ASoC: 88pm860x: refactor deprecated strncpy
[linux-block.git] / mm / huge_memory.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/mm.h>
11#include <linux/sched/coredump.h>
12#include <linux/sched/numa_balancing.h>
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
18#include <linux/shrinker.h>
19#include <linux/mm_inline.h>
20#include <linux/swapops.h>
21#include <linux/backing-dev.h>
22#include <linux/dax.h>
23#include <linux/khugepaged.h>
24#include <linux/freezer.h>
25#include <linux/pfn_t.h>
26#include <linux/mman.h>
27#include <linux/memremap.h>
28#include <linux/pagemap.h>
29#include <linux/debugfs.h>
30#include <linux/migrate.h>
31#include <linux/hashtable.h>
32#include <linux/userfaultfd_k.h>
33#include <linux/page_idle.h>
34#include <linux/shmem_fs.h>
35#include <linux/oom.h>
36#include <linux/numa.h>
37#include <linux/page_owner.h>
38#include <linux/sched/sysctl.h>
39#include <linux/memory-tiers.h>
40
41#include <asm/tlb.h>
42#include <asm/pgalloc.h>
43#include "internal.h"
44#include "swap.h"
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/thp.h>
48
49/*
50 * By default, transparent hugepage support is disabled in order to avoid
51 * risking an increased memory footprint for applications that are not
52 * guaranteed to benefit from it. When transparent hugepage support is
53 * enabled, it is for all mappings, and khugepaged scans all mappings.
54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
55 * for all hugepage allocations.
56 */
57unsigned long transparent_hugepage_flags __read_mostly =
58#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60#endif
61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63#endif
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67
68static struct shrinker deferred_split_shrinker;
69
70static atomic_t huge_zero_refcount;
71struct page *huge_zero_page __read_mostly;
72unsigned long huge_zero_pfn __read_mostly = ~0UL;
73
74bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 bool smaps, bool in_pf, bool enforce_sysfs)
76{
77 if (!vma->vm_mm) /* vdso */
78 return false;
79
80 /*
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
83 * example, s390 kvm.
84 * */
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 return false;
88 /*
89 * If the hardware/firmware marked hugepage support disabled.
90 */
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
92 return false;
93
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 if (vma_is_dax(vma))
96 return in_pf;
97
98 /*
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
101 * VM_MIXEDMAP set.
102 */
103 if (vm_flags & VM_NO_KHUGEPAGED)
104 return false;
105
106 /*
107 * Check alignment for file vma and size for both file and anon vma.
108 *
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
111 */
112 if (!in_pf &&
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 return false;
115
116 /*
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
119 * own flags.
120 */
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 !enforce_sysfs, vma->vm_mm, vm_flags);
124
125 /* Enforce sysfs THP requirements as necessary */
126 if (enforce_sysfs &&
127 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 !hugepage_flags_always())))
129 return false;
130
131 /* Only regular file is valid */
132 if (!in_pf && file_thp_enabled(vma))
133 return true;
134
135 if (!vma_is_anonymous(vma))
136 return false;
137
138 if (vma_is_temporary_stack(vma))
139 return false;
140
141 /*
142 * THPeligible bit of smaps should show 1 for proper VMAs even
143 * though anon_vma is not initialized yet.
144 *
145 * Allow page fault since anon_vma may be not initialized until
146 * the first page fault.
147 */
148 if (!vma->anon_vma)
149 return (smaps || in_pf);
150
151 return true;
152}
153
154static bool get_huge_zero_page(void)
155{
156 struct page *zero_page;
157retry:
158 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 return true;
160
161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 HPAGE_PMD_ORDER);
163 if (!zero_page) {
164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 return false;
166 }
167 preempt_disable();
168 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 preempt_enable();
170 __free_pages(zero_page, compound_order(zero_page));
171 goto retry;
172 }
173 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174
175 /* We take additional reference here. It will be put back by shrinker */
176 atomic_set(&huge_zero_refcount, 2);
177 preempt_enable();
178 count_vm_event(THP_ZERO_PAGE_ALLOC);
179 return true;
180}
181
182static void put_huge_zero_page(void)
183{
184 /*
185 * Counter should never go to zero here. Only shrinker can put
186 * last reference.
187 */
188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189}
190
191struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192{
193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 return READ_ONCE(huge_zero_page);
195
196 if (!get_huge_zero_page())
197 return NULL;
198
199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 put_huge_zero_page();
201
202 return READ_ONCE(huge_zero_page);
203}
204
205void mm_put_huge_zero_page(struct mm_struct *mm)
206{
207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 put_huge_zero_page();
209}
210
211static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 struct shrink_control *sc)
213{
214 /* we can free zero page only if last reference remains */
215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216}
217
218static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 struct shrink_control *sc)
220{
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 WRITE_ONCE(huge_zero_pfn, ~0UL);
225 __free_pages(zero_page, compound_order(zero_page));
226 return HPAGE_PMD_NR;
227 }
228
229 return 0;
230}
231
232static struct shrinker huge_zero_page_shrinker = {
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
235 .seeks = DEFAULT_SEEKS,
236};
237
238#ifdef CONFIG_SYSFS
239static ssize_t enabled_show(struct kobject *kobj,
240 struct kobj_attribute *attr, char *buf)
241{
242 const char *output;
243
244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 output = "[always] madvise never";
246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 &transparent_hugepage_flags))
248 output = "always [madvise] never";
249 else
250 output = "always madvise [never]";
251
252 return sysfs_emit(buf, "%s\n", output);
253}
254
255static ssize_t enabled_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
258{
259 ssize_t ret = count;
260
261 if (sysfs_streq(buf, "always")) {
262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 } else if (sysfs_streq(buf, "madvise")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 } else if (sysfs_streq(buf, "never")) {
268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else
271 ret = -EINVAL;
272
273 if (ret > 0) {
274 int err = start_stop_khugepaged();
275 if (err)
276 ret = err;
277 }
278 return ret;
279}
280
281static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282
283ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf,
285 enum transparent_hugepage_flag flag)
286{
287 return sysfs_emit(buf, "%d\n",
288 !!test_bit(flag, &transparent_hugepage_flags));
289}
290
291ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 struct kobj_attribute *attr,
293 const char *buf, size_t count,
294 enum transparent_hugepage_flag flag)
295{
296 unsigned long value;
297 int ret;
298
299 ret = kstrtoul(buf, 10, &value);
300 if (ret < 0)
301 return ret;
302 if (value > 1)
303 return -EINVAL;
304
305 if (value)
306 set_bit(flag, &transparent_hugepage_flags);
307 else
308 clear_bit(flag, &transparent_hugepage_flags);
309
310 return count;
311}
312
313static ssize_t defrag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf)
315{
316 const char *output;
317
318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 &transparent_hugepage_flags))
320 output = "[always] defer defer+madvise madvise never";
321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 &transparent_hugepage_flags))
323 output = "always [defer] defer+madvise madvise never";
324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 &transparent_hugepage_flags))
326 output = "always defer [defer+madvise] madvise never";
327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 &transparent_hugepage_flags))
329 output = "always defer defer+madvise [madvise] never";
330 else
331 output = "always defer defer+madvise madvise [never]";
332
333 return sysfs_emit(buf, "%s\n", output);
334}
335
336static ssize_t defrag_store(struct kobject *kobj,
337 struct kobj_attribute *attr,
338 const char *buf, size_t count)
339{
340 if (sysfs_streq(buf, "always")) {
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 } else if (sysfs_streq(buf, "defer+madvise")) {
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 } else if (sysfs_streq(buf, "defer")) {
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 } else if (sysfs_streq(buf, "madvise")) {
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 } else if (sysfs_streq(buf, "never")) {
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 } else
366 return -EINVAL;
367
368 return count;
369}
370static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371
372static ssize_t use_zero_page_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
374{
375 return single_hugepage_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377}
378static ssize_t use_zero_page_store(struct kobject *kobj,
379 struct kobj_attribute *attr, const char *buf, size_t count)
380{
381 return single_hugepage_flag_store(kobj, attr, buf, count,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383}
384static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385
386static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 struct kobj_attribute *attr, char *buf)
388{
389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390}
391static struct kobj_attribute hpage_pmd_size_attr =
392 __ATTR_RO(hpage_pmd_size);
393
394static struct attribute *hugepage_attr[] = {
395 &enabled_attr.attr,
396 &defrag_attr.attr,
397 &use_zero_page_attr.attr,
398 &hpage_pmd_size_attr.attr,
399#ifdef CONFIG_SHMEM
400 &shmem_enabled_attr.attr,
401#endif
402 NULL,
403};
404
405static const struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
407};
408
409static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410{
411 int err;
412
413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 if (unlikely(!*hugepage_kobj)) {
415 pr_err("failed to create transparent hugepage kobject\n");
416 return -ENOMEM;
417 }
418
419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 if (err) {
421 pr_err("failed to register transparent hugepage group\n");
422 goto delete_obj;
423 }
424
425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 if (err) {
427 pr_err("failed to register transparent hugepage group\n");
428 goto remove_hp_group;
429 }
430
431 return 0;
432
433remove_hp_group:
434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435delete_obj:
436 kobject_put(*hugepage_kobj);
437 return err;
438}
439
440static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441{
442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 kobject_put(hugepage_kobj);
445}
446#else
447static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448{
449 return 0;
450}
451
452static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453{
454}
455#endif /* CONFIG_SYSFS */
456
457static int __init hugepage_init(void)
458{
459 int err;
460 struct kobject *hugepage_kobj;
461
462 if (!has_transparent_hugepage()) {
463 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
464 return -EINVAL;
465 }
466
467 /*
468 * hugepages can't be allocated by the buddy allocator
469 */
470 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
471 /*
472 * we use page->mapping and page->index in second tail page
473 * as list_head: assuming THP order >= 2
474 */
475 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
476
477 err = hugepage_init_sysfs(&hugepage_kobj);
478 if (err)
479 goto err_sysfs;
480
481 err = khugepaged_init();
482 if (err)
483 goto err_slab;
484
485 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
486 if (err)
487 goto err_hzp_shrinker;
488 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
489 if (err)
490 goto err_split_shrinker;
491
492 /*
493 * By default disable transparent hugepages on smaller systems,
494 * where the extra memory used could hurt more than TLB overhead
495 * is likely to save. The admin can still enable it through /sys.
