Revert "mm, oom: prevent premature OOM killer invocation for high order request"
[linux-2.6-block.git] / mm / filemap.c
... / ...
CommitLineData
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/export.h>
13#include <linux/compiler.h>
14#include <linux/dax.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/capability.h>
18#include <linux/kernel_stat.h>
19#include <linux/gfp.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/cpuset.h>
33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34#include <linux/hugetlb.h>
35#include <linux/memcontrol.h>
36#include <linux/cleancache.h>
37#include <linux/rmap.h>
38#include "internal.h"
39
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
43/*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46#include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113static int page_cache_tree_insert(struct address_space *mapping,
114 struct page *page, void **shadowp)
115{
116 struct radix_tree_node *node;
117 void **slot;
118 int error;
119
120 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 &node, &slot);
122 if (error)
123 return error;
124 if (*slot) {
125 void *p;
126
127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 if (!radix_tree_exceptional_entry(p))
129 return -EEXIST;
130
131 mapping->nrexceptional--;
132 if (!dax_mapping(mapping)) {
133 if (shadowp)
134 *shadowp = p;
135 if (node)
136 workingset_node_shadows_dec(node);
137 } else {
138 /* DAX can replace empty locked entry with a hole */
139 WARN_ON_ONCE(p !=
140 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 RADIX_DAX_ENTRY_LOCK));
142 /* DAX accounts exceptional entries as normal pages */
143 if (node)
144 workingset_node_pages_dec(node);
145 /* Wakeup waiters for exceptional entry lock */
146 dax_wake_mapping_entry_waiter(mapping, page->index,
147 false);
148 }
149 }
150 radix_tree_replace_slot(slot, page);
151 mapping->nrpages++;
152 if (node) {
153 workingset_node_pages_inc(node);
154 /*
155 * Don't track node that contains actual pages.
156 *
157 * Avoid acquiring the list_lru lock if already
158 * untracked. The list_empty() test is safe as
159 * node->private_list is protected by
160 * mapping->tree_lock.
161 */
162 if (!list_empty(&node->private_list))
163 list_lru_del(&workingset_shadow_nodes,
164 &node->private_list);
165 }
166 return 0;
167}
168
169static void page_cache_tree_delete(struct address_space *mapping,
170 struct page *page, void *shadow)
171{
172 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173
174 VM_BUG_ON_PAGE(!PageLocked(page), page);
175 VM_BUG_ON_PAGE(PageTail(page), page);
176 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177
178 for (i = 0; i < nr; i++) {
179 struct radix_tree_node *node;
180 void **slot;
181
182 __radix_tree_lookup(&mapping->page_tree, page->index + i,
183 &node, &slot);
184
185 radix_tree_clear_tags(&mapping->page_tree, node, slot);
186
187 if (!node) {
188 VM_BUG_ON_PAGE(nr != 1, page);
189 /*
190 * We need a node to properly account shadow
191 * entries. Don't plant any without. XXX
192 */
193 shadow = NULL;
194 }
195
196 radix_tree_replace_slot(slot, shadow);
197
198 if (!node)
199 break;
200
201 workingset_node_pages_dec(node);
202 if (shadow)
203 workingset_node_shadows_inc(node);
204 else
205 if (__radix_tree_delete_node(&mapping->page_tree, node))
206 continue;
207
208 /*
209 * Track node that only contains shadow entries. DAX mappings
210 * contain no shadow entries and may contain other exceptional
211 * entries so skip those.
212 *
213 * Avoid acquiring the list_lru lock if already tracked.
214 * The list_empty() test is safe as node->private_list is
215 * protected by mapping->tree_lock.
216 */
217 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 list_empty(&node->private_list)) {
219 node->private_data = mapping;
220 list_lru_add(&workingset_shadow_nodes,
221 &node->private_list);
222 }
223 }
224
225 if (shadow) {
226 mapping->nrexceptional += nr;
227 /*
228 * Make sure the nrexceptional update is committed before
229 * the nrpages update so that final truncate racing
230 * with reclaim does not see both counters 0 at the
231 * same time and miss a shadow entry.
232 */
233 smp_wmb();
234 }
235 mapping->nrpages -= nr;
236}
237
238/*
239 * Delete a page from the page cache and free it. Caller has to make
240 * sure the page is locked and that nobody else uses it - or that usage
241 * is safe. The caller must hold the mapping's tree_lock.
242 */
243void __delete_from_page_cache(struct page *page, void *shadow)
244{
245 struct address_space *mapping = page->mapping;
246 int nr = hpage_nr_pages(page);
247
248 trace_mm_filemap_delete_from_page_cache(page);
249 /*
250 * if we're uptodate, flush out into the cleancache, otherwise
251 * invalidate any existing cleancache entries. We can't leave
252 * stale data around in the cleancache once our page is gone
253 */
254 if (PageUptodate(page) && PageMappedToDisk(page))
255 cleancache_put_page(page);
256 else
257 cleancache_invalidate_page(mapping, page);
258
259 VM_BUG_ON_PAGE(PageTail(page), page);
260 VM_BUG_ON_PAGE(page_mapped(page), page);
261 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262 int mapcount;
263
264 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 dump_page(page, "still mapped when deleted");
267 dump_stack();
268 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269
270 mapcount = page_mapcount(page);
271 if (mapping_exiting(mapping) &&
272 page_count(page) >= mapcount + 2) {
273 /*
274 * All vmas have already been torn down, so it's
275 * a good bet that actually the page is unmapped,
276 * and we'd prefer not to leak it: if we're wrong,
277 * some other bad page check should catch it later.
278 */
279 page_mapcount_reset(page);
280 page_ref_sub(page, mapcount);
281 }
282 }
283
284 page_cache_tree_delete(mapping, page, shadow);
285
286 page->mapping = NULL;
287 /* Leave page->index set: truncation lookup relies upon it */
288
289 /* hugetlb pages do not participate in page cache accounting. */
290 if (!PageHuge(page))
291 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 if (PageSwapBacked(page)) {
293 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 if (PageTransHuge(page))
295 __dec_node_page_state(page, NR_SHMEM_THPS);
296 } else {
297 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298 }
299
300 /*
301 * At this point page must be either written or cleaned by truncate.
302 * Dirty page here signals a bug and loss of unwritten data.
303 *
304 * This fixes dirty accounting after removing the page entirely but
305 * leaves PageDirty set: it has no effect for truncated page and
306 * anyway will be cleared before returning page into buddy allocator.
307 */
308 if (WARN_ON_ONCE(PageDirty(page)))
309 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310}
311
312/**
313 * delete_from_page_cache - delete page from page cache
314 * @page: the page which the kernel is trying to remove from page cache
315 *
316 * This must be called only on pages that have been verified to be in the page
317 * cache and locked. It will never put the page into the free list, the caller
318 * has a reference on the page.
319 */
320void delete_from_page_cache(struct page *page)
321{
322 struct address_space *mapping = page_mapping(page);
323 unsigned long flags;
324 void (*freepage)(struct page *);
325
326 BUG_ON(!PageLocked(page));
327
328 freepage = mapping->a_ops->freepage;
329
330 spin_lock_irqsave(&mapping->tree_lock, flags);
331 __delete_from_page_cache(page, NULL);
332 spin_unlock_irqrestore(&mapping->tree_lock, flags);
333
334 if (freepage)
335 freepage(page);
336
337 if (PageTransHuge(page) && !PageHuge(page)) {
338 page_ref_sub(page, HPAGE_PMD_NR);
339 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340 } else {
341 put_page(page);
342 }
343}
344EXPORT_SYMBOL(delete_from_page_cache);
345
346int filemap_check_errors(struct address_space *mapping)
347{
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357}
358EXPORT_SYMBOL(filemap_check_errors);
359
360/**
361 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362 * @mapping: address space structure to write
363 * @start: offset in bytes where the range starts
364 * @end: offset in bytes where the range ends (inclusive)
365 * @sync_mode: enable synchronous operation
366 *
367 * Start writeback against all of a mapping's dirty pages that lie
368 * within the byte offsets <start, end> inclusive.
369 *
370 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371 * opposed to a regular memory cleansing writeback. The difference between
372 * these two operations is that if a dirty page/buffer is encountered, it must
373 * be waited upon, and not just skipped over.
374 */
375int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 loff_t end, int sync_mode)
377{
378 int ret;
379 struct writeback_control wbc = {
380 .sync_mode = sync_mode,
381 .nr_to_write = LONG_MAX,
382 .range_start = start,
383 .range_end = end,
384 };
385
386 if (!mapping_cap_writeback_dirty(mapping))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 ret = do_writepages(mapping, &wbc);
391 wbc_detach_inode(&wbc);
392 return ret;
393}
394
395static inline int __filemap_fdatawrite(struct address_space *mapping,
396 int sync_mode)
397{
398 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399}
400
401int filemap_fdatawrite(struct address_space *mapping)
402{
403 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404}
405EXPORT_SYMBOL(filemap_fdatawrite);
406
407int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 loff_t end)
409{
410 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411}
412EXPORT_SYMBOL(filemap_fdatawrite_range);
413
414/**
415 * filemap_flush - mostly a non-blocking flush
416 * @mapping: target address_space
417 *
418 * This is a mostly non-blocking flush. Not suitable for data-integrity
419 * purposes - I/O may not be started against all dirty pages.
420 */
421int filemap_flush(struct address_space *mapping)
422{
423 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424}
425EXPORT_SYMBOL(filemap_flush);
426
427static int __filemap_fdatawait_range(struct address_space *mapping,
428 loff_t start_byte, loff_t end_byte)
429{
430 pgoff_t index = start_byte >> PAGE_SHIFT;
431 pgoff_t end = end_byte >> PAGE_SHIFT;
432 struct pagevec pvec;
433 int nr_pages;
434 int ret = 0;
435
436 if (end_byte < start_byte)
437 goto out;
438
439 pagevec_init(&pvec, 0);
440 while ((index <= end) &&
441 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 PAGECACHE_TAG_WRITEBACK,
443 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444 unsigned i;
445
446 for (i = 0; i < nr_pages; i++) {
447 struct page *page = pvec.pages[i];
448
449 /* until radix tree lookup accepts end_index */
450 if (page->index > end)
451 continue;
452
453 wait_on_page_writeback(page);
454 if (TestClearPageError(page))
455 ret = -EIO;
456 }
457 pagevec_release(&pvec);
458 cond_resched();
459 }
460out:
461 return ret;
462}
463
464/**
465 * filemap_fdatawait_range - wait for writeback to complete
466 * @mapping: address space structure to wait for
467 * @start_byte: offset in bytes where the range starts
468 * @end_byte: offset in bytes where the range ends (inclusive)
469 *
470 * Walk the list of under-writeback pages of the given address space
471 * in the given range and wait for all of them. Check error status of
472 * the address space and return it.
