Merge tag 'mm-hotfixes-stable-2025-09-17-21-10' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / mm / gup.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
7#include <linux/mm.h>
8#include <linux/memfd.h>
9#include <linux/memremap.h>
10#include <linux/pagemap.h>
11#include <linux/rmap.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/secretmem.h>
15
16#include <linux/sched/signal.h>
17#include <linux/rwsem.h>
18#include <linux/hugetlb.h>
19#include <linux/migrate.h>
20#include <linux/mm_inline.h>
21#include <linux/pagevec.h>
22#include <linux/sched/mm.h>
23#include <linux/shmem_fs.h>
24
25#include <asm/mmu_context.h>
26#include <asm/tlbflush.h>
27
28#include "internal.h"
29#include "swap.h"
30
31struct follow_page_context {
32 struct dev_pagemap *pgmap;
33 unsigned int page_mask;
34};
35
36static inline void sanity_check_pinned_pages(struct page **pages,
37 unsigned long npages)
38{
39 if (!IS_ENABLED(CONFIG_DEBUG_VM))
40 return;
41
42 /*
43 * We only pin anonymous pages if they are exclusive. Once pinned, we
44 * can no longer turn them possibly shared and PageAnonExclusive() will
45 * stick around until the page is freed.
46 *
47 * We'd like to verify that our pinned anonymous pages are still mapped
48 * exclusively. The issue with anon THP is that we don't know how
49 * they are/were mapped when pinning them. However, for anon
50 * THP we can assume that either the given page (PTE-mapped THP) or
51 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
52 * neither is the case, there is certainly something wrong.
53 */
54 for (; npages; npages--, pages++) {
55 struct page *page = *pages;
56 struct folio *folio;
57
58 if (!page)
59 continue;
60
61 folio = page_folio(page);
62
63 if (is_zero_page(page) ||
64 !folio_test_anon(folio))
65 continue;
66 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
67 VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio);
68 else
69 /* Either a PTE-mapped or a PMD-mapped THP. */
70 VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) &&
71 !PageAnonExclusive(page), page);
72 }
73}
74
75/*
76 * Return the folio with ref appropriately incremented,
77 * or NULL if that failed.
78 */
79static inline struct folio *try_get_folio(struct page *page, int refs)
80{
81 struct folio *folio;
82
83retry:
84 folio = page_folio(page);
85 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
86 return NULL;
87 if (unlikely(!folio_ref_try_add(folio, refs)))
88 return NULL;
89
90 /*
91 * At this point we have a stable reference to the folio; but it
92 * could be that between calling page_folio() and the refcount
93 * increment, the folio was split, in which case we'd end up
94 * holding a reference on a folio that has nothing to do with the page
95 * we were given anymore.
96 * So now that the folio is stable, recheck that the page still
97 * belongs to this folio.
98 */
99 if (unlikely(page_folio(page) != folio)) {
100 folio_put_refs(folio, refs);
101 goto retry;
102 }
103
104 return folio;
105}
106
107static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108{
109 if (flags & FOLL_PIN) {
110 if (is_zero_folio(folio))
111 return;
112 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 if (folio_has_pincount(folio))
114 atomic_sub(refs, &folio->_pincount);
115 else
116 refs *= GUP_PIN_COUNTING_BIAS;
117 }
118
119 folio_put_refs(folio, refs);
120}
121
122/**
123 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
124 * @folio: pointer to folio to be grabbed
125 * @refs: the value to (effectively) add to the folio's refcount
126 * @flags: gup flags: these are the FOLL_* flag values
127 *
128 * This might not do anything at all, depending on the flags argument.
129 *
130 * "grab" names in this file mean, "look at flags to decide whether to use
131 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
132 *
133 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
134 * time.
135 *
136 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
137 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
138 *
139 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
140 * be grabbed.
141 *
142 * It is called when we have a stable reference for the folio, typically in
143 * GUP slow path.
144 */
145int __must_check try_grab_folio(struct folio *folio, int refs,
146 unsigned int flags)
147{
148 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
149 return -ENOMEM;
150
151 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
152 return -EREMOTEIO;
153
154 if (flags & FOLL_GET)
155 folio_ref_add(folio, refs);
156 else if (flags & FOLL_PIN) {
157 /*
158 * Don't take a pin on the zero page - it's not going anywhere
159 * and it is used in a *lot* of places.
160 */
161 if (is_zero_folio(folio))
162 return 0;
163
164 /*
165 * Increment the normal page refcount field at least once,
166 * so that the page really is pinned.
167 */
168 if (folio_has_pincount(folio)) {
169 folio_ref_add(folio, refs);
170 atomic_add(refs, &folio->_pincount);
171 } else {
172 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
173 }
174
175 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
176 }
177
178 return 0;
179}
180
181/**
182 * unpin_user_page() - release a dma-pinned page
183 * @page: pointer to page to be released
184 *
185 * Pages that were pinned via pin_user_pages*() must be released via either
186 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
187 * that such pages can be separately tracked and uniquely handled. In
188 * particular, interactions with RDMA and filesystems need special handling.
189 */
190void unpin_user_page(struct page *page)
191{
192 sanity_check_pinned_pages(&page, 1);
193 gup_put_folio(page_folio(page), 1, FOLL_PIN);
194}
195EXPORT_SYMBOL(unpin_user_page);
196
197/**
198 * unpin_folio() - release a dma-pinned folio
199 * @folio: pointer to folio to be released
200 *
201 * Folios that were pinned via memfd_pin_folios() or other similar routines
202 * must be released either using unpin_folio() or unpin_folios().
203 */
204void unpin_folio(struct folio *folio)
205{
206 gup_put_folio(folio, 1, FOLL_PIN);
207}
208EXPORT_SYMBOL_GPL(unpin_folio);
209
210/**
211 * folio_add_pin - Try to get an additional pin on a pinned folio
212 * @folio: The folio to be pinned
213 *
214 * Get an additional pin on a folio we already have a pin on. Makes no change
215 * if the folio is a zero_page.
216 */
217void folio_add_pin(struct folio *folio)
218{
219 if (is_zero_folio(folio))
220 return;
221
222 /*
223 * Similar to try_grab_folio(): be sure to *also* increment the normal
224 * page refcount field at least once, so that the page really is
225 * pinned.
226 */
227 if (folio_has_pincount(folio)) {
228 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
229 folio_ref_inc(folio);
230 atomic_inc(&folio->_pincount);
231 } else {
232 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
233 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
234 }
235}
236
237static inline struct folio *gup_folio_range_next(struct page *start,
238 unsigned long npages, unsigned long i, unsigned int *ntails)
239{
240 struct page *next = nth_page(start, i);
241 struct folio *folio = page_folio(next);
242 unsigned int nr = 1;
243
244 if (folio_test_large(folio))
245 nr = min_t(unsigned int, npages - i,
246 folio_nr_pages(folio) - folio_page_idx(folio, next));
247
248 *ntails = nr;
249 return folio;
250}
251
252static inline struct folio *gup_folio_next(struct page **list,
253 unsigned long npages, unsigned long i, unsigned int *ntails)
254{
255 struct folio *folio = page_folio(list[i]);
256 unsigned int nr;
257
258 for (nr = i + 1; nr < npages; nr++) {
259 if (page_folio(list[nr]) != folio)
260 break;
261 }
262
263 *ntails = nr - i;
264 return folio;
265}
266
267/**
268 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
269 * @pages: array of pages to be maybe marked dirty, and definitely released.
270 * @npages: number of pages in the @pages array.
271 * @make_dirty: whether to mark the pages dirty
272 *
273 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
274 * variants called on that page.
275 *
276 * For each page in the @pages array, make that page (or its head page, if a
277 * compound page) dirty, if @make_dirty is true, and if the page was previously
278 * listed as clean. In any case, releases all pages using unpin_user_page(),
279 * possibly via unpin_user_pages(), for the non-dirty case.
280 *
281 * Please see the unpin_user_page() documentation for details.
282 *
283 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
284 * required, then the caller should a) verify that this is really correct,
285 * because _lock() is usually required, and b) hand code it:
286 * set_page_dirty_lock(), unpin_user_page().
287 *
288 */
289void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
290 bool make_dirty)
291{
292 unsigned long i;
293 struct folio *folio;
294 unsigned int nr;
295
296 if (!make_dirty) {
297 unpin_user_pages(pages, npages);
298 return;
299 }
300
301 sanity_check_pinned_pages(pages, npages);
302 for (i = 0; i < npages; i += nr) {
303 folio = gup_folio_next(pages, npages, i, &nr);
304 /*
305 * Checking PageDirty at this point may race with
306 * clear_page_dirty_for_io(), but that's OK. Two key
307 * cases:
308 *
309 * 1) This code sees the page as already dirty, so it
310 * skips the call to set_page_dirty(). That could happen
311 * because clear_page_dirty_for_io() called
312 * folio_mkclean(), followed by set_page_dirty().
313 * However, now the page is going to get written back,
314 * which meets the original intention of setting it
315 * dirty, so all is well: clear_page_dirty_for_io() goes
316 * on to call TestClearPageDirty(), and write the page
317 * back.
318 *
319 * 2) This code sees the page as clean, so it calls
320 * set_page_dirty(). The page stays dirty, despite being
321 * written back, so it gets written back again in the
322 * next writeback cycle. This is harmless.
323 */
324 if (!folio_test_dirty(folio)) {
325 folio_lock(folio);
326 folio_mark_dirty(folio);
327 folio_unlock(folio);
328 }
329 gup_put_folio(folio, nr, FOLL_PIN);
330 }
331}
332EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
333
334/**
335 * unpin_user_page_range_dirty_lock() - release and optionally dirty
336 * gup-pinned page range
337 *
338 * @page: the starting page of a range maybe marked dirty, and definitely released.
339 * @npages: number of consecutive pages to release.
340 * @make_dirty: whether to mark the pages dirty
341 *
342 * "gup-pinned page range" refers to a range of pages that has had one of the
343 * pin_user_pages() variants called on that page.
344 *
345 * For the page ranges defined by [page .. page+npages], make that range (or
346 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
347 * page range was previously listed as clean.
348 *
349 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
350 * required, then the caller should a) verify that this is really correct,
351 * because _lock() is usually required, and b) hand code it:
352 * set_page_dirty_lock(), unpin_user_page().
353 *
354 */
355void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
356 bool make_dirty)
357{
358 unsigned long i;
359 struct folio *folio;
360 unsigned int nr;
361
362 for (i = 0; i < npages; i += nr) {
363 folio = gup_folio_range_next(page, npages, i, &nr);
364 if (make_dirty && !folio_test_dirty(folio)) {
365 folio_lock(folio);
366 folio_mark_dirty(folio);
367 folio_unlock(folio);
368 }
369 gup_put_folio(folio, nr, FOLL_PIN);
370 }
371}
372EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
373
374static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
375{
376 unsigned long i;
377 struct folio *folio;
378 unsigned int nr;
379
380 /*
381 * Don't perform any sanity checks because we might have raced with
382 * fork() and some anonymous pages might now actually be shared --
383 * which is why we're unpinning after all.
384 */
385 for (i = 0; i < npages; i += nr) {
386 folio = gup_folio_next(pages, npages, i, &nr);
387 gup_put_folio(folio, nr, FOLL_PIN);
388 }
389}
390
391/**
392 * unpin_user_pages() - release an array of gup-pinned pages.
393 * @pages: array of pages to be marked dirty and released.
394 * @npages: number of pages in the @pages array.
395 *
396 * For each page in the @pages array, release the page using unpin_user_page().
397 *
398 * Please see the unpin_user_page() documentation for details.
399 */
400void unpin_user_pages(struct page **pages, unsigned long npages)
401{
402 unsigned long i;
403 struct folio *folio;
404 unsigned int nr;
405
406 /*
407 * If this WARN_ON() fires, then the system *might* be leaking pages (by
408 * leaving them pinned), but probably not. More likely, gup/pup returned
409 * a hard -ERRNO error to the caller, who erroneously passed it here.
410 */
411 if (WARN_ON(IS_ERR_VALUE(npages)))
412 return;
413
414 sanity_check_pinned_pages(pages, npages);
415 for (i = 0; i < npages; i += nr) {
416 if (!pages[i]) {
417 nr = 1;
418 continue;
419 }
420 folio = gup_folio_next(pages, npages, i, &nr);
421 gup_put_folio(folio, nr, FOLL_PIN);
422 }
423}
424EXPORT_SYMBOL(unpin_user_pages);
425
426/**
427 * unpin_user_folio() - release pages of a folio
428 * @folio: pointer to folio to be released
429 * @npages: number of pages of same folio
430 *
431 * Release npages of the folio
432 */
433void unpin_user_folio(struct folio *folio, unsigned long npages)
434{
435 gup_put_folio(folio, npages, FOLL_PIN);
436}
437EXPORT_SYMBOL(unpin_user_folio);
438
439/**
440 * unpin_folios() - release an array of gup-pinned folios.
441 * @folios: array of folios to be marked dirty and released.
442 * @nfolios: number of folios in the @folios array.
443 *
444 * For each folio in the @folios array, release the folio using gup_put_folio.
445 *
446 * Please see the unpin_folio() documentation for details.
447 */
448void unpin_folios(struct folio **folios, unsigned long nfolios)
449{
450 unsigned long i = 0, j;
451
452 /*
453 * If this WARN_ON() fires, then the system *might* be leaking folios
454 * (by leaving them pinned), but probably not. More likely, gup/pup
455 * returned a hard -ERRNO error to the caller, who erroneously passed
456 * it here.