496 */
497 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
498 transparent_hugepage_flags = 0;
499 return 0;
500 }
501
502 err = start_stop_khugepaged();
503 if (err)
504 goto err_khugepaged;
505
506 return 0;
507err_khugepaged:
508 unregister_shrinker(&deferred_split_shrinker);
509err_split_shrinker:
510 unregister_shrinker(&huge_zero_page_shrinker);
511err_hzp_shrinker:
512 khugepaged_destroy();
513err_slab:
514 hugepage_exit_sysfs(hugepage_kobj);
515err_sysfs:
516 return err;
517}
518subsys_initcall(hugepage_init);
519
520static int __init setup_transparent_hugepage(char *str)
521{
522 int ret = 0;
523 if (!str)
524 goto out;
525 if (!strcmp(str, "always")) {
526 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
527 &transparent_hugepage_flags);
528 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
529 &transparent_hugepage_flags);
530 ret = 1;
531 } else if (!strcmp(str, "madvise")) {
532 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
533 &transparent_hugepage_flags);
534 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
535 &transparent_hugepage_flags);
536 ret = 1;
537 } else if (!strcmp(str, "never")) {
538 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
539 &transparent_hugepage_flags);
540 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
541 &transparent_hugepage_flags);
542 ret = 1;
543 }
544out:
545 if (!ret)
546 pr_warn("transparent_hugepage= cannot parse, ignored\n");
547 return ret;
548}
549__setup("transparent_hugepage=", setup_transparent_hugepage);
550
551pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
552{
553 if (likely(vma->vm_flags & VM_WRITE))
554 pmd = pmd_mkwrite(pmd);
555 return pmd;
556}
557
558#ifdef CONFIG_MEMCG
559static inline
560struct deferred_split *get_deferred_split_queue(struct folio *folio)
561{
562 struct mem_cgroup *memcg = folio_memcg(folio);
563 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
564
565 if (memcg)
566 return &memcg->deferred_split_queue;
567 else
568 return &pgdat->deferred_split_queue;
569}
570#else
571static inline
572struct deferred_split *get_deferred_split_queue(struct folio *folio)
573{
574 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
575
576 return &pgdat->deferred_split_queue;
577}
578#endif
579
580void prep_transhuge_page(struct page *page)
581{
582 struct folio *folio = (struct folio *)page;
583
584 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
585 INIT_LIST_HEAD(&folio->_deferred_list);
586 folio_set_compound_dtor(folio, TRANSHUGE_PAGE_DTOR);
587}
588
589static inline bool is_transparent_hugepage(struct page *page)
590{
591 struct folio *folio;
592
593 if (!PageCompound(page))
594 return false;
595
596 folio = page_folio(page);
597 return is_huge_zero_page(&folio->page) ||
598 folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
599}
600
601static unsigned long __thp_get_unmapped_area(struct file *filp,
602 unsigned long addr, unsigned long len,
603 loff_t off, unsigned long flags, unsigned long size)
604{
605 loff_t off_end = off + len;
606 loff_t off_align = round_up(off, size);
607 unsigned long len_pad, ret;
608
609 if (off_end <= off_align || (off_end - off_align) < size)
610 return 0;
611
612 len_pad = len + size;
613 if (len_pad < len || (off + len_pad) < off)
614 return 0;
615
616 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
617 off >> PAGE_SHIFT, flags);
618
619 /*
620 * The failure might be due to length padding. The caller will retry
621 * without the padding.
622 */
623 if (IS_ERR_VALUE(ret))
624 return 0;
625
626 /*
627 * Do not try to align to THP boundary if allocation at the address
628 * hint succeeds.
629 */
630 if (ret == addr)
631 return addr;
632
633 ret += (off - ret) & (size - 1);
634 return ret;
635}
636
637unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
638 unsigned long len, unsigned long pgoff, unsigned long flags)
639{
640 unsigned long ret;
641 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
642
643 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
644 if (ret)
645 return ret;
646
647 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
648}
649EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
650
651static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
652 struct page *page, gfp_t gfp)
653{
654 struct vm_area_struct *vma = vmf->vma;
655 struct folio *folio = page_folio(page);
656 pgtable_t pgtable;
657 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 vm_fault_t ret = 0;
659
660 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
661
662 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
663 folio_put(folio);
664 count_vm_event(THP_FAULT_FALLBACK);
665 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 return VM_FAULT_FALLBACK;
667 }
668 folio_throttle_swaprate(folio, gfp);
669
670 pgtable = pte_alloc_one(vma->vm_mm);
671 if (unlikely(!pgtable)) {
672 ret = VM_FAULT_OOM;
673 goto release;
674 }
675
676 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 /*
678 * The memory barrier inside __folio_mark_uptodate makes sure that
679 * clear_huge_page writes become visible before the set_pmd_at()
680 * write.
681 */
682 __folio_mark_uptodate(folio);
683
684 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 if (unlikely(!pmd_none(*vmf->pmd))) {
686 goto unlock_release;
687 } else {
688 pmd_t entry;
689
690 ret = check_stable_address_space(vma->vm_mm);
691 if (ret)
692 goto unlock_release;
693
694 /* Deliver the page fault to userland */
695 if (userfaultfd_missing(vma)) {
696 spin_unlock(vmf->ptl);
697 folio_put(folio);
698 pte_free(vma->vm_mm, pgtable);
699 ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 return ret;
702 }
703
704 entry = mk_huge_pmd(page, vma->vm_page_prot);
705 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 folio_add_new_anon_rmap(folio, vma, haddr);
707 folio_add_lru_vma(folio, vma);
708 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 mm_inc_nr_ptes(vma->vm_mm);
713 spin_unlock(vmf->ptl);
714 count_vm_event(THP_FAULT_ALLOC);
715 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 }
717
718 return 0;
719unlock_release:
720 spin_unlock(vmf->ptl);
721release:
722 if (pgtable)
723 pte_free(vma->vm_mm, pgtable);
724 folio_put(folio);
725 return ret;
726
727}
728
729/*
730 * always: directly stall for all thp allocations
731 * defer: wake kswapd and fail if not immediately available
732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733 * fail if not immediately available
734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735 * available
736 * never: never stall for any thp allocation
737 */
738gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739{
740 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741
742 /* Always do synchronous compaction */
743 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745
746 /* Kick kcompactd and fail quickly */
747 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749
750 /* Synchronous compaction if madvised, otherwise kick kcompactd */
751 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 return GFP_TRANSHUGE_LIGHT |
753 (vma_madvised ? __GFP_DIRECT_RECLAIM :
754 __GFP_KSWAPD_RECLAIM);
755
756 /* Only do synchronous compaction if madvised */
757 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 return GFP_TRANSHUGE_LIGHT |
759 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760
761 return GFP_TRANSHUGE_LIGHT;
762}
763
764/* Caller must hold page table lock. */
765static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 struct page *zero_page)
768{
769 pmd_t entry;
770 if (!pmd_none(*pmd))
771 return;
772 entry = mk_pmd(zero_page, vma->vm_page_prot);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 mm_inc_nr_ptes(mm);
777}
778
779vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780{
781 struct vm_area_struct *vma = vmf->vma;
782 gfp_t gfp;
783 struct folio *folio;
784 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785
786 if (!transhuge_vma_suitable(vma, haddr))
787 return VM_FAULT_FALLBACK;
788 if (unlikely(anon_vma_prepare(vma)))
789 return VM_FAULT_OOM;
790 khugepaged_enter_vma(vma, vma->vm_flags);
791
792 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 !mm_forbids_zeropage(vma->vm_mm) &&
794 transparent_hugepage_use_zero_page()) {
795 pgtable_t pgtable;
796 struct page *zero_page;
797 vm_fault_t ret;
798 pgtable = pte_alloc_one(vma->vm_mm);
799 if (unlikely(!pgtable))
800 return VM_FAULT_OOM;
801 zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 if (unlikely(!zero_page)) {
803 pte_free(vma->vm_mm, pgtable);
804 count_vm_event(THP_FAULT_FALLBACK);
805 return VM_FAULT_FALLBACK;
806 }
807 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 ret = 0;
809 if (pmd_none(*vmf->pmd)) {
810 ret = check_stable_address_space(vma->vm_mm);
811 if (ret) {
812 spin_unlock(vmf->ptl);
813 pte_free(vma->vm_mm, pgtable);
814 } else if (userfaultfd_missing(vma)) {
815 spin_unlock(vmf->ptl);
816 pte_free(vma->vm_mm, pgtable);
817 ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 } else {
820 set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 haddr, vmf->pmd, zero_page);
822 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 spin_unlock(vmf->ptl);
824 }
825 } else {
826 spin_unlock(vmf->ptl);
827 pte_free(vma->vm_mm, pgtable);
828 }
829 return ret;
830 }
831 gfp = vma_thp_gfp_mask(vma);
832 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 if (unlikely(!folio)) {
834 count_vm_event(THP_FAULT_FALLBACK);
835 return VM_FAULT_FALLBACK;
836 }
837 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838}
839
840static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 pgtable_t pgtable)
843{
844 struct mm_struct *mm = vma->vm_mm;
845 pmd_t entry;
846 spinlock_t *ptl;
847
848 ptl = pmd_lock(mm, pmd);
849 if (!pmd_none(*pmd)) {
850 if (write) {
851 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 goto out_unlock;
854 }
855 entry = pmd_mkyoung(*pmd);
856 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 update_mmu_cache_pmd(vma, addr, pmd);
859 }
860
861 goto out_unlock;
862 }
863
864 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 if (pfn_t_devmap(pfn))
866 entry = pmd_mkdevmap(entry);
867 if (write) {
868 entry = pmd_mkyoung(pmd_mkdirty(entry));
869 entry = maybe_pmd_mkwrite(entry, vma);
870 }
871
872 if (pgtable) {
873 pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 mm_inc_nr_ptes(mm);
875 pgtable = NULL;
876 }
877
878 set_pmd_at(mm, addr, pmd, entry);
879 update_mmu_cache_pmd(vma, addr, pmd);
880
881out_unlock:
882 spin_unlock(ptl);
883 if (pgtable)
884 pte_free(mm, pgtable);
885}
886
887/**
888 * vmf_insert_pfn_pmd - insert a pmd size pfn
889 * @vmf: Structure describing the fault
890 * @pfn: pfn to insert
891 * @write: whether it's a write fault
892 *
893 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
894 *
895 * Return: vm_fault_t value.
896 */
897vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
898{
899 unsigned long addr = vmf->address & PMD_MASK;
900 struct vm_area_struct *vma = vmf->vma;
901 pgprot_t pgprot = vma->vm_page_prot;
902 pgtable_t pgtable = NULL;
903
904 /*
905 * If we had pmd_special, we could avoid all these restrictions,
906 * but we need to be consistent with PTEs and architectures that
907 * can't support a 'special' bit.
908 */
909 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
910 !pfn_t_devmap(pfn));
911 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
912 (VM_PFNMAP|VM_MIXEDMAP));
913 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
914
915 if (addr < vma->vm_start || addr >= vma->vm_end)
916 return VM_FAULT_SIGBUS;
917
918 if (arch_needs_pgtable_deposit()) {
919 pgtable = pte_alloc_one(vma->vm_mm);
920 if (!pgtable)
921 return VM_FAULT_OOM;
922 }
923
924 track_pfn_insert(vma, &pgprot, pfn);
925
926 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
927 return VM_FAULT_NOPAGE;
928}
929EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
930
931#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
932static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
933{
934 if (likely(vma->vm_flags & VM_WRITE))
935 pud = pud_mkwrite(pud);
936 return pud;
937}
938
939static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
940 pud_t *pud, pfn_t pfn, bool write)
941{
942 struct mm_struct *mm = vma->vm_mm;
943 pgprot_t prot = vma->vm_page_prot;
944 pud_t entry;
945 spinlock_t *ptl;
946
947 ptl = pud_lock(mm, pud);
948 if (!pud_none(*pud)) {
949 if (write) {
950 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
951 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
952 goto out_unlock;
953 }
954 entry = pud_mkyoung(*pud);
955 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
956 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
957 update_mmu_cache_pud(vma, addr, pud);
958 }
959 goto out_unlock;
960 }
961
962 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
963 if (pfn_t_devmap(pfn))
964 entry = pud_mkdevmap(entry);
965 if (write) {
966 entry = pud_mkyoung(pud_mkdirty(entry));
967 entry = maybe_pud_mkwrite(entry, vma);
968 }
969 set_pud_at(mm, addr, pud, entry);
970 update_mmu_cache_pud(vma, addr, pud);
971
972out_unlock:
973 spin_unlock(ptl);
974}
975
976/**
977 * vmf_insert_pfn_pud - insert a pud size pfn
978 * @vmf: Structure describing the fault
979 * @pfn: pfn to insert
980 * @write: whether it's a write fault
981 *
982 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
983 *
984 * Return: vm_fault_t value.
