Merge tag 'sound-6.10-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-2.6-block.git] / mm / compaction.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11#include <linux/cpu.h>
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
16#include <linux/sched/signal.h>
17#include <linux/backing-dev.h>
18#include <linux/sysctl.h>
19#include <linux/sysfs.h>
20#include <linux/page-isolation.h>
21#include <linux/kasan.h>
22#include <linux/kthread.h>
23#include <linux/freezer.h>
24#include <linux/page_owner.h>
25#include <linux/psi.h>
26#include "internal.h"
27
28#ifdef CONFIG_COMPACTION
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43
44/*
45 * order == -1 is expected when compacting proactively via
46 * 1. /proc/sys/vm/compact_memory
47 * 2. /sys/devices/system/node/nodex/compact
48 * 3. /proc/sys/vm/compaction_proactiveness
49 */
50static inline bool is_via_compact_memory(int order)
51{
52 return order == -1;
53}
54
55#else
56#define count_compact_event(item) do { } while (0)
57#define count_compact_events(item, delta) do { } while (0)
58static inline bool is_via_compact_memory(int order) { return false; }
59#endif
60
61#if defined CONFIG_COMPACTION || defined CONFIG_CMA
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/compaction.h>
65
66#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
67#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
68
69/*
70 * Page order with-respect-to which proactive compaction
71 * calculates external fragmentation, which is used as
72 * the "fragmentation score" of a node/zone.
73 */
74#if defined CONFIG_TRANSPARENT_HUGEPAGE
75#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
76#elif defined CONFIG_HUGETLBFS
77#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
78#else
79#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
80#endif
81
82static void split_map_pages(struct list_head *freepages)
83{
84 unsigned int i, order;
85 struct page *page, *next;
86 LIST_HEAD(tmp_list);
87
88 for (order = 0; order < NR_PAGE_ORDERS; order++) {
89 list_for_each_entry_safe(page, next, &freepages[order], lru) {
90 unsigned int nr_pages;
91
92 list_del(&page->lru);
93
94 nr_pages = 1 << order;
95
96 post_alloc_hook(page, order, __GFP_MOVABLE);
97 if (order)
98 split_page(page, order);
99
100 for (i = 0; i < nr_pages; i++) {
101 list_add(&page->lru, &tmp_list);
102 page++;
103 }
104 }
105 list_splice_init(&tmp_list, &freepages[0]);
106 }
107}
108
109static unsigned long release_free_list(struct list_head *freepages)
110{
111 int order;
112 unsigned long high_pfn = 0;
113
114 for (order = 0; order < NR_PAGE_ORDERS; order++) {
115 struct page *page, *next;
116
117 list_for_each_entry_safe(page, next, &freepages[order], lru) {
118 unsigned long pfn = page_to_pfn(page);
119
120 list_del(&page->lru);
121 /*
122 * Convert free pages into post allocation pages, so
123 * that we can free them via __free_page.
124 */
125 post_alloc_hook(page, order, __GFP_MOVABLE);
126 __free_pages(page, order);
127 if (pfn > high_pfn)
128 high_pfn = pfn;
129 }
130 }
131 return high_pfn;
132}
133
134#ifdef CONFIG_COMPACTION
135bool PageMovable(struct page *page)
136{
137 const struct movable_operations *mops;
138
139 VM_BUG_ON_PAGE(!PageLocked(page), page);
140 if (!__PageMovable(page))
141 return false;
142
143 mops = page_movable_ops(page);
144 if (mops)
145 return true;
146
147 return false;
148}
149
150void __SetPageMovable(struct page *page, const struct movable_operations *mops)
151{
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
154 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
155}
156EXPORT_SYMBOL(__SetPageMovable);
157
158void __ClearPageMovable(struct page *page)
159{
160 VM_BUG_ON_PAGE(!PageMovable(page), page);
161 /*
162 * This page still has the type of a movable page, but it's
163 * actually not movable any more.
164 */
165 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
166}
167EXPORT_SYMBOL(__ClearPageMovable);
168
169/* Do not skip compaction more than 64 times */
170#define COMPACT_MAX_DEFER_SHIFT 6
171
172/*
173 * Compaction is deferred when compaction fails to result in a page
174 * allocation success. 1 << compact_defer_shift, compactions are skipped up
175 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
176 */
177static void defer_compaction(struct zone *zone, int order)
178{
179 zone->compact_considered = 0;
180 zone->compact_defer_shift++;
181
182 if (order < zone->compact_order_failed)
183 zone->compact_order_failed = order;
184
185 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
186 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
187
188 trace_mm_compaction_defer_compaction(zone, order);
189}
190
191/* Returns true if compaction should be skipped this time */
192static bool compaction_deferred(struct zone *zone, int order)
193{
194 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
195
196 if (order < zone->compact_order_failed)
197 return false;
198
199 /* Avoid possible overflow */
200 if (++zone->compact_considered >= defer_limit) {
201 zone->compact_considered = defer_limit;
202 return false;
203 }
204
205 trace_mm_compaction_deferred(zone, order);
206
207 return true;
208}
209
210/*
211 * Update defer tracking counters after successful compaction of given order,
212 * which means an allocation either succeeded (alloc_success == true) or is
213 * expected to succeed.
214 */
215void compaction_defer_reset(struct zone *zone, int order,
216 bool alloc_success)
217{
218 if (alloc_success) {
219 zone->compact_considered = 0;
220 zone->compact_defer_shift = 0;
221 }
222 if (order >= zone->compact_order_failed)
223 zone->compact_order_failed = order + 1;
224
225 trace_mm_compaction_defer_reset(zone, order);
226}
227
228/* Returns true if restarting compaction after many failures */
229static bool compaction_restarting(struct zone *zone, int order)
230{
231 if (order < zone->compact_order_failed)
232 return false;
233
234 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
235 zone->compact_considered >= 1UL << zone->compact_defer_shift;
236}
237
238/* Returns true if the pageblock should be scanned for pages to isolate. */
239static inline bool isolation_suitable(struct compact_control *cc,
240 struct page *page)
241{
242 if (cc->ignore_skip_hint)
243 return true;
244
245 return !get_pageblock_skip(page);
246}
247
248static void reset_cached_positions(struct zone *zone)
249{
250 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
251 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
252 zone->compact_cached_free_pfn =
253 pageblock_start_pfn(zone_end_pfn(zone) - 1);
254}
255
256#ifdef CONFIG_SPARSEMEM
257/*
258 * If the PFN falls into an offline section, return the start PFN of the
259 * next online section. If the PFN falls into an online section or if
260 * there is no next online section, return 0.
261 */
262static unsigned long skip_offline_sections(unsigned long start_pfn)
263{
264 unsigned long start_nr = pfn_to_section_nr(start_pfn);
265
266 if (online_section_nr(start_nr))
267 return 0;
268
269 while (++start_nr <= __highest_present_section_nr) {
270 if (online_section_nr(start_nr))
271 return section_nr_to_pfn(start_nr);
272 }
273
274 return 0;
275}
276
277/*
278 * If the PFN falls into an offline section, return the end PFN of the
279 * next online section in reverse. If the PFN falls into an online section
280 * or if there is no next online section in reverse, return 0.
281 */
282static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
283{
284 unsigned long start_nr = pfn_to_section_nr(start_pfn);
285
286 if (!start_nr || online_section_nr(start_nr))
287 return 0;
288
289 while (start_nr-- > 0) {
290 if (online_section_nr(start_nr))
291 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
292 }
293
294 return 0;
295}
296#else
297static unsigned long skip_offline_sections(unsigned long start_pfn)
298{
299 return 0;
300}
301
302static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
303{
304 return 0;
305}
306#endif
307
308/*
309 * Compound pages of >= pageblock_order should consistently be skipped until
310 * released. It is always pointless to compact pages of such order (if they are
311 * migratable), and the pageblocks they occupy cannot contain any free pages.
312 */
313static bool pageblock_skip_persistent(struct page *page)
314{
315 if (!PageCompound(page))
316 return false;
317
318 page = compound_head(page);
319
320 if (compound_order(page) >= pageblock_order)
321 return true;
322
323 return false;
324}
325
326static bool
327__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
328 bool check_target)
329{
330 struct page *page = pfn_to_online_page(pfn);
331 struct page *block_page;
332 struct page *end_page;
333 unsigned long block_pfn;
334
335 if (!page)
336 return false;
337 if (zone != page_zone(page))
338 return false;
339 if (pageblock_skip_persistent(page))
340 return false;
341
342 /*
343 * If skip is already cleared do no further checking once the
344 * restart points have been set.
345 */
346 if (check_source && check_target && !get_pageblock_skip(page))
347 return true;
348
349 /*
350 * If clearing skip for the target scanner, do not select a
351 * non-movable pageblock as the starting point.
352 */
353 if (!check_source && check_target &&
354 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
355 return false;
356
357 /* Ensure the start of the pageblock or zone is online and valid */
358 block_pfn = pageblock_start_pfn(pfn);
359 block_pfn = max(block_pfn, zone->zone_start_pfn);
360 block_page = pfn_to_online_page(block_pfn);
361 if (block_page) {
362 page = block_page;
363 pfn = block_pfn;
364 }
365
366 /* Ensure the end of the pageblock or zone is online and valid */
367 block_pfn = pageblock_end_pfn(pfn) - 1;
368 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
369 end_page = pfn_to_online_page(block_pfn);
370 if (!end_page)
371 return false;
372
373 /*
374 * Only clear the hint if a sample indicates there is either a
375 * free page or an LRU page in the block. One or other condition
376 * is necessary for the block to be a migration source/target.
377 */
378 do {
379 if (check_source && PageLRU(page)) {
380 clear_pageblock_skip(page);
381 return true;
382 }
383
384 if (check_target && PageBuddy(page)) {
385 clear_pageblock_skip(page);
386 return true;
387 }
388
389 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
390 } while (page <= end_page);
391
392 return false;
393}
394
395/*
396 * This function is called to clear all cached information on pageblocks that
397 * should be skipped for page isolation when the migrate and free page scanner
398 * meet.
399 */
400static void __reset_isolation_suitable(struct zone *zone)
401{
402 unsigned long migrate_pfn = zone->zone_start_pfn;
403 unsigned long free_pfn = zone_end_pfn(zone) - 1;
404 unsigned long reset_migrate = free_pfn;
405 unsigned long reset_free = migrate_pfn;
406 bool source_set = false;
407 bool free_set = false;
408
409 /* Only flush if a full compaction finished recently */
410 if (!zone->compact_blockskip_flush)
411 return;
412
413 zone->compact_blockskip_flush = false;
414
415 /*
416 * Walk the zone and update pageblock skip information. Source looks
417 * for PageLRU while target looks for PageBuddy. When the scanner
418 * is found, both PageBuddy and PageLRU are checked as the pageblock
419 * is suitable as both source and target.
420 */
421 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
422 free_pfn -= pageblock_nr_pages) {
423 cond_resched();
424
425 /* Update the migrate PFN */
426 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
427 migrate_pfn < reset_migrate) {
428 source_set = true;
429 reset_migrate = migrate_pfn;
430 zone->compact_init_migrate_pfn = reset_migrate;
431 zone->compact_cached_migrate_pfn[0] = reset_migrate;
432 zone->compact_cached_migrate_pfn[1] = reset_migrate;
433 }
434
435 /* Update the free PFN */
436 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
437 free_pfn > reset_free) {
438 free_set = true;
439 reset_free = free_pfn;
440 zone->compact_init_free_pfn = reset_free;
441 zone->compact_cached_free_pfn = reset_free;
442 }
443 }
444
445 /* Leave no distance if no suitable block was reset */
446 if (reset_migrate >= reset_free) {
447 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
448 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
449 zone->compact_cached_free_pfn = free_pfn;
450 }
451}
452
453void reset_isolation_suitable(pg_data_t *pgdat)
454{
455 int zoneid;
456
457 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
458 struct zone *zone = &pgdat->node_zones[zoneid];
459 if (!populated_zone(zone))
460 continue;
461
462 __reset_isolation_suitable(zone);
463 }
464}
465
466/*
467 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
468 * locks are not required for read/writers. Returns true if it was already set.
469 */
470static bool test_and_set_skip(struct compact_control *cc, struct page *page)
471{
472 bool skip;
473
474 /* Do not update if skip hint is being ignored */
475 if (cc->ignore_skip_hint)
476 return false;
477
478 skip = get_pageblock_skip(page);
479 if (!skip && !cc->no_set_skip_hint)
480 set_pageblock_skip(page);
481
482 return skip;
483}
484
485static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
486{
487 struct zone *zone = cc->zone;
488
489 /* Set for isolation rather than compaction */
490 if (cc->no_set_skip_hint)
491 return;
492
493 pfn = pageblock_end_pfn(pfn);
494
495 /* Update where async and sync compaction should restart */
496 if (pfn > zone->compact_cached_migrate_pfn[0])
497 zone->compact_cached_migrate_pfn[0] = pfn;
498 if (cc->mode != MIGRATE_ASYNC &&
499 pfn > zone->compact_cached_migrate_pfn[1])
500 zone->compact_cached_migrate_pfn[1] = pfn;
501}
502
503/*
504 * If no pages were isolated then mark this pageblock to be skipped in the
505 * future. The information is later cleared by __reset_isolation_suitable().