473 *
474 * Since the error status of the address space is cleared by this function,
475 * callers are responsible for checking the return value and handling and/or
476 * reporting the error.
477 */
478int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479 loff_t end_byte)
480{
481 int ret, ret2;
482
483 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 ret2 = filemap_check_errors(mapping);
485 if (!ret)
486 ret = ret2;
487
488 return ret;
489}
490EXPORT_SYMBOL(filemap_fdatawait_range);
491
492/**
493 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494 * @mapping: address space structure to wait for
495 *
496 * Walk the list of under-writeback pages of the given address space
497 * and wait for all of them. Unlike filemap_fdatawait(), this function
498 * does not clear error status of the address space.
499 *
500 * Use this function if callers don't handle errors themselves. Expected
501 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502 * fsfreeze(8)
503 */
504void filemap_fdatawait_keep_errors(struct address_space *mapping)
505{
506 loff_t i_size = i_size_read(mapping->host);
507
508 if (i_size == 0)
509 return;
510
511 __filemap_fdatawait_range(mapping, 0, i_size - 1);
512}
513
514/**
515 * filemap_fdatawait - wait for all under-writeback pages to complete
516 * @mapping: address space structure to wait for
517 *
518 * Walk the list of under-writeback pages of the given address space
519 * and wait for all of them. Check error status of the address space
520 * and return it.
521 *
522 * Since the error status of the address space is cleared by this function,
523 * callers are responsible for checking the return value and handling and/or
524 * reporting the error.
525 */
526int filemap_fdatawait(struct address_space *mapping)
527{
528 loff_t i_size = i_size_read(mapping->host);
529
530 if (i_size == 0)
531 return 0;
532
533 return filemap_fdatawait_range(mapping, 0, i_size - 1);
534}
535EXPORT_SYMBOL(filemap_fdatawait);
536
537int filemap_write_and_wait(struct address_space *mapping)
538{
539 int err = 0;
540
541 if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 (dax_mapping(mapping) && mapping->nrexceptional)) {
543 err = filemap_fdatawrite(mapping);
544 /*
545 * Even if the above returned error, the pages may be
546 * written partially (e.g. -ENOSPC), so we wait for it.
547 * But the -EIO is special case, it may indicate the worst
548 * thing (e.g. bug) happened, so we avoid waiting for it.
549 */
550 if (err != -EIO) {
551 int err2 = filemap_fdatawait(mapping);
552 if (!err)
553 err = err2;
554 }
555 } else {
556 err = filemap_check_errors(mapping);
557 }
558 return err;
559}
560EXPORT_SYMBOL(filemap_write_and_wait);
561
562/**
563 * filemap_write_and_wait_range - write out & wait on a file range
564 * @mapping: the address_space for the pages
565 * @lstart: offset in bytes where the range starts
566 * @lend: offset in bytes where the range ends (inclusive)
567 *
568 * Write out and wait upon file offsets lstart->lend, inclusive.
569 *
570 * Note that `lend' is inclusive (describes the last byte to be written) so
571 * that this function can be used to write to the very end-of-file (end = -1).
572 */
573int filemap_write_and_wait_range(struct address_space *mapping,
574 loff_t lstart, loff_t lend)
575{
576 int err = 0;
577
578 if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 (dax_mapping(mapping) && mapping->nrexceptional)) {
580 err = __filemap_fdatawrite_range(mapping, lstart, lend,
581 WB_SYNC_ALL);
582 /* See comment of filemap_write_and_wait() */
583 if (err != -EIO) {
584 int err2 = filemap_fdatawait_range(mapping,
585 lstart, lend);
586 if (!err)
587 err = err2;
588 }
589 } else {
590 err = filemap_check_errors(mapping);
591 }
592 return err;
593}
594EXPORT_SYMBOL(filemap_write_and_wait_range);
595
596/**
597 * replace_page_cache_page - replace a pagecache page with a new one
598 * @old: page to be replaced
599 * @new: page to replace with
600 * @gfp_mask: allocation mode
601 *
602 * This function replaces a page in the pagecache with a new one. On
603 * success it acquires the pagecache reference for the new page and
604 * drops it for the old page. Both the old and new pages must be
605 * locked. This function does not add the new page to the LRU, the
606 * caller must do that.
607 *
608 * The remove + add is atomic. The only way this function can fail is
609 * memory allocation failure.
610 */
611int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612{
613 int error;
614
615 VM_BUG_ON_PAGE(!PageLocked(old), old);
616 VM_BUG_ON_PAGE(!PageLocked(new), new);
617 VM_BUG_ON_PAGE(new->mapping, new);
618
619 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
620 if (!error) {
621 struct address_space *mapping = old->mapping;
622 void (*freepage)(struct page *);
623 unsigned long flags;
624
625 pgoff_t offset = old->index;
626 freepage = mapping->a_ops->freepage;
627
628 get_page(new);
629 new->mapping = mapping;
630 new->index = offset;
631
632 spin_lock_irqsave(&mapping->tree_lock, flags);
633 __delete_from_page_cache(old, NULL);
634 error = page_cache_tree_insert(mapping, new, NULL);
635 BUG_ON(error);
636
637 /*
638 * hugetlb pages do not participate in page cache accounting.
639 */
640 if (!PageHuge(new))
641 __inc_node_page_state(new, NR_FILE_PAGES);
642 if (PageSwapBacked(new))
643 __inc_node_page_state(new, NR_SHMEM);
644 spin_unlock_irqrestore(&mapping->tree_lock, flags);
645 mem_cgroup_migrate(old, new);
646 radix_tree_preload_end();
647 if (freepage)
648 freepage(old);
649 put_page(old);
650 }
651
652 return error;
653}
654EXPORT_SYMBOL_GPL(replace_page_cache_page);
655
656static int __add_to_page_cache_locked(struct page *page,
657 struct address_space *mapping,
658 pgoff_t offset, gfp_t gfp_mask,
659 void **shadowp)
660{
661 int huge = PageHuge(page);
662 struct mem_cgroup *memcg;
663 int error;
664
665 VM_BUG_ON_PAGE(!PageLocked(page), page);
666 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
667
668 if (!huge) {
669 error = mem_cgroup_try_charge(page, current->mm,
670 gfp_mask, &memcg, false);
671 if (error)
672 return error;
673 }
674
675 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
676 if (error) {
677 if (!huge)
678 mem_cgroup_cancel_charge(page, memcg, false);
679 return error;
680 }
681
682 get_page(page);
683 page->mapping = mapping;
684 page->index = offset;
685
686 spin_lock_irq(&mapping->tree_lock);
687 error = page_cache_tree_insert(mapping, page, shadowp);
688 radix_tree_preload_end();
689 if (unlikely(error))
690 goto err_insert;
691
692 /* hugetlb pages do not participate in page cache accounting. */
693 if (!huge)
694 __inc_node_page_state(page, NR_FILE_PAGES);
695 spin_unlock_irq(&mapping->tree_lock);
696 if (!huge)
697 mem_cgroup_commit_charge(page, memcg, false, false);
698 trace_mm_filemap_add_to_page_cache(page);
699 return 0;
700err_insert:
701 page->mapping = NULL;
702 /* Leave page->index set: truncation relies upon it */
703 spin_unlock_irq(&mapping->tree_lock);
704 if (!huge)
705 mem_cgroup_cancel_charge(page, memcg, false);
706 put_page(page);
707 return error;
708}
709
710/**
711 * add_to_page_cache_locked - add a locked page to the pagecache
712 * @page: page to add
713 * @mapping: the page's address_space
714 * @offset: page index
715 * @gfp_mask: page allocation mode
716 *
717 * This function is used to add a page to the pagecache. It must be locked.
718 * This function does not add the page to the LRU. The caller must do that.
719 */
720int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721 pgoff_t offset, gfp_t gfp_mask)
722{
723 return __add_to_page_cache_locked(page, mapping, offset,
724 gfp_mask, NULL);
725}
726EXPORT_SYMBOL(add_to_page_cache_locked);
727
728int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729 pgoff_t offset, gfp_t gfp_mask)
730{
731 void *shadow = NULL;
732 int ret;
733
734 __SetPageLocked(page);
735 ret = __add_to_page_cache_locked(page, mapping, offset,
736 gfp_mask, &shadow);
737 if (unlikely(ret))
738 __ClearPageLocked(page);
739 else {
740 /*
741 * The page might have been evicted from cache only
742 * recently, in which case it should be activated like
743 * any other repeatedly accessed page.
744 * The exception is pages getting rewritten; evicting other
745 * data from the working set, only to cache data that will
746 * get overwritten with something else, is a waste of memory.
747 */
748 if (!(gfp_mask & __GFP_WRITE) &&
749 shadow && workingset_refault(shadow)) {
750 SetPageActive(page);
751 workingset_activation(page);
752 } else
753 ClearPageActive(page);
754 lru_cache_add(page);
755 }
756 return ret;
757}
758EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
759
760#ifdef CONFIG_NUMA
761struct page *__page_cache_alloc(gfp_t gfp)
762{
763 int n;
764 struct page *page;
765
766 if (cpuset_do_page_mem_spread()) {
767 unsigned int cpuset_mems_cookie;
768 do {
769 cpuset_mems_cookie = read_mems_allowed_begin();
770 n = cpuset_mem_spread_node();
771 page = __alloc_pages_node(n, gfp, 0);
772 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
773
774 return page;
775 }
776 return alloc_pages(gfp, 0);
777}
778EXPORT_SYMBOL(__page_cache_alloc);
779#endif
780
781/*
782 * In order to wait for pages to become available there must be
783 * waitqueues associated with pages. By using a hash table of
784 * waitqueues where the bucket discipline is to maintain all
785 * waiters on the same queue and wake all when any of the pages
786 * become available, and for the woken contexts to check to be
787 * sure the appropriate page became available, this saves space
788 * at a cost of "thundering herd" phenomena during rare hash
789 * collisions.
790 */
791wait_queue_head_t *page_waitqueue(struct page *page)
792{
793 const struct zone *zone = page_zone(page);
794
795 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
796}
797EXPORT_SYMBOL(page_waitqueue);
798
799void wait_on_page_bit(struct page *page, int bit_nr)
800{
801 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
802
803 if (test_bit(bit_nr, &page->flags))
804 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
805 TASK_UNINTERRUPTIBLE);
806}
807EXPORT_SYMBOL(wait_on_page_bit);
808
809int wait_on_page_bit_killable(struct page *page, int bit_nr)
810{
811 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
812
813 if (!test_bit(bit_nr, &page->flags))
814 return 0;
815
816 return __wait_on_bit(page_waitqueue(page), &wait,
817 bit_wait_io, TASK_KILLABLE);
818}
819
820int wait_on_page_bit_killable_timeout(struct page *page,
821 int bit_nr, unsigned long timeout)
822{
823 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
824
825 wait.key.timeout = jiffies + timeout;
826 if (!test_bit(bit_nr, &page->flags))
827 return 0;
828 return __wait_on_bit(page_waitqueue(page), &wait,
829 bit_wait_io_timeout, TASK_KILLABLE);
830}
831EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
832
833/**
834 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
835 * @page: Page defining the wait queue of interest
836 * @waiter: Waiter to add to the queue
837 *
838 * Add an arbitrary @waiter to the wait queue for the nominated @page.