985 */
986vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
987{
988 unsigned long addr = vmf->address & PUD_MASK;
989 struct vm_area_struct *vma = vmf->vma;
990 pgprot_t pgprot = vma->vm_page_prot;
991
992 /*
993 * If we had pud_special, we could avoid all these restrictions,
994 * but we need to be consistent with PTEs and architectures that
995 * can't support a 'special' bit.
996 */
997 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
998 !pfn_t_devmap(pfn));
999 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1000 (VM_PFNMAP|VM_MIXEDMAP));
1001 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1002
1003 if (addr < vma->vm_start || addr >= vma->vm_end)
1004 return VM_FAULT_SIGBUS;
1005
1006 track_pfn_insert(vma, &pgprot, pfn);
1007
1008 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1009 return VM_FAULT_NOPAGE;
1010}
1011EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1012#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1013
1014static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1015 pmd_t *pmd, bool write)
1016{
1017 pmd_t _pmd;
1018
1019 _pmd = pmd_mkyoung(*pmd);
1020 if (write)
1021 _pmd = pmd_mkdirty(_pmd);
1022 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1023 pmd, _pmd, write))
1024 update_mmu_cache_pmd(vma, addr, pmd);
1025}
1026
1027struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1028 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1029{
1030 unsigned long pfn = pmd_pfn(*pmd);
1031 struct mm_struct *mm = vma->vm_mm;
1032 struct page *page;
1033 int ret;
1034
1035 assert_spin_locked(pmd_lockptr(mm, pmd));
1036
1037 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1038 return NULL;
1039
1040 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1041 /* pass */;
1042 else
1043 return NULL;
1044
1045 if (flags & FOLL_TOUCH)
1046 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1047
1048 /*
1049 * device mapped pages can only be returned if the
1050 * caller will manage the page reference count.
1051 */
1052 if (!(flags & (FOLL_GET | FOLL_PIN)))
1053 return ERR_PTR(-EEXIST);
1054
1055 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1056 *pgmap = get_dev_pagemap(pfn, *pgmap);
1057 if (!*pgmap)
1058 return ERR_PTR(-EFAULT);
1059 page = pfn_to_page(pfn);
1060 ret = try_grab_page(page, flags);
1061 if (ret)
1062 page = ERR_PTR(ret);
1063
1064 return page;
1065}
1066
1067int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1068 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1069 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1070{
1071 spinlock_t *dst_ptl, *src_ptl;
1072 struct page *src_page;
1073 pmd_t pmd;
1074 pgtable_t pgtable = NULL;
1075 int ret = -ENOMEM;
1076
1077 /* Skip if can be re-fill on fault */
1078 if (!vma_is_anonymous(dst_vma))
1079 return 0;
1080
1081 pgtable = pte_alloc_one(dst_mm);
1082 if (unlikely(!pgtable))
1083 goto out;
1084
1085 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1086 src_ptl = pmd_lockptr(src_mm, src_pmd);
1087 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1088
1089 ret = -EAGAIN;
1090 pmd = *src_pmd;
1091
1092#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1093 if (unlikely(is_swap_pmd(pmd))) {
1094 swp_entry_t entry = pmd_to_swp_entry(pmd);
1095
1096 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1097 if (!is_readable_migration_entry(entry)) {
1098 entry = make_readable_migration_entry(
1099 swp_offset(entry));
1100 pmd = swp_entry_to_pmd(entry);
1101 if (pmd_swp_soft_dirty(*src_pmd))
1102 pmd = pmd_swp_mksoft_dirty(pmd);
1103 if (pmd_swp_uffd_wp(*src_pmd))
1104 pmd = pmd_swp_mkuffd_wp(pmd);
1105 set_pmd_at(src_mm, addr, src_pmd, pmd);
1106 }
1107 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1108 mm_inc_nr_ptes(dst_mm);
1109 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1110 if (!userfaultfd_wp(dst_vma))
1111 pmd = pmd_swp_clear_uffd_wp(pmd);
1112 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1113 ret = 0;
1114 goto out_unlock;
1115 }
1116#endif
1117
1118 if (unlikely(!pmd_trans_huge(pmd))) {
1119 pte_free(dst_mm, pgtable);
1120 goto out_unlock;
1121 }
1122 /*
1123 * When page table lock is held, the huge zero pmd should not be
1124 * under splitting since we don't split the page itself, only pmd to
1125 * a page table.
1126 */
1127 if (is_huge_zero_pmd(pmd)) {
1128 /*
1129 * get_huge_zero_page() will never allocate a new page here,
1130 * since we already have a zero page to copy. It just takes a
1131 * reference.
1132 */
1133 mm_get_huge_zero_page(dst_mm);
1134 goto out_zero_page;
1135 }
1136
1137 src_page = pmd_page(pmd);
1138 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1139
1140 get_page(src_page);
1141 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1142 /* Page maybe pinned: split and retry the fault on PTEs. */
1143 put_page(src_page);
1144 pte_free(dst_mm, pgtable);
1145 spin_unlock(src_ptl);
1146 spin_unlock(dst_ptl);
1147 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1148 return -EAGAIN;
1149 }
1150 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1151out_zero_page:
1152 mm_inc_nr_ptes(dst_mm);
1153 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1154 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1155 if (!userfaultfd_wp(dst_vma))
1156 pmd = pmd_clear_uffd_wp(pmd);
1157 pmd = pmd_mkold(pmd_wrprotect(pmd));
1158 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1159
1160 ret = 0;
1161out_unlock:
1162 spin_unlock(src_ptl);
1163 spin_unlock(dst_ptl);
1164out:
1165 return ret;
1166}
1167
1168#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1169static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1170 pud_t *pud, bool write)
1171{
1172 pud_t _pud;
1173
1174 _pud = pud_mkyoung(*pud);
1175 if (write)
1176 _pud = pud_mkdirty(_pud);
1177 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1178 pud, _pud, write))
1179 update_mmu_cache_pud(vma, addr, pud);
1180}
1181
1182struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1183 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1184{
1185 unsigned long pfn = pud_pfn(*pud);
1186 struct mm_struct *mm = vma->vm_mm;
1187 struct page *page;
1188 int ret;
1189
1190 assert_spin_locked(pud_lockptr(mm, pud));
1191
1192 if (flags & FOLL_WRITE && !pud_write(*pud))
1193 return NULL;
1194
1195 if (pud_present(*pud) && pud_devmap(*pud))
1196 /* pass */;
1197 else
1198 return NULL;
1199
1200 if (flags & FOLL_TOUCH)
1201 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1202
1203 /*
1204 * device mapped pages can only be returned if the
1205 * caller will manage the page reference count.
1206 *
1207 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1208 */
1209 if (!(flags & (FOLL_GET | FOLL_PIN)))
1210 return ERR_PTR(-EEXIST);
1211
1212 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1213 *pgmap = get_dev_pagemap(pfn, *pgmap);
1214 if (!*pgmap)
1215 return ERR_PTR(-EFAULT);
1216 page = pfn_to_page(pfn);
1217
1218 ret = try_grab_page(page, flags);
1219 if (ret)
1220 page = ERR_PTR(ret);
1221
1222 return page;
1223}
1224
1225int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1226 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1227 struct vm_area_struct *vma)
1228{
1229 spinlock_t *dst_ptl, *src_ptl;
1230 pud_t pud;
1231 int ret;
1232
1233 dst_ptl = pud_lock(dst_mm, dst_pud);
1234 src_ptl = pud_lockptr(src_mm, src_pud);
1235 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1236
1237 ret = -EAGAIN;
1238 pud = *src_pud;
1239 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1240 goto out_unlock;
1241
1242 /*
1243 * When page table lock is held, the huge zero pud should not be
1244 * under splitting since we don't split the page itself, only pud to
1245 * a page table.
1246 */
1247 if (is_huge_zero_pud(pud)) {
1248 /* No huge zero pud yet */
1249 }
1250
1251 /*
1252 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1253 * and split if duplicating fails.
1254 */
1255 pudp_set_wrprotect(src_mm, addr, src_pud);
1256 pud = pud_mkold(pud_wrprotect(pud));
1257 set_pud_at(dst_mm, addr, dst_pud, pud);
1258
1259 ret = 0;
1260out_unlock:
1261 spin_unlock(src_ptl);
1262 spin_unlock(dst_ptl);
1263 return ret;
1264}
1265
1266void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1267{
1268 bool write = vmf->flags & FAULT_FLAG_WRITE;
1269
1270 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1271 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1272 goto unlock;
1273
1274 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1275unlock:
1276 spin_unlock(vmf->ptl);
1277}
1278#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1279
1280void huge_pmd_set_accessed(struct vm_fault *vmf)
1281{
1282 bool write = vmf->flags & FAULT_FLAG_WRITE;
1283
1284 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1285 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1286 goto unlock;
1287
1288 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1289
1290unlock:
1291 spin_unlock(vmf->ptl);
1292}
1293
1294vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1295{
1296 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1297 struct vm_area_struct *vma = vmf->vma;
1298 struct folio *folio;
1299 struct page *page;
1300 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1301 pmd_t orig_pmd = vmf->orig_pmd;
1302
1303 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1304 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1305
1306 if (is_huge_zero_pmd(orig_pmd))
1307 goto fallback;
1308
1309 spin_lock(vmf->ptl);
1310
1311 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312 spin_unlock(vmf->ptl);
1313 return 0;
1314 }
1315
1316 page = pmd_page(orig_pmd);
1317 folio = page_folio(page);
1318 VM_BUG_ON_PAGE(!PageHead(page), page);
1319
1320 /* Early check when only holding the PT lock. */
1321 if (PageAnonExclusive(page))
1322 goto reuse;
1323
1324 if (!folio_trylock(folio)) {
1325 folio_get(folio);
1326 spin_unlock(vmf->ptl);
1327 folio_lock(folio);
1328 spin_lock(vmf->ptl);
1329 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1330 spin_unlock(vmf->ptl);
1331 folio_unlock(folio);
1332 folio_put(folio);
1333 return 0;
1334 }
1335 folio_put(folio);
1336 }
1337
1338 /* Recheck after temporarily dropping the PT lock. */
1339 if (PageAnonExclusive(page)) {
1340 folio_unlock(folio);
1341 goto reuse;
1342 }
1343
1344 /*
1345 * See do_wp_page(): we can only reuse the folio exclusively if
1346 * there are no additional references. Note that we always drain
1347 * the LRU cache immediately after adding a THP.
1348 */
1349 if (folio_ref_count(folio) >
1350 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1351 goto unlock_fallback;
1352 if (folio_test_swapcache(folio))
1353 folio_free_swap(folio);
1354 if (folio_ref_count(folio) == 1) {
1355 pmd_t entry;
1356
1357 page_move_anon_rmap(page, vma);
1358 folio_unlock(folio);
1359reuse:
1360 if (unlikely(unshare)) {
1361 spin_unlock(vmf->ptl);
1362 return 0;
1363 }
1364 entry = pmd_mkyoung(orig_pmd);
1365 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1366 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1367 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1368 spin_unlock(vmf->ptl);
1369 return 0;
1370 }
1371
1372unlock_fallback:
1373 folio_unlock(folio);
1374 spin_unlock(vmf->ptl);
1375fallback:
1376 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1377 return VM_FAULT_FALLBACK;
1378}
1379
1380static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1381 unsigned long addr, pmd_t pmd)
1382{
1383 struct page *page;
1384
1385 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1386 return false;
1387
1388 /* Don't touch entries that are not even readable (NUMA hinting). */
1389 if (pmd_protnone(pmd))
1390 return false;
1391
1392 /* Do we need write faults for softdirty tracking? */
1393 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1394 return false;
1395
1396 /* Do we need write faults for uffd-wp tracking? */
1397 if (userfaultfd_huge_pmd_wp(vma, pmd))
1398 return false;
1399
1400 if (!(vma->vm_flags & VM_SHARED)) {
1401 /* See can_change_pte_writable(). */
1402 page = vm_normal_page_pmd(vma, addr, pmd);
1403 return page && PageAnon(page) && PageAnonExclusive(page);
1404 }
1405
1406 /* See can_change_pte_writable(). */
1407 return pmd_dirty(pmd);
1408}
1409
1410/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1411static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1412 struct vm_area_struct *vma,
1413 unsigned int flags)
1414{
1415 /* If the pmd is writable, we can write to the page. */
1416 if (pmd_write(pmd))
1417 return true;
1418
1419 /* Maybe FOLL_FORCE is set to override it? */
1420 if (!(flags & FOLL_FORCE))
1421 return false;
1422
1423 /* But FOLL_FORCE has no effect on shared mappings */
1424 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1425 return false;
1426
1427 /* ... or read-only private ones */
1428 if (!(vma->vm_flags & VM_MAYWRITE))
1429 return false;
1430
1431 /* ... or already writable ones that just need to take a write fault */
1432 if (vma->vm_flags & VM_WRITE)
1433 return false;
1434
1435 /*
1436 * See can_change_pte_writable(): we broke COW and could map the page
1437 * writable if we have an exclusive anonymous page ...