506 */
507static void update_pageblock_skip(struct compact_control *cc,
508 struct page *page, unsigned long pfn)
509{
510 struct zone *zone = cc->zone;
511
512 if (cc->no_set_skip_hint)
513 return;
514
515 set_pageblock_skip(page);
516
517 if (pfn < zone->compact_cached_free_pfn)
518 zone->compact_cached_free_pfn = pfn;
519}
520#else
521static inline bool isolation_suitable(struct compact_control *cc,
522 struct page *page)
523{
524 return true;
525}
526
527static inline bool pageblock_skip_persistent(struct page *page)
528{
529 return false;
530}
531
532static inline void update_pageblock_skip(struct compact_control *cc,
533 struct page *page, unsigned long pfn)
534{
535}
536
537static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
538{
539}
540
541static bool test_and_set_skip(struct compact_control *cc, struct page *page)
542{
543 return false;
544}
545#endif /* CONFIG_COMPACTION */
546
547/*
548 * Compaction requires the taking of some coarse locks that are potentially
549 * very heavily contended. For async compaction, trylock and record if the
550 * lock is contended. The lock will still be acquired but compaction will
551 * abort when the current block is finished regardless of success rate.
552 * Sync compaction acquires the lock.
553 *
554 * Always returns true which makes it easier to track lock state in callers.
555 */
556static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
557 struct compact_control *cc)
558 __acquires(lock)
559{
560 /* Track if the lock is contended in async mode */
561 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
562 if (spin_trylock_irqsave(lock, *flags))
563 return true;
564
565 cc->contended = true;
566 }
567
568 spin_lock_irqsave(lock, *flags);
569 return true;
570}
571
572/*
573 * Compaction requires the taking of some coarse locks that are potentially
574 * very heavily contended. The lock should be periodically unlocked to avoid
575 * having disabled IRQs for a long time, even when there is nobody waiting on
576 * the lock. It might also be that allowing the IRQs will result in
577 * need_resched() becoming true. If scheduling is needed, compaction schedules.
578 * Either compaction type will also abort if a fatal signal is pending.
579 * In either case if the lock was locked, it is dropped and not regained.
580 *
581 * Returns true if compaction should abort due to fatal signal pending.
582 * Returns false when compaction can continue.
583 */
584static bool compact_unlock_should_abort(spinlock_t *lock,
585 unsigned long flags, bool *locked, struct compact_control *cc)
586{
587 if (*locked) {
588 spin_unlock_irqrestore(lock, flags);
589 *locked = false;
590 }
591
592 if (fatal_signal_pending(current)) {
593 cc->contended = true;
594 return true;
595 }
596
597 cond_resched();
598
599 return false;
600}
601
602/*
603 * Isolate free pages onto a private freelist. If @strict is true, will abort
604 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
605 * (even though it may still end up isolating some pages).
606 */
607static unsigned long isolate_freepages_block(struct compact_control *cc,
608 unsigned long *start_pfn,
609 unsigned long end_pfn,
610 struct list_head *freelist,
611 unsigned int stride,
612 bool strict)
613{
614 int nr_scanned = 0, total_isolated = 0;
615 struct page *page;
616 unsigned long flags = 0;
617 bool locked = false;
618 unsigned long blockpfn = *start_pfn;
619 unsigned int order;
620
621 /* Strict mode is for isolation, speed is secondary */
622 if (strict)
623 stride = 1;
624
625 page = pfn_to_page(blockpfn);
626
627 /* Isolate free pages. */
628 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
629 int isolated;
630
631 /*
632 * Periodically drop the lock (if held) regardless of its
633 * contention, to give chance to IRQs. Abort if fatal signal
634 * pending.
635 */
636 if (!(blockpfn % COMPACT_CLUSTER_MAX)
637 && compact_unlock_should_abort(&cc->zone->lock, flags,
638 &locked, cc))
639 break;
640
641 nr_scanned++;
642
643 /*
644 * For compound pages such as THP and hugetlbfs, we can save
645 * potentially a lot of iterations if we skip them at once.
646 * The check is racy, but we can consider only valid values
647 * and the only danger is skipping too much.
648 */
649 if (PageCompound(page)) {
650 const unsigned int order = compound_order(page);
651
652 if (blockpfn + (1UL << order) <= end_pfn) {
653 blockpfn += (1UL << order) - 1;
654 page += (1UL << order) - 1;
655 nr_scanned += (1UL << order) - 1;
656 }
657
658 goto isolate_fail;
659 }
660
661 if (!PageBuddy(page))
662 goto isolate_fail;
663
664 /* If we already hold the lock, we can skip some rechecking. */
665 if (!locked) {
666 locked = compact_lock_irqsave(&cc->zone->lock,
667 &flags, cc);
668
669 /* Recheck this is a buddy page under lock */
670 if (!PageBuddy(page))
671 goto isolate_fail;
672 }
673
674 /* Found a free page, will break it into order-0 pages */
675 order = buddy_order(page);
676 isolated = __isolate_free_page(page, order);
677 if (!isolated)
678 break;
679 set_page_private(page, order);
680
681 nr_scanned += isolated - 1;
682 total_isolated += isolated;
683 cc->nr_freepages += isolated;
684 list_add_tail(&page->lru, &freelist[order]);
685
686 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
687 blockpfn += isolated;
688 break;
689 }
690 /* Advance to the end of split page */
691 blockpfn += isolated - 1;
692 page += isolated - 1;
693 continue;
694
695isolate_fail:
696 if (strict)
697 break;
698
699 }
700
701 if (locked)
702 spin_unlock_irqrestore(&cc->zone->lock, flags);
703
704 /*
705 * Be careful to not go outside of the pageblock.
706 */
707 if (unlikely(blockpfn > end_pfn))
708 blockpfn = end_pfn;
709
710 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
711 nr_scanned, total_isolated);
712
713 /* Record how far we have got within the block */
714 *start_pfn = blockpfn;
715
716 /*
717 * If strict isolation is requested by CMA then check that all the
718 * pages requested were isolated. If there were any failures, 0 is
719 * returned and CMA will fail.
720 */
721 if (strict && blockpfn < end_pfn)
722 total_isolated = 0;
723
724 cc->total_free_scanned += nr_scanned;
725 if (total_isolated)
726 count_compact_events(COMPACTISOLATED, total_isolated);
727 return total_isolated;
728}
729
730/**
731 * isolate_freepages_range() - isolate free pages.
732 * @cc: Compaction control structure.
733 * @start_pfn: The first PFN to start isolating.
734 * @end_pfn: The one-past-last PFN.
735 *
736 * Non-free pages, invalid PFNs, or zone boundaries within the
737 * [start_pfn, end_pfn) range are considered errors, cause function to
738 * undo its actions and return zero.
739 *
740 * Otherwise, function returns one-past-the-last PFN of isolated page
741 * (which may be greater then end_pfn if end fell in a middle of
742 * a free page).
743 */
744unsigned long
745isolate_freepages_range(struct compact_control *cc,
746 unsigned long start_pfn, unsigned long end_pfn)
747{
748 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
749 int order;
750 struct list_head tmp_freepages[NR_PAGE_ORDERS];
751
752 for (order = 0; order < NR_PAGE_ORDERS; order++)
753 INIT_LIST_HEAD(&tmp_freepages[order]);
754
755 pfn = start_pfn;
756 block_start_pfn = pageblock_start_pfn(pfn);
757 if (block_start_pfn < cc->zone->zone_start_pfn)
758 block_start_pfn = cc->zone->zone_start_pfn;
759 block_end_pfn = pageblock_end_pfn(pfn);
760
761 for (; pfn < end_pfn; pfn += isolated,
762 block_start_pfn = block_end_pfn,
763 block_end_pfn += pageblock_nr_pages) {
764 /* Protect pfn from changing by isolate_freepages_block */
765 unsigned long isolate_start_pfn = pfn;
766
767 /*
768 * pfn could pass the block_end_pfn if isolated freepage
769 * is more than pageblock order. In this case, we adjust
770 * scanning range to right one.
771 */
772 if (pfn >= block_end_pfn) {
773 block_start_pfn = pageblock_start_pfn(pfn);
774 block_end_pfn = pageblock_end_pfn(pfn);
775 }
776
777 block_end_pfn = min(block_end_pfn, end_pfn);
778
779 if (!pageblock_pfn_to_page(block_start_pfn,
780 block_end_pfn, cc->zone))
781 break;
782
783 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
784 block_end_pfn, tmp_freepages, 0, true);
785
786 /*
787 * In strict mode, isolate_freepages_block() returns 0 if
788 * there are any holes in the block (ie. invalid PFNs or
789 * non-free pages).
790 */
791 if (!isolated)
792 break;
793
794 /*
795 * If we managed to isolate pages, it is always (1 << n) *
796 * pageblock_nr_pages for some non-negative n. (Max order
797 * page may span two pageblocks).
798 */
799 }
800
801 if (pfn < end_pfn) {
802 /* Loop terminated early, cleanup. */
803 release_free_list(tmp_freepages);
804 return 0;
805 }
806
807 /* __isolate_free_page() does not map the pages */
808 split_map_pages(tmp_freepages);
809
810 /* We don't use freelists for anything. */
811 return pfn;
812}
813
814/* Similar to reclaim, but different enough that they don't share logic */
815static bool too_many_isolated(struct compact_control *cc)
816{
817 pg_data_t *pgdat = cc->zone->zone_pgdat;
818 bool too_many;
819
820 unsigned long active, inactive, isolated;
821
822 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
823 node_page_state(pgdat, NR_INACTIVE_ANON);
824 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
825 node_page_state(pgdat, NR_ACTIVE_ANON);
826 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
827 node_page_state(pgdat, NR_ISOLATED_ANON);
828
829 /*
830 * Allow GFP_NOFS to isolate past the limit set for regular
831 * compaction runs. This prevents an ABBA deadlock when other
832 * compactors have already isolated to the limit, but are
833 * blocked on filesystem locks held by the GFP_NOFS thread.
834 */
835 if (cc->gfp_mask & __GFP_FS) {
836 inactive >>= 3;
837 active >>= 3;
838 }
839
840 too_many = isolated > (inactive + active) / 2;
841 if (!too_many)
842 wake_throttle_isolated(pgdat);
843
844 return too_many;
845}
846
847/**
848 * skip_isolation_on_order() - determine when to skip folio isolation based on
849 * folio order and compaction target order
850 * @order: to-be-isolated folio order
851 * @target_order: compaction target order
852 *
853 * This avoids unnecessary folio isolations during compaction.
854 */
855static bool skip_isolation_on_order(int order, int target_order)
856{
857 /*
858 * Unless we are performing global compaction (i.e.,
859 * is_via_compact_memory), skip any folios that are larger than the
860 * target order: we wouldn't be here if we'd have a free folio with
861 * the desired target_order, so migrating this folio would likely fail
862 * later.
863 */
864 if (!is_via_compact_memory(target_order) && order >= target_order)
865 return true;
866 /*
867 * We limit memory compaction to pageblocks and won't try
868 * creating free blocks of memory that are larger than that.
869 */
870 return order >= pageblock_order;
871}
872
873/**
874 * isolate_migratepages_block() - isolate all migrate-able pages within
875 * a single pageblock
876 * @cc: Compaction control structure.
877 * @low_pfn: The first PFN to isolate
878 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
879 * @mode: Isolation mode to be used.
880 *
881 * Isolate all pages that can be migrated from the range specified by
882 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
883 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
884 * -ENOMEM in case we could not allocate a page, or 0.
885 * cc->migrate_pfn will contain the next pfn to scan.
886 *
887 * The pages are isolated on cc->migratepages list (not required to be empty),
888 * and cc->nr_migratepages is updated accordingly.
