| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Contiguous Memory Allocator |
| 4 | * |
| 5 | * Copyright (c) 2010-2011 by Samsung Electronics. |
| 6 | * Copyright IBM Corporation, 2013 |
| 7 | * Copyright LG Electronics Inc., 2014 |
| 8 | * Written by: |
| 9 | * Marek Szyprowski <m.szyprowski@samsung.com> |
| 10 | * Michal Nazarewicz <mina86@mina86.com> |
| 11 | * Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> |
| 12 | * Joonsoo Kim <iamjoonsoo.kim@lge.com> |
| 13 | */ |
| 14 | |
| 15 | #define pr_fmt(fmt) "cma: " fmt |
| 16 | |
| 17 | #define CREATE_TRACE_POINTS |
| 18 | |
| 19 | #include <linux/memblock.h> |
| 20 | #include <linux/err.h> |
| 21 | #include <linux/list.h> |
| 22 | #include <linux/mm.h> |
| 23 | #include <linux/sizes.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/log2.h> |
| 26 | #include <linux/cma.h> |
| 27 | #include <linux/highmem.h> |
| 28 | #include <linux/io.h> |
| 29 | #include <linux/kmemleak.h> |
| 30 | #include <trace/events/cma.h> |
| 31 | |
| 32 | #include "internal.h" |
| 33 | #include "cma.h" |
| 34 | |
| 35 | struct cma cma_areas[MAX_CMA_AREAS]; |
| 36 | unsigned int cma_area_count; |
| 37 | |
| 38 | static int __init __cma_declare_contiguous_nid(phys_addr_t *basep, |
| 39 | phys_addr_t size, phys_addr_t limit, |
| 40 | phys_addr_t alignment, unsigned int order_per_bit, |
| 41 | bool fixed, const char *name, struct cma **res_cma, |
| 42 | int nid); |
| 43 | |
| 44 | phys_addr_t cma_get_base(const struct cma *cma) |
| 45 | { |
| 46 | WARN_ON_ONCE(cma->nranges != 1); |
| 47 | return PFN_PHYS(cma->ranges[0].base_pfn); |
| 48 | } |
| 49 | |
| 50 | unsigned long cma_get_size(const struct cma *cma) |
| 51 | { |
| 52 | return cma->count << PAGE_SHIFT; |
| 53 | } |
| 54 | |
| 55 | const char *cma_get_name(const struct cma *cma) |
| 56 | { |
| 57 | return cma->name; |
| 58 | } |
| 59 | |
| 60 | static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, |
| 61 | unsigned int align_order) |
| 62 | { |
| 63 | if (align_order <= cma->order_per_bit) |
| 64 | return 0; |
| 65 | return (1UL << (align_order - cma->order_per_bit)) - 1; |
| 66 | } |
| 67 | |
| 68 | /* |
| 69 | * Find the offset of the base PFN from the specified align_order. |
| 70 | * The value returned is represented in order_per_bits. |
| 71 | */ |
| 72 | static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, |
| 73 | const struct cma_memrange *cmr, |
| 74 | unsigned int align_order) |
| 75 | { |
| 76 | return (cmr->base_pfn & ((1UL << align_order) - 1)) |
| 77 | >> cma->order_per_bit; |
| 78 | } |
| 79 | |
| 80 | static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, |
| 81 | unsigned long pages) |
| 82 | { |
| 83 | return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; |
| 84 | } |
| 85 | |
| 86 | static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr, |
| 87 | unsigned long pfn, unsigned long count) |
| 88 | { |
| 89 | unsigned long bitmap_no, bitmap_count; |
| 90 | unsigned long flags; |
| 91 | |
| 92 | bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit; |
| 93 | bitmap_count = cma_bitmap_pages_to_bits(cma, count); |
| 94 | |
| 95 | spin_lock_irqsave(&cma->lock, flags); |
| 96 | bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count); |
| 97 | cma->available_count += count; |
| 98 | spin_unlock_irqrestore(&cma->lock, flags); |
| 99 | } |
| 100 | |
| 101 | /* |
| 102 | * Check if a CMA area contains no ranges that intersect with |
| 103 | * multiple zones. Store the result in the flags in case |
| 104 | * this gets called more than once. |
| 105 | */ |
| 106 | bool cma_validate_zones(struct cma *cma) |
| 107 | { |
| 108 | int r; |
| 109 | unsigned long base_pfn; |
| 110 | struct cma_memrange *cmr; |
| 111 | bool valid_bit_set; |
| 112 | |
| 113 | /* |
| 114 | * If already validated, return result of previous check. |
| 115 | * Either the valid or invalid bit will be set if this |
| 116 | * check has already been done. If neither is set, the |
| 117 | * check has not been performed yet. |
| 118 | */ |
| 119 | valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags); |
| 120 | if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags)) |
| 121 | return valid_bit_set; |
| 122 | |
| 123 | for (r = 0; r < cma->nranges; r++) { |
| 124 | cmr = &cma->ranges[r]; |
| 125 | base_pfn = cmr->base_pfn; |
| 126 | |
| 127 | /* |
| 128 | * alloc_contig_range() requires the pfn range specified |
| 129 | * to be in the same zone. Simplify by forcing the entire |
| 130 | * CMA resv range to be in the same zone. |
| 131 | */ |
| 132 | WARN_ON_ONCE(!pfn_valid(base_pfn)); |
| 133 | if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) { |
| 134 | set_bit(CMA_ZONES_INVALID, &cma->flags); |
| 135 | return false; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | set_bit(CMA_ZONES_VALID, &cma->flags); |
