| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * XArray implementation |
| 4 | * Copyright (c) 2017-2018 Microsoft Corporation |
| 5 | * Copyright (c) 2018-2020 Oracle |
| 6 | * Author: Matthew Wilcox <willy@infradead.org> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/bitmap.h> |
| 10 | #include <linux/export.h> |
| 11 | #include <linux/list.h> |
| 12 | #include <linux/slab.h> |
| 13 | #include <linux/xarray.h> |
| 14 | |
| 15 | #include "radix-tree.h" |
| 16 | |
| 17 | /* |
| 18 | * Coding conventions in this file: |
| 19 | * |
| 20 | * @xa is used to refer to the entire xarray. |
| 21 | * @xas is the 'xarray operation state'. It may be either a pointer to |
| 22 | * an xa_state, or an xa_state stored on the stack. This is an unfortunate |
| 23 | * ambiguity. |
| 24 | * @index is the index of the entry being operated on |
| 25 | * @mark is an xa_mark_t; a small number indicating one of the mark bits. |
| 26 | * @node refers to an xa_node; usually the primary one being operated on by |
| 27 | * this function. |
| 28 | * @offset is the index into the slots array inside an xa_node. |
| 29 | * @parent refers to the @xa_node closer to the head than @node. |
| 30 | * @entry refers to something stored in a slot in the xarray |
| 31 | */ |
| 32 | |
| 33 | static inline unsigned int xa_lock_type(const struct xarray *xa) |
| 34 | { |
| 35 | return (__force unsigned int)xa->xa_flags & 3; |
| 36 | } |
| 37 | |
| 38 | static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) |
| 39 | { |
| 40 | if (lock_type == XA_LOCK_IRQ) |
| 41 | xas_lock_irq(xas); |
| 42 | else if (lock_type == XA_LOCK_BH) |
| 43 | xas_lock_bh(xas); |
| 44 | else |
| 45 | xas_lock(xas); |
| 46 | } |
| 47 | |
| 48 | static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) |
| 49 | { |
| 50 | if (lock_type == XA_LOCK_IRQ) |
| 51 | xas_unlock_irq(xas); |
| 52 | else if (lock_type == XA_LOCK_BH) |
| 53 | xas_unlock_bh(xas); |
| 54 | else |
| 55 | xas_unlock(xas); |
| 56 | } |
| 57 | |
| 58 | static inline bool xa_track_free(const struct xarray *xa) |
| 59 | { |
| 60 | return xa->xa_flags & XA_FLAGS_TRACK_FREE; |
| 61 | } |
| 62 | |
| 63 | static inline bool xa_zero_busy(const struct xarray *xa) |
| 64 | { |
| 65 | return xa->xa_flags & XA_FLAGS_ZERO_BUSY; |
| 66 | } |
| 67 | |
| 68 | static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) |
| 69 | { |
| 70 | if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) |
| 71 | xa->xa_flags |= XA_FLAGS_MARK(mark); |
| 72 | } |
| 73 | |
| 74 | static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) |
| 75 | { |
| 76 | if (xa->xa_flags & XA_FLAGS_MARK(mark)) |
| 77 | xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); |
| 78 | } |
| 79 | |
| 80 | static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) |
| 81 | { |
| 82 | return node->marks[(__force unsigned)mark]; |
| 83 | } |
| 84 | |
| 85 | static inline bool node_get_mark(struct xa_node *node, |
| 86 | unsigned int offset, xa_mark_t mark) |
| 87 | { |
| 88 | return test_bit(offset, node_marks(node, mark)); |
| 89 | } |
| 90 | |
| 91 | /* returns true if the bit was set */ |
| 92 | static inline bool node_set_mark(struct xa_node *node, unsigned int offset, |
| 93 | xa_mark_t mark) |
| 94 | { |
| 95 | return __test_and_set_bit(offset, node_marks(node, mark)); |
| 96 | } |
| 97 | |
| 98 | /* returns true if the bit was set */ |
| 99 | static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, |
| 100 | xa_mark_t mark) |
| 101 | { |
| 102 | return __test_and_clear_bit(offset, node_marks(node, mark)); |
| 103 | } |
| 104 | |
| 105 | static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) |
| 106 | { |
| 107 | return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); |
| 108 | } |
| 109 | |
| 110 | static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) |
| 111 | { |
| 112 | bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); |
| 113 | } |
| 114 | |
| 115 | #define mark_inc(mark) do { \ |
| 116 | mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ |
| 117 | } while (0) |
| 118 | |
| 119 | /* |
| 120 | * xas_squash_marks() - Merge all marks to the first entry |
| 121 | * @xas: Array operation state. |
| 122 | * |
| 123 | * Set a mark on the first entry if any entry has it set. Clear marks on |
| 124 | * all sibling entries. |
| 125 | */ |
| 126 | static void xas_squash_marks(const struct xa_state *xas) |
| 127 | { |
| 128 | xa_mark_t mark = 0; |
| 129 | unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; |
| 130 | |
| 131 | for (;;) { |
| 132 | unsigned long *marks = node_marks(xas->xa_node, mark); |
| 133 | |
| 134 | if (find_next_bit(marks, limit, xas->xa_offset + 1) != limit) { |
| 135 | __set_bit(xas->xa_offset, marks); |
| 136 | bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); |
| 137 | } |
| 138 | if (mark == XA_MARK_MAX) |
| 139 | break; |
| 140 | mark_inc(mark); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | /* extracts the offset within this node from the index */ |
| 145 | static unsigned int get_offset(unsigned long index, struct xa_node *node) |
| 146 | { |
| 147 | return (index >> node->shift) & XA_CHUNK_MASK; |
| 148 | } |
| 149 | |
| 150 | static void xas_set_offset(struct xa_state *xas) |
| 151 | { |
| 152 | xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); |
| 153 | } |
| 154 | |
| 155 | /* move the index either forwards (find) or backwards (sibling slot) */ |
| 156 | static void xas_move_index(struct xa_state *xas, unsigned long offset) |
| 157 | { |
| 158 | unsigned int shift = xas->xa_node->shift; |
| 159 | xas->xa_index &= ~XA_CHUNK_MASK << shift; |
| 160 | xas->xa_index += offset << shift; |
| 161 | } |
| 162 | |
| 163 | static void xas_next_offset(struct xa_state *xas) |
| 164 | { |
| 165 | xas->xa_offset++; |
| 166 | xas_move_index(xas, xas->xa_offset); |
| 167 | } |
| 168 | |
| 169 | static void *set_bounds(struct xa_state *xas) |
| 170 | { |
| 171 | xas->xa_node = XAS_BOUNDS; |
| 172 | return NULL; |
| 173 | } |
| 174 | |
| 175 | /* |
| 176 | * Starts a walk. If the @xas is already valid, we assume that it's on |
| 177 | * the right path and just return where we've got to. If we're in an |
| 178 | * error state, return NULL. If the index is outside the current scope |
| 179 | * of the xarray, return NULL without changing @xas->xa_node. Otherwise |
| 180 | * set @xas->xa_node to NULL and return the current head of the array. |
| 181 | */ |
| 182 | static void *xas_start(struct xa_state *xas) |
| 183 | { |
| 184 | void *entry; |
| 185 | |
| 186 | if (xas_valid(xas)) |
| 187 | return xas_reload(xas); |
| 188 | if (xas_error(xas)) |
| 189 | return NULL; |
| 190 | |
| 191 | entry = xa_head(xas->xa); |
| 192 | if (!xa_is_node(entry)) { |
| 193 | if (xas->xa_index) |
| 194 | return set_bounds(xas); |
| 195 | } else { |
| 196 | if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) |
| 197 | return set_bounds(xas); |
| 198 | } |
| 199 | |
| 200 | xas->xa_node = NULL; |
| 201 | return entry; |
| 202 | } |
| 203 | |
| 204 | static __always_inline void *xas_descend(struct xa_state *xas, |