889 */
890static int
891isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
892 unsigned long end_pfn, isolate_mode_t mode)
893{
894 pg_data_t *pgdat = cc->zone->zone_pgdat;
895 unsigned long nr_scanned = 0, nr_isolated = 0;
896 struct lruvec *lruvec;
897 unsigned long flags = 0;
898 struct lruvec *locked = NULL;
899 struct folio *folio = NULL;
900 struct page *page = NULL, *valid_page = NULL;
901 struct address_space *mapping;
902 unsigned long start_pfn = low_pfn;
903 bool skip_on_failure = false;
904 unsigned long next_skip_pfn = 0;
905 bool skip_updated = false;
906 int ret = 0;
907
908 cc->migrate_pfn = low_pfn;
909
910 /*
911 * Ensure that there are not too many pages isolated from the LRU
912 * list by either parallel reclaimers or compaction. If there are,
913 * delay for some time until fewer pages are isolated
914 */
915 while (unlikely(too_many_isolated(cc))) {
916 /* stop isolation if there are still pages not migrated */
917 if (cc->nr_migratepages)
918 return -EAGAIN;
919
920 /* async migration should just abort */
921 if (cc->mode == MIGRATE_ASYNC)
922 return -EAGAIN;
923
924 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
925
926 if (fatal_signal_pending(current))
927 return -EINTR;
928 }
929
930 cond_resched();
931
932 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
933 skip_on_failure = true;
934 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
935 }
936
937 /* Time to isolate some pages for migration */
938 for (; low_pfn < end_pfn; low_pfn++) {
939 bool is_dirty, is_unevictable;
940
941 if (skip_on_failure && low_pfn >= next_skip_pfn) {
942 /*
943 * We have isolated all migration candidates in the
944 * previous order-aligned block, and did not skip it due
945 * to failure. We should migrate the pages now and
946 * hopefully succeed compaction.
947 */
948 if (nr_isolated)
949 break;
950
951 /*
952 * We failed to isolate in the previous order-aligned
953 * block. Set the new boundary to the end of the
954 * current block. Note we can't simply increase
955 * next_skip_pfn by 1 << order, as low_pfn might have
956 * been incremented by a higher number due to skipping
957 * a compound or a high-order buddy page in the
958 * previous loop iteration.
959 */
960 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
961 }
962
963 /*
964 * Periodically drop the lock (if held) regardless of its
965 * contention, to give chance to IRQs. Abort completely if
966 * a fatal signal is pending.
967 */
968 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
969 if (locked) {
970 unlock_page_lruvec_irqrestore(locked, flags);
971 locked = NULL;
972 }
973
974 if (fatal_signal_pending(current)) {
975 cc->contended = true;
976 ret = -EINTR;
977
978 goto fatal_pending;
979 }
980
981 cond_resched();
982 }
983
984 nr_scanned++;
985
986 page = pfn_to_page(low_pfn);
987
988 /*
989 * Check if the pageblock has already been marked skipped.
990 * Only the first PFN is checked as the caller isolates
991 * COMPACT_CLUSTER_MAX at a time so the second call must
992 * not falsely conclude that the block should be skipped.
993 */
994 if (!valid_page && (pageblock_aligned(low_pfn) ||
995 low_pfn == cc->zone->zone_start_pfn)) {
996 if (!isolation_suitable(cc, page)) {
997 low_pfn = end_pfn;
998 folio = NULL;
999 goto isolate_abort;
1000 }
1001 valid_page = page;
1002 }
1003
1004 if (PageHuge(page)) {
1005 /*
1006 * skip hugetlbfs if we are not compacting for pages
1007 * bigger than its order. THPs and other compound pages
1008 * are handled below.
1009 */
1010 if (!cc->alloc_contig) {
1011 const unsigned int order = compound_order(page);
1012
1013 if (order <= MAX_PAGE_ORDER) {
1014 low_pfn += (1UL << order) - 1;
1015 nr_scanned += (1UL << order) - 1;
1016 }
1017 goto isolate_fail;
1018 }
1019 /* for alloc_contig case */
1020 if (locked) {
1021 unlock_page_lruvec_irqrestore(locked, flags);
1022 locked = NULL;
1023 }
1024
1025 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1026
1027 /*
1028 * Fail isolation in case isolate_or_dissolve_huge_page()
1029 * reports an error. In case of -ENOMEM, abort right away.
1030 */
1031 if (ret < 0) {
1032 /* Do not report -EBUSY down the chain */
1033 if (ret == -EBUSY)
1034 ret = 0;
1035 low_pfn += compound_nr(page) - 1;
1036 nr_scanned += compound_nr(page) - 1;
1037 goto isolate_fail;
1038 }
1039
1040 if (PageHuge(page)) {
1041 /*
1042 * Hugepage was successfully isolated and placed
1043 * on the cc->migratepages list.
1044 */
1045 folio = page_folio(page);
1046 low_pfn += folio_nr_pages(folio) - 1;
1047 goto isolate_success_no_list;
1048 }
1049
1050 /*
1051 * Ok, the hugepage was dissolved. Now these pages are
1052 * Buddy and cannot be re-allocated because they are
1053 * isolated. Fall-through as the check below handles
1054 * Buddy pages.
1055 */
1056 }
1057
1058 /*
1059 * Skip if free. We read page order here without zone lock
1060 * which is generally unsafe, but the race window is small and
1061 * the worst thing that can happen is that we skip some
1062 * potential isolation targets.
1063 */
1064 if (PageBuddy(page)) {
1065 unsigned long freepage_order = buddy_order_unsafe(page);
1066
1067 /*
1068 * Without lock, we cannot be sure that what we got is
1069 * a valid page order. Consider only values in the
1070 * valid order range to prevent low_pfn overflow.
1071 */
1072 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1073 low_pfn += (1UL << freepage_order) - 1;
1074 nr_scanned += (1UL << freepage_order) - 1;
1075 }
1076 continue;
1077 }
1078
1079 /*
1080 * Regardless of being on LRU, compound pages such as THP
1081 * (hugetlbfs is handled above) are not to be compacted unless
1082 * we are attempting an allocation larger than the compound
1083 * page size. We can potentially save a lot of iterations if we
1084 * skip them at once. The check is racy, but we can consider
1085 * only valid values and the only danger is skipping too much.
1086 */
1087 if (PageCompound(page) && !cc->alloc_contig) {
1088 const unsigned int order = compound_order(page);
1089
1090 /* Skip based on page order and compaction target order. */
1091 if (skip_isolation_on_order(order, cc->order)) {
1092 if (order <= MAX_PAGE_ORDER) {
1093 low_pfn += (1UL << order) - 1;
1094 nr_scanned += (1UL << order) - 1;
1095 }
1096 goto isolate_fail;
1097 }
1098 }
1099
1100 /*
1101 * Check may be lockless but that's ok as we recheck later.
1102 * It's possible to migrate LRU and non-lru movable pages.
1103 * Skip any other type of page
1104 */
1105 if (!PageLRU(page)) {
1106 /*
1107 * __PageMovable can return false positive so we need
1108 * to verify it under page_lock.
1109 */
1110 if (unlikely(__PageMovable(page)) &&
1111 !PageIsolated(page)) {
1112 if (locked) {
1113 unlock_page_lruvec_irqrestore(locked, flags);
1114 locked = NULL;
1115 }
1116
1117 if (isolate_movable_page(page, mode)) {
1118 folio = page_folio(page);
1119 goto isolate_success;
1120 }
1121 }
1122
1123 goto isolate_fail;
1124 }
1125
1126 /*
1127 * Be careful not to clear PageLRU until after we're
1128 * sure the page is not being freed elsewhere -- the
1129 * page release code relies on it.
1130 */
1131 folio = folio_get_nontail_page(page);
1132 if (unlikely(!folio))
1133 goto isolate_fail;
1134
1135 /*
1136 * Migration will fail if an anonymous page is pinned in memory,
1137 * so avoid taking lru_lock and isolating it unnecessarily in an
1138 * admittedly racy check.
1139 */
1140 mapping = folio_mapping(folio);
1141 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1142 goto isolate_fail_put;
1143
1144 /*
1145 * Only allow to migrate anonymous pages in GFP_NOFS context
1146 * because those do not depend on fs locks.
1147 */
1148 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1149 goto isolate_fail_put;
1150
1151 /* Only take pages on LRU: a check now makes later tests safe */
1152 if (!folio_test_lru(folio))
1153 goto isolate_fail_put;
1154
1155 is_unevictable = folio_test_unevictable(folio);
1156
1157 /* Compaction might skip unevictable pages but CMA takes them */
1158 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1159 goto isolate_fail_put;
1160
1161 /*
1162 * To minimise LRU disruption, the caller can indicate with
1163 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1164 * it will be able to migrate without blocking - clean pages
1165 * for the most part. PageWriteback would require blocking.
1166 */
1167 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1168 goto isolate_fail_put;
1169
1170 is_dirty = folio_test_dirty(folio);
1171
1172 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1173 (mapping && is_unevictable)) {
1174 bool migrate_dirty = true;
1175 bool is_unmovable;
1176
1177 /*
1178 * Only folios without mappings or that have
1179 * a ->migrate_folio callback are possible to migrate
1180 * without blocking.
1181 *
1182 * Folios from unmovable mappings are not migratable.
1183 *
1184 * However, we can be racing with truncation, which can
1185 * free the mapping that we need to check. Truncation
1186 * holds the folio lock until after the folio is removed
1187 * from the page so holding it ourselves is sufficient.
1188 *
1189 * To avoid locking the folio just to check unmovable,
1190 * assume every unmovable folio is also unevictable,
1191 * which is a cheaper test. If our assumption goes
1192 * wrong, it's not a correctness bug, just potentially
1193 * wasted cycles.
1194 */
1195 if (!folio_trylock(folio))
1196 goto isolate_fail_put;
1197
1198 mapping = folio_mapping(folio);
1199 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1200 migrate_dirty = !mapping ||
1201 mapping->a_ops->migrate_folio;
1202 }
1203 is_unmovable = mapping && mapping_unmovable(mapping);
1204 folio_unlock(folio);
1205 if (!migrate_dirty || is_unmovable)
1206 goto isolate_fail_put;
1207 }
1208
1209 /* Try isolate the folio */
1210 if (!folio_test_clear_lru(folio))
1211 goto isolate_fail_put;
1212
1213 lruvec = folio_lruvec(folio);
1214
1215 /* If we already hold the lock, we can skip some rechecking */
1216 if (lruvec != locked) {
1217 if (locked)
1218 unlock_page_lruvec_irqrestore(locked, flags);
1219
1220 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1221 locked = lruvec;
1222
1223 lruvec_memcg_debug(lruvec, folio);
1224
1225 /*
1226 * Try get exclusive access under lock. If marked for
1227 * skip, the scan is aborted unless the current context
1228 * is a rescan to reach the end of the pageblock.
1229 */
1230 if (!skip_updated && valid_page) {
1231 skip_updated = true;
1232 if (test_and_set_skip(cc, valid_page) &&
1233 !cc->finish_pageblock) {
1234 low_pfn = end_pfn;
1235 goto isolate_abort;
1236 }
1237 }
1238
1239 /*
1240 * Check LRU folio order under the lock
1241 */
1242 if (unlikely(skip_isolation_on_order(folio_order(folio),
1243 cc->order) &&
1244 !cc->alloc_contig)) {
1245 low_pfn += folio_nr_pages(folio) - 1;
1246 nr_scanned += folio_nr_pages(folio) - 1;
1247 folio_set_lru(folio);
1248 goto isolate_fail_put;
1249 }
1250 }
1251
1252 /* The folio is taken off the LRU */
1253 if (folio_test_large(folio))
1254 low_pfn += folio_nr_pages(folio) - 1;
1255
1256 /* Successfully isolated */
1257 lruvec_del_folio(lruvec, folio);
1258 node_stat_mod_folio(folio,
1259 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1260 folio_nr_pages(folio));
1261
1262isolate_success:
1263 list_add(&folio->lru, &cc->migratepages);
1264isolate_success_no_list:
1265 cc->nr_migratepages += folio_nr_pages(folio);
1266 nr_isolated += folio_nr_pages(folio);
1267 nr_scanned += folio_nr_pages(folio) - 1;
1268
1269 /*
1270 * Avoid isolating too much unless this block is being
1271 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1272 * or a lock is contended. For contention, isolate quickly to
1273 * potentially remove one source of contention.
1274 */
1275 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1276 !cc->finish_pageblock && !cc->contended) {
1277 ++low_pfn;
1278 break;
1279 }
1280
1281 continue;
1282
1283isolate_fail_put:
1284 /* Avoid potential deadlock in freeing page under lru_lock */
1285 if (locked) {
1286 unlock_page_lruvec_irqrestore(locked, flags);
1287 locked = NULL;
1288 }
1289 folio_put(folio);
1290
1291isolate_fail:
1292 if (!skip_on_failure && ret != -ENOMEM)
1293 continue;
1294
1295 /*
1296 * We have isolated some pages, but then failed. Release them
1297 * instead of migrating, as we cannot form the cc->order buddy
1298 * page anyway.