839 */
840void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
841{
842 wait_queue_head_t *q = page_waitqueue(page);
843 unsigned long flags;
844
845 spin_lock_irqsave(&q->lock, flags);
846 __add_wait_queue(q, waiter);
847 spin_unlock_irqrestore(&q->lock, flags);
848}
849EXPORT_SYMBOL_GPL(add_page_wait_queue);
850
851/**
852 * unlock_page - unlock a locked page
853 * @page: the page
854 *
855 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
856 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
857 * mechanism between PageLocked pages and PageWriteback pages is shared.
858 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
859 *
860 * The mb is necessary to enforce ordering between the clear_bit and the read
861 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
862 */
863void unlock_page(struct page *page)
864{
865 page = compound_head(page);
866 VM_BUG_ON_PAGE(!PageLocked(page), page);
867 clear_bit_unlock(PG_locked, &page->flags);
868 smp_mb__after_atomic();
869 wake_up_page(page, PG_locked);
870}
871EXPORT_SYMBOL(unlock_page);
872
873/**
874 * end_page_writeback - end writeback against a page
875 * @page: the page
876 */
877void end_page_writeback(struct page *page)
878{
879 /*
880 * TestClearPageReclaim could be used here but it is an atomic
881 * operation and overkill in this particular case. Failing to
882 * shuffle a page marked for immediate reclaim is too mild to
883 * justify taking an atomic operation penalty at the end of
884 * ever page writeback.
885 */
886 if (PageReclaim(page)) {
887 ClearPageReclaim(page);
888 rotate_reclaimable_page(page);
889 }
890
891 if (!test_clear_page_writeback(page))
892 BUG();
893
894 smp_mb__after_atomic();
895 wake_up_page(page, PG_writeback);
896}
897EXPORT_SYMBOL(end_page_writeback);
898
899/*
900 * After completing I/O on a page, call this routine to update the page
901 * flags appropriately
902 */
903void page_endio(struct page *page, bool is_write, int err)
904{
905 if (!is_write) {
906 if (!err) {
907 SetPageUptodate(page);
908 } else {
909 ClearPageUptodate(page);
910 SetPageError(page);
911 }
912 unlock_page(page);
913 } else {
914 if (err) {
915 SetPageError(page);
916 if (page->mapping)
917 mapping_set_error(page->mapping, err);
918 }
919 end_page_writeback(page);
920 }
921}
922EXPORT_SYMBOL_GPL(page_endio);
923
924/**
925 * __lock_page - get a lock on the page, assuming we need to sleep to get it
926 * @page: the page to lock
927 */
928void __lock_page(struct page *page)
929{
930 struct page *page_head = compound_head(page);
931 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
932
933 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
934 TASK_UNINTERRUPTIBLE);
935}
936EXPORT_SYMBOL(__lock_page);
937
938int __lock_page_killable(struct page *page)
939{
940 struct page *page_head = compound_head(page);
941 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
942
943 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
944 bit_wait_io, TASK_KILLABLE);
945}
946EXPORT_SYMBOL_GPL(__lock_page_killable);
947
948/*
949 * Return values:
950 * 1 - page is locked; mmap_sem is still held.
951 * 0 - page is not locked.
952 * mmap_sem has been released (up_read()), unless flags had both
953 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
954 * which case mmap_sem is still held.
955 *
956 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
957 * with the page locked and the mmap_sem unperturbed.
958 */
959int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
960 unsigned int flags)
961{
962 if (flags & FAULT_FLAG_ALLOW_RETRY) {
963 /*
964 * CAUTION! In this case, mmap_sem is not released
965 * even though return 0.
966 */
967 if (flags & FAULT_FLAG_RETRY_NOWAIT)
968 return 0;
969
970 up_read(&mm->mmap_sem);
971 if (flags & FAULT_FLAG_KILLABLE)
972 wait_on_page_locked_killable(page);
973 else
974 wait_on_page_locked(page);
975 return 0;
976 } else {
977 if (flags & FAULT_FLAG_KILLABLE) {
978 int ret;
979
980 ret = __lock_page_killable(page);
981 if (ret) {
982 up_read(&mm->mmap_sem);
983 return 0;
984 }
985 } else
986 __lock_page(page);
987 return 1;
988 }
989}
990
991/**
992 * page_cache_next_hole - find the next hole (not-present entry)
993 * @mapping: mapping
994 * @index: index
995 * @max_scan: maximum range to search
996 *
997 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
998 * lowest indexed hole.
999 *
1000 * Returns: the index of the hole if found, otherwise returns an index
1001 * outside of the set specified (in which case 'return - index >=
1002 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1003 * be returned.
1004 *
1005 * page_cache_next_hole may be called under rcu_read_lock. However,
1006 * like radix_tree_gang_lookup, this will not atomically search a
1007 * snapshot of the tree at a single point in time. For example, if a
1008 * hole is created at index 5, then subsequently a hole is created at
1009 * index 10, page_cache_next_hole covering both indexes may return 10
1010 * if called under rcu_read_lock.
1011 */
1012pgoff_t page_cache_next_hole(struct address_space *mapping,
1013 pgoff_t index, unsigned long max_scan)
1014{
1015 unsigned long i;
1016
1017 for (i = 0; i < max_scan; i++) {
1018 struct page *page;
1019
1020 page = radix_tree_lookup(&mapping->page_tree, index);
1021 if (!page || radix_tree_exceptional_entry(page))
1022 break;
1023 index++;
1024 if (index == 0)
1025 break;
1026 }
1027
1028 return index;
1029}
1030EXPORT_SYMBOL(page_cache_next_hole);
1031
1032/**
1033 * page_cache_prev_hole - find the prev hole (not-present entry)
1034 * @mapping: mapping
1035 * @index: index
1036 * @max_scan: maximum range to search
1037 *
1038 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1039 * the first hole.
1040 *
1041 * Returns: the index of the hole if found, otherwise returns an index
1042 * outside of the set specified (in which case 'index - return >=
1043 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1044 * will be returned.
1045 *
1046 * page_cache_prev_hole may be called under rcu_read_lock. However,
1047 * like radix_tree_gang_lookup, this will not atomically search a
1048 * snapshot of the tree at a single point in time. For example, if a
1049 * hole is created at index 10, then subsequently a hole is created at
1050 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1051 * called under rcu_read_lock.
1052 */
1053pgoff_t page_cache_prev_hole(struct address_space *mapping,
1054 pgoff_t index, unsigned long max_scan)
1055{
1056 unsigned long i;
1057
1058 for (i = 0; i < max_scan; i++) {
1059 struct page *page;
1060
1061 page = radix_tree_lookup(&mapping->page_tree, index);
1062 if (!page || radix_tree_exceptional_entry(page))
1063 break;
1064 index--;
1065 if (index == ULONG_MAX)
1066 break;
1067 }
1068
1069 return index;
1070}
1071EXPORT_SYMBOL(page_cache_prev_hole);
1072
1073/**
1074 * find_get_entry - find and get a page cache entry
1075 * @mapping: the address_space to search
1076 * @offset: the page cache index
1077 *
1078 * Looks up the page cache slot at @mapping & @offset. If there is a
1079 * page cache page, it is returned with an increased refcount.
1080 *
1081 * If the slot holds a shadow entry of a previously evicted page, or a
1082 * swap entry from shmem/tmpfs, it is returned.
1083 *
1084 * Otherwise, %NULL is returned.
1085 */
1086struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1087{
1088 void **pagep;
1089 struct page *head, *page;
1090
1091 rcu_read_lock();
1092repeat:
1093 page = NULL;
1094 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1095 if (pagep) {
1096 page = radix_tree_deref_slot(pagep);
1097 if (unlikely(!page))
1098 goto out;
1099 if (radix_tree_exception(page)) {
1100 if (radix_tree_deref_retry(page))
1101 goto repeat;
1102 /*
1103 * A shadow entry of a recently evicted page,
1104 * or a swap entry from shmem/tmpfs. Return
1105 * it without attempting to raise page count.
1106 */
1107 goto out;
1108 }
1109
1110 head = compound_head(page);
1111 if (!page_cache_get_speculative(head))
1112 goto repeat;
1113
1114 /* The page was split under us? */
1115 if (compound_head(page) != head) {
1116 put_page(head);
1117 goto repeat;
1118 }
1119
1120 /*
1121 * Has the page moved?
1122 * This is part of the lockless pagecache protocol. See
1123 * include/linux/pagemap.h for details.
1124 */
1125 if (unlikely(page != *pagep)) {
1126 put_page(head);
1127 goto repeat;
1128 }
1129 }
1130out:
1131 rcu_read_unlock();
1132
1133 return page;
1134}
1135EXPORT_SYMBOL(find_get_entry);
1136
1137/**
1138 * find_lock_entry - locate, pin and lock a page cache entry
1139 * @mapping: the address_space to search
1140 * @offset: the page cache index
1141 *
1142 * Looks up the page cache slot at @mapping & @offset. If there is a
1143 * page cache page, it is returned locked and with an increased
1144 * refcount.
1145 *
1146 * If the slot holds a shadow entry of a previously evicted page, or a
1147 * swap entry from shmem/tmpfs, it is returned.
1148 *
1149 * Otherwise, %NULL is returned.
1150 *
1151 * find_lock_entry() may sleep.
1152 */
1153struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1154{
1155 struct page *page;
1156
1157repeat:
1158 page = find_get_entry(mapping, offset);
1159 if (page && !radix_tree_exception(page)) {
1160 lock_page(page);
1161 /* Has the page been truncated? */
1162 if (unlikely(page_mapping(page) != mapping)) {
1163 unlock_page(page);
1164 put_page(page);
1165 goto repeat;
1166 }
1167 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1168 }
1169 return page;
1170}
1171EXPORT_SYMBOL(find_lock_entry);
1172
1173/**
1174 * pagecache_get_page - find and get a page reference
1175 * @mapping: the address_space to search
1176 * @offset: the page index
1177 * @fgp_flags: PCG flags
1178 * @gfp_mask: gfp mask to use for the page cache data page allocation
1179 *
1180 * Looks up the page cache slot at @mapping & @offset.
1181 *
1182 * PCG flags modify how the page is returned.
