mm: Rename pmd_read_atomic()
[linux-block.git] / mm / gup.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
7#include <linux/mm.h>
8#include <linux/memremap.h>
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/secretmem.h>
14
15#include <linux/sched/signal.h>
16#include <linux/rwsem.h>
17#include <linux/hugetlb.h>
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
21
22#include <asm/mmu_context.h>
23#include <asm/tlbflush.h>
24
25#include "internal.h"
26
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63}
64
65/*
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
68 */
69static inline struct folio *try_get_folio(struct page *page, int refs)
70{
71 struct folio *folio;
72
73retry:
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 return NULL;
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 return NULL;
79
80 /*
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
88 */
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
92 goto retry;
93 }
94
95 return folio;
96}
97
98/**
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
111 * FOLL_GET: folio's refcount will be incremented by @refs.
112 *
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
115 *
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
118 *
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
123 */
124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125{
126 if (flags & FOLL_GET)
127 return try_get_folio(page, refs);
128 else if (flags & FOLL_PIN) {
129 struct folio *folio;
130
131 /*
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
134 * path.
135 */
136 if (unlikely((flags & FOLL_LONGTERM) &&
137 !is_longterm_pinnable_page(page)))
138 return NULL;
139
140 /*
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
143 */
144 folio = try_get_folio(page, refs);
145 if (!folio)
146 return NULL;
147
148 /*
149 * When pinning a large folio, use an exact count to track it.
150 *
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
153 * is pinned. That's why the refcount from the earlier
154 * try_get_folio() is left intact.
155 */
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
158 else
159 folio_ref_add(folio,
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
161 /*
162 * Adjust the pincount before re-checking the PTE for changes.
163 * This is essentially a smp_mb() and is paired with a memory
164 * barrier in page_try_share_anon_rmap().
165 */
166 smp_mb__after_atomic();
167
168 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
169
170 return folio;
171 }
172
173 WARN_ON_ONCE(1);
174 return NULL;
175}
176
177static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
178{
179 if (flags & FOLL_PIN) {
180 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 if (folio_test_large(folio))
182 atomic_sub(refs, folio_pincount_ptr(folio));
183 else
184 refs *= GUP_PIN_COUNTING_BIAS;
185 }
186
187 if (!put_devmap_managed_page_refs(&folio->page, refs))
188 folio_put_refs(folio, refs);
189}
190
191/**
192 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193 * @page: pointer to page to be grabbed
194 * @flags: gup flags: these are the FOLL_* flag values.
195 *
196 * This might not do anything at all, depending on the flags argument.
197 *
198 * "grab" names in this file mean, "look at flags to decide whether to use
199 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
200 *
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202 * time. Cases: please see the try_grab_folio() documentation, with
203 * "refs=1".
204 *
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
208 */
209bool __must_check try_grab_page(struct page *page, unsigned int flags)
210{
211 struct folio *folio = page_folio(page);
212
213 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
215 return false;
216
217 if (flags & FOLL_GET)
218 folio_ref_inc(folio);
219 else if (flags & FOLL_PIN) {
220 /*
221 * Similar to try_grab_folio(): be sure to *also*
222 * increment the normal page refcount field at least once,
223 * so that the page really is pinned.
224 */
225 if (folio_test_large(folio)) {
226 folio_ref_add(folio, 1);
227 atomic_add(1, folio_pincount_ptr(folio));
228 } else {
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 }
231
232 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
233 }
234
235 return true;
236}
237
238/**
239 * unpin_user_page() - release a dma-pinned page
240 * @page: pointer to page to be released
241 *
242 * Pages that were pinned via pin_user_pages*() must be released via either
243 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244 * that such pages can be separately tracked and uniquely handled. In
245 * particular, interactions with RDMA and filesystems need special handling.
246 */
247void unpin_user_page(struct page *page)
248{
249 sanity_check_pinned_pages(&page, 1);
250 gup_put_folio(page_folio(page), 1, FOLL_PIN);
251}
252EXPORT_SYMBOL(unpin_user_page);
253
254static inline struct folio *gup_folio_range_next(struct page *start,
255 unsigned long npages, unsigned long i, unsigned int *ntails)
256{
257 struct page *next = nth_page(start, i);
258 struct folio *folio = page_folio(next);
259 unsigned int nr = 1;
260
261 if (folio_test_large(folio))
262 nr = min_t(unsigned int, npages - i,
263 folio_nr_pages(folio) - folio_page_idx(folio, next));
264
265 *ntails = nr;
266 return folio;
267}
268
269static inline struct folio *gup_folio_next(struct page **list,
270 unsigned long npages, unsigned long i, unsigned int *ntails)
271{
272 struct folio *folio = page_folio(list[i]);
273 unsigned int nr;
274
275 for (nr = i + 1; nr < npages; nr++) {
276 if (page_folio(list[nr]) != folio)
277 break;
278 }
279
280 *ntails = nr - i;
281 return folio;
282}
283
284/**
285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286 * @pages: array of pages to be maybe marked dirty, and definitely released.
287 * @npages: number of pages in the @pages array.
288 * @make_dirty: whether to mark the pages dirty
289 *
290 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291 * variants called on that page.
292 *
293 * For each page in the @pages array, make that page (or its head page, if a
294 * compound page) dirty, if @make_dirty is true, and if the page was previously
295 * listed as clean. In any case, releases all pages using unpin_user_page(),
296 * possibly via unpin_user_pages(), for the non-dirty case.
297 *
298 * Please see the unpin_user_page() documentation for details.
299 *
300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301 * required, then the caller should a) verify that this is really correct,
302 * because _lock() is usually required, and b) hand code it:
303 * set_page_dirty_lock(), unpin_user_page().
304 *
305 */
306void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 bool make_dirty)
308{
309 unsigned long i;
310 struct folio *folio;
311 unsigned int nr;
312
313 if (!make_dirty) {
314 unpin_user_pages(pages, npages);
315 return;
316 }
317
318 sanity_check_pinned_pages(pages, npages);
319 for (i = 0; i < npages; i += nr) {
320 folio = gup_folio_next(pages, npages, i, &nr);
321 /*
322 * Checking PageDirty at this point may race with
323 * clear_page_dirty_for_io(), but that's OK. Two key
324 * cases:
325 *
326 * 1) This code sees the page as already dirty, so it
327 * skips the call to set_page_dirty(). That could happen
328 * because clear_page_dirty_for_io() called
329 * page_mkclean(), followed by set_page_dirty().
330 * However, now the page is going to get written back,
331 * which meets the original intention of setting it
332 * dirty, so all is well: clear_page_dirty_for_io() goes
333 * on to call TestClearPageDirty(), and write the page
334 * back.
335 *
336 * 2) This code sees the page as clean, so it calls
337 * set_page_dirty(). The page stays dirty, despite being
338 * written back, so it gets written back again in the
339 * next writeback cycle. This is harmless.
340 */
341 if (!folio_test_dirty(folio)) {
342 folio_lock(folio);
343 folio_mark_dirty(folio);
344 folio_unlock(folio);
345 }
346 gup_put_folio(folio, nr, FOLL_PIN);
347 }
348}
349EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
350
351/**
352 * unpin_user_page_range_dirty_lock() - release and optionally dirty
353 * gup-pinned page range
354 *
355 * @page: the starting page of a range maybe marked dirty, and definitely released.
356 * @npages: number of consecutive pages to release.
357 * @make_dirty: whether to mark the pages dirty
358 *
359 * "gup-pinned page range" refers to a range of pages that has had one of the
360 * pin_user_pages() variants called on that page.
361 *
362 * For the page ranges defined by [page .. page+npages], make that range (or
363 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364 * page range was previously listed as clean.
365 *
366 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367 * required, then the caller should a) verify that this is really correct,
368 * because _lock() is usually required, and b) hand code it:
369 * set_page_dirty_lock(), unpin_user_page().
370 *
371 */
372void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
373 bool make_dirty)
374{
375 unsigned long i;
376 struct folio *folio;
377 unsigned int nr;
378
379 for (i = 0; i < npages; i += nr) {
380 folio = gup_folio_range_next(page, npages, i, &nr);
381 if (make_dirty && !folio_test_dirty(folio)) {
382 folio_lock(folio);
383 folio_mark_dirty(folio);
384 folio_unlock(folio);
385 }
386 gup_put_folio(folio, nr, FOLL_PIN);
387 }
388}
389EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
390
391static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
392{
393 unsigned long i;
394 struct folio *folio;
395 unsigned int nr;
396
397 /*
398 * Don't perform any sanity checks because we might have raced with
399 * fork() and some anonymous pages might now actually be shared --
400 * which is why we're unpinning after all.
401 */
402 for (i = 0; i < npages; i += nr) {
403 folio = gup_folio_next(pages, npages, i, &nr);
404 gup_put_folio(folio, nr, FOLL_PIN);
405 }
406}
407
408/**
409 * unpin_user_pages() - release an array of gup-pinned pages.
410 * @pages: array of pages to be marked dirty and released.
411 * @npages: number of pages in the @pages array.
412 *
413 * For each page in the @pages array, release the page using unpin_user_page().
414 *
415 * Please see the unpin_user_page() documentation for details.
416 */
417void unpin_user_pages(struct page **pages, unsigned long npages)
418{
419 unsigned long i;
420 struct folio *folio;
421 unsigned int nr;
422
423 /*
424 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 * leaving them pinned), but probably not. More likely, gup/pup returned
426 * a hard -ERRNO error to the caller, who erroneously passed it here.
427 */
428 if (WARN_ON(IS_ERR_VALUE(npages)))
429 return;
430
431 sanity_check_pinned_pages(pages, npages);
432 for (i = 0; i < npages; i += nr) {
433 folio = gup_folio_next(pages, npages, i, &nr);
434 gup_put_folio(folio, nr, FOLL_PIN);
435 }
436}
437EXPORT_SYMBOL(unpin_user_pages);
438
439/*
440 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
442 * cache bouncing on large SMP machines for concurrent pinned gups.
443 */
444static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
445{
446 if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 set_bit(MMF_HAS_PINNED, mm_flags);
448}
449
450#ifdef CONFIG_MMU
451static struct page *no_page_table(struct vm_area_struct *vma,
452 unsigned int flags)
453{
454 /*
455 * When core dumping an enormous anonymous area that nobody
456 * has touched so far, we don't want to allocate unnecessary pages or
457 * page tables. Return error instead of NULL to skip handle_mm_fault,
458 * then get_dump_page() will return NULL to leave a hole in the dump.
459 * But we can only make this optimization where a hole would surely
460 * be zero-filled if handle_mm_fault() actually did handle it.
461 */
462 if ((flags & FOLL_DUMP) &&
463 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 return ERR_PTR(-EFAULT);
465 return NULL;
466}
467
468static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 pte_t *pte, unsigned int flags)
470{
471 if (flags & FOLL_TOUCH) {
472 pte_t entry = *pte;
473
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
477
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
481 }
482 }
483
484 /* Proper page table entry exists, but no corresponding struct page */
485 return -EEXIST;
486}
487
488/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
489static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 struct vm_area_struct *vma,
491 unsigned int flags)
492{
493 /* If the pte is writable, we can write to the page. */
494 if (pte_write(pte))
495 return true;
496
497 /* Maybe FOLL_FORCE is set to override it? */
498 if (!(flags & FOLL_FORCE))
499 return false;
500
501 /* But FOLL_FORCE has no effect on shared mappings */
502 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
503 return false;
504
505 /* ... or read-only private ones */
506 if (!(vma->vm_flags & VM_MAYWRITE))
507 return false;
508
509 /* ... or already writable ones that just need to take a write fault */
510 if (vma->vm_flags & VM_WRITE)
511 return false;
512
513 /*
514 * See can_change_pte_writable(): we broke COW and could map the page
515 * writable if we have an exclusive anonymous page ...
