| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | #include <linux/kernel.h> |
| 3 | #include <linux/errno.h> |
| 4 | #include <linux/err.h> |
| 5 | #include <linux/spinlock.h> |
| 6 | |
| 7 | #include <linux/mm.h> |
| 8 | #include <linux/memfd.h> |
| 9 | #include <linux/memremap.h> |
| 10 | #include <linux/pagemap.h> |
| 11 | #include <linux/rmap.h> |
| 12 | #include <linux/swap.h> |
| 13 | #include <linux/swapops.h> |
| 14 | #include <linux/secretmem.h> |
| 15 | |
| 16 | #include <linux/sched/signal.h> |
| 17 | #include <linux/rwsem.h> |
| 18 | #include <linux/hugetlb.h> |
| 19 | #include <linux/migrate.h> |
| 20 | #include <linux/mm_inline.h> |
| 21 | #include <linux/pagevec.h> |
| 22 | #include <linux/sched/mm.h> |
| 23 | #include <linux/shmem_fs.h> |
| 24 | |
| 25 | #include <asm/mmu_context.h> |
| 26 | #include <asm/tlbflush.h> |
| 27 | |
| 28 | #include "internal.h" |
| 29 | #include "swap.h" |
| 30 | |
| 31 | struct follow_page_context { |
| 32 | struct dev_pagemap *pgmap; |
| 33 | unsigned int page_mask; |
| 34 | }; |
| 35 | |
| 36 | static inline void sanity_check_pinned_pages(struct page **pages, |
| 37 | unsigned long npages) |
| 38 | { |
| 39 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) |
| 40 | return; |
| 41 | |
| 42 | /* |
| 43 | * We only pin anonymous pages if they are exclusive. Once pinned, we |
| 44 | * can no longer turn them possibly shared and PageAnonExclusive() will |
| 45 | * stick around until the page is freed. |
| 46 | * |
| 47 | * We'd like to verify that our pinned anonymous pages are still mapped |
| 48 | * exclusively. The issue with anon THP is that we don't know how |
| 49 | * they are/were mapped when pinning them. However, for anon |
| 50 | * THP we can assume that either the given page (PTE-mapped THP) or |
| 51 | * the head page (PMD-mapped THP) should be PageAnonExclusive(). If |
| 52 | * neither is the case, there is certainly something wrong. |
| 53 | */ |
| 54 | for (; npages; npages--, pages++) { |
| 55 | struct page *page = *pages; |
| 56 | struct folio *folio; |
| 57 | |
| 58 | if (!page) |
| 59 | continue; |
| 60 | |
| 61 | folio = page_folio(page); |
| 62 | |
| 63 | if (is_zero_page(page) || |
| 64 | !folio_test_anon(folio)) |
| 65 | continue; |
| 66 | if (!folio_test_large(folio) || folio_test_hugetlb(folio)) |
| 67 | VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio); |
| 68 | else |
| 69 | /* Either a PTE-mapped or a PMD-mapped THP. */ |
| 70 | VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) && |
| 71 | !PageAnonExclusive(page), page); |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | /* |
| 76 | * Return the folio with ref appropriately incremented, |
| 77 | * or NULL if that failed. |
| 78 | */ |
| 79 | static inline struct folio *try_get_folio(struct page *page, int refs) |
| 80 | { |
| 81 | struct folio *folio; |
| 82 | |
| 83 | retry: |
| 84 | folio = page_folio(page); |
| 85 | if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) |
| 86 | return NULL; |
| 87 | if (unlikely(!folio_ref_try_add(folio, refs))) |
| 88 | return NULL; |
| 89 | |
| 90 | /* |
| 91 | * At this point we have a stable reference to the folio; but it |
| 92 | * could be that between calling page_folio() and the refcount |
| 93 | * increment, the folio was split, in which case we'd end up |
| 94 | * holding a reference on a folio that has nothing to do with the page |
| 95 | * we were given anymore. |
| 96 | * So now that the folio is stable, recheck that the page still |
| 97 | * belongs to this folio. |
| 98 | */ |
| 99 | if (unlikely(page_folio(page) != folio)) { |
| 100 | folio_put_refs(folio, refs); |
| 101 | goto retry; |
| 102 | } |
| 103 | |
| 104 | return folio; |
| 105 | } |
| 106 | |
| 107 | static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) |
| 108 | { |
| 109 | if (flags & FOLL_PIN) { |
| 110 | if (is_zero_folio(folio)) |
| 111 | return; |
| 112 | node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); |
| 113 | if (folio_has_pincount(folio)) |
| 114 | atomic_sub(refs, &folio->_pincount); |
| 115 | else |
| 116 | refs *= GUP_PIN_COUNTING_BIAS; |
| 117 | } |
| 118 | |
| 119 | folio_put_refs(folio, refs); |
| 120 | } |
| 121 | |
| 122 | /** |
| 123 | * try_grab_folio() - add a folio's refcount by a flag-dependent amount |
| 124 | * @folio: pointer to folio to be grabbed |
| 125 | * @refs: the value to (effectively) add to the folio's refcount |
| 126 | * @flags: gup flags: these are the FOLL_* flag values |
| 127 | * |
| 128 | * This might not do anything at all, depending on the flags argument. |
| 129 | * |
| 130 | * "grab" names in this file mean, "look at flags to decide whether to use |
| 131 | * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. |
| 132 | * |
| 133 | * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same |
| 134 | * time. |
| 135 | * |
| 136 | * Return: 0 for success, or if no action was required (if neither FOLL_PIN |
| 137 | * nor FOLL_GET was set, nothing is done). A negative error code for failure: |
| 138 | * |
| 139 | * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not |
| 140 | * be grabbed. |
| 141 | * |
| 142 | * It is called when we have a stable reference for the folio, typically in |
| 143 | * GUP slow path. |
| 144 | */ |
| 145 | int __must_check try_grab_folio(struct folio *folio, int refs, |
| 146 | unsigned int flags) |
| 147 | { |
| 148 | if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) |
| 149 | return -ENOMEM; |
| 150 | |
| 151 | if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) |
| 152 | return -EREMOTEIO; |
| 153 | |
| 154 | if (flags & FOLL_GET) |
| 155 | folio_ref_add(folio, refs); |
| 156 | else if (flags & FOLL_PIN) { |
| 157 | /* |
| 158 | * Don't take a pin on the zero page - it's not going anywhere |
| 159 | * and it is used in a *lot* of places. |
| 160 | */ |
| 161 | if (is_zero_folio(folio)) |
| 162 | return 0; |
| 163 | |
| 164 | /* |
| 165 | * Increment the normal page refcount field at least once, |
| 166 | * so that the page really is pinned. |
| 167 | */ |
| 168 | if (folio_has_pincount(folio)) { |
| 169 | folio_ref_add(folio, refs); |
| 170 | atomic_add(refs, &folio->_pincount); |
| 171 | } else { |
| 172 | folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); |
| 173 | } |
| 174 | |
| 175 | node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); |
| 176 | } |
| 177 | |
| 178 | return 0; |
| 179 | } |
| 180 | |
| 181 | /** |
| 182 | * unpin_user_page() - release a dma-pinned page |
| 183 | * @page: pointer to page to be released |
| 184 | * |
| 185 | * Pages that were pinned via pin_user_pages*() must be released via either |
| 186 | * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so |
| 187 | * that such pages can be separately tracked and uniquely handled. In |
| 188 | * particular, interactions with RDMA and filesystems need special handling. |
| 189 | */ |
| 190 | void unpin_user_page(struct page *page) |
| 191 | { |
| 192 | sanity_check_pinned_pages(&page, 1); |
| 193 | gup_put_folio(page_folio(page), 1, FOLL_PIN); |
| 194 | } |
| 195 | EXPORT_SYMBOL(unpin_user_page); |
| 196 | |
| 197 | /** |
| 198 | * unpin_folio() - release a dma-pinned folio |
| 199 | * @folio: pointer to folio to be released |
| 200 | * |
| 201 | * Folios that were pinned via memfd_pin_folios() or other similar routines |
| 202 | * must be released either using unpin_folio() or unpin_folios(). |
| 203 | */ |
| 204 | void unpin_folio(struct folio *folio) |
| 205 | { |
| 206 | gup_put_folio(folio, 1, FOLL_PIN); |
| 207 | } |
| 208 | EXPORT_SYMBOL_GPL(unpin_folio); |
| 209 | |
| 210 | /** |
| 211 | * folio_add_pin - Try to get an additional pin on a pinned folio |
| 212 | * @folio: The folio to be pinned |
| 213 | * |
| 214 | * Get an additional pin on a folio we already have a pin on. Makes no change |
| 215 | * if the folio is a zero_page. |
| 216 | */ |
| 217 | void folio_add_pin(struct folio *folio) |
| 218 | { |
| 219 | if (is_zero_folio(folio)) |
| 220 | return; |
| 221 | |
| 222 | /* |
| 223 | * Similar to try_grab_folio(): be sure to *also* increment the normal |
| 224 | * page refcount field at least once, so that the page really is |
| 225 | * pinned. |
| 226 | */ |
| 227 | if (folio_has_pincount(folio)) { |
| 228 | WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); |
| 229 | folio_ref_inc(folio); |
| 230 | atomic_inc(&folio->_pincount); |
| 231 | } else { |
| 232 | WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); |
| 233 | folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | static inline struct folio *gup_folio_range_next(struct page *start, |
| 238 | unsigned long npages, unsigned long i, unsigned int *ntails) |
| 239 | { |
| 240 | struct page *next = nth_page(start, i); |
| 241 | struct folio *folio = page_folio(next); |
| 242 | unsigned int nr = 1; |
| 243 | |
| 244 | if (folio_test_large(folio)) |
| 245 | nr = min_t(unsigned int, npages - i, |
| 246 | folio_nr_pages(folio) - folio_page_idx(folio, next)); |
| 247 | |
| 248 | *ntails = nr; |
| 249 | return folio; |
| 250 | } |
| 251 | |
| 252 | static inline struct folio *gup_folio_next(struct page **list, |
| 253 | unsigned long npages, unsigned long i, unsigned int *ntails) |
| 254 | { |
| 255 | struct folio *folio = page_folio(list[i]); |
| 256 | unsigned int nr; |
| 257 | |
| 258 | for (nr = i + 1; nr < npages; nr++) { |
| 259 | if (page_folio(list[nr]) != folio) |
| 260 | break; |
| 261 | } |
| 262 | |
| 263 | *ntails = nr - i; |
| 264 | return folio; |
| 265 | } |
| 266 | |
| 267 | /** |
| 268 | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
| 269 | * @pages: array of pages to be maybe marked dirty, and definitely released. |
| 270 | * @npages: number of pages in the @pages array. |
| 271 | * @make_dirty: whether to mark the pages dirty |
| 272 | * |
| 273 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() |
| 274 | * variants called on that page. |
| 275 | * |
| 276 | * For each page in the @pages array, make that page (or its head page, if a |
| 277 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
| 278 | * listed as clean. In any case, releases all pages using unpin_user_page(), |
| 279 | * possibly via unpin_user_pages(), for the non-dirty case. |
| 280 | * |
| 281 | * Please see the unpin_user_page() documentation for details. |
| 282 | * |
| 283 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
| 284 | * required, then the caller should a) verify that this is really correct, |
| 285 | * because _lock() is usually required, and b) hand code it: |
| 286 | * set_page_dirty_lock(), unpin_user_page(). |
| 287 | * |
| 288 | */ |
| 289 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
| 290 | bool make_dirty) |
| 291 | { |
| 292 | unsigned long i; |
| 293 | struct folio *folio; |
| 294 | unsigned int nr; |
| 295 | |
| 296 | if (!make_dirty) { |
| 297 | unpin_user_pages(pages, npages); |
| 298 | return; |
| 299 | } |
| 300 | |
| 301 | sanity_check_pinned_pages(pages, npages); |
| 302 | for (i = 0; i < npages; i += nr) { |
| 303 | folio = gup_folio_next(pages, npages, i, &nr); |
| 304 | /* |
| 305 | * Checking PageDirty at this point may race with |
| 306 | * clear_page_dirty_for_io(), but that's OK. Two key |
| 307 | * cases: |
| 308 | * |
| 309 | * 1) This code sees the page as already dirty, so it |
| 310 | * skips the call to set_page_dirty(). That could happen |
| 311 | * because clear_page_dirty_for_io() called |
| 312 | * folio_mkclean(), followed by set_page_dirty(). |
| 313 | * However, now the page is going to get written back, |
| 314 | * which meets the original intention of setting it |
| 315 | * dirty, so all is well: clear_page_dirty_for_io() goes |
| 316 | * on to call TestClearPageDirty(), and write the page |
| 317 | * back. |
| 318 | * |
| 319 | * 2) This code sees the page as clean, so it calls |
| 320 | * set_page_dirty(). The page stays dirty, despite being |
| 321 | * written back, so it gets written back again in the |
| 322 | * next writeback cycle. This is harmless. |
| 323 | */ |
| 324 | if (!folio_test_dirty(folio)) { |
| 325 | folio_lock(folio); |
| 326 | folio_mark_dirty(folio); |
| 327 | folio_unlock(folio); |
| 328 | } |
| 329 | gup_put_folio(folio, nr, FOLL_PIN); |
| 330 | } |
| 331 | } |
| 332 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); |
| 333 | |
| 334 | /** |
| 335 | * unpin_user_page_range_dirty_lock() - release and optionally dirty |
| 336 | * gup-pinned page range |
| 337 | * |
| 338 | * @page: the starting page of a range maybe marked dirty, and definitely released. |
| 339 | * @npages: number of consecutive pages to release. |
| 340 | * @make_dirty: whether to mark the pages dirty |
| 341 | * |
| 342 | * "gup-pinned page range" refers to a range of pages that has had one of the |
| 343 | * pin_user_pages() variants called on that page. |
| 344 | * |
| 345 | * For the page ranges defined by [page .. page+npages], make that range (or |
| 346 | * its head pages, if a compound page) dirty, if @make_dirty is true, and if the |
| 347 | * page range was previously listed as clean. |
| 348 | * |
| 349 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
| 350 | * required, then the caller should a) verify that this is really correct, |
| 351 | * because _lock() is usually required, and b) hand code it: |
| 352 | * set_page_dirty_lock(), unpin_user_page(). |
| 353 | * |
| 354 | */ |
| 355 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, |
| 356 | bool make_dirty) |
| 357 | { |
| 358 | unsigned long i; |
| 359 | struct folio *folio; |
| 360 | unsigned int nr; |
| 361 | |
| 362 | for (i = 0; i < npages; i += nr) { |
| 363 | folio = gup_folio_range_next(page, npages, i, &nr); |
| 364 | if (make_dirty && !folio_test_dirty(folio)) { |
| 365 | folio_lock(folio); |
| 366 | folio_mark_dirty(folio); |
| 367 | folio_unlock(folio); |
| 368 | } |
| 369 | gup_put_folio(folio, nr, FOLL_PIN); |
| 370 | } |
| 371 | } |
| 372 | EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); |
| 373 | |
| 374 | static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) |
| 375 | { |
| 376 | unsigned long i; |
| 377 | struct folio *folio; |
| 378 | unsigned int nr; |
| 379 | |
| 380 | /* |
| 381 | * Don't perform any sanity checks because we might have raced with |
| 382 | * fork() and some anonymous pages might now actually be shared -- |
| 383 | * which is why we're unpinning after all. |
| 384 | */ |
| 385 | for (i = 0; i < npages; i += nr) { |
| 386 | folio = gup_folio_next(pages, npages, i, &nr); |
| 387 | gup_put_folio(folio, nr, FOLL_PIN); |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | /** |
| 392 | * unpin_user_pages() - release an array of gup-pinned pages. |
| 393 | * @pages: array of pages to be marked dirty and released. |
| 394 | * @npages: number of pages in the @pages array. |
| 395 | * |
| 396 | * For each page in the @pages array, release the page using unpin_user_page(). |
| 397 | * |
| 398 | * Please see the unpin_user_page() documentation for details. |
| 399 | */ |
| 400 | void unpin_user_pages(struct page **pages, unsigned long npages) |
| 401 | { |
| 402 | unsigned long i; |
| 403 | struct folio *folio; |
| 404 | unsigned int nr; |
| 405 | |
| 406 | /* |
| 407 | * If this WARN_ON() fires, then the system *might* be leaking pages (by |
| 408 | * leaving them pinned), but probably not. More likely, gup/pup returned |
| 409 | * a hard -ERRNO error to the caller, who erroneously passed it here. |
| 410 | */ |
| 411 | if (WARN_ON(IS_ERR_VALUE(npages))) |
| 412 | return; |
| 413 | |
| 414 | sanity_check_pinned_pages(pages, npages); |
| 415 | for (i = 0; i < npages; i += nr) { |
| 416 | if (!pages[i]) { |
| 417 | nr = 1; |
| 418 | continue; |
| 419 | } |
| 420 | folio = gup_folio_next(pages, npages, i, &nr); |
| 421 | gup_put_folio(folio, nr, FOLL_PIN); |
| 422 | } |
| 423 | } |
| 424 | EXPORT_SYMBOL(unpin_user_pages); |
| 425 | |
| 426 | /** |
| 427 | * unpin_user_folio() - release pages of a folio |
| 428 | * @folio: pointer to folio to be released |
| 429 | * @npages: number of pages of same folio |
| 430 | * |
| 431 | * Release npages of the folio |
| 432 | */ |
| 433 | void unpin_user_folio(struct folio *folio, unsigned long npages) |
| 434 | { |
| 435 | gup_put_folio(folio, npages, FOLL_PIN); |
| 436 | } |
| 437 | EXPORT_SYMBOL(unpin_user_folio); |
| 438 | |
| 439 | /** |
| 440 | * unpin_folios() - release an array of gup-pinned folios. |
| 441 | * @folios: array of folios to be marked dirty and released. |
| 442 | * @nfolios: number of folios in the @folios array. |
| 443 | * |
| 444 | * For each folio in the @folios array, release the folio using gup_put_folio. |
| 445 | * |
| 446 | * Please see the unpin_folio() documentation for details. |
| 447 | */ |
| 448 | void unpin_folios(struct folio **folios, unsigned long nfolios) |
| 449 | { |
| 450 | unsigned long i = 0, j; |
| 451 | |
