| 4132 | } |
| 4133 | |
| 4134 | static bool thp_underused(struct folio *folio) |
| 4135 | { |
| 4136 | int num_zero_pages = 0, num_filled_pages = 0; |
| 4137 | void *kaddr; |
| 4138 | int i; |
| 4139 | |
| 4140 | if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1) |
| 4141 | return false; |
| 4142 | |
| 4143 | for (i = 0; i < folio_nr_pages(folio); i++) { |
| 4144 | kaddr = kmap_local_folio(folio, i * PAGE_SIZE); |
| 4145 | if (!memchr_inv(kaddr, 0, PAGE_SIZE)) { |
| 4146 | num_zero_pages++; |
| 4147 | if (num_zero_pages > khugepaged_max_ptes_none) { |
| 4148 | kunmap_local(kaddr); |
| 4149 | return true; |
| 4150 | } |
| 4151 | } else { |
| 4152 | /* |
| 4153 | * Another path for early exit once the number |
| 4154 | * of non-zero filled pages exceeds threshold. |
| 4155 | */ |
| 4156 | num_filled_pages++; |
| 4157 | if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) { |
| 4158 | kunmap_local(kaddr); |
| 4159 | return false; |
| 4160 | } |
| 4161 | } |
| 4162 | kunmap_local(kaddr); |
| 4163 | } |
| 4164 | return false; |
| 4165 | } |
| 4166 | |
| 4167 | static unsigned long deferred_split_scan(struct shrinker *shrink, |
| 4168 | struct shrink_control *sc) |
| 4169 | { |
| 4170 | struct pglist_data *pgdata = NODE_DATA(sc->nid); |
| 4171 | struct deferred_split *ds_queue = &pgdata->deferred_split_queue; |
| 4172 | unsigned long flags; |
| 4173 | LIST_HEAD(list); |
| 4174 | struct folio *folio, *next, *prev = NULL; |
| 4175 | int split = 0, removed = 0; |
| 4176 | |
| 4177 | #ifdef CONFIG_MEMCG |
| 4178 | if (sc->memcg) |
| 4179 | ds_queue = &sc->memcg->deferred_split_queue; |
| 4180 | #endif |
| 4181 | |
| 4182 | spin_lock_irqsave(&ds_queue->split_queue_lock, flags); |
| 4183 | /* Take pin on all head pages to avoid freeing them under us */ |
| 4184 | list_for_each_entry_safe(folio, next, &ds_queue->split_queue, |
| 4185 | _deferred_list) { |
| 4186 | if (folio_try_get(folio)) { |
| 4187 | list_move(&folio->_deferred_list, &list); |
| 4188 | } else { |
| 4189 | /* We lost race with folio_put() */ |
| 4190 | if (folio_test_partially_mapped(folio)) { |
| 4191 | folio_clear_partially_mapped(folio); |
| 4192 | mod_mthp_stat(folio_order(folio), |
| 4193 | MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); |
| 4194 | } |
| 4195 | list_del_init(&folio->_deferred_list); |
| 4196 | ds_queue->split_queue_len--; |
| 4197 | } |
| 4198 | if (!--sc->nr_to_scan) |
| 4199 | break; |
| 4200 | } |
| 4201 | spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); |
| 4202 | |
| 4203 | list_for_each_entry_safe(folio, next, &list, _deferred_list) { |
| 4204 | bool did_split = false; |
| 4205 | bool underused = false; |
| 4206 | |
| 4207 | if (!folio_test_partially_mapped(folio)) { |
| 4208 | underused = thp_underused(folio); |
| 4209 | if (!underused) |
| 4210 | goto next; |
| 4211 | } |
| 4212 | if (!folio_trylock(folio)) |
| 4213 | goto next; |
| 4214 | if (!split_folio(folio)) { |
| 4215 | did_split = true; |
| 4216 | if (underused) |
| 4217 | count_vm_event(THP_UNDERUSED_SPLIT_PAGE); |
| 4218 | split++; |
| 4219 | } |
| 4220 | folio_unlock(folio); |
| 4221 | next: |
| 4222 | /* |
| 4223 | * split_folio() removes folio from list on success. |