516 */
517 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
518 return false;
519
520 /* ... and a write-fault isn't required for other reasons. */
521 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
522 return false;
523 return !userfaultfd_pte_wp(vma, pte);
524}
525
526static struct page *follow_page_pte(struct vm_area_struct *vma,
527 unsigned long address, pmd_t *pmd, unsigned int flags,
528 struct dev_pagemap **pgmap)
529{
530 struct mm_struct *mm = vma->vm_mm;
531 struct page *page;
532 spinlock_t *ptl;
533 pte_t *ptep, pte;
534 int ret;
535
536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 (FOLL_PIN | FOLL_GET)))
539 return ERR_PTR(-EINVAL);
540
541 /*
542 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
543 * ARM64 architecture.
544 */
545 if (is_vm_hugetlb_page(vma)) {
546 page = follow_huge_pmd_pte(vma, address, flags);
547 if (page)
548 return page;
549 return no_page_table(vma, flags);
550 }
551
552retry:
553 if (unlikely(pmd_bad(*pmd)))
554 return no_page_table(vma, flags);
555
556 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
557 pte = *ptep;
558 if (!pte_present(pte)) {
559 swp_entry_t entry;
560 /*
561 * KSM's break_ksm() relies upon recognizing a ksm page
562 * even while it is being migrated, so for that case we
563 * need migration_entry_wait().
564 */
565 if (likely(!(flags & FOLL_MIGRATION)))
566 goto no_page;
567 if (pte_none(pte))
568 goto no_page;
569 entry = pte_to_swp_entry(pte);
570 if (!is_migration_entry(entry))
571 goto no_page;
572 pte_unmap_unlock(ptep, ptl);
573 migration_entry_wait(mm, pmd, address);
574 goto retry;
575 }
576 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
577 goto no_page;
578
579 page = vm_normal_page(vma, address, pte);
580
581 /*
582 * We only care about anon pages in can_follow_write_pte() and don't
583 * have to worry about pte_devmap() because they are never anon.
584 */
585 if ((flags & FOLL_WRITE) &&
586 !can_follow_write_pte(pte, page, vma, flags)) {
587 page = NULL;
588 goto out;
589 }
590
591 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
592 /*
593 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
594 * case since they are only valid while holding the pgmap
595 * reference.
596 */
597 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
598 if (*pgmap)
599 page = pte_page(pte);
600 else
601 goto no_page;
602 } else if (unlikely(!page)) {
603 if (flags & FOLL_DUMP) {
604 /* Avoid special (like zero) pages in core dumps */
605 page = ERR_PTR(-EFAULT);
606 goto out;
607 }
608
609 if (is_zero_pfn(pte_pfn(pte))) {
610 page = pte_page(pte);
611 } else {
612 ret = follow_pfn_pte(vma, address, ptep, flags);
613 page = ERR_PTR(ret);
614 goto out;
615 }
616 }
617
618 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
619 page = ERR_PTR(-EMLINK);
620 goto out;
621 }
622
623 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
624 !PageAnonExclusive(page), page);
625
626 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
627 if (unlikely(!try_grab_page(page, flags))) {
628 page = ERR_PTR(-ENOMEM);
629 goto out;
630 }
631 /*
632 * We need to make the page accessible if and only if we are going
633 * to access its content (the FOLL_PIN case). Please see
634 * Documentation/core-api/pin_user_pages.rst for details.
635 */
636 if (flags & FOLL_PIN) {
637 ret = arch_make_page_accessible(page);
638 if (ret) {
639 unpin_user_page(page);
640 page = ERR_PTR(ret);
641 goto out;
642 }
643 }
644 if (flags & FOLL_TOUCH) {
645 if ((flags & FOLL_WRITE) &&
646 !pte_dirty(pte) && !PageDirty(page))
647 set_page_dirty(page);
648 /*
649 * pte_mkyoung() would be more correct here, but atomic care
650 * is needed to avoid losing the dirty bit: it is easier to use
651 * mark_page_accessed().
652 */
653 mark_page_accessed(page);
654 }
655out:
656 pte_unmap_unlock(ptep, ptl);
657 return page;
658no_page:
659 pte_unmap_unlock(ptep, ptl);
660 if (!pte_none(pte))
661 return NULL;
662 return no_page_table(vma, flags);
663}
664
665static struct page *follow_pmd_mask(struct vm_area_struct *vma,
666 unsigned long address, pud_t *pudp,
667 unsigned int flags,
668 struct follow_page_context *ctx)
669{
670 pmd_t *pmd, pmdval;
671 spinlock_t *ptl;
672 struct page *page;
673 struct mm_struct *mm = vma->vm_mm;
674
675 pmd = pmd_offset(pudp, address);
676 /*
677 * The READ_ONCE() will stabilize the pmdval in a register or
678 * on the stack so that it will stop changing under the code.
679 */
680 pmdval = READ_ONCE(*pmd);
681 if (pmd_none(pmdval))
682 return no_page_table(vma, flags);
683 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
684 page = follow_huge_pmd_pte(vma, address, flags);
685 if (page)
686 return page;
687 return no_page_table(vma, flags);
688 }
689 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
690 page = follow_huge_pd(vma, address,
691 __hugepd(pmd_val(pmdval)), flags,
692 PMD_SHIFT);
693 if (page)
694 return page;
695 return no_page_table(vma, flags);
696 }
697retry:
698 if (!pmd_present(pmdval)) {
699 /*
700 * Should never reach here, if thp migration is not supported;
701 * Otherwise, it must be a thp migration entry.
702 */
703 VM_BUG_ON(!thp_migration_supported() ||
704 !is_pmd_migration_entry(pmdval));
705
706 if (likely(!(flags & FOLL_MIGRATION)))
707 return no_page_table(vma, flags);
708
709 pmd_migration_entry_wait(mm, pmd);
710 pmdval = READ_ONCE(*pmd);
711 /*
712 * MADV_DONTNEED may convert the pmd to null because
713 * mmap_lock is held in read mode
714 */
715 if (pmd_none(pmdval))
716 return no_page_table(vma, flags);
717 goto retry;
718 }
719 if (pmd_devmap(pmdval)) {
720 ptl = pmd_lock(mm, pmd);
721 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
722 spin_unlock(ptl);
723 if (page)
724 return page;
725 }
726 if (likely(!pmd_trans_huge(pmdval)))
727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728
729 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
730 return no_page_table(vma, flags);
731
732retry_locked:
733 ptl = pmd_lock(mm, pmd);
734 if (unlikely(pmd_none(*pmd))) {
735 spin_unlock(ptl);
736 return no_page_table(vma, flags);
737 }
738 if (unlikely(!pmd_present(*pmd))) {
739 spin_unlock(ptl);
740 if (likely(!(flags & FOLL_MIGRATION)))
741 return no_page_table(vma, flags);
742 pmd_migration_entry_wait(mm, pmd);
743 goto retry_locked;
744 }
745 if (unlikely(!pmd_trans_huge(*pmd))) {
746 spin_unlock(ptl);
747 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
748 }
749 if (flags & FOLL_SPLIT_PMD) {
750 int ret;
751 page = pmd_page(*pmd);
752 if (is_huge_zero_page(page)) {
753 spin_unlock(ptl);
754 ret = 0;
755 split_huge_pmd(vma, pmd, address);
756 if (pmd_trans_unstable(pmd))
757 ret = -EBUSY;
758 } else {
759 spin_unlock(ptl);
760 split_huge_pmd(vma, pmd, address);
761 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
762 }
763
764 return ret ? ERR_PTR(ret) :
765 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
766 }
767 page = follow_trans_huge_pmd(vma, address, pmd, flags);
768 spin_unlock(ptl);
769 ctx->page_mask = HPAGE_PMD_NR - 1;
770 return page;
771}
772
773static struct page *follow_pud_mask(struct vm_area_struct *vma,
774 unsigned long address, p4d_t *p4dp,
775 unsigned int flags,
776 struct follow_page_context *ctx)
777{
778 pud_t *pud;
779 spinlock_t *ptl;
780 struct page *page;
781 struct mm_struct *mm = vma->vm_mm;
782
783 pud = pud_offset(p4dp, address);
784 if (pud_none(*pud))
785 return no_page_table(vma, flags);
786 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
787 page = follow_huge_pud(mm, address, pud, flags);
788 if (page)
789 return page;
790 return no_page_table(vma, flags);
791 }
792 if (is_hugepd(__hugepd(pud_val(*pud)))) {
793 page = follow_huge_pd(vma, address,
794 __hugepd(pud_val(*pud)), flags,
795 PUD_SHIFT);
796 if (page)
797 return page;
798 return no_page_table(vma, flags);
799 }
800 if (pud_devmap(*pud)) {
801 ptl = pud_lock(mm, pud);
802 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
803 spin_unlock(ptl);
804 if (page)
805 return page;
806 }
807 if (unlikely(pud_bad(*pud)))
808 return no_page_table(vma, flags);
809
810 return follow_pmd_mask(vma, address, pud, flags, ctx);
811}
812
813static struct page *follow_p4d_mask(struct vm_area_struct *vma,
814 unsigned long address, pgd_t *pgdp,
815 unsigned int flags,
816 struct follow_page_context *ctx)
817{
818 p4d_t *p4d;
819 struct page *page;
820
821 p4d = p4d_offset(pgdp, address);
822 if (p4d_none(*p4d))
823 return no_page_table(vma, flags);
824 BUILD_BUG_ON(p4d_huge(*p4d));
825 if (unlikely(p4d_bad(*p4d)))
826 return no_page_table(vma, flags);
827
828 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
829 page = follow_huge_pd(vma, address,
830 __hugepd(p4d_val(*p4d)), flags,
831 P4D_SHIFT);
832 if (page)
833 return page;
834 return no_page_table(vma, flags);
835 }
836 return follow_pud_mask(vma, address, p4d, flags, ctx);
837}
838
839/**
840 * follow_page_mask - look up a page descriptor from a user-virtual address
841 * @vma: vm_area_struct mapping @address
842 * @address: virtual address to look up
843 * @flags: flags modifying lookup behaviour
844 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
845 * pointer to output page_mask
846 *
847 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
848 *
849 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
850 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
851 *
852 * When getting an anonymous page and the caller has to trigger unsharing
853 * of a shared anonymous page first, -EMLINK is returned. The caller should
854 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
855 * relevant with FOLL_PIN and !FOLL_WRITE.
856 *
857 * On output, the @ctx->page_mask is set according to the size of the page.
858 *
859 * Return: the mapped (struct page *), %NULL if no mapping exists, or
860 * an error pointer if there is a mapping to something not represented
861 * by a page descriptor (see also vm_normal_page()).