| 452 | /* |
| 453 | * If this WARN_ON() fires, then the system *might* be leaking folios |
| 454 | * (by leaving them pinned), but probably not. More likely, gup/pup |
| 455 | * returned a hard -ERRNO error to the caller, who erroneously passed |
| 456 | * it here. |
| 457 | */ |
| 458 | if (WARN_ON(IS_ERR_VALUE(nfolios))) |
| 459 | return; |
| 460 | |
| 461 | while (i < nfolios) { |
| 462 | for (j = i + 1; j < nfolios; j++) |
| 463 | if (folios[i] != folios[j]) |
| 464 | break; |
| 465 | |
| 466 | if (folios[i]) |
| 467 | gup_put_folio(folios[i], j - i, FOLL_PIN); |
| 468 | i = j; |
| 469 | } |
| 470 | } |
| 471 | EXPORT_SYMBOL_GPL(unpin_folios); |
| 472 | |
| 473 | /* |
| 474 | * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's |
| 475 | * lifecycle. Avoid setting the bit unless necessary, or it might cause write |
| 476 | * cache bouncing on large SMP machines for concurrent pinned gups. |
| 477 | */ |
| 478 | static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) |
| 479 | { |
| 480 | if (!test_bit(MMF_HAS_PINNED, mm_flags)) |
| 481 | set_bit(MMF_HAS_PINNED, mm_flags); |
| 482 | } |
| 483 | |
| 484 | #ifdef CONFIG_MMU |
| 485 | |
| 486 | #ifdef CONFIG_HAVE_GUP_FAST |
| 487 | static int record_subpages(struct page *page, unsigned long sz, |
| 488 | unsigned long addr, unsigned long end, |
| 489 | struct page **pages) |
| 490 | { |
| 491 | struct page *start_page; |
| 492 | int nr; |
| 493 | |
| 494 | start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); |
| 495 | for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) |
| 496 | pages[nr] = nth_page(start_page, nr); |
| 497 | |
| 498 | return nr; |
| 499 | } |
| 500 | |
| 501 | /** |
| 502 | * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. |
| 503 | * @page: pointer to page to be grabbed |
| 504 | * @refs: the value to (effectively) add to the folio's refcount |
| 505 | * @flags: gup flags: these are the FOLL_* flag values. |
| 506 | * |
| 507 | * "grab" names in this file mean, "look at flags to decide whether to use |
| 508 | * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. |
| 509 | * |
| 510 | * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the |
| 511 | * same time. (That's true throughout the get_user_pages*() and |
| 512 | * pin_user_pages*() APIs.) Cases: |
| 513 | * |
| 514 | * FOLL_GET: folio's refcount will be incremented by @refs. |
| 515 | * |
| 516 | * FOLL_PIN on large folios: folio's refcount will be incremented by |
| 517 | * @refs, and its pincount will be incremented by @refs. |
| 518 | * |
| 519 | * FOLL_PIN on single-page folios: folio's refcount will be incremented by |
| 520 | * @refs * GUP_PIN_COUNTING_BIAS. |
| 521 | * |
| 522 | * Return: The folio containing @page (with refcount appropriately |
| 523 | * incremented) for success, or NULL upon failure. If neither FOLL_GET |
| 524 | * nor FOLL_PIN was set, that's considered failure, and furthermore, |
| 525 | * a likely bug in the caller, so a warning is also emitted. |
| 526 | * |
| 527 | * It uses add ref unless zero to elevate the folio refcount and must be called |
| 528 | * in fast path only. |
| 529 | */ |
| 530 | static struct folio *try_grab_folio_fast(struct page *page, int refs, |
| 531 | unsigned int flags) |
| 532 | { |
| 533 | struct folio *folio; |
| 534 | |
| 535 | /* Raise warn if it is not called in fast GUP */ |
| 536 | VM_WARN_ON_ONCE(!irqs_disabled()); |
| 537 | |
| 538 | if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) |
| 539 | return NULL; |
| 540 | |
| 541 | if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) |
| 542 | return NULL; |
| 543 | |
| 544 | if (flags & FOLL_GET) |
| 545 | return try_get_folio(page, refs); |
| 546 | |
| 547 | /* FOLL_PIN is set */ |
| 548 | |
| 549 | /* |
| 550 | * Don't take a pin on the zero page - it's not going anywhere |
| 551 | * and it is used in a *lot* of places. |
| 552 | */ |
| 553 | if (is_zero_page(page)) |
| 554 | return page_folio(page); |
| 555 | |
| 556 | folio = try_get_folio(page, refs); |
| 557 | if (!folio) |
| 558 | return NULL; |
| 559 | |
| 560 | /* |
| 561 | * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a |
| 562 | * right zone, so fail and let the caller fall back to the slow |
| 563 | * path. |
| 564 | */ |
| 565 | if (unlikely((flags & FOLL_LONGTERM) && |
| 566 | !folio_is_longterm_pinnable(folio))) { |
| 567 | folio_put_refs(folio, refs); |
| 568 | return NULL; |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | * When pinning a large folio, use an exact count to track it. |
| 573 | * |
| 574 | * However, be sure to *also* increment the normal folio |
| 575 | * refcount field at least once, so that the folio really |
| 576 | * is pinned. That's why the refcount from the earlier |
| 577 | * try_get_folio() is left intact. |
| 578 | */ |
| 579 | if (folio_has_pincount(folio)) |
| 580 | atomic_add(refs, &folio->_pincount); |
| 581 | else |
| 582 | folio_ref_add(folio, |
| 583 | refs * (GUP_PIN_COUNTING_BIAS - 1)); |
| 584 | /* |
| 585 | * Adjust the pincount before re-checking the PTE for changes. |
| 586 | * This is essentially a smp_mb() and is paired with a memory |
| 587 | * barrier in folio_try_share_anon_rmap_*(). |
| 588 | */ |
| 589 | smp_mb__after_atomic(); |
| 590 | |
| 591 | node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); |
| 592 | |
| 593 | return folio; |
| 594 | } |
| 595 | #endif /* CONFIG_HAVE_GUP_FAST */ |
| 596 | |
| 597 | /* Common code for can_follow_write_* */ |
| 598 | static inline bool can_follow_write_common(struct page *page, |
| 599 | struct vm_area_struct *vma, unsigned int flags) |
| 600 | { |
| 601 | /* Maybe FOLL_FORCE is set to override it? */ |
| 602 | if (!(flags & FOLL_FORCE)) |
| 603 | return false; |
| 604 | |
| 605 | /* But FOLL_FORCE has no effect on shared mappings */ |
| 606 | if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) |
| 607 | return false; |
| 608 | |
| 609 | /* ... or read-only private ones */ |
| 610 | if (!(vma->vm_flags & VM_MAYWRITE)) |
| 611 | return false; |
| 612 | |
| 613 | /* ... or already writable ones that just need to take a write fault */ |
| 614 | if (vma->vm_flags & VM_WRITE) |
| 615 | return false; |
| 616 | |
| 617 | /* |
| 618 | * See can_change_pte_writable(): we broke COW and could map the page |
| 619 | * writable if we have an exclusive anonymous page ... |
| 620 | */ |
| 621 | return page && PageAnon(page) && PageAnonExclusive(page); |
| 622 | } |
| 623 | |
| 624 | static struct page *no_page_table(struct vm_area_struct *vma, |
| 625 | unsigned int flags, unsigned long address) |
| 626 | { |
| 627 | if (!(flags & FOLL_DUMP)) |
| 628 | return NULL; |
| 629 | |
| 630 | /* |
| 631 | * When core dumping, we don't want to allocate unnecessary pages or |
| 632 | * page tables. Return error instead of NULL to skip handle_mm_fault, |
| 633 | * then get_dump_page() will return NULL to leave a hole in the dump. |
| 634 | * But we can only make this optimization where a hole would surely |
| 635 | * be zero-filled if handle_mm_fault() actually did handle it. |
| 636 | */ |
| 637 | if (is_vm_hugetlb_page(vma)) { |
| 638 | struct hstate *h = hstate_vma(vma); |
| 639 | |
| 640 | if (!hugetlbfs_pagecache_present(h, vma, address)) |
| 641 | return ERR_PTR(-EFAULT); |
| 642 | } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { |
| 643 | return ERR_PTR(-EFAULT); |
| 644 | } |
| 645 | |
| 646 | return NULL; |
| 647 | } |
| 648 | |
| 649 | #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES |
| 650 | /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */ |
| 651 | static inline bool can_follow_write_pud(pud_t pud, struct page *page, |
| 652 | struct vm_area_struct *vma, |
| 653 | unsigned int flags) |
| 654 | { |
| 655 | /* If the pud is writable, we can write to the page. */ |
| 656 | if (pud_write(pud)) |
| 657 | return true; |
| 658 | |
| 659 | return can_follow_write_common(page, vma, flags); |
| 660 | } |
| 661 | |
| 662 | static struct page *follow_huge_pud(struct vm_area_struct *vma, |
| 663 | unsigned long addr, pud_t *pudp, |
| 664 | int flags, struct follow_page_context *ctx) |
| 665 | { |
| 666 | struct mm_struct *mm = vma->vm_mm; |
| 667 | struct page *page; |
| 668 | pud_t pud = *pudp; |
| 669 | unsigned long pfn = pud_pfn(pud); |
| 670 | int ret; |
| 671 | |
| 672 | assert_spin_locked(pud_lockptr(mm, pudp)); |
| 673 | |
| 674 | if (!pud_present(pud)) |
| 675 | return NULL; |
| 676 | |
| 677 | if ((flags & FOLL_WRITE) && |
| 678 | !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags)) |
| 679 | return NULL; |
| 680 | |
| 681 | pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; |
| 682 | page = pfn_to_page(pfn); |
| 683 | |
| 684 | if (!pud_write(pud) && gup_must_unshare(vma, flags, page)) |
| 685 | return ERR_PTR(-EMLINK); |
| 686 | |
| 687 | ret = try_grab_folio(page_folio(page), 1, flags); |
| 688 | if (ret) |
| 689 | page = ERR_PTR(ret); |
| 690 | else |
| 691 | ctx->page_mask = HPAGE_PUD_NR - 1; |
| 692 | |
| 693 | return page; |
| 694 | } |
| 695 | |
| 696 | /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ |
| 697 | static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, |
| 698 | struct vm_area_struct *vma, |
| 699 | unsigned int flags) |
| 700 | { |
| 701 | /* If the pmd is writable, we can write to the page. */ |
| 702 | if (pmd_write(pmd)) |
| 703 | return true; |
| 704 | |
| 705 | if (!can_follow_write_common(page, vma, flags)) |
| 706 | return false; |
| 707 | |
| 708 | /* ... and a write-fault isn't required for other reasons. */ |
| 709 | if (pmd_needs_soft_dirty_wp(vma, pmd)) |
| 710 | return false; |
| 711 | return !userfaultfd_huge_pmd_wp(vma, pmd); |
| 712 | } |
| 713 | |
| 714 | static struct page *follow_huge_pmd(struct vm_area_struct *vma, |
| 715 | unsigned long addr, pmd_t *pmd, |
| 716 | unsigned int flags, |
| 717 | struct follow_page_context *ctx) |
| 718 | { |
| 719 | struct mm_struct *mm = vma->vm_mm; |
| 720 | pmd_t pmdval = *pmd; |
| 721 | struct page *page; |
| 722 | int ret; |
| 723 | |
| 724 | assert_spin_locked(pmd_lockptr(mm, pmd)); |
| 725 | |
| 726 | page = pmd_page(pmdval); |
| 727 | if ((flags & FOLL_WRITE) && |
| 728 | !can_follow_write_pmd(pmdval, page, vma, flags)) |
| 729 | return NULL; |
| 730 | |
| 731 | /* Avoid dumping huge zero page */ |
| 732 | if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) |
| 733 | return ERR_PTR(-EFAULT); |
| 734 | |
| 735 | if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) |
| 736 | return NULL; |
| 737 | |
| 738 | if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) |
| 739 | return ERR_PTR(-EMLINK); |
| 740 | |
| 741 | VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) && |
| 742 | !PageAnonExclusive(page), page); |
| 743 | |
| 744 | ret = try_grab_folio(page_folio(page), 1, flags); |
| 745 | if (ret) |
| 746 | return ERR_PTR(ret); |
| 747 | |
| 748 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 749 | if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) |
| 750 | touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); |
| 751 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 752 | |
| 753 | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; |
| 754 | ctx->page_mask = HPAGE_PMD_NR - 1; |
| 755 | |
| 756 | return page; |
| 757 | } |
| 758 | |
| 759 | #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ |
| 760 | static struct page *follow_huge_pud(struct vm_area_struct *vma, |
| 761 | unsigned long addr, pud_t *pudp, |
| 762 | int flags, struct follow_page_context *ctx) |
| 763 | { |
| 764 | return NULL; |
| 765 | } |
| 766 | |
| 767 | static struct page *follow_huge_pmd(struct vm_area_struct *vma, |
| 768 | unsigned long addr, pmd_t *pmd, |
| 769 | unsigned int flags, |
| 770 | struct follow_page_context *ctx) |
| 771 | { |
| 772 | return NULL; |
| 773 | } |
| 774 | #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ |
| 775 | |
| 776 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
| 777 | pte_t *pte, unsigned int flags) |
| 778 | { |
| 779 | if (flags & FOLL_TOUCH) { |
| 780 | pte_t orig_entry = ptep_get(pte); |
| 781 | pte_t entry = orig_entry; |
| 782 | |
| 783 | if (flags & FOLL_WRITE) |
| 784 | entry = pte_mkdirty(entry); |
| 785 | entry = pte_mkyoung(entry); |
| 786 | |
| 787 | if (!pte_same(orig_entry, entry)) { |
| 788 | set_pte_at(vma->vm_mm, address, pte, entry); |
| 789 | update_mmu_cache(vma, address, pte); |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | /* Proper page table entry exists, but no corresponding struct page */ |
| 794 | return -EEXIST; |
| 795 | } |
| 796 | |
| 797 | /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ |
| 798 | static inline bool can_follow_write_pte(pte_t pte, struct page *page, |
| 799 | struct vm_area_struct *vma, |
| 800 | unsigned int flags) |
| 801 | { |
| 802 | /* If the pte is writable, we can write to the page. */ |
| 803 | if (pte_write(pte)) |
| 804 | return true; |
| 805 | |
| 806 | if (!can_follow_write_common(page, vma, flags)) |
| 807 | return false; |
| 808 | |
| 809 | /* ... and a write-fault isn't required for other reasons. */ |
| 810 | if (pte_needs_soft_dirty_wp(vma, pte)) |
| 811 | return false; |
| 812 | return !userfaultfd_pte_wp(vma, pte); |
| 813 | } |
| 814 | |
| 815 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
| 816 | unsigned long address, pmd_t *pmd, unsigned int flags, |
| 817 | struct dev_pagemap **pgmap) |
| 818 | { |
| 819 | struct mm_struct *mm = vma->vm_mm; |
| 820 | struct folio *folio; |
| 821 | struct page *page; |
| 822 | spinlock_t *ptl; |
| 823 | pte_t *ptep, pte; |
| 824 | int ret; |
| 825 | |
| 826 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
| 827 | if (!ptep) |
| 828 | return no_page_table(vma, flags, address); |
| 829 | pte = ptep_get(ptep); |
| 830 | if (!pte_present(pte)) |
| 831 | goto no_page; |
| 832 | if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) |
| 833 | goto no_page; |
| 834 | |
| 835 | page = vm_normal_page(vma, address, pte); |
| 836 | |
| 837 | /* |
| 838 | * We only care about anon pages in can_follow_write_pte(). |
| 839 | */ |
| 840 | if ((flags & FOLL_WRITE) && |
| 841 | !can_follow_write_pte(pte, page, vma, flags)) { |
| 842 | page = NULL; |
| 843 | goto out; |
| 844 | } |
| 845 | |
| 846 | if (unlikely(!page)) { |
| 847 | if (flags & FOLL_DUMP) { |
| 848 | /* Avoid special (like zero) pages in core dumps */ |
| 849 | page = ERR_PTR(-EFAULT); |
| 850 | goto out; |
| 851 | } |
| 852 | |
| 853 | if (is_zero_pfn(pte_pfn(pte))) { |
| 854 | page = pte_page(pte); |
| 855 | } else { |
| 856 | ret = follow_pfn_pte(vma, address, ptep, flags); |
| 857 | page = ERR_PTR(ret); |
| 858 | goto out; |
| 859 | } |
| 860 | } |
| 861 | folio = page_folio(page); |
| 862 | |
| 863 | if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { |
| 864 | page = ERR_PTR(-EMLINK); |
| 865 | goto out; |
| 866 | } |
| 867 | |
| 868 | VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) && |
| 869 | !PageAnonExclusive(page), page); |
| 870 | |
| 871 | /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ |
| 872 | ret = try_grab_folio(folio, 1, flags); |
| 873 | if (unlikely(ret)) { |
| 874 | page = ERR_PTR(ret); |
| 875 | goto out; |
| 876 | } |
| 877 | |
| 878 | /* |
| 879 | * We need to make the page accessible if and only if we are going |
| 880 | * to access its content (the FOLL_PIN case). Please see |
| 881 | * Documentation/core-api/pin_user_pages.rst for details. |
| 882 | */ |
| 883 | if (flags & FOLL_PIN) { |
| 884 | ret = arch_make_folio_accessible(folio); |
| 885 | if (ret) { |
| 886 | unpin_user_page(page); |
| 887 | page = ERR_PTR(ret); |
| 888 | goto out; |
| 889 | } |
| 890 | } |
| 891 | if (flags & FOLL_TOUCH) { |
| 892 | if ((flags & FOLL_WRITE) && |
| 893 | !pte_dirty(pte) && !folio_test_dirty(folio)) |
| 894 | folio_mark_dirty(folio); |
| 895 | /* |
| 896 | * pte_mkyoung() would be more correct here, but atomic care |
| 897 | * is needed to avoid losing the dirty bit: it is easier to use |
| 898 | * folio_mark_accessed(). |
| 899 | */ |
| 900 | folio_mark_accessed(folio); |
| 901 | } |
| 902 | out: |
| 903 | pte_unmap_unlock(ptep, ptl); |
| 904 | return page; |
| 905 | no_page: |
| 906 | pte_unmap_unlock(ptep, ptl); |
| 907 | if (!pte_none(pte)) |
| 908 | return NULL; |
| 909 | return no_page_table(vma, flags, address); |
| 910 | } |
| 911 | |
| 912 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
| 913 | unsigned long address, pud_t *pudp, |
| 914 | unsigned int flags, |
| 915 | struct follow_page_context *ctx) |
| 916 | { |
| 917 | pmd_t *pmd, pmdval; |
| 918 | spinlock_t *ptl; |
| 919 | struct page *page; |
| 920 | struct mm_struct *mm = vma->vm_mm; |
| 921 | |
| 922 | pmd = pmd_offset(pudp, address); |
| 923 | pmdval = pmdp_get_lockless(pmd); |
| 924 | if (pmd_none(pmdval)) |
| 925 | return no_page_table(vma, flags, address); |
| 926 | if (!pmd_present(pmdval)) |