1438 */
1439 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1440 return false;
1441
1442 /* ... and a write-fault isn't required for other reasons. */
1443 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1444 return false;
1445 return !userfaultfd_huge_pmd_wp(vma, pmd);
1446}
1447
1448struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1449 unsigned long addr,
1450 pmd_t *pmd,
1451 unsigned int flags)
1452{
1453 struct mm_struct *mm = vma->vm_mm;
1454 struct page *page;
1455 int ret;
1456
1457 assert_spin_locked(pmd_lockptr(mm, pmd));
1458
1459 page = pmd_page(*pmd);
1460 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1461
1462 if ((flags & FOLL_WRITE) &&
1463 !can_follow_write_pmd(*pmd, page, vma, flags))
1464 return NULL;
1465
1466 /* Avoid dumping huge zero page */
1467 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1468 return ERR_PTR(-EFAULT);
1469
1470 /* Full NUMA hinting faults to serialise migration in fault paths */
1471 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1472 return NULL;
1473
1474 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1475 return ERR_PTR(-EMLINK);
1476
1477 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1478 !PageAnonExclusive(page), page);
1479
1480 ret = try_grab_page(page, flags);
1481 if (ret)
1482 return ERR_PTR(ret);
1483
1484 if (flags & FOLL_TOUCH)
1485 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1486
1487 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1488 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1489
1490 return page;
1491}
1492
1493/* NUMA hinting page fault entry point for trans huge pmds */
1494vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1495{
1496 struct vm_area_struct *vma = vmf->vma;
1497 pmd_t oldpmd = vmf->orig_pmd;
1498 pmd_t pmd;
1499 struct page *page;
1500 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1501 int page_nid = NUMA_NO_NODE;
1502 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1503 bool migrated = false, writable = false;
1504 int flags = 0;
1505
1506 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1507 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1508 spin_unlock(vmf->ptl);
1509 goto out;
1510 }
1511
1512 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1513
1514 /*
1515 * Detect now whether the PMD could be writable; this information
1516 * is only valid while holding the PT lock.
1517 */
1518 writable = pmd_write(pmd);
1519 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1520 can_change_pmd_writable(vma, vmf->address, pmd))
1521 writable = true;
1522
1523 page = vm_normal_page_pmd(vma, haddr, pmd);
1524 if (!page)
1525 goto out_map;
1526
1527 /* See similar comment in do_numa_page for explanation */
1528 if (!writable)
1529 flags |= TNF_NO_GROUP;
1530
1531 page_nid = page_to_nid(page);
1532 /*
1533 * For memory tiering mode, cpupid of slow memory page is used
1534 * to record page access time. So use default value.
1535 */
1536 if (node_is_toptier(page_nid))
1537 last_cpupid = page_cpupid_last(page);
1538 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1539 &flags);
1540
1541 if (target_nid == NUMA_NO_NODE) {
1542 put_page(page);
1543 goto out_map;
1544 }
1545
1546 spin_unlock(vmf->ptl);
1547 writable = false;
1548
1549 migrated = migrate_misplaced_page(page, vma, target_nid);
1550 if (migrated) {
1551 flags |= TNF_MIGRATED;
1552 page_nid = target_nid;
1553 } else {
1554 flags |= TNF_MIGRATE_FAIL;
1555 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1556 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1557 spin_unlock(vmf->ptl);
1558 goto out;
1559 }
1560 goto out_map;
1561 }
1562
1563out:
1564 if (page_nid != NUMA_NO_NODE)
1565 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1566 flags);
1567
1568 return 0;
1569
1570out_map:
1571 /* Restore the PMD */
1572 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1573 pmd = pmd_mkyoung(pmd);
1574 if (writable)
1575 pmd = pmd_mkwrite(pmd);
1576 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1577 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1578 spin_unlock(vmf->ptl);
1579 goto out;
1580}
1581
1582/*
1583 * Return true if we do MADV_FREE successfully on entire pmd page.
1584 * Otherwise, return false.
1585 */
1586bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1587 pmd_t *pmd, unsigned long addr, unsigned long next)
1588{
1589 spinlock_t *ptl;
1590 pmd_t orig_pmd;
1591 struct folio *folio;
1592 struct mm_struct *mm = tlb->mm;
1593 bool ret = false;
1594
1595 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1596
1597 ptl = pmd_trans_huge_lock(pmd, vma);
1598 if (!ptl)
1599 goto out_unlocked;
1600
1601 orig_pmd = *pmd;
1602 if (is_huge_zero_pmd(orig_pmd))
1603 goto out;
1604
1605 if (unlikely(!pmd_present(orig_pmd))) {
1606 VM_BUG_ON(thp_migration_supported() &&
1607 !is_pmd_migration_entry(orig_pmd));
1608 goto out;
1609 }
1610
1611 folio = pfn_folio(pmd_pfn(orig_pmd));
1612 /*
1613 * If other processes are mapping this folio, we couldn't discard
1614 * the folio unless they all do MADV_FREE so let's skip the folio.
1615 */
1616 if (folio_mapcount(folio) != 1)
1617 goto out;
1618
1619 if (!folio_trylock(folio))
1620 goto out;
1621
1622 /*
1623 * If user want to discard part-pages of THP, split it so MADV_FREE
1624 * will deactivate only them.
1625 */
1626 if (next - addr != HPAGE_PMD_SIZE) {
1627 folio_get(folio);
1628 spin_unlock(ptl);
1629 split_folio(folio);
1630 folio_unlock(folio);
1631 folio_put(folio);
1632 goto out_unlocked;
1633 }
1634
1635 if (folio_test_dirty(folio))
1636 folio_clear_dirty(folio);
1637 folio_unlock(folio);
1638
1639 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1640 pmdp_invalidate(vma, addr, pmd);
1641 orig_pmd = pmd_mkold(orig_pmd);
1642 orig_pmd = pmd_mkclean(orig_pmd);
1643
1644 set_pmd_at(mm, addr, pmd, orig_pmd);
1645 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1646 }
1647
1648 folio_mark_lazyfree(folio);
1649 ret = true;
1650out:
1651 spin_unlock(ptl);
1652out_unlocked:
1653 return ret;
1654}
1655
1656static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1657{
1658 pgtable_t pgtable;
1659
1660 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1661 pte_free(mm, pgtable);
1662 mm_dec_nr_ptes(mm);
1663}
1664
1665int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1666 pmd_t *pmd, unsigned long addr)
1667{
1668 pmd_t orig_pmd;
1669 spinlock_t *ptl;
1670
1671 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1672
1673 ptl = __pmd_trans_huge_lock(pmd, vma);
1674 if (!ptl)
1675 return 0;
1676 /*
1677 * For architectures like ppc64 we look at deposited pgtable
1678 * when calling pmdp_huge_get_and_clear. So do the
1679 * pgtable_trans_huge_withdraw after finishing pmdp related
1680 * operations.
1681 */
1682 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1683 tlb->fullmm);
1684 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1685 if (vma_is_special_huge(vma)) {
1686 if (arch_needs_pgtable_deposit())
1687 zap_deposited_table(tlb->mm, pmd);
1688 spin_unlock(ptl);
1689 } else if (is_huge_zero_pmd(orig_pmd)) {
1690 zap_deposited_table(tlb->mm, pmd);
1691 spin_unlock(ptl);
1692 } else {
1693 struct page *page = NULL;
1694 int flush_needed = 1;
1695
1696 if (pmd_present(orig_pmd)) {
1697 page = pmd_page(orig_pmd);
1698 page_remove_rmap(page, vma, true);
1699 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1700 VM_BUG_ON_PAGE(!PageHead(page), page);
1701 } else if (thp_migration_supported()) {
1702 swp_entry_t entry;
1703
1704 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1705 entry = pmd_to_swp_entry(orig_pmd);
1706 page = pfn_swap_entry_to_page(entry);
1707 flush_needed = 0;
1708 } else
1709 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1710
1711 if (PageAnon(page)) {
1712 zap_deposited_table(tlb->mm, pmd);
1713 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1714 } else {
1715 if (arch_needs_pgtable_deposit())
1716 zap_deposited_table(tlb->mm, pmd);
1717 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1718 }
1719
1720 spin_unlock(ptl);
1721 if (flush_needed)
1722 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1723 }
1724 return 1;
1725}
1726
1727#ifndef pmd_move_must_withdraw
1728static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1729 spinlock_t *old_pmd_ptl,
1730 struct vm_area_struct *vma)
1731{
1732 /*
1733 * With split pmd lock we also need to move preallocated
1734 * PTE page table if new_pmd is on different PMD page table.
1735 *
1736 * We also don't deposit and withdraw tables for file pages.
1737 */
1738 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1739}
1740#endif
1741
1742static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1743{
1744#ifdef CONFIG_MEM_SOFT_DIRTY
1745 if (unlikely(is_pmd_migration_entry(pmd)))
1746 pmd = pmd_swp_mksoft_dirty(pmd);
1747 else if (pmd_present(pmd))
1748 pmd = pmd_mksoft_dirty(pmd);
1749#endif
1750 return pmd;
1751}
1752
1753bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1754 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1755{
1756 spinlock_t *old_ptl, *new_ptl;
1757 pmd_t pmd;
1758 struct mm_struct *mm = vma->vm_mm;
1759 bool force_flush = false;
1760
1761 /*
1762 * The destination pmd shouldn't be established, free_pgtables()
1763 * should have released it; but move_page_tables() might have already
1764 * inserted a page table, if racing against shmem/file collapse.
1765 */
1766 if (!pmd_none(*new_pmd)) {
1767 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1768 return false;
1769 }
1770
1771 /*
1772 * We don't have to worry about the ordering of src and dst
1773 * ptlocks because exclusive mmap_lock prevents deadlock.