| 205 | struct xa_node *node) |
| 206 | { |
| 207 | unsigned int offset = get_offset(xas->xa_index, node); |
| 208 | void *entry = xa_entry(xas->xa, node, offset); |
| 209 | |
| 210 | xas->xa_node = node; |
| 211 | while (xa_is_sibling(entry)) { |
| 212 | offset = xa_to_sibling(entry); |
| 213 | entry = xa_entry(xas->xa, node, offset); |
| 214 | if (node->shift && xa_is_node(entry)) |
| 215 | entry = XA_RETRY_ENTRY; |
| 216 | } |
| 217 | |
| 218 | xas->xa_offset = offset; |
| 219 | return entry; |
| 220 | } |
| 221 | |
| 222 | /** |
| 223 | * xas_load() - Load an entry from the XArray (advanced). |
| 224 | * @xas: XArray operation state. |
| 225 | * |
| 226 | * Usually walks the @xas to the appropriate state to load the entry |
| 227 | * stored at xa_index. However, it will do nothing and return %NULL if |
| 228 | * @xas is in an error state. xas_load() will never expand the tree. |
| 229 | * |
| 230 | * If the xa_state is set up to operate on a multi-index entry, xas_load() |
| 231 | * may return %NULL or an internal entry, even if there are entries |
| 232 | * present within the range specified by @xas. |
| 233 | * |
| 234 | * Context: Any context. The caller should hold the xa_lock or the RCU lock. |
| 235 | * Return: Usually an entry in the XArray, but see description for exceptions. |
| 236 | */ |
| 237 | void *xas_load(struct xa_state *xas) |
| 238 | { |
| 239 | void *entry = xas_start(xas); |
| 240 | |
| 241 | while (xa_is_node(entry)) { |
| 242 | struct xa_node *node = xa_to_node(entry); |
| 243 | |
| 244 | if (xas->xa_shift > node->shift) |
| 245 | break; |
| 246 | entry = xas_descend(xas, node); |
| 247 | if (node->shift == 0) |
| 248 | break; |
| 249 | } |
| 250 | return entry; |
| 251 | } |
| 252 | EXPORT_SYMBOL_GPL(xas_load); |
| 253 | |
| 254 | #define XA_RCU_FREE ((struct xarray *)1) |
| 255 | |
| 256 | static void xa_node_free(struct xa_node *node) |
| 257 | { |
| 258 | XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); |
| 259 | node->array = XA_RCU_FREE; |
| 260 | call_rcu(&node->rcu_head, radix_tree_node_rcu_free); |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * xas_destroy() - Free any resources allocated during the XArray operation. |
| 265 | * @xas: XArray operation state. |
| 266 | * |
| 267 | * Most users will not need to call this function; it is called for you |
| 268 | * by xas_nomem(). |
| 269 | */ |
| 270 | void xas_destroy(struct xa_state *xas) |
| 271 | { |
| 272 | struct xa_node *next, *node = xas->xa_alloc; |
| 273 | |
| 274 | while (node) { |
| 275 | XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); |
| 276 | next = rcu_dereference_raw(node->parent); |
| 277 | radix_tree_node_rcu_free(&node->rcu_head); |
| 278 | xas->xa_alloc = node = next; |
| 279 | } |
| 280 | } |
| 281 | EXPORT_SYMBOL_GPL(xas_destroy); |
| 282 | |
| 283 | /** |
| 284 | * xas_nomem() - Allocate memory if needed. |
| 285 | * @xas: XArray operation state. |
| 286 | * @gfp: Memory allocation flags. |
| 287 | * |
| 288 | * If we need to add new nodes to the XArray, we try to allocate memory |
| 289 | * with GFP_NOWAIT while holding the lock, which will usually succeed. |
| 290 | * If it fails, @xas is flagged as needing memory to continue. The caller |
| 291 | * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, |
| 292 | * the caller should retry the operation. |
| 293 | * |
| 294 | * Forward progress is guaranteed as one node is allocated here and |
| 295 | * stored in the xa_state where it will be found by xas_alloc(). More |
| 296 | * nodes will likely be found in the slab allocator, but we do not tie |
| 297 | * them up here. |
| 298 | * |
| 299 | * Return: true if memory was needed, and was successfully allocated. |
| 300 | */ |
| 301 | bool xas_nomem(struct xa_state *xas, gfp_t gfp) |
| 302 | { |
| 303 | if (xas->xa_node != XA_ERROR(-ENOMEM)) { |
| 304 | xas_destroy(xas); |
| 305 | return false; |
| 306 | } |
| 307 | if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) |
| 308 | gfp |= __GFP_ACCOUNT; |
| 309 | xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); |
| 310 | if (!xas->xa_alloc) |
| 311 | return false; |
| 312 | xas->xa_alloc->parent = NULL; |
| 313 | XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); |
| 314 | xas->xa_node = XAS_RESTART; |
| 315 | return true; |
| 316 | } |
| 317 | EXPORT_SYMBOL_GPL(xas_nomem); |
| 318 | |
| 319 | /* |
| 320 | * __xas_nomem() - Drop locks and allocate memory if needed. |
| 321 | * @xas: XArray operation state. |
| 322 | * @gfp: Memory allocation flags. |
| 323 | * |
| 324 | * Internal variant of xas_nomem(). |
| 325 | * |
| 326 | * Return: true if memory was needed, and was successfully allocated. |
| 327 | */ |
| 328 | static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) |
| 329 | __must_hold(xas->xa->xa_lock) |
| 330 | { |
| 331 | unsigned int lock_type = xa_lock_type(xas->xa); |
| 332 | |
| 333 | if (xas->xa_node != XA_ERROR(-ENOMEM)) { |
| 334 | xas_destroy(xas); |
| 335 | return false; |
| 336 | } |
| 337 | if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) |
| 338 | gfp |= __GFP_ACCOUNT; |
| 339 | if (gfpflags_allow_blocking(gfp)) { |
| 340 | xas_unlock_type(xas, lock_type); |
| 341 | xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); |
| 342 | xas_lock_type(xas, lock_type); |
| 343 | } else { |
| 344 | xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); |
| 345 | } |
| 346 | if (!xas->xa_alloc) |
| 347 | return false; |
| 348 | xas->xa_alloc->parent = NULL; |
| 349 | XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); |
| 350 | xas->xa_node = XAS_RESTART; |
| 351 | return true; |
| 352 | } |
| 353 | |
| 354 | static void xas_update(struct xa_state *xas, struct xa_node *node) |
| 355 | { |
| 356 | if (xas->xa_update) |
| 357 | xas->xa_update(node); |
| 358 | else |
| 359 | XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); |
| 360 | } |
| 361 | |
| 362 | static void *xas_alloc(struct xa_state *xas, unsigned int shift) |
| 363 | { |
| 364 | struct xa_node *parent = xas->xa_node; |
| 365 | struct xa_node *node = xas->xa_alloc; |
| 366 | |
| 367 | if (xas_invalid(xas)) |
| 368 | return NULL; |
| 369 | |
| 370 | if (node) { |
| 371 | xas->xa_alloc = NULL; |
| 372 | } else { |
| 373 | gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; |
| 374 | |
| 375 | if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) |
| 376 | gfp |= __GFP_ACCOUNT; |
| 377 | |
| 378 | node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); |
| 379 | if (!node) { |
| 380 | xas_set_err(xas, -ENOMEM); |
| 381 | return NULL; |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | if (parent) { |
| 386 | node->offset = xas->xa_offset; |
| 387 | parent->count++; |
| 388 | XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); |
| 389 | xas_update(xas, parent); |
| 390 | } |
| 391 | XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); |
| 392 | XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); |
| 393 | node->shift = shift; |
| 394 | node->count = 0; |
| 395 | node->nr_values = 0; |
| 396 | RCU_INIT_POINTER(node->parent, xas->xa_node); |