457 */
458 if (WARN_ON(IS_ERR_VALUE(nfolios)))
459 return;
460
461 while (i < nfolios) {
462 for (j = i + 1; j < nfolios; j++)
463 if (folios[i] != folios[j])
464 break;
465
466 if (folios[i])
467 gup_put_folio(folios[i], j - i, FOLL_PIN);
468 i = j;
469 }
470}
471EXPORT_SYMBOL_GPL(unpin_folios);
472
473/*
474 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
475 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
476 * cache bouncing on large SMP machines for concurrent pinned gups.
477 */
478static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
479{
480 if (!test_bit(MMF_HAS_PINNED, mm_flags))
481 set_bit(MMF_HAS_PINNED, mm_flags);
482}
483
484#ifdef CONFIG_MMU
485
486#ifdef CONFIG_HAVE_GUP_FAST
487static int record_subpages(struct page *page, unsigned long sz,
488 unsigned long addr, unsigned long end,
489 struct page **pages)
490{
491 struct page *start_page;
492 int nr;
493
494 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
495 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
496 pages[nr] = nth_page(start_page, nr);
497
498 return nr;
499}
500
501/**
502 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
503 * @page: pointer to page to be grabbed
504 * @refs: the value to (effectively) add to the folio's refcount
505 * @flags: gup flags: these are the FOLL_* flag values.
506 *
507 * "grab" names in this file mean, "look at flags to decide whether to use
508 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
509 *
510 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
511 * same time. (That's true throughout the get_user_pages*() and
512 * pin_user_pages*() APIs.) Cases:
513 *
514 * FOLL_GET: folio's refcount will be incremented by @refs.
515 *
516 * FOLL_PIN on large folios: folio's refcount will be incremented by
517 * @refs, and its pincount will be incremented by @refs.
518 *
519 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
520 * @refs * GUP_PIN_COUNTING_BIAS.
521 *
522 * Return: The folio containing @page (with refcount appropriately
523 * incremented) for success, or NULL upon failure. If neither FOLL_GET
524 * nor FOLL_PIN was set, that's considered failure, and furthermore,
525 * a likely bug in the caller, so a warning is also emitted.
526 *
527 * It uses add ref unless zero to elevate the folio refcount and must be called
528 * in fast path only.
529 */
530static struct folio *try_grab_folio_fast(struct page *page, int refs,
531 unsigned int flags)
532{
533 struct folio *folio;
534
535 /* Raise warn if it is not called in fast GUP */
536 VM_WARN_ON_ONCE(!irqs_disabled());
537
538 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
539 return NULL;
540
541 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
542 return NULL;
543
544 if (flags & FOLL_GET)
545 return try_get_folio(page, refs);
546
547 /* FOLL_PIN is set */
548
549 /*
550 * Don't take a pin on the zero page - it's not going anywhere
551 * and it is used in a *lot* of places.
552 */
553 if (is_zero_page(page))
554 return page_folio(page);
555
556 folio = try_get_folio(page, refs);
557 if (!folio)
558 return NULL;
559
560 /*
561 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
562 * right zone, so fail and let the caller fall back to the slow
563 * path.
564 */
565 if (unlikely((flags & FOLL_LONGTERM) &&
566 !folio_is_longterm_pinnable(folio))) {
567 folio_put_refs(folio, refs);
568 return NULL;
569 }
570
571 /*
572 * When pinning a large folio, use an exact count to track it.
573 *
574 * However, be sure to *also* increment the normal folio
575 * refcount field at least once, so that the folio really
576 * is pinned. That's why the refcount from the earlier
577 * try_get_folio() is left intact.
578 */
579 if (folio_has_pincount(folio))
580 atomic_add(refs, &folio->_pincount);
581 else
582 folio_ref_add(folio,
583 refs * (GUP_PIN_COUNTING_BIAS - 1));
584 /*
585 * Adjust the pincount before re-checking the PTE for changes.
586 * This is essentially a smp_mb() and is paired with a memory
587 * barrier in folio_try_share_anon_rmap_*().
588 */
589 smp_mb__after_atomic();
590
591 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
592
593 return folio;
594}
595#endif /* CONFIG_HAVE_GUP_FAST */
596
597/* Common code for can_follow_write_* */
598static inline bool can_follow_write_common(struct page *page,
599 struct vm_area_struct *vma, unsigned int flags)
600{
601 /* Maybe FOLL_FORCE is set to override it? */
602 if (!(flags & FOLL_FORCE))
603 return false;
604
605 /* But FOLL_FORCE has no effect on shared mappings */
606 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
607 return false;
608
609 /* ... or read-only private ones */
610 if (!(vma->vm_flags & VM_MAYWRITE))
611 return false;
612
613 /* ... or already writable ones that just need to take a write fault */
614 if (vma->vm_flags & VM_WRITE)
615 return false;
616
617 /*
618 * See can_change_pte_writable(): we broke COW and could map the page
619 * writable if we have an exclusive anonymous page ...
620 */
621 return page && PageAnon(page) && PageAnonExclusive(page);
622}
623
624static struct page *no_page_table(struct vm_area_struct *vma,
625 unsigned int flags, unsigned long address)
626{
627 if (!(flags & FOLL_DUMP))
628 return NULL;
629
630 /*
631 * When core dumping, we don't want to allocate unnecessary pages or
632 * page tables. Return error instead of NULL to skip handle_mm_fault,
633 * then get_dump_page() will return NULL to leave a hole in the dump.
634 * But we can only make this optimization where a hole would surely
635 * be zero-filled if handle_mm_fault() actually did handle it.
636 */
637 if (is_vm_hugetlb_page(vma)) {
638 struct hstate *h = hstate_vma(vma);
639
640 if (!hugetlbfs_pagecache_present(h, vma, address))
641 return ERR_PTR(-EFAULT);
642 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
643 return ERR_PTR(-EFAULT);
644 }
645
646 return NULL;
647}
648
649#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
650/* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
651static inline bool can_follow_write_pud(pud_t pud, struct page *page,
652 struct vm_area_struct *vma,
653 unsigned int flags)
654{
655 /* If the pud is writable, we can write to the page. */
656 if (pud_write(pud))
657 return true;
658
659 return can_follow_write_common(page, vma, flags);
660}
661
662static struct page *follow_huge_pud(struct vm_area_struct *vma,
663 unsigned long addr, pud_t *pudp,
664 int flags, struct follow_page_context *ctx)
665{
666 struct mm_struct *mm = vma->vm_mm;
667 struct page *page;
668 pud_t pud = *pudp;
669 unsigned long pfn = pud_pfn(pud);
670 int ret;
671
672 assert_spin_locked(pud_lockptr(mm, pudp));
673
674 if (!pud_present(pud))
675 return NULL;
676
677 if ((flags & FOLL_WRITE) &&
678 !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
679 return NULL;
680
681 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
682 page = pfn_to_page(pfn);
683
684 if (!pud_write(pud) && gup_must_unshare(vma, flags, page))
685 return ERR_PTR(-EMLINK);
686
687 ret = try_grab_folio(page_folio(page), 1, flags);
688 if (ret)
689 page = ERR_PTR(ret);
690 else
691 ctx->page_mask = HPAGE_PUD_NR - 1;
692
693 return page;
694}
695
696/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
697static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
698 struct vm_area_struct *vma,
699 unsigned int flags)
700{
701 /* If the pmd is writable, we can write to the page. */
702 if (pmd_write(pmd))
703 return true;
704
705 if (!can_follow_write_common(page, vma, flags))
706 return false;
707
708 /* ... and a write-fault isn't required for other reasons. */
709 if (pmd_needs_soft_dirty_wp(vma, pmd))
710 return false;
711 return !userfaultfd_huge_pmd_wp(vma, pmd);
712}
713
714static struct page *follow_huge_pmd(struct vm_area_struct *vma,
715 unsigned long addr, pmd_t *pmd,
716 unsigned int flags,
717 struct follow_page_context *ctx)
718{
719 struct mm_struct *mm = vma->vm_mm;
720 pmd_t pmdval = *pmd;
721 struct page *page;
722 int ret;
723
724 assert_spin_locked(pmd_lockptr(mm, pmd));
725
726 page = pmd_page(pmdval);
727 if ((flags & FOLL_WRITE) &&
728 !can_follow_write_pmd(pmdval, page, vma, flags))
729 return NULL;
730
731 /* Avoid dumping huge zero page */
732 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
733 return ERR_PTR(-EFAULT);
734
735 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
736 return NULL;
737
738 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
739 return ERR_PTR(-EMLINK);
740
741 VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
742 !PageAnonExclusive(page), page);
743
744 ret = try_grab_folio(page_folio(page), 1, flags);
745 if (ret)
746 return ERR_PTR(ret);
747
748#ifdef CONFIG_TRANSPARENT_HUGEPAGE
749 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
750 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
751#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
752
753 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
754 ctx->page_mask = HPAGE_PMD_NR - 1;
755
756 return page;
757}
758
759#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
760static struct page *follow_huge_pud(struct vm_area_struct *vma,
761 unsigned long addr, pud_t *pudp,
762 int flags, struct follow_page_context *ctx)
763{
764 return NULL;
765}
766
767static struct page *follow_huge_pmd(struct vm_area_struct *vma,
768 unsigned long addr, pmd_t *pmd,
769 unsigned int flags,
770 struct follow_page_context *ctx)
771{
772 return NULL;
773}
774#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
775
776static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
777 pte_t *pte, unsigned int flags)
778{
779 if (flags & FOLL_TOUCH) {
780 pte_t orig_entry = ptep_get(pte);
781 pte_t entry = orig_entry;
782
783 if (flags & FOLL_WRITE)
784 entry = pte_mkdirty(entry);
785 entry = pte_mkyoung(entry);
786
787 if (!pte_same(orig_entry, entry)) {
788 set_pte_at(vma->vm_mm, address, pte, entry);
789 update_mmu_cache(vma, address, pte);
790 }
791 }
792
793 /* Proper page table entry exists, but no corresponding struct page */
794 return -EEXIST;
795}
796
797/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
798static inline bool can_follow_write_pte(pte_t pte, struct page *page,
799 struct vm_area_struct *vma,
800 unsigned int flags)
801{
802 /* If the pte is writable, we can write to the page. */
803 if (pte_write(pte))
804 return true;
805
806 if (!can_follow_write_common(page, vma, flags))
807 return false;
808
809 /* ... and a write-fault isn't required for other reasons. */
810 if (pte_needs_soft_dirty_wp(vma, pte))
811 return false;
812 return !userfaultfd_pte_wp(vma, pte);
813}
814
815static struct page *follow_page_pte(struct vm_area_struct *vma,
816 unsigned long address, pmd_t *pmd, unsigned int flags,
817 struct dev_pagemap **pgmap)
818{
819 struct mm_struct *mm = vma->vm_mm;
820 struct folio *folio;
821 struct page *page;
822 spinlock_t *ptl;
823 pte_t *ptep, pte;
824 int ret;
825
826 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
827 if (!ptep)
828 return no_page_table(vma, flags, address);
829 pte = ptep_get(ptep);
830 if (!pte_present(pte))
831 goto no_page;
832 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
833 goto no_page;
834
835 page = vm_normal_page(vma, address, pte);
836
837 /*
838 * We only care about anon pages in can_follow_write_pte().
839 */
840 if ((flags & FOLL_WRITE) &&
841 !can_follow_write_pte(pte, page, vma, flags)) {
842 page = NULL;
843 goto out;
844 }
845
846 if (unlikely(!page)) {
847 if (flags & FOLL_DUMP) {
848 /* Avoid special (like zero) pages in core dumps */
849 page = ERR_PTR(-EFAULT);
850 goto out;
851 }
852
853 if (is_zero_pfn(pte_pfn(pte))) {
854 page = pte_page(pte);
855 } else {
856 ret = follow_pfn_pte(vma, address, ptep, flags);
857 page = ERR_PTR(ret);
858 goto out;
859 }
860 }
861 folio = page_folio(page);
862
863 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
864 page = ERR_PTR(-EMLINK);
865 goto out;
866 }
867
868 VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
869 !PageAnonExclusive(page), page);
870
871 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
872 ret = try_grab_folio(folio, 1, flags);
873 if (unlikely(ret)) {
874 page = ERR_PTR(ret);
875 goto out;
876 }
877
878 /*
879 * We need to make the page accessible if and only if we are going
880 * to access its content (the FOLL_PIN case). Please see
881 * Documentation/core-api/pin_user_pages.rst for details.
882 */
883 if (flags & FOLL_PIN) {
884 ret = arch_make_folio_accessible(folio);
885 if (ret) {
886 unpin_user_page(page);
887 page = ERR_PTR(ret);
888 goto out;
889 }
890 }
891 if (flags & FOLL_TOUCH) {
892 if ((flags & FOLL_WRITE) &&
893 !pte_dirty(pte) && !folio_test_dirty(folio))
894 folio_mark_dirty(folio);
895 /*
896 * pte_mkyoung() would be more correct here, but atomic care
897 * is needed to avoid losing the dirty bit: it is easier to use
898 * folio_mark_accessed().