| 4224 | * Only add back to the queue if folio is partially mapped. |
| 4225 | * If thp_underused returns false, or if split_folio fails |
| 4226 | * in the case it was underused, then consider it used and |
| 4227 | * don't add it back to split_queue. |
| 4228 | */ |
| 4229 | if (did_split) { |
| 4230 | ; /* folio already removed from list */ |
| 4231 | } else if (!folio_test_partially_mapped(folio)) { |
| 4232 | list_del_init(&folio->_deferred_list); |
| 4233 | removed++; |
| 4234 | } else { |
| 4235 | /* |
| 4236 | * That unlocked list_del_init() above would be unsafe, |
| 4237 | * unless its folio is separated from any earlier folios |
| 4238 | * left on the list (which may be concurrently unqueued) |
| 4239 | * by one safe folio with refcount still raised. |
| 4240 | */ |
| 4241 | swap(folio, prev); |
| 4242 | } |
| 4243 | if (folio) |
| 4244 | folio_put(folio); |
| 4245 | } |
| 4246 | |
| 4247 | spin_lock_irqsave(&ds_queue->split_queue_lock, flags); |
| 4248 | list_splice_tail(&list, &ds_queue->split_queue); |
| 4249 | ds_queue->split_queue_len -= removed; |
| 4250 | spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); |
| 4251 | |
| 4252 | if (prev) |
| 4253 | folio_put(prev); |
| 4254 | |
| 4255 | /* |
| 4256 | * Stop shrinker if we didn't split any page, but the queue is empty. |
| 4257 | * This can happen if pages were freed under us. |
| 4258 | */ |
| 4259 | if (!split && list_empty(&ds_queue->split_queue)) |
| 4260 | return SHRINK_STOP; |
| 4261 | return split; |
| 4262 | } |
| 4263 | |
| 4264 | #ifdef CONFIG_DEBUG_FS |
| 4265 | static void split_huge_pages_all(void) |
| 4266 | { |
| 4267 | struct zone *zone; |
| 4268 | struct page *page; |
| 4269 | struct folio *folio; |
| 4270 | unsigned long pfn, max_zone_pfn; |
| 4271 | unsigned long total = 0, split = 0; |
| 4272 | |
| 4273 | pr_debug("Split all THPs\n"); |
| 4274 | for_each_zone(zone) { |
| 4275 | if (!managed_zone(zone)) |
| 4276 | continue; |
| 4277 | max_zone_pfn = zone_end_pfn(zone); |
| 4278 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { |
| 4279 | int nr_pages; |
| 4280 | |
| 4281 | page = pfn_to_online_page(pfn); |
| 4282 | if (!page || PageTail(page)) |
| 4283 | continue; |
| 4284 | folio = page_folio(page); |
| 4285 | if (!folio_try_get(folio)) |
| 4286 | continue; |
| 4287 | |
| 4288 | if (unlikely(page_folio(page) != folio)) |
| 4289 | goto next; |
| 4290 | |
| 4291 | if (zone != folio_zone(folio)) |
| 4292 | goto next; |
| 4293 | |
| 4294 | if (!folio_test_large(folio) |
| 4295 | || folio_test_hugetlb(folio) |
| 4296 | || !folio_test_lru(folio)) |
| 4297 | goto next; |
| 4298 | |
| 4299 | total++; |
| 4300 | folio_lock(folio); |
| 4301 | nr_pages = folio_nr_pages(folio); |
| 4302 | if (!split_folio(folio)) |
| 4303 | split++; |
| 4304 | pfn += nr_pages - 1; |
| 4305 | folio_unlock(folio); |
| 4306 | next: |
| 4307 | folio_put(folio); |
| 4308 | cond_resched(); |
| 4309 | } |
| 4310 | } |
| 4311 | |
| 4312 | pr_debug("%lu of %lu THP split\n", split, total); |
| 4313 | } |
| 4314 | |
| 4315 | static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) |
| 4316 | { |
| 4317 | return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || |
| 4318 | is_vm_hugetlb_page(vma); |