1299 */
1300 if (nr_isolated) {
1301 if (locked) {
1302 unlock_page_lruvec_irqrestore(locked, flags);
1303 locked = NULL;
1304 }
1305 putback_movable_pages(&cc->migratepages);
1306 cc->nr_migratepages = 0;
1307 nr_isolated = 0;
1308 }
1309
1310 if (low_pfn < next_skip_pfn) {
1311 low_pfn = next_skip_pfn - 1;
1312 /*
1313 * The check near the loop beginning would have updated
1314 * next_skip_pfn too, but this is a bit simpler.
1315 */
1316 next_skip_pfn += 1UL << cc->order;
1317 }
1318
1319 if (ret == -ENOMEM)
1320 break;
1321 }
1322
1323 /*
1324 * The PageBuddy() check could have potentially brought us outside
1325 * the range to be scanned.
1326 */
1327 if (unlikely(low_pfn > end_pfn))
1328 low_pfn = end_pfn;
1329
1330 folio = NULL;
1331
1332isolate_abort:
1333 if (locked)
1334 unlock_page_lruvec_irqrestore(locked, flags);
1335 if (folio) {
1336 folio_set_lru(folio);
1337 folio_put(folio);
1338 }
1339
1340 /*
1341 * Update the cached scanner pfn once the pageblock has been scanned.
1342 * Pages will either be migrated in which case there is no point
1343 * scanning in the near future or migration failed in which case the
1344 * failure reason may persist. The block is marked for skipping if
1345 * there were no pages isolated in the block or if the block is
1346 * rescanned twice in a row.
1347 */
1348 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1349 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1350 set_pageblock_skip(valid_page);
1351 update_cached_migrate(cc, low_pfn);
1352 }
1353
1354 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1355 nr_scanned, nr_isolated);
1356
1357fatal_pending:
1358 cc->total_migrate_scanned += nr_scanned;
1359 if (nr_isolated)
1360 count_compact_events(COMPACTISOLATED, nr_isolated);
1361
1362 cc->migrate_pfn = low_pfn;
1363
1364 return ret;
1365}
1366
1367/**
1368 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1369 * @cc: Compaction control structure.
1370 * @start_pfn: The first PFN to start isolating.
1371 * @end_pfn: The one-past-last PFN.
1372 *
1373 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1374 * in case we could not allocate a page, or 0.
1375 */
1376int
1377isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1378 unsigned long end_pfn)
1379{
1380 unsigned long pfn, block_start_pfn, block_end_pfn;
1381 int ret = 0;
1382
1383 /* Scan block by block. First and last block may be incomplete */
1384 pfn = start_pfn;
1385 block_start_pfn = pageblock_start_pfn(pfn);
1386 if (block_start_pfn < cc->zone->zone_start_pfn)
1387 block_start_pfn = cc->zone->zone_start_pfn;
1388 block_end_pfn = pageblock_end_pfn(pfn);
1389
1390 for (; pfn < end_pfn; pfn = block_end_pfn,
1391 block_start_pfn = block_end_pfn,
1392 block_end_pfn += pageblock_nr_pages) {
1393
1394 block_end_pfn = min(block_end_pfn, end_pfn);
1395
1396 if (!pageblock_pfn_to_page(block_start_pfn,
1397 block_end_pfn, cc->zone))
1398 continue;
1399
1400 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1401 ISOLATE_UNEVICTABLE);
1402
1403 if (ret)
1404 break;
1405
1406 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1407 break;
1408 }
1409
1410 return ret;
1411}
1412
1413#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1414#ifdef CONFIG_COMPACTION
1415
1416static bool suitable_migration_source(struct compact_control *cc,
1417 struct page *page)
1418{
1419 int block_mt;
1420
1421 if (pageblock_skip_persistent(page))
1422 return false;
1423
1424 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1425 return true;
1426
1427 block_mt = get_pageblock_migratetype(page);
1428
1429 if (cc->migratetype == MIGRATE_MOVABLE)
1430 return is_migrate_movable(block_mt);
1431 else
1432 return block_mt == cc->migratetype;
1433}
1434
1435/* Returns true if the page is within a block suitable for migration to */
1436static bool suitable_migration_target(struct compact_control *cc,
1437 struct page *page)
1438{
1439 /* If the page is a large free page, then disallow migration */
1440 if (PageBuddy(page)) {
1441 int order = cc->order > 0 ? cc->order : pageblock_order;
1442
1443 /*
1444 * We are checking page_order without zone->lock taken. But
1445 * the only small danger is that we skip a potentially suitable
1446 * pageblock, so it's not worth to check order for valid range.
1447 */
1448 if (buddy_order_unsafe(page) >= order)
1449 return false;
1450 }
1451
1452 if (cc->ignore_block_suitable)
1453 return true;
1454
1455 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1456 if (is_migrate_movable(get_pageblock_migratetype(page)))
1457 return true;
1458
1459 /* Otherwise skip the block */
1460 return false;
1461}
1462
1463static inline unsigned int
1464freelist_scan_limit(struct compact_control *cc)
1465{
1466 unsigned short shift = BITS_PER_LONG - 1;
1467
1468 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1469}
1470
1471/*
1472 * Test whether the free scanner has reached the same or lower pageblock than
1473 * the migration scanner, and compaction should thus terminate.
1474 */
1475static inline bool compact_scanners_met(struct compact_control *cc)
1476{
1477 return (cc->free_pfn >> pageblock_order)
1478 <= (cc->migrate_pfn >> pageblock_order);
1479}
1480
1481/*
1482 * Used when scanning for a suitable migration target which scans freelists
1483 * in reverse. Reorders the list such as the unscanned pages are scanned
1484 * first on the next iteration of the free scanner
1485 */
1486static void
1487move_freelist_head(struct list_head *freelist, struct page *freepage)
1488{
1489 LIST_HEAD(sublist);
1490
1491 if (!list_is_first(&freepage->buddy_list, freelist)) {
1492 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1493 list_splice_tail(&sublist, freelist);
1494 }
1495}
1496
1497/*
1498 * Similar to move_freelist_head except used by the migration scanner
1499 * when scanning forward. It's possible for these list operations to
1500 * move against each other if they search the free list exactly in
1501 * lockstep.
1502 */
1503static void
1504move_freelist_tail(struct list_head *freelist, struct page *freepage)
1505{
1506 LIST_HEAD(sublist);
1507
1508 if (!list_is_last(&freepage->buddy_list, freelist)) {
1509 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1510 list_splice_tail(&sublist, freelist);
1511 }
1512}
1513
1514static void
1515fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1516{
1517 unsigned long start_pfn, end_pfn;
1518 struct page *page;
1519
1520 /* Do not search around if there are enough pages already */
1521 if (cc->nr_freepages >= cc->nr_migratepages)
1522 return;
1523
1524 /* Minimise scanning during async compaction */
1525 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1526 return;
1527
1528 /* Pageblock boundaries */
1529 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1530 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1531
1532 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1533 if (!page)
1534 return;
1535
1536 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1537
1538 /* Skip this pageblock in the future as it's full or nearly full */
1539 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1540 set_pageblock_skip(page);
1541}
1542
1543/* Search orders in round-robin fashion */
1544static int next_search_order(struct compact_control *cc, int order)
1545{
1546 order--;
1547 if (order < 0)
1548 order = cc->order - 1;
1549
1550 /* Search wrapped around? */
1551 if (order == cc->search_order) {
1552 cc->search_order--;
1553 if (cc->search_order < 0)
1554 cc->search_order = cc->order - 1;
1555 return -1;
1556 }
1557
1558 return order;
1559}
1560
1561static void fast_isolate_freepages(struct compact_control *cc)
1562{
1563 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1564 unsigned int nr_scanned = 0, total_isolated = 0;
1565 unsigned long low_pfn, min_pfn, highest = 0;
1566 unsigned long nr_isolated = 0;
1567 unsigned long distance;
1568 struct page *page = NULL;
1569 bool scan_start = false;
1570 int order;
1571
1572 /* Full compaction passes in a negative order */
1573 if (cc->order <= 0)
1574 return;
1575
1576 /*
1577 * If starting the scan, use a deeper search and use the highest
1578 * PFN found if a suitable one is not found.
1579 */
1580 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1581 limit = pageblock_nr_pages >> 1;
1582 scan_start = true;
1583 }
1584
1585 /*
1586 * Preferred point is in the top quarter of the scan space but take
1587 * a pfn from the top half if the search is problematic.
1588 */
1589 distance = (cc->free_pfn - cc->migrate_pfn);
1590 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1591 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1592
1593 if (WARN_ON_ONCE(min_pfn > low_pfn))
1594 low_pfn = min_pfn;
1595
1596 /*
1597 * Search starts from the last successful isolation order or the next
1598 * order to search after a previous failure
1599 */
1600 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1601
1602 for (order = cc->search_order;
1603 !page && order >= 0;
1604 order = next_search_order(cc, order)) {
1605 struct free_area *area = &cc->zone->free_area[order];
1606 struct list_head *freelist;
1607 struct page *freepage;
1608 unsigned long flags;
1609 unsigned int order_scanned = 0;
1610 unsigned long high_pfn = 0;
1611
1612 if (!area->nr_free)
1613 continue;
1614
1615 spin_lock_irqsave(&cc->zone->lock, flags);
1616 freelist = &area->free_list[MIGRATE_MOVABLE];
1617 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1618 unsigned long pfn;
1619
1620 order_scanned++;
1621 nr_scanned++;
1622 pfn = page_to_pfn(freepage);
1623
1624 if (pfn >= highest)
1625 highest = max(pageblock_start_pfn(pfn),
1626 cc->zone->zone_start_pfn);
1627
1628 if (pfn >= low_pfn) {
1629 cc->fast_search_fail = 0;
1630 cc->search_order = order;
1631 page = freepage;
1632 break;
1633 }
1634
1635 if (pfn >= min_pfn && pfn > high_pfn) {
1636 high_pfn = pfn;
1637
1638 /* Shorten the scan if a candidate is found */
1639 limit >>= 1;
1640 }
1641
1642 if (order_scanned >= limit)
1643 break;
1644 }
1645
1646 /* Use a maximum candidate pfn if a preferred one was not found */
1647 if (!page && high_pfn) {
1648 page = pfn_to_page(high_pfn);
1649
1650 /* Update freepage for the list reorder below */
1651 freepage = page;
1652 }
1653
1654 /* Reorder to so a future search skips recent pages */
1655 move_freelist_head(freelist, freepage);
1656
1657 /* Isolate the page if available */
1658 if (page) {
1659 if (__isolate_free_page(page, order)) {
1660 set_page_private(page, order);
1661 nr_isolated = 1 << order;
1662 nr_scanned += nr_isolated - 1;
1663 total_isolated += nr_isolated;
1664 cc->nr_freepages += nr_isolated;
1665 list_add_tail(&page->lru, &cc->freepages[order]);
1666 count_compact_events(COMPACTISOLATED, nr_isolated);
1667 } else {
1668 /* If isolation fails, abort the search */
1669 order = cc->search_order + 1;
1670 page = NULL;
1671 }
1672 }
1673
1674 spin_unlock_irqrestore(&cc->zone->lock, flags);
1675
1676 /* Skip fast search if enough freepages isolated */
1677 if (cc->nr_freepages >= cc->nr_migratepages)
1678 break;
1679
1680 /*
1681 * Smaller scan on next order so the total scan is related
1682 * to freelist_scan_limit.
1683 */
1684 if (order_scanned >= limit)
1685 limit = max(1U, limit >> 1);
1686 }
1687
1688 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1689 nr_scanned, total_isolated);
1690
1691 if (!page) {
1692 cc->fast_search_fail++;
1693 if (scan_start) {
1694 /*
1695 * Use the highest PFN found above min. If one was
1696 * not found, be pessimistic for direct compaction
1697 * and use the min mark.
1698 */
1699 if (highest >= min_pfn) {
1700 page = pfn_to_page(highest);
1701 cc->free_pfn = highest;
1702 } else {
1703 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1704 page = pageblock_pfn_to_page(min_pfn,
1705 min(pageblock_end_pfn(min_pfn),
1706 zone_end_pfn(cc->zone)),
1707 cc->zone);
1708 if (page && !suitable_migration_target(cc, page))
1709 page = NULL;
1710
1711 cc->free_pfn = min_pfn;
1712 }
1713 }
1714 }
1715 }
1716
1717 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1718 highest -= pageblock_nr_pages;
1719 cc->zone->compact_cached_free_pfn = highest;
1720 }
1721
1722 cc->total_free_scanned += nr_scanned;
1723 if (!page)
1724 return;
1725
1726 low_pfn = page_to_pfn(page);
1727 fast_isolate_around(cc, low_pfn);
1728}
1729
1730/*
1731 * Based on information in the current compact_control, find blocks
1732 * suitable for isolating free pages from and then isolate them.