| 140 | |
| 141 | return true; |
| 142 | } |
| 143 | |
| 144 | static void __init cma_activate_area(struct cma *cma) |
| 145 | { |
| 146 | unsigned long pfn, end_pfn, early_pfn[CMA_MAX_RANGES]; |
| 147 | int allocrange, r; |
| 148 | struct cma_memrange *cmr; |
| 149 | unsigned long bitmap_count, count; |
| 150 | |
| 151 | for (allocrange = 0; allocrange < cma->nranges; allocrange++) { |
| 152 | cmr = &cma->ranges[allocrange]; |
| 153 | early_pfn[allocrange] = cmr->early_pfn; |
| 154 | cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr), |
| 155 | GFP_KERNEL); |
| 156 | if (!cmr->bitmap) |
| 157 | goto cleanup; |
| 158 | } |
| 159 | |
| 160 | if (!cma_validate_zones(cma)) |
| 161 | goto cleanup; |
| 162 | |
| 163 | for (r = 0; r < cma->nranges; r++) { |
| 164 | cmr = &cma->ranges[r]; |
| 165 | if (early_pfn[r] != cmr->base_pfn) { |
| 166 | count = early_pfn[r] - cmr->base_pfn; |
| 167 | bitmap_count = cma_bitmap_pages_to_bits(cma, count); |
| 168 | bitmap_set(cmr->bitmap, 0, bitmap_count); |
| 169 | } |
| 170 | |
| 171 | for (pfn = early_pfn[r]; pfn < cmr->base_pfn + cmr->count; |
| 172 | pfn += pageblock_nr_pages) |
| 173 | init_cma_reserved_pageblock(pfn_to_page(pfn)); |
| 174 | } |
| 175 | |
| 176 | spin_lock_init(&cma->lock); |
| 177 | |
| 178 | mutex_init(&cma->alloc_mutex); |
| 179 | |
| 180 | #ifdef CONFIG_CMA_DEBUGFS |
| 181 | INIT_HLIST_HEAD(&cma->mem_head); |
| 182 | spin_lock_init(&cma->mem_head_lock); |
| 183 | #endif |
| 184 | set_bit(CMA_ACTIVATED, &cma->flags); |
| 185 | |
| 186 | return; |
| 187 | |
| 188 | cleanup: |
| 189 | for (r = 0; r < allocrange; r++) |
| 190 | bitmap_free(cma->ranges[r].bitmap); |
| 191 | |
| 192 | /* Expose all pages to the buddy, they are useless for CMA. */ |
| 193 | if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) { |
| 194 | for (r = 0; r < allocrange; r++) { |
| 195 | cmr = &cma->ranges[r]; |
| 196 | end_pfn = cmr->base_pfn + cmr->count; |
| 197 | for (pfn = early_pfn[r]; pfn < end_pfn; pfn++) |
| 198 | free_reserved_page(pfn_to_page(pfn)); |
| 199 | } |
| 200 | } |
| 201 | totalcma_pages -= cma->count; |
| 202 | cma->available_count = cma->count = 0; |
| 203 | pr_err("CMA area %s could not be activated\n", cma->name); |
| 204 | } |
| 205 | |
| 206 | static int __init cma_init_reserved_areas(void) |
| 207 | { |
| 208 | int i; |
| 209 | |
| 210 | for (i = 0; i < cma_area_count; i++) |
| 211 | cma_activate_area(&cma_areas[i]); |
| 212 | |
| 213 | return 0; |
| 214 | } |
| 215 | core_initcall(cma_init_reserved_areas); |
| 216 | |
| 217 | void __init cma_reserve_pages_on_error(struct cma *cma) |
| 218 | { |
| 219 | set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags); |
| 220 | } |
| 221 | |
| 222 | static int __init cma_new_area(const char *name, phys_addr_t size, |
| 223 | unsigned int order_per_bit, |
| 224 | struct cma **res_cma) |
| 225 | { |
| 226 | struct cma *cma; |
| 227 | |
| 228 | if (cma_area_count == ARRAY_SIZE(cma_areas)) { |
| 229 | pr_err("Not enough slots for CMA reserved regions!\n"); |
| 230 | return -ENOSPC; |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * Each reserved area must be initialised later, when more kernel |
| 235 | * subsystems (like slab allocator) are available. |
| 236 | */ |
| 237 | cma = &cma_areas[cma_area_count]; |
| 238 | cma_area_count++; |
| 239 | |
| 240 | if (name) |
| 241 | snprintf(cma->name, CMA_MAX_NAME, "%s", name); |
| 242 | else |
| 243 | snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count); |
| 244 | |
| 245 | cma->available_count = cma->count = size >> PAGE_SHIFT; |
| 246 | cma->order_per_bit = order_per_bit; |
| 247 | *res_cma = cma; |
| 248 | totalcma_pages += cma->count; |
| 249 | |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | static void __init cma_drop_area(struct cma *cma) |
| 254 | { |
| 255 | totalcma_pages -= cma->count; |
| 256 | cma_area_count--; |
| 257 | } |
| 258 | |
| 259 | /** |
| 260 | * cma_init_reserved_mem() - create custom contiguous area from reserved memory |
| 261 | * @base: Base address of the reserved area |
| 262 | * @size: Size of the reserved area (in bytes), |
| 263 | * @order_per_bit: Order of pages represented by one bit on bitmap. |
| 264 | * @name: The name of the area. If this parameter is NULL, the name of |
| 265 | * the area will be set to "cmaN", where N is a running counter of |
| 266 | * used areas. |
| 267 | * @res_cma: Pointer to store the created cma region. |
| 268 | * |
| 269 | * This function creates custom contiguous area from already reserved memory. |
| 270 | */ |
| 271 | int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, |
| 272 | unsigned int order_per_bit, |
| 273 | const char *name, |
| 274 | struct cma **res_cma) |
| 275 | { |
| 276 | struct cma *cma; |
| 277 | int ret; |
| 278 | |
| 279 | /* Sanity checks */ |