| 4319 | } |
| 4320 | |
| 4321 | static int split_huge_pages_pid(int pid, unsigned long vaddr_start, |
| 4322 | unsigned long vaddr_end, unsigned int new_order, |
| 4323 | long in_folio_offset) |
| 4324 | { |
| 4325 | int ret = 0; |
| 4326 | struct task_struct *task; |
| 4327 | struct mm_struct *mm; |
| 4328 | unsigned long total = 0, split = 0; |
| 4329 | unsigned long addr; |
| 4330 | |
| 4331 | vaddr_start &= PAGE_MASK; |
| 4332 | vaddr_end &= PAGE_MASK; |
| 4333 | |
| 4334 | task = find_get_task_by_vpid(pid); |
| 4335 | if (!task) { |
| 4336 | ret = -ESRCH; |
| 4337 | goto out; |
| 4338 | } |
| 4339 | |
| 4340 | /* Find the mm_struct */ |
| 4341 | mm = get_task_mm(task); |
| 4342 | put_task_struct(task); |
| 4343 | |
| 4344 | if (!mm) { |
| 4345 | ret = -EINVAL; |
| 4346 | goto out; |
| 4347 | } |
| 4348 | |
| 4349 | pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", |
| 4350 | pid, vaddr_start, vaddr_end); |
| 4351 | |
| 4352 | mmap_read_lock(mm); |
| 4353 | /* |
| 4354 | * always increase addr by PAGE_SIZE, since we could have a PTE page |
| 4355 | * table filled with PTE-mapped THPs, each of which is distinct. |
| 4356 | */ |
| 4357 | for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { |
| 4358 | struct vm_area_struct *vma = vma_lookup(mm, addr); |
| 4359 | struct folio_walk fw; |
| 4360 | struct folio *folio; |
| 4361 | struct address_space *mapping; |
| 4362 | unsigned int target_order = new_order; |
| 4363 | |
| 4364 | if (!vma) |
| 4365 | break; |
| 4366 | |
| 4367 | /* skip special VMA and hugetlb VMA */ |
| 4368 | if (vma_not_suitable_for_thp_split(vma)) { |
| 4369 | addr = vma->vm_end; |
| 4370 | continue; |
| 4371 | } |
| 4372 | |
| 4373 | folio = folio_walk_start(&fw, vma, addr, 0); |
| 4374 | if (!folio) |
| 4375 | continue; |
| 4376 | |
| 4377 | if (!is_transparent_hugepage(folio)) |
| 4378 | goto next; |
| 4379 | |
| 4380 | if (!folio_test_anon(folio)) { |
| 4381 | mapping = folio->mapping; |
| 4382 | target_order = max(new_order, |
| 4383 | mapping_min_folio_order(mapping)); |
| 4384 | } |
| 4385 | |
| 4386 | if (target_order >= folio_order(folio)) |
| 4387 | goto next; |
| 4388 | |
| 4389 | total++; |
| 4390 | /* |
| 4391 | * For folios with private, split_huge_page_to_list_to_order() |
| 4392 | * will try to drop it before split and then check if the folio |
| 4393 | * can be split or not. So skip the check here. |
| 4394 | */ |
| 4395 | if (!folio_test_private(folio) && |
| 4396 | !can_split_folio(folio, 0, NULL)) |
| 4397 | goto next; |
| 4398 | |
| 4399 | if (!folio_trylock(folio)) |
| 4400 | goto next; |
| 4401 | folio_get(folio); |
| 4402 | folio_walk_end(&fw, vma); |
| 4403 | |
| 4404 | if (!folio_test_anon(folio) && folio->mapping != mapping) |
| 4405 | goto unlock; |
| 4406 | |
| 4407 | if (in_folio_offset < 0 || |
| 4408 | in_folio_offset >= folio_nr_pages(folio)) { |
| 4409 | if (!split_folio_to_order(folio, target_order)) |
| 4410 | split++; |
| 4411 | } else { |
| 4412 | struct page *split_at = folio_page(folio, |
| 4413 | in_folio_offset); |
| 4414 | if (!folio_split(folio, target_order, split_at, NULL)) |
| 4415 | split++; |
| 4416 | } |
| 4417 | |
| 4418 | unlock: |
| 4419 | |
| 4420 | folio_unlock(folio); |