1733 */
1734static void isolate_freepages(struct compact_control *cc)
1735{
1736 struct zone *zone = cc->zone;
1737 struct page *page;
1738 unsigned long block_start_pfn; /* start of current pageblock */
1739 unsigned long isolate_start_pfn; /* exact pfn we start at */
1740 unsigned long block_end_pfn; /* end of current pageblock */
1741 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1742 unsigned int stride;
1743
1744 /* Try a small search of the free lists for a candidate */
1745 fast_isolate_freepages(cc);
1746 if (cc->nr_freepages)
1747 return;
1748
1749 /*
1750 * Initialise the free scanner. The starting point is where we last
1751 * successfully isolated from, zone-cached value, or the end of the
1752 * zone when isolating for the first time. For looping we also need
1753 * this pfn aligned down to the pageblock boundary, because we do
1754 * block_start_pfn -= pageblock_nr_pages in the for loop.
1755 * For ending point, take care when isolating in last pageblock of a
1756 * zone which ends in the middle of a pageblock.
1757 * The low boundary is the end of the pageblock the migration scanner
1758 * is using.
1759 */
1760 isolate_start_pfn = cc->free_pfn;
1761 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1762 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1763 zone_end_pfn(zone));
1764 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1765 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1766
1767 /*
1768 * Isolate free pages until enough are available to migrate the
1769 * pages on cc->migratepages. We stop searching if the migrate
1770 * and free page scanners meet or enough free pages are isolated.
1771 */
1772 for (; block_start_pfn >= low_pfn;
1773 block_end_pfn = block_start_pfn,
1774 block_start_pfn -= pageblock_nr_pages,
1775 isolate_start_pfn = block_start_pfn) {
1776 unsigned long nr_isolated;
1777
1778 /*
1779 * This can iterate a massively long zone without finding any
1780 * suitable migration targets, so periodically check resched.
1781 */
1782 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1783 cond_resched();
1784
1785 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1786 zone);
1787 if (!page) {
1788 unsigned long next_pfn;
1789
1790 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1791 if (next_pfn)
1792 block_start_pfn = max(next_pfn, low_pfn);
1793
1794 continue;
1795 }
1796
1797 /* Check the block is suitable for migration */
1798 if (!suitable_migration_target(cc, page))
1799 continue;
1800
1801 /* If isolation recently failed, do not retry */
1802 if (!isolation_suitable(cc, page))
1803 continue;
1804
1805 /* Found a block suitable for isolating free pages from. */
1806 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1807 block_end_pfn, cc->freepages, stride, false);
1808
1809 /* Update the skip hint if the full pageblock was scanned */
1810 if (isolate_start_pfn == block_end_pfn)
1811 update_pageblock_skip(cc, page, block_start_pfn -
1812 pageblock_nr_pages);
1813
1814 /* Are enough freepages isolated? */
1815 if (cc->nr_freepages >= cc->nr_migratepages) {
1816 if (isolate_start_pfn >= block_end_pfn) {
1817 /*
1818 * Restart at previous pageblock if more
1819 * freepages can be isolated next time.
1820 */
1821 isolate_start_pfn =
1822 block_start_pfn - pageblock_nr_pages;
1823 }
1824 break;
1825 } else if (isolate_start_pfn < block_end_pfn) {
1826 /*
1827 * If isolation failed early, do not continue
1828 * needlessly.
1829 */
1830 break;
1831 }
1832
1833 /* Adjust stride depending on isolation */
1834 if (nr_isolated) {
1835 stride = 1;
1836 continue;
1837 }
1838 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1839 }
1840
1841 /*
1842 * Record where the free scanner will restart next time. Either we
1843 * broke from the loop and set isolate_start_pfn based on the last
1844 * call to isolate_freepages_block(), or we met the migration scanner
1845 * and the loop terminated due to isolate_start_pfn < low_pfn
1846 */
1847 cc->free_pfn = isolate_start_pfn;
1848}
1849
1850/*
1851 * This is a migrate-callback that "allocates" freepages by taking pages
1852 * from the isolated freelists in the block we are migrating to.
1853 */
1854static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1855{
1856 struct compact_control *cc = (struct compact_control *)data;
1857 struct folio *dst;
1858 int order = folio_order(src);
1859 bool has_isolated_pages = false;
1860 int start_order;
1861 struct page *freepage;
1862 unsigned long size;
1863
1864again:
1865 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1866 if (!list_empty(&cc->freepages[start_order]))
1867 break;
1868
1869 /* no free pages in the list */
1870 if (start_order == NR_PAGE_ORDERS) {
1871 if (has_isolated_pages)
1872 return NULL;
1873 isolate_freepages(cc);
1874 has_isolated_pages = true;
1875 goto again;
1876 }
1877
1878 freepage = list_first_entry(&cc->freepages[start_order], struct page,
1879 lru);
1880 size = 1 << start_order;
1881
1882 list_del(&freepage->lru);
1883
1884 while (start_order > order) {
1885 start_order--;
1886 size >>= 1;
1887
1888 list_add(&freepage[size].lru, &cc->freepages[start_order]);
1889 set_page_private(&freepage[size], start_order);
1890 }
1891 dst = (struct folio *)freepage;
1892
1893 post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1894 if (order)
1895 prep_compound_page(&dst->page, order);
1896 cc->nr_freepages -= 1 << order;
1897 cc->nr_migratepages -= 1 << order;
1898 return page_rmappable_folio(&dst->page);
1899}
1900
1901static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1902{
1903 return alloc_hooks(compaction_alloc_noprof(src, data));
1904}
1905
1906/*
1907 * This is a migrate-callback that "frees" freepages back to the isolated
1908 * freelist. All pages on the freelist are from the same zone, so there is no
1909 * special handling needed for NUMA.
1910 */
1911static void compaction_free(struct folio *dst, unsigned long data)
1912{
1913 struct compact_control *cc = (struct compact_control *)data;
1914 int order = folio_order(dst);
1915 struct page *page = &dst->page;
1916
1917 if (folio_put_testzero(dst)) {
1918 free_pages_prepare(page, order);
1919 list_add(&dst->lru, &cc->freepages[order]);
1920 cc->nr_freepages += 1 << order;
1921 }
1922 cc->nr_migratepages += 1 << order;
1923 /*
1924 * someone else has referenced the page, we cannot take it back to our
1925 * free list.
1926 */
1927}
1928
1929/* possible outcome of isolate_migratepages */
1930typedef enum {
1931 ISOLATE_ABORT, /* Abort compaction now */
1932 ISOLATE_NONE, /* No pages isolated, continue scanning */
1933 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1934} isolate_migrate_t;
1935
1936/*
1937 * Allow userspace to control policy on scanning the unevictable LRU for
1938 * compactable pages.
1939 */
1940static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1941/*
1942 * Tunable for proactive compaction. It determines how
1943 * aggressively the kernel should compact memory in the
1944 * background. It takes values in the range [0, 100].
1945 */
1946static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1947static int sysctl_extfrag_threshold = 500;
1948static int __read_mostly sysctl_compact_memory;
1949
1950static inline void
1951update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1952{
1953 if (cc->fast_start_pfn == ULONG_MAX)
1954 return;
1955
1956 if (!cc->fast_start_pfn)
1957 cc->fast_start_pfn = pfn;
1958
1959 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1960}
1961
1962static inline unsigned long
1963reinit_migrate_pfn(struct compact_control *cc)
1964{
1965 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1966 return cc->migrate_pfn;
1967
1968 cc->migrate_pfn = cc->fast_start_pfn;
1969 cc->fast_start_pfn = ULONG_MAX;
1970
1971 return cc->migrate_pfn;
1972}
1973
1974/*
1975 * Briefly search the free lists for a migration source that already has
1976 * some free pages to reduce the number of pages that need migration
1977 * before a pageblock is free.
1978 */
1979static unsigned long fast_find_migrateblock(struct compact_control *cc)
1980{
1981 unsigned int limit = freelist_scan_limit(cc);
1982 unsigned int nr_scanned = 0;
1983 unsigned long distance;
1984 unsigned long pfn = cc->migrate_pfn;
1985 unsigned long high_pfn;
1986 int order;
1987 bool found_block = false;
1988
1989 /* Skip hints are relied on to avoid repeats on the fast search */
1990 if (cc->ignore_skip_hint)
1991 return pfn;
1992
1993 /*
1994 * If the pageblock should be finished then do not select a different
1995 * pageblock.
1996 */
1997 if (cc->finish_pageblock)
1998 return pfn;
1999
2000 /*
2001 * If the migrate_pfn is not at the start of a zone or the start
2002 * of a pageblock then assume this is a continuation of a previous
2003 * scan restarted due to COMPACT_CLUSTER_MAX.
2004 */
2005 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
2006 return pfn;
2007
2008 /*
2009 * For smaller orders, just linearly scan as the number of pages
2010 * to migrate should be relatively small and does not necessarily
2011 * justify freeing up a large block for a small allocation.
2012 */
2013 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
2014 return pfn;
2015
2016 /*
2017 * Only allow kcompactd and direct requests for movable pages to
2018 * quickly clear out a MOVABLE pageblock for allocation. This
2019 * reduces the risk that a large movable pageblock is freed for
2020 * an unmovable/reclaimable small allocation.
2021 */
2022 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2023 return pfn;
2024
2025 /*
2026 * When starting the migration scanner, pick any pageblock within the
2027 * first half of the search space. Otherwise try and pick a pageblock
2028 * within the first eighth to reduce the chances that a migration
2029 * target later becomes a source.
2030 */
2031 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2032 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2033 distance >>= 2;
2034 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2035
2036 for (order = cc->order - 1;
2037 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2038 order--) {
2039 struct free_area *area = &cc->zone->free_area[order];
2040 struct list_head *freelist;
2041 unsigned long flags;
2042 struct page *freepage;
2043
2044 if (!area->nr_free)
2045 continue;
2046
2047 spin_lock_irqsave(&cc->zone->lock, flags);
2048 freelist = &area->free_list[MIGRATE_MOVABLE];
2049 list_for_each_entry(freepage, freelist, buddy_list) {
2050 unsigned long free_pfn;
2051
2052 if (nr_scanned++ >= limit) {
2053 move_freelist_tail(freelist, freepage);
2054 break;
2055 }
2056
2057 free_pfn = page_to_pfn(freepage);
2058 if (free_pfn < high_pfn) {
2059 /*
2060 * Avoid if skipped recently. Ideally it would
2061 * move to the tail but even safe iteration of
2062 * the list assumes an entry is deleted, not
2063 * reordered.
2064 */
2065 if (get_pageblock_skip(freepage))
2066 continue;
2067
2068 /* Reorder to so a future search skips recent pages */
2069 move_freelist_tail(freelist, freepage);
2070
2071 update_fast_start_pfn(cc, free_pfn);
2072 pfn = pageblock_start_pfn(free_pfn);
2073 if (pfn < cc->zone->zone_start_pfn)
2074 pfn = cc->zone->zone_start_pfn;
2075 cc->fast_search_fail = 0;
2076 found_block = true;
2077 break;
2078 }
2079 }
2080 spin_unlock_irqrestore(&cc->zone->lock, flags);
2081 }
2082
2083 cc->total_migrate_scanned += nr_scanned;
2084
2085 /*
2086 * If fast scanning failed then use a cached entry for a page block
2087 * that had free pages as the basis for starting a linear scan.
2088 */
2089 if (!found_block) {
2090 cc->fast_search_fail++;
2091 pfn = reinit_migrate_pfn(cc);
2092 }
2093 return pfn;
2094}
2095
2096/*
2097 * Isolate all pages that can be migrated from the first suitable block,
2098 * starting at the block pointed to by the migrate scanner pfn within
2099 * compact_control.
2100 */
2101static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2102{
2103 unsigned long block_start_pfn;
2104 unsigned long block_end_pfn;
2105 unsigned long low_pfn;
2106 struct page *page;
2107 const isolate_mode_t isolate_mode =
2108 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2109 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2110 bool fast_find_block;
2111
2112 /*
2113 * Start at where we last stopped, or beginning of the zone as
2114 * initialized by compact_zone(). The first failure will use
2115 * the lowest PFN as the starting point for linear scanning.
2116 */
2117 low_pfn = fast_find_migrateblock(cc);
2118 block_start_pfn = pageblock_start_pfn(low_pfn);
2119 if (block_start_pfn < cc->zone->zone_start_pfn)
2120 block_start_pfn = cc->zone->zone_start_pfn;
2121
2122 /*
2123 * fast_find_migrateblock() has already ensured the pageblock is not
2124 * set with a skipped flag, so to avoid the isolation_suitable check
2125 * below again, check whether the fast search was successful.
2126 */
2127 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2128
2129 /* Only scan within a pageblock boundary */
2130 block_end_pfn = pageblock_end_pfn(low_pfn);
2131
2132 /*
2133 * Iterate over whole pageblocks until we find the first suitable.