| 397 | node->array = xas->xa; |
| 398 | |
| 399 | return node; |
| 400 | } |
| 401 | |
| 402 | #ifdef CONFIG_XARRAY_MULTI |
| 403 | /* Returns the number of indices covered by a given xa_state */ |
| 404 | static unsigned long xas_size(const struct xa_state *xas) |
| 405 | { |
| 406 | return (xas->xa_sibs + 1UL) << xas->xa_shift; |
| 407 | } |
| 408 | #endif |
| 409 | |
| 410 | /* |
| 411 | * Use this to calculate the maximum index that will need to be created |
| 412 | * in order to add the entry described by @xas. Because we cannot store a |
| 413 | * multi-index entry at index 0, the calculation is a little more complex |
| 414 | * than you might expect. |
| 415 | */ |
| 416 | static unsigned long xas_max(struct xa_state *xas) |
| 417 | { |
| 418 | unsigned long max = xas->xa_index; |
| 419 | |
| 420 | #ifdef CONFIG_XARRAY_MULTI |
| 421 | if (xas->xa_shift || xas->xa_sibs) { |
| 422 | unsigned long mask = xas_size(xas) - 1; |
| 423 | max |= mask; |
| 424 | if (mask == max) |
| 425 | max++; |
| 426 | } |
| 427 | #endif |
| 428 | |
| 429 | return max; |
| 430 | } |
| 431 | |
| 432 | /* The maximum index that can be contained in the array without expanding it */ |
| 433 | static unsigned long max_index(void *entry) |
| 434 | { |
| 435 | if (!xa_is_node(entry)) |
| 436 | return 0; |
| 437 | return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; |
| 438 | } |
| 439 | |
| 440 | static inline void *xa_zero_to_null(void *entry) |
| 441 | { |
| 442 | return xa_is_zero(entry) ? NULL : entry; |
| 443 | } |
| 444 | |
| 445 | static void xas_shrink(struct xa_state *xas) |
| 446 | { |
| 447 | struct xarray *xa = xas->xa; |
| 448 | struct xa_node *node = xas->xa_node; |
| 449 | |
| 450 | for (;;) { |
| 451 | void *entry; |
| 452 | |
| 453 | XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); |
| 454 | if (node->count != 1) |
| 455 | break; |
| 456 | entry = xa_entry_locked(xa, node, 0); |
| 457 | if (!entry) |
| 458 | break; |
| 459 | if (!xa_is_node(entry) && node->shift) |
| 460 | break; |
| 461 | if (xa_zero_busy(xa)) |
| 462 | entry = xa_zero_to_null(entry); |
| 463 | xas->xa_node = XAS_BOUNDS; |
| 464 | |
| 465 | RCU_INIT_POINTER(xa->xa_head, entry); |
| 466 | if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) |
| 467 | xa_mark_clear(xa, XA_FREE_MARK); |
| 468 | |
| 469 | node->count = 0; |
| 470 | node->nr_values = 0; |
| 471 | if (!xa_is_node(entry)) |
| 472 | RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); |
| 473 | xas_update(xas, node); |
| 474 | xa_node_free(node); |
| 475 | if (!xa_is_node(entry)) |
| 476 | break; |
| 477 | node = xa_to_node(entry); |
| 478 | node->parent = NULL; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | /* |
| 483 | * xas_delete_node() - Attempt to delete an xa_node |
| 484 | * @xas: Array operation state. |
| 485 | * |
| 486 | * Attempts to delete the @xas->xa_node. This will fail if xa->node has |
| 487 | * a non-zero reference count. |
| 488 | */ |
| 489 | static void xas_delete_node(struct xa_state *xas) |
| 490 | { |
| 491 | struct xa_node *node = xas->xa_node; |
| 492 | |
| 493 | for (;;) { |
| 494 | struct xa_node *parent; |
| 495 | |
| 496 | XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); |
| 497 | if (node->count) |
| 498 | break; |
| 499 | |
| 500 | parent = xa_parent_locked(xas->xa, node); |
| 501 | xas->xa_node = parent; |
| 502 | xas->xa_offset = node->offset; |
| 503 | xa_node_free(node); |
| 504 | |
| 505 | if (!parent) { |
| 506 | xas->xa->xa_head = NULL; |
| 507 | xas->xa_node = XAS_BOUNDS; |
| 508 | return; |
| 509 | } |
| 510 | |
| 511 | parent->slots[xas->xa_offset] = NULL; |
| 512 | parent->count--; |
| 513 | XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); |
| 514 | node = parent; |
| 515 | xas_update(xas, node); |
| 516 | } |
| 517 | |
| 518 | if (!node->parent) |
| 519 | xas_shrink(xas); |
| 520 | } |
| 521 | |
| 522 | /** |
| 523 | * xas_free_nodes() - Free this node and all nodes that it references |
| 524 | * @xas: Array operation state. |
| 525 | * @top: Node to free |
| 526 | * |
| 527 | * This node has been removed from the tree. We must now free it and all |
| 528 | * of its subnodes. There may be RCU walkers with references into the tree, |
| 529 | * so we must replace all entries with retry markers. |
| 530 | */ |
| 531 | static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) |
| 532 | { |
| 533 | unsigned int offset = 0; |
| 534 | struct xa_node *node = top; |
| 535 | |
| 536 | for (;;) { |
| 537 | void *entry = xa_entry_locked(xas->xa, node, offset); |
| 538 | |
| 539 | if (node->shift && xa_is_node(entry)) { |
| 540 | node = xa_to_node(entry); |
| 541 | offset = 0; |
| 542 | continue; |
| 543 | } |
| 544 | if (entry) |
| 545 | RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); |
| 546 | offset++; |
| 547 | while (offset == XA_CHUNK_SIZE) { |
| 548 | struct xa_node *parent; |
| 549 | |
| 550 | parent = xa_parent_locked(xas->xa, node); |
| 551 | offset = node->offset + 1; |
| 552 | node->count = 0; |
| 553 | node->nr_values = 0; |
| 554 | xas_update(xas, node); |
| 555 | xa_node_free(node); |
| 556 | if (node == top) |
| 557 | return; |
| 558 | node = parent; |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | /* |
| 564 | * xas_expand adds nodes to the head of the tree until it has reached |
| 565 | * sufficient height to be able to contain @xas->xa_index |
| 566 | */ |
| 567 | static int xas_expand(struct xa_state *xas, void *head) |
| 568 | { |
| 569 | struct xarray *xa = xas->xa; |
| 570 | struct xa_node *node = NULL; |
| 571 | unsigned int shift = 0; |
| 572 | unsigned long max = xas_max(xas); |
| 573 | |
| 574 | if (!head) { |
| 575 | if (max == 0) |
| 576 | return 0; |
| 577 | while ((max >> shift) >= XA_CHUNK_SIZE) |
| 578 | shift += XA_CHUNK_SHIFT; |
| 579 | return shift + XA_CHUNK_SHIFT; |
| 580 | } else if (xa_is_node(head)) { |
| 581 | node = xa_to_node(head); |
| 582 | shift = node->shift + XA_CHUNK_SHIFT; |
| 583 | } |
| 584 | xas->xa_node = NULL; |
| 585 | |
| 586 | while (max > max_index(head)) { |
| 587 | xa_mark_t mark = 0; |
| 588 | |
| 589 | XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); |
| 590 | node = xas_alloc(xas, shift); |
| 591 | if (!node) |
| 592 | return -ENOMEM; |
| 593 | |
| 594 | node->count = 1; |
| 595 | if (xa_is_value(head)) |
| 596 | node->nr_values = 1; |
| 597 | RCU_INIT_POINTER(node->slots[0], head); |
| 598 | |
| 599 | /* Propagate the aggregated mark info to the new child */ |
| 600 | for (;;) { |
| 601 | if (xa_track_free(xa) && mark == XA_FREE_MARK) { |
| 602 | node_mark_all(node, XA_FREE_MARK); |
| 603 | if (!xa_marked(xa, XA_FREE_MARK)) { |
| 604 | node_clear_mark(node, 0, XA_FREE_MARK); |
| 605 | xa_mark_set(xa, XA_FREE_MARK); |
| 606 | } |
| 607 | } else if (xa_marked(xa, mark)) { |
| 608 | node_set_mark(node, 0, mark); |
| 609 | } |
| 610 | if (mark == XA_MARK_MAX) |
| 611 | break; |
| 612 | mark_inc(mark); |
| 613 | } |
| 614 | |
| 615 | /* |
| 616 | * Now that the new node is fully initialised, we can add |
| 617 | * it to the tree |
| 618 | */ |
| 619 | if (xa_is_node(head)) { |