| 280 | if (!size || !memblock_is_region_reserved(base, size)) |
| 281 | return -EINVAL; |
| 282 | |
| 283 | /* |
| 284 | * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which |
| 285 | * needs pageblock_order to be initialized. Let's enforce it. |
| 286 | */ |
| 287 | if (!pageblock_order) { |
| 288 | pr_err("pageblock_order not yet initialized. Called during early boot?\n"); |
| 289 | return -EINVAL; |
| 290 | } |
| 291 | |
| 292 | /* ensure minimal alignment required by mm core */ |
| 293 | if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) |
| 294 | return -EINVAL; |
| 295 | |
| 296 | ret = cma_new_area(name, size, order_per_bit, &cma); |
| 297 | if (ret != 0) |
| 298 | return ret; |
| 299 | |
| 300 | cma->ranges[0].base_pfn = PFN_DOWN(base); |
| 301 | cma->ranges[0].early_pfn = PFN_DOWN(base); |
| 302 | cma->ranges[0].count = cma->count; |
| 303 | cma->nranges = 1; |
| 304 | cma->nid = NUMA_NO_NODE; |
| 305 | |
| 306 | *res_cma = cma; |
| 307 | |
| 308 | return 0; |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * Structure used while walking physical memory ranges and finding out |
| 313 | * which one(s) to use for a CMA area. |
| 314 | */ |
| 315 | struct cma_init_memrange { |
| 316 | phys_addr_t base; |
| 317 | phys_addr_t size; |
| 318 | struct list_head list; |
| 319 | }; |
| 320 | |
| 321 | /* |
| 322 | * Work array used during CMA initialization. |
| 323 | */ |
| 324 | static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata; |
| 325 | |
| 326 | static bool __init revsizecmp(struct cma_init_memrange *mlp, |
| 327 | struct cma_init_memrange *mrp) |
| 328 | { |
| 329 | return mlp->size > mrp->size; |
| 330 | } |
| 331 | |
| 332 | static bool __init basecmp(struct cma_init_memrange *mlp, |
| 333 | struct cma_init_memrange *mrp) |
| 334 | { |
| 335 | return mlp->base < mrp->base; |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * Helper function to create sorted lists. |
| 340 | */ |
| 341 | static void __init list_insert_sorted( |
| 342 | struct list_head *ranges, |
| 343 | struct cma_init_memrange *mrp, |
| 344 | bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh)) |
| 345 | { |
| 346 | struct list_head *mp; |
| 347 | struct cma_init_memrange *mlp; |
| 348 | |
| 349 | if (list_empty(ranges)) |
| 350 | list_add(&mrp->list, ranges); |
| 351 | else { |
| 352 | list_for_each(mp, ranges) { |
| 353 | mlp = list_entry(mp, struct cma_init_memrange, list); |
| 354 | if (cmp(mlp, mrp)) |
| 355 | break; |
| 356 | } |
| 357 | __list_add(&mrp->list, mlp->list.prev, &mlp->list); |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | /* |
| 362 | * Create CMA areas with a total size of @total_size. A normal allocation |
| 363 | * for one area is tried first. If that fails, the biggest memblock |
| 364 | * ranges above 4G are selected, and allocated bottom up. |
| 365 | * |
| 366 | * The complexity here is not great, but this function will only be |
| 367 | * called during boot, and the lists operated on have fewer than |
| 368 | * CMA_MAX_RANGES elements (default value: 8). |
| 369 | */ |
| 370 | int __init cma_declare_contiguous_multi(phys_addr_t total_size, |
| 371 | phys_addr_t align, unsigned int order_per_bit, |
| 372 | const char *name, struct cma **res_cma, int nid) |
| 373 | { |
| 374 | phys_addr_t start = 0, end; |
| 375 | phys_addr_t size, sizesum, sizeleft; |
| 376 | struct cma_init_memrange *mrp, *mlp, *failed; |
| 377 | struct cma_memrange *cmrp; |
| 378 | LIST_HEAD(ranges); |
| 379 | LIST_HEAD(final_ranges); |
| 380 | struct list_head *mp, *next; |
| 381 | int ret, nr = 1; |
| 382 | u64 i; |
| 383 | struct cma *cma; |
| 384 | |
| 385 | /* |
| 386 | * First, try it the normal way, producing just one range. |
| 387 | */ |
| 388 | ret = __cma_declare_contiguous_nid(&start, total_size, 0, align, |
| 389 | order_per_bit, false, name, res_cma, nid); |
| 390 | if (ret != -ENOMEM) |
| 391 | goto out; |
| 392 | |
| 393 | /* |
| 394 | * Couldn't find one range that fits our needs, so try multiple |
| 395 | * ranges. |
| 396 | * |
| 397 | * No need to do the alignment checks here, the call to |
| 398 | * cma_declare_contiguous_nid above would have caught |
| 399 | * any issues. With the checks, we know that: |
| 400 | * |
| 401 | * - @align is a power of 2 |
| 402 | * - @align is >= pageblock alignment |
| 403 | * - @size is aligned to @align and to @order_per_bit |
| 404 | * |
| 405 | * So, as long as we create ranges that have a base |
| 406 | * aligned to @align, and a size that is aligned to |
| 407 | * both @align and @order_to_bit, things will work out. |
| 408 | */ |
| 409 | nr = 0; |
| 410 | sizesum = 0; |
| 411 | failed = NULL; |
| 412 | |
| 413 | ret = cma_new_area(name, total_size, order_per_bit, &cma); |
| 414 | if (ret != 0) |
| 415 | goto out; |
| 416 | |
| 417 | align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); |