2134 * Do not cross the free scanner.
2135 */
2136 for (; block_end_pfn <= cc->free_pfn;
2137 fast_find_block = false,
2138 cc->migrate_pfn = low_pfn = block_end_pfn,
2139 block_start_pfn = block_end_pfn,
2140 block_end_pfn += pageblock_nr_pages) {
2141
2142 /*
2143 * This can potentially iterate a massively long zone with
2144 * many pageblocks unsuitable, so periodically check if we
2145 * need to schedule.
2146 */
2147 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2148 cond_resched();
2149
2150 page = pageblock_pfn_to_page(block_start_pfn,
2151 block_end_pfn, cc->zone);
2152 if (!page) {
2153 unsigned long next_pfn;
2154
2155 next_pfn = skip_offline_sections(block_start_pfn);
2156 if (next_pfn)
2157 block_end_pfn = min(next_pfn, cc->free_pfn);
2158 continue;
2159 }
2160
2161 /*
2162 * If isolation recently failed, do not retry. Only check the
2163 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2164 * to be visited multiple times. Assume skip was checked
2165 * before making it "skip" so other compaction instances do
2166 * not scan the same block.
2167 */
2168 if ((pageblock_aligned(low_pfn) ||
2169 low_pfn == cc->zone->zone_start_pfn) &&
2170 !fast_find_block && !isolation_suitable(cc, page))
2171 continue;
2172
2173 /*
2174 * For async direct compaction, only scan the pageblocks of the
2175 * same migratetype without huge pages. Async direct compaction
2176 * is optimistic to see if the minimum amount of work satisfies
2177 * the allocation. The cached PFN is updated as it's possible
2178 * that all remaining blocks between source and target are
2179 * unsuitable and the compaction scanners fail to meet.
2180 */
2181 if (!suitable_migration_source(cc, page)) {
2182 update_cached_migrate(cc, block_end_pfn);
2183 continue;
2184 }
2185
2186 /* Perform the isolation */
2187 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2188 isolate_mode))
2189 return ISOLATE_ABORT;
2190
2191 /*
2192 * Either we isolated something and proceed with migration. Or
2193 * we failed and compact_zone should decide if we should
2194 * continue or not.
2195 */
2196 break;
2197 }
2198
2199 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2200}
2201
2202/*
2203 * Determine whether kswapd is (or recently was!) running on this node.
2204 *
2205 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2206 * zero it.
2207 */
2208static bool kswapd_is_running(pg_data_t *pgdat)
2209{
2210 bool running;
2211
2212 pgdat_kswapd_lock(pgdat);
2213 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2214 pgdat_kswapd_unlock(pgdat);
2215
2216 return running;
2217}
2218
2219/*
2220 * A zone's fragmentation score is the external fragmentation wrt to the
2221 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2222 */
2223static unsigned int fragmentation_score_zone(struct zone *zone)
2224{
2225 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2226}
2227
2228/*
2229 * A weighted zone's fragmentation score is the external fragmentation
2230 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2231 * returns a value in the range [0, 100].
2232 *
2233 * The scaling factor ensures that proactive compaction focuses on larger
2234 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2235 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2236 * and thus never exceeds the high threshold for proactive compaction.
2237 */
2238static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2239{
2240 unsigned long score;
2241
2242 score = zone->present_pages * fragmentation_score_zone(zone);
2243 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2244}
2245
2246/*
2247 * The per-node proactive (background) compaction process is started by its
2248 * corresponding kcompactd thread when the node's fragmentation score
2249 * exceeds the high threshold. The compaction process remains active till
2250 * the node's score falls below the low threshold, or one of the back-off
2251 * conditions is met.
2252 */
2253static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2254{
2255 unsigned int score = 0;
2256 int zoneid;
2257
2258 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2259 struct zone *zone;
2260
2261 zone = &pgdat->node_zones[zoneid];
2262 if (!populated_zone(zone))
2263 continue;
2264 score += fragmentation_score_zone_weighted(zone);
2265 }
2266
2267 return score;
2268}
2269
2270static unsigned int fragmentation_score_wmark(bool low)
2271{
2272 unsigned int wmark_low;
2273
2274 /*
2275 * Cap the low watermark to avoid excessive compaction
2276 * activity in case a user sets the proactiveness tunable
2277 * close to 100 (maximum).
2278 */
2279 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2280 return low ? wmark_low : min(wmark_low + 10, 100U);
2281}
2282
2283static bool should_proactive_compact_node(pg_data_t *pgdat)
2284{
2285 int wmark_high;
2286
2287 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2288 return false;
2289
2290 wmark_high = fragmentation_score_wmark(false);
2291 return fragmentation_score_node(pgdat) > wmark_high;
2292}
2293
2294static enum compact_result __compact_finished(struct compact_control *cc)
2295{
2296 unsigned int order;
2297 const int migratetype = cc->migratetype;
2298 int ret;
2299
2300 /* Compaction run completes if the migrate and free scanner meet */
2301 if (compact_scanners_met(cc)) {
2302 /* Let the next compaction start anew. */
2303 reset_cached_positions(cc->zone);
2304
2305 /*
2306 * Mark that the PG_migrate_skip information should be cleared
2307 * by kswapd when it goes to sleep. kcompactd does not set the
2308 * flag itself as the decision to be clear should be directly
2309 * based on an allocation request.
2310 */
2311 if (cc->direct_compaction)
2312 cc->zone->compact_blockskip_flush = true;
2313
2314 if (cc->whole_zone)
2315 return COMPACT_COMPLETE;
2316 else
2317 return COMPACT_PARTIAL_SKIPPED;
2318 }
2319
2320 if (cc->proactive_compaction) {
2321 int score, wmark_low;
2322 pg_data_t *pgdat;
2323
2324 pgdat = cc->zone->zone_pgdat;
2325 if (kswapd_is_running(pgdat))
2326 return COMPACT_PARTIAL_SKIPPED;
2327
2328 score = fragmentation_score_zone(cc->zone);
2329 wmark_low = fragmentation_score_wmark(true);
2330
2331 if (score > wmark_low)
2332 ret = COMPACT_CONTINUE;
2333 else
2334 ret = COMPACT_SUCCESS;
2335
2336 goto out;
2337 }
2338
2339 if (is_via_compact_memory(cc->order))
2340 return COMPACT_CONTINUE;
2341
2342 /*
2343 * Always finish scanning a pageblock to reduce the possibility of
2344 * fallbacks in the future. This is particularly important when
2345 * migration source is unmovable/reclaimable but it's not worth
2346 * special casing.
2347 */
2348 if (!pageblock_aligned(cc->migrate_pfn))
2349 return COMPACT_CONTINUE;
2350
2351 /* Direct compactor: Is a suitable page free? */
2352 ret = COMPACT_NO_SUITABLE_PAGE;
2353 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2354 struct free_area *area = &cc->zone->free_area[order];
2355 bool can_steal;
2356
2357 /* Job done if page is free of the right migratetype */
2358 if (!free_area_empty(area, migratetype))
2359 return COMPACT_SUCCESS;
2360
2361#ifdef CONFIG_CMA
2362 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2363 if (migratetype == MIGRATE_MOVABLE &&
2364 !free_area_empty(area, MIGRATE_CMA))
2365 return COMPACT_SUCCESS;
2366#endif
2367 /*
2368 * Job done if allocation would steal freepages from
2369 * other migratetype buddy lists.
2370 */
2371 if (find_suitable_fallback(area, order, migratetype,
2372 true, &can_steal) != -1)
2373 /*
2374 * Movable pages are OK in any pageblock. If we are
2375 * stealing for a non-movable allocation, make sure
2376 * we finish compacting the current pageblock first
2377 * (which is assured by the above migrate_pfn align
2378 * check) so it is as free as possible and we won't
2379 * have to steal another one soon.
2380 */
2381 return COMPACT_SUCCESS;
2382 }
2383
2384out:
2385 if (cc->contended || fatal_signal_pending(current))
2386 ret = COMPACT_CONTENDED;
2387
2388 return ret;
2389}
2390
2391static enum compact_result compact_finished(struct compact_control *cc)
2392{
2393 int ret;
2394
2395 ret = __compact_finished(cc);
2396 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2397 if (ret == COMPACT_NO_SUITABLE_PAGE)
2398 ret = COMPACT_CONTINUE;
2399
2400 return ret;
2401}
2402
2403static bool __compaction_suitable(struct zone *zone, int order,
2404 int highest_zoneidx,
2405 unsigned long wmark_target)
2406{
2407 unsigned long watermark;
2408 /*
2409 * Watermarks for order-0 must be met for compaction to be able to
2410 * isolate free pages for migration targets. This means that the
2411 * watermark and alloc_flags have to match, or be more pessimistic than
2412 * the check in __isolate_free_page(). We don't use the direct
2413 * compactor's alloc_flags, as they are not relevant for freepage
2414 * isolation. We however do use the direct compactor's highest_zoneidx
2415 * to skip over zones where lowmem reserves would prevent allocation
2416 * even if compaction succeeds.
2417 * For costly orders, we require low watermark instead of min for
2418 * compaction to proceed to increase its chances.
2419 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2420 * suitable migration targets
2421 */
2422 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2423 low_wmark_pages(zone) : min_wmark_pages(zone);
2424 watermark += compact_gap(order);
2425 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2426 ALLOC_CMA, wmark_target);
2427}
2428
2429/*
2430 * compaction_suitable: Is this suitable to run compaction on this zone now?
2431 */
2432bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2433{
2434 enum compact_result compact_result;
2435 bool suitable;
2436
2437 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2438 zone_page_state(zone, NR_FREE_PAGES));
2439 /*
2440 * fragmentation index determines if allocation failures are due to
2441 * low memory or external fragmentation
2442 *
2443 * index of -1000 would imply allocations might succeed depending on
2444 * watermarks, but we already failed the high-order watermark check
2445 * index towards 0 implies failure is due to lack of memory
2446 * index towards 1000 implies failure is due to fragmentation
2447 *
2448 * Only compact if a failure would be due to fragmentation. Also
2449 * ignore fragindex for non-costly orders where the alternative to
2450 * a successful reclaim/compaction is OOM. Fragindex and the
2451 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2452 * excessive compaction for costly orders, but it should not be at the
2453 * expense of system stability.
2454 */
2455 if (suitable) {
2456 compact_result = COMPACT_CONTINUE;
2457 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2458 int fragindex = fragmentation_index(zone, order);
2459
2460 if (fragindex >= 0 &&
2461 fragindex <= sysctl_extfrag_threshold) {
2462 suitable = false;
2463 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2464 }
2465 }
2466 } else {
2467 compact_result = COMPACT_SKIPPED;
2468 }
2469
2470 trace_mm_compaction_suitable(zone, order, compact_result);
2471
2472 return suitable;
2473}
2474
2475bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2476 int alloc_flags)
2477{
2478 struct zone *zone;
2479 struct zoneref *z;
2480
2481 /*
2482 * Make sure at least one zone would pass __compaction_suitable if we continue
2483 * retrying the reclaim.
2484 */
2485 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2486 ac->highest_zoneidx, ac->nodemask) {
2487 unsigned long available;
2488
2489 /*
2490 * Do not consider all the reclaimable memory because we do not
2491 * want to trash just for a single high order allocation which
2492 * is even not guaranteed to appear even if __compaction_suitable
2493 * is happy about the watermark check.
2494 */
2495 available = zone_reclaimable_pages(zone) / order;
2496 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2497 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2498 available))
2499 return true;
2500 }
2501
2502 return false;
2503}
2504
2505/*
2506 * Should we do compaction for target allocation order.
2507 * Return COMPACT_SUCCESS if allocation for target order can be already
2508 * satisfied
2509 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2510 * Return COMPACT_CONTINUE if compaction for target order should be ran
2511 */
2512static enum compact_result
2513compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2514 int highest_zoneidx, unsigned int alloc_flags)
2515{
2516 unsigned long watermark;
2517
2518 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2519 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2520 alloc_flags))
2521 return COMPACT_SUCCESS;
2522
2523 if (!compaction_suitable(zone, order, highest_zoneidx))
2524 return COMPACT_SKIPPED;
2525
2526 return COMPACT_CONTINUE;
2527}
2528
2529static enum compact_result
2530compact_zone(struct compact_control *cc, struct capture_control *capc)
2531{
2532 enum compact_result ret;
2533 unsigned long start_pfn = cc->zone->zone_start_pfn;
2534 unsigned long end_pfn = zone_end_pfn(cc->zone);
2535 unsigned long last_migrated_pfn;
2536 const bool sync = cc->mode != MIGRATE_ASYNC;
2537 bool update_cached;
2538 unsigned int nr_succeeded = 0, nr_migratepages;
2539 int order;
2540
2541 /*
2542 * These counters track activities during zone compaction. Initialize
2543 * them before compacting a new zone.