899 */
900 folio_mark_accessed(folio);
901 }
902out:
903 pte_unmap_unlock(ptep, ptl);
904 return page;
905no_page:
906 pte_unmap_unlock(ptep, ptl);
907 if (!pte_none(pte))
908 return NULL;
909 return no_page_table(vma, flags, address);
910}
911
912static struct page *follow_pmd_mask(struct vm_area_struct *vma,
913 unsigned long address, pud_t *pudp,
914 unsigned int flags,
915 struct follow_page_context *ctx)
916{
917 pmd_t *pmd, pmdval;
918 spinlock_t *ptl;
919 struct page *page;
920 struct mm_struct *mm = vma->vm_mm;
921
922 pmd = pmd_offset(pudp, address);
923 pmdval = pmdp_get_lockless(pmd);
924 if (pmd_none(pmdval))
925 return no_page_table(vma, flags, address);
926 if (!pmd_present(pmdval))
927 return no_page_table(vma, flags, address);
928 if (likely(!pmd_leaf(pmdval)))
929 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
930
931 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
932 return no_page_table(vma, flags, address);
933
934 ptl = pmd_lock(mm, pmd);
935 pmdval = *pmd;
936 if (unlikely(!pmd_present(pmdval))) {
937 spin_unlock(ptl);
938 return no_page_table(vma, flags, address);
939 }
940 if (unlikely(!pmd_leaf(pmdval))) {
941 spin_unlock(ptl);
942 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
943 }
944 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
945 spin_unlock(ptl);
946 split_huge_pmd(vma, pmd, address);
947 /* If pmd was left empty, stuff a page table in there quickly */
948 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
949 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
950 }
951 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
952 spin_unlock(ptl);
953 return page;
954}
955
956static struct page *follow_pud_mask(struct vm_area_struct *vma,
957 unsigned long address, p4d_t *p4dp,
958 unsigned int flags,
959 struct follow_page_context *ctx)
960{
961 pud_t *pudp, pud;
962 spinlock_t *ptl;
963 struct page *page;
964 struct mm_struct *mm = vma->vm_mm;
965
966 pudp = pud_offset(p4dp, address);
967 pud = READ_ONCE(*pudp);
968 if (!pud_present(pud))
969 return no_page_table(vma, flags, address);
970 if (pud_leaf(pud)) {
971 ptl = pud_lock(mm, pudp);
972 page = follow_huge_pud(vma, address, pudp, flags, ctx);
973 spin_unlock(ptl);
974 if (page)
975 return page;
976 return no_page_table(vma, flags, address);
977 }
978 if (unlikely(pud_bad(pud)))
979 return no_page_table(vma, flags, address);
980
981 return follow_pmd_mask(vma, address, pudp, flags, ctx);
982}
983
984static struct page *follow_p4d_mask(struct vm_area_struct *vma,
985 unsigned long address, pgd_t *pgdp,
986 unsigned int flags,
987 struct follow_page_context *ctx)
988{
989 p4d_t *p4dp, p4d;
990
991 p4dp = p4d_offset(pgdp, address);
992 p4d = READ_ONCE(*p4dp);
993 BUILD_BUG_ON(p4d_leaf(p4d));
994
995 if (!p4d_present(p4d) || p4d_bad(p4d))
996 return no_page_table(vma, flags, address);
997
998 return follow_pud_mask(vma, address, p4dp, flags, ctx);
999}
1000
1001/**
1002 * follow_page_mask - look up a page descriptor from a user-virtual address
1003 * @vma: vm_area_struct mapping @address
1004 * @address: virtual address to look up
1005 * @flags: flags modifying lookup behaviour
1006 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1007 * pointer to output page_mask
1008 *
1009 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1010 *
1011 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1012 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1013 *
1014 * When getting an anonymous page and the caller has to trigger unsharing
1015 * of a shared anonymous page first, -EMLINK is returned. The caller should
1016 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1017 * relevant with FOLL_PIN and !FOLL_WRITE.
1018 *
1019 * On output, the @ctx->page_mask is set according to the size of the page.
1020 *
1021 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1022 * an error pointer if there is a mapping to something not represented
1023 * by a page descriptor (see also vm_normal_page()).
1024 */
1025static struct page *follow_page_mask(struct vm_area_struct *vma,
1026 unsigned long address, unsigned int flags,
1027 struct follow_page_context *ctx)
1028{
1029 pgd_t *pgd;
1030 struct mm_struct *mm = vma->vm_mm;
1031 struct page *page;
1032
1033 vma_pgtable_walk_begin(vma);
1034
1035 ctx->page_mask = 0;
1036 pgd = pgd_offset(mm, address);
1037
1038 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1039 page = no_page_table(vma, flags, address);
1040 else
1041 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1042
1043 vma_pgtable_walk_end(vma);
1044
1045 return page;
1046}
1047
1048static int get_gate_page(struct mm_struct *mm, unsigned long address,
1049 unsigned int gup_flags, struct vm_area_struct **vma,
1050 struct page **page)
1051{
1052 pgd_t *pgd;
1053 p4d_t *p4d;
1054 pud_t *pud;
1055 pmd_t *pmd;
1056 pte_t *pte;
1057 pte_t entry;
1058 int ret = -EFAULT;
1059
1060 /* user gate pages are read-only */
1061 if (gup_flags & FOLL_WRITE)
1062 return -EFAULT;
1063 pgd = pgd_offset(mm, address);
1064 if (pgd_none(*pgd))
1065 return -EFAULT;
1066 p4d = p4d_offset(pgd, address);
1067 if (p4d_none(*p4d))
1068 return -EFAULT;
1069 pud = pud_offset(p4d, address);
1070 if (pud_none(*pud))
1071 return -EFAULT;
1072 pmd = pmd_offset(pud, address);
1073 if (!pmd_present(*pmd))
1074 return -EFAULT;
1075 pte = pte_offset_map(pmd, address);
1076 if (!pte)
1077 return -EFAULT;
1078 entry = ptep_get(pte);
1079 if (pte_none(entry))
1080 goto unmap;
1081 *vma = get_gate_vma(mm);
1082 if (!page)
1083 goto out;
1084 *page = vm_normal_page(*vma, address, entry);
1085 if (!*page) {
1086 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1087 goto unmap;
1088 *page = pte_page(entry);
1089 }
1090 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1091 if (unlikely(ret))
1092 goto unmap;
1093out:
1094 ret = 0;
1095unmap:
1096 pte_unmap(pte);
1097 return ret;
1098}
1099
1100/*
1101 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1102 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1103 * to 0 and -EBUSY returned.
1104 */
1105static int faultin_page(struct vm_area_struct *vma,
1106 unsigned long address, unsigned int flags, bool unshare,
1107 int *locked)
1108{
1109 unsigned int fault_flags = 0;
1110 vm_fault_t ret;
1111
1112 if (flags & FOLL_NOFAULT)
1113 return -EFAULT;
1114 if (flags & FOLL_WRITE)
1115 fault_flags |= FAULT_FLAG_WRITE;
1116 if (flags & FOLL_REMOTE)
1117 fault_flags |= FAULT_FLAG_REMOTE;
1118 if (flags & FOLL_UNLOCKABLE) {
1119 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1120 /*
1121 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1122 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1123 * That's because some callers may not be prepared to
1124 * handle early exits caused by non-fatal signals.
1125 */
1126 if (flags & FOLL_INTERRUPTIBLE)
1127 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1128 }
1129 if (flags & FOLL_NOWAIT)
1130 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1131 if (flags & FOLL_TRIED) {
1132 /*
1133 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1134 * can co-exist
1135 */
1136 fault_flags |= FAULT_FLAG_TRIED;
1137 }
1138 if (unshare) {
1139 fault_flags |= FAULT_FLAG_UNSHARE;
1140 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1141 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE);
1142 }
1143
1144 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1145
1146 if (ret & VM_FAULT_COMPLETED) {
1147 /*
1148 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1149 * mmap lock in the page fault handler. Sanity check this.
1150 */
1151 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1152 *locked = 0;
1153
1154 /*
1155 * We should do the same as VM_FAULT_RETRY, but let's not
1156 * return -EBUSY since that's not reflecting the reality of
1157 * what has happened - we've just fully completed a page
1158 * fault, with the mmap lock released. Use -EAGAIN to show
1159 * that we want to take the mmap lock _again_.
1160 */
1161 return -EAGAIN;
1162 }
1163
1164 if (ret & VM_FAULT_ERROR) {
1165 int err = vm_fault_to_errno(ret, flags);
1166
1167 if (err)
1168 return err;
1169 BUG();
1170 }
1171
1172 if (ret & VM_FAULT_RETRY) {
1173 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1174 *locked = 0;
1175 return -EBUSY;
1176 }
1177
1178 return 0;
1179}
1180
1181/*
1182 * Writing to file-backed mappings which require folio dirty tracking using GUP
1183 * is a fundamentally broken operation, as kernel write access to GUP mappings
1184 * do not adhere to the semantics expected by a file system.
1185 *
1186 * Consider the following scenario:-
1187 *
1188 * 1. A folio is written to via GUP which write-faults the memory, notifying
1189 * the file system and dirtying the folio.
1190 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1191 * the PTE being marked read-only.
1192 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1193 * direct mapping.
1194 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1195 * (though it does not have to).
1196 *
1197 * This results in both data being written to a folio without writenotify, and
1198 * the folio being dirtied unexpectedly (if the caller decides to do so).
1199 */
1200static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1201 unsigned long gup_flags)
1202{
1203 /*
1204 * If we aren't pinning then no problematic write can occur. A long term
1205 * pin is the most egregious case so this is the case we disallow.
1206 */
1207 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1208 (FOLL_PIN | FOLL_LONGTERM))
1209 return true;
1210
1211 /*
1212 * If the VMA does not require dirty tracking then no problematic write
1213 * can occur either.
1214 */
1215 return !vma_needs_dirty_tracking(vma);
1216}
1217
1218static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1219{
1220 vm_flags_t vm_flags = vma->vm_flags;
1221 int write = (gup_flags & FOLL_WRITE);
1222 int foreign = (gup_flags & FOLL_REMOTE);
1223 bool vma_anon = vma_is_anonymous(vma);
1224
1225 if (vm_flags & (VM_IO | VM_PFNMAP))
1226 return -EFAULT;
1227
1228 if ((gup_flags & FOLL_ANON) && !vma_anon)
1229 return -EFAULT;
1230
1231 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1232 return -EOPNOTSUPP;
1233
1234 if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1235 return -EOPNOTSUPP;
1236
1237 if (vma_is_secretmem(vma))
1238 return -EFAULT;
1239
1240 if (write) {
1241 if (!vma_anon &&
1242 !writable_file_mapping_allowed(vma, gup_flags))
1243 return -EFAULT;
1244
1245 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1246 if (!(gup_flags & FOLL_FORCE))
1247 return -EFAULT;
1248 /*
1249 * We used to let the write,force case do COW in a
1250 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1251 * set a breakpoint in a read-only mapping of an
1252 * executable, without corrupting the file (yet only
1253 * when that file had been opened for writing!).
1254 * Anon pages in shared mappings are surprising: now
1255 * just reject it.
1256 */
1257 if (!is_cow_mapping(vm_flags))
1258 return -EFAULT;
1259 }
1260 } else if (!(vm_flags & VM_READ)) {
1261 if (!(gup_flags & FOLL_FORCE))
1262 return -EFAULT;
1263 /*
1264 * Is there actually any vma we can reach here which does not
1265 * have VM_MAYREAD set?
1266 */
1267 if (!(vm_flags & VM_MAYREAD))
1268 return -EFAULT;
1269 }
1270 /*
1271 * gups are always data accesses, not instruction
1272 * fetches, so execute=false here
1273 */
1274 if (!arch_vma_access_permitted(vma, write, false, foreign))
1275 return -EFAULT;
1276 return 0;
1277}
1278
1279/*
1280 * This is "vma_lookup()", but with a warning if we would have
1281 * historically expanded the stack in the GUP code.
1282 */
1283static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1284 unsigned long addr)
1285{
1286#ifdef CONFIG_STACK_GROWSUP
1287 return vma_lookup(mm, addr);
1288#else
1289 static volatile unsigned long next_warn;
1290 struct vm_area_struct *vma;
1291 unsigned long now, next;
1292
1293 vma = find_vma(mm, addr);
1294 if (!vma || (addr >= vma->vm_start))
1295 return vma;
1296
1297 /* Only warn for half-way relevant accesses */
1298 if (!(vma->vm_flags & VM_GROWSDOWN))
1299 return NULL;
1300 if (vma->vm_start - addr > 65536)
1301 return NULL;
1302
1303 /* Let's not warn more than once an hour.. */
1304 now = jiffies; next = next_warn;
1305 if (next && time_before(now, next))
1306 return NULL;
1307 next_warn = now + 60*60*HZ;
1308
1309 /* Let people know things may have changed. */
1310 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1311 current->comm, task_pid_nr(current),
1312 vma->vm_start, vma->vm_end, addr);
1313 dump_stack();
1314 return NULL;
1315#endif
1316}
1317
1318/**
1319 * __get_user_pages() - pin user pages in memory
1320 * @mm: mm_struct of target mm
1321 * @start: starting user address
1322 * @nr_pages: number of pages from start to pin
1323 * @gup_flags: flags modifying pin behaviour
1324 * @pages: array that receives pointers to the pages pinned.
1325 * Should be at least nr_pages long. Or NULL, if caller
1326 * only intends to ensure the pages are faulted in.
1327 * @locked: whether we're still with the mmap_lock held
1328 *
1329 * Returns either number of pages pinned (which may be less than the
1330 * number requested), or an error. Details about the return value:
1331 *
1332 * -- If nr_pages is 0, returns 0.
1333 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1334 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1335 * pages pinned. Again, this may be less than nr_pages.
1336 * -- 0 return value is possible when the fault would need to be retried.
1337 *
1338 * The caller is responsible for releasing returned @pages, via put_page().
1339 *
1340 * Must be called with mmap_lock held. It may be released. See below.
1341 *
1342 * __get_user_pages walks a process's page tables and takes a reference to
1343 * each struct page that each user address corresponds to at a given
1344 * instant. That is, it takes the page that would be accessed if a user
1345 * thread accesses the given user virtual address at that instant.