| 418 | /* |
| 419 | * Create a list of ranges above 4G, largest range first. |
| 420 | */ |
| 421 | for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) { |
| 422 | if (upper_32_bits(start) == 0) |
| 423 | continue; |
| 424 | |
| 425 | start = ALIGN(start, align); |
| 426 | if (start >= end) |
| 427 | continue; |
| 428 | |
| 429 | end = ALIGN_DOWN(end, align); |
| 430 | if (end <= start) |
| 431 | continue; |
| 432 | |
| 433 | size = end - start; |
| 434 | size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit)); |
| 435 | if (!size) |
| 436 | continue; |
| 437 | sizesum += size; |
| 438 | |
| 439 | pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end); |
| 440 | |
| 441 | /* |
| 442 | * If we don't yet have used the maximum number of |
| 443 | * areas, grab a new one. |
| 444 | * |
| 445 | * If we can't use anymore, see if this range is not |
| 446 | * smaller than the smallest one already recorded. If |
| 447 | * not, re-use the smallest element. |
| 448 | */ |
| 449 | if (nr < CMA_MAX_RANGES) |
| 450 | mrp = &memranges[nr++]; |
| 451 | else { |
| 452 | mrp = list_last_entry(&ranges, |
| 453 | struct cma_init_memrange, list); |
| 454 | if (size < mrp->size) |
| 455 | continue; |
| 456 | list_del(&mrp->list); |
| 457 | sizesum -= mrp->size; |
| 458 | pr_debug("deleted %016llx - %016llx from the list\n", |
| 459 | (u64)mrp->base, (u64)mrp->base + size); |
| 460 | } |
| 461 | mrp->base = start; |
| 462 | mrp->size = size; |
| 463 | |
| 464 | /* |
| 465 | * Now do a sorted insert. |
| 466 | */ |
| 467 | list_insert_sorted(&ranges, mrp, revsizecmp); |
| 468 | pr_debug("added %016llx - %016llx to the list\n", |
| 469 | (u64)mrp->base, (u64)mrp->base + size); |
| 470 | pr_debug("total size now %llu\n", (u64)sizesum); |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * There is not enough room in the CMA_MAX_RANGES largest |
| 475 | * ranges, so bail out. |
| 476 | */ |
| 477 | if (sizesum < total_size) { |
| 478 | cma_drop_area(cma); |
| 479 | ret = -ENOMEM; |
| 480 | goto out; |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * Found ranges that provide enough combined space. |
| 485 | * Now, sorted them by address, smallest first, because we |
| 486 | * want to mimic a bottom-up memblock allocation. |
| 487 | */ |
| 488 | sizesum = 0; |
| 489 | list_for_each_safe(mp, next, &ranges) { |
| 490 | mlp = list_entry(mp, struct cma_init_memrange, list); |
| 491 | list_del(mp); |
| 492 | list_insert_sorted(&final_ranges, mlp, basecmp); |
| 493 | sizesum += mlp->size; |
| 494 | if (sizesum >= total_size) |
| 495 | break; |
| 496 | } |
| 497 | |
| 498 | /* |
| 499 | * Walk the final list, and add a CMA range for |
| 500 | * each range, possibly not using the last one fully. |
| 501 | */ |
| 502 | nr = 0; |
| 503 | sizeleft = total_size; |
| 504 | list_for_each(mp, &final_ranges) { |
| 505 | mlp = list_entry(mp, struct cma_init_memrange, list); |
| 506 | size = min(sizeleft, mlp->size); |
| 507 | if (memblock_reserve(mlp->base, size)) { |
| 508 | /* |
| 509 | * Unexpected error. Could go on to |
| 510 | * the next one, but just abort to |
| 511 | * be safe. |
| 512 | */ |
| 513 | failed = mlp; |
| 514 | break; |
| 515 | } |
| 516 | |
| 517 | pr_debug("created region %d: %016llx - %016llx\n", |
| 518 | nr, (u64)mlp->base, (u64)mlp->base + size); |
| 519 | cmrp = &cma->ranges[nr++]; |
| 520 | cmrp->base_pfn = PHYS_PFN(mlp->base); |
| 521 | cmrp->early_pfn = cmrp->base_pfn; |
| 522 | cmrp->count = size >> PAGE_SHIFT; |
| 523 | |
| 524 | sizeleft -= size; |
| 525 | if (sizeleft == 0) |
| 526 | break; |
| 527 | } |
| 528 | |
| 529 | if (failed) { |
| 530 | list_for_each(mp, &final_ranges) { |
| 531 | mlp = list_entry(mp, struct cma_init_memrange, list); |
| 532 | if (mlp == failed) |
| 533 | break; |
| 534 | memblock_phys_free(mlp->base, mlp->size); |
| 535 | } |
| 536 | cma_drop_area(cma); |
| 537 | ret = -ENOMEM; |
| 538 | goto out; |
| 539 | } |
| 540 | |
| 541 | cma->nranges = nr; |
| 542 | cma->nid = nid; |
| 543 | *res_cma = cma; |
| 544 | |
| 545 | out: |
| 546 | if (ret != 0) |
| 547 | pr_err("Failed to reserve %lu MiB\n", |
| 548 | (unsigned long)total_size / SZ_1M); |
| 549 | else |
| 550 | pr_info("Reserved %lu MiB in %d range%s\n", |
| 551 | (unsigned long)total_size / SZ_1M, nr, |
| 552 | nr > 1 ? "s" : ""); |
| 553 | return ret; |
| 554 | } |
| 555 | |
| 556 | /** |
| 557 | * cma_declare_contiguous_nid() - reserve custom contiguous area |
| 558 | * @base: Base address of the reserved area optional, use 0 for any |
| 559 | * @size: Size of the reserved area (in bytes), |
| 560 | * @limit: End address of the reserved memory (optional, 0 for any). |
| 561 | * @alignment: Alignment for the CMA area, should be power of 2 or zero |
| 562 | * @order_per_bit: Order of pages represented by one bit on bitmap. |