2544 */
2545 cc->total_migrate_scanned = 0;
2546 cc->total_free_scanned = 0;
2547 cc->nr_migratepages = 0;
2548 cc->nr_freepages = 0;
2549 for (order = 0; order < NR_PAGE_ORDERS; order++)
2550 INIT_LIST_HEAD(&cc->freepages[order]);
2551 INIT_LIST_HEAD(&cc->migratepages);
2552
2553 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2554
2555 if (!is_via_compact_memory(cc->order)) {
2556 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2557 cc->highest_zoneidx,
2558 cc->alloc_flags);
2559 if (ret != COMPACT_CONTINUE)
2560 return ret;
2561 }
2562
2563 /*
2564 * Clear pageblock skip if there were failures recently and compaction
2565 * is about to be retried after being deferred.
2566 */
2567 if (compaction_restarting(cc->zone, cc->order))
2568 __reset_isolation_suitable(cc->zone);
2569
2570 /*
2571 * Setup to move all movable pages to the end of the zone. Used cached
2572 * information on where the scanners should start (unless we explicitly
2573 * want to compact the whole zone), but check that it is initialised
2574 * by ensuring the values are within zone boundaries.
2575 */
2576 cc->fast_start_pfn = 0;
2577 if (cc->whole_zone) {
2578 cc->migrate_pfn = start_pfn;
2579 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2580 } else {
2581 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2582 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2583 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2584 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2585 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2586 }
2587 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2588 cc->migrate_pfn = start_pfn;
2589 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2590 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2591 }
2592
2593 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2594 cc->whole_zone = true;
2595 }
2596
2597 last_migrated_pfn = 0;
2598
2599 /*
2600 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2601 * the basis that some migrations will fail in ASYNC mode. However,
2602 * if the cached PFNs match and pageblocks are skipped due to having
2603 * no isolation candidates, then the sync state does not matter.
2604 * Until a pageblock with isolation candidates is found, keep the
2605 * cached PFNs in sync to avoid revisiting the same blocks.
2606 */
2607 update_cached = !sync &&
2608 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2609
2610 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2611
2612 /* lru_add_drain_all could be expensive with involving other CPUs */
2613 lru_add_drain();
2614
2615 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2616 int err;
2617 unsigned long iteration_start_pfn = cc->migrate_pfn;
2618
2619 /*
2620 * Avoid multiple rescans of the same pageblock which can
2621 * happen if a page cannot be isolated (dirty/writeback in
2622 * async mode) or if the migrated pages are being allocated
2623 * before the pageblock is cleared. The first rescan will
2624 * capture the entire pageblock for migration. If it fails,
2625 * it'll be marked skip and scanning will proceed as normal.
2626 */
2627 cc->finish_pageblock = false;
2628 if (pageblock_start_pfn(last_migrated_pfn) ==
2629 pageblock_start_pfn(iteration_start_pfn)) {
2630 cc->finish_pageblock = true;
2631 }
2632
2633rescan:
2634 switch (isolate_migratepages(cc)) {
2635 case ISOLATE_ABORT:
2636 ret = COMPACT_CONTENDED;
2637 putback_movable_pages(&cc->migratepages);
2638 cc->nr_migratepages = 0;
2639 goto out;
2640 case ISOLATE_NONE:
2641 if (update_cached) {
2642 cc->zone->compact_cached_migrate_pfn[1] =
2643 cc->zone->compact_cached_migrate_pfn[0];
2644 }
2645
2646 /*
2647 * We haven't isolated and migrated anything, but
2648 * there might still be unflushed migrations from
2649 * previous cc->order aligned block.
2650 */
2651 goto check_drain;
2652 case ISOLATE_SUCCESS:
2653 update_cached = false;
2654 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2655 pageblock_start_pfn(cc->migrate_pfn - 1));
2656 }
2657
2658 /*
2659 * Record the number of pages to migrate since the
2660 * compaction_alloc/free() will update cc->nr_migratepages
2661 * properly.
2662 */
2663 nr_migratepages = cc->nr_migratepages;
2664 err = migrate_pages(&cc->migratepages, compaction_alloc,
2665 compaction_free, (unsigned long)cc, cc->mode,
2666 MR_COMPACTION, &nr_succeeded);
2667
2668 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2669
2670 /* All pages were either migrated or will be released */
2671 cc->nr_migratepages = 0;
2672 if (err) {
2673 putback_movable_pages(&cc->migratepages);
2674 /*
2675 * migrate_pages() may return -ENOMEM when scanners meet
2676 * and we want compact_finished() to detect it
2677 */
2678 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2679 ret = COMPACT_CONTENDED;
2680 goto out;
2681 }
2682 /*
2683 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2684 * within the pageblock_order-aligned block and
2685 * fast_find_migrateblock may be used then scan the
2686 * remainder of the pageblock. This will mark the
2687 * pageblock "skip" to avoid rescanning in the near
2688 * future. This will isolate more pages than necessary
2689 * for the request but avoid loops due to
2690 * fast_find_migrateblock revisiting blocks that were
2691 * recently partially scanned.
2692 */
2693 if (!pageblock_aligned(cc->migrate_pfn) &&
2694 !cc->ignore_skip_hint && !cc->finish_pageblock &&
2695 (cc->mode < MIGRATE_SYNC)) {
2696 cc->finish_pageblock = true;
2697
2698 /*
2699 * Draining pcplists does not help THP if
2700 * any page failed to migrate. Even after
2701 * drain, the pageblock will not be free.
2702 */
2703 if (cc->order == COMPACTION_HPAGE_ORDER)
2704 last_migrated_pfn = 0;
2705
2706 goto rescan;
2707 }
2708 }
2709
2710 /* Stop if a page has been captured */
2711 if (capc && capc->page) {
2712 ret = COMPACT_SUCCESS;
2713 break;
2714 }
2715
2716check_drain:
2717 /*
2718 * Has the migration scanner moved away from the previous
2719 * cc->order aligned block where we migrated from? If yes,
2720 * flush the pages that were freed, so that they can merge and
2721 * compact_finished() can detect immediately if allocation
2722 * would succeed.
2723 */
2724 if (cc->order > 0 && last_migrated_pfn) {
2725 unsigned long current_block_start =
2726 block_start_pfn(cc->migrate_pfn, cc->order);
2727
2728 if (last_migrated_pfn < current_block_start) {
2729 lru_add_drain_cpu_zone(cc->zone);
2730 /* No more flushing until we migrate again */
2731 last_migrated_pfn = 0;
2732 }
2733 }
2734 }
2735
2736out:
2737 /*
2738 * Release free pages and update where the free scanner should restart,
2739 * so we don't leave any returned pages behind in the next attempt.
2740 */
2741 if (cc->nr_freepages > 0) {
2742 unsigned long free_pfn = release_free_list(cc->freepages);
2743
2744 cc->nr_freepages = 0;
2745 VM_BUG_ON(free_pfn == 0);
2746 /* The cached pfn is always the first in a pageblock */
2747 free_pfn = pageblock_start_pfn(free_pfn);
2748 /*
2749 * Only go back, not forward. The cached pfn might have been
2750 * already reset to zone end in compact_finished()
2751 */
2752 if (free_pfn > cc->zone->compact_cached_free_pfn)
2753 cc->zone->compact_cached_free_pfn = free_pfn;
2754 }
2755
2756 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2757 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2758
2759 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2760
2761 VM_BUG_ON(!list_empty(&cc->migratepages));
2762
2763 return ret;
2764}
2765
2766static enum compact_result compact_zone_order(struct zone *zone, int order,
2767 gfp_t gfp_mask, enum compact_priority prio,
2768 unsigned int alloc_flags, int highest_zoneidx,
2769 struct page **capture)
2770{
2771 enum compact_result ret;
2772 struct compact_control cc = {
2773 .order = order,
2774 .search_order = order,
2775 .gfp_mask = gfp_mask,
2776 .zone = zone,
2777 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2778 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2779 .alloc_flags = alloc_flags,
2780 .highest_zoneidx = highest_zoneidx,
2781 .direct_compaction = true,
2782 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2783 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2784 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2785 };
2786 struct capture_control capc = {
2787 .cc = &cc,
2788 .page = NULL,
2789 };
2790
2791 /*
2792 * Make sure the structs are really initialized before we expose the
2793 * capture control, in case we are interrupted and the interrupt handler
2794 * frees a page.
2795 */
2796 barrier();
2797 WRITE_ONCE(current->capture_control, &capc);
2798
2799 ret = compact_zone(&cc, &capc);
2800
2801 /*
2802 * Make sure we hide capture control first before we read the captured
2803 * page pointer, otherwise an interrupt could free and capture a page
2804 * and we would leak it.
2805 */
2806 WRITE_ONCE(current->capture_control, NULL);
2807 *capture = READ_ONCE(capc.page);
2808 /*
2809 * Technically, it is also possible that compaction is skipped but
2810 * the page is still captured out of luck(IRQ came and freed the page).
2811 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2812 * the COMPACT[STALL|FAIL] when compaction is skipped.
2813 */
2814 if (*capture)
2815 ret = COMPACT_SUCCESS;
2816
2817 return ret;
2818}
2819
2820/**
2821 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2822 * @gfp_mask: The GFP mask of the current allocation
2823 * @order: The order of the current allocation
2824 * @alloc_flags: The allocation flags of the current allocation
2825 * @ac: The context of current allocation
2826 * @prio: Determines how hard direct compaction should try to succeed
2827 * @capture: Pointer to free page created by compaction will be stored here
2828 *
2829 * This is the main entry point for direct page compaction.
2830 */
2831enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2832 unsigned int alloc_flags, const struct alloc_context *ac,
2833 enum compact_priority prio, struct page **capture)
2834{
2835 struct zoneref *z;
2836 struct zone *zone;
2837 enum compact_result rc = COMPACT_SKIPPED;
2838
2839 if (!gfp_compaction_allowed(gfp_mask))
2840 return COMPACT_SKIPPED;
2841
2842 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2843
2844 /* Compact each zone in the list */
2845 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2846 ac->highest_zoneidx, ac->nodemask) {
2847 enum compact_result status;
2848
2849 if (prio > MIN_COMPACT_PRIORITY
2850 && compaction_deferred(zone, order)) {
2851 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2852 continue;
2853 }
2854
2855 status = compact_zone_order(zone, order, gfp_mask, prio,
2856 alloc_flags, ac->highest_zoneidx, capture);
2857 rc = max(status, rc);
2858
2859 /* The allocation should succeed, stop compacting */
2860 if (status == COMPACT_SUCCESS) {
2861 /*
2862 * We think the allocation will succeed in this zone,
2863 * but it is not certain, hence the false. The caller
2864 * will repeat this with true if allocation indeed
2865 * succeeds in this zone.
2866 */
2867 compaction_defer_reset(zone, order, false);
2868
2869 break;
2870 }
2871
2872 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2873 status == COMPACT_PARTIAL_SKIPPED))
2874 /*
2875 * We think that allocation won't succeed in this zone
2876 * so we defer compaction there. If it ends up
2877 * succeeding after all, it will be reset.
2878 */
2879 defer_compaction(zone, order);
2880
2881 /*
2882 * We might have stopped compacting due to need_resched() in
2883 * async compaction, or due to a fatal signal detected. In that
2884 * case do not try further zones
2885 */
2886 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2887 || fatal_signal_pending(current))
2888 break;
2889 }
2890
2891 return rc;
2892}
2893
2894/*
2895 * compact_node() - compact all zones within a node
2896 * @pgdat: The node page data
2897 * @proactive: Whether the compaction is proactive
2898 *
2899 * For proactive compaction, compact till each zone's fragmentation score
2900 * reaches within proactive compaction thresholds (as determined by the
2901 * proactiveness tunable), it is possible that the function returns before
2902 * reaching score targets due to various back-off conditions, such as,
2903 * contention on per-node or per-zone locks.