| 620 | xa_to_node(head)->offset = 0; |
| 621 | rcu_assign_pointer(xa_to_node(head)->parent, node); |
| 622 | } |
| 623 | head = xa_mk_node(node); |
| 624 | rcu_assign_pointer(xa->xa_head, head); |
| 625 | xas_update(xas, node); |
| 626 | |
| 627 | shift += XA_CHUNK_SHIFT; |
| 628 | } |
| 629 | |
| 630 | xas->xa_node = node; |
| 631 | return shift; |
| 632 | } |
| 633 | |
| 634 | /* |
| 635 | * xas_create() - Create a slot to store an entry in. |
| 636 | * @xas: XArray operation state. |
| 637 | * @allow_root: %true if we can store the entry in the root directly |
| 638 | * |
| 639 | * Most users will not need to call this function directly, as it is called |
| 640 | * by xas_store(). It is useful for doing conditional store operations |
| 641 | * (see the xa_cmpxchg() implementation for an example). |
| 642 | * |
| 643 | * Return: If the slot already existed, returns the contents of this slot. |
| 644 | * If the slot was newly created, returns %NULL. If it failed to create the |
| 645 | * slot, returns %NULL and indicates the error in @xas. |
| 646 | */ |
| 647 | static void *xas_create(struct xa_state *xas, bool allow_root) |
| 648 | { |
| 649 | struct xarray *xa = xas->xa; |
| 650 | void *entry; |
| 651 | void __rcu **slot; |
| 652 | struct xa_node *node = xas->xa_node; |
| 653 | int shift; |
| 654 | unsigned int order = xas->xa_shift; |
| 655 | |
| 656 | if (xas_top(node)) { |
| 657 | entry = xa_head_locked(xa); |
| 658 | xas->xa_node = NULL; |
| 659 | if (!entry && xa_zero_busy(xa)) |
| 660 | entry = XA_ZERO_ENTRY; |
| 661 | shift = xas_expand(xas, entry); |
| 662 | if (shift < 0) |
| 663 | return NULL; |
| 664 | if (!shift && !allow_root) |
| 665 | shift = XA_CHUNK_SHIFT; |
| 666 | entry = xa_head_locked(xa); |
| 667 | slot = &xa->xa_head; |
| 668 | } else if (xas_error(xas)) { |
| 669 | return NULL; |
| 670 | } else if (node) { |
| 671 | unsigned int offset = xas->xa_offset; |
| 672 | |
| 673 | shift = node->shift; |
| 674 | entry = xa_entry_locked(xa, node, offset); |
| 675 | slot = &node->slots[offset]; |
| 676 | } else { |
| 677 | shift = 0; |
| 678 | entry = xa_head_locked(xa); |
| 679 | slot = &xa->xa_head; |
| 680 | } |
| 681 | |
| 682 | while (shift > order) { |
| 683 | shift -= XA_CHUNK_SHIFT; |
| 684 | if (!entry) { |
| 685 | node = xas_alloc(xas, shift); |
| 686 | if (!node) |
| 687 | break; |
| 688 | if (xa_track_free(xa)) |
| 689 | node_mark_all(node, XA_FREE_MARK); |
| 690 | rcu_assign_pointer(*slot, xa_mk_node(node)); |
| 691 | } else if (xa_is_node(entry)) { |
| 692 | node = xa_to_node(entry); |
| 693 | } else { |
| 694 | break; |
| 695 | } |
| 696 | entry = xas_descend(xas, node); |
| 697 | slot = &node->slots[xas->xa_offset]; |
| 698 | } |
| 699 | |
| 700 | return entry; |
| 701 | } |
| 702 | |
| 703 | /** |
| 704 | * xas_create_range() - Ensure that stores to this range will succeed |
| 705 | * @xas: XArray operation state. |
| 706 | * |
| 707 | * Creates all of the slots in the range covered by @xas. Sets @xas to |
| 708 | * create single-index entries and positions it at the beginning of the |
| 709 | * range. This is for the benefit of users which have not yet been |
| 710 | * converted to use multi-index entries. |
| 711 | */ |
| 712 | void xas_create_range(struct xa_state *xas) |
| 713 | { |
| 714 | unsigned long index = xas->xa_index; |
| 715 | unsigned char shift = xas->xa_shift; |
| 716 | unsigned char sibs = xas->xa_sibs; |
| 717 | |
| 718 | xas->xa_index |= ((sibs + 1UL) << shift) - 1; |
| 719 | if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) |
| 720 | xas->xa_offset |= sibs; |
| 721 | xas->xa_shift = 0; |
| 722 | xas->xa_sibs = 0; |
| 723 | |
| 724 | for (;;) { |
| 725 | xas_create(xas, true); |
| 726 | if (xas_error(xas)) |
| 727 | goto restore; |
| 728 | if (xas->xa_index <= (index | XA_CHUNK_MASK)) |
| 729 | goto success; |
| 730 | xas->xa_index -= XA_CHUNK_SIZE; |
| 731 | |
| 732 | for (;;) { |
| 733 | struct xa_node *node = xas->xa_node; |
| 734 | if (node->shift >= shift) |
| 735 | break; |
| 736 | xas->xa_node = xa_parent_locked(xas->xa, node); |
| 737 | xas->xa_offset = node->offset - 1; |
| 738 | if (node->offset != 0) |
| 739 | break; |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | restore: |
| 744 | xas->xa_shift = shift; |
| 745 | xas->xa_sibs = sibs; |
| 746 | xas->xa_index = index; |
| 747 | return; |
| 748 | success: |
| 749 | xas->xa_index = index; |
| 750 | if (xas->xa_node) |
| 751 | xas_set_offset(xas); |
| 752 | } |
| 753 | EXPORT_SYMBOL_GPL(xas_create_range); |
| 754 | |
| 755 | static void update_node(struct xa_state *xas, struct xa_node *node, |
| 756 | int count, int values) |
| 757 | { |
| 758 | if (!node || (!count && !values)) |
| 759 | return; |
| 760 | |
| 761 | node->count += count; |
| 762 | node->nr_values += values; |
| 763 | XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); |
| 764 | XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); |
| 765 | xas_update(xas, node); |
| 766 | if (count < 0) |
| 767 | xas_delete_node(xas); |
| 768 | } |
| 769 | |
| 770 | /** |
| 771 | * xas_store() - Store this entry in the XArray. |
| 772 | * @xas: XArray operation state. |
| 773 | * @entry: New entry. |
| 774 | * |
| 775 | * If @xas is operating on a multi-index entry, the entry returned by this |
| 776 | * function is essentially meaningless (it may be an internal entry or it |
| 777 | * may be %NULL, even if there are non-NULL entries at some of the indices |
| 778 | * covered by the range). This is not a problem for any current users, |
| 779 | * and can be changed if needed. |
| 780 | * |
| 781 | * Return: The old entry at this index. |
| 782 | */ |
| 783 | void *xas_store(struct xa_state *xas, void *entry) |
| 784 | { |
| 785 | struct xa_node *node; |
| 786 | void __rcu **slot = &xas->xa->xa_head; |
| 787 | unsigned int offset, max; |
| 788 | int count = 0; |
| 789 | int values = 0; |
| 790 | void *first, *next; |
| 791 | bool value = xa_is_value(entry); |
| 792 | |
| 793 | if (entry) { |
| 794 | bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); |
| 795 | first = xas_create(xas, allow_root); |
| 796 | } else { |
| 797 | first = xas_load(xas); |
| 798 | } |
| 799 | |
| 800 | if (xas_invalid(xas)) |
| 801 | return first; |
| 802 | node = xas->xa_node; |
| 803 | if (node && (xas->xa_shift < node->shift)) |
| 804 | xas->xa_sibs = 0; |
| 805 | if ((first == entry) && !xas->xa_sibs) |
| 806 | return first; |
| 807 | |
| 808 | next = first; |
| 809 | offset = xas->xa_offset; |
| 810 | max = xas->xa_offset + xas->xa_sibs; |
| 811 | if (node) { |
| 812 | slot = &node->slots[offset]; |
| 813 | if (xas->xa_sibs) |
| 814 | xas_squash_marks(xas); |
| 815 | } |
| 816 | if (!entry) |
| 817 | xas_init_marks(xas); |
| 818 | |
| 819 | for (;;) { |
| 820 | /* |
| 821 | * Must clear the marks before setting the entry to NULL, |
| 822 | * otherwise xas_for_each_marked may find a NULL entry and |
| 823 | * stop early. rcu_assign_pointer contains a release barrier |
| 824 | * so the mark clearing will appear to happen before the |
| 825 | * entry is set to NULL. |
| 826 | */ |