| 927 | return no_page_table(vma, flags, address); |
| 928 | if (likely(!pmd_leaf(pmdval))) |
| 929 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
| 930 | |
| 931 | if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) |
| 932 | return no_page_table(vma, flags, address); |
| 933 | |
| 934 | ptl = pmd_lock(mm, pmd); |
| 935 | pmdval = *pmd; |
| 936 | if (unlikely(!pmd_present(pmdval))) { |
| 937 | spin_unlock(ptl); |
| 938 | return no_page_table(vma, flags, address); |
| 939 | } |
| 940 | if (unlikely(!pmd_leaf(pmdval))) { |
| 941 | spin_unlock(ptl); |
| 942 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
| 943 | } |
| 944 | if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { |
| 945 | spin_unlock(ptl); |
| 946 | split_huge_pmd(vma, pmd, address); |
| 947 | /* If pmd was left empty, stuff a page table in there quickly */ |
| 948 | return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : |
| 949 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
| 950 | } |
| 951 | page = follow_huge_pmd(vma, address, pmd, flags, ctx); |
| 952 | spin_unlock(ptl); |
| 953 | return page; |
| 954 | } |
| 955 | |
| 956 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
| 957 | unsigned long address, p4d_t *p4dp, |
| 958 | unsigned int flags, |
| 959 | struct follow_page_context *ctx) |
| 960 | { |
| 961 | pud_t *pudp, pud; |
| 962 | spinlock_t *ptl; |
| 963 | struct page *page; |
| 964 | struct mm_struct *mm = vma->vm_mm; |
| 965 | |
| 966 | pudp = pud_offset(p4dp, address); |
| 967 | pud = READ_ONCE(*pudp); |
| 968 | if (!pud_present(pud)) |
| 969 | return no_page_table(vma, flags, address); |
| 970 | if (pud_leaf(pud)) { |
| 971 | ptl = pud_lock(mm, pudp); |
| 972 | page = follow_huge_pud(vma, address, pudp, flags, ctx); |
| 973 | spin_unlock(ptl); |
| 974 | if (page) |
| 975 | return page; |
| 976 | return no_page_table(vma, flags, address); |
| 977 | } |
| 978 | if (unlikely(pud_bad(pud))) |
| 979 | return no_page_table(vma, flags, address); |
| 980 | |
| 981 | return follow_pmd_mask(vma, address, pudp, flags, ctx); |
| 982 | } |
| 983 | |
| 984 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
| 985 | unsigned long address, pgd_t *pgdp, |
| 986 | unsigned int flags, |
| 987 | struct follow_page_context *ctx) |
| 988 | { |
| 989 | p4d_t *p4dp, p4d; |
| 990 | |
| 991 | p4dp = p4d_offset(pgdp, address); |
| 992 | p4d = READ_ONCE(*p4dp); |
| 993 | BUILD_BUG_ON(p4d_leaf(p4d)); |
| 994 | |
| 995 | if (!p4d_present(p4d) || p4d_bad(p4d)) |
| 996 | return no_page_table(vma, flags, address); |
| 997 | |
| 998 | return follow_pud_mask(vma, address, p4dp, flags, ctx); |
| 999 | } |
| 1000 | |
| 1001 | /** |
| 1002 | * follow_page_mask - look up a page descriptor from a user-virtual address |
| 1003 | * @vma: vm_area_struct mapping @address |
| 1004 | * @address: virtual address to look up |
| 1005 | * @flags: flags modifying lookup behaviour |
| 1006 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
| 1007 | * pointer to output page_mask |
| 1008 | * |
| 1009 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> |
| 1010 | * |
| 1011 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
| 1012 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. |
| 1013 | * |
| 1014 | * When getting an anonymous page and the caller has to trigger unsharing |
| 1015 | * of a shared anonymous page first, -EMLINK is returned. The caller should |
| 1016 | * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only |
| 1017 | * relevant with FOLL_PIN and !FOLL_WRITE. |
| 1018 | * |
| 1019 | * On output, the @ctx->page_mask is set according to the size of the page. |
| 1020 | * |
| 1021 | * Return: the mapped (struct page *), %NULL if no mapping exists, or |
| 1022 | * an error pointer if there is a mapping to something not represented |
| 1023 | * by a page descriptor (see also vm_normal_page()). |
| 1024 | */ |
| 1025 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
| 1026 | unsigned long address, unsigned int flags, |
| 1027 | struct follow_page_context *ctx) |
| 1028 | { |
| 1029 | pgd_t *pgd; |
| 1030 | struct mm_struct *mm = vma->vm_mm; |
| 1031 | struct page *page; |
| 1032 | |
| 1033 | vma_pgtable_walk_begin(vma); |
| 1034 | |
| 1035 | ctx->page_mask = 0; |
| 1036 | pgd = pgd_offset(mm, address); |
| 1037 | |
| 1038 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
| 1039 | page = no_page_table(vma, flags, address); |
| 1040 | else |
| 1041 | page = follow_p4d_mask(vma, address, pgd, flags, ctx); |
| 1042 | |
| 1043 | vma_pgtable_walk_end(vma); |
| 1044 | |
| 1045 | return page; |
| 1046 | } |
| 1047 | |
| 1048 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
| 1049 | unsigned int gup_flags, struct vm_area_struct **vma, |
| 1050 | struct page **page) |
| 1051 | { |
| 1052 | pgd_t *pgd; |
| 1053 | p4d_t *p4d; |
| 1054 | pud_t *pud; |
| 1055 | pmd_t *pmd; |
| 1056 | pte_t *pte; |
| 1057 | pte_t entry; |
| 1058 | int ret = -EFAULT; |
| 1059 | |
| 1060 | /* user gate pages are read-only */ |
| 1061 | if (gup_flags & FOLL_WRITE) |
| 1062 | return -EFAULT; |
| 1063 | pgd = pgd_offset(mm, address); |
| 1064 | if (pgd_none(*pgd)) |
| 1065 | return -EFAULT; |
| 1066 | p4d = p4d_offset(pgd, address); |
| 1067 | if (p4d_none(*p4d)) |
| 1068 | return -EFAULT; |
| 1069 | pud = pud_offset(p4d, address); |
| 1070 | if (pud_none(*pud)) |
| 1071 | return -EFAULT; |
| 1072 | pmd = pmd_offset(pud, address); |
| 1073 | if (!pmd_present(*pmd)) |
| 1074 | return -EFAULT; |
| 1075 | pte = pte_offset_map(pmd, address); |
| 1076 | if (!pte) |
| 1077 | return -EFAULT; |
| 1078 | entry = ptep_get(pte); |
| 1079 | if (pte_none(entry)) |
| 1080 | goto unmap; |
| 1081 | *vma = get_gate_vma(mm); |
| 1082 | if (!page) |
| 1083 | goto out; |
| 1084 | *page = vm_normal_page(*vma, address, entry); |
| 1085 | if (!*page) { |
| 1086 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) |
| 1087 | goto unmap; |
| 1088 | *page = pte_page(entry); |
| 1089 | } |
| 1090 | ret = try_grab_folio(page_folio(*page), 1, gup_flags); |
| 1091 | if (unlikely(ret)) |
| 1092 | goto unmap; |
| 1093 | out: |
| 1094 | ret = 0; |
| 1095 | unmap: |
| 1096 | pte_unmap(pte); |
| 1097 | return ret; |
| 1098 | } |
| 1099 | |
| 1100 | /* |
| 1101 | * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not |
| 1102 | * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set |
| 1103 | * to 0 and -EBUSY returned. |
| 1104 | */ |
| 1105 | static int faultin_page(struct vm_area_struct *vma, |
| 1106 | unsigned long address, unsigned int flags, bool unshare, |
| 1107 | int *locked) |
| 1108 | { |
| 1109 | unsigned int fault_flags = 0; |
| 1110 | vm_fault_t ret; |
| 1111 | |
| 1112 | if (flags & FOLL_NOFAULT) |
| 1113 | return -EFAULT; |
| 1114 | if (flags & FOLL_WRITE) |
| 1115 | fault_flags |= FAULT_FLAG_WRITE; |
| 1116 | if (flags & FOLL_REMOTE) |
| 1117 | fault_flags |= FAULT_FLAG_REMOTE; |
| 1118 | if (flags & FOLL_UNLOCKABLE) { |
| 1119 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
| 1120 | /* |
| 1121 | * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set |
| 1122 | * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. |
| 1123 | * That's because some callers may not be prepared to |
| 1124 | * handle early exits caused by non-fatal signals. |
| 1125 | */ |
| 1126 | if (flags & FOLL_INTERRUPTIBLE) |
| 1127 | fault_flags |= FAULT_FLAG_INTERRUPTIBLE; |
| 1128 | } |
| 1129 | if (flags & FOLL_NOWAIT) |
| 1130 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; |
| 1131 | if (flags & FOLL_TRIED) { |
| 1132 | /* |
| 1133 | * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED |
| 1134 | * can co-exist |
| 1135 | */ |
| 1136 | fault_flags |= FAULT_FLAG_TRIED; |
| 1137 | } |
| 1138 | if (unshare) { |
| 1139 | fault_flags |= FAULT_FLAG_UNSHARE; |
| 1140 | /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ |
| 1141 | VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE); |
| 1142 | } |
| 1143 | |
| 1144 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
| 1145 | |
| 1146 | if (ret & VM_FAULT_COMPLETED) { |
| 1147 | /* |
| 1148 | * With FAULT_FLAG_RETRY_NOWAIT we'll never release the |
| 1149 | * mmap lock in the page fault handler. Sanity check this. |
| 1150 | */ |
| 1151 | WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); |
| 1152 | *locked = 0; |
| 1153 | |
| 1154 | /* |
| 1155 | * We should do the same as VM_FAULT_RETRY, but let's not |
| 1156 | * return -EBUSY since that's not reflecting the reality of |
| 1157 | * what has happened - we've just fully completed a page |
| 1158 | * fault, with the mmap lock released. Use -EAGAIN to show |
| 1159 | * that we want to take the mmap lock _again_. |
| 1160 | */ |
| 1161 | return -EAGAIN; |
| 1162 | } |
| 1163 | |
| 1164 | if (ret & VM_FAULT_ERROR) { |
| 1165 | int err = vm_fault_to_errno(ret, flags); |
| 1166 | |
| 1167 | if (err) |
| 1168 | return err; |
| 1169 | BUG(); |
| 1170 | } |
| 1171 | |
| 1172 | if (ret & VM_FAULT_RETRY) { |
| 1173 | if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
| 1174 | *locked = 0; |
| 1175 | return -EBUSY; |
| 1176 | } |
| 1177 | |
| 1178 | return 0; |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * Writing to file-backed mappings which require folio dirty tracking using GUP |
| 1183 | * is a fundamentally broken operation, as kernel write access to GUP mappings |
| 1184 | * do not adhere to the semantics expected by a file system. |
| 1185 | * |
| 1186 | * Consider the following scenario:- |
| 1187 | * |
| 1188 | * 1. A folio is written to via GUP which write-faults the memory, notifying |
| 1189 | * the file system and dirtying the folio. |
| 1190 | * 2. Later, writeback is triggered, resulting in the folio being cleaned and |
| 1191 | * the PTE being marked read-only. |
| 1192 | * 3. The GUP caller writes to the folio, as it is mapped read/write via the |
| 1193 | * direct mapping. |
| 1194 | * 4. The GUP caller, now done with the page, unpins it and sets it dirty |
| 1195 | * (though it does not have to). |
| 1196 | * |
| 1197 | * This results in both data being written to a folio without writenotify, and |
| 1198 | * the folio being dirtied unexpectedly (if the caller decides to do so). |
| 1199 | */ |
| 1200 | static bool writable_file_mapping_allowed(struct vm_area_struct *vma, |
| 1201 | unsigned long gup_flags) |
| 1202 | { |
| 1203 | /* |
| 1204 | * If we aren't pinning then no problematic write can occur. A long term |
| 1205 | * pin is the most egregious case so this is the case we disallow. |
| 1206 | */ |
| 1207 | if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != |
| 1208 | (FOLL_PIN | FOLL_LONGTERM)) |
| 1209 | return true; |
| 1210 | |
| 1211 | /* |
| 1212 | * If the VMA does not require dirty tracking then no problematic write |
| 1213 | * can occur either. |
| 1214 | */ |
| 1215 | return !vma_needs_dirty_tracking(vma); |
| 1216 | } |
| 1217 | |
| 1218 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
| 1219 | { |
| 1220 | vm_flags_t vm_flags = vma->vm_flags; |
| 1221 | int write = (gup_flags & FOLL_WRITE); |
| 1222 | int foreign = (gup_flags & FOLL_REMOTE); |
| 1223 | bool vma_anon = vma_is_anonymous(vma); |
| 1224 | |
| 1225 | if (vm_flags & (VM_IO | VM_PFNMAP)) |
| 1226 | return -EFAULT; |
| 1227 | |
| 1228 | if ((gup_flags & FOLL_ANON) && !vma_anon) |
| 1229 | return -EFAULT; |
| 1230 | |
| 1231 | if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) |
| 1232 | return -EOPNOTSUPP; |
| 1233 | |
| 1234 | if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma)) |
| 1235 | return -EOPNOTSUPP; |
| 1236 | |
| 1237 | if (vma_is_secretmem(vma)) |
| 1238 | return -EFAULT; |
| 1239 | |
| 1240 | if (write) { |
| 1241 | if (!vma_anon && |
| 1242 | !writable_file_mapping_allowed(vma, gup_flags)) |
| 1243 | return -EFAULT; |
| 1244 | |
| 1245 | if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { |
| 1246 | if (!(gup_flags & FOLL_FORCE)) |
| 1247 | return -EFAULT; |
| 1248 | /* |
| 1249 | * We used to let the write,force case do COW in a |
| 1250 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could |
| 1251 | * set a breakpoint in a read-only mapping of an |
| 1252 | * executable, without corrupting the file (yet only |
| 1253 | * when that file had been opened for writing!). |
| 1254 | * Anon pages in shared mappings are surprising: now |
| 1255 | * just reject it. |
| 1256 | */ |
| 1257 | if (!is_cow_mapping(vm_flags)) |
| 1258 | return -EFAULT; |
| 1259 | } |
| 1260 | } else if (!(vm_flags & VM_READ)) { |
| 1261 | if (!(gup_flags & FOLL_FORCE)) |
| 1262 | return -EFAULT; |
| 1263 | /* |
| 1264 | * Is there actually any vma we can reach here which does not |
| 1265 | * have VM_MAYREAD set? |
| 1266 | */ |
| 1267 | if (!(vm_flags & VM_MAYREAD)) |
| 1268 | return -EFAULT; |
| 1269 | } |
| 1270 | /* |
| 1271 | * gups are always data accesses, not instruction |
| 1272 | * fetches, so execute=false here |
| 1273 | */ |
| 1274 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
| 1275 | return -EFAULT; |
| 1276 | return 0; |
| 1277 | } |
| 1278 | |
| 1279 | /* |
| 1280 | * This is "vma_lookup()", but with a warning if we would have |
| 1281 | * historically expanded the stack in the GUP code. |
| 1282 | */ |
| 1283 | static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, |
| 1284 | unsigned long addr) |
| 1285 | { |
| 1286 | #ifdef CONFIG_STACK_GROWSUP |
| 1287 | return vma_lookup(mm, addr); |
| 1288 | #else |
| 1289 | static volatile unsigned long next_warn; |
| 1290 | struct vm_area_struct *vma; |
| 1291 | unsigned long now, next; |
| 1292 | |
| 1293 | vma = find_vma(mm, addr); |
| 1294 | if (!vma || (addr >= vma->vm_start)) |
| 1295 | return vma; |
| 1296 | |
| 1297 | /* Only warn for half-way relevant accesses */ |
| 1298 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
| 1299 | return NULL; |
| 1300 | if (vma->vm_start - addr > 65536) |
| 1301 | return NULL; |
| 1302 | |
| 1303 | /* Let's not warn more than once an hour.. */ |
| 1304 | now = jiffies; next = next_warn; |
| 1305 | if (next && time_before(now, next)) |
| 1306 | return NULL; |
| 1307 | next_warn = now + 60*60*HZ; |
| 1308 | |
| 1309 | /* Let people know things may have changed. */ |
| 1310 | pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", |
| 1311 | current->comm, task_pid_nr(current), |
| 1312 | vma->vm_start, vma->vm_end, addr); |
| 1313 | dump_stack(); |
| 1314 | return NULL; |
| 1315 | #endif |
| 1316 | } |
| 1317 | |
| 1318 | /** |
| 1319 | * __get_user_pages() - pin user pages in memory |
| 1320 | * @mm: mm_struct of target mm |
| 1321 | * @start: starting user address |
| 1322 | * @nr_pages: number of pages from start to pin |
| 1323 | * @gup_flags: flags modifying pin behaviour |
| 1324 | * @pages: array that receives pointers to the pages pinned. |
| 1325 | * Should be at least nr_pages long. Or NULL, if caller |
| 1326 | * only intends to ensure the pages are faulted in. |
| 1327 | * @locked: whether we're still with the mmap_lock held |
| 1328 | * |
| 1329 | * Returns either number of pages pinned (which may be less than the |
| 1330 | * number requested), or an error. Details about the return value: |
| 1331 | * |
| 1332 | * -- If nr_pages is 0, returns 0. |
| 1333 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. |
| 1334 | * -- If nr_pages is >0, and some pages were pinned, returns the number of |
| 1335 | * pages pinned. Again, this may be less than nr_pages. |
| 1336 | * -- 0 return value is possible when the fault would need to be retried. |
| 1337 | * |
| 1338 | * The caller is responsible for releasing returned @pages, via put_page(). |
| 1339 | * |
| 1340 | * Must be called with mmap_lock held. It may be released. See below. |
| 1341 | * |
| 1342 | * __get_user_pages walks a process's page tables and takes a reference to |
| 1343 | * each struct page that each user address corresponds to at a given |
| 1344 | * instant. That is, it takes the page that would be accessed if a user |
| 1345 | * thread accesses the given user virtual address at that instant. |
| 1346 | * |
| 1347 | * This does not guarantee that the page exists in the user mappings when |
| 1348 | * __get_user_pages returns, and there may even be a completely different |
| 1349 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
| 1350 | * and subsequently re-faulted). However it does guarantee that the page |
| 1351 | * won't be freed completely. And mostly callers simply care that the page |
| 1352 | * contains data that was valid *at some point in time*. Typically, an IO |
| 1353 | * or similar operation cannot guarantee anything stronger anyway because |
| 1354 | * locks can't be held over the syscall boundary. |
| 1355 | * |
| 1356 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If |
| 1357 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as |
| 1358 | * appropriate) must be called after the page is finished with, and |