2904 */
2905static int compact_node(pg_data_t *pgdat, bool proactive)
2906{
2907 int zoneid;
2908 struct zone *zone;
2909 struct compact_control cc = {
2910 .order = -1,
2911 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2912 .ignore_skip_hint = true,
2913 .whole_zone = true,
2914 .gfp_mask = GFP_KERNEL,
2915 .proactive_compaction = proactive,
2916 };
2917
2918 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2919 zone = &pgdat->node_zones[zoneid];
2920 if (!populated_zone(zone))
2921 continue;
2922
2923 if (fatal_signal_pending(current))
2924 return -EINTR;
2925
2926 cc.zone = zone;
2927
2928 compact_zone(&cc, NULL);
2929
2930 if (proactive) {
2931 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2932 cc.total_migrate_scanned);
2933 count_compact_events(KCOMPACTD_FREE_SCANNED,
2934 cc.total_free_scanned);
2935 }
2936 }
2937
2938 return 0;
2939}
2940
2941/* Compact all zones of all nodes in the system */
2942static int compact_nodes(void)
2943{
2944 int ret, nid;
2945
2946 /* Flush pending updates to the LRU lists */
2947 lru_add_drain_all();
2948
2949 for_each_online_node(nid) {
2950 ret = compact_node(NODE_DATA(nid), false);
2951 if (ret)
2952 return ret;
2953 }
2954
2955 return 0;
2956}
2957
2958static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2959 void *buffer, size_t *length, loff_t *ppos)
2960{
2961 int rc, nid;
2962
2963 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2964 if (rc)
2965 return rc;
2966
2967 if (write && sysctl_compaction_proactiveness) {
2968 for_each_online_node(nid) {
2969 pg_data_t *pgdat = NODE_DATA(nid);
2970
2971 if (pgdat->proactive_compact_trigger)
2972 continue;
2973
2974 pgdat->proactive_compact_trigger = true;
2975 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2976 pgdat->nr_zones - 1);
2977 wake_up_interruptible(&pgdat->kcompactd_wait);
2978 }
2979 }
2980
2981 return 0;
2982}
2983
2984/*
2985 * This is the entry point for compacting all nodes via
2986 * /proc/sys/vm/compact_memory
2987 */
2988static int sysctl_compaction_handler(struct ctl_table *table, int write,
2989 void *buffer, size_t *length, loff_t *ppos)
2990{
2991 int ret;
2992
2993 ret = proc_dointvec(table, write, buffer, length, ppos);
2994 if (ret)
2995 return ret;
2996
2997 if (sysctl_compact_memory != 1)
2998 return -EINVAL;
2999
3000 if (write)
3001 ret = compact_nodes();
3002
3003 return ret;
3004}
3005
3006#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
3007static ssize_t compact_store(struct device *dev,
3008 struct device_attribute *attr,
3009 const char *buf, size_t count)
3010{
3011 int nid = dev->id;
3012
3013 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3014 /* Flush pending updates to the LRU lists */
3015 lru_add_drain_all();
3016
3017 compact_node(NODE_DATA(nid), false);
3018 }
3019
3020 return count;
3021}
3022static DEVICE_ATTR_WO(compact);
3023
3024int compaction_register_node(struct node *node)
3025{
3026 return device_create_file(&node->dev, &dev_attr_compact);
3027}
3028
3029void compaction_unregister_node(struct node *node)
3030{
3031 device_remove_file(&node->dev, &dev_attr_compact);
3032}
3033#endif /* CONFIG_SYSFS && CONFIG_NUMA */
3034
3035static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3036{
3037 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3038 pgdat->proactive_compact_trigger;
3039}
3040
3041static bool kcompactd_node_suitable(pg_data_t *pgdat)
3042{
3043 int zoneid;
3044 struct zone *zone;
3045 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3046 enum compact_result ret;
3047
3048 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3049 zone = &pgdat->node_zones[zoneid];
3050
3051 if (!populated_zone(zone))
3052 continue;
3053
3054 ret = compaction_suit_allocation_order(zone,
3055 pgdat->kcompactd_max_order,
3056 highest_zoneidx, ALLOC_WMARK_MIN);
3057 if (ret == COMPACT_CONTINUE)
3058 return true;
3059 }
3060
3061 return false;
3062}
3063
3064static void kcompactd_do_work(pg_data_t *pgdat)
3065{
3066 /*
3067 * With no special task, compact all zones so that a page of requested
3068 * order is allocatable.
3069 */
3070 int zoneid;
3071 struct zone *zone;
3072 struct compact_control cc = {
3073 .order = pgdat->kcompactd_max_order,
3074 .search_order = pgdat->kcompactd_max_order,
3075 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3076 .mode = MIGRATE_SYNC_LIGHT,
3077 .ignore_skip_hint = false,
3078 .gfp_mask = GFP_KERNEL,
3079 };
3080 enum compact_result ret;
3081
3082 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3083 cc.highest_zoneidx);
3084 count_compact_event(KCOMPACTD_WAKE);
3085
3086 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3087 int status;
3088
3089 zone = &pgdat->node_zones[zoneid];
3090 if (!populated_zone(zone))
3091 continue;
3092
3093 if (compaction_deferred(zone, cc.order))
3094 continue;
3095
3096 ret = compaction_suit_allocation_order(zone,
3097 cc.order, zoneid, ALLOC_WMARK_MIN);
3098 if (ret != COMPACT_CONTINUE)
3099 continue;
3100
3101 if (kthread_should_stop())
3102 return;
3103
3104 cc.zone = zone;
3105 status = compact_zone(&cc, NULL);
3106
3107 if (status == COMPACT_SUCCESS) {
3108 compaction_defer_reset(zone, cc.order, false);
3109 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3110 /*
3111 * Buddy pages may become stranded on pcps that could
3112 * otherwise coalesce on the zone's free area for
3113 * order >= cc.order. This is ratelimited by the
3114 * upcoming deferral.
3115 */
3116 drain_all_pages(zone);
3117
3118 /*
3119 * We use sync migration mode here, so we defer like
3120 * sync direct compaction does.
3121 */
3122 defer_compaction(zone, cc.order);
3123 }
3124
3125 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3126 cc.total_migrate_scanned);
3127 count_compact_events(KCOMPACTD_FREE_SCANNED,
3128 cc.total_free_scanned);
3129 }
3130
3131 /*
3132 * Regardless of success, we are done until woken up next. But remember
3133 * the requested order/highest_zoneidx in case it was higher/tighter
3134 * than our current ones
3135 */
3136 if (pgdat->kcompactd_max_order <= cc.order)
3137 pgdat->kcompactd_max_order = 0;
3138 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3139 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3140}
3141
3142void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3143{
3144 if (!order)
3145 return;
3146
3147 if (pgdat->kcompactd_max_order < order)
3148 pgdat->kcompactd_max_order = order;
3149
3150 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3151 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3152
3153 /*
3154 * Pairs with implicit barrier in wait_event_freezable()
3155 * such that wakeups are not missed.
3156 */
3157 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3158 return;
3159
3160 if (!kcompactd_node_suitable(pgdat))
3161 return;
3162
3163 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3164 highest_zoneidx);
3165 wake_up_interruptible(&pgdat->kcompactd_wait);
3166}
3167
3168/*
3169 * The background compaction daemon, started as a kernel thread
3170 * from the init process.
3171 */
3172static int kcompactd(void *p)
3173{
3174 pg_data_t *pgdat = (pg_data_t *)p;
3175 struct task_struct *tsk = current;
3176 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3177 long timeout = default_timeout;
3178
3179 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3180
3181 if (!cpumask_empty(cpumask))
3182 set_cpus_allowed_ptr(tsk, cpumask);
3183
3184 set_freezable();
3185
3186 pgdat->kcompactd_max_order = 0;
3187 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3188
3189 while (!kthread_should_stop()) {
3190 unsigned long pflags;
3191
3192 /*
3193 * Avoid the unnecessary wakeup for proactive compaction
3194 * when it is disabled.
3195 */
3196 if (!sysctl_compaction_proactiveness)
3197 timeout = MAX_SCHEDULE_TIMEOUT;
3198 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3199 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3200 kcompactd_work_requested(pgdat), timeout) &&
3201 !pgdat->proactive_compact_trigger) {
3202
3203 psi_memstall_enter(&pflags);
3204 kcompactd_do_work(pgdat);
3205 psi_memstall_leave(&pflags);
3206 /*
3207 * Reset the timeout value. The defer timeout from
3208 * proactive compaction is lost here but that is fine
3209 * as the condition of the zone changing substantionally
3210 * then carrying on with the previous defer interval is
3211 * not useful.
3212 */
3213 timeout = default_timeout;
3214 continue;
3215 }
3216
3217 /*
3218 * Start the proactive work with default timeout. Based
3219 * on the fragmentation score, this timeout is updated.
3220 */
3221 timeout = default_timeout;
3222 if (should_proactive_compact_node(pgdat)) {
3223 unsigned int prev_score, score;
3224
3225 prev_score = fragmentation_score_node(pgdat);
3226 compact_node(pgdat, true);
3227 score = fragmentation_score_node(pgdat);
3228 /*
3229 * Defer proactive compaction if the fragmentation
3230 * score did not go down i.e. no progress made.
3231 */
3232 if (unlikely(score >= prev_score))
3233 timeout =
3234 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3235 }
3236 if (unlikely(pgdat->proactive_compact_trigger))
3237 pgdat->proactive_compact_trigger = false;
3238 }
3239
3240 return 0;
3241}
3242
3243/*
3244 * This kcompactd start function will be called by init and node-hot-add.
3245 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3246 */
3247void __meminit kcompactd_run(int nid)
3248{
3249 pg_data_t *pgdat = NODE_DATA(nid);
3250
3251 if (pgdat->kcompactd)
3252 return;
3253
3254 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3255 if (IS_ERR(pgdat->kcompactd)) {
3256 pr_err("Failed to start kcompactd on node %d\n", nid);
3257 pgdat->kcompactd = NULL;
3258 }
3259}
3260
3261/*
3262 * Called by memory hotplug when all memory in a node is offlined. Caller must
3263 * be holding mem_hotplug_begin/done().
3264 */
3265void __meminit kcompactd_stop(int nid)
3266{
3267 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3268
3269 if (kcompactd) {
3270 kthread_stop(kcompactd);
3271 NODE_DATA(nid)->kcompactd = NULL;
3272 }
3273}
3274
3275/*
3276 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3277 * not required for correctness. So if the last cpu in a node goes
3278 * away, we get changed to run anywhere: as the first one comes back,
3279 * restore their cpu bindings.
3280 */
3281static int kcompactd_cpu_online(unsigned int cpu)
3282{
3283 int nid;
3284
3285 for_each_node_state(nid, N_MEMORY) {
3286 pg_data_t *pgdat = NODE_DATA(nid);
3287 const struct cpumask *mask;
3288
3289 mask = cpumask_of_node(pgdat->node_id);
3290
3291 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3292 /* One of our CPUs online: restore mask */
3293 if (pgdat->kcompactd)
3294 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3295 }
3296 return 0;
3297}
3298
3299static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3300 int write, void *buffer, size_t *lenp, loff_t *ppos)
3301{
3302 int ret, old;
3303
3304 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3305 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3306
3307 old = *(int *)table->data;
3308 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3309 if (ret)
3310 return ret;
3311 if (old != *(int *)table->data)
3312 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3313 table->procname, current->comm,
3314 task_pid_nr(current));
3315 return ret;
3316}
3317
3318static struct ctl_table vm_compaction[] = {
3319 {
3320 .procname = "compact_memory",
3321 .data = &sysctl_compact_memory,
3322 .maxlen = sizeof(int),
3323 .mode = 0200,
3324 .proc_handler = sysctl_compaction_handler,
3325 },
3326 {
3327 .procname = "compaction_proactiveness",
3328 .data = &sysctl_compaction_proactiveness,
3329 .maxlen = sizeof(sysctl_compaction_proactiveness),
3330 .mode = 0644,
3331 .proc_handler = compaction_proactiveness_sysctl_handler,
3332 .extra1 = SYSCTL_ZERO,
3333 .extra2 = SYSCTL_ONE_HUNDRED,
3334 },
3335 {
3336 .procname = "extfrag_threshold",
3337 .data = &sysctl_extfrag_threshold,
3338 .maxlen = sizeof(int),
3339 .mode = 0644,
3340 .proc_handler = proc_dointvec_minmax,
3341 .extra1 = SYSCTL_ZERO,
3342 .extra2 = SYSCTL_ONE_THOUSAND,
3343 },
3344 {
3345 .procname = "compact_unevictable_allowed",
3346 .data = &sysctl_compact_unevictable_allowed,
3347 .maxlen = sizeof(int),
3348 .mode = 0644,
3349 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3350 .extra1 = SYSCTL_ZERO,
3351 .extra2 = SYSCTL_ONE,
3352 },
3353};
3354
3355static int __init kcompactd_init(void)
3356{
3357 int nid;
3358 int ret;
3359
3360 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3361 "mm/compaction:online",
3362 kcompactd_cpu_online, NULL);
3363 if (ret < 0) {
3364 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3365 return ret;
3366 }
3367
3368 for_each_node_state(nid, N_MEMORY)
3369 kcompactd_run(nid);
3370 register_sysctl_init("vm", vm_compaction);
3371 return 0;
3372}
3373subsys_initcall(kcompactd_init)
3374
3375#endif /* CONFIG_COMPACTION */