| 563 | * @fixed: hint about where to place the reserved area |
| 564 | * @name: The name of the area. See function cma_init_reserved_mem() |
| 565 | * @res_cma: Pointer to store the created cma region. |
| 566 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 567 | * |
| 568 | * This function reserves memory from early allocator. It should be |
| 569 | * called by arch specific code once the early allocator (memblock or bootmem) |
| 570 | * has been activated and all other subsystems have already allocated/reserved |
| 571 | * memory. This function allows to create custom reserved areas. |
| 572 | * |
| 573 | * If @fixed is true, reserve contiguous area at exactly @base. If false, |
| 574 | * reserve in range from @base to @limit. |
| 575 | */ |
| 576 | int __init cma_declare_contiguous_nid(phys_addr_t base, |
| 577 | phys_addr_t size, phys_addr_t limit, |
| 578 | phys_addr_t alignment, unsigned int order_per_bit, |
| 579 | bool fixed, const char *name, struct cma **res_cma, |
| 580 | int nid) |
| 581 | { |
| 582 | int ret; |
| 583 | |
| 584 | ret = __cma_declare_contiguous_nid(&base, size, limit, alignment, |
| 585 | order_per_bit, fixed, name, res_cma, nid); |
| 586 | if (ret != 0) |
| 587 | pr_err("Failed to reserve %ld MiB\n", |
| 588 | (unsigned long)size / SZ_1M); |
| 589 | else |
| 590 | pr_info("Reserved %ld MiB at %pa\n", |
| 591 | (unsigned long)size / SZ_1M, &base); |
| 592 | |
| 593 | return ret; |
| 594 | } |
| 595 | |
| 596 | static int __init __cma_declare_contiguous_nid(phys_addr_t *basep, |
| 597 | phys_addr_t size, phys_addr_t limit, |
| 598 | phys_addr_t alignment, unsigned int order_per_bit, |
| 599 | bool fixed, const char *name, struct cma **res_cma, |
| 600 | int nid) |
| 601 | { |
| 602 | phys_addr_t memblock_end = memblock_end_of_DRAM(); |
| 603 | phys_addr_t highmem_start, base = *basep; |
| 604 | int ret; |
| 605 | |
| 606 | /* |
| 607 | * We can't use __pa(high_memory) directly, since high_memory |
| 608 | * isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly) |
| 609 | * complain. Find the boundary by adding one to the last valid |
| 610 | * address. |
| 611 | */ |
| 612 | if (IS_ENABLED(CONFIG_HIGHMEM)) |
| 613 | highmem_start = __pa(high_memory - 1) + 1; |
| 614 | else |
| 615 | highmem_start = memblock_end_of_DRAM(); |
| 616 | pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n", |
| 617 | __func__, &size, &base, &limit, &alignment); |
| 618 | |
| 619 | if (cma_area_count == ARRAY_SIZE(cma_areas)) { |
| 620 | pr_err("Not enough slots for CMA reserved regions!\n"); |
| 621 | return -ENOSPC; |
| 622 | } |
| 623 | |
| 624 | if (!size) |
| 625 | return -EINVAL; |
| 626 | |
| 627 | if (alignment && !is_power_of_2(alignment)) |
| 628 | return -EINVAL; |
| 629 | |
| 630 | if (!IS_ENABLED(CONFIG_NUMA)) |
| 631 | nid = NUMA_NO_NODE; |
| 632 | |
| 633 | /* Sanitise input arguments. */ |
| 634 | alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); |
| 635 | if (fixed && base & (alignment - 1)) { |
| 636 | pr_err("Region at %pa must be aligned to %pa bytes\n", |
| 637 | &base, &alignment); |
| 638 | return -EINVAL; |
| 639 | } |
| 640 | base = ALIGN(base, alignment); |
| 641 | size = ALIGN(size, alignment); |
| 642 | limit &= ~(alignment - 1); |
| 643 | |
| 644 | if (!base) |
| 645 | fixed = false; |
| 646 | |
| 647 | /* size should be aligned with order_per_bit */ |
| 648 | if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit)) |
| 649 | return -EINVAL; |
| 650 | |
| 651 | /* |
| 652 | * If allocating at a fixed base the request region must not cross the |
| 653 | * low/high memory boundary. |
| 654 | */ |
| 655 | if (fixed && base < highmem_start && base + size > highmem_start) { |
| 656 | pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", |
| 657 | &base, &highmem_start); |
| 658 | return -EINVAL; |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | * If the limit is unspecified or above the memblock end, its effective |
| 663 | * value will be the memblock end. Set it explicitly to simplify further |
| 664 | * checks. |
| 665 | */ |
| 666 | if (limit == 0 || limit > memblock_end) |
| 667 | limit = memblock_end; |
| 668 | |
| 669 | if (base + size > limit) { |
| 670 | pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", |
| 671 | &size, &base, &limit); |
| 672 | return -EINVAL; |
| 673 | } |
| 674 | |
| 675 | /* Reserve memory */ |
| 676 | if (fixed) { |
| 677 | if (memblock_is_region_reserved(base, size) || |
| 678 | memblock_reserve(base, size) < 0) { |
| 679 | return -EBUSY; |
| 680 | } |
| 681 | } else { |
| 682 | phys_addr_t addr = 0; |
| 683 | |
| 684 | /* |
| 685 | * If there is enough memory, try a bottom-up allocation first. |
| 686 | * It will place the new cma area close to the start of the node |
| 687 | * and guarantee that the compaction is moving pages out of the |
