zram: use __bio_add_page for adding single page to bio
[linux-block.git] / mm / hmm.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
5 * Authors: Jérôme Glisse <jglisse@redhat.com>
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11#include <linux/pagewalk.h>
12#include <linux/hmm.h>
13#include <linux/init.h>
14#include <linux/rmap.h>
15#include <linux/swap.h>
16#include <linux/slab.h>
17#include <linux/sched.h>
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
22#include <linux/memremap.h>
23#include <linux/sched/mm.h>
24#include <linux/jump_label.h>
25#include <linux/dma-mapping.h>
26#include <linux/mmu_notifier.h>
27#include <linux/memory_hotplug.h>
28
29#include "internal.h"
30
31struct hmm_vma_walk {
32 struct hmm_range *range;
33 unsigned long last;
34};
35
36enum {
37 HMM_NEED_FAULT = 1 << 0,
38 HMM_NEED_WRITE_FAULT = 1 << 1,
39 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
40};
41
42static int hmm_pfns_fill(unsigned long addr, unsigned long end,
43 struct hmm_range *range, unsigned long cpu_flags)
44{
45 unsigned long i = (addr - range->start) >> PAGE_SHIFT;
46
47 for (; addr < end; addr += PAGE_SIZE, i++)
48 range->hmm_pfns[i] = cpu_flags;
49 return 0;
50}
51
52/*
53 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
54 * @addr: range virtual start address (inclusive)
55 * @end: range virtual end address (exclusive)
56 * @required_fault: HMM_NEED_* flags
57 * @walk: mm_walk structure
58 * Return: -EBUSY after page fault, or page fault error
59 *
60 * This function will be called whenever pmd_none() or pte_none() returns true,
61 * or whenever there is no page directory covering the virtual address range.
62 */
63static int hmm_vma_fault(unsigned long addr, unsigned long end,
64 unsigned int required_fault, struct mm_walk *walk)
65{
66 struct hmm_vma_walk *hmm_vma_walk = walk->private;
67 struct vm_area_struct *vma = walk->vma;
68 unsigned int fault_flags = FAULT_FLAG_REMOTE;
69
70 WARN_ON_ONCE(!required_fault);
71 hmm_vma_walk->last = addr;
72
73 if (required_fault & HMM_NEED_WRITE_FAULT) {
74 if (!(vma->vm_flags & VM_WRITE))
75 return -EPERM;
76 fault_flags |= FAULT_FLAG_WRITE;
77 }
78
79 for (; addr < end; addr += PAGE_SIZE)
80 if (handle_mm_fault(vma, addr, fault_flags, NULL) &
81 VM_FAULT_ERROR)
82 return -EFAULT;
83 return -EBUSY;
84}
85
86static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
87 unsigned long pfn_req_flags,
88 unsigned long cpu_flags)
89{
90 struct hmm_range *range = hmm_vma_walk->range;
91
92 /*
93 * So we not only consider the individual per page request we also
94 * consider the default flags requested for the range. The API can
95 * be used 2 ways. The first one where the HMM user coalesces
96 * multiple page faults into one request and sets flags per pfn for
97 * those faults. The second one where the HMM user wants to pre-
98 * fault a range with specific flags. For the latter one it is a
99 * waste to have the user pre-fill the pfn arrays with a default
100 * flags value.
101 */
102 pfn_req_flags &= range->pfn_flags_mask;
103 pfn_req_flags |= range->default_flags;
104
105 /* We aren't ask to do anything ... */
106 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
107 return 0;
108
109 /* Need to write fault ? */
110 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
111 !(cpu_flags & HMM_PFN_WRITE))
112 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
113
114 /* If CPU page table is not valid then we need to fault */
115 if (!(cpu_flags & HMM_PFN_VALID))
116 return HMM_NEED_FAULT;
117 return 0;
118}
119
120static unsigned int
121hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
122 const unsigned long hmm_pfns[], unsigned long npages,
123 unsigned long cpu_flags)
124{
125 struct hmm_range *range = hmm_vma_walk->range;
126 unsigned int required_fault = 0;
127 unsigned long i;
128
129 /*
130 * If the default flags do not request to fault pages, and the mask does
131 * not allow for individual pages to be faulted, then
132 * hmm_pte_need_fault() will always return 0.