1183 *
1184 * FGP_ACCESSED: the page will be marked accessed
1185 * FGP_LOCK: Page is return locked
1186 * FGP_CREAT: If page is not present then a new page is allocated using
1187 * @gfp_mask and added to the page cache and the VM's LRU
1188 * list. The page is returned locked and with an increased
1189 * refcount. Otherwise, %NULL is returned.
1190 *
1191 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1192 * if the GFP flags specified for FGP_CREAT are atomic.
1193 *
1194 * If there is a page cache page, it is returned with an increased refcount.
1195 */
1196struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1197 int fgp_flags, gfp_t gfp_mask)
1198{
1199 struct page *page;
1200
1201repeat:
1202 page = find_get_entry(mapping, offset);
1203 if (radix_tree_exceptional_entry(page))
1204 page = NULL;
1205 if (!page)
1206 goto no_page;
1207
1208 if (fgp_flags & FGP_LOCK) {
1209 if (fgp_flags & FGP_NOWAIT) {
1210 if (!trylock_page(page)) {
1211 put_page(page);
1212 return NULL;
1213 }
1214 } else {
1215 lock_page(page);
1216 }
1217
1218 /* Has the page been truncated? */
1219 if (unlikely(page->mapping != mapping)) {
1220 unlock_page(page);
1221 put_page(page);
1222 goto repeat;
1223 }
1224 VM_BUG_ON_PAGE(page->index != offset, page);
1225 }
1226
1227 if (page && (fgp_flags & FGP_ACCESSED))
1228 mark_page_accessed(page);
1229
1230no_page:
1231 if (!page && (fgp_flags & FGP_CREAT)) {
1232 int err;
1233 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1234 gfp_mask |= __GFP_WRITE;
1235 if (fgp_flags & FGP_NOFS)
1236 gfp_mask &= ~__GFP_FS;
1237
1238 page = __page_cache_alloc(gfp_mask);
1239 if (!page)
1240 return NULL;
1241
1242 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1243 fgp_flags |= FGP_LOCK;
1244
1245 /* Init accessed so avoid atomic mark_page_accessed later */
1246 if (fgp_flags & FGP_ACCESSED)
1247 __SetPageReferenced(page);
1248
1249 err = add_to_page_cache_lru(page, mapping, offset,
1250 gfp_mask & GFP_RECLAIM_MASK);
1251 if (unlikely(err)) {
1252 put_page(page);
1253 page = NULL;
1254 if (err == -EEXIST)
1255 goto repeat;
1256 }
1257 }
1258
1259 return page;
1260}
1261EXPORT_SYMBOL(pagecache_get_page);
1262
1263/**
1264 * find_get_entries - gang pagecache lookup
1265 * @mapping: The address_space to search
1266 * @start: The starting page cache index
1267 * @nr_entries: The maximum number of entries
1268 * @entries: Where the resulting entries are placed
1269 * @indices: The cache indices corresponding to the entries in @entries
1270 *
1271 * find_get_entries() will search for and return a group of up to
1272 * @nr_entries entries in the mapping. The entries are placed at
1273 * @entries. find_get_entries() takes a reference against any actual
1274 * pages it returns.
1275 *
1276 * The search returns a group of mapping-contiguous page cache entries
1277 * with ascending indexes. There may be holes in the indices due to
1278 * not-present pages.
1279 *
1280 * Any shadow entries of evicted pages, or swap entries from
1281 * shmem/tmpfs, are included in the returned array.
1282 *
1283 * find_get_entries() returns the number of pages and shadow entries
1284 * which were found.
1285 */
1286unsigned find_get_entries(struct address_space *mapping,
1287 pgoff_t start, unsigned int nr_entries,
1288 struct page **entries, pgoff_t *indices)
1289{
1290 void **slot;
1291 unsigned int ret = 0;
1292 struct radix_tree_iter iter;
1293
1294 if (!nr_entries)
1295 return 0;
1296
1297 rcu_read_lock();
1298 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1299 struct page *head, *page;
1300repeat:
1301 page = radix_tree_deref_slot(slot);
1302 if (unlikely(!page))
1303 continue;
1304 if (radix_tree_exception(page)) {
1305 if (radix_tree_deref_retry(page)) {
1306 slot = radix_tree_iter_retry(&iter);
1307 continue;
1308 }
1309 /*
1310 * A shadow entry of a recently evicted page, a swap
1311 * entry from shmem/tmpfs or a DAX entry. Return it
1312 * without attempting to raise page count.
1313 */
1314 goto export;
1315 }
1316
1317 head = compound_head(page);
1318 if (!page_cache_get_speculative(head))
1319 goto repeat;
1320
1321 /* The page was split under us? */
1322 if (compound_head(page) != head) {
1323 put_page(head);
1324 goto repeat;
1325 }
1326
1327 /* Has the page moved? */
1328 if (unlikely(page != *slot)) {
1329 put_page(head);
1330 goto repeat;
1331 }
1332export:
1333 indices[ret] = iter.index;
1334 entries[ret] = page;
1335 if (++ret == nr_entries)
1336 break;
1337 }
1338 rcu_read_unlock();
1339 return ret;
1340}
1341
1342/**
1343 * find_get_pages - gang pagecache lookup
1344 * @mapping: The address_space to search
1345 * @start: The starting page index
1346 * @nr_pages: The maximum number of pages
1347 * @pages: Where the resulting pages are placed
1348 *
1349 * find_get_pages() will search for and return a group of up to
1350 * @nr_pages pages in the mapping. The pages are placed at @pages.
1351 * find_get_pages() takes a reference against the returned pages.
1352 *
1353 * The search returns a group of mapping-contiguous pages with ascending
1354 * indexes. There may be holes in the indices due to not-present pages.
1355 *
1356 * find_get_pages() returns the number of pages which were found.
1357 */
1358unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1359 unsigned int nr_pages, struct page **pages)
1360{
1361 struct radix_tree_iter iter;
1362 void **slot;
1363 unsigned ret = 0;
1364
1365 if (unlikely(!nr_pages))
1366 return 0;
1367
1368 rcu_read_lock();
1369 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1370 struct page *head, *page;
1371repeat:
1372 page = radix_tree_deref_slot(slot);
1373 if (unlikely(!page))
1374 continue;
1375
1376 if (radix_tree_exception(page)) {
1377 if (radix_tree_deref_retry(page)) {
1378 slot = radix_tree_iter_retry(&iter);
1379 continue;
1380 }
1381 /*
1382 * A shadow entry of a recently evicted page,
1383 * or a swap entry from shmem/tmpfs. Skip
1384 * over it.
1385 */
1386 continue;
1387 }
1388
1389 head = compound_head(page);
1390 if (!page_cache_get_speculative(head))
1391 goto repeat;
1392
1393 /* The page was split under us? */
1394 if (compound_head(page) != head) {
1395 put_page(head);
1396 goto repeat;
1397 }
1398
1399 /* Has the page moved? */
1400 if (unlikely(page != *slot)) {
1401 put_page(head);
1402 goto repeat;
1403 }
1404
1405 pages[ret] = page;
1406 if (++ret == nr_pages)
1407 break;
1408 }
1409
1410 rcu_read_unlock();
1411 return ret;
1412}
1413
1414/**
1415 * find_get_pages_contig - gang contiguous pagecache lookup
1416 * @mapping: The address_space to search
1417 * @index: The starting page index
1418 * @nr_pages: The maximum number of pages
1419 * @pages: Where the resulting pages are placed
1420 *
1421 * find_get_pages_contig() works exactly like find_get_pages(), except
1422 * that the returned number of pages are guaranteed to be contiguous.
1423 *
1424 * find_get_pages_contig() returns the number of pages which were found.
1425 */
1426unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1427 unsigned int nr_pages, struct page **pages)
1428{
1429 struct radix_tree_iter iter;
1430 void **slot;
1431 unsigned int ret = 0;
1432
1433 if (unlikely(!nr_pages))
1434 return 0;
1435
1436 rcu_read_lock();
1437 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1438 struct page *head, *page;
1439repeat:
1440 page = radix_tree_deref_slot(slot);
1441 /* The hole, there no reason to continue */
1442 if (unlikely(!page))
1443 break;
1444
1445 if (radix_tree_exception(page)) {
1446 if (radix_tree_deref_retry(page)) {
1447 slot = radix_tree_iter_retry(&iter);
1448 continue;
1449 }
1450 /*
1451 * A shadow entry of a recently evicted page,
1452 * or a swap entry from shmem/tmpfs. Stop
1453 * looking for contiguous pages.
1454 */
1455 break;
1456 }
1457
1458 head = compound_head(page);
1459 if (!page_cache_get_speculative(head))
1460 goto repeat;
1461
1462 /* The page was split under us? */
1463 if (compound_head(page) != head) {
1464 put_page(head);
1465 goto repeat;
1466 }
1467
1468 /* Has the page moved? */
1469 if (unlikely(page != *slot)) {
1470 put_page(head);
1471 goto repeat;
1472 }
1473
1474 /*
1475 * must check mapping and index after taking the ref.
1476 * otherwise we can get both false positives and false
1477 * negatives, which is just confusing to the caller.
1478 */
1479 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1480 put_page(page);
1481 break;
1482 }
1483
1484 pages[ret] = page;
1485 if (++ret == nr_pages)
1486 break;
1487 }
1488 rcu_read_unlock();
1489 return ret;
1490}
1491EXPORT_SYMBOL(find_get_pages_contig);
1492
1493/**
1494 * find_get_pages_tag - find and return pages that match @tag
1495 * @mapping: the address_space to search
1496 * @index: the starting page index
1497 * @tag: the tag index
1498 * @nr_pages: the maximum number of pages
1499 * @pages: where the resulting pages are placed
1500 *
1501 * Like find_get_pages, except we only return pages which are tagged with
1502 * @tag. We update @index to index the next page for the traversal.
1503 */
1504unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1505 int tag, unsigned int nr_pages, struct page **pages)
1506{
1507 struct radix_tree_iter iter;
1508 void **slot;
1509 unsigned ret = 0;
1510
1511 if (unlikely(!nr_pages))
1512 return 0;
1513
1514 rcu_read_lock();
1515 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1516 &iter, *index, tag) {
1517 struct page *head, *page;
1518repeat:
1519 page = radix_tree_deref_slot(slot);
1520 if (unlikely(!page))
1521 continue;
1522
1523 if (radix_tree_exception(page)) {
1524 if (radix_tree_deref_retry(page)) {
1525 slot = radix_tree_iter_retry(&iter);
1526 continue;
1527 }
1528 /*
1529 * A shadow entry of a recently evicted page.
1530 *
1531 * Those entries should never be tagged, but
1532 * this tree walk is lockless and the tags are
1533 * looked up in bulk, one radix tree node at a
1534 * time, so there is a sizable window for page
1535 * reclaim to evict a page we saw tagged.
1536 *
1537 * Skip over it.