1346 *
1347 * This does not guarantee that the page exists in the user mappings when
1348 * __get_user_pages returns, and there may even be a completely different
1349 * page there in some cases (eg. if mmapped pagecache has been invalidated
1350 * and subsequently re-faulted). However it does guarantee that the page
1351 * won't be freed completely. And mostly callers simply care that the page
1352 * contains data that was valid *at some point in time*. Typically, an IO
1353 * or similar operation cannot guarantee anything stronger anyway because
1354 * locks can't be held over the syscall boundary.
1355 *
1356 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1357 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1358 * appropriate) must be called after the page is finished with, and
1359 * before put_page is called.
1360 *
1361 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1362 * be released. If this happens *@locked will be set to 0 on return.
1363 *
1364 * A caller using such a combination of @gup_flags must therefore hold the
1365 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1366 * it must be held for either reading or writing and will not be released.
1367 *
1368 * In most cases, get_user_pages or get_user_pages_fast should be used
1369 * instead of __get_user_pages. __get_user_pages should be used only if
1370 * you need some special @gup_flags.
1371 */
1372static long __get_user_pages(struct mm_struct *mm,
1373 unsigned long start, unsigned long nr_pages,
1374 unsigned int gup_flags, struct page **pages,
1375 int *locked)
1376{
1377 long ret = 0, i = 0;
1378 struct vm_area_struct *vma = NULL;
1379 struct follow_page_context ctx = { NULL };
1380
1381 if (!nr_pages)
1382 return 0;
1383
1384 start = untagged_addr_remote(mm, start);
1385
1386 VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1387
1388 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1389 VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1390 (FOLL_PIN | FOLL_GET));
1391
1392 do {
1393 struct page *page;
1394 unsigned int page_increm;
1395
1396 /* first iteration or cross vma bound */
1397 if (!vma || start >= vma->vm_end) {
1398 /*
1399 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1400 * lookups+error reporting differently.
1401 */
1402 if (gup_flags & FOLL_MADV_POPULATE) {
1403 vma = vma_lookup(mm, start);
1404 if (!vma) {
1405 ret = -ENOMEM;
1406 goto out;
1407 }
1408 if (check_vma_flags(vma, gup_flags)) {
1409 ret = -EINVAL;
1410 goto out;
1411 }
1412 goto retry;
1413 }
1414 vma = gup_vma_lookup(mm, start);
1415 if (!vma && in_gate_area(mm, start)) {
1416 ret = get_gate_page(mm, start & PAGE_MASK,
1417 gup_flags, &vma,
1418 pages ? &page : NULL);
1419 if (ret)
1420 goto out;
1421 ctx.page_mask = 0;
1422 goto next_page;
1423 }
1424
1425 if (!vma) {
1426 ret = -EFAULT;
1427 goto out;
1428 }
1429 ret = check_vma_flags(vma, gup_flags);
1430 if (ret)
1431 goto out;
1432 }
1433retry:
1434 /*
1435 * If we have a pending SIGKILL, don't keep faulting pages and
1436 * potentially allocating memory.
1437 */
1438 if (fatal_signal_pending(current)) {
1439 ret = -EINTR;
1440 goto out;
1441 }
1442 cond_resched();
1443
1444 page = follow_page_mask(vma, start, gup_flags, &ctx);
1445 if (!page || PTR_ERR(page) == -EMLINK) {
1446 ret = faultin_page(vma, start, gup_flags,
1447 PTR_ERR(page) == -EMLINK, locked);
1448 switch (ret) {
1449 case 0:
1450 goto retry;
1451 case -EBUSY:
1452 case -EAGAIN:
1453 ret = 0;
1454 fallthrough;
1455 case -EFAULT:
1456 case -ENOMEM:
1457 case -EHWPOISON:
1458 goto out;
1459 }
1460 BUG();
1461 } else if (PTR_ERR(page) == -EEXIST) {
1462 /*
1463 * Proper page table entry exists, but no corresponding
1464 * struct page. If the caller expects **pages to be
1465 * filled in, bail out now, because that can't be done
1466 * for this page.
1467 */
1468 if (pages) {
1469 ret = PTR_ERR(page);
1470 goto out;
1471 }
1472 } else if (IS_ERR(page)) {
1473 ret = PTR_ERR(page);
1474 goto out;
1475 }
1476next_page:
1477 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1478 if (page_increm > nr_pages)
1479 page_increm = nr_pages;
1480
1481 if (pages) {
1482 struct page *subpage;
1483 unsigned int j;
1484
1485 /*
1486 * This must be a large folio (and doesn't need to
1487 * be the whole folio; it can be part of it), do
1488 * the refcount work for all the subpages too.
1489 *
1490 * NOTE: here the page may not be the head page
1491 * e.g. when start addr is not thp-size aligned.
1492 * try_grab_folio() should have taken care of tail
1493 * pages.
1494 */
1495 if (page_increm > 1) {
1496 struct folio *folio = page_folio(page);
1497
1498 /*
1499 * Since we already hold refcount on the
1500 * large folio, this should never fail.
1501 */
1502 if (try_grab_folio(folio, page_increm - 1,
1503 gup_flags)) {
1504 /*
1505 * Release the 1st page ref if the
1506 * folio is problematic, fail hard.
1507 */
1508 gup_put_folio(folio, 1, gup_flags);
1509 ret = -EFAULT;
1510 goto out;
1511 }
1512 }
1513
1514 for (j = 0; j < page_increm; j++) {
1515 subpage = nth_page(page, j);
1516 pages[i + j] = subpage;
1517 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1518 flush_dcache_page(subpage);
1519 }
1520 }
1521
1522 i += page_increm;
1523 start += page_increm * PAGE_SIZE;
1524 nr_pages -= page_increm;
1525 } while (nr_pages);
1526out:
1527 if (ctx.pgmap)
1528 put_dev_pagemap(ctx.pgmap);
1529 return i ? i : ret;
1530}
1531
1532static bool vma_permits_fault(struct vm_area_struct *vma,
1533 unsigned int fault_flags)
1534{
1535 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1536 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1537 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1538
1539 if (!(vm_flags & vma->vm_flags))
1540 return false;
1541
1542 /*
1543 * The architecture might have a hardware protection
1544 * mechanism other than read/write that can deny access.
1545 *
1546 * gup always represents data access, not instruction
1547 * fetches, so execute=false here:
1548 */
1549 if (!arch_vma_access_permitted(vma, write, false, foreign))
1550 return false;
1551
1552 return true;
1553}
1554
1555/**
1556 * fixup_user_fault() - manually resolve a user page fault
1557 * @mm: mm_struct of target mm
1558 * @address: user address
1559 * @fault_flags:flags to pass down to handle_mm_fault()
1560 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1561 * does not allow retry. If NULL, the caller must guarantee
1562 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1563 *
1564 * This is meant to be called in the specific scenario where for locking reasons
1565 * we try to access user memory in atomic context (within a pagefault_disable()
1566 * section), this returns -EFAULT, and we want to resolve the user fault before
1567 * trying again.
1568 *
1569 * Typically this is meant to be used by the futex code.
1570 *
1571 * The main difference with get_user_pages() is that this function will
1572 * unconditionally call handle_mm_fault() which will in turn perform all the
1573 * necessary SW fixup of the dirty and young bits in the PTE, while
1574 * get_user_pages() only guarantees to update these in the struct page.
1575 *
1576 * This is important for some architectures where those bits also gate the
1577 * access permission to the page because they are maintained in software. On
1578 * such architectures, gup() will not be enough to make a subsequent access
1579 * succeed.
1580 *
1581 * This function will not return with an unlocked mmap_lock. So it has not the
1582 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1583 */
1584int fixup_user_fault(struct mm_struct *mm,
1585 unsigned long address, unsigned int fault_flags,
1586 bool *unlocked)
1587{
1588 struct vm_area_struct *vma;
1589 vm_fault_t ret;
1590
1591 address = untagged_addr_remote(mm, address);
1592
1593 if (unlocked)
1594 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1595
1596retry:
1597 vma = gup_vma_lookup(mm, address);
1598 if (!vma)
1599 return -EFAULT;
1600
1601 if (!vma_permits_fault(vma, fault_flags))
1602 return -EFAULT;
1603
1604 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1605 fatal_signal_pending(current))
1606 return -EINTR;
1607
1608 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1609
1610 if (ret & VM_FAULT_COMPLETED) {
1611 /*
1612 * NOTE: it's a pity that we need to retake the lock here
1613 * to pair with the unlock() in the callers. Ideally we
1614 * could tell the callers so they do not need to unlock.
1615 */
1616 mmap_read_lock(mm);
1617 *unlocked = true;
1618 return 0;
1619 }
1620
1621 if (ret & VM_FAULT_ERROR) {
1622 int err = vm_fault_to_errno(ret, 0);
1623
1624 if (err)
1625 return err;
1626 BUG();
1627 }
1628
1629 if (ret & VM_FAULT_RETRY) {
1630 mmap_read_lock(mm);
1631 *unlocked = true;
1632 fault_flags |= FAULT_FLAG_TRIED;
1633 goto retry;
1634 }
1635
1636 return 0;
1637}
1638EXPORT_SYMBOL_GPL(fixup_user_fault);
1639
1640/*
1641 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1642 * specified, it'll also respond to generic signals. The caller of GUP
1643 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1644 */
1645static bool gup_signal_pending(unsigned int flags)
1646{
1647 if (fatal_signal_pending(current))
1648 return true;
1649
1650 if (!(flags & FOLL_INTERRUPTIBLE))
1651 return false;
1652
1653 return signal_pending(current);
1654}
1655
1656/*
1657 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1658 * the caller. This function may drop the mmap_lock. If it does so, then it will
1659 * set (*locked = 0).
1660 *
1661 * (*locked == 0) means that the caller expects this function to acquire and
1662 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1663 * the function returns, even though it may have changed temporarily during
1664 * function execution.
1665 *
1666 * Please note that this function, unlike __get_user_pages(), will not return 0
1667 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1668 */
1669static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1670 unsigned long start,
1671 unsigned long nr_pages,
1672 struct page **pages,
1673 int *locked,
1674 unsigned int flags)
1675{
1676 long ret, pages_done;
1677 bool must_unlock = false;
1678
1679 if (!nr_pages)
1680 return 0;
1681
1682 /*
1683 * The internal caller expects GUP to manage the lock internally and the
1684 * lock must be released when this returns.
1685 */
1686 if (!*locked) {
1687 if (mmap_read_lock_killable(mm))
1688 return -EAGAIN;
1689 must_unlock = true;
1690 *locked = 1;
1691 }
1692 else
1693 mmap_assert_locked(mm);
1694
1695 if (flags & FOLL_PIN)
1696 mm_set_has_pinned_flag(&mm->flags);
1697
1698 /*
1699 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1700 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1701 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1702 * for FOLL_GET, not for the newer FOLL_PIN.
1703 *
1704 * FOLL_PIN always expects pages to be non-null, but no need to assert
1705 * that here, as any failures will be obvious enough.
1706 */
1707 if (pages && !(flags & FOLL_PIN))
1708 flags |= FOLL_GET;
1709
1710 pages_done = 0;
1711 for (;;) {
1712 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1713 locked);
1714 if (!(flags & FOLL_UNLOCKABLE)) {
1715 /* VM_FAULT_RETRY couldn't trigger, bypass */
1716 pages_done = ret;
1717 break;
1718 }
1719
1720 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1721 VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages));
1722
1723 if (ret > 0) {
1724 nr_pages -= ret;
1725 pages_done += ret;
1726 if (!nr_pages)
1727 break;
1728 }
1729 if (*locked) {
1730 /*
1731 * VM_FAULT_RETRY didn't trigger or it was a
1732 * FOLL_NOWAIT.
1733 */
1734 if (!pages_done)
1735 pages_done = ret;
1736 break;
1737 }
1738 /*
1739 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1740 * For the prefault case (!pages) we only update counts.
1741 */
1742 if (likely(pages))
1743 pages += ret;
1744 start += ret << PAGE_SHIFT;
1745
1746 /* The lock was temporarily dropped, so we must unlock later */
1747 must_unlock = true;
1748
1749retry:
1750 /*
1751 * Repeat on the address that fired VM_FAULT_RETRY
1752 * with both FAULT_FLAG_ALLOW_RETRY and
1753 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1754 * by fatal signals of even common signals, depending on
1755 * the caller's request. So we need to check it before we
1756 * start trying again otherwise it can loop forever.
1757 */
1758 if (gup_signal_pending(flags)) {
1759 if (!pages_done)
1760 pages_done = -EINTR;
1761 break;
1762 }
1763
1764 ret = mmap_read_lock_killable(mm);
1765 if (ret) {
1766 if (!pages_done)
1767 pages_done = ret;
1768 break;
1769 }
1770
1771 *locked = 1;
1772 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1773 pages, locked);
1774 if (!*locked) {
1775 /* Continue to retry until we succeeded */
1776 VM_WARN_ON_ONCE(ret != 0);
1777 goto retry;
1778 }
1779 if (ret != 1) {
1780 VM_WARN_ON_ONCE(ret > 1);
1781 if (!pages_done)
1782 pages_done = ret;
1783 break;
1784 }
1785 nr_pages--;
1786 pages_done++;
1787 if (!nr_pages)
1788 break;
1789 if (likely(pages))
1790 pages++;
1791 start += PAGE_SIZE;
1792 }
1793 if (must_unlock && *locked) {
1794 /*
1795 * We either temporarily dropped the lock, or the caller
1796 * requested that we both acquire and drop the lock. Either way,
1797 * we must now unlock, and notify the caller of that state.
1798 */
1799 mmap_read_unlock(mm);
1800 *locked = 0;
1801 }
1802
1803 /*
1804 * Failing to pin anything implies something has gone wrong (except when
1805 * FOLL_NOWAIT is specified).