| 688 | * cma area and not into it. |
| 689 | * Avoid using first 4GB to not interfere with constrained zones |
| 690 | * like DMA/DMA32. |
| 691 | */ |
| 692 | #ifdef CONFIG_PHYS_ADDR_T_64BIT |
| 693 | if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) { |
| 694 | memblock_set_bottom_up(true); |
| 695 | addr = memblock_alloc_range_nid(size, alignment, SZ_4G, |
| 696 | limit, nid, true); |
| 697 | memblock_set_bottom_up(false); |
| 698 | } |
| 699 | #endif |
| 700 | |
| 701 | /* |
| 702 | * All pages in the reserved area must come from the same zone. |
| 703 | * If the requested region crosses the low/high memory boundary, |
| 704 | * try allocating from high memory first and fall back to low |
| 705 | * memory in case of failure. |
| 706 | */ |
| 707 | if (!addr && base < highmem_start && limit > highmem_start) { |
| 708 | addr = memblock_alloc_range_nid(size, alignment, |
| 709 | highmem_start, limit, nid, true); |
| 710 | limit = highmem_start; |
| 711 | } |
| 712 | |
| 713 | if (!addr) { |
| 714 | addr = memblock_alloc_range_nid(size, alignment, base, |
| 715 | limit, nid, true); |
| 716 | if (!addr) |
| 717 | return -ENOMEM; |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * kmemleak scans/reads tracked objects for pointers to other |
| 722 | * objects but this address isn't mapped and accessible |
| 723 | */ |
| 724 | kmemleak_ignore_phys(addr); |
| 725 | base = addr; |
| 726 | } |
| 727 | |
| 728 | ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); |
| 729 | if (ret) { |
| 730 | memblock_phys_free(base, size); |
| 731 | return ret; |
| 732 | } |
| 733 | |
| 734 | (*res_cma)->nid = nid; |
| 735 | *basep = base; |
| 736 | |
| 737 | return 0; |
| 738 | } |
| 739 | |
| 740 | static void cma_debug_show_areas(struct cma *cma) |
| 741 | { |
| 742 | unsigned long next_zero_bit, next_set_bit, nr_zero; |
| 743 | unsigned long start; |
| 744 | unsigned long nr_part; |
| 745 | unsigned long nbits; |
| 746 | int r; |
| 747 | struct cma_memrange *cmr; |
| 748 | |
| 749 | spin_lock_irq(&cma->lock); |
| 750 | pr_info("number of available pages: "); |
| 751 | for (r = 0; r < cma->nranges; r++) { |
| 752 | cmr = &cma->ranges[r]; |
| 753 | |
| 754 | start = 0; |
| 755 | nbits = cma_bitmap_maxno(cma, cmr); |
| 756 | |
| 757 | pr_info("range %d: ", r); |
| 758 | for (;;) { |
| 759 | next_zero_bit = find_next_zero_bit(cmr->bitmap, |
| 760 | nbits, start); |
| 761 | if (next_zero_bit >= nbits) |
| 762 | break; |
| 763 | next_set_bit = find_next_bit(cmr->bitmap, nbits, |
| 764 | next_zero_bit); |
| 765 | nr_zero = next_set_bit - next_zero_bit; |
| 766 | nr_part = nr_zero << cma->order_per_bit; |
| 767 | pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, |
| 768 | next_zero_bit); |
| 769 | start = next_zero_bit + nr_zero; |
| 770 | } |
| 771 | pr_info("\n"); |
| 772 | } |
| 773 | pr_cont("=> %lu free of %lu total pages\n", cma->available_count, |
| 774 | cma->count); |
| 775 | spin_unlock_irq(&cma->lock); |
| 776 | } |
| 777 | |
| 778 | static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr, |
| 779 | unsigned long count, unsigned int align, |
| 780 | struct page **pagep, gfp_t gfp) |
| 781 | { |
| 782 | unsigned long mask, offset; |
| 783 | unsigned long pfn = -1; |
| 784 | unsigned long start = 0; |
| 785 | unsigned long bitmap_maxno, bitmap_no, bitmap_count; |
| 786 | int ret = -EBUSY; |
| 787 | struct page *page = NULL; |
| 788 | |
| 789 | mask = cma_bitmap_aligned_mask(cma, align); |
| 790 | offset = cma_bitmap_aligned_offset(cma, cmr, align); |
| 791 | bitmap_maxno = cma_bitmap_maxno(cma, cmr); |
| 792 | bitmap_count = cma_bitmap_pages_to_bits(cma, count); |
| 793 | |
| 794 | if (bitmap_count > bitmap_maxno) |
| 795 | goto out; |
| 796 | |
| 797 | for (;;) { |
| 798 | spin_lock_irq(&cma->lock); |
| 799 | /* |
| 800 | * If the request is larger than the available number |
| 801 | * of pages, stop right away. |
| 802 | */ |
| 803 | if (count > cma->available_count) { |
| 804 | spin_unlock_irq(&cma->lock); |
| 805 | break; |
| 806 | } |
| 807 | bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap, |
| 808 | bitmap_maxno, start, bitmap_count, mask, |
| 809 | offset); |
| 810 | if (bitmap_no >= bitmap_maxno) { |
| 811 | spin_unlock_irq(&cma->lock); |
| 812 | break; |
| 813 | } |
| 814 | bitmap_set(cmr->bitmap, bitmap_no, bitmap_count); |
| 815 | cma->available_count -= count; |
| 816 | /* |
| 817 | * It's safe to drop the lock here. We've marked this region for |
| 818 | * our exclusive use. If the migration fails we will take the |
| 819 | * lock again and unmark it. |
| 820 | */ |
| 821 | spin_unlock_irq(&cma->lock); |
| 822 | |
| 823 | pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit); |
| 824 | mutex_lock(&cma->alloc_mutex); |
| 825 | ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp); |