1774 */
1775 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1776 if (old_ptl) {
1777 new_ptl = pmd_lockptr(mm, new_pmd);
1778 if (new_ptl != old_ptl)
1779 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1780 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1781 if (pmd_present(pmd))
1782 force_flush = true;
1783 VM_BUG_ON(!pmd_none(*new_pmd));
1784
1785 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1786 pgtable_t pgtable;
1787 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1788 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1789 }
1790 pmd = move_soft_dirty_pmd(pmd);
1791 set_pmd_at(mm, new_addr, new_pmd, pmd);
1792 if (force_flush)
1793 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1794 if (new_ptl != old_ptl)
1795 spin_unlock(new_ptl);
1796 spin_unlock(old_ptl);
1797 return true;
1798 }
1799 return false;
1800}
1801
1802/*
1803 * Returns
1804 * - 0 if PMD could not be locked
1805 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1806 * or if prot_numa but THP migration is not supported
1807 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1808 */
1809int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1810 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1811 unsigned long cp_flags)
1812{
1813 struct mm_struct *mm = vma->vm_mm;
1814 spinlock_t *ptl;
1815 pmd_t oldpmd, entry;
1816 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1817 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1818 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1819 int ret = 1;
1820
1821 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1822
1823 if (prot_numa && !thp_migration_supported())
1824 return 1;
1825
1826 ptl = __pmd_trans_huge_lock(pmd, vma);
1827 if (!ptl)
1828 return 0;
1829
1830#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1831 if (is_swap_pmd(*pmd)) {
1832 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1833 struct page *page = pfn_swap_entry_to_page(entry);
1834 pmd_t newpmd;
1835
1836 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1837 if (is_writable_migration_entry(entry)) {
1838 /*
1839 * A protection check is difficult so
1840 * just be safe and disable write
1841 */
1842 if (PageAnon(page))
1843 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1844 else
1845 entry = make_readable_migration_entry(swp_offset(entry));
1846 newpmd = swp_entry_to_pmd(entry);
1847 if (pmd_swp_soft_dirty(*pmd))
1848 newpmd = pmd_swp_mksoft_dirty(newpmd);
1849 } else {
1850 newpmd = *pmd;
1851 }
1852
1853 if (uffd_wp)
1854 newpmd = pmd_swp_mkuffd_wp(newpmd);
1855 else if (uffd_wp_resolve)
1856 newpmd = pmd_swp_clear_uffd_wp(newpmd);
1857 if (!pmd_same(*pmd, newpmd))
1858 set_pmd_at(mm, addr, pmd, newpmd);
1859 goto unlock;
1860 }
1861#endif
1862
1863 if (prot_numa) {
1864 struct page *page;
1865 bool toptier;
1866 /*
1867 * Avoid trapping faults against the zero page. The read-only
1868 * data is likely to be read-cached on the local CPU and
1869 * local/remote hits to the zero page are not interesting.
1870 */
1871 if (is_huge_zero_pmd(*pmd))
1872 goto unlock;
1873
1874 if (pmd_protnone(*pmd))
1875 goto unlock;
1876
1877 page = pmd_page(*pmd);
1878 toptier = node_is_toptier(page_to_nid(page));
1879 /*
1880 * Skip scanning top tier node if normal numa
1881 * balancing is disabled
1882 */
1883 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1884 toptier)
1885 goto unlock;
1886
1887 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1888 !toptier)
1889 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1890 }
1891 /*
1892 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1893 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1894 * which is also under mmap_read_lock(mm):
1895 *
1896 * CPU0: CPU1:
1897 * change_huge_pmd(prot_numa=1)
1898 * pmdp_huge_get_and_clear_notify()
1899 * madvise_dontneed()
1900 * zap_pmd_range()
1901 * pmd_trans_huge(*pmd) == 0 (without ptl)
1902 * // skip the pmd
1903 * set_pmd_at();
1904 * // pmd is re-established
1905 *
1906 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1907 * which may break userspace.
1908 *
1909 * pmdp_invalidate_ad() is required to make sure we don't miss
1910 * dirty/young flags set by hardware.
1911 */
1912 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1913
1914 entry = pmd_modify(oldpmd, newprot);
1915 if (uffd_wp)
1916 entry = pmd_mkuffd_wp(entry);
1917 else if (uffd_wp_resolve)
1918 /*
1919 * Leave the write bit to be handled by PF interrupt
1920 * handler, then things like COW could be properly
1921 * handled.
1922 */
1923 entry = pmd_clear_uffd_wp(entry);
1924
1925 /* See change_pte_range(). */
1926 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1927 can_change_pmd_writable(vma, addr, entry))
1928 entry = pmd_mkwrite(entry);
1929
1930 ret = HPAGE_PMD_NR;
1931 set_pmd_at(mm, addr, pmd, entry);
1932
1933 if (huge_pmd_needs_flush(oldpmd, entry))
1934 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1935unlock:
1936 spin_unlock(ptl);
1937 return ret;
1938}
1939
1940/*
1941 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1942 *
1943 * Note that if it returns page table lock pointer, this routine returns without
1944 * unlocking page table lock. So callers must unlock it.
1945 */
1946spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1947{
1948 spinlock_t *ptl;
1949 ptl = pmd_lock(vma->vm_mm, pmd);
1950 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1951 pmd_devmap(*pmd)))
1952 return ptl;
1953 spin_unlock(ptl);
1954 return NULL;
1955}
1956
1957/*
1958 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1959 *
1960 * Note that if it returns page table lock pointer, this routine returns without
1961 * unlocking page table lock. So callers must unlock it.
1962 */
1963spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1964{
1965 spinlock_t *ptl;
1966
1967 ptl = pud_lock(vma->vm_mm, pud);
1968 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1969 return ptl;
1970 spin_unlock(ptl);
1971 return NULL;
1972}
1973
1974#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1975int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1976 pud_t *pud, unsigned long addr)
1977{
1978 spinlock_t *ptl;
1979
1980 ptl = __pud_trans_huge_lock(pud, vma);
1981 if (!ptl)
1982 return 0;
1983
1984 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1985 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1986 if (vma_is_special_huge(vma)) {
1987 spin_unlock(ptl);
1988 /* No zero page support yet */
1989 } else {
1990 /* No support for anonymous PUD pages yet */
1991 BUG();
1992 }
1993 return 1;
1994}
1995
1996static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1997 unsigned long haddr)
1998{
1999 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2000 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2001 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2002 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2003
2004 count_vm_event(THP_SPLIT_PUD);
2005
2006 pudp_huge_clear_flush_notify(vma, haddr, pud);
2007}
2008
2009void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2010 unsigned long address)
2011{
2012 spinlock_t *ptl;
2013 struct mmu_notifier_range range;
2014
2015 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2016 address & HPAGE_PUD_MASK,
2017 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2018 mmu_notifier_invalidate_range_start(&range);
2019 ptl = pud_lock(vma->vm_mm, pud);
2020 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2021 goto out;
2022 __split_huge_pud_locked(vma, pud, range.start);
2023
2024out:
2025 spin_unlock(ptl);
2026 /*
2027 * No need to double call mmu_notifier->invalidate_range() callback as
2028 * the above pudp_huge_clear_flush_notify() did already call it.
2029 */
2030 mmu_notifier_invalidate_range_only_end(&range);
2031}
2032#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2033
2034static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2035 unsigned long haddr, pmd_t *pmd)
2036{
2037 struct mm_struct *mm = vma->vm_mm;
2038 pgtable_t pgtable;
2039 pmd_t _pmd, old_pmd;
2040 unsigned long addr;
2041 pte_t *pte;
2042 int i;
2043
2044 /*
2045 * Leave pmd empty until pte is filled note that it is fine to delay
2046 * notification until mmu_notifier_invalidate_range_end() as we are
2047 * replacing a zero pmd write protected page with a zero pte write
2048 * protected page.
2049 *
2050 * See Documentation/mm/mmu_notifier.rst
2051 */
2052 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2053
2054 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2055 pmd_populate(mm, &_pmd, pgtable);
2056
2057 pte = pte_offset_map(&_pmd, haddr);
2058 VM_BUG_ON(!pte);
2059 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2060 pte_t entry;
2061
2062 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2063 entry = pte_mkspecial(entry);
2064 if (pmd_uffd_wp(old_pmd))
2065 entry = pte_mkuffd_wp(entry);
2066 VM_BUG_ON(!pte_none(ptep_get(pte)));
2067 set_pte_at(mm, addr, pte, entry);
2068 pte++;
2069 }
2070 pte_unmap(pte - 1);
2071 smp_wmb(); /* make pte visible before pmd */
2072 pmd_populate(mm, pmd, pgtable);
2073}
2074
2075static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2076 unsigned long haddr, bool freeze)
2077{
2078 struct mm_struct *mm = vma->vm_mm;
2079 struct page *page;
2080 pgtable_t pgtable;
2081 pmd_t old_pmd, _pmd;
2082 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2083 bool anon_exclusive = false, dirty = false;
2084 unsigned long addr;
2085 pte_t *pte;
2086 int i;
2087
2088 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2089 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2090 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2091 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2092 && !pmd_devmap(*pmd));
2093
2094 count_vm_event(THP_SPLIT_PMD);
2095
2096 if (!vma_is_anonymous(vma)) {
2097 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2098 /*
2099 * We are going to unmap this huge page. So
2100 * just go ahead and zap it
2101 */
2102 if (arch_needs_pgtable_deposit())
2103 zap_deposited_table(mm, pmd);
2104 if (vma_is_special_huge(vma))
2105 return;
2106 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2107 swp_entry_t entry;
2108
2109 entry = pmd_to_swp_entry(old_pmd);
2110 page = pfn_swap_entry_to_page(entry);
2111 } else {
2112 page = pmd_page(old_pmd);
2113 if (!PageDirty(page) && pmd_dirty(old_pmd))
2114 set_page_dirty(page);
2115 if (!PageReferenced(page) && pmd_young(old_pmd))
2116 SetPageReferenced(page);
2117 page_remove_rmap(page, vma, true);
2118 put_page(page);
2119 }
2120 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2121 return;
2122 }
2123
2124 if (is_huge_zero_pmd(*pmd)) {
2125 /*
2126 * FIXME: Do we want to invalidate secondary mmu by calling
2127 * mmu_notifier_invalidate_range() see comments below inside
2128 * __split_huge_pmd() ?
2129 *
2130 * We are going from a zero huge page write protected to zero
2131 * small page also write protected so it does not seems useful
2132 * to invalidate secondary mmu at this time.
2133 */
2134 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2135 }
2136
2137 /*
2138 * Up to this point the pmd is present and huge and userland has the
2139 * whole access to the hugepage during the split (which happens in
2140 * place). If we overwrite the pmd with the not-huge version pointing
2141 * to the pte here (which of course we could if all CPUs were bug
2142 * free), userland could trigger a small page size TLB miss on the
2143 * small sized TLB while the hugepage TLB entry is still established in
2144 * the huge TLB. Some CPU doesn't like that.
2145 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2146 * 383 on page 105. Intel should be safe but is also warns that it's
2147 * only safe if the permission and cache attributes of the two entries
2148 * loaded in the two TLB is identical (which should be the case here).
2149 * But it is generally safer to never allow small and huge TLB entries
2150 * for the same virtual address to be loaded simultaneously. So instead
2151 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2152 * current pmd notpresent (atomically because here the pmd_trans_huge
2153 * must remain set at all times on the pmd until the split is complete
2154 * for this pmd), then we flush the SMP TLB and finally we write the
2155 * non-huge version of the pmd entry with pmd_populate.
2156 */
2157 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2158
2159 pmd_migration = is_pmd_migration_entry(old_pmd);
2160 if (unlikely(pmd_migration)) {
2161 swp_entry_t entry;
2162
2163 entry = pmd_to_swp_entry(old_pmd);
2164 page = pfn_swap_entry_to_page(entry);
2165 write = is_writable_migration_entry(entry);
2166 if (PageAnon(page))
2167 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2168 young = is_migration_entry_young(entry);
2169 dirty = is_migration_entry_dirty(entry);
2170 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2171 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2172 } else {
2173 page = pmd_page(old_pmd);
2174 if (pmd_dirty(old_pmd)) {
2175 dirty = true;
2176 SetPageDirty(page);
2177 }
2178 write = pmd_write(old_pmd);
2179 young = pmd_young(old_pmd);
2180 soft_dirty = pmd_soft_dirty(old_pmd);
2181 uffd_wp = pmd_uffd_wp(old_pmd);
2182
2183 VM_BUG_ON_PAGE(!page_count(page), page);
2184
2185 /*
2186 * Without "freeze", we'll simply split the PMD, propagating the
2187 * PageAnonExclusive() flag for each PTE by setting it for
2188 * each subpage -- no need to (temporarily) clear.