133 */
134 if (!((range->default_flags | range->pfn_flags_mask) &
135 HMM_PFN_REQ_FAULT))
136 return 0;
137
138 for (i = 0; i < npages; ++i) {
139 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
140 cpu_flags);
141 if (required_fault == HMM_NEED_ALL_BITS)
142 return required_fault;
143 }
144 return required_fault;
145}
146
147static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
148 __always_unused int depth, struct mm_walk *walk)
149{
150 struct hmm_vma_walk *hmm_vma_walk = walk->private;
151 struct hmm_range *range = hmm_vma_walk->range;
152 unsigned int required_fault;
153 unsigned long i, npages;
154 unsigned long *hmm_pfns;
155
156 i = (addr - range->start) >> PAGE_SHIFT;
157 npages = (end - addr) >> PAGE_SHIFT;
158 hmm_pfns = &range->hmm_pfns[i];
159 required_fault =
160 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
161 if (!walk->vma) {
162 if (required_fault)
163 return -EFAULT;
164 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
165 }
166 if (required_fault)
167 return hmm_vma_fault(addr, end, required_fault, walk);
168 return hmm_pfns_fill(addr, end, range, 0);
169}
170
171static inline unsigned long hmm_pfn_flags_order(unsigned long order)
172{
173 return order << HMM_PFN_ORDER_SHIFT;
174}
175
176static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
177 pmd_t pmd)
178{
179 if (pmd_protnone(pmd))
180 return 0;
181 return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
182 HMM_PFN_VALID) |
183 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
184}
185
186#ifdef CONFIG_TRANSPARENT_HUGEPAGE
187static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
188 unsigned long end, unsigned long hmm_pfns[],
189 pmd_t pmd)
190{
191 struct hmm_vma_walk *hmm_vma_walk = walk->private;
192 struct hmm_range *range = hmm_vma_walk->range;
193 unsigned long pfn, npages, i;
194 unsigned int required_fault;
195 unsigned long cpu_flags;
196
197 npages = (end - addr) >> PAGE_SHIFT;
198 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
199 required_fault =
200 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
201 if (required_fault)
202 return hmm_vma_fault(addr, end, required_fault, walk);
203
204 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
205 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
206 hmm_pfns[i] = pfn | cpu_flags;
207 return 0;
208}
209#else /* CONFIG_TRANSPARENT_HUGEPAGE */
210/* stub to allow the code below to compile */
211int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
212 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
213#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
214
215static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
216 pte_t pte)
217{
218 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
219 return 0;
220 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
221}
222
223static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
224 unsigned long end, pmd_t *pmdp, pte_t *ptep,
225 unsigned long *hmm_pfn)
226{
227 struct hmm_vma_walk *hmm_vma_walk = walk->private;
228 struct hmm_range *range = hmm_vma_walk->range;
229 unsigned int required_fault;
230 unsigned long cpu_flags;
231 pte_t pte = *ptep;
232 uint64_t pfn_req_flags = *hmm_pfn;
233
234 if (pte_none_mostly(pte)) {
235 required_fault =
236 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
237 if (required_fault)
238 goto fault;
239 *hmm_pfn = 0;
240 return 0;
241 }
242
243 if (!pte_present(pte)) {
244 swp_entry_t entry = pte_to_swp_entry(pte);
245
246 /*
247 * Don't fault in device private pages owned by the caller,
248 * just report the PFN.
249 */
250 if (is_device_private_entry(entry) &&
251 pfn_swap_entry_to_page(entry)->pgmap->owner ==
252 range->dev_private_owner) {
253 cpu_flags = HMM_PFN_VALID;
254 if (is_writable_device_private_entry(entry))
255 cpu_flags |= HMM_PFN_WRITE;
256 *hmm_pfn = swp_offset_pfn(entry) | cpu_flags;
257 return 0;
258 }
259
260 required_fault =
261 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
262 if (!required_fault) {
263 *hmm_pfn = 0;
264 return 0;
265 }
266
267 if (!non_swap_entry(entry))
268 goto fault;
269
270 if (is_device_private_entry(entry))
271 goto fault;
272
273 if (is_device_exclusive_entry(entry))
274 goto fault;
275
276 if (is_migration_entry(entry)) {
277 pte_unmap(ptep);
278 hmm_vma_walk->last = addr;
279 migration_entry_wait(walk->mm, pmdp, addr);
280 return -EBUSY;
281 }
282
283 /* Report error for everything else */
284 pte_unmap(ptep);
285 return -EFAULT;
286 }
287
288 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
289 required_fault =
290 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
291 if (required_fault)
292 goto fault;
293
294 /*
295 * Bypass devmap pte such as DAX page when all pfn requested
296 * flags(pfn_req_flags) are fulfilled.
297 * Since each architecture defines a struct page for the zero page, just
298 * fall through and treat it like a normal page.