862 */
863static struct page *follow_page_mask(struct vm_area_struct *vma,
864 unsigned long address, unsigned int flags,
865 struct follow_page_context *ctx)
866{
867 pgd_t *pgd;
868 struct page *page;
869 struct mm_struct *mm = vma->vm_mm;
870
871 ctx->page_mask = 0;
872
873 /* make this handle hugepd */
874 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
875 if (!IS_ERR(page)) {
876 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
877 return page;
878 }
879
880 pgd = pgd_offset(mm, address);
881
882 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
883 return no_page_table(vma, flags);
884
885 if (pgd_huge(*pgd)) {
886 page = follow_huge_pgd(mm, address, pgd, flags);
887 if (page)
888 return page;
889 return no_page_table(vma, flags);
890 }
891 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
892 page = follow_huge_pd(vma, address,
893 __hugepd(pgd_val(*pgd)), flags,
894 PGDIR_SHIFT);
895 if (page)
896 return page;
897 return no_page_table(vma, flags);
898 }
899
900 return follow_p4d_mask(vma, address, pgd, flags, ctx);
901}
902
903struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904 unsigned int foll_flags)
905{
906 struct follow_page_context ctx = { NULL };
907 struct page *page;
908
909 if (vma_is_secretmem(vma))
910 return NULL;
911
912 if (foll_flags & FOLL_PIN)
913 return NULL;
914
915 page = follow_page_mask(vma, address, foll_flags, &ctx);
916 if (ctx.pgmap)
917 put_dev_pagemap(ctx.pgmap);
918 return page;
919}
920
921static int get_gate_page(struct mm_struct *mm, unsigned long address,
922 unsigned int gup_flags, struct vm_area_struct **vma,
923 struct page **page)
924{
925 pgd_t *pgd;
926 p4d_t *p4d;
927 pud_t *pud;
928 pmd_t *pmd;
929 pte_t *pte;
930 int ret = -EFAULT;
931
932 /* user gate pages are read-only */
933 if (gup_flags & FOLL_WRITE)
934 return -EFAULT;
935 if (address > TASK_SIZE)
936 pgd = pgd_offset_k(address);
937 else
938 pgd = pgd_offset_gate(mm, address);
939 if (pgd_none(*pgd))
940 return -EFAULT;
941 p4d = p4d_offset(pgd, address);
942 if (p4d_none(*p4d))
943 return -EFAULT;
944 pud = pud_offset(p4d, address);
945 if (pud_none(*pud))
946 return -EFAULT;
947 pmd = pmd_offset(pud, address);
948 if (!pmd_present(*pmd))
949 return -EFAULT;
950 VM_BUG_ON(pmd_trans_huge(*pmd));
951 pte = pte_offset_map(pmd, address);
952 if (pte_none(*pte))
953 goto unmap;
954 *vma = get_gate_vma(mm);
955 if (!page)
956 goto out;
957 *page = vm_normal_page(*vma, address, *pte);
958 if (!*page) {
959 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
960 goto unmap;
961 *page = pte_page(*pte);
962 }
963 if (unlikely(!try_grab_page(*page, gup_flags))) {
964 ret = -ENOMEM;
965 goto unmap;
966 }
967out:
968 ret = 0;
969unmap:
970 pte_unmap(pte);
971 return ret;
972}
973
974/*
975 * mmap_lock must be held on entry. If @locked != NULL and *@flags
976 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
977 * is, *@locked will be set to 0 and -EBUSY returned.
978 */
979static int faultin_page(struct vm_area_struct *vma,
980 unsigned long address, unsigned int *flags, bool unshare,
981 int *locked)
982{
983 unsigned int fault_flags = 0;
984 vm_fault_t ret;
985
986 if (*flags & FOLL_NOFAULT)
987 return -EFAULT;
988 if (*flags & FOLL_WRITE)
989 fault_flags |= FAULT_FLAG_WRITE;
990 if (*flags & FOLL_REMOTE)
991 fault_flags |= FAULT_FLAG_REMOTE;
992 if (locked)
993 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
994 if (*flags & FOLL_NOWAIT)
995 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
996 if (*flags & FOLL_TRIED) {
997 /*
998 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
999 * can co-exist
1000 */
1001 fault_flags |= FAULT_FLAG_TRIED;
1002 }
1003 if (unshare) {
1004 fault_flags |= FAULT_FLAG_UNSHARE;
1005 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1006 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1007 }
1008
1009 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1010
1011 if (ret & VM_FAULT_COMPLETED) {
1012 /*
1013 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1014 * mmap lock in the page fault handler. Sanity check this.
1015 */
1016 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1017 if (locked)
1018 *locked = 0;
1019 /*
1020 * We should do the same as VM_FAULT_RETRY, but let's not
1021 * return -EBUSY since that's not reflecting the reality of
1022 * what has happened - we've just fully completed a page
1023 * fault, with the mmap lock released. Use -EAGAIN to show
1024 * that we want to take the mmap lock _again_.
1025 */
1026 return -EAGAIN;
1027 }
1028
1029 if (ret & VM_FAULT_ERROR) {
1030 int err = vm_fault_to_errno(ret, *flags);
1031
1032 if (err)
1033 return err;
1034 BUG();
1035 }
1036
1037 if (ret & VM_FAULT_RETRY) {
1038 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1039 *locked = 0;
1040 return -EBUSY;
1041 }
1042
1043 return 0;
1044}
1045
1046static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1047{
1048 vm_flags_t vm_flags = vma->vm_flags;
1049 int write = (gup_flags & FOLL_WRITE);
1050 int foreign = (gup_flags & FOLL_REMOTE);
1051
1052 if (vm_flags & (VM_IO | VM_PFNMAP))
1053 return -EFAULT;
1054
1055 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1056 return -EFAULT;
1057
1058 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1059 return -EOPNOTSUPP;
1060
1061 if (vma_is_secretmem(vma))
1062 return -EFAULT;
1063
1064 if (write) {
1065 if (!(vm_flags & VM_WRITE)) {
1066 if (!(gup_flags & FOLL_FORCE))
1067 return -EFAULT;
1068 /*
1069 * We used to let the write,force case do COW in a
1070 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1071 * set a breakpoint in a read-only mapping of an
1072 * executable, without corrupting the file (yet only
1073 * when that file had been opened for writing!).
1074 * Anon pages in shared mappings are surprising: now
1075 * just reject it.
1076 */
1077 if (!is_cow_mapping(vm_flags))
1078 return -EFAULT;
1079 }
1080 } else if (!(vm_flags & VM_READ)) {
1081 if (!(gup_flags & FOLL_FORCE))
1082 return -EFAULT;
1083 /*
1084 * Is there actually any vma we can reach here which does not
1085 * have VM_MAYREAD set?
1086 */
1087 if (!(vm_flags & VM_MAYREAD))
1088 return -EFAULT;
1089 }
1090 /*
1091 * gups are always data accesses, not instruction
1092 * fetches, so execute=false here
1093 */
1094 if (!arch_vma_access_permitted(vma, write, false, foreign))
1095 return -EFAULT;
1096 return 0;
1097}
1098
1099/**
1100 * __get_user_pages() - pin user pages in memory
1101 * @mm: mm_struct of target mm
1102 * @start: starting user address
1103 * @nr_pages: number of pages from start to pin
1104 * @gup_flags: flags modifying pin behaviour
1105 * @pages: array that receives pointers to the pages pinned.
1106 * Should be at least nr_pages long. Or NULL, if caller
1107 * only intends to ensure the pages are faulted in.
1108 * @vmas: array of pointers to vmas corresponding to each page.
1109 * Or NULL if the caller does not require them.
1110 * @locked: whether we're still with the mmap_lock held
1111 *
1112 * Returns either number of pages pinned (which may be less than the
1113 * number requested), or an error. Details about the return value:
1114 *
1115 * -- If nr_pages is 0, returns 0.
1116 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1117 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1118 * pages pinned. Again, this may be less than nr_pages.
1119 * -- 0 return value is possible when the fault would need to be retried.
1120 *
1121 * The caller is responsible for releasing returned @pages, via put_page().
1122 *
1123 * @vmas are valid only as long as mmap_lock is held.
1124 *
1125 * Must be called with mmap_lock held. It may be released. See below.
1126 *
1127 * __get_user_pages walks a process's page tables and takes a reference to
1128 * each struct page that each user address corresponds to at a given
1129 * instant. That is, it takes the page that would be accessed if a user
1130 * thread accesses the given user virtual address at that instant.
1131 *
1132 * This does not guarantee that the page exists in the user mappings when
1133 * __get_user_pages returns, and there may even be a completely different
1134 * page there in some cases (eg. if mmapped pagecache has been invalidated
1135 * and subsequently re faulted). However it does guarantee that the page
1136 * won't be freed completely. And mostly callers simply care that the page
1137 * contains data that was valid *at some point in time*. Typically, an IO
1138 * or similar operation cannot guarantee anything stronger anyway because
1139 * locks can't be held over the syscall boundary.
1140 *
1141 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1142 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1143 * appropriate) must be called after the page is finished with, and
1144 * before put_page is called.
1145 *
1146 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1147 * released by an up_read(). That can happen if @gup_flags does not
1148 * have FOLL_NOWAIT.
1149 *
1150 * A caller using such a combination of @locked and @gup_flags
1151 * must therefore hold the mmap_lock for reading only, and recognize
1152 * when it's been released. Otherwise, it must be held for either
1153 * reading or writing and will not be released.
1154 *
1155 * In most cases, get_user_pages or get_user_pages_fast should be used
1156 * instead of __get_user_pages. __get_user_pages should be used only if
1157 * you need some special @gup_flags.
1158 */
1159static long __get_user_pages(struct mm_struct *mm,
1160 unsigned long start, unsigned long nr_pages,
1161 unsigned int gup_flags, struct page **pages,
1162 struct vm_area_struct **vmas, int *locked)
1163{
1164 long ret = 0, i = 0;
1165 struct vm_area_struct *vma = NULL;
1166 struct follow_page_context ctx = { NULL };
1167
1168 if (!nr_pages)
1169 return 0;
1170
1171 start = untagged_addr(start);
1172
1173 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1174
1175 do {
1176 struct page *page;
1177 unsigned int foll_flags = gup_flags;
1178 unsigned int page_increm;
1179
1180 /* first iteration or cross vma bound */
1181 if (!vma || start >= vma->vm_end) {
1182 vma = find_extend_vma(mm, start);
1183 if (!vma && in_gate_area(mm, start)) {
1184 ret = get_gate_page(mm, start & PAGE_MASK,
1185 gup_flags, &vma,
1186 pages ? &pages[i] : NULL);
1187 if (ret)
1188 goto out;
1189 ctx.page_mask = 0;
1190 goto next_page;
1191 }
1192
1193 if (!vma) {
1194 ret = -EFAULT;
1195 goto out;
1196 }
1197 ret = check_vma_flags(vma, gup_flags);
1198 if (ret)
1199 goto out;
1200
1201 if (is_vm_hugetlb_page(vma)) {
1202 i = follow_hugetlb_page(mm, vma, pages, vmas,
1203 &start, &nr_pages, i,
1204 gup_flags, locked);
1205 if (locked && *locked == 0) {
1206 /*
1207 * We've got a VM_FAULT_RETRY
1208 * and we've lost mmap_lock.
1209 * We must stop here.
1210 */
1211 BUG_ON(gup_flags & FOLL_NOWAIT);
1212 goto out;
1213 }
1214 continue;
1215 }
1216 }
1217retry:
1218 /*
1219 * If we have a pending SIGKILL, don't keep faulting pages and
1220 * potentially allocating memory.
1221 */
1222 if (fatal_signal_pending(current)) {
1223 ret = -EINTR;
1224 goto out;
1225 }
1226 cond_resched();
1227
1228 page = follow_page_mask(vma, start, foll_flags, &ctx);
1229 if (!page || PTR_ERR(page) == -EMLINK) {
1230 ret = faultin_page(vma, start, &foll_flags,
1231 PTR_ERR(page) == -EMLINK, locked);
1232 switch (ret) {
1233 case 0:
1234 goto retry;
1235 case -EBUSY:
1236 case -EAGAIN:
1237 ret = 0;
1238 fallthrough;
1239 case -EFAULT:
1240 case -ENOMEM:
1241 case -EHWPOISON:
1242 goto out;
1243 }
1244 BUG();
1245 } else if (PTR_ERR(page) == -EEXIST) {
1246 /*
1247 * Proper page table entry exists, but no corresponding
1248 * struct page. If the caller expects **pages to be
1249 * filled in, bail out now, because that can't be done
1250 * for this page.
1251 */
1252 if (pages) {
1253 ret = PTR_ERR(page);
1254 goto out;
1255 }
1256
1257 goto next_page;
1258 } else if (IS_ERR(page)) {
1259 ret = PTR_ERR(page);
1260 goto out;
1261 }
1262 if (pages) {
1263 pages[i] = page;
1264 flush_anon_page(vma, page, start);
1265 flush_dcache_page(page);
1266 ctx.page_mask = 0;
1267 }
1268next_page:
1269 if (vmas) {
1270 vmas[i] = vma;
1271 ctx.page_mask = 0;
1272 }
1273 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1274 if (page_increm > nr_pages)
1275 page_increm = nr_pages;
1276 i += page_increm;
1277 start += page_increm * PAGE_SIZE;
1278 nr_pages -= page_increm;
1279 } while (nr_pages);
1280out:
1281 if (ctx.pgmap)
1282 put_dev_pagemap(ctx.pgmap);
1283 return i ? i : ret;
1284}
1285
1286static bool vma_permits_fault(struct vm_area_struct *vma,
1287 unsigned int fault_flags)
1288{
1289 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1290 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1291 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1292
1293 if (!(vm_flags & vma->vm_flags))
1294 return false;
1295
1296 /*
1297 * The architecture might have a hardware protection
1298 * mechanism other than read/write that can deny access.