| 826 | mutex_unlock(&cma->alloc_mutex); |
| 827 | if (ret == 0) { |
| 828 | page = pfn_to_page(pfn); |
| 829 | break; |
| 830 | } |
| 831 | |
| 832 | cma_clear_bitmap(cma, cmr, pfn, count); |
| 833 | if (ret != -EBUSY) |
| 834 | break; |
| 835 | |
| 836 | pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n", |
| 837 | __func__, pfn, pfn_to_page(pfn)); |
| 838 | |
| 839 | trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn), |
| 840 | count, align); |
| 841 | /* try again with a bit different memory target */ |
| 842 | start = bitmap_no + mask + 1; |
| 843 | } |
| 844 | out: |
| 845 | *pagep = page; |
| 846 | return ret; |
| 847 | } |
| 848 | |
| 849 | static struct page *__cma_alloc(struct cma *cma, unsigned long count, |
| 850 | unsigned int align, gfp_t gfp) |
| 851 | { |
| 852 | struct page *page = NULL; |
| 853 | int ret = -ENOMEM, r; |
| 854 | unsigned long i; |
| 855 | const char *name = cma ? cma->name : NULL; |
| 856 | |
| 857 | trace_cma_alloc_start(name, count, align); |
| 858 | |
| 859 | if (!cma || !cma->count) |
| 860 | return page; |
| 861 | |
| 862 | pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, |
| 863 | (void *)cma, cma->name, count, align); |
| 864 | |
| 865 | if (!count) |
| 866 | return page; |
| 867 | |
| 868 | for (r = 0; r < cma->nranges; r++) { |
| 869 | page = NULL; |
| 870 | |
| 871 | ret = cma_range_alloc(cma, &cma->ranges[r], count, align, |
| 872 | &page, gfp); |
| 873 | if (ret != -EBUSY || page) |
| 874 | break; |
| 875 | } |
| 876 | |
| 877 | /* |
| 878 | * CMA can allocate multiple page blocks, which results in different |
| 879 | * blocks being marked with different tags. Reset the tags to ignore |
| 880 | * those page blocks. |
| 881 | */ |
| 882 | if (page) { |
| 883 | for (i = 0; i < count; i++) |
| 884 | page_kasan_tag_reset(nth_page(page, i)); |
| 885 | } |
| 886 | |
| 887 | if (ret && !(gfp & __GFP_NOWARN)) { |
| 888 | pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n", |
| 889 | __func__, cma->name, count, ret); |
| 890 | cma_debug_show_areas(cma); |
| 891 | } |
| 892 | |
| 893 | pr_debug("%s(): returned %p\n", __func__, page); |
| 894 | trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0, |
| 895 | page, count, align, ret); |
| 896 | if (page) { |
| 897 | count_vm_event(CMA_ALLOC_SUCCESS); |
| 898 | cma_sysfs_account_success_pages(cma, count); |
| 899 | } else { |
| 900 | count_vm_event(CMA_ALLOC_FAIL); |
| 901 | cma_sysfs_account_fail_pages(cma, count); |
| 902 | } |
| 903 | |
| 904 | return page; |
| 905 | } |
| 906 | |
| 907 | /** |
| 908 | * cma_alloc() - allocate pages from contiguous area |
| 909 | * @cma: Contiguous memory region for which the allocation is performed. |
| 910 | * @count: Requested number of pages. |
| 911 | * @align: Requested alignment of pages (in PAGE_SIZE order). |
| 912 | * @no_warn: Avoid printing message about failed allocation |
| 913 | * |
| 914 | * This function allocates part of contiguous memory on specific |
| 915 | * contiguous memory area. |
| 916 | */ |
| 917 | struct page *cma_alloc(struct cma *cma, unsigned long count, |
| 918 | unsigned int align, bool no_warn) |
| 919 | { |
| 920 | return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0)); |
| 921 | } |
| 922 | |
| 923 | struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp) |
| 924 | { |
| 925 | struct page *page; |
| 926 | |
| 927 | if (WARN_ON(!order || !(gfp & __GFP_COMP))) |
| 928 | return NULL; |
| 929 | |
| 930 | page = __cma_alloc(cma, 1 << order, order, gfp); |
| 931 | |
| 932 | return page ? page_folio(page) : NULL; |
| 933 | } |
| 934 | |
| 935 | bool cma_pages_valid(struct cma *cma, const struct page *pages, |
| 936 | unsigned long count) |
| 937 | { |
| 938 | unsigned long pfn, end; |
| 939 | int r; |
| 940 | struct cma_memrange *cmr; |
| 941 | bool ret; |
| 942 | |
| 943 | if (!cma || !pages || count > cma->count) |
| 944 | return false; |
| 945 | |
| 946 | pfn = page_to_pfn(pages); |
| 947 | ret = false; |
| 948 | |
| 949 | for (r = 0; r < cma->nranges; r++) { |
| 950 | cmr = &cma->ranges[r]; |
| 951 | end = cmr->base_pfn + cmr->count; |
| 952 | if (pfn >= cmr->base_pfn && pfn < end) { |
| 953 | ret = pfn + count <= end; |
| 954 | break; |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | if (!ret) |
| 959 | pr_debug("%s(page %p, count %lu)\n", |
| 960 | __func__, (void *)pages, count); |
| 961 | |
| 962 | return ret; |
| 963 | } |
| 964 | |
| 965 | /** |
| 966 | * cma_release() - release allocated pages |
| 967 | * @cma: Contiguous memory region for which the allocation is performed. |
| 968 | * @pages: Allocated pages. |
| 969 | * @count: Number of allocated pages. |
| 970 | * |
| 971 | * This function releases memory allocated by cma_alloc(). |
| 972 | * It returns false when provided pages do not belong to contiguous area and |