299 */
300 if (!vm_normal_page(walk->vma, addr, pte) &&
301 !pte_devmap(pte) &&
302 !is_zero_pfn(pte_pfn(pte))) {
303 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
304 pte_unmap(ptep);
305 return -EFAULT;
306 }
307 *hmm_pfn = HMM_PFN_ERROR;
308 return 0;
309 }
310
311 *hmm_pfn = pte_pfn(pte) | cpu_flags;
312 return 0;
313
314fault:
315 pte_unmap(ptep);
316 /* Fault any virtual address we were asked to fault */
317 return hmm_vma_fault(addr, end, required_fault, walk);
318}
319
320static int hmm_vma_walk_pmd(pmd_t *pmdp,
321 unsigned long start,
322 unsigned long end,
323 struct mm_walk *walk)
324{
325 struct hmm_vma_walk *hmm_vma_walk = walk->private;
326 struct hmm_range *range = hmm_vma_walk->range;
327 unsigned long *hmm_pfns =
328 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
329 unsigned long npages = (end - start) >> PAGE_SHIFT;
330 unsigned long addr = start;
331 pte_t *ptep;
332 pmd_t pmd;
333
334again:
335 pmd = READ_ONCE(*pmdp);
336 if (pmd_none(pmd))
337 return hmm_vma_walk_hole(start, end, -1, walk);
338
339 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
340 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
341 hmm_vma_walk->last = addr;
342 pmd_migration_entry_wait(walk->mm, pmdp);
343 return -EBUSY;
344 }
345 return hmm_pfns_fill(start, end, range, 0);
346 }
347
348 if (!pmd_present(pmd)) {
349 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
350 return -EFAULT;
351 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
352 }
353
354 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
355 /*
356 * No need to take pmd_lock here, even if some other thread
357 * is splitting the huge pmd we will get that event through
358 * mmu_notifier callback.
359 *
360 * So just read pmd value and check again it's a transparent
361 * huge or device mapping one and compute corresponding pfn
362 * values.
363 */
364 pmd = pmdp_get_lockless(pmdp);
365 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
366 goto again;
367
368 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
369 }
370
371 /*
372 * We have handled all the valid cases above ie either none, migration,
373 * huge or transparent huge. At this point either it is a valid pmd
374 * entry pointing to pte directory or it is a bad pmd that will not
375 * recover.
376 */
377 if (pmd_bad(pmd)) {
378 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
379 return -EFAULT;
380 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
381 }
382
383 ptep = pte_offset_map(pmdp, addr);
384 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
385 int r;
386
387 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
388 if (r) {
389 /* hmm_vma_handle_pte() did pte_unmap() */
390 return r;
391 }
392 }
393 pte_unmap(ptep - 1);
394 return 0;
395}
396
397#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
398 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
399static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
400 pud_t pud)
401{
402 if (!pud_present(pud))
403 return 0;
404 return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
405 HMM_PFN_VALID) |
406 hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
407}
408
409static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
410 struct mm_walk *walk)
411{
412 struct hmm_vma_walk *hmm_vma_walk = walk->private;
413 struct hmm_range *range = hmm_vma_walk->range;
414 unsigned long addr = start;
415 pud_t pud;
416 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
417
418 if (!ptl)
419 return 0;
420
421 /* Normally we don't want to split the huge page */
422 walk->action = ACTION_CONTINUE;
423
424 pud = READ_ONCE(*pudp);
425 if (pud_none(pud)) {
426 spin_unlock(ptl);
427 return hmm_vma_walk_hole(start, end, -1, walk);
428 }
429
430 if (pud_huge(pud) && pud_devmap(pud)) {
431 unsigned long i, npages, pfn;
432 unsigned int required_fault;
433 unsigned long *hmm_pfns;
434 unsigned long cpu_flags;
435
436 if (!pud_present(pud)) {
437 spin_unlock(ptl);
438 return hmm_vma_walk_hole(start, end, -1, walk);
439 }
440
441 i = (addr - range->start) >> PAGE_SHIFT;
442 npages = (end - addr) >> PAGE_SHIFT;
443 hmm_pfns = &range->hmm_pfns[i];
444
445 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
446 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
447 npages, cpu_flags);
448 if (required_fault) {
449 spin_unlock(ptl);
450 return hmm_vma_fault(addr, end, required_fault, walk);
451 }
452
453 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
454 for (i = 0; i < npages; ++i, ++pfn)
455 hmm_pfns[i] = pfn | cpu_flags;
456 goto out_unlock;
457 }
458
459 /* Ask for the PUD to be split */
460 walk->action = ACTION_SUBTREE;
461
462out_unlock:
463 spin_unlock(ptl);
464 return 0;
465}
466#else
467#define hmm_vma_walk_pud NULL
468#endif
469
470#ifdef CONFIG_HUGETLB_PAGE
471static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
472 unsigned long start, unsigned long end,
473 struct mm_walk *walk)
474{
475 unsigned long addr = start, i, pfn;
476 struct hmm_vma_walk *hmm_vma_walk = walk->private;
477 struct hmm_range *range = hmm_vma_walk->range;
478 struct vm_area_struct *vma = walk->vma;
479 unsigned int required_fault;
480 unsigned long pfn_req_flags;
481 unsigned long cpu_flags;
482 spinlock_t *ptl;
483 pte_t entry;
484
485 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
486 entry = huge_ptep_get(pte);
487
488 i = (start - range->start) >> PAGE_SHIFT;
489 pfn_req_flags = range->hmm_pfns[i];
490 cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
491 hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
492 required_fault =
493 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
494 if (required_fault) {
495 int ret;
496
497 spin_unlock(ptl);
498 hugetlb_vma_unlock_read(vma);
499 /*
500 * Avoid deadlock: drop the vma lock before calling
501 * hmm_vma_fault(), which will itself potentially take and
502 * drop the vma lock. This is also correct from a
503 * protection point of view, because there is no further
504 * use here of either pte or ptl after dropping the vma
505 * lock.