| 1359 | * before put_page is called. |
| 1360 | * |
| 1361 | * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may |
| 1362 | * be released. If this happens *@locked will be set to 0 on return. |
| 1363 | * |
| 1364 | * A caller using such a combination of @gup_flags must therefore hold the |
| 1365 | * mmap_lock for reading only, and recognize when it's been released. Otherwise, |
| 1366 | * it must be held for either reading or writing and will not be released. |
| 1367 | * |
| 1368 | * In most cases, get_user_pages or get_user_pages_fast should be used |
| 1369 | * instead of __get_user_pages. __get_user_pages should be used only if |
| 1370 | * you need some special @gup_flags. |
| 1371 | */ |
| 1372 | static long __get_user_pages(struct mm_struct *mm, |
| 1373 | unsigned long start, unsigned long nr_pages, |
| 1374 | unsigned int gup_flags, struct page **pages, |
| 1375 | int *locked) |
| 1376 | { |
| 1377 | long ret = 0, i = 0; |
| 1378 | struct vm_area_struct *vma = NULL; |
| 1379 | struct follow_page_context ctx = { NULL }; |
| 1380 | |
| 1381 | if (!nr_pages) |
| 1382 | return 0; |
| 1383 | |
| 1384 | start = untagged_addr_remote(mm, start); |
| 1385 | |
| 1386 | VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); |
| 1387 | |
| 1388 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
| 1389 | VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == |
| 1390 | (FOLL_PIN | FOLL_GET)); |
| 1391 | |
| 1392 | do { |
| 1393 | struct page *page; |
| 1394 | unsigned int page_increm; |
| 1395 | |
| 1396 | /* first iteration or cross vma bound */ |
| 1397 | if (!vma || start >= vma->vm_end) { |
| 1398 | /* |
| 1399 | * MADV_POPULATE_(READ|WRITE) wants to handle VMA |
| 1400 | * lookups+error reporting differently. |
| 1401 | */ |
| 1402 | if (gup_flags & FOLL_MADV_POPULATE) { |
| 1403 | vma = vma_lookup(mm, start); |
| 1404 | if (!vma) { |
| 1405 | ret = -ENOMEM; |
| 1406 | goto out; |
| 1407 | } |
| 1408 | if (check_vma_flags(vma, gup_flags)) { |
| 1409 | ret = -EINVAL; |
| 1410 | goto out; |
| 1411 | } |
| 1412 | goto retry; |
| 1413 | } |
| 1414 | vma = gup_vma_lookup(mm, start); |
| 1415 | if (!vma && in_gate_area(mm, start)) { |
| 1416 | ret = get_gate_page(mm, start & PAGE_MASK, |
| 1417 | gup_flags, &vma, |
| 1418 | pages ? &page : NULL); |
| 1419 | if (ret) |
| 1420 | goto out; |
| 1421 | ctx.page_mask = 0; |
| 1422 | goto next_page; |
| 1423 | } |
| 1424 | |
| 1425 | if (!vma) { |
| 1426 | ret = -EFAULT; |
| 1427 | goto out; |
| 1428 | } |
| 1429 | ret = check_vma_flags(vma, gup_flags); |
| 1430 | if (ret) |
| 1431 | goto out; |
| 1432 | } |
| 1433 | retry: |
| 1434 | /* |
| 1435 | * If we have a pending SIGKILL, don't keep faulting pages and |
| 1436 | * potentially allocating memory. |
| 1437 | */ |
| 1438 | if (fatal_signal_pending(current)) { |
| 1439 | ret = -EINTR; |
| 1440 | goto out; |
| 1441 | } |
| 1442 | cond_resched(); |
| 1443 | |
| 1444 | page = follow_page_mask(vma, start, gup_flags, &ctx); |
| 1445 | if (!page || PTR_ERR(page) == -EMLINK) { |
| 1446 | ret = faultin_page(vma, start, gup_flags, |
| 1447 | PTR_ERR(page) == -EMLINK, locked); |
| 1448 | switch (ret) { |
| 1449 | case 0: |
| 1450 | goto retry; |
| 1451 | case -EBUSY: |
| 1452 | case -EAGAIN: |
| 1453 | ret = 0; |
| 1454 | fallthrough; |
| 1455 | case -EFAULT: |
| 1456 | case -ENOMEM: |
| 1457 | case -EHWPOISON: |
| 1458 | goto out; |
| 1459 | } |
| 1460 | BUG(); |
| 1461 | } else if (PTR_ERR(page) == -EEXIST) { |
| 1462 | /* |
| 1463 | * Proper page table entry exists, but no corresponding |
| 1464 | * struct page. If the caller expects **pages to be |
| 1465 | * filled in, bail out now, because that can't be done |
| 1466 | * for this page. |
| 1467 | */ |
| 1468 | if (pages) { |
| 1469 | ret = PTR_ERR(page); |
| 1470 | goto out; |
| 1471 | } |
| 1472 | } else if (IS_ERR(page)) { |
| 1473 | ret = PTR_ERR(page); |
| 1474 | goto out; |
| 1475 | } |
| 1476 | next_page: |
| 1477 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
| 1478 | if (page_increm > nr_pages) |
| 1479 | page_increm = nr_pages; |
| 1480 | |
| 1481 | if (pages) { |
| 1482 | struct page *subpage; |
| 1483 | unsigned int j; |
| 1484 | |
| 1485 | /* |
| 1486 | * This must be a large folio (and doesn't need to |
| 1487 | * be the whole folio; it can be part of it), do |
| 1488 | * the refcount work for all the subpages too. |
| 1489 | * |
| 1490 | * NOTE: here the page may not be the head page |
| 1491 | * e.g. when start addr is not thp-size aligned. |
| 1492 | * try_grab_folio() should have taken care of tail |
| 1493 | * pages. |
| 1494 | */ |
| 1495 | if (page_increm > 1) { |
| 1496 | struct folio *folio = page_folio(page); |
| 1497 | |
| 1498 | /* |
| 1499 | * Since we already hold refcount on the |
| 1500 | * large folio, this should never fail. |
| 1501 | */ |
| 1502 | if (try_grab_folio(folio, page_increm - 1, |
| 1503 | gup_flags)) { |
| 1504 | /* |
| 1505 | * Release the 1st page ref if the |
| 1506 | * folio is problematic, fail hard. |
| 1507 | */ |
| 1508 | gup_put_folio(folio, 1, gup_flags); |
| 1509 | ret = -EFAULT; |
| 1510 | goto out; |
| 1511 | } |
| 1512 | } |
| 1513 | |
| 1514 | for (j = 0; j < page_increm; j++) { |
| 1515 | subpage = nth_page(page, j); |
| 1516 | pages[i + j] = subpage; |
| 1517 | flush_anon_page(vma, subpage, start + j * PAGE_SIZE); |
| 1518 | flush_dcache_page(subpage); |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | i += page_increm; |
| 1523 | start += page_increm * PAGE_SIZE; |
| 1524 | nr_pages -= page_increm; |
| 1525 | } while (nr_pages); |
| 1526 | out: |
| 1527 | if (ctx.pgmap) |
| 1528 | put_dev_pagemap(ctx.pgmap); |
| 1529 | return i ? i : ret; |
| 1530 | } |
| 1531 | |
| 1532 | static bool vma_permits_fault(struct vm_area_struct *vma, |
| 1533 | unsigned int fault_flags) |
| 1534 | { |
| 1535 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
| 1536 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); |
| 1537 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
| 1538 | |
| 1539 | if (!(vm_flags & vma->vm_flags)) |
| 1540 | return false; |
| 1541 | |
| 1542 | /* |
| 1543 | * The architecture might have a hardware protection |
| 1544 | * mechanism other than read/write that can deny access. |
| 1545 | * |
| 1546 | * gup always represents data access, not instruction |
| 1547 | * fetches, so execute=false here: |
| 1548 | */ |
| 1549 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
| 1550 | return false; |
| 1551 | |
| 1552 | return true; |
| 1553 | } |
| 1554 | |
| 1555 | /** |
| 1556 | * fixup_user_fault() - manually resolve a user page fault |
| 1557 | * @mm: mm_struct of target mm |
| 1558 | * @address: user address |
| 1559 | * @fault_flags:flags to pass down to handle_mm_fault() |
| 1560 | * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller |
| 1561 | * does not allow retry. If NULL, the caller must guarantee |
| 1562 | * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. |
| 1563 | * |
| 1564 | * This is meant to be called in the specific scenario where for locking reasons |
| 1565 | * we try to access user memory in atomic context (within a pagefault_disable() |
| 1566 | * section), this returns -EFAULT, and we want to resolve the user fault before |
| 1567 | * trying again. |
| 1568 | * |
| 1569 | * Typically this is meant to be used by the futex code. |
| 1570 | * |
| 1571 | * The main difference with get_user_pages() is that this function will |
| 1572 | * unconditionally call handle_mm_fault() which will in turn perform all the |
| 1573 | * necessary SW fixup of the dirty and young bits in the PTE, while |
| 1574 | * get_user_pages() only guarantees to update these in the struct page. |
| 1575 | * |
| 1576 | * This is important for some architectures where those bits also gate the |
| 1577 | * access permission to the page because they are maintained in software. On |
| 1578 | * such architectures, gup() will not be enough to make a subsequent access |
| 1579 | * succeed. |
| 1580 | * |
| 1581 | * This function will not return with an unlocked mmap_lock. So it has not the |
| 1582 | * same semantics wrt the @mm->mmap_lock as does filemap_fault(). |
| 1583 | */ |
| 1584 | int fixup_user_fault(struct mm_struct *mm, |
| 1585 | unsigned long address, unsigned int fault_flags, |
| 1586 | bool *unlocked) |
| 1587 | { |
| 1588 | struct vm_area_struct *vma; |
| 1589 | vm_fault_t ret; |
| 1590 | |
| 1591 | address = untagged_addr_remote(mm, address); |
| 1592 | |
| 1593 | if (unlocked) |
| 1594 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
| 1595 | |
| 1596 | retry: |
| 1597 | vma = gup_vma_lookup(mm, address); |
| 1598 | if (!vma) |
| 1599 | return -EFAULT; |
| 1600 | |
| 1601 | if (!vma_permits_fault(vma, fault_flags)) |
| 1602 | return -EFAULT; |
| 1603 | |
| 1604 | if ((fault_flags & FAULT_FLAG_KILLABLE) && |
| 1605 | fatal_signal_pending(current)) |
| 1606 | return -EINTR; |
| 1607 | |
| 1608 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
| 1609 | |
| 1610 | if (ret & VM_FAULT_COMPLETED) { |
| 1611 | /* |
| 1612 | * NOTE: it's a pity that we need to retake the lock here |
| 1613 | * to pair with the unlock() in the callers. Ideally we |
| 1614 | * could tell the callers so they do not need to unlock. |
| 1615 | */ |
| 1616 | mmap_read_lock(mm); |
| 1617 | *unlocked = true; |
| 1618 | return 0; |
| 1619 | } |
| 1620 | |
| 1621 | if (ret & VM_FAULT_ERROR) { |
| 1622 | int err = vm_fault_to_errno(ret, 0); |
| 1623 | |
| 1624 | if (err) |
| 1625 | return err; |
| 1626 | BUG(); |
| 1627 | } |
| 1628 | |
| 1629 | if (ret & VM_FAULT_RETRY) { |
| 1630 | mmap_read_lock(mm); |
| 1631 | *unlocked = true; |
| 1632 | fault_flags |= FAULT_FLAG_TRIED; |
| 1633 | goto retry; |
| 1634 | } |
| 1635 | |
| 1636 | return 0; |
| 1637 | } |
| 1638 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
| 1639 | |
| 1640 | /* |
| 1641 | * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is |
| 1642 | * specified, it'll also respond to generic signals. The caller of GUP |
| 1643 | * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. |
| 1644 | */ |
| 1645 | static bool gup_signal_pending(unsigned int flags) |
| 1646 | { |
| 1647 | if (fatal_signal_pending(current)) |
| 1648 | return true; |
| 1649 | |
| 1650 | if (!(flags & FOLL_INTERRUPTIBLE)) |
| 1651 | return false; |
| 1652 | |
| 1653 | return signal_pending(current); |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * Locking: (*locked == 1) means that the mmap_lock has already been acquired by |
| 1658 | * the caller. This function may drop the mmap_lock. If it does so, then it will |
| 1659 | * set (*locked = 0). |
| 1660 | * |
| 1661 | * (*locked == 0) means that the caller expects this function to acquire and |
| 1662 | * drop the mmap_lock. Therefore, the value of *locked will still be zero when |
| 1663 | * the function returns, even though it may have changed temporarily during |
| 1664 | * function execution. |
| 1665 | * |
| 1666 | * Please note that this function, unlike __get_user_pages(), will not return 0 |
| 1667 | * for nr_pages > 0, unless FOLL_NOWAIT is used. |
| 1668 | */ |
| 1669 | static __always_inline long __get_user_pages_locked(struct mm_struct *mm, |
| 1670 | unsigned long start, |
| 1671 | unsigned long nr_pages, |
| 1672 | struct page **pages, |
| 1673 | int *locked, |
| 1674 | unsigned int flags) |
| 1675 | { |
| 1676 | long ret, pages_done; |
| 1677 | bool must_unlock = false; |
| 1678 | |
| 1679 | if (!nr_pages) |
| 1680 | return 0; |
| 1681 | |
| 1682 | /* |
| 1683 | * The internal caller expects GUP to manage the lock internally and the |
| 1684 | * lock must be released when this returns. |
| 1685 | */ |
| 1686 | if (!*locked) { |
| 1687 | if (mmap_read_lock_killable(mm)) |
| 1688 | return -EAGAIN; |
| 1689 | must_unlock = true; |
| 1690 | *locked = 1; |
| 1691 | } |
| 1692 | else |
| 1693 | mmap_assert_locked(mm); |
| 1694 | |
| 1695 | if (flags & FOLL_PIN) |
| 1696 | mm_set_has_pinned_flag(&mm->flags); |
| 1697 | |
| 1698 | /* |
| 1699 | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior |
| 1700 | * is to set FOLL_GET if the caller wants pages[] filled in (but has |
| 1701 | * carelessly failed to specify FOLL_GET), so keep doing that, but only |
| 1702 | * for FOLL_GET, not for the newer FOLL_PIN. |
| 1703 | * |
| 1704 | * FOLL_PIN always expects pages to be non-null, but no need to assert |
| 1705 | * that here, as any failures will be obvious enough. |
| 1706 | */ |
| 1707 | if (pages && !(flags & FOLL_PIN)) |
| 1708 | flags |= FOLL_GET; |
| 1709 | |
| 1710 | pages_done = 0; |
| 1711 | for (;;) { |
| 1712 | ret = __get_user_pages(mm, start, nr_pages, flags, pages, |
| 1713 | locked); |
| 1714 | if (!(flags & FOLL_UNLOCKABLE)) { |
| 1715 | /* VM_FAULT_RETRY couldn't trigger, bypass */ |
| 1716 | pages_done = ret; |
| 1717 | break; |
| 1718 | } |
| 1719 | |
| 1720 | /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ |
| 1721 | VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages)); |
| 1722 | |
| 1723 | if (ret > 0) { |
| 1724 | nr_pages -= ret; |
| 1725 | pages_done += ret; |
| 1726 | if (!nr_pages) |
| 1727 | break; |
| 1728 | } |
| 1729 | if (*locked) { |
| 1730 | /* |
| 1731 | * VM_FAULT_RETRY didn't trigger or it was a |
| 1732 | * FOLL_NOWAIT. |
| 1733 | */ |
| 1734 | if (!pages_done) |
| 1735 | pages_done = ret; |
| 1736 | break; |
| 1737 | } |
| 1738 | /* |
| 1739 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. |
| 1740 | * For the prefault case (!pages) we only update counts. |
| 1741 | */ |
| 1742 | if (likely(pages)) |
| 1743 | pages += ret; |
| 1744 | start += ret << PAGE_SHIFT; |
| 1745 | |
| 1746 | /* The lock was temporarily dropped, so we must unlock later */ |
| 1747 | must_unlock = true; |
| 1748 | |
| 1749 | retry: |
| 1750 | /* |
| 1751 | * Repeat on the address that fired VM_FAULT_RETRY |
| 1752 | * with both FAULT_FLAG_ALLOW_RETRY and |
| 1753 | * FAULT_FLAG_TRIED. Note that GUP can be interrupted |
| 1754 | * by fatal signals of even common signals, depending on |
| 1755 | * the caller's request. So we need to check it before we |
| 1756 | * start trying again otherwise it can loop forever. |
| 1757 | */ |
| 1758 | if (gup_signal_pending(flags)) { |
| 1759 | if (!pages_done) |
| 1760 | pages_done = -EINTR; |
| 1761 | break; |
| 1762 | } |
| 1763 | |
| 1764 | ret = mmap_read_lock_killable(mm); |
| 1765 | if (ret) { |
| 1766 | if (!pages_done) |
| 1767 | pages_done = ret; |
| 1768 | break; |
| 1769 | } |
| 1770 | |
| 1771 | *locked = 1; |
| 1772 | ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, |
| 1773 | pages, locked); |
| 1774 | if (!*locked) { |
| 1775 | /* Continue to retry until we succeeded */ |
| 1776 | VM_WARN_ON_ONCE(ret != 0); |
| 1777 | goto retry; |
| 1778 | } |
| 1779 | if (ret != 1) { |
| 1780 | VM_WARN_ON_ONCE(ret > 1); |
| 1781 | if (!pages_done) |
| 1782 | pages_done = ret; |
| 1783 | break; |
| 1784 | } |
| 1785 | nr_pages--; |
| 1786 | pages_done++; |
| 1787 | if (!nr_pages) |
| 1788 | break; |
| 1789 | if (likely(pages)) |
| 1790 | pages++; |
| 1791 | start += PAGE_SIZE; |
| 1792 | } |
| 1793 | if (must_unlock && *locked) { |
| 1794 | /* |
| 1795 | * We either temporarily dropped the lock, or the caller |
| 1796 | * requested that we both acquire and drop the lock. Either way, |
| 1797 | * we must now unlock, and notify the caller of that state. |
| 1798 | */ |
| 1799 | mmap_read_unlock(mm); |
| 1800 | *locked = 0; |
| 1801 | } |
| 1802 | |
| 1803 | /* |
| 1804 | * Failing to pin anything implies something has gone wrong (except when |
| 1805 | * FOLL_NOWAIT is specified). |
| 1806 | */ |
| 1807 | if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) |
| 1808 | return -EFAULT; |
| 1809 | |
| 1810 | return pages_done; |
| 1811 | } |
| 1812 | |
| 1813 | /** |
| 1814 | * populate_vma_page_range() - populate a range of pages in the vma. |
| 1815 | * @vma: target vma |
| 1816 | * @start: start address |
| 1817 | * @end: end address |
| 1818 | * @locked: whether the mmap_lock is still held |
| 1819 | * |
| 1820 | * This takes care of mlocking the pages too if VM_LOCKED is set. |
| 1821 | * |
| 1822 | * Return either number of pages pinned in the vma, or a negative error |
| 1823 | * code on error. |
| 1824 | * |
| 1825 | * vma->vm_mm->mmap_lock must be held. |
| 1826 | * |
| 1827 | * If @locked is NULL, it may be held for read or write and will |
| 1828 | * be unperturbed. |
| 1829 | * |
| 1830 | * If @locked is non-NULL, it must held for read only and may be |
| 1831 | * released. If it's released, *@locked will be set to 0. |
| 1832 | */ |
| 1833 | long populate_vma_page_range(struct vm_area_struct *vma, |
| 1834 | unsigned long start, unsigned long end, int *locked) |
| 1835 | { |
| 1836 | struct mm_struct *mm = vma->vm_mm; |
| 1837 | unsigned long nr_pages = (end - start) / PAGE_SIZE; |