| 4421 | folio_put(folio); |
| 4422 | |
| 4423 | cond_resched(); |
| 4424 | continue; |
| 4425 | next: |
| 4426 | folio_walk_end(&fw, vma); |
| 4427 | cond_resched(); |
| 4428 | } |
| 4429 | mmap_read_unlock(mm); |
| 4430 | mmput(mm); |
| 4431 | |
| 4432 | pr_debug("%lu of %lu THP split\n", split, total); |
| 4433 | |
| 4434 | out: |
| 4435 | return ret; |
| 4436 | } |
| 4437 | |
| 4438 | static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, |
| 4439 | pgoff_t off_end, unsigned int new_order, |
| 4440 | long in_folio_offset) |
| 4441 | { |
| 4442 | struct filename *file; |
| 4443 | struct file *candidate; |
| 4444 | struct address_space *mapping; |
| 4445 | int ret = -EINVAL; |
| 4446 | pgoff_t index; |
| 4447 | int nr_pages = 1; |
| 4448 | unsigned long total = 0, split = 0; |
| 4449 | unsigned int min_order; |
| 4450 | unsigned int target_order; |
| 4451 | |
| 4452 | file = getname_kernel(file_path); |
| 4453 | if (IS_ERR(file)) |
| 4454 | return ret; |
| 4455 | |
| 4456 | candidate = file_open_name(file, O_RDONLY, 0); |
| 4457 | if (IS_ERR(candidate)) |
| 4458 | goto out; |
| 4459 | |
| 4460 | pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", |
| 4461 | file_path, off_start, off_end); |
| 4462 | |
| 4463 | mapping = candidate->f_mapping; |
| 4464 | min_order = mapping_min_folio_order(mapping); |
| 4465 | target_order = max(new_order, min_order); |
| 4466 | |
| 4467 | for (index = off_start; index < off_end; index += nr_pages) { |
| 4468 | struct folio *folio = filemap_get_folio(mapping, index); |
| 4469 | |
| 4470 | nr_pages = 1; |
| 4471 | if (IS_ERR(folio)) |
| 4472 | continue; |
| 4473 | |
| 4474 | if (!folio_test_large(folio)) |
| 4475 | goto next; |
| 4476 | |
| 4477 | total++; |
| 4478 | nr_pages = folio_nr_pages(folio); |
| 4479 | |
| 4480 | if (target_order >= folio_order(folio)) |
| 4481 | goto next; |
| 4482 | |
| 4483 | if (!folio_trylock(folio)) |
| 4484 | goto next; |
| 4485 | |
| 4486 | if (folio->mapping != mapping) |
| 4487 | goto unlock; |
| 4488 | |
| 4489 | if (in_folio_offset < 0 || in_folio_offset >= nr_pages) { |
| 4490 | if (!split_folio_to_order(folio, target_order)) |
| 4491 | split++; |
| 4492 | } else { |
| 4493 | struct page *split_at = folio_page(folio, |
| 4494 | in_folio_offset); |
| 4495 | if (!folio_split(folio, target_order, split_at, NULL)) |
| 4496 | split++; |
| 4497 | } |
| 4498 | |
| 4499 | unlock: |
| 4500 | folio_unlock(folio); |
| 4501 | next: |
| 4502 | folio_put(folio); |
| 4503 | cond_resched(); |
| 4504 | } |
| 4505 | |
| 4506 | filp_close(candidate, NULL); |
| 4507 | ret = 0; |
| 4508 | |
| 4509 | pr_debug("%lu of %lu file-backed THP split\n", split, total); |
| 4510 | out: |
| 4511 | putname(file); |
| 4512 | return ret; |
| 4513 | } |
| 4514 | |
| 4515 | #define MAX_INPUT_BUF_SZ 255 |
| 4516 | |
| 4517 | static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, |
| 4518 | size_t count, loff_t *ppops) |
| 4519 | { |
| 4520 | static DEFINE_MUTEX(split_debug_mutex); |
| 4521 | ssize_t ret; |
| 4522 | /* |
| 4523 | * hold pid, start_vaddr, end_vaddr, new_order or |
| 4524 | * file_path, off_start, off_end, new_order |
| 4525 | */ |
| 4526 | char input_buf[MAX_INPUT_BUF_SZ]; |
| 4527 | int pid; |