1299 *
1300 * gup always represents data access, not instruction
1301 * fetches, so execute=false here:
1302 */
1303 if (!arch_vma_access_permitted(vma, write, false, foreign))
1304 return false;
1305
1306 return true;
1307}
1308
1309/**
1310 * fixup_user_fault() - manually resolve a user page fault
1311 * @mm: mm_struct of target mm
1312 * @address: user address
1313 * @fault_flags:flags to pass down to handle_mm_fault()
1314 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1315 * does not allow retry. If NULL, the caller must guarantee
1316 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1317 *
1318 * This is meant to be called in the specific scenario where for locking reasons
1319 * we try to access user memory in atomic context (within a pagefault_disable()
1320 * section), this returns -EFAULT, and we want to resolve the user fault before
1321 * trying again.
1322 *
1323 * Typically this is meant to be used by the futex code.
1324 *
1325 * The main difference with get_user_pages() is that this function will
1326 * unconditionally call handle_mm_fault() which will in turn perform all the
1327 * necessary SW fixup of the dirty and young bits in the PTE, while
1328 * get_user_pages() only guarantees to update these in the struct page.
1329 *
1330 * This is important for some architectures where those bits also gate the
1331 * access permission to the page because they are maintained in software. On
1332 * such architectures, gup() will not be enough to make a subsequent access
1333 * succeed.
1334 *
1335 * This function will not return with an unlocked mmap_lock. So it has not the
1336 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1337 */
1338int fixup_user_fault(struct mm_struct *mm,
1339 unsigned long address, unsigned int fault_flags,
1340 bool *unlocked)
1341{
1342 struct vm_area_struct *vma;
1343 vm_fault_t ret;
1344
1345 address = untagged_addr(address);
1346
1347 if (unlocked)
1348 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1349
1350retry:
1351 vma = find_extend_vma(mm, address);
1352 if (!vma || address < vma->vm_start)
1353 return -EFAULT;
1354
1355 if (!vma_permits_fault(vma, fault_flags))
1356 return -EFAULT;
1357
1358 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1359 fatal_signal_pending(current))
1360 return -EINTR;
1361
1362 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1363
1364 if (ret & VM_FAULT_COMPLETED) {
1365 /*
1366 * NOTE: it's a pity that we need to retake the lock here
1367 * to pair with the unlock() in the callers. Ideally we
1368 * could tell the callers so they do not need to unlock.
1369 */
1370 mmap_read_lock(mm);
1371 *unlocked = true;
1372 return 0;
1373 }
1374
1375 if (ret & VM_FAULT_ERROR) {
1376 int err = vm_fault_to_errno(ret, 0);
1377
1378 if (err)
1379 return err;
1380 BUG();
1381 }
1382
1383 if (ret & VM_FAULT_RETRY) {
1384 mmap_read_lock(mm);
1385 *unlocked = true;
1386 fault_flags |= FAULT_FLAG_TRIED;
1387 goto retry;
1388 }
1389
1390 return 0;
1391}
1392EXPORT_SYMBOL_GPL(fixup_user_fault);
1393
1394/*
1395 * Please note that this function, unlike __get_user_pages will not
1396 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1397 */
1398static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1399 unsigned long start,
1400 unsigned long nr_pages,
1401 struct page **pages,
1402 struct vm_area_struct **vmas,
1403 int *locked,
1404 unsigned int flags)
1405{
1406 long ret, pages_done;
1407 bool lock_dropped;
1408
1409 if (locked) {
1410 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1411 BUG_ON(vmas);
1412 /* check caller initialized locked */
1413 BUG_ON(*locked != 1);
1414 }
1415
1416 if (flags & FOLL_PIN)
1417 mm_set_has_pinned_flag(&mm->flags);
1418
1419 /*
1420 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1421 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1422 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1423 * for FOLL_GET, not for the newer FOLL_PIN.
1424 *
1425 * FOLL_PIN always expects pages to be non-null, but no need to assert
1426 * that here, as any failures will be obvious enough.
1427 */
1428 if (pages && !(flags & FOLL_PIN))
1429 flags |= FOLL_GET;
1430
1431 pages_done = 0;
1432 lock_dropped = false;
1433 for (;;) {
1434 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1435 vmas, locked);
1436 if (!locked)
1437 /* VM_FAULT_RETRY couldn't trigger, bypass */
1438 return ret;
1439
1440 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1441 if (!*locked) {
1442 BUG_ON(ret < 0);
1443 BUG_ON(ret >= nr_pages);
1444 }
1445
1446 if (ret > 0) {
1447 nr_pages -= ret;
1448 pages_done += ret;
1449 if (!nr_pages)
1450 break;
1451 }
1452 if (*locked) {
1453 /*
1454 * VM_FAULT_RETRY didn't trigger or it was a
1455 * FOLL_NOWAIT.
1456 */
1457 if (!pages_done)
1458 pages_done = ret;
1459 break;
1460 }
1461 /*
1462 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1463 * For the prefault case (!pages) we only update counts.
1464 */
1465 if (likely(pages))
1466 pages += ret;
1467 start += ret << PAGE_SHIFT;
1468 lock_dropped = true;
1469
1470retry:
1471 /*
1472 * Repeat on the address that fired VM_FAULT_RETRY
1473 * with both FAULT_FLAG_ALLOW_RETRY and
1474 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1475 * by fatal signals, so we need to check it before we
1476 * start trying again otherwise it can loop forever.
1477 */
1478
1479 if (fatal_signal_pending(current)) {
1480 if (!pages_done)
1481 pages_done = -EINTR;
1482 break;
1483 }
1484
1485 ret = mmap_read_lock_killable(mm);
1486 if (ret) {
1487 BUG_ON(ret > 0);
1488 if (!pages_done)
1489 pages_done = ret;
1490 break;
1491 }
1492
1493 *locked = 1;
1494 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1495 pages, NULL, locked);
1496 if (!*locked) {
1497 /* Continue to retry until we succeeded */
1498 BUG_ON(ret != 0);
1499 goto retry;
1500 }
1501 if (ret != 1) {
1502 BUG_ON(ret > 1);
1503 if (!pages_done)
1504 pages_done = ret;
1505 break;
1506 }
1507 nr_pages--;
1508 pages_done++;
1509 if (!nr_pages)
1510 break;
1511 if (likely(pages))
1512 pages++;
1513 start += PAGE_SIZE;
1514 }
1515 if (lock_dropped && *locked) {
1516 /*
1517 * We must let the caller know we temporarily dropped the lock
1518 * and so the critical section protected by it was lost.
1519 */
1520 mmap_read_unlock(mm);
1521 *locked = 0;
1522 }
1523 return pages_done;
1524}
1525
1526/**
1527 * populate_vma_page_range() - populate a range of pages in the vma.
1528 * @vma: target vma
1529 * @start: start address
1530 * @end: end address
1531 * @locked: whether the mmap_lock is still held
1532 *
1533 * This takes care of mlocking the pages too if VM_LOCKED is set.
1534 *
1535 * Return either number of pages pinned in the vma, or a negative error
1536 * code on error.
1537 *
1538 * vma->vm_mm->mmap_lock must be held.
1539 *
1540 * If @locked is NULL, it may be held for read or write and will
1541 * be unperturbed.
1542 *
1543 * If @locked is non-NULL, it must held for read only and may be
1544 * released. If it's released, *@locked will be set to 0.
1545 */
1546long populate_vma_page_range(struct vm_area_struct *vma,
1547 unsigned long start, unsigned long end, int *locked)
1548{
1549 struct mm_struct *mm = vma->vm_mm;
1550 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1551 int gup_flags;
1552 long ret;
1553
1554 VM_BUG_ON(!PAGE_ALIGNED(start));
1555 VM_BUG_ON(!PAGE_ALIGNED(end));
1556 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1557 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1558 mmap_assert_locked(mm);
1559
1560 /*
1561 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1562 * faultin_page() to break COW, so it has no work to do here.
1563 */
1564 if (vma->vm_flags & VM_LOCKONFAULT)
1565 return nr_pages;
1566
1567 gup_flags = FOLL_TOUCH;
1568 /*
1569 * We want to touch writable mappings with a write fault in order
1570 * to break COW, except for shared mappings because these don't COW
1571 * and we would not want to dirty them for nothing.
1572 */
1573 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1574 gup_flags |= FOLL_WRITE;
1575
1576 /*
1577 * We want mlock to succeed for regions that have any permissions
1578 * other than PROT_NONE.
1579 */
1580 if (vma_is_accessible(vma))
1581 gup_flags |= FOLL_FORCE;
1582
1583 /*
1584 * We made sure addr is within a VMA, so the following will
1585 * not result in a stack expansion that recurses back here.
1586 */
1587 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1588 NULL, NULL, locked);
1589 lru_add_drain();
1590 return ret;
1591}
1592
1593/*
1594 * faultin_vma_page_range() - populate (prefault) page tables inside the
1595 * given VMA range readable/writable
1596 *
1597 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1598 *
1599 * @vma: target vma
1600 * @start: start address
1601 * @end: end address
1602 * @write: whether to prefault readable or writable
1603 * @locked: whether the mmap_lock is still held
1604 *
1605 * Returns either number of processed pages in the vma, or a negative error
1606 * code on error (see __get_user_pages()).
1607 *
1608 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1609 * covered by the VMA.
1610 *
1611 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1612 *
1613 * If @locked is non-NULL, it must held for read only and may be released. If
1614 * it's released, *@locked will be set to 0.
1615 */
1616long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1617 unsigned long end, bool write, int *locked)
1618{
1619 struct mm_struct *mm = vma->vm_mm;
1620 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1621 int gup_flags;
1622 long ret;
1623
1624 VM_BUG_ON(!PAGE_ALIGNED(start));
1625 VM_BUG_ON(!PAGE_ALIGNED(end));
1626 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1627 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1628 mmap_assert_locked(mm);
1629
1630 /*
1631 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1632 * the page dirty with FOLL_WRITE -- which doesn't make a
1633 * difference with !FOLL_FORCE, because the page is writable
1634 * in the page table.
1635 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1636 * a poisoned page.
1637 * !FOLL_FORCE: Require proper access permissions.
1638 */
1639 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1640 if (write)
1641 gup_flags |= FOLL_WRITE;
1642
1643 /*
1644 * We want to report -EINVAL instead of -EFAULT for any permission
1645 * problems or incompatible mappings.
1646 */
1647 if (check_vma_flags(vma, gup_flags))
1648 return -EINVAL;
1649
1650 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1651 NULL, NULL, locked);
1652 lru_add_drain();
1653 return ret;
1654}
1655
1656/*
1657 * __mm_populate - populate and/or mlock pages within a range of address space.
1658 *
1659 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1660 * flags. VMAs must be already marked with the desired vm_flags, and
1661 * mmap_lock must not be held.
1662 */
1663int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1664{
1665 struct mm_struct *mm = current->mm;
1666 unsigned long end, nstart, nend;
1667 struct vm_area_struct *vma = NULL;
1668 int locked = 0;
1669 long ret = 0;
1670
1671 end = start + len;
1672
1673 for (nstart = start; nstart < end; nstart = nend) {
1674 /*
1675 * We want to fault in pages for [nstart; end) address range.
1676 * Find first corresponding VMA.
1677 */
1678 if (!locked) {
1679 locked = 1;
1680 mmap_read_lock(mm);
1681 vma = find_vma_intersection(mm, nstart, end);
1682 } else if (nstart >= vma->vm_end)
1683 vma = find_vma_intersection(mm, vma->vm_end, end);
1684
1685 if (!vma)
1686 break;
1687 /*
1688 * Set [nstart; nend) to intersection of desired address
1689 * range with the first VMA. Also, skip undesirable VMA types.