| 1838 | int local_locked = 1; |
| 1839 | int gup_flags; |
| 1840 | long ret; |
| 1841 | |
| 1842 | VM_WARN_ON_ONCE(!PAGE_ALIGNED(start)); |
| 1843 | VM_WARN_ON_ONCE(!PAGE_ALIGNED(end)); |
| 1844 | VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma); |
| 1845 | VM_WARN_ON_ONCE_VMA(end > vma->vm_end, vma); |
| 1846 | mmap_assert_locked(mm); |
| 1847 | |
| 1848 | /* |
| 1849 | * Rightly or wrongly, the VM_LOCKONFAULT case has never used |
| 1850 | * faultin_page() to break COW, so it has no work to do here. |
| 1851 | */ |
| 1852 | if (vma->vm_flags & VM_LOCKONFAULT) |
| 1853 | return nr_pages; |
| 1854 | |
| 1855 | /* ... similarly, we've never faulted in PROT_NONE pages */ |
| 1856 | if (!vma_is_accessible(vma)) |
| 1857 | return -EFAULT; |
| 1858 | |
| 1859 | gup_flags = FOLL_TOUCH; |
| 1860 | /* |
| 1861 | * We want to touch writable mappings with a write fault in order |
| 1862 | * to break COW, except for shared mappings because these don't COW |
| 1863 | * and we would not want to dirty them for nothing. |
| 1864 | * |
| 1865 | * Otherwise, do a read fault, and use FOLL_FORCE in case it's not |
| 1866 | * readable (ie write-only or executable). |
| 1867 | */ |
| 1868 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) |
| 1869 | gup_flags |= FOLL_WRITE; |
| 1870 | else |
| 1871 | gup_flags |= FOLL_FORCE; |
| 1872 | |
| 1873 | if (locked) |
| 1874 | gup_flags |= FOLL_UNLOCKABLE; |
| 1875 | |
| 1876 | /* |
| 1877 | * We made sure addr is within a VMA, so the following will |
| 1878 | * not result in a stack expansion that recurses back here. |
| 1879 | */ |
| 1880 | ret = __get_user_pages(mm, start, nr_pages, gup_flags, |
| 1881 | NULL, locked ? locked : &local_locked); |
| 1882 | lru_add_drain(); |
| 1883 | return ret; |
| 1884 | } |
| 1885 | |
| 1886 | /* |
| 1887 | * faultin_page_range() - populate (prefault) page tables inside the |
| 1888 | * given range readable/writable |
| 1889 | * |
| 1890 | * This takes care of mlocking the pages, too, if VM_LOCKED is set. |
| 1891 | * |
| 1892 | * @mm: the mm to populate page tables in |
| 1893 | * @start: start address |
| 1894 | * @end: end address |
| 1895 | * @write: whether to prefault readable or writable |
| 1896 | * @locked: whether the mmap_lock is still held |
| 1897 | * |
| 1898 | * Returns either number of processed pages in the MM, or a negative error |
| 1899 | * code on error (see __get_user_pages()). Note that this function reports |
| 1900 | * errors related to VMAs, such as incompatible mappings, as expected by |
| 1901 | * MADV_POPULATE_(READ|WRITE). |
| 1902 | * |
| 1903 | * The range must be page-aligned. |
| 1904 | * |
| 1905 | * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. |
| 1906 | */ |
| 1907 | long faultin_page_range(struct mm_struct *mm, unsigned long start, |
| 1908 | unsigned long end, bool write, int *locked) |
| 1909 | { |
| 1910 | unsigned long nr_pages = (end - start) / PAGE_SIZE; |
| 1911 | int gup_flags; |
| 1912 | long ret; |
| 1913 | |
| 1914 | VM_WARN_ON_ONCE(!PAGE_ALIGNED(start)); |
| 1915 | VM_WARN_ON_ONCE(!PAGE_ALIGNED(end)); |
| 1916 | mmap_assert_locked(mm); |
| 1917 | |
| 1918 | /* |
| 1919 | * FOLL_TOUCH: Mark page accessed and thereby young; will also mark |
| 1920 | * the page dirty with FOLL_WRITE -- which doesn't make a |
| 1921 | * difference with !FOLL_FORCE, because the page is writable |
| 1922 | * in the page table. |
| 1923 | * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit |
| 1924 | * a poisoned page. |
| 1925 | * !FOLL_FORCE: Require proper access permissions. |
| 1926 | */ |
| 1927 | gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | |
| 1928 | FOLL_MADV_POPULATE; |
| 1929 | if (write) |
| 1930 | gup_flags |= FOLL_WRITE; |
| 1931 | |
| 1932 | ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, |
| 1933 | gup_flags); |
| 1934 | lru_add_drain(); |
| 1935 | return ret; |
| 1936 | } |
| 1937 | |
| 1938 | /* |
| 1939 | * __mm_populate - populate and/or mlock pages within a range of address space. |
| 1940 | * |
| 1941 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap |
| 1942 | * flags. VMAs must be already marked with the desired vm_flags, and |
| 1943 | * mmap_lock must not be held. |
| 1944 | */ |
| 1945 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) |
| 1946 | { |
| 1947 | struct mm_struct *mm = current->mm; |
| 1948 | unsigned long end, nstart, nend; |
| 1949 | struct vm_area_struct *vma = NULL; |
| 1950 | int locked = 0; |
| 1951 | long ret = 0; |
| 1952 | |
| 1953 | end = start + len; |
| 1954 | |
| 1955 | for (nstart = start; nstart < end; nstart = nend) { |
| 1956 | /* |
| 1957 | * We want to fault in pages for [nstart; end) address range. |
| 1958 | * Find first corresponding VMA. |
| 1959 | */ |
| 1960 | if (!locked) { |
| 1961 | locked = 1; |
| 1962 | mmap_read_lock(mm); |
| 1963 | vma = find_vma_intersection(mm, nstart, end); |
| 1964 | } else if (nstart >= vma->vm_end) |
| 1965 | vma = find_vma_intersection(mm, vma->vm_end, end); |
| 1966 | |
| 1967 | if (!vma) |
| 1968 | break; |
| 1969 | /* |
| 1970 | * Set [nstart; nend) to intersection of desired address |
| 1971 | * range with the first VMA. Also, skip undesirable VMA types. |
| 1972 | */ |
| 1973 | nend = min(end, vma->vm_end); |
| 1974 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) |
| 1975 | continue; |
| 1976 | if (nstart < vma->vm_start) |
| 1977 | nstart = vma->vm_start; |
| 1978 | /* |
| 1979 | * Now fault in a range of pages. populate_vma_page_range() |
| 1980 | * double checks the vma flags, so that it won't mlock pages |
| 1981 | * if the vma was already munlocked. |
| 1982 | */ |
| 1983 | ret = populate_vma_page_range(vma, nstart, nend, &locked); |
| 1984 | if (ret < 0) { |
| 1985 | if (ignore_errors) { |
| 1986 | ret = 0; |
| 1987 | continue; /* continue at next VMA */ |
| 1988 | } |
| 1989 | break; |
| 1990 | } |
| 1991 | nend = nstart + ret * PAGE_SIZE; |
| 1992 | ret = 0; |
| 1993 | } |
| 1994 | if (locked) |
| 1995 | mmap_read_unlock(mm); |
| 1996 | return ret; /* 0 or negative error code */ |
| 1997 | } |
| 1998 | #else /* CONFIG_MMU */ |
| 1999 | static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, |
| 2000 | unsigned long nr_pages, struct page **pages, |
| 2001 | int *locked, unsigned int foll_flags) |
| 2002 | { |
| 2003 | struct vm_area_struct *vma; |
| 2004 | bool must_unlock = false; |
| 2005 | vm_flags_t vm_flags; |
| 2006 | long i; |
| 2007 | |
| 2008 | if (!nr_pages) |
| 2009 | return 0; |
| 2010 | |
| 2011 | /* |
| 2012 | * The internal caller expects GUP to manage the lock internally and the |
| 2013 | * lock must be released when this returns. |
| 2014 | */ |
| 2015 | if (!*locked) { |
| 2016 | if (mmap_read_lock_killable(mm)) |
| 2017 | return -EAGAIN; |
| 2018 | must_unlock = true; |
| 2019 | *locked = 1; |
| 2020 | } |
| 2021 | |
| 2022 | /* calculate required read or write permissions. |
| 2023 | * If FOLL_FORCE is set, we only require the "MAY" flags. |
| 2024 | */ |
| 2025 | vm_flags = (foll_flags & FOLL_WRITE) ? |
| 2026 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
| 2027 | vm_flags &= (foll_flags & FOLL_FORCE) ? |
| 2028 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); |
| 2029 | |
| 2030 | for (i = 0; i < nr_pages; i++) { |
| 2031 | vma = find_vma(mm, start); |
| 2032 | if (!vma) |
| 2033 | break; |
| 2034 | |
| 2035 | /* protect what we can, including chardevs */ |
| 2036 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || |
| 2037 | !(vm_flags & vma->vm_flags)) |
| 2038 | break; |
| 2039 | |
| 2040 | if (pages) { |
| 2041 | pages[i] = virt_to_page((void *)start); |
| 2042 | if (pages[i]) |
| 2043 | get_page(pages[i]); |
| 2044 | } |
| 2045 | |
| 2046 | start = (start + PAGE_SIZE) & PAGE_MASK; |
| 2047 | } |
| 2048 | |
| 2049 | if (must_unlock && *locked) { |
| 2050 | mmap_read_unlock(mm); |
| 2051 | *locked = 0; |
| 2052 | } |
| 2053 | |
| 2054 | return i ? : -EFAULT; |
| 2055 | } |
| 2056 | #endif /* !CONFIG_MMU */ |
| 2057 | |
| 2058 | /** |
| 2059 | * fault_in_writeable - fault in userspace address range for writing |
| 2060 | * @uaddr: start of address range |
| 2061 | * @size: size of address range |
| 2062 | * |
| 2063 | * Returns the number of bytes not faulted in (like copy_to_user() and |
| 2064 | * copy_from_user()). |
| 2065 | */ |
| 2066 | size_t fault_in_writeable(char __user *uaddr, size_t size) |
| 2067 | { |
| 2068 | const unsigned long start = (unsigned long)uaddr; |
| 2069 | const unsigned long end = start + size; |
| 2070 | unsigned long cur; |
| 2071 | |
| 2072 | if (unlikely(size == 0)) |
| 2073 | return 0; |
| 2074 | if (!user_write_access_begin(uaddr, size)) |
| 2075 | return size; |
| 2076 | |
| 2077 | /* Stop once we overflow to 0. */ |
| 2078 | for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) |
| 2079 | unsafe_put_user(0, (char __user *)cur, out); |
| 2080 | out: |
| 2081 | user_write_access_end(); |
| 2082 | if (size > cur - start) |
| 2083 | return size - (cur - start); |
| 2084 | return 0; |
| 2085 | } |
| 2086 | EXPORT_SYMBOL(fault_in_writeable); |
| 2087 | |
| 2088 | /** |
| 2089 | * fault_in_subpage_writeable - fault in an address range for writing |
| 2090 | * @uaddr: start of address range |
| 2091 | * @size: size of address range |
| 2092 | * |
| 2093 | * Fault in a user address range for writing while checking for permissions at |
| 2094 | * sub-page granularity (e.g. arm64 MTE). This function should be used when |
| 2095 | * the caller cannot guarantee forward progress of a copy_to_user() loop. |
| 2096 | * |
| 2097 | * Returns the number of bytes not faulted in (like copy_to_user() and |
| 2098 | * copy_from_user()). |
| 2099 | */ |
| 2100 | size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) |
| 2101 | { |
| 2102 | size_t faulted_in; |
| 2103 | |
| 2104 | /* |
| 2105 | * Attempt faulting in at page granularity first for page table |
| 2106 | * permission checking. The arch-specific probe_subpage_writeable() |
| 2107 | * functions may not check for this. |
| 2108 | */ |
| 2109 | faulted_in = size - fault_in_writeable(uaddr, size); |
| 2110 | if (faulted_in) |
| 2111 | faulted_in -= probe_subpage_writeable(uaddr, faulted_in); |
| 2112 | |
| 2113 | return size - faulted_in; |
| 2114 | } |
| 2115 | EXPORT_SYMBOL(fault_in_subpage_writeable); |
| 2116 | |
| 2117 | /* |
| 2118 | * fault_in_safe_writeable - fault in an address range for writing |
| 2119 | * @uaddr: start of address range |
| 2120 | * @size: length of address range |
| 2121 | * |
| 2122 | * Faults in an address range for writing. This is primarily useful when we |
| 2123 | * already know that some or all of the pages in the address range aren't in |
| 2124 | * memory. |
| 2125 | * |
| 2126 | * Unlike fault_in_writeable(), this function is non-destructive. |
| 2127 | * |
| 2128 | * Note that we don't pin or otherwise hold the pages referenced that we fault |
| 2129 | * in. There's no guarantee that they'll stay in memory for any duration of |
| 2130 | * time. |
| 2131 | * |
| 2132 | * Returns the number of bytes not faulted in, like copy_to_user() and |
| 2133 | * copy_from_user(). |
| 2134 | */ |
| 2135 | size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) |
| 2136 | { |
| 2137 | const unsigned long start = (unsigned long)uaddr; |
| 2138 | const unsigned long end = start + size; |
| 2139 | unsigned long cur; |
| 2140 | struct mm_struct *mm = current->mm; |
| 2141 | bool unlocked = false; |
| 2142 | |
| 2143 | if (unlikely(size == 0)) |
| 2144 | return 0; |
| 2145 | |
| 2146 | mmap_read_lock(mm); |
| 2147 | /* Stop once we overflow to 0. */ |
| 2148 | for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) |
| 2149 | if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked)) |
| 2150 | break; |
| 2151 | mmap_read_unlock(mm); |
| 2152 | |
| 2153 | if (size > cur - start) |
| 2154 | return size - (cur - start); |
| 2155 | return 0; |
| 2156 | } |
| 2157 | EXPORT_SYMBOL(fault_in_safe_writeable); |
| 2158 | |
| 2159 | /** |
| 2160 | * fault_in_readable - fault in userspace address range for reading |
| 2161 | * @uaddr: start of user address range |
| 2162 | * @size: size of user address range |
| 2163 | * |
| 2164 | * Returns the number of bytes not faulted in (like copy_to_user() and |
| 2165 | * copy_from_user()). |
| 2166 | */ |
| 2167 | size_t fault_in_readable(const char __user *uaddr, size_t size) |
| 2168 | { |
| 2169 | const unsigned long start = (unsigned long)uaddr; |
| 2170 | const unsigned long end = start + size; |
| 2171 | unsigned long cur; |
| 2172 | volatile char c; |
| 2173 | |
| 2174 | if (unlikely(size == 0)) |
| 2175 | return 0; |
| 2176 | if (!user_read_access_begin(uaddr, size)) |
| 2177 | return size; |
| 2178 | |
| 2179 | /* Stop once we overflow to 0. */ |
| 2180 | for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) |
| 2181 | unsafe_get_user(c, (const char __user *)cur, out); |
| 2182 | out: |
| 2183 | user_read_access_end(); |
| 2184 | (void)c; |
| 2185 | if (size > cur - start) |
| 2186 | return size - (cur - start); |
| 2187 | return 0; |
| 2188 | } |
| 2189 | EXPORT_SYMBOL(fault_in_readable); |
| 2190 | |
| 2191 | /** |
| 2192 | * get_dump_page() - pin user page in memory while writing it to core dump |
| 2193 | * @addr: user address |
| 2194 | * @locked: a pointer to an int denoting whether the mmap sem is held |
| 2195 | * |
| 2196 | * Returns struct page pointer of user page pinned for dump, |
| 2197 | * to be freed afterwards by put_page(). |
| 2198 | * |
| 2199 | * Returns NULL on any kind of failure - a hole must then be inserted into |
| 2200 | * the corefile, to preserve alignment with its headers; and also returns |
| 2201 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - |
| 2202 | * allowing a hole to be left in the corefile to save disk space. |
| 2203 | * |
| 2204 | * Called without mmap_lock (takes and releases the mmap_lock by itself). |
| 2205 | */ |
| 2206 | #ifdef CONFIG_ELF_CORE |
| 2207 | struct page *get_dump_page(unsigned long addr, int *locked) |
| 2208 | { |
| 2209 | struct page *page; |
| 2210 | int ret; |
| 2211 | |
| 2212 | ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked, |
| 2213 | FOLL_FORCE | FOLL_DUMP | FOLL_GET); |
| 2214 | return (ret == 1) ? page : NULL; |
| 2215 | } |
| 2216 | #endif /* CONFIG_ELF_CORE */ |
| 2217 | |
| 2218 | #ifdef CONFIG_MIGRATION |
| 2219 | |
| 2220 | /* |
| 2221 | * An array of either pages or folios ("pofs"). Although it may seem tempting to |
| 2222 | * avoid this complication, by simply interpreting a list of folios as a list of |
| 2223 | * pages, that approach won't work in the longer term, because eventually the |
| 2224 | * layouts of struct page and struct folio will become completely different. |
| 2225 | * Furthermore, this pof approach avoids excessive page_folio() calls. |
| 2226 | */ |
| 2227 | struct pages_or_folios { |
| 2228 | union { |
| 2229 | struct page **pages; |
| 2230 | struct folio **folios; |
| 2231 | void **entries; |
| 2232 | }; |
| 2233 | bool has_folios; |
| 2234 | long nr_entries; |
| 2235 | }; |
| 2236 | |
| 2237 | static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i) |
| 2238 | { |
| 2239 | if (pofs->has_folios) |
| 2240 | return pofs->folios[i]; |
| 2241 | return page_folio(pofs->pages[i]); |
| 2242 | } |
| 2243 | |
| 2244 | static void pofs_clear_entry(struct pages_or_folios *pofs, long i) |
| 2245 | { |
| 2246 | pofs->entries[i] = NULL; |
| 2247 | } |
| 2248 | |
| 2249 | static void pofs_unpin(struct pages_or_folios *pofs) |
| 2250 | { |
| 2251 | if (pofs->has_folios) |
| 2252 | unpin_folios(pofs->folios, pofs->nr_entries); |
| 2253 | else |
| 2254 | unpin_user_pages(pofs->pages, pofs->nr_entries); |
| 2255 | } |
| 2256 | |
| 2257 | static struct folio *pofs_next_folio(struct folio *folio, |
| 2258 | struct pages_or_folios *pofs, long *index_ptr) |
| 2259 | { |
| 2260 | long i = *index_ptr + 1; |
| 2261 | |
| 2262 | if (!pofs->has_folios && folio_test_large(folio)) { |
| 2263 | const unsigned long start_pfn = folio_pfn(folio); |
| 2264 | const unsigned long end_pfn = start_pfn + folio_nr_pages(folio); |
| 2265 | |
| 2266 | for (; i < pofs->nr_entries; i++) { |
| 2267 | unsigned long pfn = page_to_pfn(pofs->pages[i]); |
| 2268 | |
| 2269 | /* Is this page part of this folio? */ |
| 2270 | if (pfn < start_pfn || pfn >= end_pfn) |
| 2271 | break; |
| 2272 | } |
| 2273 | } |
| 2274 | |
| 2275 | if (unlikely(i == pofs->nr_entries)) |
| 2276 | return NULL; |
| 2277 | *index_ptr = i; |
| 2278 | |
| 2279 | return pofs_get_folio(pofs, i); |
| 2280 | } |
| 2281 | |
| 2282 | /* |
| 2283 | * Returns the number of collected folios. Return value is always >= 0. |
| 2284 | */ |
| 2285 | static unsigned long collect_longterm_unpinnable_folios( |
| 2286 | struct list_head *movable_folio_list, |
| 2287 | struct pages_or_folios *pofs) |
| 2288 | { |
| 2289 | unsigned long collected = 0; |