| 4528 | unsigned long vaddr_start, vaddr_end; |
| 4529 | unsigned int new_order = 0; |
| 4530 | long in_folio_offset = -1; |
| 4531 | |
| 4532 | ret = mutex_lock_interruptible(&split_debug_mutex); |
| 4533 | if (ret) |
| 4534 | return ret; |
| 4535 | |
| 4536 | ret = -EFAULT; |
| 4537 | |
| 4538 | memset(input_buf, 0, MAX_INPUT_BUF_SZ); |
| 4539 | if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) |
| 4540 | goto out; |
| 4541 | |
| 4542 | input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; |
| 4543 | |
| 4544 | if (input_buf[0] == '/') { |
| 4545 | char *tok; |
| 4546 | char *tok_buf = input_buf; |
| 4547 | char file_path[MAX_INPUT_BUF_SZ]; |
| 4548 | pgoff_t off_start = 0, off_end = 0; |
| 4549 | size_t input_len = strlen(input_buf); |
| 4550 | |
| 4551 | tok = strsep(&tok_buf, ","); |
| 4552 | if (tok && tok_buf) { |
| 4553 | strscpy(file_path, tok); |
| 4554 | } else { |
| 4555 | ret = -EINVAL; |
| 4556 | goto out; |
| 4557 | } |
| 4558 | |
| 4559 | ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end, |
| 4560 | &new_order, &in_folio_offset); |
| 4561 | if (ret != 2 && ret != 3 && ret != 4) { |
| 4562 | ret = -EINVAL; |
| 4563 | goto out; |
| 4564 | } |
| 4565 | ret = split_huge_pages_in_file(file_path, off_start, off_end, |
| 4566 | new_order, in_folio_offset); |
| 4567 | if (!ret) |
| 4568 | ret = input_len; |
| 4569 | |
| 4570 | goto out; |
| 4571 | } |
| 4572 | |
| 4573 | ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start, |
| 4574 | &vaddr_end, &new_order, &in_folio_offset); |
| 4575 | if (ret == 1 && pid == 1) { |
| 4576 | split_huge_pages_all(); |
| 4577 | ret = strlen(input_buf); |
| 4578 | goto out; |
| 4579 | } else if (ret != 3 && ret != 4 && ret != 5) { |
| 4580 | ret = -EINVAL; |
| 4581 | goto out; |
| 4582 | } |
| 4583 | |
| 4584 | ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order, |
| 4585 | in_folio_offset); |
| 4586 | if (!ret) |
| 4587 | ret = strlen(input_buf); |
| 4588 | out: |
| 4589 | mutex_unlock(&split_debug_mutex); |
| 4590 | return ret; |
| 4591 | |
| 4592 | } |
| 4593 | |
| 4594 | static const struct file_operations split_huge_pages_fops = { |
| 4595 | .owner = THIS_MODULE, |
| 4596 | .write = split_huge_pages_write, |
| 4597 | }; |
| 4598 | |
| 4599 | static int __init split_huge_pages_debugfs(void) |
| 4600 | { |
| 4601 | debugfs_create_file("split_huge_pages", 0200, NULL, NULL, |
| 4602 | &split_huge_pages_fops); |
| 4603 | return 0; |
| 4604 | } |
| 4605 | late_initcall(split_huge_pages_debugfs); |
| 4606 | #endif |
| 4607 | |
| 4608 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 4609 | int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, |
| 4610 | struct page *page) |
| 4611 | { |
| 4612 | struct folio *folio = page_folio(page); |
| 4613 | struct vm_area_struct *vma = pvmw->vma; |
| 4614 | struct mm_struct *mm = vma->vm_mm; |
| 4615 | unsigned long address = pvmw->address; |
| 4616 | bool anon_exclusive; |
| 4617 | pmd_t pmdval; |
| 4618 | swp_entry_t entry; |
| 4619 | pmd_t pmdswp; |
| 4620 | |
| 4621 | if (!(pvmw->pmd && !pvmw->pte)) |
| 4622 | return 0; |
| 4623 | |
| 4624 | flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); |
| 4625 | pmdval = pmdp_invalidate(vma, address, pvmw->pmd); |