1538 */
1539 continue;
1540 }
1541
1542 head = compound_head(page);
1543 if (!page_cache_get_speculative(head))
1544 goto repeat;
1545
1546 /* The page was split under us? */
1547 if (compound_head(page) != head) {
1548 put_page(head);
1549 goto repeat;
1550 }
1551
1552 /* Has the page moved? */
1553 if (unlikely(page != *slot)) {
1554 put_page(head);
1555 goto repeat;
1556 }
1557
1558 pages[ret] = page;
1559 if (++ret == nr_pages)
1560 break;
1561 }
1562
1563 rcu_read_unlock();
1564
1565 if (ret)
1566 *index = pages[ret - 1]->index + 1;
1567
1568 return ret;
1569}
1570EXPORT_SYMBOL(find_get_pages_tag);
1571
1572/**
1573 * find_get_entries_tag - find and return entries that match @tag
1574 * @mapping: the address_space to search
1575 * @start: the starting page cache index
1576 * @tag: the tag index
1577 * @nr_entries: the maximum number of entries
1578 * @entries: where the resulting entries are placed
1579 * @indices: the cache indices corresponding to the entries in @entries
1580 *
1581 * Like find_get_entries, except we only return entries which are tagged with
1582 * @tag.
1583 */
1584unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1585 int tag, unsigned int nr_entries,
1586 struct page **entries, pgoff_t *indices)
1587{
1588 void **slot;
1589 unsigned int ret = 0;
1590 struct radix_tree_iter iter;
1591
1592 if (!nr_entries)
1593 return 0;
1594
1595 rcu_read_lock();
1596 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1597 &iter, start, tag) {
1598 struct page *head, *page;
1599repeat:
1600 page = radix_tree_deref_slot(slot);
1601 if (unlikely(!page))
1602 continue;
1603 if (radix_tree_exception(page)) {
1604 if (radix_tree_deref_retry(page)) {
1605 slot = radix_tree_iter_retry(&iter);
1606 continue;
1607 }
1608
1609 /*
1610 * A shadow entry of a recently evicted page, a swap
1611 * entry from shmem/tmpfs or a DAX entry. Return it
1612 * without attempting to raise page count.
1613 */
1614 goto export;
1615 }
1616
1617 head = compound_head(page);
1618 if (!page_cache_get_speculative(head))
1619 goto repeat;
1620
1621 /* The page was split under us? */
1622 if (compound_head(page) != head) {
1623 put_page(head);
1624 goto repeat;
1625 }
1626
1627 /* Has the page moved? */
1628 if (unlikely(page != *slot)) {
1629 put_page(head);
1630 goto repeat;
1631 }
1632export:
1633 indices[ret] = iter.index;
1634 entries[ret] = page;
1635 if (++ret == nr_entries)
1636 break;
1637 }
1638 rcu_read_unlock();
1639 return ret;
1640}
1641EXPORT_SYMBOL(find_get_entries_tag);
1642
1643/*
1644 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1645 * a _large_ part of the i/o request. Imagine the worst scenario:
1646 *
1647 * ---R__________________________________________B__________
1648 * ^ reading here ^ bad block(assume 4k)
1649 *
1650 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1651 * => failing the whole request => read(R) => read(R+1) =>
1652 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1653 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1654 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1655 *
1656 * It is going insane. Fix it by quickly scaling down the readahead size.
1657 */
1658static void shrink_readahead_size_eio(struct file *filp,
1659 struct file_ra_state *ra)
1660{
1661 ra->ra_pages /= 4;
1662}
1663
1664/**
1665 * do_generic_file_read - generic file read routine
1666 * @filp: the file to read
1667 * @ppos: current file position
1668 * @iter: data destination
1669 * @written: already copied
1670 *
1671 * This is a generic file read routine, and uses the
1672 * mapping->a_ops->readpage() function for the actual low-level stuff.
1673 *
1674 * This is really ugly. But the goto's actually try to clarify some
1675 * of the logic when it comes to error handling etc.
1676 */
1677static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1678 struct iov_iter *iter, ssize_t written)
1679{
1680 struct address_space *mapping = filp->f_mapping;
1681 struct inode *inode = mapping->host;
1682 struct file_ra_state *ra = &filp->f_ra;
1683 pgoff_t index;
1684 pgoff_t last_index;
1685 pgoff_t prev_index;
1686 unsigned long offset; /* offset into pagecache page */
1687 unsigned int prev_offset;
1688 int error = 0;
1689
1690 index = *ppos >> PAGE_SHIFT;
1691 prev_index = ra->prev_pos >> PAGE_SHIFT;
1692 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1693 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1694 offset = *ppos & ~PAGE_MASK;
1695
1696 for (;;) {
1697 struct page *page;
1698 pgoff_t end_index;
1699 loff_t isize;
1700 unsigned long nr, ret;
1701
1702 cond_resched();
1703find_page:
1704 page = find_get_page(mapping, index);
1705 if (!page) {
1706 page_cache_sync_readahead(mapping,
1707 ra, filp,
1708 index, last_index - index);
1709 page = find_get_page(mapping, index);
1710 if (unlikely(page == NULL))
1711 goto no_cached_page;
1712 }
1713 if (PageReadahead(page)) {
1714 page_cache_async_readahead(mapping,
1715 ra, filp, page,
1716 index, last_index - index);
1717 }
1718 if (!PageUptodate(page)) {
1719 /*
1720 * See comment in do_read_cache_page on why
1721 * wait_on_page_locked is used to avoid unnecessarily
1722 * serialisations and why it's safe.
1723 */
1724 error = wait_on_page_locked_killable(page);
1725 if (unlikely(error))
1726 goto readpage_error;
1727 if (PageUptodate(page))
1728 goto page_ok;
1729
1730 if (inode->i_blkbits == PAGE_SHIFT ||
1731 !mapping->a_ops->is_partially_uptodate)
1732 goto page_not_up_to_date;
1733 if (!trylock_page(page))
1734 goto page_not_up_to_date;
1735 /* Did it get truncated before we got the lock? */
1736 if (!page->mapping)
1737 goto page_not_up_to_date_locked;
1738 if (!mapping->a_ops->is_partially_uptodate(page,
1739 offset, iter->count))
1740 goto page_not_up_to_date_locked;
1741 unlock_page(page);
1742 }
1743page_ok:
1744 /*
1745 * i_size must be checked after we know the page is Uptodate.
1746 *
1747 * Checking i_size after the check allows us to calculate
1748 * the correct value for "nr", which means the zero-filled
1749 * part of the page is not copied back to userspace (unless
1750 * another truncate extends the file - this is desired though).
1751 */
1752
1753 isize = i_size_read(inode);
1754 end_index = (isize - 1) >> PAGE_SHIFT;
1755 if (unlikely(!isize || index > end_index)) {
1756 put_page(page);
1757 goto out;
1758 }
1759
1760 /* nr is the maximum number of bytes to copy from this page */
1761 nr = PAGE_SIZE;
1762 if (index == end_index) {
1763 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1764 if (nr <= offset) {
1765 put_page(page);
1766 goto out;
1767 }
1768 }
1769 nr = nr - offset;
1770
1771 /* If users can be writing to this page using arbitrary
1772 * virtual addresses, take care about potential aliasing
1773 * before reading the page on the kernel side.
1774 */
1775 if (mapping_writably_mapped(mapping))
1776 flush_dcache_page(page);
1777
1778 /*
1779 * When a sequential read accesses a page several times,
1780 * only mark it as accessed the first time.
1781 */
1782 if (prev_index != index || offset != prev_offset)
1783 mark_page_accessed(page);
1784 prev_index = index;
1785
1786 /*
1787 * Ok, we have the page, and it's up-to-date, so
1788 * now we can copy it to user space...
1789 */
1790
1791 ret = copy_page_to_iter(page, offset, nr, iter);
1792 offset += ret;
1793 index += offset >> PAGE_SHIFT;
1794 offset &= ~PAGE_MASK;
1795 prev_offset = offset;
1796
1797 put_page(page);
1798 written += ret;
1799 if (!iov_iter_count(iter))
1800 goto out;
1801 if (ret < nr) {
1802 error = -EFAULT;
1803 goto out;
1804 }
1805 continue;
1806
1807page_not_up_to_date:
1808 /* Get exclusive access to the page ... */
1809 error = lock_page_killable(page);
1810 if (unlikely(error))
1811 goto readpage_error;
1812
1813page_not_up_to_date_locked:
1814 /* Did it get truncated before we got the lock? */
1815 if (!page->mapping) {
1816 unlock_page(page);
1817 put_page(page);
1818 continue;
1819 }
1820
1821 /* Did somebody else fill it already? */
1822 if (PageUptodate(page)) {
1823 unlock_page(page);
1824 goto page_ok;
1825 }
1826
1827readpage:
1828 /*
1829 * A previous I/O error may have been due to temporary
1830 * failures, eg. multipath errors.
1831 * PG_error will be set again if readpage fails.
1832 */
1833 ClearPageError(page);
1834 /* Start the actual read. The read will unlock the page. */
1835 error = mapping->a_ops->readpage(filp, page);
1836
1837 if (unlikely(error)) {
1838 if (error == AOP_TRUNCATED_PAGE) {
1839 put_page(page);
1840 error = 0;
1841 goto find_page;
1842 }
1843 goto readpage_error;
1844 }
1845
1846 if (!PageUptodate(page)) {
1847 error = lock_page_killable(page);
1848 if (unlikely(error))
1849 goto readpage_error;
1850 if (!PageUptodate(page)) {
1851 if (page->mapping == NULL) {
1852 /*
1853 * invalidate_mapping_pages got it
1854 */
1855 unlock_page(page);
1856 put_page(page);
1857 goto find_page;
1858 }
1859 unlock_page(page);
1860 shrink_readahead_size_eio(filp, ra);
1861 error = -EIO;
1862 goto readpage_error;
1863 }
1864 unlock_page(page);
1865 }
1866
1867 goto page_ok;
1868
1869readpage_error:
1870 /* UHHUH! A synchronous read error occurred. Report it */
1871 put_page(page);
1872 goto out;
1873
1874no_cached_page:
1875 /*
1876 * Ok, it wasn't cached, so we need to create a new
1877 * page..
1878 */
1879 page = page_cache_alloc_cold(mapping);
1880 if (!page) {
1881 error = -ENOMEM;
1882 goto out;
1883 }
1884 error = add_to_page_cache_lru(page, mapping, index,
1885 mapping_gfp_constraint(mapping, GFP_KERNEL));
1886 if (error) {
1887 put_page(page);
1888 if (error == -EEXIST) {
1889 error = 0;
1890 goto find_page;
1891 }
1892 goto out;
1893 }
1894 goto readpage;
1895 }
1896
1897out:
1898 ra->prev_pos = prev_index;
1899 ra->prev_pos <<= PAGE_SHIFT;
1900 ra->prev_pos |= prev_offset;
1901
1902 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1903 file_accessed(filp);
1904 return written ? written : error;
1905}
1906
1907/**
1908 * generic_file_read_iter - generic filesystem read routine
1909 * @iocb: kernel I/O control block
1910 * @iter: destination for the data read
1911 *
1912 * This is the "read_iter()" routine for all filesystems
1913 * that can use the page cache directly.