1690 */
1691 nend = min(end, vma->vm_end);
1692 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1693 continue;
1694 if (nstart < vma->vm_start)
1695 nstart = vma->vm_start;
1696 /*
1697 * Now fault in a range of pages. populate_vma_page_range()
1698 * double checks the vma flags, so that it won't mlock pages
1699 * if the vma was already munlocked.
1700 */
1701 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1702 if (ret < 0) {
1703 if (ignore_errors) {
1704 ret = 0;
1705 continue; /* continue at next VMA */
1706 }
1707 break;
1708 }
1709 nend = nstart + ret * PAGE_SIZE;
1710 ret = 0;
1711 }
1712 if (locked)
1713 mmap_read_unlock(mm);
1714 return ret; /* 0 or negative error code */
1715}
1716#else /* CONFIG_MMU */
1717static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1718 unsigned long nr_pages, struct page **pages,
1719 struct vm_area_struct **vmas, int *locked,
1720 unsigned int foll_flags)
1721{
1722 struct vm_area_struct *vma;
1723 unsigned long vm_flags;
1724 long i;
1725
1726 /* calculate required read or write permissions.
1727 * If FOLL_FORCE is set, we only require the "MAY" flags.
1728 */
1729 vm_flags = (foll_flags & FOLL_WRITE) ?
1730 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1731 vm_flags &= (foll_flags & FOLL_FORCE) ?
1732 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1733
1734 for (i = 0; i < nr_pages; i++) {
1735 vma = find_vma(mm, start);
1736 if (!vma)
1737 goto finish_or_fault;
1738
1739 /* protect what we can, including chardevs */
1740 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1741 !(vm_flags & vma->vm_flags))
1742 goto finish_or_fault;
1743
1744 if (pages) {
1745 pages[i] = virt_to_page((void *)start);
1746 if (pages[i])
1747 get_page(pages[i]);
1748 }
1749 if (vmas)
1750 vmas[i] = vma;
1751 start = (start + PAGE_SIZE) & PAGE_MASK;
1752 }
1753
1754 return i;
1755
1756finish_or_fault:
1757 return i ? : -EFAULT;
1758}
1759#endif /* !CONFIG_MMU */
1760
1761/**
1762 * fault_in_writeable - fault in userspace address range for writing
1763 * @uaddr: start of address range
1764 * @size: size of address range
1765 *
1766 * Returns the number of bytes not faulted in (like copy_to_user() and
1767 * copy_from_user()).
1768 */
1769size_t fault_in_writeable(char __user *uaddr, size_t size)
1770{
1771 char __user *start = uaddr, *end;
1772
1773 if (unlikely(size == 0))
1774 return 0;
1775 if (!user_write_access_begin(uaddr, size))
1776 return size;
1777 if (!PAGE_ALIGNED(uaddr)) {
1778 unsafe_put_user(0, uaddr, out);
1779 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1780 }
1781 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1782 if (unlikely(end < start))
1783 end = NULL;
1784 while (uaddr != end) {
1785 unsafe_put_user(0, uaddr, out);
1786 uaddr += PAGE_SIZE;
1787 }
1788
1789out:
1790 user_write_access_end();
1791 if (size > uaddr - start)
1792 return size - (uaddr - start);
1793 return 0;
1794}
1795EXPORT_SYMBOL(fault_in_writeable);
1796
1797/**
1798 * fault_in_subpage_writeable - fault in an address range for writing
1799 * @uaddr: start of address range
1800 * @size: size of address range
1801 *
1802 * Fault in a user address range for writing while checking for permissions at
1803 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1804 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1805 *
1806 * Returns the number of bytes not faulted in (like copy_to_user() and
1807 * copy_from_user()).
1808 */
1809size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1810{
1811 size_t faulted_in;
1812
1813 /*
1814 * Attempt faulting in at page granularity first for page table
1815 * permission checking. The arch-specific probe_subpage_writeable()
1816 * functions may not check for this.
1817 */
1818 faulted_in = size - fault_in_writeable(uaddr, size);
1819 if (faulted_in)
1820 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1821
1822 return size - faulted_in;
1823}
1824EXPORT_SYMBOL(fault_in_subpage_writeable);
1825
1826/*
1827 * fault_in_safe_writeable - fault in an address range for writing
1828 * @uaddr: start of address range
1829 * @size: length of address range
1830 *
1831 * Faults in an address range for writing. This is primarily useful when we
1832 * already know that some or all of the pages in the address range aren't in
1833 * memory.
1834 *
1835 * Unlike fault_in_writeable(), this function is non-destructive.
1836 *
1837 * Note that we don't pin or otherwise hold the pages referenced that we fault
1838 * in. There's no guarantee that they'll stay in memory for any duration of
1839 * time.
1840 *
1841 * Returns the number of bytes not faulted in, like copy_to_user() and
1842 * copy_from_user().
1843 */
1844size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1845{
1846 unsigned long start = (unsigned long)uaddr, end;
1847 struct mm_struct *mm = current->mm;
1848 bool unlocked = false;
1849
1850 if (unlikely(size == 0))
1851 return 0;
1852 end = PAGE_ALIGN(start + size);
1853 if (end < start)
1854 end = 0;
1855
1856 mmap_read_lock(mm);
1857 do {
1858 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1859 break;
1860 start = (start + PAGE_SIZE) & PAGE_MASK;
1861 } while (start != end);
1862 mmap_read_unlock(mm);
1863
1864 if (size > (unsigned long)uaddr - start)
1865 return size - ((unsigned long)uaddr - start);
1866 return 0;
1867}
1868EXPORT_SYMBOL(fault_in_safe_writeable);
1869
1870/**
1871 * fault_in_readable - fault in userspace address range for reading
1872 * @uaddr: start of user address range
1873 * @size: size of user address range
1874 *
1875 * Returns the number of bytes not faulted in (like copy_to_user() and
1876 * copy_from_user()).
1877 */
1878size_t fault_in_readable(const char __user *uaddr, size_t size)
1879{
1880 const char __user *start = uaddr, *end;
1881 volatile char c;
1882
1883 if (unlikely(size == 0))
1884 return 0;
1885 if (!user_read_access_begin(uaddr, size))
1886 return size;
1887 if (!PAGE_ALIGNED(uaddr)) {
1888 unsafe_get_user(c, uaddr, out);
1889 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1890 }
1891 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1892 if (unlikely(end < start))
1893 end = NULL;
1894 while (uaddr != end) {
1895 unsafe_get_user(c, uaddr, out);
1896 uaddr += PAGE_SIZE;
1897 }
1898
1899out:
1900 user_read_access_end();
1901 (void)c;
1902 if (size > uaddr - start)
1903 return size - (uaddr - start);
1904 return 0;
1905}
1906EXPORT_SYMBOL(fault_in_readable);
1907
1908/**
1909 * get_dump_page() - pin user page in memory while writing it to core dump
1910 * @addr: user address
1911 *
1912 * Returns struct page pointer of user page pinned for dump,
1913 * to be freed afterwards by put_page().
1914 *
1915 * Returns NULL on any kind of failure - a hole must then be inserted into
1916 * the corefile, to preserve alignment with its headers; and also returns
1917 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1918 * allowing a hole to be left in the corefile to save disk space.
1919 *
1920 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1921 */
1922#ifdef CONFIG_ELF_CORE
1923struct page *get_dump_page(unsigned long addr)
1924{
1925 struct mm_struct *mm = current->mm;
1926 struct page *page;
1927 int locked = 1;
1928 int ret;
1929
1930 if (mmap_read_lock_killable(mm))
1931 return NULL;
1932 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1933 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1934 if (locked)
1935 mmap_read_unlock(mm);
1936 return (ret == 1) ? page : NULL;
1937}
1938#endif /* CONFIG_ELF_CORE */
1939
1940#ifdef CONFIG_MIGRATION
1941/*
1942 * Returns the number of collected pages. Return value is always >= 0.
1943 */
1944static unsigned long collect_longterm_unpinnable_pages(
1945 struct list_head *movable_page_list,
1946 unsigned long nr_pages,
1947 struct page **pages)
1948{
1949 unsigned long i, collected = 0;
1950 struct folio *prev_folio = NULL;
1951 bool drain_allow = true;
1952
1953 for (i = 0; i < nr_pages; i++) {
1954 struct folio *folio = page_folio(pages[i]);
1955
1956 if (folio == prev_folio)
1957 continue;
1958 prev_folio = folio;
1959
1960 if (folio_is_longterm_pinnable(folio))
1961 continue;
1962
1963 collected++;
1964
1965 if (folio_is_device_coherent(folio))
1966 continue;
1967
1968 if (folio_test_hugetlb(folio)) {
1969 isolate_hugetlb(&folio->page, movable_page_list);
1970 continue;
1971 }
1972
1973 if (!folio_test_lru(folio) && drain_allow) {
1974 lru_add_drain_all();
1975 drain_allow = false;
1976 }
1977
1978 if (!folio_isolate_lru(folio))
1979 continue;
1980
1981 list_add_tail(&folio->lru, movable_page_list);
1982 node_stat_mod_folio(folio,
1983 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1984 folio_nr_pages(folio));
1985 }
1986
1987 return collected;
1988}
1989
1990/*
1991 * Unpins all pages and migrates device coherent pages and movable_page_list.
1992 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1993 * (or partial success).
1994 */
1995static int migrate_longterm_unpinnable_pages(
1996 struct list_head *movable_page_list,
1997 unsigned long nr_pages,
1998 struct page **pages)
1999{
2000 int ret;
2001 unsigned long i;
2002
2003 for (i = 0; i < nr_pages; i++) {
2004 struct folio *folio = page_folio(pages[i]);
2005
2006 if (folio_is_device_coherent(folio)) {
2007 /*
2008 * Migration will fail if the page is pinned, so convert
2009 * the pin on the source page to a normal reference.
2010 */
2011 pages[i] = NULL;
2012 folio_get(folio);
2013 gup_put_folio(folio, 1, FOLL_PIN);
2014
2015 if (migrate_device_coherent_page(&folio->page)) {
2016 ret = -EBUSY;
2017 goto err;
2018 }
2019
2020 continue;
2021 }
2022
2023 /*
2024 * We can't migrate pages with unexpected references, so drop
2025 * the reference obtained by __get_user_pages_locked().
2026 * Migrating pages have been added to movable_page_list after
2027 * calling folio_isolate_lru() which takes a reference so the
2028 * page won't be freed if it's migrating.
2029 */
2030 unpin_user_page(pages[i]);
2031 pages[i] = NULL;
2032 }
2033
2034 if (!list_empty(movable_page_list)) {
2035 struct migration_target_control mtc = {
2036 .nid = NUMA_NO_NODE,
2037 .gfp_mask = GFP_USER | __GFP_NOWARN,
2038 };
2039
2040 if (migrate_pages(movable_page_list, alloc_migration_target,
2041 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2042 MR_LONGTERM_PIN, NULL)) {
2043 ret = -ENOMEM;
2044 goto err;
2045 }
2046 }
2047
2048 putback_movable_pages(movable_page_list);
2049
2050 return -EAGAIN;
2051
2052err:
2053 for (i = 0; i < nr_pages; i++)
2054 if (pages[i])
2055 unpin_user_page(pages[i]);
2056 putback_movable_pages(movable_page_list);
2057
2058 return ret;
2059}
2060
2061/*
2062 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2063 * pages in the range are required to be pinned via FOLL_PIN, before calling
2064 * this routine.
2065 *
2066 * If any pages in the range are not allowed to be pinned, then this routine
2067 * will migrate those pages away, unpin all the pages in the range and return
2068 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2069 * call this routine again.
2070 *
2071 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2072 * The caller should give up, and propagate the error back up the call stack.
2073 *
2074 * If everything is OK and all pages in the range are allowed to be pinned, then
2075 * this routine leaves all pages pinned and returns zero for success.