2189 *
2190 * With "freeze" we want to replace mapped pages by
2191 * migration entries right away. This is only possible if we
2192 * managed to clear PageAnonExclusive() -- see
2193 * set_pmd_migration_entry().
2194 *
2195 * In case we cannot clear PageAnonExclusive(), split the PMD
2196 * only and let try_to_migrate_one() fail later.
2197 *
2198 * See page_try_share_anon_rmap(): invalidate PMD first.
2199 */
2200 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2201 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2202 freeze = false;
2203 if (!freeze)
2204 page_ref_add(page, HPAGE_PMD_NR - 1);
2205 }
2206
2207 /*
2208 * Withdraw the table only after we mark the pmd entry invalid.
2209 * This's critical for some architectures (Power).
2210 */
2211 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2212 pmd_populate(mm, &_pmd, pgtable);
2213
2214 pte = pte_offset_map(&_pmd, haddr);
2215 VM_BUG_ON(!pte);
2216 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2217 pte_t entry;
2218 /*
2219 * Note that NUMA hinting access restrictions are not
2220 * transferred to avoid any possibility of altering
2221 * permissions across VMAs.
2222 */
2223 if (freeze || pmd_migration) {
2224 swp_entry_t swp_entry;
2225 if (write)
2226 swp_entry = make_writable_migration_entry(
2227 page_to_pfn(page + i));
2228 else if (anon_exclusive)
2229 swp_entry = make_readable_exclusive_migration_entry(
2230 page_to_pfn(page + i));
2231 else
2232 swp_entry = make_readable_migration_entry(
2233 page_to_pfn(page + i));
2234 if (young)
2235 swp_entry = make_migration_entry_young(swp_entry);
2236 if (dirty)
2237 swp_entry = make_migration_entry_dirty(swp_entry);
2238 entry = swp_entry_to_pte(swp_entry);
2239 if (soft_dirty)
2240 entry = pte_swp_mksoft_dirty(entry);
2241 if (uffd_wp)
2242 entry = pte_swp_mkuffd_wp(entry);
2243 } else {
2244 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2245 if (write)
2246 entry = pte_mkwrite(entry);
2247 if (anon_exclusive)
2248 SetPageAnonExclusive(page + i);
2249 if (!young)
2250 entry = pte_mkold(entry);
2251 /* NOTE: this may set soft-dirty too on some archs */
2252 if (dirty)
2253 entry = pte_mkdirty(entry);
2254 if (soft_dirty)
2255 entry = pte_mksoft_dirty(entry);
2256 if (uffd_wp)
2257 entry = pte_mkuffd_wp(entry);
2258 page_add_anon_rmap(page + i, vma, addr, false);
2259 }
2260 VM_BUG_ON(!pte_none(ptep_get(pte)));
2261 set_pte_at(mm, addr, pte, entry);
2262 pte++;
2263 }
2264 pte_unmap(pte - 1);
2265
2266 if (!pmd_migration)
2267 page_remove_rmap(page, vma, true);
2268 if (freeze)
2269 put_page(page);
2270
2271 smp_wmb(); /* make pte visible before pmd */
2272 pmd_populate(mm, pmd, pgtable);
2273}
2274
2275void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2276 unsigned long address, bool freeze, struct folio *folio)
2277{
2278 spinlock_t *ptl;
2279 struct mmu_notifier_range range;
2280
2281 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2282 address & HPAGE_PMD_MASK,
2283 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2284 mmu_notifier_invalidate_range_start(&range);
2285 ptl = pmd_lock(vma->vm_mm, pmd);
2286
2287 /*
2288 * If caller asks to setup a migration entry, we need a folio to check
2289 * pmd against. Otherwise we can end up replacing wrong folio.
2290 */
2291 VM_BUG_ON(freeze && !folio);
2292 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2293
2294 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2295 is_pmd_migration_entry(*pmd)) {
2296 /*
2297 * It's safe to call pmd_page when folio is set because it's
2298 * guaranteed that pmd is present.
2299 */
2300 if (folio && folio != page_folio(pmd_page(*pmd)))
2301 goto out;
2302 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2303 }
2304
2305out:
2306 spin_unlock(ptl);
2307 /*
2308 * No need to double call mmu_notifier->invalidate_range() callback.
2309 * They are 3 cases to consider inside __split_huge_pmd_locked():
2310 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2311 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2312 * fault will trigger a flush_notify before pointing to a new page
2313 * (it is fine if the secondary mmu keeps pointing to the old zero
2314 * page in the meantime)
2315 * 3) Split a huge pmd into pte pointing to the same page. No need
2316 * to invalidate secondary tlb entry they are all still valid.
2317 * any further changes to individual pte will notify. So no need
2318 * to call mmu_notifier->invalidate_range()
2319 */
2320 mmu_notifier_invalidate_range_only_end(&range);
2321}
2322
2323void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2324 bool freeze, struct folio *folio)
2325{
2326 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2327
2328 if (!pmd)
2329 return;
2330
2331 __split_huge_pmd(vma, pmd, address, freeze, folio);
2332}
2333
2334static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2335{
2336 /*
2337 * If the new address isn't hpage aligned and it could previously
2338 * contain an hugepage: check if we need to split an huge pmd.
2339 */
2340 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2341 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2342 ALIGN(address, HPAGE_PMD_SIZE)))
2343 split_huge_pmd_address(vma, address, false, NULL);
2344}
2345
2346void vma_adjust_trans_huge(struct vm_area_struct *vma,
2347 unsigned long start,
2348 unsigned long end,
2349 long adjust_next)
2350{
2351 /* Check if we need to split start first. */
2352 split_huge_pmd_if_needed(vma, start);
2353
2354 /* Check if we need to split end next. */
2355 split_huge_pmd_if_needed(vma, end);
2356
2357 /*
2358 * If we're also updating the next vma vm_start,
2359 * check if we need to split it.
2360 */
2361 if (adjust_next > 0) {
2362 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2363 unsigned long nstart = next->vm_start;
2364 nstart += adjust_next;
2365 split_huge_pmd_if_needed(next, nstart);
2366 }
2367}
2368
2369static void unmap_folio(struct folio *folio)
2370{
2371 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2372 TTU_SYNC;
2373
2374 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2375
2376 /*
2377 * Anon pages need migration entries to preserve them, but file
2378 * pages can simply be left unmapped, then faulted back on demand.
2379 * If that is ever changed (perhaps for mlock), update remap_page().
2380 */
2381 if (folio_test_anon(folio))
2382 try_to_migrate(folio, ttu_flags);
2383 else
2384 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2385}
2386
2387static void remap_page(struct folio *folio, unsigned long nr)
2388{
2389 int i = 0;
2390
2391 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2392 if (!folio_test_anon(folio))
2393 return;
2394 for (;;) {
2395 remove_migration_ptes(folio, folio, true);
2396 i += folio_nr_pages(folio);
2397 if (i >= nr)
2398 break;
2399 folio = folio_next(folio);
2400 }
2401}
2402
2403static void lru_add_page_tail(struct page *head, struct page *tail,
2404 struct lruvec *lruvec, struct list_head *list)
2405{
2406 VM_BUG_ON_PAGE(!PageHead(head), head);
2407 VM_BUG_ON_PAGE(PageCompound(tail), head);
2408 VM_BUG_ON_PAGE(PageLRU(tail), head);
2409 lockdep_assert_held(&lruvec->lru_lock);
2410
2411 if (list) {
2412 /* page reclaim is reclaiming a huge page */
2413 VM_WARN_ON(PageLRU(head));
2414 get_page(tail);
2415 list_add_tail(&tail->lru, list);
2416 } else {
2417 /* head is still on lru (and we have it frozen) */
2418 VM_WARN_ON(!PageLRU(head));
2419 if (PageUnevictable(tail))
2420 tail->mlock_count = 0;
2421 else
2422 list_add_tail(&tail->lru, &head->lru);
2423 SetPageLRU(tail);
2424 }
2425}
2426
2427static void __split_huge_page_tail(struct page *head, int tail,
2428 struct lruvec *lruvec, struct list_head *list)
2429{
2430 struct page *page_tail = head + tail;
2431
2432 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2433
2434 /*
2435 * Clone page flags before unfreezing refcount.
2436 *
2437 * After successful get_page_unless_zero() might follow flags change,
2438 * for example lock_page() which set PG_waiters.
2439 *
2440 * Note that for mapped sub-pages of an anonymous THP,
2441 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2442 * the migration entry instead from where remap_page() will restore it.
2443 * We can still have PG_anon_exclusive set on effectively unmapped and
2444 * unreferenced sub-pages of an anonymous THP: we can simply drop
2445 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2446 */
2447 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2448 page_tail->flags |= (head->flags &
2449 ((1L << PG_referenced) |
2450 (1L << PG_swapbacked) |
2451 (1L << PG_swapcache) |
2452 (1L << PG_mlocked) |
2453 (1L << PG_uptodate) |
2454 (1L << PG_active) |
2455 (1L << PG_workingset) |
2456 (1L << PG_locked) |
2457 (1L << PG_unevictable) |
2458#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2459 (1L << PG_arch_2) |
2460 (1L << PG_arch_3) |
2461#endif
2462 (1L << PG_dirty) |
2463 LRU_GEN_MASK | LRU_REFS_MASK));
2464
2465 /* ->mapping in first and second tail page is replaced by other uses */
2466 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2467 page_tail);
2468 page_tail->mapping = head->mapping;
2469 page_tail->index = head->index + tail;
2470
2471 /*
2472 * page->private should not be set in tail pages with the exception
2473 * of swap cache pages that store the swp_entry_t in tail pages.
2474 * Fix up and warn once if private is unexpectedly set.
2475 *
2476 * What of 32-bit systems, on which folio->_pincount overlays
2477 * head[1].private? No problem: THP_SWAP is not enabled on 32-bit, and
2478 * pincount must be 0 for folio_ref_freeze() to have succeeded.
2479 */
2480 if (!folio_test_swapcache(page_folio(head))) {
2481 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2482 page_tail->private = 0;
2483 }
2484
2485 /* Page flags must be visible before we make the page non-compound. */
2486 smp_wmb();
2487
2488 /*
2489 * Clear PageTail before unfreezing page refcount.
2490 *
2491 * After successful get_page_unless_zero() might follow put_page()
2492 * which needs correct compound_head().
2493 */
2494 clear_compound_head(page_tail);
2495
2496 /* Finally unfreeze refcount. Additional reference from page cache. */
2497 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2498 PageSwapCache(head)));
2499
2500 if (page_is_young(head))
2501 set_page_young(page_tail);
2502 if (page_is_idle(head))
2503 set_page_idle(page_tail);
2504
2505 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2506
2507 /*
2508 * always add to the tail because some iterators expect new
2509 * pages to show after the currently processed elements - e.g.