1914 */
1915ssize_t
1916generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1917{
1918 struct file *file = iocb->ki_filp;
1919 ssize_t retval = 0;
1920 size_t count = iov_iter_count(iter);
1921
1922 if (!count)
1923 goto out; /* skip atime */
1924
1925 if (iocb->ki_flags & IOCB_DIRECT) {
1926 struct address_space *mapping = file->f_mapping;
1927 struct inode *inode = mapping->host;
1928 struct iov_iter data = *iter;
1929 loff_t size;
1930
1931 size = i_size_read(inode);
1932 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1933 iocb->ki_pos + count - 1);
1934 if (retval < 0)
1935 goto out;
1936
1937 file_accessed(file);
1938
1939 retval = mapping->a_ops->direct_IO(iocb, &data);
1940 if (retval > 0) {
1941 iocb->ki_pos += retval;
1942 iov_iter_advance(iter, retval);
1943 }
1944
1945 /*
1946 * Btrfs can have a short DIO read if we encounter
1947 * compressed extents, so if there was an error, or if
1948 * we've already read everything we wanted to, or if
1949 * there was a short read because we hit EOF, go ahead
1950 * and return. Otherwise fallthrough to buffered io for
1951 * the rest of the read. Buffered reads will not work for
1952 * DAX files, so don't bother trying.
1953 */
1954 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1955 IS_DAX(inode))
1956 goto out;
1957 }
1958
1959 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1960out:
1961 return retval;
1962}
1963EXPORT_SYMBOL(generic_file_read_iter);
1964
1965#ifdef CONFIG_MMU
1966/**
1967 * page_cache_read - adds requested page to the page cache if not already there
1968 * @file: file to read
1969 * @offset: page index
1970 * @gfp_mask: memory allocation flags
1971 *
1972 * This adds the requested page to the page cache if it isn't already there,
1973 * and schedules an I/O to read in its contents from disk.
1974 */
1975static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1976{
1977 struct address_space *mapping = file->f_mapping;
1978 struct page *page;
1979 int ret;
1980
1981 do {
1982 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1983 if (!page)
1984 return -ENOMEM;
1985
1986 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1987 if (ret == 0)
1988 ret = mapping->a_ops->readpage(file, page);
1989 else if (ret == -EEXIST)
1990 ret = 0; /* losing race to add is OK */
1991
1992 put_page(page);
1993
1994 } while (ret == AOP_TRUNCATED_PAGE);
1995
1996 return ret;
1997}
1998
1999#define MMAP_LOTSAMISS (100)
2000
2001/*
2002 * Synchronous readahead happens when we don't even find
2003 * a page in the page cache at all.
2004 */
2005static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2006 struct file_ra_state *ra,
2007 struct file *file,
2008 pgoff_t offset)
2009{
2010 struct address_space *mapping = file->f_mapping;
2011
2012 /* If we don't want any read-ahead, don't bother */
2013 if (vma->vm_flags & VM_RAND_READ)
2014 return;
2015 if (!ra->ra_pages)
2016 return;
2017
2018 if (vma->vm_flags & VM_SEQ_READ) {
2019 page_cache_sync_readahead(mapping, ra, file, offset,
2020 ra->ra_pages);
2021 return;
2022 }
2023
2024 /* Avoid banging the cache line if not needed */
2025 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2026 ra->mmap_miss++;
2027
2028 /*
2029 * Do we miss much more than hit in this file? If so,
2030 * stop bothering with read-ahead. It will only hurt.
2031 */
2032 if (ra->mmap_miss > MMAP_LOTSAMISS)
2033 return;
2034
2035 /*
2036 * mmap read-around
2037 */
2038 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2039 ra->size = ra->ra_pages;
2040 ra->async_size = ra->ra_pages / 4;
2041 ra_submit(ra, mapping, file);
2042}
2043
2044/*
2045 * Asynchronous readahead happens when we find the page and PG_readahead,
2046 * so we want to possibly extend the readahead further..
2047 */
2048static void do_async_mmap_readahead(struct vm_area_struct *vma,
2049 struct file_ra_state *ra,
2050 struct file *file,
2051 struct page *page,
2052 pgoff_t offset)
2053{
2054 struct address_space *mapping = file->f_mapping;
2055
2056 /* If we don't want any read-ahead, don't bother */
2057 if (vma->vm_flags & VM_RAND_READ)
2058 return;
2059 if (ra->mmap_miss > 0)
2060 ra->mmap_miss--;
2061 if (PageReadahead(page))
2062 page_cache_async_readahead(mapping, ra, file,
2063 page, offset, ra->ra_pages);
2064}
2065
2066/**
2067 * filemap_fault - read in file data for page fault handling
2068 * @vma: vma in which the fault was taken
2069 * @vmf: struct vm_fault containing details of the fault
2070 *
2071 * filemap_fault() is invoked via the vma operations vector for a
2072 * mapped memory region to read in file data during a page fault.
2073 *
2074 * The goto's are kind of ugly, but this streamlines the normal case of having
2075 * it in the page cache, and handles the special cases reasonably without
2076 * having a lot of duplicated code.
2077 *
2078 * vma->vm_mm->mmap_sem must be held on entry.
2079 *
2080 * If our return value has VM_FAULT_RETRY set, it's because
2081 * lock_page_or_retry() returned 0.
2082 * The mmap_sem has usually been released in this case.
2083 * See __lock_page_or_retry() for the exception.
2084 *
2085 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2086 * has not been released.
2087 *
2088 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2089 */
2090int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2091{
2092 int error;
2093 struct file *file = vma->vm_file;
2094 struct address_space *mapping = file->f_mapping;
2095 struct file_ra_state *ra = &file->f_ra;
2096 struct inode *inode = mapping->host;
2097 pgoff_t offset = vmf->pgoff;
2098 struct page *page;
2099 loff_t size;
2100 int ret = 0;
2101
2102 size = round_up(i_size_read(inode), PAGE_SIZE);
2103 if (offset >= size >> PAGE_SHIFT)
2104 return VM_FAULT_SIGBUS;
2105
2106 /*
2107 * Do we have something in the page cache already?
2108 */
2109 page = find_get_page(mapping, offset);
2110 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2111 /*
2112 * We found the page, so try async readahead before
2113 * waiting for the lock.
2114 */
2115 do_async_mmap_readahead(vma, ra, file, page, offset);
2116 } else if (!page) {
2117 /* No page in the page cache at all */
2118 do_sync_mmap_readahead(vma, ra, file, offset);
2119 count_vm_event(PGMAJFAULT);
2120 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2121 ret = VM_FAULT_MAJOR;
2122retry_find:
2123 page = find_get_page(mapping, offset);
2124 if (!page)
2125 goto no_cached_page;
2126 }
2127
2128 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2129 put_page(page);
2130 return ret | VM_FAULT_RETRY;
2131 }
2132
2133 /* Did it get truncated? */
2134 if (unlikely(page->mapping != mapping)) {
2135 unlock_page(page);
2136 put_page(page);
2137 goto retry_find;
2138 }
2139 VM_BUG_ON_PAGE(page->index != offset, page);
2140
2141 /*
2142 * We have a locked page in the page cache, now we need to check
2143 * that it's up-to-date. If not, it is going to be due to an error.
2144 */
2145 if (unlikely(!PageUptodate(page)))
2146 goto page_not_uptodate;
2147
2148 /*
2149 * Found the page and have a reference on it.
2150 * We must recheck i_size under page lock.
2151 */
2152 size = round_up(i_size_read(inode), PAGE_SIZE);
2153 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2154 unlock_page(page);
2155 put_page(page);
2156 return VM_FAULT_SIGBUS;
2157 }
2158
2159 vmf->page = page;
2160 return ret | VM_FAULT_LOCKED;
2161
2162no_cached_page:
2163 /*
2164 * We're only likely to ever get here if MADV_RANDOM is in
2165 * effect.
2166 */
2167 error = page_cache_read(file, offset, vmf->gfp_mask);
2168
2169 /*
2170 * The page we want has now been added to the page cache.
2171 * In the unlikely event that someone removed it in the
2172 * meantime, we'll just come back here and read it again.
2173 */
2174 if (error >= 0)
2175 goto retry_find;
2176
2177 /*
2178 * An error return from page_cache_read can result if the
2179 * system is low on memory, or a problem occurs while trying
2180 * to schedule I/O.
2181 */
2182 if (error == -ENOMEM)
2183 return VM_FAULT_OOM;
2184 return VM_FAULT_SIGBUS;
2185
2186page_not_uptodate:
2187 /*
2188 * Umm, take care of errors if the page isn't up-to-date.
2189 * Try to re-read it _once_. We do this synchronously,
2190 * because there really aren't any performance issues here
2191 * and we need to check for errors.