| 827 | rcu_assign_pointer(*slot, entry); |
| 828 | if (xa_is_node(next) && (!node || node->shift)) |
| 829 | xas_free_nodes(xas, xa_to_node(next)); |
| 830 | if (!node) |
| 831 | break; |
| 832 | count += !next - !entry; |
| 833 | values += !xa_is_value(first) - !value; |
| 834 | if (entry) { |
| 835 | if (offset == max) |
| 836 | break; |
| 837 | if (!xa_is_sibling(entry)) |
| 838 | entry = xa_mk_sibling(xas->xa_offset); |
| 839 | } else { |
| 840 | if (offset == XA_CHUNK_MASK) |
| 841 | break; |
| 842 | } |
| 843 | next = xa_entry_locked(xas->xa, node, ++offset); |
| 844 | if (!xa_is_sibling(next)) { |
| 845 | if (!entry && (offset > max)) |
| 846 | break; |
| 847 | first = next; |
| 848 | } |
| 849 | slot++; |
| 850 | } |
| 851 | |
| 852 | update_node(xas, node, count, values); |
| 853 | return first; |
| 854 | } |
| 855 | EXPORT_SYMBOL_GPL(xas_store); |
| 856 | |
| 857 | /** |
| 858 | * xas_get_mark() - Returns the state of this mark. |
| 859 | * @xas: XArray operation state. |
| 860 | * @mark: Mark number. |
| 861 | * |
| 862 | * Return: true if the mark is set, false if the mark is clear or @xas |
| 863 | * is in an error state. |
| 864 | */ |
| 865 | bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) |
| 866 | { |
| 867 | if (xas_invalid(xas)) |
| 868 | return false; |
| 869 | if (!xas->xa_node) |
| 870 | return xa_marked(xas->xa, mark); |
| 871 | return node_get_mark(xas->xa_node, xas->xa_offset, mark); |
| 872 | } |
| 873 | EXPORT_SYMBOL_GPL(xas_get_mark); |
| 874 | |
| 875 | /** |
| 876 | * xas_set_mark() - Sets the mark on this entry and its parents. |
| 877 | * @xas: XArray operation state. |
| 878 | * @mark: Mark number. |
| 879 | * |
| 880 | * Sets the specified mark on this entry, and walks up the tree setting it |
| 881 | * on all the ancestor entries. Does nothing if @xas has not been walked to |
| 882 | * an entry, or is in an error state. |
| 883 | */ |
| 884 | void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) |
| 885 | { |
| 886 | struct xa_node *node = xas->xa_node; |
| 887 | unsigned int offset = xas->xa_offset; |
| 888 | |
| 889 | if (xas_invalid(xas)) |
| 890 | return; |
| 891 | |
| 892 | while (node) { |
| 893 | if (node_set_mark(node, offset, mark)) |
| 894 | return; |
| 895 | offset = node->offset; |
| 896 | node = xa_parent_locked(xas->xa, node); |
| 897 | } |
| 898 | |
| 899 | if (!xa_marked(xas->xa, mark)) |
| 900 | xa_mark_set(xas->xa, mark); |
| 901 | } |
| 902 | EXPORT_SYMBOL_GPL(xas_set_mark); |
| 903 | |
| 904 | /** |
| 905 | * xas_clear_mark() - Clears the mark on this entry and its parents. |
| 906 | * @xas: XArray operation state. |
| 907 | * @mark: Mark number. |
| 908 | * |
| 909 | * Clears the specified mark on this entry, and walks back to the head |
| 910 | * attempting to clear it on all the ancestor entries. Does nothing if |
| 911 | * @xas has not been walked to an entry, or is in an error state. |
| 912 | */ |
| 913 | void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) |
| 914 | { |
| 915 | struct xa_node *node = xas->xa_node; |
| 916 | unsigned int offset = xas->xa_offset; |
| 917 | |
| 918 | if (xas_invalid(xas)) |
| 919 | return; |
| 920 | |
| 921 | while (node) { |
| 922 | if (!node_clear_mark(node, offset, mark)) |
| 923 | return; |
| 924 | if (node_any_mark(node, mark)) |
| 925 | return; |
| 926 | |
| 927 | offset = node->offset; |
| 928 | node = xa_parent_locked(xas->xa, node); |
| 929 | } |
| 930 | |
| 931 | if (xa_marked(xas->xa, mark)) |
| 932 | xa_mark_clear(xas->xa, mark); |
| 933 | } |
| 934 | EXPORT_SYMBOL_GPL(xas_clear_mark); |
| 935 | |
| 936 | /** |
| 937 | * xas_init_marks() - Initialise all marks for the entry |
| 938 | * @xas: Array operations state. |
| 939 | * |
| 940 | * Initialise all marks for the entry specified by @xas. If we're tracking |
| 941 | * free entries with a mark, we need to set it on all entries. All other |
| 942 | * marks are cleared. |
| 943 | * |
| 944 | * This implementation is not as efficient as it could be; we may walk |
| 945 | * up the tree multiple times. |
| 946 | */ |
| 947 | void xas_init_marks(const struct xa_state *xas) |
| 948 | { |
| 949 | xa_mark_t mark = 0; |
| 950 | |
| 951 | for (;;) { |
| 952 | if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) |
| 953 | xas_set_mark(xas, mark); |
| 954 | else |
| 955 | xas_clear_mark(xas, mark); |
| 956 | if (mark == XA_MARK_MAX) |
| 957 | break; |
| 958 | mark_inc(mark); |
| 959 | } |
| 960 | } |
| 961 | EXPORT_SYMBOL_GPL(xas_init_marks); |
| 962 | |
| 963 | #ifdef CONFIG_XARRAY_MULTI |
| 964 | static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) |
| 965 | { |
| 966 | unsigned int marks = 0; |
| 967 | xa_mark_t mark = XA_MARK_0; |
| 968 | |
| 969 | for (;;) { |
| 970 | if (node_get_mark(node, offset, mark)) |
| 971 | marks |= 1 << (__force unsigned int)mark; |
| 972 | if (mark == XA_MARK_MAX) |
| 973 | break; |
| 974 | mark_inc(mark); |
| 975 | } |
| 976 | |
| 977 | return marks; |
| 978 | } |
| 979 | |
| 980 | static inline void node_mark_slots(struct xa_node *node, unsigned int sibs, |
| 981 | xa_mark_t mark) |
| 982 | { |
| 983 | int i; |
| 984 | |
| 985 | if (sibs == 0) |
| 986 | node_mark_all(node, mark); |
| 987 | else { |
| 988 | for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1) |
| 989 | node_set_mark(node, i, mark); |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | static void node_set_marks(struct xa_node *node, unsigned int offset, |
| 994 | struct xa_node *child, unsigned int sibs, |
| 995 | unsigned int marks) |
| 996 | { |
| 997 | xa_mark_t mark = XA_MARK_0; |
| 998 | |
| 999 | for (;;) { |
| 1000 | if (marks & (1 << (__force unsigned int)mark)) { |
| 1001 | node_set_mark(node, offset, mark); |
| 1002 | if (child) |
| 1003 | node_mark_slots(child, sibs, mark); |
| 1004 | } |
| 1005 | if (mark == XA_MARK_MAX) |
| 1006 | break; |
| 1007 | mark_inc(mark); |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | static void __xas_init_node_for_split(struct xa_state *xas, |
| 1012 | struct xa_node *node, void *entry) |
| 1013 | { |
| 1014 | unsigned int i; |
| 1015 | void *sibling = NULL; |
| 1016 | unsigned int mask = xas->xa_sibs; |
| 1017 | |
| 1018 | if (!node) |
| 1019 | return; |
| 1020 | node->array = xas->xa; |
| 1021 | for (i = 0; i < XA_CHUNK_SIZE; i++) { |
| 1022 | if ((i & mask) == 0) { |
| 1023 | RCU_INIT_POINTER(node->slots[i], entry); |
| 1024 | sibling = xa_mk_sibling(i); |
| 1025 | } else { |
| 1026 | RCU_INIT_POINTER(node->slots[i], sibling); |
| 1027 | } |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | /** |
| 1032 | * xas_split_alloc() - Allocate memory for splitting an entry. |
| 1033 | * @xas: XArray operation state. |
| 1034 | * @entry: New entry which will be stored in the array. |
| 1035 | * @order: Current entry order. |
| 1036 | * @gfp: Memory allocation flags. |
| 1037 | * |
| 1038 | * This function should be called before calling xas_split(). |
| 1039 | * If necessary, it will allocate new nodes (and fill them with @entry) |
| 1040 | * to prepare for the upcoming split of an entry of @order size into |
| 1041 | * entries of the order stored in the @xas. |