2510 * migrate_pages
2511 */
2512 lru_add_page_tail(head, page_tail, lruvec, list);
2513}
2514
2515static void __split_huge_page(struct page *page, struct list_head *list,
2516 pgoff_t end)
2517{
2518 struct folio *folio = page_folio(page);
2519 struct page *head = &folio->page;
2520 struct lruvec *lruvec;
2521 struct address_space *swap_cache = NULL;
2522 unsigned long offset = 0;
2523 unsigned int nr = thp_nr_pages(head);
2524 int i;
2525
2526 /* complete memcg works before add pages to LRU */
2527 split_page_memcg(head, nr);
2528
2529 if (PageAnon(head) && PageSwapCache(head)) {
2530 swp_entry_t entry = { .val = page_private(head) };
2531
2532 offset = swp_offset(entry);
2533 swap_cache = swap_address_space(entry);
2534 xa_lock(&swap_cache->i_pages);
2535 }
2536
2537 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2538 lruvec = folio_lruvec_lock(folio);
2539
2540 ClearPageHasHWPoisoned(head);
2541
2542 for (i = nr - 1; i >= 1; i--) {
2543 __split_huge_page_tail(head, i, lruvec, list);
2544 /* Some pages can be beyond EOF: drop them from page cache */
2545 if (head[i].index >= end) {
2546 struct folio *tail = page_folio(head + i);
2547
2548 if (shmem_mapping(head->mapping))
2549 shmem_uncharge(head->mapping->host, 1);
2550 else if (folio_test_clear_dirty(tail))
2551 folio_account_cleaned(tail,
2552 inode_to_wb(folio->mapping->host));
2553 __filemap_remove_folio(tail, NULL);
2554 folio_put(tail);
2555 } else if (!PageAnon(page)) {
2556 __xa_store(&head->mapping->i_pages, head[i].index,
2557 head + i, 0);
2558 } else if (swap_cache) {
2559 __xa_store(&swap_cache->i_pages, offset + i,
2560 head + i, 0);
2561 }
2562 }
2563
2564 ClearPageCompound(head);
2565 unlock_page_lruvec(lruvec);
2566 /* Caller disabled irqs, so they are still disabled here */
2567
2568 split_page_owner(head, nr);
2569
2570 /* See comment in __split_huge_page_tail() */
2571 if (PageAnon(head)) {
2572 /* Additional pin to swap cache */
2573 if (PageSwapCache(head)) {
2574 page_ref_add(head, 2);
2575 xa_unlock(&swap_cache->i_pages);
2576 } else {
2577 page_ref_inc(head);
2578 }
2579 } else {
2580 /* Additional pin to page cache */
2581 page_ref_add(head, 2);
2582 xa_unlock(&head->mapping->i_pages);
2583 }
2584 local_irq_enable();
2585
2586 remap_page(folio, nr);
2587
2588 if (PageSwapCache(head)) {
2589 swp_entry_t entry = { .val = page_private(head) };
2590
2591 split_swap_cluster(entry);
2592 }
2593
2594 for (i = 0; i < nr; i++) {
2595 struct page *subpage = head + i;
2596 if (subpage == page)
2597 continue;
2598 unlock_page(subpage);
2599
2600 /*
2601 * Subpages may be freed if there wasn't any mapping
2602 * like if add_to_swap() is running on a lru page that
2603 * had its mapping zapped. And freeing these pages
2604 * requires taking the lru_lock so we do the put_page
2605 * of the tail pages after the split is complete.
2606 */
2607 free_page_and_swap_cache(subpage);
2608 }
2609}
2610
2611/* Racy check whether the huge page can be split */
2612bool can_split_folio(struct folio *folio, int *pextra_pins)
2613{
2614 int extra_pins;
2615
2616 /* Additional pins from page cache */
2617 if (folio_test_anon(folio))
2618 extra_pins = folio_test_swapcache(folio) ?
2619 folio_nr_pages(folio) : 0;
2620 else
2621 extra_pins = folio_nr_pages(folio);
2622 if (pextra_pins)
2623 *pextra_pins = extra_pins;
2624 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2625}
2626
2627/*
2628 * This function splits huge page into normal pages. @page can point to any
2629 * subpage of huge page to split. Split doesn't change the position of @page.
2630 *
2631 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2632 * The huge page must be locked.
2633 *
2634 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2635 *
2636 * Both head page and tail pages will inherit mapping, flags, and so on from
2637 * the hugepage.
2638 *
2639 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2640 * they are not mapped.
2641 *
2642 * Returns 0 if the hugepage is split successfully.
2643 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2644 * us.
2645 */
2646int split_huge_page_to_list(struct page *page, struct list_head *list)
2647{
2648 struct folio *folio = page_folio(page);
2649 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2650 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2651 struct anon_vma *anon_vma = NULL;
2652 struct address_space *mapping = NULL;
2653 int extra_pins, ret;
2654 pgoff_t end;
2655 bool is_hzp;
2656
2657 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2658 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2659
2660 is_hzp = is_huge_zero_page(&folio->page);
2661 if (is_hzp) {
2662 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2663 return -EBUSY;
2664 }
2665
2666 if (folio_test_writeback(folio))
2667 return -EBUSY;
2668
2669 if (folio_test_anon(folio)) {
2670 /*
2671 * The caller does not necessarily hold an mmap_lock that would
2672 * prevent the anon_vma disappearing so we first we take a
2673 * reference to it and then lock the anon_vma for write. This
2674 * is similar to folio_lock_anon_vma_read except the write lock
2675 * is taken to serialise against parallel split or collapse
2676 * operations.
2677 */
2678 anon_vma = folio_get_anon_vma(folio);
2679 if (!anon_vma) {
2680 ret = -EBUSY;
2681 goto out;
2682 }
2683 end = -1;
2684 mapping = NULL;
2685 anon_vma_lock_write(anon_vma);
2686 } else {
2687 gfp_t gfp;
2688
2689 mapping = folio->mapping;
2690
2691 /* Truncated ? */
2692 if (!mapping) {
2693 ret = -EBUSY;
2694 goto out;
2695 }
2696
2697 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2698 GFP_RECLAIM_MASK);
2699
2700 if (folio_test_private(folio) &&
2701 !filemap_release_folio(folio, gfp)) {
2702 ret = -EBUSY;
2703 goto out;
2704 }
2705
2706 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2707 if (xas_error(&xas)) {
2708 ret = xas_error(&xas);
2709 goto out;
2710 }
2711
2712 anon_vma = NULL;
2713 i_mmap_lock_read(mapping);
2714
2715 /*
2716 *__split_huge_page() may need to trim off pages beyond EOF:
2717 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2718 * which cannot be nested inside the page tree lock. So note
2719 * end now: i_size itself may be changed at any moment, but
2720 * folio lock is good enough to serialize the trimming.
2721 */
2722 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2723 if (shmem_mapping(mapping))
2724 end = shmem_fallocend(mapping->host, end);
2725 }
2726
2727 /*
2728 * Racy check if we can split the page, before unmap_folio() will
2729 * split PMDs
2730 */
2731 if (!can_split_folio(folio, &extra_pins)) {
2732 ret = -EAGAIN;
2733 goto out_unlock;
2734 }
2735
2736 unmap_folio(folio);
2737
2738 /* block interrupt reentry in xa_lock and spinlock */
2739 local_irq_disable();
2740 if (mapping) {
2741 /*
2742 * Check if the folio is present in page cache.
2743 * We assume all tail are present too, if folio is there.
2744 */
2745 xas_lock(&xas);
2746 xas_reset(&xas);
2747 if (xas_load(&xas) != folio)
2748 goto fail;
2749 }
2750
2751 /* Prevent deferred_split_scan() touching ->_refcount */
2752 spin_lock(&ds_queue->split_queue_lock);
2753 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2754 if (!list_empty(&folio->_deferred_list)) {
2755 ds_queue->split_queue_len--;
2756 list_del(&folio->_deferred_list);
2757 }
2758 spin_unlock(&ds_queue->split_queue_lock);
2759 if (mapping) {
2760 int nr = folio_nr_pages(folio);
2761
2762 xas_split(&xas, folio, folio_order(folio));
2763 if (folio_test_swapbacked(folio)) {
2764 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2765 -nr);
2766 } else {
2767 __lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2768 -nr);
2769 filemap_nr_thps_dec(mapping);
2770 }
2771 }
2772
2773 __split_huge_page(page, list, end);
2774 ret = 0;
2775 } else {
2776 spin_unlock(&ds_queue->split_queue_lock);
2777fail:
2778 if (mapping)
2779 xas_unlock(&xas);
2780 local_irq_enable();
2781 remap_page(folio, folio_nr_pages(folio));
2782 ret = -EAGAIN;
2783 }
2784
2785out_unlock:
2786 if (anon_vma) {
2787 anon_vma_unlock_write(anon_vma);
2788 put_anon_vma(anon_vma);
2789 }
2790 if (mapping)
2791 i_mmap_unlock_read(mapping);
2792out:
2793 xas_destroy(&xas);
2794 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2795 return ret;
2796}
2797
2798void free_transhuge_page(struct page *page)
2799{
2800 struct folio *folio = (struct folio *)page;
2801 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2802 unsigned long flags;
2803
2804 /*
2805 * At this point, there is no one trying to add the folio to
2806 * deferred_list. If folio is not in deferred_list, it's safe
2807 * to check without acquiring the split_queue_lock.
2808 */
2809 if (data_race(!list_empty(&folio->_deferred_list))) {
2810 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2811 if (!list_empty(&folio->_deferred_list)) {
2812 ds_queue->split_queue_len--;
2813 list_del(&folio->_deferred_list);
2814 }
2815 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2816 }
2817 free_compound_page(page);
2818}
2819
2820void deferred_split_folio(struct folio *folio)
2821{
2822 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2823#ifdef CONFIG_MEMCG
2824 struct mem_cgroup *memcg = folio_memcg(folio);
2825#endif
2826 unsigned long flags;
2827
2828 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2829
2830 /*
2831 * The try_to_unmap() in page reclaim path might reach here too,
2832 * this may cause a race condition to corrupt deferred split queue.
2833 * And, if page reclaim is already handling the same folio, it is
2834 * unnecessary to handle it again in shrinker.
2835 *
2836 * Check the swapcache flag to determine if the folio is being
2837 * handled by page reclaim since THP swap would add the folio into
2838 * swap cache before calling try_to_unmap().
2839 */
2840 if (folio_test_swapcache(folio))
2841 return;
2842
2843 if (!list_empty(&folio->_deferred_list))
2844 return;
2845
2846 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2847 if (list_empty(&folio->_deferred_list)) {
2848 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2849 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2850 ds_queue->split_queue_len++;
2851#ifdef CONFIG_MEMCG
2852 if (memcg)
2853 set_shrinker_bit(memcg, folio_nid(folio),
2854 deferred_split_shrinker.id);
2855#endif
2856 }
2857 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2858}
2859
2860static unsigned long deferred_split_count(struct shrinker *shrink,
2861 struct shrink_control *sc)
2862{
2863 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2864 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2865
2866#ifdef CONFIG_MEMCG
2867 if (sc->memcg)
2868 ds_queue = &sc->memcg->deferred_split_queue;
2869#endif
2870 return READ_ONCE(ds_queue->split_queue_len);
2871}
2872
2873static unsigned long deferred_split_scan(struct shrinker *shrink,
2874 struct shrink_control *sc)
2875{
2876 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2877 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2878 unsigned long flags;
2879 LIST_HEAD(list);
2880 struct folio *folio, *next;
2881 int split = 0;
2882
2883#ifdef CONFIG_MEMCG
2884 if (sc->memcg)
2885 ds_queue = &sc->memcg->deferred_split_queue;
2886#endif
2887
2888 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2889 /* Take pin on all head pages to avoid freeing them under us */
2890 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2891 _deferred_list) {
2892 if (folio_try_get(folio)) {
2893 list_move(&folio->_deferred_list, &list);
2894 } else {
2895 /* We lost race with folio_put() */
2896 list_del_init(&folio->_deferred_list);
2897 ds_queue->split_queue_len--;
2898 }
2899 if (!--sc->nr_to_scan)
2900 break;
2901 }
2902 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2903
2904 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2905 if (!folio_trylock(folio))
2906 goto next;
2907 /* split_huge_page() removes page from list on success */
2908 if (!split_folio(folio))
2909 split++;
2910 folio_unlock(folio);
2911next:
2912 folio_put(folio);
2913 }
2914
2915 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2916 list_splice_tail(&list, &ds_queue->split_queue);
2917 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2918
2919 /*
2920 * Stop shrinker if we didn't split any page, but the queue is empty.