2192 */
2193 ClearPageError(page);
2194 error = mapping->a_ops->readpage(file, page);
2195 if (!error) {
2196 wait_on_page_locked(page);
2197 if (!PageUptodate(page))
2198 error = -EIO;
2199 }
2200 put_page(page);
2201
2202 if (!error || error == AOP_TRUNCATED_PAGE)
2203 goto retry_find;
2204
2205 /* Things didn't work out. Return zero to tell the mm layer so. */
2206 shrink_readahead_size_eio(file, ra);
2207 return VM_FAULT_SIGBUS;
2208}
2209EXPORT_SYMBOL(filemap_fault);
2210
2211void filemap_map_pages(struct fault_env *fe,
2212 pgoff_t start_pgoff, pgoff_t end_pgoff)
2213{
2214 struct radix_tree_iter iter;
2215 void **slot;
2216 struct file *file = fe->vma->vm_file;
2217 struct address_space *mapping = file->f_mapping;
2218 pgoff_t last_pgoff = start_pgoff;
2219 loff_t size;
2220 struct page *head, *page;
2221
2222 rcu_read_lock();
2223 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2224 start_pgoff) {
2225 if (iter.index > end_pgoff)
2226 break;
2227repeat:
2228 page = radix_tree_deref_slot(slot);
2229 if (unlikely(!page))
2230 goto next;
2231 if (radix_tree_exception(page)) {
2232 if (radix_tree_deref_retry(page)) {
2233 slot = radix_tree_iter_retry(&iter);
2234 continue;
2235 }
2236 goto next;
2237 }
2238
2239 head = compound_head(page);
2240 if (!page_cache_get_speculative(head))
2241 goto repeat;
2242
2243 /* The page was split under us? */
2244 if (compound_head(page) != head) {
2245 put_page(head);
2246 goto repeat;
2247 }
2248
2249 /* Has the page moved? */
2250 if (unlikely(page != *slot)) {
2251 put_page(head);
2252 goto repeat;
2253 }
2254
2255 if (!PageUptodate(page) ||
2256 PageReadahead(page) ||
2257 PageHWPoison(page))
2258 goto skip;
2259 if (!trylock_page(page))
2260 goto skip;
2261
2262 if (page->mapping != mapping || !PageUptodate(page))
2263 goto unlock;
2264
2265 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2266 if (page->index >= size >> PAGE_SHIFT)
2267 goto unlock;
2268
2269 if (file->f_ra.mmap_miss > 0)
2270 file->f_ra.mmap_miss--;
2271
2272 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2273 if (fe->pte)
2274 fe->pte += iter.index - last_pgoff;
2275 last_pgoff = iter.index;
2276 if (alloc_set_pte(fe, NULL, page))
2277 goto unlock;
2278 unlock_page(page);
2279 goto next;
2280unlock:
2281 unlock_page(page);
2282skip:
2283 put_page(page);
2284next:
2285 /* Huge page is mapped? No need to proceed. */
2286 if (pmd_trans_huge(*fe->pmd))
2287 break;
2288 if (iter.index == end_pgoff)
2289 break;
2290 }
2291 rcu_read_unlock();
2292}
2293EXPORT_SYMBOL(filemap_map_pages);
2294
2295int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2296{
2297 struct page *page = vmf->page;
2298 struct inode *inode = file_inode(vma->vm_file);
2299 int ret = VM_FAULT_LOCKED;
2300
2301 sb_start_pagefault(inode->i_sb);
2302 file_update_time(vma->vm_file);
2303 lock_page(page);
2304 if (page->mapping != inode->i_mapping) {
2305 unlock_page(page);
2306 ret = VM_FAULT_NOPAGE;
2307 goto out;
2308 }
2309 /*
2310 * We mark the page dirty already here so that when freeze is in
2311 * progress, we are guaranteed that writeback during freezing will
2312 * see the dirty page and writeprotect it again.
2313 */
2314 set_page_dirty(page);
2315 wait_for_stable_page(page);
2316out:
2317 sb_end_pagefault(inode->i_sb);
2318 return ret;
2319}
2320EXPORT_SYMBOL(filemap_page_mkwrite);
2321
2322const struct vm_operations_struct generic_file_vm_ops = {
2323 .fault = filemap_fault,
2324 .map_pages = filemap_map_pages,
2325 .page_mkwrite = filemap_page_mkwrite,
2326};
2327
2328/* This is used for a general mmap of a disk file */
2329
2330int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2331{
2332 struct address_space *mapping = file->f_mapping;
2333
2334 if (!mapping->a_ops->readpage)
2335 return -ENOEXEC;
2336 file_accessed(file);
2337 vma->vm_ops = &generic_file_vm_ops;
2338 return 0;
2339}
2340
2341/*
2342 * This is for filesystems which do not implement ->writepage.
2343 */
2344int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2345{
2346 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2347 return -EINVAL;
2348 return generic_file_mmap(file, vma);
2349}
2350#else
2351int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2352{
2353 return -ENOSYS;
2354}
2355int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2356{
2357 return -ENOSYS;
2358}
2359#endif /* CONFIG_MMU */
2360
2361EXPORT_SYMBOL(generic_file_mmap);
2362EXPORT_SYMBOL(generic_file_readonly_mmap);
2363
2364static struct page *wait_on_page_read(struct page *page)
2365{
2366 if (!IS_ERR(page)) {
2367 wait_on_page_locked(page);
2368 if (!PageUptodate(page)) {
2369 put_page(page);
2370 page = ERR_PTR(-EIO);
2371 }
2372 }
2373 return page;
2374}
2375
2376static struct page *do_read_cache_page(struct address_space *mapping,
2377 pgoff_t index,
2378 int (*filler)(void *, struct page *),
2379 void *data,
2380 gfp_t gfp)
2381{
2382 struct page *page;
2383 int err;
2384repeat:
2385 page = find_get_page(mapping, index);
2386 if (!page) {
2387 page = __page_cache_alloc(gfp | __GFP_COLD);
2388 if (!page)
2389 return ERR_PTR(-ENOMEM);
2390 err = add_to_page_cache_lru(page, mapping, index, gfp);
2391 if (unlikely(err)) {
2392 put_page(page);
2393 if (err == -EEXIST)
2394 goto repeat;
2395 /* Presumably ENOMEM for radix tree node */
2396 return ERR_PTR(err);
2397 }
2398
2399filler:
2400 err = filler(data, page);
2401 if (err < 0) {
2402 put_page(page);
2403 return ERR_PTR(err);
2404 }
2405
2406 page = wait_on_page_read(page);
2407 if (IS_ERR(page))
2408 return page;
2409 goto out;
2410 }
2411 if (PageUptodate(page))
2412 goto out;
2413
2414 /*
2415 * Page is not up to date and may be locked due one of the following
2416 * case a: Page is being filled and the page lock is held
2417 * case b: Read/write error clearing the page uptodate status
2418 * case c: Truncation in progress (page locked)
2419 * case d: Reclaim in progress
2420 *
2421 * Case a, the page will be up to date when the page is unlocked.
2422 * There is no need to serialise on the page lock here as the page
2423 * is pinned so the lock gives no additional protection. Even if the
2424 * the page is truncated, the data is still valid if PageUptodate as
2425 * it's a race vs truncate race.
2426 * Case b, the page will not be up to date
2427 * Case c, the page may be truncated but in itself, the data may still
2428 * be valid after IO completes as it's a read vs truncate race. The
2429 * operation must restart if the page is not uptodate on unlock but
2430 * otherwise serialising on page lock to stabilise the mapping gives
2431 * no additional guarantees to the caller as the page lock is
2432 * released before return.
2433 * Case d, similar to truncation. If reclaim holds the page lock, it
2434 * will be a race with remove_mapping that determines if the mapping
2435 * is valid on unlock but otherwise the data is valid and there is
2436 * no need to serialise with page lock.
2437 *
2438 * As the page lock gives no additional guarantee, we optimistically
2439 * wait on the page to be unlocked and check if it's up to date and
2440 * use the page if it is. Otherwise, the page lock is required to
2441 * distinguish between the different cases. The motivation is that we
2442 * avoid spurious serialisations and wakeups when multiple processes
2443 * wait on the same page for IO to complete.
2444 */
2445 wait_on_page_locked(page);
2446 if (PageUptodate(page))
2447 goto out;
2448
2449 /* Distinguish between all the cases under the safety of the lock */
2450 lock_page(page);
2451
2452 /* Case c or d, restart the operation */
2453 if (!page->mapping) {
2454 unlock_page(page);
2455 put_page(page);
2456 goto repeat;
2457 }
2458
2459 /* Someone else locked and filled the page in a very small window */
2460 if (PageUptodate(page)) {
2461 unlock_page(page);
2462 goto out;
2463 }
2464 goto filler;
2465
2466out:
2467 mark_page_accessed(page);
2468 return page;
2469}
2470
2471/**
2472 * read_cache_page - read into page cache, fill it if needed
2473 * @mapping: the page's address_space
2474 * @index: the page index
2475 * @filler: function to perform the read
2476 * @data: first arg to filler(data, page) function, often left as NULL
2477 *
2478 * Read into the page cache. If a page already exists, and PageUptodate() is
2479 * not set, try to fill the page and wait for it to become unlocked.
2480 *
2481 * If the page does not get brought uptodate, return -EIO.
2482 */
2483struct page *read_cache_page(struct address_space *mapping,
2484 pgoff_t index,
2485 int (*filler)(void *, struct page *),
2486 void *data)
2487{
2488 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2489}
2490EXPORT_SYMBOL(read_cache_page);
2491
2492/**
2493 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2494 * @mapping: the page's address_space
2495 * @index: the page index
2496 * @gfp: the page allocator flags to use if allocating
2497 *
2498 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2499 * any new page allocations done using the specified allocation flags.
2500 *
2501 * If the page does not get brought uptodate, return -EIO.
2502 */
2503struct page *read_cache_page_gfp(struct address_space *mapping,
2504 pgoff_t index,
2505 gfp_t gfp)
2506{
2507 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2508
2509 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2510}
2511EXPORT_SYMBOL(read_cache_page_gfp);
2512
2513/*
2514 * Performs necessary checks before doing a write
2515 *
2516 * Can adjust writing position or amount of bytes to write.
2517 * Returns appropriate error code that caller should return or
2518 * zero in case that write should be allowed.
2519 */
2520inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2521{
2522 struct file *file = iocb->ki_filp;
2523 struct inode *inode = file->f_mapping->host;
2524 unsigned long limit = rlimit(RLIMIT_FSIZE);
2525 loff_t pos;
2526
2527 if (!iov_iter_count(from))
2528 return 0;
2529
2530 /* FIXME: this is for backwards compatibility with 2.4 */
2531 if (iocb->ki_flags & IOCB_APPEND)
2532 iocb->ki_pos = i_size_read(inode);
2533
2534 pos = iocb->ki_pos;
2535
2536 if (limit != RLIM_INFINITY) {
2537 if (iocb->ki_pos >= limit) {
2538 send_sig(SIGXFSZ, current, 0);
2539 return -EFBIG;
2540 }
2541 iov_iter_truncate(from, limit - (unsigned long)pos);
2542 }
2543
2544 /*
2545 * LFS rule
2546 */
2547 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2548 !(file->f_flags & O_LARGEFILE))) {
2549 if (pos >= MAX_NON_LFS)
2550 return -EFBIG;
2551 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2552 }
2553
2554 /*
2555 * Are we about to exceed the fs block limit ?
2556 *
2557 * If we have written data it becomes a short write. If we have
2558 * exceeded without writing data we send a signal and return EFBIG.
2559 * Linus frestrict idea will clean these up nicely..