506 */
507 ret = hmm_vma_fault(addr, end, required_fault, walk);
508 hugetlb_vma_lock_read(vma);
509 return ret;
510 }
511
512 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
513 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
514 range->hmm_pfns[i] = pfn | cpu_flags;
515
516 spin_unlock(ptl);
517 return 0;
518}
519#else
520#define hmm_vma_walk_hugetlb_entry NULL
521#endif /* CONFIG_HUGETLB_PAGE */
522
523static int hmm_vma_walk_test(unsigned long start, unsigned long end,
524 struct mm_walk *walk)
525{
526 struct hmm_vma_walk *hmm_vma_walk = walk->private;
527 struct hmm_range *range = hmm_vma_walk->range;
528 struct vm_area_struct *vma = walk->vma;
529
530 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
531 vma->vm_flags & VM_READ)
532 return 0;
533
534 /*
535 * vma ranges that don't have struct page backing them or map I/O
536 * devices directly cannot be handled by hmm_range_fault().
537 *
538 * If the vma does not allow read access, then assume that it does not
539 * allow write access either. HMM does not support architectures that
540 * allow write without read.
541 *
542 * If a fault is requested for an unsupported range then it is a hard
543 * failure.
544 */
545 if (hmm_range_need_fault(hmm_vma_walk,
546 range->hmm_pfns +
547 ((start - range->start) >> PAGE_SHIFT),
548 (end - start) >> PAGE_SHIFT, 0))
549 return -EFAULT;
550
551 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
552
553 /* Skip this vma and continue processing the next vma. */
554 return 1;
555}
556
557static const struct mm_walk_ops hmm_walk_ops = {
558 .pud_entry = hmm_vma_walk_pud,
559 .pmd_entry = hmm_vma_walk_pmd,
560 .pte_hole = hmm_vma_walk_hole,
561 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
562 .test_walk = hmm_vma_walk_test,
563};
564
565/**
566 * hmm_range_fault - try to fault some address in a virtual address range
567 * @range: argument structure
568 *
569 * Returns 0 on success or one of the following error codes:
570 *
571 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
572 * (e.g., device file vma).
573 * -ENOMEM: Out of memory.
574 * -EPERM: Invalid permission (e.g., asking for write and range is read
575 * only).
576 * -EBUSY: The range has been invalidated and the caller needs to wait for
577 * the invalidation to finish.
578 * -EFAULT: A page was requested to be valid and could not be made valid
579 * ie it has no backing VMA or it is illegal to access
580 *
581 * This is similar to get_user_pages(), except that it can read the page tables
582 * without mutating them (ie causing faults).
583 */
584int hmm_range_fault(struct hmm_range *range)
585{
586 struct hmm_vma_walk hmm_vma_walk = {
587 .range = range,
588 .last = range->start,
589 };
590 struct mm_struct *mm = range->notifier->mm;
591 int ret;
592
593 mmap_assert_locked(mm);
594
595 do {
596 /* If range is no longer valid force retry. */
597 if (mmu_interval_check_retry(range->notifier,
598 range->notifier_seq))
599 return -EBUSY;
600 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
601 &hmm_walk_ops, &hmm_vma_walk);
602 /*
603 * When -EBUSY is returned the loop restarts with
604 * hmm_vma_walk.last set to an address that has not been stored
605 * in pfns. All entries < last in the pfn array are set to their
606 * output, and all >= are still at their input values.
607 */
608 } while (ret == -EBUSY);
609 return ret;
610}
611EXPORT_SYMBOL(hmm_range_fault);