2076 */
2077static long check_and_migrate_movable_pages(unsigned long nr_pages,
2078 struct page **pages)
2079{
2080 unsigned long collected;
2081 LIST_HEAD(movable_page_list);
2082
2083 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2084 nr_pages, pages);
2085 if (!collected)
2086 return 0;
2087
2088 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2089 pages);
2090}
2091#else
2092static long check_and_migrate_movable_pages(unsigned long nr_pages,
2093 struct page **pages)
2094{
2095 return 0;
2096}
2097#endif /* CONFIG_MIGRATION */
2098
2099/*
2100 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2101 * allows us to process the FOLL_LONGTERM flag.
2102 */
2103static long __gup_longterm_locked(struct mm_struct *mm,
2104 unsigned long start,
2105 unsigned long nr_pages,
2106 struct page **pages,
2107 struct vm_area_struct **vmas,
2108 unsigned int gup_flags)
2109{
2110 unsigned int flags;
2111 long rc, nr_pinned_pages;
2112
2113 if (!(gup_flags & FOLL_LONGTERM))
2114 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2115 NULL, gup_flags);
2116
2117 /*
2118 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2119 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2120 * correct to unconditionally call check_and_migrate_movable_pages()
2121 * which assumes pages have been pinned via FOLL_PIN.
2122 *
2123 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2124 */
2125 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2126 return -EINVAL;
2127 flags = memalloc_pin_save();
2128 do {
2129 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2130 pages, vmas, NULL,
2131 gup_flags);
2132 if (nr_pinned_pages <= 0) {
2133 rc = nr_pinned_pages;
2134 break;
2135 }
2136 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2137 } while (rc == -EAGAIN);
2138 memalloc_pin_restore(flags);
2139
2140 return rc ? rc : nr_pinned_pages;
2141}
2142
2143static bool is_valid_gup_flags(unsigned int gup_flags)
2144{
2145 /*
2146 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2147 * never directly by the caller, so enforce that with an assertion:
2148 */
2149 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2150 return false;
2151 /*
2152 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2153 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2154 * FOLL_PIN.
2155 */
2156 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2157 return false;
2158
2159 return true;
2160}
2161
2162#ifdef CONFIG_MMU
2163static long __get_user_pages_remote(struct mm_struct *mm,
2164 unsigned long start, unsigned long nr_pages,
2165 unsigned int gup_flags, struct page **pages,
2166 struct vm_area_struct **vmas, int *locked)
2167{
2168 /*
2169 * Parts of FOLL_LONGTERM behavior are incompatible with
2170 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2171 * vmas. However, this only comes up if locked is set, and there are
2172 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2173 * allow what we can.
2174 */
2175 if (gup_flags & FOLL_LONGTERM) {
2176 if (WARN_ON_ONCE(locked))
2177 return -EINVAL;
2178 /*
2179 * This will check the vmas (even if our vmas arg is NULL)
2180 * and return -ENOTSUPP if DAX isn't allowed in this case:
2181 */
2182 return __gup_longterm_locked(mm, start, nr_pages, pages,
2183 vmas, gup_flags | FOLL_TOUCH |
2184 FOLL_REMOTE);
2185 }
2186
2187 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2188 locked,
2189 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2190}
2191
2192/**
2193 * get_user_pages_remote() - pin user pages in memory
2194 * @mm: mm_struct of target mm
2195 * @start: starting user address
2196 * @nr_pages: number of pages from start to pin
2197 * @gup_flags: flags modifying lookup behaviour
2198 * @pages: array that receives pointers to the pages pinned.
2199 * Should be at least nr_pages long. Or NULL, if caller
2200 * only intends to ensure the pages are faulted in.
2201 * @vmas: array of pointers to vmas corresponding to each page.
2202 * Or NULL if the caller does not require them.
2203 * @locked: pointer to lock flag indicating whether lock is held and
2204 * subsequently whether VM_FAULT_RETRY functionality can be
2205 * utilised. Lock must initially be held.
2206 *
2207 * Returns either number of pages pinned (which may be less than the
2208 * number requested), or an error. Details about the return value:
2209 *
2210 * -- If nr_pages is 0, returns 0.
2211 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2212 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2213 * pages pinned. Again, this may be less than nr_pages.
2214 *
2215 * The caller is responsible for releasing returned @pages, via put_page().
2216 *
2217 * @vmas are valid only as long as mmap_lock is held.
2218 *
2219 * Must be called with mmap_lock held for read or write.
2220 *
2221 * get_user_pages_remote walks a process's page tables and takes a reference
2222 * to each struct page that each user address corresponds to at a given
2223 * instant. That is, it takes the page that would be accessed if a user
2224 * thread accesses the given user virtual address at that instant.
2225 *
2226 * This does not guarantee that the page exists in the user mappings when
2227 * get_user_pages_remote returns, and there may even be a completely different
2228 * page there in some cases (eg. if mmapped pagecache has been invalidated
2229 * and subsequently re faulted). However it does guarantee that the page
2230 * won't be freed completely. And mostly callers simply care that the page
2231 * contains data that was valid *at some point in time*. Typically, an IO
2232 * or similar operation cannot guarantee anything stronger anyway because
2233 * locks can't be held over the syscall boundary.
2234 *
2235 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2236 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2237 * be called after the page is finished with, and before put_page is called.
2238 *
2239 * get_user_pages_remote is typically used for fewer-copy IO operations,
2240 * to get a handle on the memory by some means other than accesses
2241 * via the user virtual addresses. The pages may be submitted for
2242 * DMA to devices or accessed via their kernel linear mapping (via the
2243 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2244 *
2245 * See also get_user_pages_fast, for performance critical applications.
2246 *
2247 * get_user_pages_remote should be phased out in favor of
2248 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2249 * should use get_user_pages_remote because it cannot pass
2250 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2251 */
2252long get_user_pages_remote(struct mm_struct *mm,
2253 unsigned long start, unsigned long nr_pages,
2254 unsigned int gup_flags, struct page **pages,
2255 struct vm_area_struct **vmas, int *locked)
2256{
2257 if (!is_valid_gup_flags(gup_flags))
2258 return -EINVAL;
2259
2260 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2261 pages, vmas, locked);
2262}
2263EXPORT_SYMBOL(get_user_pages_remote);
2264
2265#else /* CONFIG_MMU */
2266long get_user_pages_remote(struct mm_struct *mm,
2267 unsigned long start, unsigned long nr_pages,
2268 unsigned int gup_flags, struct page **pages,
2269 struct vm_area_struct **vmas, int *locked)
2270{
2271 return 0;
2272}
2273
2274static long __get_user_pages_remote(struct mm_struct *mm,
2275 unsigned long start, unsigned long nr_pages,
2276 unsigned int gup_flags, struct page **pages,
2277 struct vm_area_struct **vmas, int *locked)
2278{
2279 return 0;
2280}
2281#endif /* !CONFIG_MMU */
2282
2283/**
2284 * get_user_pages() - pin user pages in memory
2285 * @start: starting user address
2286 * @nr_pages: number of pages from start to pin
2287 * @gup_flags: flags modifying lookup behaviour
2288 * @pages: array that receives pointers to the pages pinned.
2289 * Should be at least nr_pages long. Or NULL, if caller
2290 * only intends to ensure the pages are faulted in.
2291 * @vmas: array of pointers to vmas corresponding to each page.
2292 * Or NULL if the caller does not require them.
2293 *
2294 * This is the same as get_user_pages_remote(), just with a less-flexible
2295 * calling convention where we assume that the mm being operated on belongs to
2296 * the current task, and doesn't allow passing of a locked parameter. We also
2297 * obviously don't pass FOLL_REMOTE in here.
2298 */
2299long get_user_pages(unsigned long start, unsigned long nr_pages,
2300 unsigned int gup_flags, struct page **pages,
2301 struct vm_area_struct **vmas)
2302{
2303 if (!is_valid_gup_flags(gup_flags))
2304 return -EINVAL;
2305
2306 return __gup_longterm_locked(current->mm, start, nr_pages,
2307 pages, vmas, gup_flags | FOLL_TOUCH);
2308}
2309EXPORT_SYMBOL(get_user_pages);
2310
2311/*
2312 * get_user_pages_unlocked() is suitable to replace the form:
2313 *
2314 * mmap_read_lock(mm);
2315 * get_user_pages(mm, ..., pages, NULL);
2316 * mmap_read_unlock(mm);
2317 *
2318 * with:
2319 *
2320 * get_user_pages_unlocked(mm, ..., pages);
2321 *
2322 * It is functionally equivalent to get_user_pages_fast so
2323 * get_user_pages_fast should be used instead if specific gup_flags
2324 * (e.g. FOLL_FORCE) are not required.
2325 */
2326long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2327 struct page **pages, unsigned int gup_flags)
2328{
2329 struct mm_struct *mm = current->mm;
2330 int locked = 1;
2331 long ret;
2332
2333 /*
2334 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2335 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2336 * vmas. As there are no users of this flag in this call we simply
2337 * disallow this option for now.
2338 */
2339 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2340 return -EINVAL;
2341
2342 mmap_read_lock(mm);
2343 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2344 &locked, gup_flags | FOLL_TOUCH);
2345 if (locked)
2346 mmap_read_unlock(mm);
2347 return ret;
2348}
2349EXPORT_SYMBOL(get_user_pages_unlocked);
2350
2351/*
2352 * Fast GUP
2353 *
2354 * get_user_pages_fast attempts to pin user pages by walking the page
2355 * tables directly and avoids taking locks. Thus the walker needs to be
2356 * protected from page table pages being freed from under it, and should
2357 * block any THP splits.
2358 *
2359 * One way to achieve this is to have the walker disable interrupts, and
2360 * rely on IPIs from the TLB flushing code blocking before the page table
2361 * pages are freed. This is unsuitable for architectures that do not need
2362 * to broadcast an IPI when invalidating TLBs.
2363 *
2364 * Another way to achieve this is to batch up page table containing pages
2365 * belonging to more than one mm_user, then rcu_sched a callback to free those
2366 * pages. Disabling interrupts will allow the fast_gup walker to both block
2367 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2368 * (which is a relatively rare event). The code below adopts this strategy.
2369 *
2370 * Before activating this code, please be aware that the following assumptions
2371 * are currently made:
2372 *
2373 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2374 * free pages containing page tables or TLB flushing requires IPI broadcast.
2375 *
2376 * *) ptes can be read atomically by the architecture.
2377 *
2378 * *) access_ok is sufficient to validate userspace address ranges.
2379 *
2380 * The last two assumptions can be relaxed by the addition of helper functions.
2381 *
2382 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2383 */
2384#ifdef CONFIG_HAVE_FAST_GUP
2385
2386static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2387 unsigned int flags,
2388 struct page **pages)
2389{
2390 while ((*nr) - nr_start) {
2391 struct page *page = pages[--(*nr)];
2392
2393 ClearPageReferenced(page);
2394 if (flags & FOLL_PIN)
2395 unpin_user_page(page);
2396 else
2397 put_page(page);
2398 }
2399}
2400
2401#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2402/*
2403 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2404 * operations.
2405 *
2406 * To pin the page, fast-gup needs to do below in order:
2407 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2408 *
2409 * For the rest of pgtable operations where pgtable updates can be racy
2410 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2411 * is pinned.
2412 *
2413 * Above will work for all pte-level operations, including THP split.
2414 *
2415 * For THP collapse, it's a bit more complicated because fast-gup may be
2416 * walking a pgtable page that is being freed (pte is still valid but pmd
2417 * can be cleared already). To avoid race in such condition, we need to
2418 * also check pmd here to make sure pmd doesn't change (corresponds to
2419 * pmdp_collapse_flush() in the THP collapse code path).