| 2290 | struct folio *folio; |
| 2291 | int drained = 0; |
| 2292 | long i = 0; |
| 2293 | |
| 2294 | for (folio = pofs_get_folio(pofs, i); folio; |
| 2295 | folio = pofs_next_folio(folio, pofs, &i)) { |
| 2296 | |
| 2297 | if (folio_is_longterm_pinnable(folio)) |
| 2298 | continue; |
| 2299 | |
| 2300 | collected++; |
| 2301 | |
| 2302 | if (folio_is_device_coherent(folio)) |
| 2303 | continue; |
| 2304 | |
| 2305 | if (folio_test_hugetlb(folio)) { |
| 2306 | folio_isolate_hugetlb(folio, movable_folio_list); |
| 2307 | continue; |
| 2308 | } |
| 2309 | |
| 2310 | if (drained == 0 && folio_may_be_lru_cached(folio) && |
| 2311 | folio_ref_count(folio) != |
| 2312 | folio_expected_ref_count(folio) + 1) { |
| 2313 | lru_add_drain(); |
| 2314 | drained = 1; |
| 2315 | } |
| 2316 | if (drained == 1 && folio_may_be_lru_cached(folio) && |
| 2317 | folio_ref_count(folio) != |
| 2318 | folio_expected_ref_count(folio) + 1) { |
| 2319 | lru_add_drain_all(); |
| 2320 | drained = 2; |
| 2321 | } |
| 2322 | |
| 2323 | if (!folio_isolate_lru(folio)) |
| 2324 | continue; |
| 2325 | |
| 2326 | list_add_tail(&folio->lru, movable_folio_list); |
| 2327 | node_stat_mod_folio(folio, |
| 2328 | NR_ISOLATED_ANON + folio_is_file_lru(folio), |
| 2329 | folio_nr_pages(folio)); |
| 2330 | } |
| 2331 | |
| 2332 | return collected; |
| 2333 | } |
| 2334 | |
| 2335 | /* |
| 2336 | * Unpins all folios and migrates device coherent folios and movable_folio_list. |
| 2337 | * Returns -EAGAIN if all folios were successfully migrated or -errno for |
| 2338 | * failure (or partial success). |
| 2339 | */ |
| 2340 | static int |
| 2341 | migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list, |
| 2342 | struct pages_or_folios *pofs) |
| 2343 | { |
| 2344 | int ret; |
| 2345 | unsigned long i; |
| 2346 | |
| 2347 | for (i = 0; i < pofs->nr_entries; i++) { |
| 2348 | struct folio *folio = pofs_get_folio(pofs, i); |
| 2349 | |
| 2350 | if (folio_is_device_coherent(folio)) { |
| 2351 | /* |
| 2352 | * Migration will fail if the folio is pinned, so |
| 2353 | * convert the pin on the source folio to a normal |
| 2354 | * reference. |
| 2355 | */ |
| 2356 | pofs_clear_entry(pofs, i); |
| 2357 | folio_get(folio); |
| 2358 | gup_put_folio(folio, 1, FOLL_PIN); |
| 2359 | |
| 2360 | if (migrate_device_coherent_folio(folio)) { |
| 2361 | ret = -EBUSY; |
| 2362 | goto err; |
| 2363 | } |
| 2364 | |
| 2365 | continue; |
| 2366 | } |
| 2367 | |
| 2368 | /* |
| 2369 | * We can't migrate folios with unexpected references, so drop |
| 2370 | * the reference obtained by __get_user_pages_locked(). |
| 2371 | * Migrating folios have been added to movable_folio_list after |
| 2372 | * calling folio_isolate_lru() which takes a reference so the |
| 2373 | * folio won't be freed if it's migrating. |
| 2374 | */ |
| 2375 | unpin_folio(folio); |
| 2376 | pofs_clear_entry(pofs, i); |
| 2377 | } |
| 2378 | |
| 2379 | if (!list_empty(movable_folio_list)) { |
| 2380 | struct migration_target_control mtc = { |
| 2381 | .nid = NUMA_NO_NODE, |
| 2382 | .gfp_mask = GFP_USER | __GFP_NOWARN, |
| 2383 | .reason = MR_LONGTERM_PIN, |
| 2384 | }; |
| 2385 | |
| 2386 | if (migrate_pages(movable_folio_list, alloc_migration_target, |
| 2387 | NULL, (unsigned long)&mtc, MIGRATE_SYNC, |
| 2388 | MR_LONGTERM_PIN, NULL)) { |
| 2389 | ret = -ENOMEM; |
| 2390 | goto err; |
| 2391 | } |
| 2392 | } |
| 2393 | |
| 2394 | putback_movable_pages(movable_folio_list); |
| 2395 | |
| 2396 | return -EAGAIN; |
| 2397 | |
| 2398 | err: |
| 2399 | pofs_unpin(pofs); |
| 2400 | putback_movable_pages(movable_folio_list); |
| 2401 | |
| 2402 | return ret; |
| 2403 | } |
| 2404 | |
| 2405 | static long |
| 2406 | check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs) |
| 2407 | { |
| 2408 | LIST_HEAD(movable_folio_list); |
| 2409 | unsigned long collected; |
| 2410 | |
| 2411 | collected = collect_longterm_unpinnable_folios(&movable_folio_list, |
| 2412 | pofs); |
| 2413 | if (!collected) |
| 2414 | return 0; |
| 2415 | |
| 2416 | return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs); |
| 2417 | } |
| 2418 | |
| 2419 | /* |
| 2420 | * Check whether all folios are *allowed* to be pinned indefinitely (long term). |
| 2421 | * Rather confusingly, all folios in the range are required to be pinned via |
| 2422 | * FOLL_PIN, before calling this routine. |
| 2423 | * |
| 2424 | * Return values: |
| 2425 | * |
| 2426 | * 0: if everything is OK and all folios in the range are allowed to be pinned, |
| 2427 | * then this routine leaves all folios pinned and returns zero for success. |
| 2428 | * |
| 2429 | * -EAGAIN: if any folios in the range are not allowed to be pinned, then this |
| 2430 | * routine will migrate those folios away, unpin all the folios in the range. If |
| 2431 | * migration of the entire set of folios succeeds, then -EAGAIN is returned. The |
| 2432 | * caller should re-pin the entire range with FOLL_PIN and then call this |
| 2433 | * routine again. |
| 2434 | * |
| 2435 | * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this |
| 2436 | * indicates a migration failure. The caller should give up, and propagate the |
| 2437 | * error back up the call stack. The caller does not need to unpin any folios in |
| 2438 | * that case, because this routine will do the unpinning. |
| 2439 | */ |
| 2440 | static long check_and_migrate_movable_folios(unsigned long nr_folios, |
| 2441 | struct folio **folios) |
| 2442 | { |
| 2443 | struct pages_or_folios pofs = { |
| 2444 | .folios = folios, |
| 2445 | .has_folios = true, |
| 2446 | .nr_entries = nr_folios, |
| 2447 | }; |
| 2448 | |
| 2449 | return check_and_migrate_movable_pages_or_folios(&pofs); |
| 2450 | } |
| 2451 | |
| 2452 | /* |
| 2453 | * Return values and behavior are the same as those for |
| 2454 | * check_and_migrate_movable_folios(). |
| 2455 | */ |
| 2456 | static long check_and_migrate_movable_pages(unsigned long nr_pages, |
| 2457 | struct page **pages) |
| 2458 | { |
| 2459 | struct pages_or_folios pofs = { |
| 2460 | .pages = pages, |
| 2461 | .has_folios = false, |
| 2462 | .nr_entries = nr_pages, |
| 2463 | }; |
| 2464 | |
| 2465 | return check_and_migrate_movable_pages_or_folios(&pofs); |
| 2466 | } |
| 2467 | #else |
| 2468 | static long check_and_migrate_movable_pages(unsigned long nr_pages, |
| 2469 | struct page **pages) |
| 2470 | { |
| 2471 | return 0; |
| 2472 | } |
| 2473 | |
| 2474 | static long check_and_migrate_movable_folios(unsigned long nr_folios, |
| 2475 | struct folio **folios) |
| 2476 | { |
| 2477 | return 0; |
| 2478 | } |
| 2479 | #endif /* CONFIG_MIGRATION */ |
| 2480 | |
| 2481 | /* |
| 2482 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
| 2483 | * allows us to process the FOLL_LONGTERM flag. |
| 2484 | */ |
| 2485 | static long __gup_longterm_locked(struct mm_struct *mm, |
| 2486 | unsigned long start, |
| 2487 | unsigned long nr_pages, |
| 2488 | struct page **pages, |
| 2489 | int *locked, |
| 2490 | unsigned int gup_flags) |
| 2491 | { |
| 2492 | unsigned int flags; |
| 2493 | long rc, nr_pinned_pages; |
| 2494 | |
| 2495 | if (!(gup_flags & FOLL_LONGTERM)) |
| 2496 | return __get_user_pages_locked(mm, start, nr_pages, pages, |
| 2497 | locked, gup_flags); |
| 2498 | |
| 2499 | flags = memalloc_pin_save(); |
| 2500 | do { |
| 2501 | nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, |
| 2502 | pages, locked, |
| 2503 | gup_flags); |
| 2504 | if (nr_pinned_pages <= 0) { |
| 2505 | rc = nr_pinned_pages; |
| 2506 | break; |
| 2507 | } |
| 2508 | |
| 2509 | /* FOLL_LONGTERM implies FOLL_PIN */ |
| 2510 | rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); |
| 2511 | } while (rc == -EAGAIN); |
| 2512 | memalloc_pin_restore(flags); |
| 2513 | return rc ? rc : nr_pinned_pages; |
| 2514 | } |
| 2515 | |
| 2516 | /* |
| 2517 | * Check that the given flags are valid for the exported gup/pup interface, and |
| 2518 | * update them with the required flags that the caller must have set. |
| 2519 | */ |
| 2520 | static bool is_valid_gup_args(struct page **pages, int *locked, |
| 2521 | unsigned int *gup_flags_p, unsigned int to_set) |
| 2522 | { |
| 2523 | unsigned int gup_flags = *gup_flags_p; |
| 2524 | |
| 2525 | /* |
| 2526 | * These flags not allowed to be specified externally to the gup |
| 2527 | * interfaces: |
| 2528 | * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only |
| 2529 | * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() |
| 2530 | * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL |
| 2531 | */ |
| 2532 | if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) |
| 2533 | return false; |
| 2534 | |
| 2535 | gup_flags |= to_set; |
| 2536 | if (locked) { |
| 2537 | /* At the external interface locked must be set */ |
| 2538 | if (WARN_ON_ONCE(*locked != 1)) |
| 2539 | return false; |
| 2540 | |
| 2541 | gup_flags |= FOLL_UNLOCKABLE; |
| 2542 | } |
| 2543 | |
| 2544 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
| 2545 | if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == |
| 2546 | (FOLL_PIN | FOLL_GET))) |
| 2547 | return false; |
| 2548 | |
| 2549 | /* LONGTERM can only be specified when pinning */ |
| 2550 | if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) |
| 2551 | return false; |
| 2552 | |
| 2553 | /* Pages input must be given if using GET/PIN */ |
| 2554 | if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) |
| 2555 | return false; |
| 2556 | |
| 2557 | /* We want to allow the pgmap to be hot-unplugged at all times */ |
| 2558 | if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && |
| 2559 | (gup_flags & FOLL_PCI_P2PDMA))) |
| 2560 | return false; |
| 2561 | |
| 2562 | *gup_flags_p = gup_flags; |
| 2563 | return true; |
| 2564 | } |
| 2565 | |
| 2566 | #ifdef CONFIG_MMU |
| 2567 | /** |
| 2568 | * get_user_pages_remote() - pin user pages in memory |
| 2569 | * @mm: mm_struct of target mm |
| 2570 | * @start: starting user address |
| 2571 | * @nr_pages: number of pages from start to pin |
| 2572 | * @gup_flags: flags modifying lookup behaviour |
| 2573 | * @pages: array that receives pointers to the pages pinned. |
| 2574 | * Should be at least nr_pages long. Or NULL, if caller |
| 2575 | * only intends to ensure the pages are faulted in. |
| 2576 | * @locked: pointer to lock flag indicating whether lock is held and |
| 2577 | * subsequently whether VM_FAULT_RETRY functionality can be |
| 2578 | * utilised. Lock must initially be held. |
| 2579 | * |
| 2580 | * Returns either number of pages pinned (which may be less than the |
| 2581 | * number requested), or an error. Details about the return value: |
| 2582 | * |
| 2583 | * -- If nr_pages is 0, returns 0. |
| 2584 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. |
| 2585 | * -- If nr_pages is >0, and some pages were pinned, returns the number of |
| 2586 | * pages pinned. Again, this may be less than nr_pages. |
| 2587 | * |
| 2588 | * The caller is responsible for releasing returned @pages, via put_page(). |
| 2589 | * |
| 2590 | * Must be called with mmap_lock held for read or write. |
| 2591 | * |
| 2592 | * get_user_pages_remote walks a process's page tables and takes a reference |
| 2593 | * to each struct page that each user address corresponds to at a given |
| 2594 | * instant. That is, it takes the page that would be accessed if a user |
| 2595 | * thread accesses the given user virtual address at that instant. |
| 2596 | * |
| 2597 | * This does not guarantee that the page exists in the user mappings when |
| 2598 | * get_user_pages_remote returns, and there may even be a completely different |
| 2599 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
| 2600 | * and subsequently re-faulted). However it does guarantee that the page |
| 2601 | * won't be freed completely. And mostly callers simply care that the page |
| 2602 | * contains data that was valid *at some point in time*. Typically, an IO |
| 2603 | * or similar operation cannot guarantee anything stronger anyway because |
| 2604 | * locks can't be held over the syscall boundary. |
| 2605 | * |
| 2606 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page |
| 2607 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must |
| 2608 | * be called after the page is finished with, and before put_page is called. |
| 2609 | * |
| 2610 | * get_user_pages_remote is typically used for fewer-copy IO operations, |
| 2611 | * to get a handle on the memory by some means other than accesses |
| 2612 | * via the user virtual addresses. The pages may be submitted for |
| 2613 | * DMA to devices or accessed via their kernel linear mapping (via the |
| 2614 | * kmap APIs). Care should be taken to use the correct cache flushing APIs. |
| 2615 | * |
| 2616 | * See also get_user_pages_fast, for performance critical applications. |
| 2617 | * |
| 2618 | * get_user_pages_remote should be phased out in favor of |
| 2619 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing |
| 2620 | * should use get_user_pages_remote because it cannot pass |
| 2621 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. |
| 2622 | */ |
| 2623 | long get_user_pages_remote(struct mm_struct *mm, |
| 2624 | unsigned long start, unsigned long nr_pages, |
| 2625 | unsigned int gup_flags, struct page **pages, |
| 2626 | int *locked) |
| 2627 | { |
| 2628 | int local_locked = 1; |
| 2629 | |
| 2630 | if (!is_valid_gup_args(pages, locked, &gup_flags, |
| 2631 | FOLL_TOUCH | FOLL_REMOTE)) |
| 2632 | return -EINVAL; |
| 2633 | |
| 2634 | return __get_user_pages_locked(mm, start, nr_pages, pages, |
| 2635 | locked ? locked : &local_locked, |
| 2636 | gup_flags); |
| 2637 | } |
| 2638 | EXPORT_SYMBOL(get_user_pages_remote); |
| 2639 | |
| 2640 | #else /* CONFIG_MMU */ |
| 2641 | long get_user_pages_remote(struct mm_struct *mm, |
| 2642 | unsigned long start, unsigned long nr_pages, |
| 2643 | unsigned int gup_flags, struct page **pages, |
| 2644 | int *locked) |
| 2645 | { |
| 2646 | return 0; |
| 2647 | } |
| 2648 | #endif /* !CONFIG_MMU */ |
| 2649 | |
| 2650 | /** |
| 2651 | * get_user_pages() - pin user pages in memory |
| 2652 | * @start: starting user address |
| 2653 | * @nr_pages: number of pages from start to pin |
| 2654 | * @gup_flags: flags modifying lookup behaviour |
| 2655 | * @pages: array that receives pointers to the pages pinned. |
| 2656 | * Should be at least nr_pages long. Or NULL, if caller |
| 2657 | * only intends to ensure the pages are faulted in. |
| 2658 | * |
| 2659 | * This is the same as get_user_pages_remote(), just with a less-flexible |
| 2660 | * calling convention where we assume that the mm being operated on belongs to |
| 2661 | * the current task, and doesn't allow passing of a locked parameter. We also |
| 2662 | * obviously don't pass FOLL_REMOTE in here. |
| 2663 | */ |
| 2664 | long get_user_pages(unsigned long start, unsigned long nr_pages, |
| 2665 | unsigned int gup_flags, struct page **pages) |
| 2666 | { |
| 2667 | int locked = 1; |
| 2668 | |
| 2669 | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) |
| 2670 | return -EINVAL; |
| 2671 | |
| 2672 | return __get_user_pages_locked(current->mm, start, nr_pages, pages, |
| 2673 | &locked, gup_flags); |
| 2674 | } |
| 2675 | EXPORT_SYMBOL(get_user_pages); |
| 2676 | |
| 2677 | /* |
| 2678 | * get_user_pages_unlocked() is suitable to replace the form: |
| 2679 | * |
| 2680 | * mmap_read_lock(mm); |
| 2681 | * get_user_pages(mm, ..., pages, NULL); |
| 2682 | * mmap_read_unlock(mm); |
| 2683 | * |
| 2684 | * with: |
| 2685 | * |
| 2686 | * get_user_pages_unlocked(mm, ..., pages); |
| 2687 | * |
| 2688 | * It is functionally equivalent to get_user_pages_fast so |
| 2689 | * get_user_pages_fast should be used instead if specific gup_flags |
| 2690 | * (e.g. FOLL_FORCE) are not required. |
| 2691 | */ |
| 2692 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
| 2693 | struct page **pages, unsigned int gup_flags) |
| 2694 | { |
| 2695 | int locked = 0; |
| 2696 | |
| 2697 | if (!is_valid_gup_args(pages, NULL, &gup_flags, |
| 2698 | FOLL_TOUCH | FOLL_UNLOCKABLE)) |
| 2699 | return -EINVAL; |
| 2700 | |
| 2701 | return __get_user_pages_locked(current->mm, start, nr_pages, pages, |
| 2702 | &locked, gup_flags); |
| 2703 | } |
| 2704 | EXPORT_SYMBOL(get_user_pages_unlocked); |
| 2705 | |
| 2706 | /* |
| 2707 | * GUP-fast |
| 2708 | * |
| 2709 | * get_user_pages_fast attempts to pin user pages by walking the page |
| 2710 | * tables directly and avoids taking locks. Thus the walker needs to be |
| 2711 | * protected from page table pages being freed from under it, and should |
| 2712 | * block any THP splits. |
| 2713 | * |
| 2714 | * One way to achieve this is to have the walker disable interrupts, and |
| 2715 | * rely on IPIs from the TLB flushing code blocking before the page table |
| 2716 | * pages are freed. This is unsuitable for architectures that do not need |