| 1042 | * |
| 1043 | * Context: May sleep if @gfp flags permit. |
| 1044 | */ |
| 1045 | void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, |
| 1046 | gfp_t gfp) |
| 1047 | { |
| 1048 | unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; |
| 1049 | |
| 1050 | /* XXX: no support for splitting really large entries yet */ |
| 1051 | if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order)) |
| 1052 | goto nomem; |
| 1053 | if (xas->xa_shift + XA_CHUNK_SHIFT > order) |
| 1054 | return; |
| 1055 | |
| 1056 | do { |
| 1057 | struct xa_node *node; |
| 1058 | |
| 1059 | node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); |
| 1060 | if (!node) |
| 1061 | goto nomem; |
| 1062 | |
| 1063 | __xas_init_node_for_split(xas, node, entry); |
| 1064 | RCU_INIT_POINTER(node->parent, xas->xa_alloc); |
| 1065 | xas->xa_alloc = node; |
| 1066 | } while (sibs-- > 0); |
| 1067 | |
| 1068 | return; |
| 1069 | nomem: |
| 1070 | xas_destroy(xas); |
| 1071 | xas_set_err(xas, -ENOMEM); |
| 1072 | } |
| 1073 | EXPORT_SYMBOL_GPL(xas_split_alloc); |
| 1074 | |
| 1075 | /** |
| 1076 | * xas_split() - Split a multi-index entry into smaller entries. |
| 1077 | * @xas: XArray operation state. |
| 1078 | * @entry: New entry to store in the array. |
| 1079 | * @order: Current entry order. |
| 1080 | * |
| 1081 | * The size of the new entries is set in @xas. The value in @entry is |
| 1082 | * copied to all the replacement entries. |
| 1083 | * |
| 1084 | * Context: Any context. The caller should hold the xa_lock. |
| 1085 | */ |
| 1086 | void xas_split(struct xa_state *xas, void *entry, unsigned int order) |
| 1087 | { |
| 1088 | unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; |
| 1089 | unsigned int offset, marks; |
| 1090 | struct xa_node *node; |
| 1091 | void *curr = xas_load(xas); |
| 1092 | int values = 0; |
| 1093 | |
| 1094 | node = xas->xa_node; |
| 1095 | if (xas_top(node)) |
| 1096 | return; |
| 1097 | |
| 1098 | marks = node_get_marks(node, xas->xa_offset); |
| 1099 | |
| 1100 | offset = xas->xa_offset + sibs; |
| 1101 | do { |
| 1102 | if (xas->xa_shift < node->shift) { |
| 1103 | struct xa_node *child = xas->xa_alloc; |
| 1104 | |
| 1105 | xas->xa_alloc = rcu_dereference_raw(child->parent); |
| 1106 | child->shift = node->shift - XA_CHUNK_SHIFT; |
| 1107 | child->offset = offset; |
| 1108 | child->count = XA_CHUNK_SIZE; |
| 1109 | child->nr_values = xa_is_value(entry) ? |
| 1110 | XA_CHUNK_SIZE : 0; |
| 1111 | RCU_INIT_POINTER(child->parent, node); |
| 1112 | node_set_marks(node, offset, child, xas->xa_sibs, |
| 1113 | marks); |
| 1114 | rcu_assign_pointer(node->slots[offset], |
| 1115 | xa_mk_node(child)); |
| 1116 | if (xa_is_value(curr)) |
| 1117 | values--; |
| 1118 | xas_update(xas, child); |
| 1119 | } else { |
| 1120 | unsigned int canon = offset - xas->xa_sibs; |
| 1121 | |
| 1122 | node_set_marks(node, canon, NULL, 0, marks); |
| 1123 | rcu_assign_pointer(node->slots[canon], entry); |
| 1124 | while (offset > canon) |
| 1125 | rcu_assign_pointer(node->slots[offset--], |
| 1126 | xa_mk_sibling(canon)); |
| 1127 | values += (xa_is_value(entry) - xa_is_value(curr)) * |
| 1128 | (xas->xa_sibs + 1); |
| 1129 | } |
| 1130 | } while (offset-- > xas->xa_offset); |
| 1131 | |
| 1132 | node->nr_values += values; |
| 1133 | xas_update(xas, node); |
| 1134 | } |
| 1135 | EXPORT_SYMBOL_GPL(xas_split); |
| 1136 | |
| 1137 | /** |
| 1138 | * xas_try_split_min_order() - Minimal split order xas_try_split() can accept |
| 1139 | * @order: Current entry order. |
| 1140 | * |
| 1141 | * xas_try_split() can split a multi-index entry to smaller than @order - 1 if |
| 1142 | * no new xa_node is needed. This function provides the minimal order |
| 1143 | * xas_try_split() supports. |
| 1144 | * |
| 1145 | * Return: the minimal order xas_try_split() supports |
| 1146 | * |
| 1147 | * Context: Any context. |
| 1148 | * |
| 1149 | */ |
| 1150 | unsigned int xas_try_split_min_order(unsigned int order) |
| 1151 | { |
| 1152 | if (order % XA_CHUNK_SHIFT == 0) |
| 1153 | return order == 0 ? 0 : order - 1; |
| 1154 | |
| 1155 | return order - (order % XA_CHUNK_SHIFT); |
| 1156 | } |
| 1157 | EXPORT_SYMBOL_GPL(xas_try_split_min_order); |
| 1158 | |
| 1159 | /** |
| 1160 | * xas_try_split() - Try to split a multi-index entry. |
| 1161 | * @xas: XArray operation state. |
| 1162 | * @entry: New entry to store in the array. |
| 1163 | * @order: Current entry order. |
| 1164 | * |
| 1165 | * The size of the new entries is set in @xas. The value in @entry is |
| 1166 | * copied to all the replacement entries. If and only if one new xa_node is |
| 1167 | * needed, the function will use GFP_NOWAIT to get one if xas->xa_alloc is |
| 1168 | * NULL. If more new xa_node are needed, the function gives EINVAL error. |
| 1169 | * |
| 1170 | * NOTE: use xas_try_split_min_order() to get next split order instead of |
| 1171 | * @order - 1 if you want to minmize xas_try_split() calls. |
| 1172 | * |
| 1173 | * Context: Any context. The caller should hold the xa_lock. |
| 1174 | */ |
| 1175 | void xas_try_split(struct xa_state *xas, void *entry, unsigned int order) |
| 1176 | { |
| 1177 | unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; |
| 1178 | unsigned int offset, marks; |
| 1179 | struct xa_node *node; |
| 1180 | void *curr = xas_load(xas); |
| 1181 | int values = 0; |
| 1182 | gfp_t gfp = GFP_NOWAIT; |
| 1183 | |
| 1184 | node = xas->xa_node; |
| 1185 | if (xas_top(node)) |
| 1186 | return; |
| 1187 | |
| 1188 | if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) |
| 1189 | gfp |= __GFP_ACCOUNT; |
| 1190 | |
| 1191 | marks = node_get_marks(node, xas->xa_offset); |
| 1192 | |
| 1193 | offset = xas->xa_offset + sibs; |
| 1194 | |
| 1195 | if (xas->xa_shift < node->shift) { |
| 1196 | struct xa_node *child = xas->xa_alloc; |
| 1197 | unsigned int expected_sibs = |
| 1198 | (1 << ((order - 1) % XA_CHUNK_SHIFT)) - 1; |
| 1199 | |
| 1200 | /* |
| 1201 | * No support for splitting sibling entries |
| 1202 | * (horizontally) or cascade split (vertically), which |
| 1203 | * requires two or more new xa_nodes. |
| 1204 | * Since if one xa_node allocation fails, |
| 1205 | * it is hard to free the prior allocations. |
| 1206 | */ |
| 1207 | if (sibs || xas->xa_sibs != expected_sibs) { |
| 1208 | xas_destroy(xas); |
| 1209 | xas_set_err(xas, -EINVAL); |
| 1210 | return; |
| 1211 | } |
| 1212 | |
| 1213 | if (!child) { |
| 1214 | child = kmem_cache_alloc_lru(radix_tree_node_cachep, |
| 1215 | xas->xa_lru, gfp); |
| 1216 | if (!child) { |
| 1217 | xas_destroy(xas); |
| 1218 | xas_set_err(xas, -ENOMEM); |
| 1219 | return; |
| 1220 | } |
| 1221 | RCU_INIT_POINTER(child->parent, xas->xa_alloc); |
| 1222 | } |
| 1223 | __xas_init_node_for_split(xas, child, entry); |
| 1224 | |
| 1225 | xas->xa_alloc = rcu_dereference_raw(child->parent); |
| 1226 | child->shift = node->shift - XA_CHUNK_SHIFT; |
| 1227 | child->offset = offset; |
| 1228 | child->count = XA_CHUNK_SIZE; |
| 1229 | child->nr_values = xa_is_value(entry) ? |
| 1230 | XA_CHUNK_SIZE : 0; |