2420 */
2421static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2422 unsigned long end, unsigned int flags,
2423 struct page **pages, int *nr)
2424{
2425 struct dev_pagemap *pgmap = NULL;
2426 int nr_start = *nr, ret = 0;
2427 pte_t *ptep, *ptem;
2428
2429 ptem = ptep = pte_offset_map(&pmd, addr);
2430 do {
2431 pte_t pte = ptep_get_lockless(ptep);
2432 struct page *page;
2433 struct folio *folio;
2434
2435 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2436 goto pte_unmap;
2437
2438 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2439 goto pte_unmap;
2440
2441 if (pte_devmap(pte)) {
2442 if (unlikely(flags & FOLL_LONGTERM))
2443 goto pte_unmap;
2444
2445 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2446 if (unlikely(!pgmap)) {
2447 undo_dev_pagemap(nr, nr_start, flags, pages);
2448 goto pte_unmap;
2449 }
2450 } else if (pte_special(pte))
2451 goto pte_unmap;
2452
2453 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2454 page = pte_page(pte);
2455
2456 folio = try_grab_folio(page, 1, flags);
2457 if (!folio)
2458 goto pte_unmap;
2459
2460 if (unlikely(page_is_secretmem(page))) {
2461 gup_put_folio(folio, 1, flags);
2462 goto pte_unmap;
2463 }
2464
2465 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2466 unlikely(pte_val(pte) != pte_val(*ptep))) {
2467 gup_put_folio(folio, 1, flags);
2468 goto pte_unmap;
2469 }
2470
2471 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2472 gup_put_folio(folio, 1, flags);
2473 goto pte_unmap;
2474 }
2475
2476 /*
2477 * We need to make the page accessible if and only if we are
2478 * going to access its content (the FOLL_PIN case). Please
2479 * see Documentation/core-api/pin_user_pages.rst for
2480 * details.
2481 */
2482 if (flags & FOLL_PIN) {
2483 ret = arch_make_page_accessible(page);
2484 if (ret) {
2485 gup_put_folio(folio, 1, flags);
2486 goto pte_unmap;
2487 }
2488 }
2489 folio_set_referenced(folio);
2490 pages[*nr] = page;
2491 (*nr)++;
2492 } while (ptep++, addr += PAGE_SIZE, addr != end);
2493
2494 ret = 1;
2495
2496pte_unmap:
2497 if (pgmap)
2498 put_dev_pagemap(pgmap);
2499 pte_unmap(ptem);
2500 return ret;
2501}
2502#else
2503
2504/*
2505 * If we can't determine whether or not a pte is special, then fail immediately
2506 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2507 * to be special.
2508 *
2509 * For a futex to be placed on a THP tail page, get_futex_key requires a
2510 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2511 * useful to have gup_huge_pmd even if we can't operate on ptes.
2512 */
2513static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2514 unsigned long end, unsigned int flags,
2515 struct page **pages, int *nr)
2516{
2517 return 0;
2518}
2519#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2520
2521#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2522static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2523 unsigned long end, unsigned int flags,
2524 struct page **pages, int *nr)
2525{
2526 int nr_start = *nr;
2527 struct dev_pagemap *pgmap = NULL;
2528
2529 do {
2530 struct page *page = pfn_to_page(pfn);
2531
2532 pgmap = get_dev_pagemap(pfn, pgmap);
2533 if (unlikely(!pgmap)) {
2534 undo_dev_pagemap(nr, nr_start, flags, pages);
2535 break;
2536 }
2537 SetPageReferenced(page);
2538 pages[*nr] = page;
2539 if (unlikely(!try_grab_page(page, flags))) {
2540 undo_dev_pagemap(nr, nr_start, flags, pages);
2541 break;
2542 }
2543 (*nr)++;
2544 pfn++;
2545 } while (addr += PAGE_SIZE, addr != end);
2546
2547 put_dev_pagemap(pgmap);
2548 return addr == end;
2549}
2550
2551static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2552 unsigned long end, unsigned int flags,
2553 struct page **pages, int *nr)
2554{
2555 unsigned long fault_pfn;
2556 int nr_start = *nr;
2557
2558 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2559 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2560 return 0;
2561
2562 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2563 undo_dev_pagemap(nr, nr_start, flags, pages);
2564 return 0;
2565 }
2566 return 1;
2567}
2568
2569static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2570 unsigned long end, unsigned int flags,
2571 struct page **pages, int *nr)
2572{
2573 unsigned long fault_pfn;
2574 int nr_start = *nr;
2575
2576 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2577 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2578 return 0;
2579
2580 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2581 undo_dev_pagemap(nr, nr_start, flags, pages);
2582 return 0;
2583 }
2584 return 1;
2585}
2586#else
2587static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2588 unsigned long end, unsigned int flags,
2589 struct page **pages, int *nr)
2590{
2591 BUILD_BUG();
2592 return 0;
2593}
2594
2595static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2596 unsigned long end, unsigned int flags,
2597 struct page **pages, int *nr)
2598{
2599 BUILD_BUG();
2600 return 0;
2601}
2602#endif
2603
2604static int record_subpages(struct page *page, unsigned long addr,
2605 unsigned long end, struct page **pages)
2606{
2607 int nr;
2608
2609 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2610 pages[nr] = nth_page(page, nr);
2611
2612 return nr;
2613}
2614
2615#ifdef CONFIG_ARCH_HAS_HUGEPD
2616static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2617 unsigned long sz)
2618{
2619 unsigned long __boundary = (addr + sz) & ~(sz-1);
2620 return (__boundary - 1 < end - 1) ? __boundary : end;
2621}
2622
2623static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2624 unsigned long end, unsigned int flags,
2625 struct page **pages, int *nr)
2626{
2627 unsigned long pte_end;
2628 struct page *page;
2629 struct folio *folio;
2630 pte_t pte;
2631 int refs;
2632
2633 pte_end = (addr + sz) & ~(sz-1);
2634 if (pte_end < end)
2635 end = pte_end;
2636
2637 pte = huge_ptep_get(ptep);
2638
2639 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2640 return 0;
2641
2642 /* hugepages are never "special" */
2643 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2644
2645 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2646 refs = record_subpages(page, addr, end, pages + *nr);
2647
2648 folio = try_grab_folio(page, refs, flags);
2649 if (!folio)
2650 return 0;
2651
2652 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2653 gup_put_folio(folio, refs, flags);
2654 return 0;
2655 }
2656
2657 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2658 gup_put_folio(folio, refs, flags);
2659 return 0;
2660 }
2661
2662 *nr += refs;
2663 folio_set_referenced(folio);
2664 return 1;
2665}
2666
2667static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2668 unsigned int pdshift, unsigned long end, unsigned int flags,
2669 struct page **pages, int *nr)
2670{
2671 pte_t *ptep;
2672 unsigned long sz = 1UL << hugepd_shift(hugepd);
2673 unsigned long next;
2674
2675 ptep = hugepte_offset(hugepd, addr, pdshift);
2676 do {
2677 next = hugepte_addr_end(addr, end, sz);
2678 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2679 return 0;
2680 } while (ptep++, addr = next, addr != end);
2681
2682 return 1;
2683}
2684#else
2685static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2686 unsigned int pdshift, unsigned long end, unsigned int flags,
2687 struct page **pages, int *nr)
2688{
2689 return 0;
2690}
2691#endif /* CONFIG_ARCH_HAS_HUGEPD */
2692
2693static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2694 unsigned long end, unsigned int flags,
2695 struct page **pages, int *nr)
2696{
2697 struct page *page;
2698 struct folio *folio;
2699 int refs;
2700
2701 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2702 return 0;
2703
2704 if (pmd_devmap(orig)) {
2705 if (unlikely(flags & FOLL_LONGTERM))
2706 return 0;
2707 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2708 pages, nr);
2709 }
2710
2711 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2712 refs = record_subpages(page, addr, end, pages + *nr);
2713
2714 folio = try_grab_folio(page, refs, flags);
2715 if (!folio)
2716 return 0;
2717
2718 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2719 gup_put_folio(folio, refs, flags);
2720 return 0;
2721 }
2722
2723 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2724 gup_put_folio(folio, refs, flags);
2725 return 0;
2726 }
2727
2728 *nr += refs;
2729 folio_set_referenced(folio);
2730 return 1;
2731}
2732
2733static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2734 unsigned long end, unsigned int flags,
2735 struct page **pages, int *nr)
2736{
2737 struct page *page;
2738 struct folio *folio;
2739 int refs;
2740
2741 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2742 return 0;
2743
2744 if (pud_devmap(orig)) {
2745 if (unlikely(flags & FOLL_LONGTERM))
2746 return 0;
2747 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2748 pages, nr);
2749 }
2750
2751 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2752 refs = record_subpages(page, addr, end, pages + *nr);
2753
2754 folio = try_grab_folio(page, refs, flags);
2755 if (!folio)
2756 return 0;
2757
2758 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2759 gup_put_folio(folio, refs, flags);
2760 return 0;
2761 }
2762
2763 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2764 gup_put_folio(folio, refs, flags);
2765 return 0;
2766 }
2767
2768 *nr += refs;
2769 folio_set_referenced(folio);
2770 return 1;
2771}
2772
2773static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2774 unsigned long end, unsigned int flags,
2775 struct page **pages, int *nr)
2776{
2777 int refs;
2778 struct page *page;
2779 struct folio *folio;
2780
2781 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2782 return 0;
2783
2784 BUILD_BUG_ON(pgd_devmap(orig));
2785
2786 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2787 refs = record_subpages(page, addr, end, pages + *nr);
2788
2789 folio = try_grab_folio(page, refs, flags);
2790 if (!folio)
2791 return 0;
2792
2793 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2794 gup_put_folio(folio, refs, flags);
2795 return 0;
2796 }
2797
2798 *nr += refs;
2799 folio_set_referenced(folio);
2800 return 1;
2801}
2802
2803static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2804 unsigned int flags, struct page **pages, int *nr)
2805{
2806 unsigned long next;
2807 pmd_t *pmdp;
2808
2809 pmdp = pmd_offset_lockless(pudp, pud, addr);
2810 do {
2811 pmd_t pmd = READ_ONCE(*pmdp);
2812
2813 next = pmd_addr_end(addr, end);
2814 if (!pmd_present(pmd))
2815 return 0;
2816
2817 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2818 pmd_devmap(pmd))) {
2819 if (pmd_protnone(pmd) &&
2820 !gup_can_follow_protnone(flags))
2821 return 0;
2822
2823 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2824 pages, nr))
2825 return 0;
2826
2827 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2828 /*
2829 * architecture have different format for hugetlbfs
2830 * pmd format and THP pmd format
2831 */
2832 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2833 PMD_SHIFT, next, flags, pages, nr))
2834 return 0;
2835 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2836 return 0;
2837 } while (pmdp++, addr = next, addr != end);
2838
2839 return 1;
2840}
2841
2842static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2843 unsigned int flags, struct page **pages, int *nr)
2844{
2845 unsigned long next;
2846 pud_t *pudp;
2847
2848 pudp = pud_offset_lockless(p4dp, p4d, addr);
2849 do {
2850 pud_t pud = READ_ONCE(*pudp);
2851
2852 next = pud_addr_end(addr, end);
2853 if (unlikely(!pud_present(pud)))
2854 return 0;
2855 if (unlikely(pud_huge(pud))) {
2856 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2857 pages, nr))
2858 return 0;
2859 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2860 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2861 PUD_SHIFT, next, flags, pages, nr))
2862 return 0;
2863 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2864 return 0;
2865 } while (pudp++, addr = next, addr != end);
2866
2867 return 1;
2868}
2869
2870static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2871 unsigned int flags, struct page **pages, int *nr)
2872{
2873 unsigned long next;
2874 p4d_t *p4dp;
2875
2876 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2877 do {
2878 p4d_t p4d = READ_ONCE(*p4dp);
2879
2880 next = p4d_addr_end(addr, end);
2881 if (p4d_none(p4d))
2882 return 0;
2883 BUILD_BUG_ON(p4d_huge(p4d));
2884 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2885 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2886 P4D_SHIFT, next, flags, pages, nr))
2887 return 0;
2888 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2889 return 0;
2890 } while (p4dp++, addr = next, addr != end);
2891
2892 return 1;
2893}
2894
2895static void gup_pgd_range(unsigned long addr, unsigned long end,
2896 unsigned int flags, struct page **pages, int *nr)
2897{
2898 unsigned long next;
2899 pgd_t *pgdp;
2900
2901 pgdp = pgd_offset(current->mm, addr);
2902 do {
2903 pgd_t pgd = READ_ONCE(*pgdp);
2904
2905 next = pgd_addr_end(addr, end);
2906 if (pgd_none(pgd))
2907 return;
2908 if (unlikely(pgd_huge(pgd))) {
2909 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2910 pages, nr))
2911 return;
2912 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2913 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2914 PGDIR_SHIFT, next, flags, pages, nr))
2915 return;
2916 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2917 return;
2918 } while (pgdp++, addr = next, addr != end);
2919}
2920#else
2921static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2922 unsigned int flags, struct page **pages, int *nr)
2923{
2924}
2925#endif /* CONFIG_HAVE_FAST_GUP */
2926
2927#ifndef gup_fast_permitted
2928/*
2929 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2930 * we need to fall back to the slow version:
2931 */
2932static bool gup_fast_permitted(unsigned long start, unsigned long end)
2933{
2934 return true;
2935}
2936#endif
2937
2938static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2939 unsigned int gup_flags, struct page **pages)
2940{
2941 int ret;
2942
2943 /*
2944 * FIXME: FOLL_LONGTERM does not work with
2945 * get_user_pages_unlocked() (see comments in that function)
2946 */
2947 if (gup_flags & FOLL_LONGTERM) {
2948 mmap_read_lock(current->mm);
2949 ret = __gup_longterm_locked(current->mm,
2950 start, nr_pages,
2951 pages, NULL, gup_flags);
2952 mmap_read_unlock(current->mm);
2953 } else {
2954 ret = get_user_pages_unlocked(start, nr_pages,
2955 pages, gup_flags);
2956 }
2957
2958 return ret;
2959}
2960
2961static unsigned long lockless_pages_from_mm(unsigned long start,
2962 unsigned long end,
2963 unsigned int gup_flags,
2964 struct page **pages)
2965{
2966 unsigned long flags;
2967 int nr_pinned = 0;
2968 unsigned seq;
2969
2970 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2971 !gup_fast_permitted(start, end))
2972 return 0;
2973
2974 if (gup_flags & FOLL_PIN) {
2975 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2976 if (seq & 1)
2977 return 0;
2978 }
2979
2980 /*
2981 * Disable interrupts. The nested form is used, in order to allow full,
2982 * general purpose use of this routine.