1806 */
1807 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1808 return -EFAULT;
1809
1810 return pages_done;
1811}
1812
1813/**
1814 * populate_vma_page_range() - populate a range of pages in the vma.
1815 * @vma: target vma
1816 * @start: start address
1817 * @end: end address
1818 * @locked: whether the mmap_lock is still held
1819 *
1820 * This takes care of mlocking the pages too if VM_LOCKED is set.
1821 *
1822 * Return either number of pages pinned in the vma, or a negative error
1823 * code on error.
1824 *
1825 * vma->vm_mm->mmap_lock must be held.
1826 *
1827 * If @locked is NULL, it may be held for read or write and will
1828 * be unperturbed.
1829 *
1830 * If @locked is non-NULL, it must held for read only and may be
1831 * released. If it's released, *@locked will be set to 0.
1832 */
1833long populate_vma_page_range(struct vm_area_struct *vma,
1834 unsigned long start, unsigned long end, int *locked)
1835{
1836 struct mm_struct *mm = vma->vm_mm;
1837 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1838 int local_locked = 1;
1839 int gup_flags;
1840 long ret;
1841
1842 VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1843 VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1844 VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma);
1845 VM_WARN_ON_ONCE_VMA(end > vma->vm_end, vma);
1846 mmap_assert_locked(mm);
1847
1848 /*
1849 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1850 * faultin_page() to break COW, so it has no work to do here.
1851 */
1852 if (vma->vm_flags & VM_LOCKONFAULT)
1853 return nr_pages;
1854
1855 /* ... similarly, we've never faulted in PROT_NONE pages */
1856 if (!vma_is_accessible(vma))
1857 return -EFAULT;
1858
1859 gup_flags = FOLL_TOUCH;
1860 /*
1861 * We want to touch writable mappings with a write fault in order
1862 * to break COW, except for shared mappings because these don't COW
1863 * and we would not want to dirty them for nothing.
1864 *
1865 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1866 * readable (ie write-only or executable).
1867 */
1868 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1869 gup_flags |= FOLL_WRITE;
1870 else
1871 gup_flags |= FOLL_FORCE;
1872
1873 if (locked)
1874 gup_flags |= FOLL_UNLOCKABLE;
1875
1876 /*
1877 * We made sure addr is within a VMA, so the following will
1878 * not result in a stack expansion that recurses back here.
1879 */
1880 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1881 NULL, locked ? locked : &local_locked);
1882 lru_add_drain();
1883 return ret;
1884}
1885
1886/*
1887 * faultin_page_range() - populate (prefault) page tables inside the
1888 * given range readable/writable
1889 *
1890 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1891 *
1892 * @mm: the mm to populate page tables in
1893 * @start: start address
1894 * @end: end address
1895 * @write: whether to prefault readable or writable
1896 * @locked: whether the mmap_lock is still held
1897 *
1898 * Returns either number of processed pages in the MM, or a negative error
1899 * code on error (see __get_user_pages()). Note that this function reports
1900 * errors related to VMAs, such as incompatible mappings, as expected by
1901 * MADV_POPULATE_(READ|WRITE).
1902 *
1903 * The range must be page-aligned.
1904 *
1905 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1906 */
1907long faultin_page_range(struct mm_struct *mm, unsigned long start,
1908 unsigned long end, bool write, int *locked)
1909{
1910 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1911 int gup_flags;
1912 long ret;
1913
1914 VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1915 VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1916 mmap_assert_locked(mm);
1917
1918 /*
1919 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1920 * the page dirty with FOLL_WRITE -- which doesn't make a
1921 * difference with !FOLL_FORCE, because the page is writable
1922 * in the page table.
1923 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1924 * a poisoned page.
1925 * !FOLL_FORCE: Require proper access permissions.
1926 */
1927 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1928 FOLL_MADV_POPULATE;
1929 if (write)
1930 gup_flags |= FOLL_WRITE;
1931
1932 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1933 gup_flags);
1934 lru_add_drain();
1935 return ret;
1936}
1937
1938/*
1939 * __mm_populate - populate and/or mlock pages within a range of address space.
1940 *
1941 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1942 * flags. VMAs must be already marked with the desired vm_flags, and
1943 * mmap_lock must not be held.
1944 */
1945int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1946{
1947 struct mm_struct *mm = current->mm;
1948 unsigned long end, nstart, nend;
1949 struct vm_area_struct *vma = NULL;
1950 int locked = 0;
1951 long ret = 0;
1952
1953 end = start + len;
1954
1955 for (nstart = start; nstart < end; nstart = nend) {
1956 /*
1957 * We want to fault in pages for [nstart; end) address range.
1958 * Find first corresponding VMA.
1959 */
1960 if (!locked) {
1961 locked = 1;
1962 mmap_read_lock(mm);
1963 vma = find_vma_intersection(mm, nstart, end);
1964 } else if (nstart >= vma->vm_end)
1965 vma = find_vma_intersection(mm, vma->vm_end, end);
1966
1967 if (!vma)
1968 break;
1969 /*
1970 * Set [nstart; nend) to intersection of desired address
1971 * range with the first VMA. Also, skip undesirable VMA types.
1972 */
1973 nend = min(end, vma->vm_end);
1974 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1975 continue;
1976 if (nstart < vma->vm_start)
1977 nstart = vma->vm_start;
1978 /*
1979 * Now fault in a range of pages. populate_vma_page_range()
1980 * double checks the vma flags, so that it won't mlock pages
1981 * if the vma was already munlocked.
1982 */
1983 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1984 if (ret < 0) {
1985 if (ignore_errors) {
1986 ret = 0;
1987 continue; /* continue at next VMA */
1988 }
1989 break;
1990 }
1991 nend = nstart + ret * PAGE_SIZE;
1992 ret = 0;
1993 }
1994 if (locked)
1995 mmap_read_unlock(mm);
1996 return ret; /* 0 or negative error code */
1997}
1998#else /* CONFIG_MMU */
1999static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2000 unsigned long nr_pages, struct page **pages,
2001 int *locked, unsigned int foll_flags)
2002{
2003 struct vm_area_struct *vma;
2004 bool must_unlock = false;
2005 vm_flags_t vm_flags;
2006 long i;
2007
2008 if (!nr_pages)
2009 return 0;
2010
2011 /*
2012 * The internal caller expects GUP to manage the lock internally and the
2013 * lock must be released when this returns.
2014 */
2015 if (!*locked) {
2016 if (mmap_read_lock_killable(mm))
2017 return -EAGAIN;
2018 must_unlock = true;
2019 *locked = 1;
2020 }
2021
2022 /* calculate required read or write permissions.
2023 * If FOLL_FORCE is set, we only require the "MAY" flags.
2024 */
2025 vm_flags = (foll_flags & FOLL_WRITE) ?
2026 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2027 vm_flags &= (foll_flags & FOLL_FORCE) ?
2028 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2029
2030 for (i = 0; i < nr_pages; i++) {
2031 vma = find_vma(mm, start);
2032 if (!vma)
2033 break;
2034
2035 /* protect what we can, including chardevs */
2036 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2037 !(vm_flags & vma->vm_flags))
2038 break;
2039
2040 if (pages) {
2041 pages[i] = virt_to_page((void *)start);
2042 if (pages[i])
2043 get_page(pages[i]);
2044 }
2045
2046 start = (start + PAGE_SIZE) & PAGE_MASK;
2047 }
2048
2049 if (must_unlock && *locked) {
2050 mmap_read_unlock(mm);
2051 *locked = 0;
2052 }
2053
2054 return i ? : -EFAULT;
2055}
2056#endif /* !CONFIG_MMU */
2057
2058/**
2059 * fault_in_writeable - fault in userspace address range for writing
2060 * @uaddr: start of address range
2061 * @size: size of address range
2062 *
2063 * Returns the number of bytes not faulted in (like copy_to_user() and
2064 * copy_from_user()).
2065 */
2066size_t fault_in_writeable(char __user *uaddr, size_t size)
2067{
2068 const unsigned long start = (unsigned long)uaddr;
2069 const unsigned long end = start + size;
2070 unsigned long cur;
2071
2072 if (unlikely(size == 0))
2073 return 0;
2074 if (!user_write_access_begin(uaddr, size))
2075 return size;
2076
2077 /* Stop once we overflow to 0. */
2078 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2079 unsafe_put_user(0, (char __user *)cur, out);
2080out:
2081 user_write_access_end();
2082 if (size > cur - start)
2083 return size - (cur - start);
2084 return 0;
2085}
2086EXPORT_SYMBOL(fault_in_writeable);
2087
2088/**
2089 * fault_in_subpage_writeable - fault in an address range for writing
2090 * @uaddr: start of address range
2091 * @size: size of address range
2092 *
2093 * Fault in a user address range for writing while checking for permissions at
2094 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2095 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2096 *
2097 * Returns the number of bytes not faulted in (like copy_to_user() and
2098 * copy_from_user()).
2099 */
2100size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2101{
2102 size_t faulted_in;
2103
2104 /*
2105 * Attempt faulting in at page granularity first for page table
2106 * permission checking. The arch-specific probe_subpage_writeable()
2107 * functions may not check for this.
2108 */
2109 faulted_in = size - fault_in_writeable(uaddr, size);
2110 if (faulted_in)
2111 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2112
2113 return size - faulted_in;
2114}
2115EXPORT_SYMBOL(fault_in_subpage_writeable);
2116
2117/*
2118 * fault_in_safe_writeable - fault in an address range for writing
2119 * @uaddr: start of address range
2120 * @size: length of address range
2121 *
2122 * Faults in an address range for writing. This is primarily useful when we
2123 * already know that some or all of the pages in the address range aren't in
2124 * memory.
2125 *
2126 * Unlike fault_in_writeable(), this function is non-destructive.
2127 *
2128 * Note that we don't pin or otherwise hold the pages referenced that we fault
2129 * in. There's no guarantee that they'll stay in memory for any duration of
2130 * time.
2131 *
2132 * Returns the number of bytes not faulted in, like copy_to_user() and
2133 * copy_from_user().
2134 */
2135size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2136{
2137 const unsigned long start = (unsigned long)uaddr;
2138 const unsigned long end = start + size;
2139 unsigned long cur;
2140 struct mm_struct *mm = current->mm;
2141 bool unlocked = false;
2142
2143 if (unlikely(size == 0))
2144 return 0;
2145
2146 mmap_read_lock(mm);
2147 /* Stop once we overflow to 0. */
2148 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2149 if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2150 break;
2151 mmap_read_unlock(mm);
2152
2153 if (size > cur - start)
2154 return size - (cur - start);
2155 return 0;
2156}
2157EXPORT_SYMBOL(fault_in_safe_writeable);
2158
2159/**
2160 * fault_in_readable - fault in userspace address range for reading
2161 * @uaddr: start of user address range
2162 * @size: size of user address range
2163 *
2164 * Returns the number of bytes not faulted in (like copy_to_user() and
2165 * copy_from_user()).
2166 */
2167size_t fault_in_readable(const char __user *uaddr, size_t size)
2168{
2169 const unsigned long start = (unsigned long)uaddr;
2170 const unsigned long end = start + size;
2171 unsigned long cur;
2172 volatile char c;
2173
2174 if (unlikely(size == 0))
2175 return 0;
2176 if (!user_read_access_begin(uaddr, size))
2177 return size;
2178
2179 /* Stop once we overflow to 0. */
2180 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2181 unsafe_get_user(c, (const char __user *)cur, out);
2182out:
2183 user_read_access_end();
2184 (void)c;
2185 if (size > cur - start)
2186 return size - (cur - start);
2187 return 0;
2188}
2189EXPORT_SYMBOL(fault_in_readable);
2190
2191/**
2192 * get_dump_page() - pin user page in memory while writing it to core dump
2193 * @addr: user address
2194 * @locked: a pointer to an int denoting whether the mmap sem is held
2195 *
2196 * Returns struct page pointer of user page pinned for dump,
2197 * to be freed afterwards by put_page().
2198 *
2199 * Returns NULL on any kind of failure - a hole must then be inserted into
2200 * the corefile, to preserve alignment with its headers; and also returns
2201 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2202 * allowing a hole to be left in the corefile to save disk space.
2203 *
2204 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2205 */
2206#ifdef CONFIG_ELF_CORE
2207struct page *get_dump_page(unsigned long addr, int *locked)
2208{
2209 struct page *page;
2210 int ret;
2211
2212 ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2213 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2214 return (ret == 1) ? page : NULL;
2215}
2216#endif /* CONFIG_ELF_CORE */
2217
2218#ifdef CONFIG_MIGRATION
2219
2220/*
2221 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2222 * avoid this complication, by simply interpreting a list of folios as a list of
2223 * pages, that approach won't work in the longer term, because eventually the
2224 * layouts of struct page and struct folio will become completely different.
2225 * Furthermore, this pof approach avoids excessive page_folio() calls.
2226 */
2227struct pages_or_folios {
2228 union {
2229 struct page **pages;
2230 struct folio **folios;
2231 void **entries;
2232 };
2233 bool has_folios;
2234 long nr_entries;
2235};
2236
2237static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2238{
2239 if (pofs->has_folios)
2240 return pofs->folios[i];
2241 return page_folio(pofs->pages[i]);
2242}
2243
2244static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2245{
2246 pofs->entries[i] = NULL;
2247}
2248
2249static void pofs_unpin(struct pages_or_folios *pofs)
2250{
2251 if (pofs->has_folios)
2252 unpin_folios(pofs->folios, pofs->nr_entries);
2253 else
2254 unpin_user_pages(pofs->pages, pofs->nr_entries);
2255}
2256
2257static struct folio *pofs_next_folio(struct folio *folio,
2258 struct pages_or_folios *pofs, long *index_ptr)
2259{
2260 long i = *index_ptr + 1;
2261
2262 if (!pofs->has_folios && folio_test_large(folio)) {
2263 const unsigned long start_pfn = folio_pfn(folio);
2264 const unsigned long end_pfn = start_pfn + folio_nr_pages(folio);
2265
2266 for (; i < pofs->nr_entries; i++) {
2267 unsigned long pfn = page_to_pfn(pofs->pages[i]);
2268
2269 /* Is this page part of this folio? */
2270 if (pfn < start_pfn || pfn >= end_pfn)
2271 break;
2272 }
2273 }
2274
2275 if (unlikely(i == pofs->nr_entries))
2276 return NULL;
2277 *index_ptr = i;
2278
2279 return pofs_get_folio(pofs, i);
2280}
2281
2282/*
2283 * Returns the number of collected folios. Return value is always >= 0.