| 2717 | * to broadcast an IPI when invalidating TLBs. |
| 2718 | * |
| 2719 | * Another way to achieve this is to batch up page table containing pages |
| 2720 | * belonging to more than one mm_user, then rcu_sched a callback to free those |
| 2721 | * pages. Disabling interrupts will allow the gup_fast() walker to both block |
| 2722 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs |
| 2723 | * (which is a relatively rare event). The code below adopts this strategy. |
| 2724 | * |
| 2725 | * Before activating this code, please be aware that the following assumptions |
| 2726 | * are currently made: |
| 2727 | * |
| 2728 | * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
| 2729 | * free pages containing page tables or TLB flushing requires IPI broadcast. |
| 2730 | * |
| 2731 | * *) ptes can be read atomically by the architecture. |
| 2732 | * |
| 2733 | * *) valid user addesses are below TASK_MAX_SIZE |
| 2734 | * |
| 2735 | * The last two assumptions can be relaxed by the addition of helper functions. |
| 2736 | * |
| 2737 | * This code is based heavily on the PowerPC implementation by Nick Piggin. |
| 2738 | */ |
| 2739 | #ifdef CONFIG_HAVE_GUP_FAST |
| 2740 | /* |
| 2741 | * Used in the GUP-fast path to determine whether GUP is permitted to work on |
| 2742 | * a specific folio. |
| 2743 | * |
| 2744 | * This call assumes the caller has pinned the folio, that the lowest page table |
| 2745 | * level still points to this folio, and that interrupts have been disabled. |
| 2746 | * |
| 2747 | * GUP-fast must reject all secretmem folios. |
| 2748 | * |
| 2749 | * Writing to pinned file-backed dirty tracked folios is inherently problematic |
| 2750 | * (see comment describing the writable_file_mapping_allowed() function). We |
| 2751 | * therefore try to avoid the most egregious case of a long-term mapping doing |
| 2752 | * so. |
| 2753 | * |
| 2754 | * This function cannot be as thorough as that one as the VMA is not available |
| 2755 | * in the fast path, so instead we whitelist known good cases and if in doubt, |
| 2756 | * fall back to the slow path. |
| 2757 | */ |
| 2758 | static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) |
| 2759 | { |
| 2760 | bool reject_file_backed = false; |
| 2761 | struct address_space *mapping; |
| 2762 | bool check_secretmem = false; |
| 2763 | unsigned long mapping_flags; |
| 2764 | |
| 2765 | /* |
| 2766 | * If we aren't pinning then no problematic write can occur. A long term |
| 2767 | * pin is the most egregious case so this is the one we disallow. |
| 2768 | */ |
| 2769 | if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == |
| 2770 | (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) |
| 2771 | reject_file_backed = true; |
| 2772 | |
| 2773 | /* We hold a folio reference, so we can safely access folio fields. */ |
| 2774 | |
| 2775 | /* secretmem folios are always order-0 folios. */ |
| 2776 | if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) |
| 2777 | check_secretmem = true; |
| 2778 | |
| 2779 | if (!reject_file_backed && !check_secretmem) |
| 2780 | return true; |
| 2781 | |
| 2782 | if (WARN_ON_ONCE(folio_test_slab(folio))) |
| 2783 | return false; |
| 2784 | |
| 2785 | /* hugetlb neither requires dirty-tracking nor can be secretmem. */ |
| 2786 | if (folio_test_hugetlb(folio)) |
| 2787 | return true; |
| 2788 | |
| 2789 | /* |
| 2790 | * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods |
| 2791 | * cannot proceed, which means no actions performed under RCU can |
| 2792 | * proceed either. |
| 2793 | * |
| 2794 | * inodes and thus their mappings are freed under RCU, which means the |
| 2795 | * mapping cannot be freed beneath us and thus we can safely dereference |
| 2796 | * it. |
| 2797 | */ |
| 2798 | lockdep_assert_irqs_disabled(); |
| 2799 | |
| 2800 | /* |
| 2801 | * However, there may be operations which _alter_ the mapping, so ensure |
| 2802 | * we read it once and only once. |
| 2803 | */ |
| 2804 | mapping = READ_ONCE(folio->mapping); |
| 2805 | |
| 2806 | /* |
| 2807 | * The mapping may have been truncated, in any case we cannot determine |
| 2808 | * if this mapping is safe - fall back to slow path to determine how to |
| 2809 | * proceed. |
| 2810 | */ |
| 2811 | if (!mapping) |
| 2812 | return false; |
| 2813 | |
| 2814 | /* Anonymous folios pose no problem. */ |
| 2815 | mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS; |
| 2816 | if (mapping_flags) |
| 2817 | return mapping_flags & FOLIO_MAPPING_ANON; |
| 2818 | |
| 2819 | /* |
| 2820 | * At this point, we know the mapping is non-null and points to an |
| 2821 | * address_space object. |
| 2822 | */ |
| 2823 | if (check_secretmem && secretmem_mapping(mapping)) |
| 2824 | return false; |
| 2825 | /* The only remaining allowed file system is shmem. */ |
| 2826 | return !reject_file_backed || shmem_mapping(mapping); |
| 2827 | } |
| 2828 | |
| 2829 | static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, |
| 2830 | unsigned int flags, struct page **pages) |
| 2831 | { |
| 2832 | while ((*nr) - nr_start) { |
| 2833 | struct folio *folio = page_folio(pages[--(*nr)]); |
| 2834 | |
| 2835 | folio_clear_referenced(folio); |
| 2836 | gup_put_folio(folio, 1, flags); |
| 2837 | } |
| 2838 | } |
| 2839 | |
| 2840 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
| 2841 | /* |
| 2842 | * GUP-fast relies on pte change detection to avoid concurrent pgtable |
| 2843 | * operations. |
| 2844 | * |
| 2845 | * To pin the page, GUP-fast needs to do below in order: |
| 2846 | * (1) pin the page (by prefetching pte), then (2) check pte not changed. |
| 2847 | * |
| 2848 | * For the rest of pgtable operations where pgtable updates can be racy |
| 2849 | * with GUP-fast, we need to do (1) clear pte, then (2) check whether page |
| 2850 | * is pinned. |
| 2851 | * |
| 2852 | * Above will work for all pte-level operations, including THP split. |
| 2853 | * |
| 2854 | * For THP collapse, it's a bit more complicated because GUP-fast may be |
| 2855 | * walking a pgtable page that is being freed (pte is still valid but pmd |
| 2856 | * can be cleared already). To avoid race in such condition, we need to |
| 2857 | * also check pmd here to make sure pmd doesn't change (corresponds to |
| 2858 | * pmdp_collapse_flush() in the THP collapse code path). |
| 2859 | */ |
| 2860 | static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, |
| 2861 | unsigned long end, unsigned int flags, struct page **pages, |
| 2862 | int *nr) |
| 2863 | { |
| 2864 | struct dev_pagemap *pgmap = NULL; |
| 2865 | int ret = 0; |
| 2866 | pte_t *ptep, *ptem; |
| 2867 | |
| 2868 | ptem = ptep = pte_offset_map(&pmd, addr); |
| 2869 | if (!ptep) |
| 2870 | return 0; |
| 2871 | do { |
| 2872 | pte_t pte = ptep_get_lockless(ptep); |
| 2873 | struct page *page; |
| 2874 | struct folio *folio; |
| 2875 | |
| 2876 | /* |
| 2877 | * Always fallback to ordinary GUP on PROT_NONE-mapped pages: |
| 2878 | * pte_access_permitted() better should reject these pages |
| 2879 | * either way: otherwise, GUP-fast might succeed in |
| 2880 | * cases where ordinary GUP would fail due to VMA access |
| 2881 | * permissions. |
| 2882 | */ |
| 2883 | if (pte_protnone(pte)) |
| 2884 | goto pte_unmap; |
| 2885 | |
| 2886 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
| 2887 | goto pte_unmap; |
| 2888 | |
| 2889 | if (pte_special(pte)) |
| 2890 | goto pte_unmap; |
| 2891 | |
| 2892 | /* If it's not marked as special it must have a valid memmap. */ |
| 2893 | VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte))); |
| 2894 | page = pte_page(pte); |
| 2895 | |
| 2896 | folio = try_grab_folio_fast(page, 1, flags); |
| 2897 | if (!folio) |
| 2898 | goto pte_unmap; |
| 2899 | |
| 2900 | if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || |
| 2901 | unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { |
| 2902 | gup_put_folio(folio, 1, flags); |
| 2903 | goto pte_unmap; |
| 2904 | } |
| 2905 | |
| 2906 | if (!gup_fast_folio_allowed(folio, flags)) { |
| 2907 | gup_put_folio(folio, 1, flags); |
| 2908 | goto pte_unmap; |
| 2909 | } |
| 2910 | |
| 2911 | if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { |
| 2912 | gup_put_folio(folio, 1, flags); |
| 2913 | goto pte_unmap; |
| 2914 | } |
| 2915 | |
| 2916 | /* |
| 2917 | * We need to make the page accessible if and only if we are |
| 2918 | * going to access its content (the FOLL_PIN case). Please |
| 2919 | * see Documentation/core-api/pin_user_pages.rst for |
| 2920 | * details. |
| 2921 | */ |
| 2922 | if (flags & FOLL_PIN) { |
| 2923 | ret = arch_make_folio_accessible(folio); |
| 2924 | if (ret) { |
| 2925 | gup_put_folio(folio, 1, flags); |
| 2926 | goto pte_unmap; |
| 2927 | } |
| 2928 | } |
| 2929 | folio_set_referenced(folio); |
| 2930 | pages[*nr] = page; |
| 2931 | (*nr)++; |
| 2932 | } while (ptep++, addr += PAGE_SIZE, addr != end); |
| 2933 | |
| 2934 | ret = 1; |
| 2935 | |
| 2936 | pte_unmap: |
| 2937 | if (pgmap) |
| 2938 | put_dev_pagemap(pgmap); |
| 2939 | pte_unmap(ptem); |
| 2940 | return ret; |
| 2941 | } |
| 2942 | #else |
| 2943 | |
| 2944 | /* |
| 2945 | * If we can't determine whether or not a pte is special, then fail immediately |
| 2946 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not |
| 2947 | * to be special. |
| 2948 | * |
| 2949 | * For a futex to be placed on a THP tail page, get_futex_key requires a |
| 2950 | * get_user_pages_fast_only implementation that can pin pages. Thus it's still |
| 2951 | * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. |
| 2952 | */ |
| 2953 | static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, |
| 2954 | unsigned long end, unsigned int flags, struct page **pages, |
| 2955 | int *nr) |
| 2956 | { |
| 2957 | return 0; |
| 2958 | } |
| 2959 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
| 2960 | |
| 2961 | static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
| 2962 | unsigned long end, unsigned int flags, struct page **pages, |
| 2963 | int *nr) |
| 2964 | { |
| 2965 | struct page *page; |
| 2966 | struct folio *folio; |
| 2967 | int refs; |
| 2968 | |
| 2969 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
| 2970 | return 0; |
| 2971 | |
| 2972 | if (pmd_special(orig)) |
| 2973 | return 0; |
| 2974 | |
| 2975 | page = pmd_page(orig); |
| 2976 | refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); |
| 2977 | |
| 2978 | folio = try_grab_folio_fast(page, refs, flags); |
| 2979 | if (!folio) |
| 2980 | return 0; |
| 2981 | |
| 2982 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
| 2983 | gup_put_folio(folio, refs, flags); |
| 2984 | return 0; |
| 2985 | } |
| 2986 | |
| 2987 | if (!gup_fast_folio_allowed(folio, flags)) { |
| 2988 | gup_put_folio(folio, refs, flags); |
| 2989 | return 0; |
| 2990 | } |
| 2991 | if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { |
| 2992 | gup_put_folio(folio, refs, flags); |
| 2993 | return 0; |
| 2994 | } |
| 2995 | |
| 2996 | *nr += refs; |
| 2997 | folio_set_referenced(folio); |
| 2998 | return 1; |
| 2999 | } |
| 3000 | |
| 3001 | static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, |
| 3002 | unsigned long end, unsigned int flags, struct page **pages, |
| 3003 | int *nr) |
| 3004 | { |
| 3005 | struct page *page; |
| 3006 | struct folio *folio; |
| 3007 | int refs; |
| 3008 | |
| 3009 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
| 3010 | return 0; |
| 3011 | |
| 3012 | if (pud_special(orig)) |
| 3013 | return 0; |
| 3014 | |
| 3015 | page = pud_page(orig); |
| 3016 | refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); |
| 3017 | |
| 3018 | folio = try_grab_folio_fast(page, refs, flags); |
| 3019 | if (!folio) |
| 3020 | return 0; |
| 3021 | |
| 3022 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
| 3023 | gup_put_folio(folio, refs, flags); |
| 3024 | return 0; |
| 3025 | } |
| 3026 | |
| 3027 | if (!gup_fast_folio_allowed(folio, flags)) { |
| 3028 | gup_put_folio(folio, refs, flags); |
| 3029 | return 0; |
| 3030 | } |
| 3031 | |
| 3032 | if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { |
| 3033 | gup_put_folio(folio, refs, flags); |
| 3034 | return 0; |
| 3035 | } |
| 3036 | |
| 3037 | *nr += refs; |
| 3038 | folio_set_referenced(folio); |
| 3039 | return 1; |
| 3040 | } |
| 3041 | |
| 3042 | static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, |
| 3043 | unsigned long end, unsigned int flags, struct page **pages, |
| 3044 | int *nr) |
| 3045 | { |
| 3046 | unsigned long next; |
| 3047 | pmd_t *pmdp; |
| 3048 | |
| 3049 | pmdp = pmd_offset_lockless(pudp, pud, addr); |
| 3050 | do { |
| 3051 | pmd_t pmd = pmdp_get_lockless(pmdp); |
| 3052 | |
| 3053 | next = pmd_addr_end(addr, end); |
| 3054 | if (!pmd_present(pmd)) |
| 3055 | return 0; |
| 3056 | |
| 3057 | if (unlikely(pmd_leaf(pmd))) { |
| 3058 | /* See gup_fast_pte_range() */ |
| 3059 | if (pmd_protnone(pmd)) |
| 3060 | return 0; |
| 3061 | |
| 3062 | if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, |
| 3063 | pages, nr)) |
| 3064 | return 0; |
| 3065 | |
| 3066 | } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, |
| 3067 | pages, nr)) |
| 3068 | return 0; |
| 3069 | } while (pmdp++, addr = next, addr != end); |
| 3070 | |
| 3071 | return 1; |
| 3072 | } |
| 3073 | |
| 3074 | static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, |
| 3075 | unsigned long end, unsigned int flags, struct page **pages, |
| 3076 | int *nr) |
| 3077 | { |
| 3078 | unsigned long next; |
| 3079 | pud_t *pudp; |
| 3080 | |
| 3081 | pudp = pud_offset_lockless(p4dp, p4d, addr); |
| 3082 | do { |
| 3083 | pud_t pud = READ_ONCE(*pudp); |
| 3084 | |
| 3085 | next = pud_addr_end(addr, end); |
| 3086 | if (unlikely(!pud_present(pud))) |
| 3087 | return 0; |
| 3088 | if (unlikely(pud_leaf(pud))) { |
| 3089 | if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, |
| 3090 | pages, nr)) |
| 3091 | return 0; |
| 3092 | } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, |
| 3093 | pages, nr)) |
| 3094 | return 0; |
| 3095 | } while (pudp++, addr = next, addr != end); |
| 3096 | |
| 3097 | return 1; |
| 3098 | } |
| 3099 | |
| 3100 | static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, |
| 3101 | unsigned long end, unsigned int flags, struct page **pages, |
| 3102 | int *nr) |
| 3103 | { |
| 3104 | unsigned long next; |
| 3105 | p4d_t *p4dp; |
| 3106 | |
| 3107 | p4dp = p4d_offset_lockless(pgdp, pgd, addr); |
| 3108 | do { |
| 3109 | p4d_t p4d = READ_ONCE(*p4dp); |
| 3110 | |
| 3111 | next = p4d_addr_end(addr, end); |
| 3112 | if (!p4d_present(p4d)) |
| 3113 | return 0; |
| 3114 | BUILD_BUG_ON(p4d_leaf(p4d)); |
| 3115 | if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, |
| 3116 | pages, nr)) |
| 3117 | return 0; |
| 3118 | } while (p4dp++, addr = next, addr != end); |
| 3119 | |
| 3120 | return 1; |
| 3121 | } |
| 3122 | |
| 3123 | static void gup_fast_pgd_range(unsigned long addr, unsigned long end, |
| 3124 | unsigned int flags, struct page **pages, int *nr) |
| 3125 | { |
| 3126 | unsigned long next; |
| 3127 | pgd_t *pgdp; |
| 3128 | |
| 3129 | pgdp = pgd_offset(current->mm, addr); |
| 3130 | do { |
| 3131 | pgd_t pgd = READ_ONCE(*pgdp); |
| 3132 | |
| 3133 | next = pgd_addr_end(addr, end); |
| 3134 | if (pgd_none(pgd)) |
| 3135 | return; |
| 3136 | BUILD_BUG_ON(pgd_leaf(pgd)); |
| 3137 | if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, |
| 3138 | pages, nr)) |
| 3139 | return; |
| 3140 | } while (pgdp++, addr = next, addr != end); |
| 3141 | } |
| 3142 | #else |
| 3143 | static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, |
| 3144 | unsigned int flags, struct page **pages, int *nr) |
| 3145 | { |
| 3146 | } |
| 3147 | #endif /* CONFIG_HAVE_GUP_FAST */ |
| 3148 | |
| 3149 | #ifndef gup_fast_permitted |
| 3150 | /* |
| 3151 | * Check if it's allowed to use get_user_pages_fast_only() for the range, or |
| 3152 | * we need to fall back to the slow version: |
| 3153 | */ |
| 3154 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
| 3155 | { |
| 3156 | return true; |
| 3157 | } |
| 3158 | #endif |
| 3159 | |
| 3160 | static unsigned long gup_fast(unsigned long start, unsigned long end, |
| 3161 | unsigned int gup_flags, struct page **pages) |
| 3162 | { |
| 3163 | unsigned long flags; |
| 3164 | int nr_pinned = 0; |
| 3165 | unsigned seq; |
| 3166 | |
| 3167 | if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || |
| 3168 | !gup_fast_permitted(start, end)) |
| 3169 | return 0; |
| 3170 | |
| 3171 | if (gup_flags & FOLL_PIN) { |
| 3172 | if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq)) |
| 3173 | return 0; |
| 3174 | } |
| 3175 | |
| 3176 | /* |
| 3177 | * Disable interrupts. The nested form is used, in order to allow full, |
| 3178 | * general purpose use of this routine. |
| 3179 | * |
| 3180 | * With interrupts disabled, we block page table pages from being freed |