| 4626 | |
| 4627 | /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ |
| 4628 | anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); |
| 4629 | if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { |
| 4630 | set_pmd_at(mm, address, pvmw->pmd, pmdval); |
| 4631 | return -EBUSY; |
| 4632 | } |
| 4633 | |
| 4634 | if (pmd_dirty(pmdval)) |
| 4635 | folio_mark_dirty(folio); |
| 4636 | if (pmd_write(pmdval)) |
| 4637 | entry = make_writable_migration_entry(page_to_pfn(page)); |
| 4638 | else if (anon_exclusive) |
| 4639 | entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); |
| 4640 | else |
| 4641 | entry = make_readable_migration_entry(page_to_pfn(page)); |
| 4642 | if (pmd_young(pmdval)) |
| 4643 | entry = make_migration_entry_young(entry); |
| 4644 | if (pmd_dirty(pmdval)) |
| 4645 | entry = make_migration_entry_dirty(entry); |
| 4646 | pmdswp = swp_entry_to_pmd(entry); |
| 4647 | if (pmd_soft_dirty(pmdval)) |
| 4648 | pmdswp = pmd_swp_mksoft_dirty(pmdswp); |
| 4649 | if (pmd_uffd_wp(pmdval)) |
| 4650 | pmdswp = pmd_swp_mkuffd_wp(pmdswp); |
| 4651 | set_pmd_at(mm, address, pvmw->pmd, pmdswp); |
| 4652 | folio_remove_rmap_pmd(folio, page, vma); |
| 4653 | folio_put(folio); |
| 4654 | trace_set_migration_pmd(address, pmd_val(pmdswp)); |
| 4655 | |
| 4656 | return 0; |
| 4657 | } |
| 4658 | |
| 4659 | void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) |
| 4660 | { |
| 4661 | struct folio *folio = page_folio(new); |
| 4662 | struct vm_area_struct *vma = pvmw->vma; |
| 4663 | struct mm_struct *mm = vma->vm_mm; |
| 4664 | unsigned long address = pvmw->address; |
| 4665 | unsigned long haddr = address & HPAGE_PMD_MASK; |
| 4666 | pmd_t pmde; |
| 4667 | swp_entry_t entry; |
| 4668 | |
| 4669 | if (!(pvmw->pmd && !pvmw->pte)) |
| 4670 | return; |
| 4671 | |
| 4672 | entry = pmd_to_swp_entry(*pvmw->pmd); |
| 4673 | folio_get(folio); |
| 4674 | pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot)); |
| 4675 | if (pmd_swp_soft_dirty(*pvmw->pmd)) |
| 4676 | pmde = pmd_mksoft_dirty(pmde); |
| 4677 | if (is_writable_migration_entry(entry)) |
| 4678 | pmde = pmd_mkwrite(pmde, vma); |
| 4679 | if (pmd_swp_uffd_wp(*pvmw->pmd)) |
| 4680 | pmde = pmd_mkuffd_wp(pmde); |
| 4681 | if (!is_migration_entry_young(entry)) |
| 4682 | pmde = pmd_mkold(pmde); |
| 4683 | /* NOTE: this may contain setting soft-dirty on some archs */ |
| 4684 | if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) |
| 4685 | pmde = pmd_mkdirty(pmde); |
| 4686 | |
| 4687 | if (folio_test_anon(folio)) { |
| 4688 | rmap_t rmap_flags = RMAP_NONE; |
| 4689 | |
| 4690 | if (!is_readable_migration_entry(entry)) |
| 4691 | rmap_flags |= RMAP_EXCLUSIVE; |
| 4692 | |
| 4693 | folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); |
| 4694 | } else { |
| 4695 | folio_add_file_rmap_pmd(folio, new, vma); |
| 4696 | } |
| 4697 | VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); |
| 4698 | set_pmd_at(mm, haddr, pvmw->pmd, pmde); |
| 4699 | |
| 4700 | /* No need to invalidate - it was non-present before */ |
| 4701 | update_mmu_cache_pmd(vma, address, pvmw->pmd); |
| 4702 | trace_remove_migration_pmd(address, pmd_val(pmde)); |
| 4703 | } |
| 4704 | #endif |