2284 */
2285static unsigned long collect_longterm_unpinnable_folios(
2286 struct list_head *movable_folio_list,
2287 struct pages_or_folios *pofs)
2288{
2289 unsigned long collected = 0;
2290 struct folio *folio;
2291 int drained = 0;
2292 long i = 0;
2293
2294 for (folio = pofs_get_folio(pofs, i); folio;
2295 folio = pofs_next_folio(folio, pofs, &i)) {
2296
2297 if (folio_is_longterm_pinnable(folio))
2298 continue;
2299
2300 collected++;
2301
2302 if (folio_is_device_coherent(folio))
2303 continue;
2304
2305 if (folio_test_hugetlb(folio)) {
2306 folio_isolate_hugetlb(folio, movable_folio_list);
2307 continue;
2308 }
2309
2310 if (drained == 0 && folio_may_be_lru_cached(folio) &&
2311 folio_ref_count(folio) !=
2312 folio_expected_ref_count(folio) + 1) {
2313 lru_add_drain();
2314 drained = 1;
2315 }
2316 if (drained == 1 && folio_may_be_lru_cached(folio) &&
2317 folio_ref_count(folio) !=
2318 folio_expected_ref_count(folio) + 1) {
2319 lru_add_drain_all();
2320 drained = 2;
2321 }
2322
2323 if (!folio_isolate_lru(folio))
2324 continue;
2325
2326 list_add_tail(&folio->lru, movable_folio_list);
2327 node_stat_mod_folio(folio,
2328 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2329 folio_nr_pages(folio));
2330 }
2331
2332 return collected;
2333}
2334
2335/*
2336 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2337 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2338 * failure (or partial success).
2339 */
2340static int
2341migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2342 struct pages_or_folios *pofs)
2343{
2344 int ret;
2345 unsigned long i;
2346
2347 for (i = 0; i < pofs->nr_entries; i++) {
2348 struct folio *folio = pofs_get_folio(pofs, i);
2349
2350 if (folio_is_device_coherent(folio)) {
2351 /*
2352 * Migration will fail if the folio is pinned, so
2353 * convert the pin on the source folio to a normal
2354 * reference.
2355 */
2356 pofs_clear_entry(pofs, i);
2357 folio_get(folio);
2358 gup_put_folio(folio, 1, FOLL_PIN);
2359
2360 if (migrate_device_coherent_folio(folio)) {
2361 ret = -EBUSY;
2362 goto err;
2363 }
2364
2365 continue;
2366 }
2367
2368 /*
2369 * We can't migrate folios with unexpected references, so drop
2370 * the reference obtained by __get_user_pages_locked().
2371 * Migrating folios have been added to movable_folio_list after
2372 * calling folio_isolate_lru() which takes a reference so the
2373 * folio won't be freed if it's migrating.
2374 */
2375 unpin_folio(folio);
2376 pofs_clear_entry(pofs, i);
2377 }
2378
2379 if (!list_empty(movable_folio_list)) {
2380 struct migration_target_control mtc = {
2381 .nid = NUMA_NO_NODE,
2382 .gfp_mask = GFP_USER | __GFP_NOWARN,
2383 .reason = MR_LONGTERM_PIN,
2384 };
2385
2386 if (migrate_pages(movable_folio_list, alloc_migration_target,
2387 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2388 MR_LONGTERM_PIN, NULL)) {
2389 ret = -ENOMEM;
2390 goto err;
2391 }
2392 }
2393
2394 putback_movable_pages(movable_folio_list);
2395
2396 return -EAGAIN;
2397
2398err:
2399 pofs_unpin(pofs);
2400 putback_movable_pages(movable_folio_list);
2401
2402 return ret;
2403}
2404
2405static long
2406check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2407{
2408 LIST_HEAD(movable_folio_list);
2409 unsigned long collected;
2410
2411 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2412 pofs);
2413 if (!collected)
2414 return 0;
2415
2416 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2417}
2418
2419/*
2420 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2421 * Rather confusingly, all folios in the range are required to be pinned via
2422 * FOLL_PIN, before calling this routine.
2423 *
2424 * Return values:
2425 *
2426 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2427 * then this routine leaves all folios pinned and returns zero for success.
2428 *
2429 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2430 * routine will migrate those folios away, unpin all the folios in the range. If
2431 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2432 * caller should re-pin the entire range with FOLL_PIN and then call this
2433 * routine again.
2434 *
2435 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2436 * indicates a migration failure. The caller should give up, and propagate the
2437 * error back up the call stack. The caller does not need to unpin any folios in
2438 * that case, because this routine will do the unpinning.
2439 */
2440static long check_and_migrate_movable_folios(unsigned long nr_folios,
2441 struct folio **folios)
2442{
2443 struct pages_or_folios pofs = {
2444 .folios = folios,
2445 .has_folios = true,
2446 .nr_entries = nr_folios,
2447 };
2448
2449 return check_and_migrate_movable_pages_or_folios(&pofs);
2450}
2451
2452/*
2453 * Return values and behavior are the same as those for
2454 * check_and_migrate_movable_folios().
2455 */
2456static long check_and_migrate_movable_pages(unsigned long nr_pages,
2457 struct page **pages)
2458{
2459 struct pages_or_folios pofs = {
2460 .pages = pages,
2461 .has_folios = false,
2462 .nr_entries = nr_pages,
2463 };
2464
2465 return check_and_migrate_movable_pages_or_folios(&pofs);
2466}
2467#else
2468static long check_and_migrate_movable_pages(unsigned long nr_pages,
2469 struct page **pages)
2470{
2471 return 0;
2472}
2473
2474static long check_and_migrate_movable_folios(unsigned long nr_folios,
2475 struct folio **folios)
2476{
2477 return 0;
2478}
2479#endif /* CONFIG_MIGRATION */
2480
2481/*
2482 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2483 * allows us to process the FOLL_LONGTERM flag.
2484 */
2485static long __gup_longterm_locked(struct mm_struct *mm,
2486 unsigned long start,
2487 unsigned long nr_pages,
2488 struct page **pages,
2489 int *locked,
2490 unsigned int gup_flags)
2491{
2492 unsigned int flags;
2493 long rc, nr_pinned_pages;
2494
2495 if (!(gup_flags & FOLL_LONGTERM))
2496 return __get_user_pages_locked(mm, start, nr_pages, pages,
2497 locked, gup_flags);
2498
2499 flags = memalloc_pin_save();
2500 do {
2501 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2502 pages, locked,
2503 gup_flags);
2504 if (nr_pinned_pages <= 0) {
2505 rc = nr_pinned_pages;
2506 break;
2507 }
2508
2509 /* FOLL_LONGTERM implies FOLL_PIN */
2510 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2511 } while (rc == -EAGAIN);
2512 memalloc_pin_restore(flags);
2513 return rc ? rc : nr_pinned_pages;
2514}
2515
2516/*
2517 * Check that the given flags are valid for the exported gup/pup interface, and
2518 * update them with the required flags that the caller must have set.
2519 */
2520static bool is_valid_gup_args(struct page **pages, int *locked,
2521 unsigned int *gup_flags_p, unsigned int to_set)
2522{
2523 unsigned int gup_flags = *gup_flags_p;
2524
2525 /*
2526 * These flags not allowed to be specified externally to the gup
2527 * interfaces:
2528 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2529 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2530 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2531 */
2532 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2533 return false;
2534
2535 gup_flags |= to_set;
2536 if (locked) {
2537 /* At the external interface locked must be set */
2538 if (WARN_ON_ONCE(*locked != 1))
2539 return false;
2540
2541 gup_flags |= FOLL_UNLOCKABLE;
2542 }
2543
2544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2545 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2546 (FOLL_PIN | FOLL_GET)))
2547 return false;
2548
2549 /* LONGTERM can only be specified when pinning */
2550 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2551 return false;
2552
2553 /* Pages input must be given if using GET/PIN */
2554 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2555 return false;
2556
2557 /* We want to allow the pgmap to be hot-unplugged at all times */
2558 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2559 (gup_flags & FOLL_PCI_P2PDMA)))
2560 return false;
2561
2562 *gup_flags_p = gup_flags;
2563 return true;
2564}
2565
2566#ifdef CONFIG_MMU
2567/**
2568 * get_user_pages_remote() - pin user pages in memory
2569 * @mm: mm_struct of target mm
2570 * @start: starting user address
2571 * @nr_pages: number of pages from start to pin
2572 * @gup_flags: flags modifying lookup behaviour
2573 * @pages: array that receives pointers to the pages pinned.
2574 * Should be at least nr_pages long. Or NULL, if caller
2575 * only intends to ensure the pages are faulted in.
2576 * @locked: pointer to lock flag indicating whether lock is held and
2577 * subsequently whether VM_FAULT_RETRY functionality can be
2578 * utilised. Lock must initially be held.
2579 *
2580 * Returns either number of pages pinned (which may be less than the
2581 * number requested), or an error. Details about the return value:
2582 *
2583 * -- If nr_pages is 0, returns 0.
2584 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2585 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2586 * pages pinned. Again, this may be less than nr_pages.
2587 *
2588 * The caller is responsible for releasing returned @pages, via put_page().
2589 *
2590 * Must be called with mmap_lock held for read or write.
2591 *
2592 * get_user_pages_remote walks a process's page tables and takes a reference
2593 * to each struct page that each user address corresponds to at a given
2594 * instant. That is, it takes the page that would be accessed if a user
2595 * thread accesses the given user virtual address at that instant.
2596 *
2597 * This does not guarantee that the page exists in the user mappings when
2598 * get_user_pages_remote returns, and there may even be a completely different
2599 * page there in some cases (eg. if mmapped pagecache has been invalidated
2600 * and subsequently re-faulted). However it does guarantee that the page
2601 * won't be freed completely. And mostly callers simply care that the page
2602 * contains data that was valid *at some point in time*. Typically, an IO
2603 * or similar operation cannot guarantee anything stronger anyway because
2604 * locks can't be held over the syscall boundary.
2605 *
2606 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2607 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2608 * be called after the page is finished with, and before put_page is called.
2609 *
2610 * get_user_pages_remote is typically used for fewer-copy IO operations,
2611 * to get a handle on the memory by some means other than accesses
2612 * via the user virtual addresses. The pages may be submitted for
2613 * DMA to devices or accessed via their kernel linear mapping (via the
2614 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2615 *
2616 * See also get_user_pages_fast, for performance critical applications.
2617 *
2618 * get_user_pages_remote should be phased out in favor of
2619 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2620 * should use get_user_pages_remote because it cannot pass
2621 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2622 */
2623long get_user_pages_remote(struct mm_struct *mm,
2624 unsigned long start, unsigned long nr_pages,
2625 unsigned int gup_flags, struct page **pages,
2626 int *locked)
2627{
2628 int local_locked = 1;
2629
2630 if (!is_valid_gup_args(pages, locked, &gup_flags,
2631 FOLL_TOUCH | FOLL_REMOTE))
2632 return -EINVAL;
2633
2634 return __get_user_pages_locked(mm, start, nr_pages, pages,
2635 locked ? locked : &local_locked,
2636 gup_flags);
2637}
2638EXPORT_SYMBOL(get_user_pages_remote);
2639
2640#else /* CONFIG_MMU */
2641long get_user_pages_remote(struct mm_struct *mm,
2642 unsigned long start, unsigned long nr_pages,
2643 unsigned int gup_flags, struct page **pages,
2644 int *locked)
2645{
2646 return 0;
2647}
2648#endif /* !CONFIG_MMU */
2649
2650/**
2651 * get_user_pages() - pin user pages in memory
2652 * @start: starting user address
2653 * @nr_pages: number of pages from start to pin
2654 * @gup_flags: flags modifying lookup behaviour
2655 * @pages: array that receives pointers to the pages pinned.
2656 * Should be at least nr_pages long. Or NULL, if caller
2657 * only intends to ensure the pages are faulted in.
2658 *
2659 * This is the same as get_user_pages_remote(), just with a less-flexible
2660 * calling convention where we assume that the mm being operated on belongs to
2661 * the current task, and doesn't allow passing of a locked parameter. We also
2662 * obviously don't pass FOLL_REMOTE in here.
2663 */
2664long get_user_pages(unsigned long start, unsigned long nr_pages,
2665 unsigned int gup_flags, struct page **pages)
2666{
2667 int locked = 1;
2668
2669 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2670 return -EINVAL;
2671
2672 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2673 &locked, gup_flags);
2674}
2675EXPORT_SYMBOL(get_user_pages);
2676
2677/*
2678 * get_user_pages_unlocked() is suitable to replace the form:
2679 *
2680 * mmap_read_lock(mm);
2681 * get_user_pages(mm, ..., pages, NULL);
2682 * mmap_read_unlock(mm);
2683 *
2684 * with:
2685 *
2686 * get_user_pages_unlocked(mm, ..., pages);
2687 *
2688 * It is functionally equivalent to get_user_pages_fast so
2689 * get_user_pages_fast should be used instead if specific gup_flags
2690 * (e.g. FOLL_FORCE) are not required.