2983 *
2984 * With interrupts disabled, we block page table pages from being freed
2985 * from under us. See struct mmu_table_batch comments in
2986 * include/asm-generic/tlb.h for more details.
2987 *
2988 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2989 * that come from THPs splitting.
2990 */
2991 local_irq_save(flags);
2992 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2993 local_irq_restore(flags);
2994
2995 /*
2996 * When pinning pages for DMA there could be a concurrent write protect
2997 * from fork() via copy_page_range(), in this case always fail fast GUP.
2998 */
2999 if (gup_flags & FOLL_PIN) {
3000 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3001 unpin_user_pages_lockless(pages, nr_pinned);
3002 return 0;
3003 } else {
3004 sanity_check_pinned_pages(pages, nr_pinned);
3005 }
3006 }
3007 return nr_pinned;
3008}
3009
3010static int internal_get_user_pages_fast(unsigned long start,
3011 unsigned long nr_pages,
3012 unsigned int gup_flags,
3013 struct page **pages)
3014{
3015 unsigned long len, end;
3016 unsigned long nr_pinned;
3017 int ret;
3018
3019 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3020 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3021 FOLL_FAST_ONLY | FOLL_NOFAULT)))
3022 return -EINVAL;
3023
3024 if (gup_flags & FOLL_PIN)
3025 mm_set_has_pinned_flag(&current->mm->flags);
3026
3027 if (!(gup_flags & FOLL_FAST_ONLY))
3028 might_lock_read(&current->mm->mmap_lock);
3029
3030 start = untagged_addr(start) & PAGE_MASK;
3031 len = nr_pages << PAGE_SHIFT;
3032 if (check_add_overflow(start, len, &end))
3033 return 0;
3034 if (unlikely(!access_ok((void __user *)start, len)))
3035 return -EFAULT;
3036
3037 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3038 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3039 return nr_pinned;
3040
3041 /* Slow path: try to get the remaining pages with get_user_pages */
3042 start += nr_pinned << PAGE_SHIFT;
3043 pages += nr_pinned;
3044 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3045 pages);
3046 if (ret < 0) {
3047 /*
3048 * The caller has to unpin the pages we already pinned so
3049 * returning -errno is not an option
3050 */
3051 if (nr_pinned)
3052 return nr_pinned;
3053 return ret;
3054 }
3055 return ret + nr_pinned;
3056}
3057
3058/**
3059 * get_user_pages_fast_only() - pin user pages in memory
3060 * @start: starting user address
3061 * @nr_pages: number of pages from start to pin
3062 * @gup_flags: flags modifying pin behaviour
3063 * @pages: array that receives pointers to the pages pinned.
3064 * Should be at least nr_pages long.
3065 *
3066 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3067 * the regular GUP.
3068 * Note a difference with get_user_pages_fast: this always returns the
3069 * number of pages pinned, 0 if no pages were pinned.
3070 *
3071 * If the architecture does not support this function, simply return with no
3072 * pages pinned.
3073 *
3074 * Careful, careful! COW breaking can go either way, so a non-write
3075 * access can get ambiguous page results. If you call this function without
3076 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3077 */
3078int get_user_pages_fast_only(unsigned long start, int nr_pages,
3079 unsigned int gup_flags, struct page **pages)
3080{
3081 int nr_pinned;
3082 /*
3083 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3084 * because gup fast is always a "pin with a +1 page refcount" request.
3085 *
3086 * FOLL_FAST_ONLY is required in order to match the API description of
3087 * this routine: no fall back to regular ("slow") GUP.
3088 */
3089 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3090
3091 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3092 pages);
3093
3094 /*
3095 * As specified in the API description above, this routine is not
3096 * allowed to return negative values. However, the common core
3097 * routine internal_get_user_pages_fast() *can* return -errno.
3098 * Therefore, correct for that here:
3099 */
3100 if (nr_pinned < 0)
3101 nr_pinned = 0;
3102
3103 return nr_pinned;
3104}
3105EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3106
3107/**
3108 * get_user_pages_fast() - pin user pages in memory
3109 * @start: starting user address
3110 * @nr_pages: number of pages from start to pin
3111 * @gup_flags: flags modifying pin behaviour
3112 * @pages: array that receives pointers to the pages pinned.
3113 * Should be at least nr_pages long.
3114 *
3115 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3116 * If not successful, it will fall back to taking the lock and
3117 * calling get_user_pages().
3118 *
3119 * Returns number of pages pinned. This may be fewer than the number requested.
3120 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3121 * -errno.
3122 */
3123int get_user_pages_fast(unsigned long start, int nr_pages,
3124 unsigned int gup_flags, struct page **pages)
3125{
3126 if (!is_valid_gup_flags(gup_flags))
3127 return -EINVAL;
3128
3129 /*
3130 * The caller may or may not have explicitly set FOLL_GET; either way is
3131 * OK. However, internally (within mm/gup.c), gup fast variants must set
3132 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3133 * request.
3134 */
3135 gup_flags |= FOLL_GET;
3136 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3137}
3138EXPORT_SYMBOL_GPL(get_user_pages_fast);
3139
3140/**
3141 * pin_user_pages_fast() - pin user pages in memory without taking locks
3142 *
3143 * @start: starting user address
3144 * @nr_pages: number of pages from start to pin
3145 * @gup_flags: flags modifying pin behaviour
3146 * @pages: array that receives pointers to the pages pinned.
3147 * Should be at least nr_pages long.
3148 *
3149 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3150 * get_user_pages_fast() for documentation on the function arguments, because
3151 * the arguments here are identical.
3152 *
3153 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3154 * see Documentation/core-api/pin_user_pages.rst for further details.
3155 */
3156int pin_user_pages_fast(unsigned long start, int nr_pages,
3157 unsigned int gup_flags, struct page **pages)
3158{
3159 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3160 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3161 return -EINVAL;
3162
3163 if (WARN_ON_ONCE(!pages))
3164 return -EINVAL;
3165
3166 gup_flags |= FOLL_PIN;
3167 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3168}
3169EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3170
3171/*
3172 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3173 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3174 *
3175 * The API rules are the same, too: no negative values may be returned.
3176 */
3177int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3178 unsigned int gup_flags, struct page **pages)
3179{
3180 int nr_pinned;
3181
3182 /*
3183 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3184 * rules require returning 0, rather than -errno:
3185 */
3186 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3187 return 0;
3188
3189 if (WARN_ON_ONCE(!pages))
3190 return 0;
3191 /*
3192 * FOLL_FAST_ONLY is required in order to match the API description of
3193 * this routine: no fall back to regular ("slow") GUP.
3194 */
3195 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3196 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3197 pages);
3198 /*
3199 * This routine is not allowed to return negative values. However,
3200 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3201 * correct for that here:
3202 */
3203 if (nr_pinned < 0)
3204 nr_pinned = 0;
3205
3206 return nr_pinned;
3207}
3208EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3209
3210/**
3211 * pin_user_pages_remote() - pin pages of a remote process
3212 *
3213 * @mm: mm_struct of target mm
3214 * @start: starting user address
3215 * @nr_pages: number of pages from start to pin
3216 * @gup_flags: flags modifying lookup behaviour
3217 * @pages: array that receives pointers to the pages pinned.
3218 * Should be at least nr_pages long.
3219 * @vmas: array of pointers to vmas corresponding to each page.
3220 * Or NULL if the caller does not require them.
3221 * @locked: pointer to lock flag indicating whether lock is held and
3222 * subsequently whether VM_FAULT_RETRY functionality can be
3223 * utilised. Lock must initially be held.
3224 *
3225 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3226 * get_user_pages_remote() for documentation on the function arguments, because
3227 * the arguments here are identical.
3228 *
3229 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3230 * see Documentation/core-api/pin_user_pages.rst for details.
3231 */
3232long pin_user_pages_remote(struct mm_struct *mm,
3233 unsigned long start, unsigned long nr_pages,
3234 unsigned int gup_flags, struct page **pages,
3235 struct vm_area_struct **vmas, int *locked)
3236{
3237 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3238 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3239 return -EINVAL;
3240
3241 if (WARN_ON_ONCE(!pages))
3242 return -EINVAL;
3243
3244 gup_flags |= FOLL_PIN;
3245 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3246 pages, vmas, locked);
3247}
3248EXPORT_SYMBOL(pin_user_pages_remote);
3249
3250/**
3251 * pin_user_pages() - pin user pages in memory for use by other devices
3252 *
3253 * @start: starting user address
3254 * @nr_pages: number of pages from start to pin
3255 * @gup_flags: flags modifying lookup behaviour
3256 * @pages: array that receives pointers to the pages pinned.
3257 * Should be at least nr_pages long.
3258 * @vmas: array of pointers to vmas corresponding to each page.
3259 * Or NULL if the caller does not require them.
3260 *
3261 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3262 * FOLL_PIN is set.
3263 *
3264 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3265 * see Documentation/core-api/pin_user_pages.rst for details.
3266 */
3267long pin_user_pages(unsigned long start, unsigned long nr_pages,
3268 unsigned int gup_flags, struct page **pages,
3269 struct vm_area_struct **vmas)
3270{
3271 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3272 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3273 return -EINVAL;
3274
3275 if (WARN_ON_ONCE(!pages))
3276 return -EINVAL;
3277
3278 gup_flags |= FOLL_PIN;
3279 return __gup_longterm_locked(current->mm, start, nr_pages,
3280 pages, vmas, gup_flags);
3281}
3282EXPORT_SYMBOL(pin_user_pages);
3283
3284/*
3285 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3286 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3287 * FOLL_PIN and rejects FOLL_GET.
3288 */
3289long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3290 struct page **pages, unsigned int gup_flags)
3291{
3292 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3293 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3294 return -EINVAL;
3295
3296 if (WARN_ON_ONCE(!pages))
3297 return -EINVAL;
3298
3299 gup_flags |= FOLL_PIN;
3300 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3301}
3302EXPORT_SYMBOL(pin_user_pages_unlocked);