2921 * This can happen if pages were freed under us.
2922 */
2923 if (!split && list_empty(&ds_queue->split_queue))
2924 return SHRINK_STOP;
2925 return split;
2926}
2927
2928static struct shrinker deferred_split_shrinker = {
2929 .count_objects = deferred_split_count,
2930 .scan_objects = deferred_split_scan,
2931 .seeks = DEFAULT_SEEKS,
2932 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2933 SHRINKER_NONSLAB,
2934};
2935
2936#ifdef CONFIG_DEBUG_FS
2937static void split_huge_pages_all(void)
2938{
2939 struct zone *zone;
2940 struct page *page;
2941 struct folio *folio;
2942 unsigned long pfn, max_zone_pfn;
2943 unsigned long total = 0, split = 0;
2944
2945 pr_debug("Split all THPs\n");
2946 for_each_zone(zone) {
2947 if (!managed_zone(zone))
2948 continue;
2949 max_zone_pfn = zone_end_pfn(zone);
2950 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2951 int nr_pages;
2952
2953 page = pfn_to_online_page(pfn);
2954 if (!page || PageTail(page))
2955 continue;
2956 folio = page_folio(page);
2957 if (!folio_try_get(folio))
2958 continue;
2959
2960 if (unlikely(page_folio(page) != folio))
2961 goto next;
2962
2963 if (zone != folio_zone(folio))
2964 goto next;
2965
2966 if (!folio_test_large(folio)
2967 || folio_test_hugetlb(folio)
2968 || !folio_test_lru(folio))
2969 goto next;
2970
2971 total++;
2972 folio_lock(folio);
2973 nr_pages = folio_nr_pages(folio);
2974 if (!split_folio(folio))
2975 split++;
2976 pfn += nr_pages - 1;
2977 folio_unlock(folio);
2978next:
2979 folio_put(folio);
2980 cond_resched();
2981 }
2982 }
2983
2984 pr_debug("%lu of %lu THP split\n", split, total);
2985}
2986
2987static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2988{
2989 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2990 is_vm_hugetlb_page(vma);
2991}
2992
2993static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2994 unsigned long vaddr_end)
2995{
2996 int ret = 0;
2997 struct task_struct *task;
2998 struct mm_struct *mm;
2999 unsigned long total = 0, split = 0;
3000 unsigned long addr;
3001
3002 vaddr_start &= PAGE_MASK;
3003 vaddr_end &= PAGE_MASK;
3004
3005 /* Find the task_struct from pid */
3006 rcu_read_lock();
3007 task = find_task_by_vpid(pid);
3008 if (!task) {
3009 rcu_read_unlock();
3010 ret = -ESRCH;
3011 goto out;
3012 }
3013 get_task_struct(task);
3014 rcu_read_unlock();
3015
3016 /* Find the mm_struct */
3017 mm = get_task_mm(task);
3018 put_task_struct(task);
3019
3020 if (!mm) {
3021 ret = -EINVAL;
3022 goto out;
3023 }
3024
3025 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3026 pid, vaddr_start, vaddr_end);
3027
3028 mmap_read_lock(mm);
3029 /*
3030 * always increase addr by PAGE_SIZE, since we could have a PTE page
3031 * table filled with PTE-mapped THPs, each of which is distinct.
3032 */
3033 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3034 struct vm_area_struct *vma = vma_lookup(mm, addr);
3035 struct page *page;
3036
3037 if (!vma)
3038 break;
3039
3040 /* skip special VMA and hugetlb VMA */
3041 if (vma_not_suitable_for_thp_split(vma)) {
3042 addr = vma->vm_end;
3043 continue;
3044 }
3045
3046 /* FOLL_DUMP to ignore special (like zero) pages */
3047 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3048
3049 if (IS_ERR_OR_NULL(page))
3050 continue;
3051
3052 if (!is_transparent_hugepage(page))
3053 goto next;
3054
3055 total++;
3056 if (!can_split_folio(page_folio(page), NULL))
3057 goto next;
3058
3059 if (!trylock_page(page))
3060 goto next;
3061
3062 if (!split_huge_page(page))
3063 split++;
3064
3065 unlock_page(page);
3066next:
3067 put_page(page);
3068 cond_resched();
3069 }
3070 mmap_read_unlock(mm);
3071 mmput(mm);
3072
3073 pr_debug("%lu of %lu THP split\n", split, total);
3074
3075out:
3076 return ret;
3077}
3078
3079static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3080 pgoff_t off_end)
3081{
3082 struct filename *file;
3083 struct file *candidate;
3084 struct address_space *mapping;
3085 int ret = -EINVAL;
3086 pgoff_t index;
3087 int nr_pages = 1;
3088 unsigned long total = 0, split = 0;
3089
3090 file = getname_kernel(file_path);
3091 if (IS_ERR(file))
3092 return ret;
3093
3094 candidate = file_open_name(file, O_RDONLY, 0);
3095 if (IS_ERR(candidate))
3096 goto out;
3097
3098 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3099 file_path, off_start, off_end);
3100
3101 mapping = candidate->f_mapping;
3102
3103 for (index = off_start; index < off_end; index += nr_pages) {
3104 struct folio *folio = filemap_get_folio(mapping, index);
3105
3106 nr_pages = 1;
3107 if (IS_ERR(folio))
3108 continue;
3109
3110 if (!folio_test_large(folio))
3111 goto next;
3112
3113 total++;
3114 nr_pages = folio_nr_pages(folio);
3115
3116 if (!folio_trylock(folio))
3117 goto next;
3118
3119 if (!split_folio(folio))
3120 split++;
3121
3122 folio_unlock(folio);
3123next:
3124 folio_put(folio);
3125 cond_resched();
3126 }
3127
3128 filp_close(candidate, NULL);
3129 ret = 0;
3130
3131 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3132out:
3133 putname(file);
3134 return ret;
3135}
3136
3137#define MAX_INPUT_BUF_SZ 255
3138
3139static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3140 size_t count, loff_t *ppops)
3141{
3142 static DEFINE_MUTEX(split_debug_mutex);
3143 ssize_t ret;
3144 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3145 char input_buf[MAX_INPUT_BUF_SZ];
3146 int pid;
3147 unsigned long vaddr_start, vaddr_end;
3148
3149 ret = mutex_lock_interruptible(&split_debug_mutex);
3150 if (ret)
3151 return ret;
3152
3153 ret = -EFAULT;
3154
3155 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3156 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3157 goto out;
3158
3159 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3160
3161 if (input_buf[0] == '/') {
3162 char *tok;
3163 char *buf = input_buf;
3164 char file_path[MAX_INPUT_BUF_SZ];
3165 pgoff_t off_start = 0, off_end = 0;
3166 size_t input_len = strlen(input_buf);
3167
3168 tok = strsep(&buf, ",");
3169 if (tok) {
3170 strcpy(file_path, tok);
3171 } else {
3172 ret = -EINVAL;
3173 goto out;
3174 }
3175
3176 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3177 if (ret != 2) {
3178 ret = -EINVAL;
3179 goto out;
3180 }
3181 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3182 if (!ret)
3183 ret = input_len;
3184
3185 goto out;
3186 }
3187
3188 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3189 if (ret == 1 && pid == 1) {
3190 split_huge_pages_all();
3191 ret = strlen(input_buf);
3192 goto out;
3193 } else if (ret != 3) {
3194 ret = -EINVAL;
3195 goto out;
3196 }
3197
3198 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3199 if (!ret)
3200 ret = strlen(input_buf);
3201out:
3202 mutex_unlock(&split_debug_mutex);
3203 return ret;
3204
3205}
3206
3207static const struct file_operations split_huge_pages_fops = {
3208 .owner = THIS_MODULE,
3209 .write = split_huge_pages_write,
3210 .llseek = no_llseek,
3211};
3212
3213static int __init split_huge_pages_debugfs(void)
3214{
3215 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3216 &split_huge_pages_fops);
3217 return 0;
3218}
3219late_initcall(split_huge_pages_debugfs);
3220#endif
3221
3222#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3223int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3224 struct page *page)
3225{
3226 struct vm_area_struct *vma = pvmw->vma;
3227 struct mm_struct *mm = vma->vm_mm;
3228 unsigned long address = pvmw->address;
3229 bool anon_exclusive;
3230 pmd_t pmdval;
3231 swp_entry_t entry;
3232 pmd_t pmdswp;
3233
3234 if (!(pvmw->pmd && !pvmw->pte))
3235 return 0;
3236
3237 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3238 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3239
3240 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3241 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3242 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3243 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3244 return -EBUSY;
3245 }
3246
3247 if (pmd_dirty(pmdval))
3248 set_page_dirty(page);
3249 if (pmd_write(pmdval))
3250 entry = make_writable_migration_entry(page_to_pfn(page));
3251 else if (anon_exclusive)
3252 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3253 else
3254 entry = make_readable_migration_entry(page_to_pfn(page));
3255 if (pmd_young(pmdval))
3256 entry = make_migration_entry_young(entry);
3257 if (pmd_dirty(pmdval))
3258 entry = make_migration_entry_dirty(entry);
3259 pmdswp = swp_entry_to_pmd(entry);
3260 if (pmd_soft_dirty(pmdval))
3261 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3262 if (pmd_uffd_wp(pmdval))
3263 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3264 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3265 page_remove_rmap(page, vma, true);
3266 put_page(page);
3267 trace_set_migration_pmd(address, pmd_val(pmdswp));
3268
3269 return 0;
3270}
3271
3272void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3273{
3274 struct vm_area_struct *vma = pvmw->vma;
3275 struct mm_struct *mm = vma->vm_mm;
3276 unsigned long address = pvmw->address;
3277 unsigned long haddr = address & HPAGE_PMD_MASK;
3278 pmd_t pmde;
3279 swp_entry_t entry;
3280
3281 if (!(pvmw->pmd && !pvmw->pte))
3282 return;
3283
3284 entry = pmd_to_swp_entry(*pvmw->pmd);
3285 get_page(new);
3286 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3287 if (pmd_swp_soft_dirty(*pvmw->pmd))
3288 pmde = pmd_mksoft_dirty(pmde);
3289 if (is_writable_migration_entry(entry))
3290 pmde = pmd_mkwrite(pmde);
3291 if (pmd_swp_uffd_wp(*pvmw->pmd))
3292 pmde = pmd_mkuffd_wp(pmde);
3293 if (!is_migration_entry_young(entry))
3294 pmde = pmd_mkold(pmde);
3295 /* NOTE: this may contain setting soft-dirty on some archs */
3296 if (PageDirty(new) && is_migration_entry_dirty(entry))
3297 pmde = pmd_mkdirty(pmde);
3298
3299 if (PageAnon(new)) {
3300 rmap_t rmap_flags = RMAP_COMPOUND;
3301
3302 if (!is_readable_migration_entry(entry))
3303 rmap_flags |= RMAP_EXCLUSIVE;
3304
3305 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3306 } else {
3307 page_add_file_rmap(new, vma, true);
3308 }
3309 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3310 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3311
3312 /* No need to invalidate - it was non-present before */
3313 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3314 trace_remove_migration_pmd(address, pmd_val(pmde));
3315}
3316#endif