2691 */
2692long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2693 struct page **pages, unsigned int gup_flags)
2694{
2695 int locked = 0;
2696
2697 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2698 FOLL_TOUCH | FOLL_UNLOCKABLE))
2699 return -EINVAL;
2700
2701 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2702 &locked, gup_flags);
2703}
2704EXPORT_SYMBOL(get_user_pages_unlocked);
2705
2706/*
2707 * GUP-fast
2708 *
2709 * get_user_pages_fast attempts to pin user pages by walking the page
2710 * tables directly and avoids taking locks. Thus the walker needs to be
2711 * protected from page table pages being freed from under it, and should
2712 * block any THP splits.
2713 *
2714 * One way to achieve this is to have the walker disable interrupts, and
2715 * rely on IPIs from the TLB flushing code blocking before the page table
2716 * pages are freed. This is unsuitable for architectures that do not need
2717 * to broadcast an IPI when invalidating TLBs.
2718 *
2719 * Another way to achieve this is to batch up page table containing pages
2720 * belonging to more than one mm_user, then rcu_sched a callback to free those
2721 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2722 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2723 * (which is a relatively rare event). The code below adopts this strategy.
2724 *
2725 * Before activating this code, please be aware that the following assumptions
2726 * are currently made:
2727 *
2728 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2729 * free pages containing page tables or TLB flushing requires IPI broadcast.
2730 *
2731 * *) ptes can be read atomically by the architecture.
2732 *
2733 * *) valid user addesses are below TASK_MAX_SIZE
2734 *
2735 * The last two assumptions can be relaxed by the addition of helper functions.
2736 *
2737 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2738 */
2739#ifdef CONFIG_HAVE_GUP_FAST
2740/*
2741 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2742 * a specific folio.
2743 *
2744 * This call assumes the caller has pinned the folio, that the lowest page table
2745 * level still points to this folio, and that interrupts have been disabled.
2746 *
2747 * GUP-fast must reject all secretmem folios.
2748 *
2749 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2750 * (see comment describing the writable_file_mapping_allowed() function). We
2751 * therefore try to avoid the most egregious case of a long-term mapping doing
2752 * so.
2753 *
2754 * This function cannot be as thorough as that one as the VMA is not available
2755 * in the fast path, so instead we whitelist known good cases and if in doubt,
2756 * fall back to the slow path.
2757 */
2758static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2759{
2760 bool reject_file_backed = false;
2761 struct address_space *mapping;
2762 bool check_secretmem = false;
2763 unsigned long mapping_flags;
2764
2765 /*
2766 * If we aren't pinning then no problematic write can occur. A long term
2767 * pin is the most egregious case so this is the one we disallow.
2768 */
2769 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2770 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2771 reject_file_backed = true;
2772
2773 /* We hold a folio reference, so we can safely access folio fields. */
2774
2775 /* secretmem folios are always order-0 folios. */
2776 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2777 check_secretmem = true;
2778
2779 if (!reject_file_backed && !check_secretmem)
2780 return true;
2781
2782 if (WARN_ON_ONCE(folio_test_slab(folio)))
2783 return false;
2784
2785 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2786 if (folio_test_hugetlb(folio))
2787 return true;
2788
2789 /*
2790 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2791 * cannot proceed, which means no actions performed under RCU can
2792 * proceed either.
2793 *
2794 * inodes and thus their mappings are freed under RCU, which means the
2795 * mapping cannot be freed beneath us and thus we can safely dereference
2796 * it.
2797 */
2798 lockdep_assert_irqs_disabled();
2799
2800 /*
2801 * However, there may be operations which _alter_ the mapping, so ensure
2802 * we read it once and only once.
2803 */
2804 mapping = READ_ONCE(folio->mapping);
2805
2806 /*
2807 * The mapping may have been truncated, in any case we cannot determine
2808 * if this mapping is safe - fall back to slow path to determine how to
2809 * proceed.
2810 */
2811 if (!mapping)
2812 return false;
2813
2814 /* Anonymous folios pose no problem. */
2815 mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS;
2816 if (mapping_flags)
2817 return mapping_flags & FOLIO_MAPPING_ANON;
2818
2819 /*
2820 * At this point, we know the mapping is non-null and points to an
2821 * address_space object.
2822 */
2823 if (check_secretmem && secretmem_mapping(mapping))
2824 return false;
2825 /* The only remaining allowed file system is shmem. */
2826 return !reject_file_backed || shmem_mapping(mapping);
2827}
2828
2829static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2830 unsigned int flags, struct page **pages)
2831{
2832 while ((*nr) - nr_start) {
2833 struct folio *folio = page_folio(pages[--(*nr)]);
2834
2835 folio_clear_referenced(folio);
2836 gup_put_folio(folio, 1, flags);
2837 }
2838}
2839
2840#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2841/*
2842 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2843 * operations.
2844 *
2845 * To pin the page, GUP-fast needs to do below in order:
2846 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2847 *
2848 * For the rest of pgtable operations where pgtable updates can be racy
2849 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2850 * is pinned.
2851 *
2852 * Above will work for all pte-level operations, including THP split.
2853 *
2854 * For THP collapse, it's a bit more complicated because GUP-fast may be
2855 * walking a pgtable page that is being freed (pte is still valid but pmd
2856 * can be cleared already). To avoid race in such condition, we need to
2857 * also check pmd here to make sure pmd doesn't change (corresponds to
2858 * pmdp_collapse_flush() in the THP collapse code path).
2859 */
2860static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2861 unsigned long end, unsigned int flags, struct page **pages,
2862 int *nr)
2863{
2864 struct dev_pagemap *pgmap = NULL;
2865 int ret = 0;
2866 pte_t *ptep, *ptem;
2867
2868 ptem = ptep = pte_offset_map(&pmd, addr);
2869 if (!ptep)
2870 return 0;
2871 do {
2872 pte_t pte = ptep_get_lockless(ptep);
2873 struct page *page;
2874 struct folio *folio;
2875
2876 /*
2877 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2878 * pte_access_permitted() better should reject these pages
2879 * either way: otherwise, GUP-fast might succeed in
2880 * cases where ordinary GUP would fail due to VMA access
2881 * permissions.
2882 */
2883 if (pte_protnone(pte))
2884 goto pte_unmap;
2885
2886 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2887 goto pte_unmap;
2888
2889 if (pte_special(pte))
2890 goto pte_unmap;
2891
2892 /* If it's not marked as special it must have a valid memmap. */
2893 VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte)));
2894 page = pte_page(pte);
2895
2896 folio = try_grab_folio_fast(page, 1, flags);
2897 if (!folio)
2898 goto pte_unmap;
2899
2900 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2901 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2902 gup_put_folio(folio, 1, flags);
2903 goto pte_unmap;
2904 }
2905
2906 if (!gup_fast_folio_allowed(folio, flags)) {
2907 gup_put_folio(folio, 1, flags);
2908 goto pte_unmap;
2909 }
2910
2911 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2912 gup_put_folio(folio, 1, flags);
2913 goto pte_unmap;
2914 }
2915
2916 /*
2917 * We need to make the page accessible if and only if we are
2918 * going to access its content (the FOLL_PIN case). Please
2919 * see Documentation/core-api/pin_user_pages.rst for
2920 * details.
2921 */
2922 if (flags & FOLL_PIN) {
2923 ret = arch_make_folio_accessible(folio);
2924 if (ret) {
2925 gup_put_folio(folio, 1, flags);
2926 goto pte_unmap;
2927 }
2928 }
2929 folio_set_referenced(folio);
2930 pages[*nr] = page;
2931 (*nr)++;
2932 } while (ptep++, addr += PAGE_SIZE, addr != end);
2933
2934 ret = 1;
2935
2936pte_unmap:
2937 if (pgmap)
2938 put_dev_pagemap(pgmap);
2939 pte_unmap(ptem);
2940 return ret;
2941}
2942#else
2943
2944/*
2945 * If we can't determine whether or not a pte is special, then fail immediately
2946 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2947 * to be special.
2948 *
2949 * For a futex to be placed on a THP tail page, get_futex_key requires a
2950 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2951 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2952 */
2953static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2954 unsigned long end, unsigned int flags, struct page **pages,
2955 int *nr)
2956{
2957 return 0;
2958}
2959#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2960
2961static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2962 unsigned long end, unsigned int flags, struct page **pages,
2963 int *nr)
2964{
2965 struct page *page;
2966 struct folio *folio;
2967 int refs;
2968
2969 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2970 return 0;
2971
2972 if (pmd_special(orig))
2973 return 0;
2974
2975 page = pmd_page(orig);
2976 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
2977
2978 folio = try_grab_folio_fast(page, refs, flags);
2979 if (!folio)
2980 return 0;
2981
2982 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2983 gup_put_folio(folio, refs, flags);
2984 return 0;
2985 }
2986
2987 if (!gup_fast_folio_allowed(folio, flags)) {
2988 gup_put_folio(folio, refs, flags);
2989 return 0;
2990 }
2991 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2992 gup_put_folio(folio, refs, flags);
2993 return 0;
2994 }
2995
2996 *nr += refs;
2997 folio_set_referenced(folio);
2998 return 1;
2999}
3000
3001static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3002 unsigned long end, unsigned int flags, struct page **pages,
3003 int *nr)
3004{
3005 struct page *page;
3006 struct folio *folio;
3007 int refs;
3008
3009 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3010 return 0;
3011
3012 if (pud_special(orig))
3013 return 0;
3014
3015 page = pud_page(orig);
3016 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3017
3018 folio = try_grab_folio_fast(page, refs, flags);
3019 if (!folio)
3020 return 0;
3021
3022 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3023 gup_put_folio(folio, refs, flags);
3024 return 0;
3025 }
3026
3027 if (!gup_fast_folio_allowed(folio, flags)) {
3028 gup_put_folio(folio, refs, flags);
3029 return 0;
3030 }
3031
3032 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3033 gup_put_folio(folio, refs, flags);
3034 return 0;
3035 }
3036
3037 *nr += refs;
3038 folio_set_referenced(folio);
3039 return 1;
3040}
3041
3042static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3043 unsigned long end, unsigned int flags, struct page **pages,
3044 int *nr)
3045{
3046 unsigned long next;
3047 pmd_t *pmdp;
3048
3049 pmdp = pmd_offset_lockless(pudp, pud, addr);
3050 do {
3051 pmd_t pmd = pmdp_get_lockless(pmdp);
3052
3053 next = pmd_addr_end(addr, end);
3054 if (!pmd_present(pmd))
3055 return 0;
3056
3057 if (unlikely(pmd_leaf(pmd))) {
3058 /* See gup_fast_pte_range() */
3059 if (pmd_protnone(pmd))
3060 return 0;
3061
3062 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3063 pages, nr))
3064 return 0;
3065
3066 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3067 pages, nr))
3068 return 0;
3069 } while (pmdp++, addr = next, addr != end);
3070
3071 return 1;
3072}
3073
3074static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3075 unsigned long end, unsigned int flags, struct page **pages,
3076 int *nr)
3077{
3078 unsigned long next;
3079 pud_t *pudp;
3080
3081 pudp = pud_offset_lockless(p4dp, p4d, addr);
3082 do {
3083 pud_t pud = READ_ONCE(*pudp);
3084
3085 next = pud_addr_end(addr, end);
3086 if (unlikely(!pud_present(pud)))
3087 return 0;
3088 if (unlikely(pud_leaf(pud))) {
3089 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3090 pages, nr))
3091 return 0;
3092 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3093 pages, nr))
3094 return 0;
3095 } while (pudp++, addr = next, addr != end);
3096
3097 return 1;
3098}
3099
3100static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3101 unsigned long end, unsigned int flags, struct page **pages,
3102 int *nr)
3103{
3104 unsigned long next;
3105 p4d_t *p4dp;
3106
3107 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3108 do {
3109 p4d_t p4d = READ_ONCE(*p4dp);
3110
3111 next = p4d_addr_end(addr, end);
3112 if (!p4d_present(p4d))
3113 return 0;
3114 BUILD_BUG_ON(p4d_leaf(p4d));
3115 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3116 pages, nr))
3117 return 0;
3118 } while (p4dp++, addr = next, addr != end);
3119
3120 return 1;
3121}
3122
3123static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3124 unsigned int flags, struct page **pages, int *nr)
3125{
3126 unsigned long next;
3127 pgd_t *pgdp;
3128
3129 pgdp = pgd_offset(current->mm, addr);
3130 do {
3131 pgd_t pgd = READ_ONCE(*pgdp);
3132
3133 next = pgd_addr_end(addr, end);
3134 if (pgd_none(pgd))
3135 return;
3136 BUILD_BUG_ON(pgd_leaf(pgd));
3137 if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3138 pages, nr))
3139 return;
3140 } while (pgdp++, addr = next, addr != end);
3141}
3142#else
3143static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3144 unsigned int flags, struct page **pages, int *nr)
3145{
3146}
3147#endif /* CONFIG_HAVE_GUP_FAST */
3148
3149#ifndef gup_fast_permitted
3150/*
3151 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3152 * we need to fall back to the slow version:
3153 */
3154static bool gup_fast_permitted(unsigned long start, unsigned long end)
3155{
3156 return true;
3157}
3158#endif
3159
3160static unsigned long gup_fast(unsigned long start, unsigned long end,
3161 unsigned int gup_flags, struct page **pages)
3162{
3163 unsigned long flags;
3164 int nr_pinned = 0;
3165 unsigned seq;
3166
3167 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3168 !gup_fast_permitted(start, end))
3169 return 0;
3170
3171 if (gup_flags & FOLL_PIN) {
3172 if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq))
3173 return 0;
3174 }
3175
3176 /*
3177 * Disable interrupts. The nested form is used, in order to allow full,
3178 * general purpose use of this routine.