| 1231 | RCU_INIT_POINTER(child->parent, node); |
| 1232 | node_set_marks(node, offset, child, xas->xa_sibs, |
| 1233 | marks); |
| 1234 | rcu_assign_pointer(node->slots[offset], |
| 1235 | xa_mk_node(child)); |
| 1236 | if (xa_is_value(curr)) |
| 1237 | values--; |
| 1238 | xas_update(xas, child); |
| 1239 | |
| 1240 | } else { |
| 1241 | do { |
| 1242 | unsigned int canon = offset - xas->xa_sibs; |
| 1243 | |
| 1244 | node_set_marks(node, canon, NULL, 0, marks); |
| 1245 | rcu_assign_pointer(node->slots[canon], entry); |
| 1246 | while (offset > canon) |
| 1247 | rcu_assign_pointer(node->slots[offset--], |
| 1248 | xa_mk_sibling(canon)); |
| 1249 | values += (xa_is_value(entry) - xa_is_value(curr)) * |
| 1250 | (xas->xa_sibs + 1); |
| 1251 | } while (offset-- > xas->xa_offset); |
| 1252 | } |
| 1253 | |
| 1254 | node->nr_values += values; |
| 1255 | xas_update(xas, node); |
| 1256 | } |
| 1257 | EXPORT_SYMBOL_GPL(xas_try_split); |
| 1258 | #endif |
| 1259 | |
| 1260 | /** |
| 1261 | * xas_pause() - Pause a walk to drop a lock. |
| 1262 | * @xas: XArray operation state. |
| 1263 | * |
| 1264 | * Some users need to pause a walk and drop the lock they're holding in |
| 1265 | * order to yield to a higher priority thread or carry out an operation |
| 1266 | * on an entry. Those users should call this function before they drop |
| 1267 | * the lock. It resets the @xas to be suitable for the next iteration |
| 1268 | * of the loop after the user has reacquired the lock. If most entries |
| 1269 | * found during a walk require you to call xas_pause(), the xa_for_each() |
| 1270 | * iterator may be more appropriate. |
| 1271 | * |
| 1272 | * Note that xas_pause() only works for forward iteration. If a user needs |
| 1273 | * to pause a reverse iteration, we will need a xas_pause_rev(). |
| 1274 | */ |
| 1275 | void xas_pause(struct xa_state *xas) |
| 1276 | { |
| 1277 | struct xa_node *node = xas->xa_node; |
| 1278 | |
| 1279 | if (xas_invalid(xas)) |
| 1280 | return; |
| 1281 | |
| 1282 | xas->xa_node = XAS_RESTART; |
| 1283 | if (node) { |
| 1284 | unsigned long offset = xas->xa_offset; |
| 1285 | while (++offset < XA_CHUNK_SIZE) { |
| 1286 | if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) |
| 1287 | break; |
| 1288 | } |
| 1289 | xas->xa_index &= ~0UL << node->shift; |
| 1290 | xas->xa_index += (offset - xas->xa_offset) << node->shift; |
| 1291 | if (xas->xa_index == 0) |
| 1292 | xas->xa_node = XAS_BOUNDS; |
| 1293 | } else { |
| 1294 | xas->xa_index++; |
| 1295 | } |
| 1296 | } |
| 1297 | EXPORT_SYMBOL_GPL(xas_pause); |
| 1298 | |
| 1299 | /* |
| 1300 | * __xas_prev() - Find the previous entry in the XArray. |
| 1301 | * @xas: XArray operation state. |
| 1302 | * |
| 1303 | * Helper function for xas_prev() which handles all the complex cases |
| 1304 | * out of line. |
| 1305 | */ |
| 1306 | void *__xas_prev(struct xa_state *xas) |
| 1307 | { |
| 1308 | void *entry; |
| 1309 | |
| 1310 | if (!xas_frozen(xas->xa_node)) |
| 1311 | xas->xa_index--; |
| 1312 | if (!xas->xa_node) |
| 1313 | return set_bounds(xas); |
| 1314 | if (xas_not_node(xas->xa_node)) |
| 1315 | return xas_load(xas); |
| 1316 | |
| 1317 | if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) |
| 1318 | xas->xa_offset--; |
| 1319 | |
| 1320 | while (xas->xa_offset == 255) { |
| 1321 | xas->xa_offset = xas->xa_node->offset - 1; |
| 1322 | xas->xa_node = xa_parent(xas->xa, xas->xa_node); |
| 1323 | if (!xas->xa_node) |
| 1324 | return set_bounds(xas); |
| 1325 | } |
| 1326 | |
| 1327 | for (;;) { |
| 1328 | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| 1329 | if (!xa_is_node(entry)) |
| 1330 | return entry; |
| 1331 | |
| 1332 | xas->xa_node = xa_to_node(entry); |
| 1333 | xas_set_offset(xas); |
| 1334 | } |
| 1335 | } |
| 1336 | EXPORT_SYMBOL_GPL(__xas_prev); |
| 1337 | |
| 1338 | /* |
| 1339 | * __xas_next() - Find the next entry in the XArray. |
| 1340 | * @xas: XArray operation state. |
| 1341 | * |
| 1342 | * Helper function for xas_next() which handles all the complex cases |
| 1343 | * out of line. |
| 1344 | */ |
| 1345 | void *__xas_next(struct xa_state *xas) |
| 1346 | { |
| 1347 | void *entry; |
| 1348 | |
| 1349 | if (!xas_frozen(xas->xa_node)) |
| 1350 | xas->xa_index++; |
| 1351 | if (!xas->xa_node) |
| 1352 | return set_bounds(xas); |
| 1353 | if (xas_not_node(xas->xa_node)) |
| 1354 | return xas_load(xas); |
| 1355 | |
| 1356 | if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) |
| 1357 | xas->xa_offset++; |
| 1358 | |
| 1359 | while (xas->xa_offset == XA_CHUNK_SIZE) { |
| 1360 | xas->xa_offset = xas->xa_node->offset + 1; |
| 1361 | xas->xa_node = xa_parent(xas->xa, xas->xa_node); |
| 1362 | if (!xas->xa_node) |
| 1363 | return set_bounds(xas); |
| 1364 | } |
| 1365 | |
| 1366 | for (;;) { |
| 1367 | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| 1368 | if (!xa_is_node(entry)) |
| 1369 | return entry; |
| 1370 | |
| 1371 | xas->xa_node = xa_to_node(entry); |
| 1372 | xas_set_offset(xas); |
| 1373 | } |
| 1374 | } |
| 1375 | EXPORT_SYMBOL_GPL(__xas_next); |
| 1376 | |
| 1377 | /** |
| 1378 | * xas_find() - Find the next present entry in the XArray. |
| 1379 | * @xas: XArray operation state. |
| 1380 | * @max: Highest index to return. |
| 1381 | * |
| 1382 | * If the @xas has not yet been walked to an entry, return the entry |
| 1383 | * which has an index >= xas.xa_index. If it has been walked, the entry |
| 1384 | * currently being pointed at has been processed, and so we move to the |
| 1385 | * next entry. |
| 1386 | * |
| 1387 | * If no entry is found and the array is smaller than @max, the iterator |
| 1388 | * is set to the smallest index not yet in the array. This allows @xas |
| 1389 | * to be immediately passed to xas_store(). |
| 1390 | * |
| 1391 | * Return: The entry, if found, otherwise %NULL. |
| 1392 | */ |
| 1393 | void *xas_find(struct xa_state *xas, unsigned long max) |
| 1394 | { |
| 1395 | void *entry; |
| 1396 | |
| 1397 | if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) |
| 1398 | return NULL; |
| 1399 | if (xas->xa_index > max) |
| 1400 | return set_bounds(xas); |
| 1401 | |
| 1402 | if (!xas->xa_node) { |
| 1403 | xas->xa_index = 1; |
| 1404 | return set_bounds(xas); |
| 1405 | } else if (xas->xa_node == XAS_RESTART) { |
| 1406 | entry = xas_load(xas); |
| 1407 | if (entry || xas_not_node(xas->xa_node)) |
| 1408 | return entry; |
| 1409 | } else if (!xas->xa_node->shift && |
| 1410 | xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { |
| 1411 | xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; |
| 1412 | } |
| 1413 | |
| 1414 | xas_next_offset(xas); |
| 1415 | |
| 1416 | while (xas->xa_node && (xas->xa_index <= max)) { |
| 1417 | if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { |
| 1418 | xas->xa_offset = xas->xa_node->offset + 1; |
| 1419 | xas->xa_node = xa_parent(xas->xa, xas->xa_node); |
| 1420 | continue; |
| 1421 | } |
| 1422 | |
| 1423 | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| 1424 | if (xa_is_node(entry)) { |
| 1425 | xas->xa_node = xa_to_node(entry); |
| 1426 | xas->xa_offset = 0; |