| 973 | * true otherwise. |
| 974 | */ |
| 975 | bool cma_release(struct cma *cma, const struct page *pages, |
| 976 | unsigned long count) |
| 977 | { |
| 978 | struct cma_memrange *cmr; |
| 979 | unsigned long pfn, end_pfn; |
| 980 | int r; |
| 981 | |
| 982 | pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); |
| 983 | |
| 984 | if (!cma_pages_valid(cma, pages, count)) |
| 985 | return false; |
| 986 | |
| 987 | pfn = page_to_pfn(pages); |
| 988 | end_pfn = pfn + count; |
| 989 | |
| 990 | for (r = 0; r < cma->nranges; r++) { |
| 991 | cmr = &cma->ranges[r]; |
| 992 | if (pfn >= cmr->base_pfn && |
| 993 | pfn < (cmr->base_pfn + cmr->count)) { |
| 994 | VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count); |
| 995 | break; |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | if (r == cma->nranges) |
| 1000 | return false; |
| 1001 | |
| 1002 | free_contig_range(pfn, count); |
| 1003 | cma_clear_bitmap(cma, cmr, pfn, count); |
| 1004 | cma_sysfs_account_release_pages(cma, count); |
| 1005 | trace_cma_release(cma->name, pfn, pages, count); |
| 1006 | |
| 1007 | return true; |
| 1008 | } |
| 1009 | |
| 1010 | bool cma_free_folio(struct cma *cma, const struct folio *folio) |
| 1011 | { |
| 1012 | if (WARN_ON(!folio_test_large(folio))) |
| 1013 | return false; |
| 1014 | |
| 1015 | return cma_release(cma, &folio->page, folio_nr_pages(folio)); |
| 1016 | } |
| 1017 | |
| 1018 | int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) |
| 1019 | { |
| 1020 | int i; |
| 1021 | |
| 1022 | for (i = 0; i < cma_area_count; i++) { |
| 1023 | int ret = it(&cma_areas[i], data); |
| 1024 | |
| 1025 | if (ret) |
| 1026 | return ret; |
| 1027 | } |
| 1028 | |
| 1029 | return 0; |
| 1030 | } |
| 1031 | |
| 1032 | bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end) |
| 1033 | { |
| 1034 | int r; |
| 1035 | struct cma_memrange *cmr; |
| 1036 | unsigned long rstart, rend; |
| 1037 | |
| 1038 | for (r = 0; r < cma->nranges; r++) { |
| 1039 | cmr = &cma->ranges[r]; |
| 1040 | |
| 1041 | rstart = PFN_PHYS(cmr->base_pfn); |
| 1042 | rend = PFN_PHYS(cmr->base_pfn + cmr->count); |
| 1043 | if (end < rstart) |
| 1044 | continue; |
| 1045 | if (start >= rend) |
| 1046 | continue; |
| 1047 | return true; |
| 1048 | } |
| 1049 | |
| 1050 | return false; |
| 1051 | } |
| 1052 | |
| 1053 | /* |
| 1054 | * Very basic function to reserve memory from a CMA area that has not |
| 1055 | * yet been activated. This is expected to be called early, when the |
| 1056 | * system is single-threaded, so there is no locking. The alignment |
| 1057 | * checking is restrictive - only pageblock-aligned areas |
| 1058 | * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function. |
| 1059 | * This keeps things simple, and is enough for the current use case. |
| 1060 | * |
| 1061 | * The CMA bitmaps have not yet been allocated, so just start |
| 1062 | * reserving from the bottom up, using a PFN to keep track |
| 1063 | * of what has been reserved. Unreserving is not possible. |
| 1064 | * |
| 1065 | * The caller is responsible for initializing the page structures |
| 1066 | * in the area properly, since this just points to memblock-allocated |
| 1067 | * memory. The caller should subsequently use init_cma_pageblock to |
| 1068 | * set the migrate type and CMA stats the pageblocks that were reserved. |
| 1069 | * |
| 1070 | * If the CMA area fails to activate later, memory obtained through |
| 1071 | * this interface is not handed to the page allocator, this is |
| 1072 | * the responsibility of the caller (e.g. like normal memblock-allocated |
| 1073 | * memory). |
| 1074 | */ |
| 1075 | void __init *cma_reserve_early(struct cma *cma, unsigned long size) |
| 1076 | { |
| 1077 | int r; |
| 1078 | struct cma_memrange *cmr; |
| 1079 | unsigned long available; |
| 1080 | void *ret = NULL; |
| 1081 | |
| 1082 | if (!cma || !cma->count) |
| 1083 | return NULL; |
| 1084 | /* |
| 1085 | * Can only be called early in init. |
| 1086 | */ |
| 1087 | if (test_bit(CMA_ACTIVATED, &cma->flags)) |
| 1088 | return NULL; |
| 1089 | |
| 1090 | if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES)) |
| 1091 | return NULL; |
| 1092 | |
| 1093 | if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit))) |
| 1094 | return NULL; |
| 1095 | |
| 1096 | size >>= PAGE_SHIFT; |
| 1097 | |
| 1098 | if (size > cma->available_count) |
| 1099 | return NULL; |
| 1100 | |
| 1101 | for (r = 0; r < cma->nranges; r++) { |
| 1102 | cmr = &cma->ranges[r]; |
| 1103 | available = cmr->count - (cmr->early_pfn - cmr->base_pfn); |
| 1104 | if (size <= available) { |
| 1105 | ret = phys_to_virt(PFN_PHYS(cmr->early_pfn)); |
| 1106 | cmr->early_pfn += size; |
| 1107 | cma->available_count -= size; |
| 1108 | return ret; |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | return ret; |
| 1113 | } |