2560 */
2561 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2562 return -EFBIG;
2563
2564 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2565 return iov_iter_count(from);
2566}
2567EXPORT_SYMBOL(generic_write_checks);
2568
2569int pagecache_write_begin(struct file *file, struct address_space *mapping,
2570 loff_t pos, unsigned len, unsigned flags,
2571 struct page **pagep, void **fsdata)
2572{
2573 const struct address_space_operations *aops = mapping->a_ops;
2574
2575 return aops->write_begin(file, mapping, pos, len, flags,
2576 pagep, fsdata);
2577}
2578EXPORT_SYMBOL(pagecache_write_begin);
2579
2580int pagecache_write_end(struct file *file, struct address_space *mapping,
2581 loff_t pos, unsigned len, unsigned copied,
2582 struct page *page, void *fsdata)
2583{
2584 const struct address_space_operations *aops = mapping->a_ops;
2585
2586 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2587}
2588EXPORT_SYMBOL(pagecache_write_end);
2589
2590ssize_t
2591generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2592{
2593 struct file *file = iocb->ki_filp;
2594 struct address_space *mapping = file->f_mapping;
2595 struct inode *inode = mapping->host;
2596 loff_t pos = iocb->ki_pos;
2597 ssize_t written;
2598 size_t write_len;
2599 pgoff_t end;
2600 struct iov_iter data;
2601
2602 write_len = iov_iter_count(from);
2603 end = (pos + write_len - 1) >> PAGE_SHIFT;
2604
2605 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2606 if (written)
2607 goto out;
2608
2609 /*
2610 * After a write we want buffered reads to be sure to go to disk to get
2611 * the new data. We invalidate clean cached page from the region we're
2612 * about to write. We do this *before* the write so that we can return
2613 * without clobbering -EIOCBQUEUED from ->direct_IO().
2614 */
2615 if (mapping->nrpages) {
2616 written = invalidate_inode_pages2_range(mapping,
2617 pos >> PAGE_SHIFT, end);
2618 /*
2619 * If a page can not be invalidated, return 0 to fall back
2620 * to buffered write.
2621 */
2622 if (written) {
2623 if (written == -EBUSY)
2624 return 0;
2625 goto out;
2626 }
2627 }
2628
2629 data = *from;
2630 written = mapping->a_ops->direct_IO(iocb, &data);
2631
2632 /*
2633 * Finally, try again to invalidate clean pages which might have been
2634 * cached by non-direct readahead, or faulted in by get_user_pages()
2635 * if the source of the write was an mmap'ed region of the file
2636 * we're writing. Either one is a pretty crazy thing to do,
2637 * so we don't support it 100%. If this invalidation
2638 * fails, tough, the write still worked...
2639 */
2640 if (mapping->nrpages) {
2641 invalidate_inode_pages2_range(mapping,
2642 pos >> PAGE_SHIFT, end);
2643 }
2644
2645 if (written > 0) {
2646 pos += written;
2647 iov_iter_advance(from, written);
2648 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2649 i_size_write(inode, pos);
2650 mark_inode_dirty(inode);
2651 }
2652 iocb->ki_pos = pos;
2653 }
2654out:
2655 return written;
2656}
2657EXPORT_SYMBOL(generic_file_direct_write);
2658
2659/*
2660 * Find or create a page at the given pagecache position. Return the locked
2661 * page. This function is specifically for buffered writes.
2662 */
2663struct page *grab_cache_page_write_begin(struct address_space *mapping,
2664 pgoff_t index, unsigned flags)
2665{
2666 struct page *page;
2667 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2668
2669 if (flags & AOP_FLAG_NOFS)
2670 fgp_flags |= FGP_NOFS;
2671
2672 page = pagecache_get_page(mapping, index, fgp_flags,
2673 mapping_gfp_mask(mapping));
2674 if (page)
2675 wait_for_stable_page(page);
2676
2677 return page;
2678}
2679EXPORT_SYMBOL(grab_cache_page_write_begin);
2680
2681ssize_t generic_perform_write(struct file *file,
2682 struct iov_iter *i, loff_t pos)
2683{
2684 struct address_space *mapping = file->f_mapping;
2685 const struct address_space_operations *a_ops = mapping->a_ops;
2686 long status = 0;
2687 ssize_t written = 0;
2688 unsigned int flags = 0;
2689
2690 /*
2691 * Copies from kernel address space cannot fail (NFSD is a big user).
2692 */
2693 if (!iter_is_iovec(i))
2694 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2695
2696 do {
2697 struct page *page;
2698 unsigned long offset; /* Offset into pagecache page */
2699 unsigned long bytes; /* Bytes to write to page */
2700 size_t copied; /* Bytes copied from user */
2701 void *fsdata;
2702
2703 offset = (pos & (PAGE_SIZE - 1));
2704 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2705 iov_iter_count(i));
2706
2707again:
2708 /*
2709 * Bring in the user page that we will copy from _first_.
2710 * Otherwise there's a nasty deadlock on copying from the
2711 * same page as we're writing to, without it being marked
2712 * up-to-date.
2713 *
2714 * Not only is this an optimisation, but it is also required
2715 * to check that the address is actually valid, when atomic
2716 * usercopies are used, below.
2717 */
2718 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2719 status = -EFAULT;
2720 break;
2721 }
2722
2723 if (fatal_signal_pending(current)) {
2724 status = -EINTR;
2725 break;
2726 }
2727
2728 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2729 &page, &fsdata);
2730 if (unlikely(status < 0))
2731 break;
2732
2733 if (mapping_writably_mapped(mapping))
2734 flush_dcache_page(page);
2735
2736 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2737 flush_dcache_page(page);
2738
2739 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2740 page, fsdata);
2741 if (unlikely(status < 0))
2742 break;
2743 copied = status;
2744
2745 cond_resched();
2746
2747 iov_iter_advance(i, copied);
2748 if (unlikely(copied == 0)) {
2749 /*
2750 * If we were unable to copy any data at all, we must
2751 * fall back to a single segment length write.
2752 *
2753 * If we didn't fallback here, we could livelock
2754 * because not all segments in the iov can be copied at
2755 * once without a pagefault.
2756 */
2757 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2758 iov_iter_single_seg_count(i));
2759 goto again;
2760 }
2761 pos += copied;
2762 written += copied;
2763
2764 balance_dirty_pages_ratelimited(mapping);
2765 } while (iov_iter_count(i));
2766
2767 return written ? written : status;
2768}
2769EXPORT_SYMBOL(generic_perform_write);
2770
2771/**
2772 * __generic_file_write_iter - write data to a file
2773 * @iocb: IO state structure (file, offset, etc.)
2774 * @from: iov_iter with data to write
2775 *
2776 * This function does all the work needed for actually writing data to a
2777 * file. It does all basic checks, removes SUID from the file, updates
2778 * modification times and calls proper subroutines depending on whether we
2779 * do direct IO or a standard buffered write.
2780 *
2781 * It expects i_mutex to be grabbed unless we work on a block device or similar
2782 * object which does not need locking at all.
2783 *
2784 * This function does *not* take care of syncing data in case of O_SYNC write.
2785 * A caller has to handle it. This is mainly due to the fact that we want to
2786 * avoid syncing under i_mutex.
2787 */
2788ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2789{
2790 struct file *file = iocb->ki_filp;
2791 struct address_space * mapping = file->f_mapping;
2792 struct inode *inode = mapping->host;
2793 ssize_t written = 0;
2794 ssize_t err;
2795 ssize_t status;
2796
2797 /* We can write back this queue in page reclaim */
2798 current->backing_dev_info = inode_to_bdi(inode);
2799 err = file_remove_privs(file);
2800 if (err)
2801 goto out;
2802
2803 err = file_update_time(file);
2804 if (err)
2805 goto out;
2806
2807 if (iocb->ki_flags & IOCB_DIRECT) {
2808 loff_t pos, endbyte;
2809
2810 written = generic_file_direct_write(iocb, from);
2811 /*
2812 * If the write stopped short of completing, fall back to
2813 * buffered writes. Some filesystems do this for writes to
2814 * holes, for example. For DAX files, a buffered write will
2815 * not succeed (even if it did, DAX does not handle dirty
2816 * page-cache pages correctly).
2817 */
2818 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2819 goto out;
2820
2821 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2822 /*
2823 * If generic_perform_write() returned a synchronous error
2824 * then we want to return the number of bytes which were
2825 * direct-written, or the error code if that was zero. Note
2826 * that this differs from normal direct-io semantics, which
2827 * will return -EFOO even if some bytes were written.
2828 */
2829 if (unlikely(status < 0)) {
2830 err = status;
2831 goto out;
2832 }
2833 /*
2834 * We need to ensure that the page cache pages are written to
2835 * disk and invalidated to preserve the expected O_DIRECT
2836 * semantics.
2837 */
2838 endbyte = pos + status - 1;
2839 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2840 if (err == 0) {
2841 iocb->ki_pos = endbyte + 1;
2842 written += status;
2843 invalidate_mapping_pages(mapping,
2844 pos >> PAGE_SHIFT,
2845 endbyte >> PAGE_SHIFT);
2846 } else {
2847 /*
2848 * We don't know how much we wrote, so just return
2849 * the number of bytes which were direct-written
2850 */
2851 }
2852 } else {
2853 written = generic_perform_write(file, from, iocb->ki_pos);
2854 if (likely(written > 0))
2855 iocb->ki_pos += written;
2856 }
2857out:
2858 current->backing_dev_info = NULL;
2859 return written ? written : err;
2860}
2861EXPORT_SYMBOL(__generic_file_write_iter);
2862
2863/**
2864 * generic_file_write_iter - write data to a file
2865 * @iocb: IO state structure
2866 * @from: iov_iter with data to write
2867 *
2868 * This is a wrapper around __generic_file_write_iter() to be used by most
2869 * filesystems. It takes care of syncing the file in case of O_SYNC file
2870 * and acquires i_mutex as needed.
2871 */
2872ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2873{
2874 struct file *file = iocb->ki_filp;
2875 struct inode *inode = file->f_mapping->host;
2876 ssize_t ret;
2877
2878 inode_lock(inode);
2879 ret = generic_write_checks(iocb, from);
2880 if (ret > 0)
2881 ret = __generic_file_write_iter(iocb, from);
2882 inode_unlock(inode);
2883
2884 if (ret > 0)
2885 ret = generic_write_sync(iocb, ret);
2886 return ret;
2887}
2888EXPORT_SYMBOL(generic_file_write_iter);
2889
2890/**
2891 * try_to_release_page() - release old fs-specific metadata on a page
2892 *
2893 * @page: the page which the kernel is trying to free
2894 * @gfp_mask: memory allocation flags (and I/O mode)
2895 *
2896 * The address_space is to try to release any data against the page
2897 * (presumably at page->private). If the release was successful, return `1'.
2898 * Otherwise return zero.
2899 *
2900 * This may also be called if PG_fscache is set on a page, indicating that the
2901 * page is known to the local caching routines.
2902 *
2903 * The @gfp_mask argument specifies whether I/O may be performed to release
2904 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2905 *
2906 */
2907int try_to_release_page(struct page *page, gfp_t gfp_mask)
2908{
2909 struct address_space * const mapping = page->mapping;
2910
2911 BUG_ON(!PageLocked(page));
2912 if (PageWriteback(page))
2913 return 0;
2914
2915 if (mapping && mapping->a_ops->releasepage)
2916 return mapping->a_ops->releasepage(page, gfp_mask);
2917 return try_to_free_buffers(page);
2918}
2919
2920EXPORT_SYMBOL(try_to_release_page);