3179 *
3180 * With interrupts disabled, we block page table pages from being freed
3181 * from under us. See struct mmu_table_batch comments in
3182 * include/asm-generic/tlb.h for more details.
3183 *
3184 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3185 * that come from callers of tlb_remove_table_sync_one().
3186 */
3187 local_irq_save(flags);
3188 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3189 local_irq_restore(flags);
3190
3191 /*
3192 * When pinning pages for DMA there could be a concurrent write protect
3193 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3194 */
3195 if (gup_flags & FOLL_PIN) {
3196 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3197 gup_fast_unpin_user_pages(pages, nr_pinned);
3198 return 0;
3199 } else {
3200 sanity_check_pinned_pages(pages, nr_pinned);
3201 }
3202 }
3203 return nr_pinned;
3204}
3205
3206static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3207 unsigned int gup_flags, struct page **pages)
3208{
3209 unsigned long len, end;
3210 unsigned long nr_pinned;
3211 int locked = 0;
3212 int ret;
3213
3214 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3215 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3216 FOLL_FAST_ONLY | FOLL_NOFAULT |
3217 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3218 return -EINVAL;
3219
3220 if (gup_flags & FOLL_PIN)
3221 mm_set_has_pinned_flag(&current->mm->flags);
3222
3223 if (!(gup_flags & FOLL_FAST_ONLY))
3224 might_lock_read(&current->mm->mmap_lock);
3225
3226 start = untagged_addr(start) & PAGE_MASK;
3227 len = nr_pages << PAGE_SHIFT;
3228 if (check_add_overflow(start, len, &end))
3229 return -EOVERFLOW;
3230 if (end > TASK_SIZE_MAX)
3231 return -EFAULT;
3232
3233 nr_pinned = gup_fast(start, end, gup_flags, pages);
3234 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3235 return nr_pinned;
3236
3237 /* Slow path: try to get the remaining pages with get_user_pages */
3238 start += nr_pinned << PAGE_SHIFT;
3239 pages += nr_pinned;
3240 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3241 pages, &locked,
3242 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3243 if (ret < 0) {
3244 /*
3245 * The caller has to unpin the pages we already pinned so
3246 * returning -errno is not an option
3247 */
3248 if (nr_pinned)
3249 return nr_pinned;
3250 return ret;
3251 }
3252 return ret + nr_pinned;
3253}
3254
3255/**
3256 * get_user_pages_fast_only() - pin user pages in memory
3257 * @start: starting user address
3258 * @nr_pages: number of pages from start to pin
3259 * @gup_flags: flags modifying pin behaviour
3260 * @pages: array that receives pointers to the pages pinned.
3261 * Should be at least nr_pages long.
3262 *
3263 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3264 * the regular GUP.
3265 *
3266 * If the architecture does not support this function, simply return with no
3267 * pages pinned.
3268 *
3269 * Careful, careful! COW breaking can go either way, so a non-write
3270 * access can get ambiguous page results. If you call this function without
3271 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3272 */
3273int get_user_pages_fast_only(unsigned long start, int nr_pages,
3274 unsigned int gup_flags, struct page **pages)
3275{
3276 /*
3277 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3278 * because gup fast is always a "pin with a +1 page refcount" request.
3279 *
3280 * FOLL_FAST_ONLY is required in order to match the API description of
3281 * this routine: no fall back to regular ("slow") GUP.
3282 */
3283 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3284 FOLL_GET | FOLL_FAST_ONLY))
3285 return -EINVAL;
3286
3287 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3288}
3289EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3290
3291/**
3292 * get_user_pages_fast() - pin user pages in memory
3293 * @start: starting user address
3294 * @nr_pages: number of pages from start to pin
3295 * @gup_flags: flags modifying pin behaviour
3296 * @pages: array that receives pointers to the pages pinned.
3297 * Should be at least nr_pages long.
3298 *
3299 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3300 * If not successful, it will fall back to taking the lock and
3301 * calling get_user_pages().
3302 *
3303 * Returns number of pages pinned. This may be fewer than the number requested.
3304 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3305 * -errno.
3306 */
3307int get_user_pages_fast(unsigned long start, int nr_pages,
3308 unsigned int gup_flags, struct page **pages)
3309{
3310 /*
3311 * The caller may or may not have explicitly set FOLL_GET; either way is
3312 * OK. However, internally (within mm/gup.c), gup fast variants must set
3313 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3314 * request.
3315 */
3316 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3317 return -EINVAL;
3318 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3319}
3320EXPORT_SYMBOL_GPL(get_user_pages_fast);
3321
3322/**
3323 * pin_user_pages_fast() - pin user pages in memory without taking locks
3324 *
3325 * @start: starting user address
3326 * @nr_pages: number of pages from start to pin
3327 * @gup_flags: flags modifying pin behaviour
3328 * @pages: array that receives pointers to the pages pinned.
3329 * Should be at least nr_pages long.
3330 *
3331 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3332 * get_user_pages_fast() for documentation on the function arguments, because
3333 * the arguments here are identical.
3334 *
3335 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3336 * see Documentation/core-api/pin_user_pages.rst for further details.
3337 *
3338 * Note that if a zero_page is amongst the returned pages, it will not have
3339 * pins in it and unpin_user_page() will not remove pins from it.
3340 */
3341int pin_user_pages_fast(unsigned long start, int nr_pages,
3342 unsigned int gup_flags, struct page **pages)
3343{
3344 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3345 return -EINVAL;
3346 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3347}
3348EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3349
3350/**
3351 * pin_user_pages_remote() - pin pages of a remote process
3352 *
3353 * @mm: mm_struct of target mm
3354 * @start: starting user address
3355 * @nr_pages: number of pages from start to pin
3356 * @gup_flags: flags modifying lookup behaviour
3357 * @pages: array that receives pointers to the pages pinned.
3358 * Should be at least nr_pages long.
3359 * @locked: pointer to lock flag indicating whether lock is held and
3360 * subsequently whether VM_FAULT_RETRY functionality can be
3361 * utilised. Lock must initially be held.
3362 *
3363 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3364 * get_user_pages_remote() for documentation on the function arguments, because
3365 * the arguments here are identical.
3366 *
3367 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3368 * see Documentation/core-api/pin_user_pages.rst for details.
3369 *
3370 * Note that if a zero_page is amongst the returned pages, it will not have
3371 * pins in it and unpin_user_page*() will not remove pins from it.
3372 */
3373long pin_user_pages_remote(struct mm_struct *mm,
3374 unsigned long start, unsigned long nr_pages,
3375 unsigned int gup_flags, struct page **pages,
3376 int *locked)
3377{
3378 int local_locked = 1;
3379
3380 if (!is_valid_gup_args(pages, locked, &gup_flags,
3381 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3382 return 0;
3383 return __gup_longterm_locked(mm, start, nr_pages, pages,
3384 locked ? locked : &local_locked,
3385 gup_flags);
3386}
3387EXPORT_SYMBOL(pin_user_pages_remote);
3388
3389/**
3390 * pin_user_pages() - pin user pages in memory for use by other devices
3391 *
3392 * @start: starting user address
3393 * @nr_pages: number of pages from start to pin
3394 * @gup_flags: flags modifying lookup behaviour
3395 * @pages: array that receives pointers to the pages pinned.
3396 * Should be at least nr_pages long.
3397 *
3398 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3399 * FOLL_PIN is set.
3400 *
3401 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3402 * see Documentation/core-api/pin_user_pages.rst for details.
3403 *
3404 * Note that if a zero_page is amongst the returned pages, it will not have
3405 * pins in it and unpin_user_page*() will not remove pins from it.
3406 */
3407long pin_user_pages(unsigned long start, unsigned long nr_pages,
3408 unsigned int gup_flags, struct page **pages)
3409{
3410 int locked = 1;
3411
3412 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3413 return 0;
3414 return __gup_longterm_locked(current->mm, start, nr_pages,
3415 pages, &locked, gup_flags);
3416}
3417EXPORT_SYMBOL(pin_user_pages);
3418
3419/*
3420 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3421 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3422 * FOLL_PIN and rejects FOLL_GET.
3423 *
3424 * Note that if a zero_page is amongst the returned pages, it will not have
3425 * pins in it and unpin_user_page*() will not remove pins from it.
3426 */
3427long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3428 struct page **pages, unsigned int gup_flags)
3429{
3430 int locked = 0;
3431
3432 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3433 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3434 return 0;
3435
3436 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3437 &locked, gup_flags);
3438}
3439EXPORT_SYMBOL(pin_user_pages_unlocked);
3440
3441/**
3442 * memfd_pin_folios() - pin folios associated with a memfd
3443 * @memfd: the memfd whose folios are to be pinned
3444 * @start: the first memfd offset
3445 * @end: the last memfd offset (inclusive)
3446 * @folios: array that receives pointers to the folios pinned
3447 * @max_folios: maximum number of entries in @folios
3448 * @offset: the offset into the first folio
3449 *
3450 * Attempt to pin folios associated with a memfd in the contiguous range
3451 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3452 * the folios can either be found in the page cache or need to be allocated
3453 * if necessary. Once the folios are located, they are all pinned via
3454 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3455 * And, eventually, these pinned folios must be released either using
3456 * unpin_folios() or unpin_folio().
3457 *
3458 * It must be noted that the folios may be pinned for an indefinite amount
3459 * of time. And, in most cases, the duration of time they may stay pinned
3460 * would be controlled by the userspace. This behavior is effectively the
3461 * same as using FOLL_LONGTERM with other GUP APIs.
3462 *
3463 * Returns number of folios pinned, which could be less than @max_folios
3464 * as it depends on the folio sizes that cover the range [start, end].
3465 * If no folios were pinned, it returns -errno.
3466 */
3467long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3468 struct folio **folios, unsigned int max_folios,
3469 pgoff_t *offset)
3470{
3471 unsigned int flags, nr_folios, nr_found;
3472 unsigned int i, pgshift = PAGE_SHIFT;
3473 pgoff_t start_idx, end_idx;
3474 struct folio *folio = NULL;
3475 struct folio_batch fbatch;
3476 struct hstate *h;
3477 long ret = -EINVAL;
3478
3479 if (start < 0 || start > end || !max_folios)
3480 return -EINVAL;
3481
3482 if (!memfd)
3483 return -EINVAL;
3484
3485 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3486 return -EINVAL;
3487
3488 if (end >= i_size_read(file_inode(memfd)))
3489 return -EINVAL;
3490
3491 if (is_file_hugepages(memfd)) {
3492 h = hstate_file(memfd);
3493 pgshift = huge_page_shift(h);
3494 }
3495
3496 flags = memalloc_pin_save();
3497 do {
3498 nr_folios = 0;
3499 start_idx = start >> pgshift;
3500 end_idx = end >> pgshift;
3501 if (is_file_hugepages(memfd)) {
3502 start_idx <<= huge_page_order(h);
3503 end_idx <<= huge_page_order(h);
3504 }
3505
3506 folio_batch_init(&fbatch);
3507 while (start_idx <= end_idx && nr_folios < max_folios) {
3508 /*
3509 * In most cases, we should be able to find the folios
3510 * in the page cache. If we cannot find them for some
3511 * reason, we try to allocate them and add them to the
3512 * page cache.
3513 */
3514 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3515 &start_idx,
3516 end_idx,
3517 &fbatch);
3518 if (folio) {
3519 folio_put(folio);
3520 folio = NULL;
3521 }
3522
3523 for (i = 0; i < nr_found; i++) {
3524 folio = fbatch.folios[i];
3525
3526 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3527 folio_batch_release(&fbatch);
3528 ret = -EINVAL;
3529 goto err;
3530 }
3531
3532 if (nr_folios == 0)
3533 *offset = offset_in_folio(folio, start);
3534
3535 folios[nr_folios] = folio;
3536 if (++nr_folios == max_folios)
3537 break;
3538 }
3539
3540 folio = NULL;
3541 folio_batch_release(&fbatch);
3542 if (!nr_found) {
3543 folio = memfd_alloc_folio(memfd, start_idx);
3544 if (IS_ERR(folio)) {
3545 ret = PTR_ERR(folio);
3546 if (ret != -EEXIST)
3547 goto err;
3548 folio = NULL;
3549 }
3550 }
3551 }
3552
3553 ret = check_and_migrate_movable_folios(nr_folios, folios);
3554 } while (ret == -EAGAIN);
3555
3556 memalloc_pin_restore(flags);
3557 return ret ? ret : nr_folios;
3558err:
3559 memalloc_pin_restore(flags);
3560 unpin_folios(folios, nr_folios);
3561
3562 return ret;
3563}
3564EXPORT_SYMBOL_GPL(memfd_pin_folios);
3565
3566/**
3567 * folio_add_pins() - add pins to an already-pinned folio
3568 * @folio: the folio to add more pins to
3569 * @pins: number of pins to add
3570 *
3571 * Try to add more pins to an already-pinned folio. The semantics
3572 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3573 * be changed.
3574 *
3575 * This function is helpful when having obtained a pin on a large folio
3576 * using memfd_pin_folios(), but wanting to logically unpin parts
3577 * (e.g., individual pages) of the folio later, for example, using
3578 * unpin_user_page_range_dirty_lock().
3579 *
3580 * This is not the right interface to initially pin a folio.
3581 */
3582int folio_add_pins(struct folio *folio, unsigned int pins)
3583{
3584 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3585
3586 return try_grab_folio(folio, pins, FOLL_PIN);
3587}
3588EXPORT_SYMBOL_GPL(folio_add_pins);