| 3181 | * from under us. See struct mmu_table_batch comments in |
| 3182 | * include/asm-generic/tlb.h for more details. |
| 3183 | * |
| 3184 | * We do not adopt an rcu_read_lock() here as we also want to block IPIs |
| 3185 | * that come from callers of tlb_remove_table_sync_one(). |
| 3186 | */ |
| 3187 | local_irq_save(flags); |
| 3188 | gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); |
| 3189 | local_irq_restore(flags); |
| 3190 | |
| 3191 | /* |
| 3192 | * When pinning pages for DMA there could be a concurrent write protect |
| 3193 | * from fork() via copy_page_range(), in this case always fail GUP-fast. |
| 3194 | */ |
| 3195 | if (gup_flags & FOLL_PIN) { |
| 3196 | if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { |
| 3197 | gup_fast_unpin_user_pages(pages, nr_pinned); |
| 3198 | return 0; |
| 3199 | } else { |
| 3200 | sanity_check_pinned_pages(pages, nr_pinned); |
| 3201 | } |
| 3202 | } |
| 3203 | return nr_pinned; |
| 3204 | } |
| 3205 | |
| 3206 | static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, |
| 3207 | unsigned int gup_flags, struct page **pages) |
| 3208 | { |
| 3209 | unsigned long len, end; |
| 3210 | unsigned long nr_pinned; |
| 3211 | int locked = 0; |
| 3212 | int ret; |
| 3213 | |
| 3214 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | |
| 3215 | FOLL_FORCE | FOLL_PIN | FOLL_GET | |
| 3216 | FOLL_FAST_ONLY | FOLL_NOFAULT | |
| 3217 | FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) |
| 3218 | return -EINVAL; |
| 3219 | |
| 3220 | if (gup_flags & FOLL_PIN) |
| 3221 | mm_set_has_pinned_flag(¤t->mm->flags); |
| 3222 | |
| 3223 | if (!(gup_flags & FOLL_FAST_ONLY)) |
| 3224 | might_lock_read(¤t->mm->mmap_lock); |
| 3225 | |
| 3226 | start = untagged_addr(start) & PAGE_MASK; |
| 3227 | len = nr_pages << PAGE_SHIFT; |
| 3228 | if (check_add_overflow(start, len, &end)) |
| 3229 | return -EOVERFLOW; |
| 3230 | if (end > TASK_SIZE_MAX) |
| 3231 | return -EFAULT; |
| 3232 | |
| 3233 | nr_pinned = gup_fast(start, end, gup_flags, pages); |
| 3234 | if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) |
| 3235 | return nr_pinned; |
| 3236 | |
| 3237 | /* Slow path: try to get the remaining pages with get_user_pages */ |
| 3238 | start += nr_pinned << PAGE_SHIFT; |
| 3239 | pages += nr_pinned; |
| 3240 | ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, |
| 3241 | pages, &locked, |
| 3242 | gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); |
| 3243 | if (ret < 0) { |
| 3244 | /* |
| 3245 | * The caller has to unpin the pages we already pinned so |
| 3246 | * returning -errno is not an option |
| 3247 | */ |
| 3248 | if (nr_pinned) |
| 3249 | return nr_pinned; |
| 3250 | return ret; |
| 3251 | } |
| 3252 | return ret + nr_pinned; |
| 3253 | } |
| 3254 | |
| 3255 | /** |
| 3256 | * get_user_pages_fast_only() - pin user pages in memory |
| 3257 | * @start: starting user address |
| 3258 | * @nr_pages: number of pages from start to pin |
| 3259 | * @gup_flags: flags modifying pin behaviour |
| 3260 | * @pages: array that receives pointers to the pages pinned. |
| 3261 | * Should be at least nr_pages long. |
| 3262 | * |
| 3263 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to |
| 3264 | * the regular GUP. |
| 3265 | * |
| 3266 | * If the architecture does not support this function, simply return with no |
| 3267 | * pages pinned. |
| 3268 | * |
| 3269 | * Careful, careful! COW breaking can go either way, so a non-write |
| 3270 | * access can get ambiguous page results. If you call this function without |
| 3271 | * 'write' set, you'd better be sure that you're ok with that ambiguity. |
| 3272 | */ |
| 3273 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
| 3274 | unsigned int gup_flags, struct page **pages) |
| 3275 | { |
| 3276 | /* |
| 3277 | * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, |
| 3278 | * because gup fast is always a "pin with a +1 page refcount" request. |
| 3279 | * |
| 3280 | * FOLL_FAST_ONLY is required in order to match the API description of |
| 3281 | * this routine: no fall back to regular ("slow") GUP. |
| 3282 | */ |
| 3283 | if (!is_valid_gup_args(pages, NULL, &gup_flags, |
| 3284 | FOLL_GET | FOLL_FAST_ONLY)) |
| 3285 | return -EINVAL; |
| 3286 | |
| 3287 | return gup_fast_fallback(start, nr_pages, gup_flags, pages); |
| 3288 | } |
| 3289 | EXPORT_SYMBOL_GPL(get_user_pages_fast_only); |
| 3290 | |
| 3291 | /** |
| 3292 | * get_user_pages_fast() - pin user pages in memory |
| 3293 | * @start: starting user address |
| 3294 | * @nr_pages: number of pages from start to pin |
| 3295 | * @gup_flags: flags modifying pin behaviour |
| 3296 | * @pages: array that receives pointers to the pages pinned. |
| 3297 | * Should be at least nr_pages long. |
| 3298 | * |
| 3299 | * Attempt to pin user pages in memory without taking mm->mmap_lock. |
| 3300 | * If not successful, it will fall back to taking the lock and |
| 3301 | * calling get_user_pages(). |
| 3302 | * |
| 3303 | * Returns number of pages pinned. This may be fewer than the number requested. |
| 3304 | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns |
| 3305 | * -errno. |
| 3306 | */ |
| 3307 | int get_user_pages_fast(unsigned long start, int nr_pages, |
| 3308 | unsigned int gup_flags, struct page **pages) |
| 3309 | { |
| 3310 | /* |
| 3311 | * The caller may or may not have explicitly set FOLL_GET; either way is |
| 3312 | * OK. However, internally (within mm/gup.c), gup fast variants must set |
| 3313 | * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" |
| 3314 | * request. |
| 3315 | */ |
| 3316 | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) |
| 3317 | return -EINVAL; |
| 3318 | return gup_fast_fallback(start, nr_pages, gup_flags, pages); |
| 3319 | } |
| 3320 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
| 3321 | |
| 3322 | /** |
| 3323 | * pin_user_pages_fast() - pin user pages in memory without taking locks |
| 3324 | * |
| 3325 | * @start: starting user address |
| 3326 | * @nr_pages: number of pages from start to pin |
| 3327 | * @gup_flags: flags modifying pin behaviour |
| 3328 | * @pages: array that receives pointers to the pages pinned. |
| 3329 | * Should be at least nr_pages long. |
| 3330 | * |
| 3331 | * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See |
| 3332 | * get_user_pages_fast() for documentation on the function arguments, because |
| 3333 | * the arguments here are identical. |
| 3334 | * |
| 3335 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please |
| 3336 | * see Documentation/core-api/pin_user_pages.rst for further details. |
| 3337 | * |
| 3338 | * Note that if a zero_page is amongst the returned pages, it will not have |
| 3339 | * pins in it and unpin_user_page() will not remove pins from it. |
| 3340 | */ |
| 3341 | int pin_user_pages_fast(unsigned long start, int nr_pages, |
| 3342 | unsigned int gup_flags, struct page **pages) |
| 3343 | { |
| 3344 | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) |
| 3345 | return -EINVAL; |
| 3346 | return gup_fast_fallback(start, nr_pages, gup_flags, pages); |
| 3347 | } |
| 3348 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); |
| 3349 | |
| 3350 | /** |
| 3351 | * pin_user_pages_remote() - pin pages of a remote process |
| 3352 | * |
| 3353 | * @mm: mm_struct of target mm |
| 3354 | * @start: starting user address |
| 3355 | * @nr_pages: number of pages from start to pin |
| 3356 | * @gup_flags: flags modifying lookup behaviour |
| 3357 | * @pages: array that receives pointers to the pages pinned. |
| 3358 | * Should be at least nr_pages long. |
| 3359 | * @locked: pointer to lock flag indicating whether lock is held and |
| 3360 | * subsequently whether VM_FAULT_RETRY functionality can be |
| 3361 | * utilised. Lock must initially be held. |
| 3362 | * |
| 3363 | * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See |
| 3364 | * get_user_pages_remote() for documentation on the function arguments, because |
| 3365 | * the arguments here are identical. |
| 3366 | * |
| 3367 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please |
| 3368 | * see Documentation/core-api/pin_user_pages.rst for details. |
| 3369 | * |
| 3370 | * Note that if a zero_page is amongst the returned pages, it will not have |
| 3371 | * pins in it and unpin_user_page*() will not remove pins from it. |
| 3372 | */ |
| 3373 | long pin_user_pages_remote(struct mm_struct *mm, |
| 3374 | unsigned long start, unsigned long nr_pages, |
| 3375 | unsigned int gup_flags, struct page **pages, |
| 3376 | int *locked) |
| 3377 | { |
| 3378 | int local_locked = 1; |
| 3379 | |
| 3380 | if (!is_valid_gup_args(pages, locked, &gup_flags, |
| 3381 | FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) |
| 3382 | return 0; |
| 3383 | return __gup_longterm_locked(mm, start, nr_pages, pages, |
| 3384 | locked ? locked : &local_locked, |
| 3385 | gup_flags); |
| 3386 | } |
| 3387 | EXPORT_SYMBOL(pin_user_pages_remote); |
| 3388 | |
| 3389 | /** |
| 3390 | * pin_user_pages() - pin user pages in memory for use by other devices |
| 3391 | * |
| 3392 | * @start: starting user address |
| 3393 | * @nr_pages: number of pages from start to pin |
| 3394 | * @gup_flags: flags modifying lookup behaviour |
| 3395 | * @pages: array that receives pointers to the pages pinned. |
| 3396 | * Should be at least nr_pages long. |
| 3397 | * |
| 3398 | * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and |
| 3399 | * FOLL_PIN is set. |
| 3400 | * |
| 3401 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please |
| 3402 | * see Documentation/core-api/pin_user_pages.rst for details. |
| 3403 | * |
| 3404 | * Note that if a zero_page is amongst the returned pages, it will not have |
| 3405 | * pins in it and unpin_user_page*() will not remove pins from it. |
| 3406 | */ |
| 3407 | long pin_user_pages(unsigned long start, unsigned long nr_pages, |
| 3408 | unsigned int gup_flags, struct page **pages) |
| 3409 | { |
| 3410 | int locked = 1; |
| 3411 | |
| 3412 | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) |
| 3413 | return 0; |
| 3414 | return __gup_longterm_locked(current->mm, start, nr_pages, |
| 3415 | pages, &locked, gup_flags); |
| 3416 | } |
| 3417 | EXPORT_SYMBOL(pin_user_pages); |
| 3418 | |
| 3419 | /* |
| 3420 | * pin_user_pages_unlocked() is the FOLL_PIN variant of |
| 3421 | * get_user_pages_unlocked(). Behavior is the same, except that this one sets |
| 3422 | * FOLL_PIN and rejects FOLL_GET. |
| 3423 | * |
| 3424 | * Note that if a zero_page is amongst the returned pages, it will not have |
| 3425 | * pins in it and unpin_user_page*() will not remove pins from it. |
| 3426 | */ |
| 3427 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
| 3428 | struct page **pages, unsigned int gup_flags) |
| 3429 | { |
| 3430 | int locked = 0; |
| 3431 | |
| 3432 | if (!is_valid_gup_args(pages, NULL, &gup_flags, |
| 3433 | FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) |
| 3434 | return 0; |
| 3435 | |
| 3436 | return __gup_longterm_locked(current->mm, start, nr_pages, pages, |
| 3437 | &locked, gup_flags); |
| 3438 | } |
| 3439 | EXPORT_SYMBOL(pin_user_pages_unlocked); |
| 3440 | |
| 3441 | /** |
| 3442 | * memfd_pin_folios() - pin folios associated with a memfd |
| 3443 | * @memfd: the memfd whose folios are to be pinned |
| 3444 | * @start: the first memfd offset |
| 3445 | * @end: the last memfd offset (inclusive) |
| 3446 | * @folios: array that receives pointers to the folios pinned |
| 3447 | * @max_folios: maximum number of entries in @folios |
| 3448 | * @offset: the offset into the first folio |
| 3449 | * |
| 3450 | * Attempt to pin folios associated with a memfd in the contiguous range |
| 3451 | * [start, end]. Given that a memfd is either backed by shmem or hugetlb, |
| 3452 | * the folios can either be found in the page cache or need to be allocated |
| 3453 | * if necessary. Once the folios are located, they are all pinned via |
| 3454 | * FOLL_PIN and @offset is populatedwith the offset into the first folio. |
| 3455 | * And, eventually, these pinned folios must be released either using |
| 3456 | * unpin_folios() or unpin_folio(). |
| 3457 | * |
| 3458 | * It must be noted that the folios may be pinned for an indefinite amount |
| 3459 | * of time. And, in most cases, the duration of time they may stay pinned |
| 3460 | * would be controlled by the userspace. This behavior is effectively the |
| 3461 | * same as using FOLL_LONGTERM with other GUP APIs. |
| 3462 | * |
| 3463 | * Returns number of folios pinned, which could be less than @max_folios |
| 3464 | * as it depends on the folio sizes that cover the range [start, end]. |
| 3465 | * If no folios were pinned, it returns -errno. |
| 3466 | */ |
| 3467 | long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, |
| 3468 | struct folio **folios, unsigned int max_folios, |
| 3469 | pgoff_t *offset) |
| 3470 | { |
| 3471 | unsigned int flags, nr_folios, nr_found; |
| 3472 | unsigned int i, pgshift = PAGE_SHIFT; |
| 3473 | pgoff_t start_idx, end_idx; |
| 3474 | struct folio *folio = NULL; |
| 3475 | struct folio_batch fbatch; |
| 3476 | struct hstate *h; |
| 3477 | long ret = -EINVAL; |
| 3478 | |
| 3479 | if (start < 0 || start > end || !max_folios) |
| 3480 | return -EINVAL; |
| 3481 | |
| 3482 | if (!memfd) |
| 3483 | return -EINVAL; |
| 3484 | |
| 3485 | if (!shmem_file(memfd) && !is_file_hugepages(memfd)) |
| 3486 | return -EINVAL; |
| 3487 | |
| 3488 | if (end >= i_size_read(file_inode(memfd))) |
| 3489 | return -EINVAL; |
| 3490 | |
| 3491 | if (is_file_hugepages(memfd)) { |
| 3492 | h = hstate_file(memfd); |
| 3493 | pgshift = huge_page_shift(h); |
| 3494 | } |
| 3495 | |
| 3496 | flags = memalloc_pin_save(); |
| 3497 | do { |
| 3498 | nr_folios = 0; |
| 3499 | start_idx = start >> pgshift; |
| 3500 | end_idx = end >> pgshift; |
| 3501 | if (is_file_hugepages(memfd)) { |
| 3502 | start_idx <<= huge_page_order(h); |
| 3503 | end_idx <<= huge_page_order(h); |
| 3504 | } |
| 3505 | |
| 3506 | folio_batch_init(&fbatch); |
| 3507 | while (start_idx <= end_idx && nr_folios < max_folios) { |
| 3508 | /* |
| 3509 | * In most cases, we should be able to find the folios |
| 3510 | * in the page cache. If we cannot find them for some |
| 3511 | * reason, we try to allocate them and add them to the |
| 3512 | * page cache. |
| 3513 | */ |
| 3514 | nr_found = filemap_get_folios_contig(memfd->f_mapping, |
| 3515 | &start_idx, |
| 3516 | end_idx, |
| 3517 | &fbatch); |
| 3518 | if (folio) { |
| 3519 | folio_put(folio); |
| 3520 | folio = NULL; |
| 3521 | } |
| 3522 | |
| 3523 | for (i = 0; i < nr_found; i++) { |
| 3524 | folio = fbatch.folios[i]; |
| 3525 | |
| 3526 | if (try_grab_folio(folio, 1, FOLL_PIN)) { |
| 3527 | folio_batch_release(&fbatch); |
| 3528 | ret = -EINVAL; |
| 3529 | goto err; |
| 3530 | } |
| 3531 | |
| 3532 | if (nr_folios == 0) |
| 3533 | *offset = offset_in_folio(folio, start); |
| 3534 | |
| 3535 | folios[nr_folios] = folio; |
| 3536 | if (++nr_folios == max_folios) |
| 3537 | break; |
| 3538 | } |
| 3539 | |
| 3540 | folio = NULL; |
| 3541 | folio_batch_release(&fbatch); |
| 3542 | if (!nr_found) { |
| 3543 | folio = memfd_alloc_folio(memfd, start_idx); |
| 3544 | if (IS_ERR(folio)) { |
| 3545 | ret = PTR_ERR(folio); |
| 3546 | if (ret != -EEXIST) |
| 3547 | goto err; |
| 3548 | folio = NULL; |
| 3549 | } |
| 3550 | } |
| 3551 | } |
| 3552 | |
| 3553 | ret = check_and_migrate_movable_folios(nr_folios, folios); |
| 3554 | } while (ret == -EAGAIN); |
| 3555 | |
| 3556 | memalloc_pin_restore(flags); |
| 3557 | return ret ? ret : nr_folios; |
| 3558 | err: |
| 3559 | memalloc_pin_restore(flags); |
| 3560 | unpin_folios(folios, nr_folios); |
| 3561 | |
| 3562 | return ret; |
| 3563 | } |
| 3564 | EXPORT_SYMBOL_GPL(memfd_pin_folios); |
| 3565 | |
| 3566 | /** |
| 3567 | * folio_add_pins() - add pins to an already-pinned folio |
| 3568 | * @folio: the folio to add more pins to |
| 3569 | * @pins: number of pins to add |
| 3570 | * |
| 3571 | * Try to add more pins to an already-pinned folio. The semantics |
| 3572 | * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot |
| 3573 | * be changed. |
| 3574 | * |
| 3575 | * This function is helpful when having obtained a pin on a large folio |
| 3576 | * using memfd_pin_folios(), but wanting to logically unpin parts |
| 3577 | * (e.g., individual pages) of the folio later, for example, using |
| 3578 | * unpin_user_page_range_dirty_lock(). |
| 3579 | * |
| 3580 | * This is not the right interface to initially pin a folio. |
| 3581 | */ |
| 3582 | int folio_add_pins(struct folio *folio, unsigned int pins) |
| 3583 | { |
| 3584 | VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio)); |
| 3585 | |
| 3586 | return try_grab_folio(folio, pins, FOLL_PIN); |
| 3587 | } |
| 3588 | EXPORT_SYMBOL_GPL(folio_add_pins); |