| 1427 | continue; |
| 1428 | } |
| 1429 | if (entry && !xa_is_sibling(entry)) |
| 1430 | return entry; |
| 1431 | |
| 1432 | xas_next_offset(xas); |
| 1433 | } |
| 1434 | |
| 1435 | if (!xas->xa_node) |
| 1436 | xas->xa_node = XAS_BOUNDS; |
| 1437 | return NULL; |
| 1438 | } |
| 1439 | EXPORT_SYMBOL_GPL(xas_find); |
| 1440 | |
| 1441 | /** |
| 1442 | * xas_find_marked() - Find the next marked entry in the XArray. |
| 1443 | * @xas: XArray operation state. |
| 1444 | * @max: Highest index to return. |
| 1445 | * @mark: Mark number to search for. |
| 1446 | * |
| 1447 | * If the @xas has not yet been walked to an entry, return the marked entry |
| 1448 | * which has an index >= xas.xa_index. If it has been walked, the entry |
| 1449 | * currently being pointed at has been processed, and so we return the |
| 1450 | * first marked entry with an index > xas.xa_index. |
| 1451 | * |
| 1452 | * If no marked entry is found and the array is smaller than @max, @xas is |
| 1453 | * set to the bounds state and xas->xa_index is set to the smallest index |
| 1454 | * not yet in the array. This allows @xas to be immediately passed to |
| 1455 | * xas_store(). |
| 1456 | * |
| 1457 | * If no entry is found before @max is reached, @xas is set to the restart |
| 1458 | * state. |
| 1459 | * |
| 1460 | * Return: The entry, if found, otherwise %NULL. |
| 1461 | */ |
| 1462 | void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) |
| 1463 | { |
| 1464 | bool advance = true; |
| 1465 | unsigned int offset; |
| 1466 | void *entry; |
| 1467 | |
| 1468 | if (xas_error(xas)) |
| 1469 | return NULL; |
| 1470 | if (xas->xa_index > max) |
| 1471 | goto max; |
| 1472 | |
| 1473 | if (!xas->xa_node) { |
| 1474 | xas->xa_index = 1; |
| 1475 | goto out; |
| 1476 | } else if (xas_top(xas->xa_node)) { |
| 1477 | advance = false; |
| 1478 | entry = xa_head(xas->xa); |
| 1479 | xas->xa_node = NULL; |
| 1480 | if (xas->xa_index > max_index(entry)) |
| 1481 | goto out; |
| 1482 | if (!xa_is_node(entry)) { |
| 1483 | if (xa_marked(xas->xa, mark)) |
| 1484 | return entry; |
| 1485 | xas->xa_index = 1; |
| 1486 | goto out; |
| 1487 | } |
| 1488 | xas->xa_node = xa_to_node(entry); |
| 1489 | xas->xa_offset = xas->xa_index >> xas->xa_node->shift; |
| 1490 | } |
| 1491 | |
| 1492 | while (xas->xa_index <= max) { |
| 1493 | if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { |
| 1494 | xas->xa_offset = xas->xa_node->offset + 1; |
| 1495 | xas->xa_node = xa_parent(xas->xa, xas->xa_node); |
| 1496 | if (!xas->xa_node) |
| 1497 | break; |
| 1498 | advance = false; |
| 1499 | continue; |
| 1500 | } |
| 1501 | |
| 1502 | if (!advance) { |
| 1503 | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| 1504 | if (xa_is_sibling(entry)) { |
| 1505 | xas->xa_offset = xa_to_sibling(entry); |
| 1506 | xas_move_index(xas, xas->xa_offset); |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | offset = xas_find_chunk(xas, advance, mark); |
| 1511 | if (offset > xas->xa_offset) { |
| 1512 | advance = false; |
| 1513 | xas_move_index(xas, offset); |
| 1514 | /* Mind the wrap */ |
| 1515 | if ((xas->xa_index - 1) >= max) |
| 1516 | goto max; |
| 1517 | xas->xa_offset = offset; |
| 1518 | if (offset == XA_CHUNK_SIZE) |
| 1519 | continue; |
| 1520 | } |
| 1521 | |
| 1522 | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); |
| 1523 | if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) |
| 1524 | continue; |
| 1525 | if (xa_is_sibling(entry)) |
| 1526 | continue; |
| 1527 | if (!xa_is_node(entry)) |
| 1528 | return entry; |
| 1529 | xas->xa_node = xa_to_node(entry); |
| 1530 | xas_set_offset(xas); |
| 1531 | } |
| 1532 | |
| 1533 | out: |
| 1534 | if (xas->xa_index > max) |
| 1535 | goto max; |
| 1536 | return set_bounds(xas); |
| 1537 | max: |
| 1538 | xas->xa_node = XAS_RESTART; |
| 1539 | return NULL; |
| 1540 | } |
| 1541 | EXPORT_SYMBOL_GPL(xas_find_marked); |
| 1542 | |
| 1543 | /** |
| 1544 | * xas_find_conflict() - Find the next present entry in a range. |
| 1545 | * @xas: XArray operation state. |
| 1546 | * |
| 1547 | * The @xas describes both a range and a position within that range. |
| 1548 | * |
| 1549 | * Context: Any context. Expects xa_lock to be held. |
| 1550 | * Return: The next entry in the range covered by @xas or %NULL. |
| 1551 | */ |
| 1552 | void *xas_find_conflict(struct xa_state *xas) |
| 1553 | { |
| 1554 | void *curr; |
| 1555 | |
| 1556 | if (xas_error(xas)) |
| 1557 | return NULL; |
| 1558 | |
| 1559 | if (!xas->xa_node) |
| 1560 | return NULL; |
| 1561 | |
| 1562 | if (xas_top(xas->xa_node)) { |
| 1563 | curr = xas_start(xas); |
| 1564 | if (!curr) |
| 1565 | return NULL; |
| 1566 | while (xa_is_node(curr)) { |
| 1567 | struct xa_node *node = xa_to_node(curr); |
| 1568 | curr = xas_descend(xas, node); |
| 1569 | } |
| 1570 | if (curr) |
| 1571 | return curr; |
| 1572 | } |
| 1573 | |
| 1574 | if (xas->xa_node->shift > xas->xa_shift) |
| 1575 | return NULL; |
| 1576 | |
| 1577 | for (;;) { |
| 1578 | if (xas->xa_node->shift == xas->xa_shift) { |
| 1579 | if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) |
| 1580 | break; |
| 1581 | } else if (xas->xa_offset == XA_CHUNK_MASK) { |
| 1582 | xas->xa_offset = xas->xa_node->offset; |
| 1583 | xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); |
| 1584 | if (!xas->xa_node) |
| 1585 | break; |
| 1586 | continue; |
| 1587 | } |
| 1588 | curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); |
| 1589 | if (xa_is_sibling(curr)) |
| 1590 | continue; |
| 1591 | while (xa_is_node(curr)) { |
| 1592 | xas->xa_node = xa_to_node(curr); |
| 1593 | xas->xa_offset = 0; |
| 1594 | curr = xa_entry_locked(xas->xa, xas->xa_node, 0); |
| 1595 | } |
| 1596 | if (curr) |
| 1597 | return curr; |
| 1598 | } |
| 1599 | xas->xa_offset -= xas->xa_sibs; |
| 1600 | return NULL; |
| 1601 | } |
| 1602 | EXPORT_SYMBOL_GPL(xas_find_conflict); |
| 1603 | |
| 1604 | /** |
| 1605 | * xa_load() - Load an entry from an XArray. |
| 1606 | * @xa: XArray. |
| 1607 | * @index: index into array. |
| 1608 | * |
| 1609 | * Context: Any context. Takes and releases the RCU lock. |
| 1610 | * Return: The entry at @index in @xa. |
| 1611 | */ |
| 1612 | void *xa_load(struct xarray *xa, unsigned long index) |
| 1613 | { |
| 1614 | XA_STATE(xas, xa, index); |
| 1615 | void *entry; |
| 1616 | |
| 1617 | rcu_read_lock(); |
| 1618 | do { |
| 1619 | entry = xa_zero_to_null(xas_load(&xas)); |
| 1620 | } while (xas_retry(&xas, entry)); |
| 1621 | rcu_read_unlock(); |
| 1622 | |
| 1623 | return entry; |
| 1624 | } |
| 1625 | EXPORT_SYMBOL(xa_load); |
| 1626 | |
| 1627 | static void *xas_result(struct xa_state *xas, void *curr) |
| 1628 | { |
| 1629 | if (xas_error(xas)) |
| 1630 | curr = xas->xa_node; |
| 1631 | return curr; |
| 1632 | } |
| 1633 | |
| 1634 | /** |
| 1635 | * __xa_erase() - Erase this entry from the XArray while locked. |
| 1636 | * @xa: XArray. |
| 1637 | * @index: Index into array. |
| 1638 | * |
| 1639 | * After this function returns, loading from @index will return %NULL. |
| 1640 | * If the index is part of a multi-index entry, all indices will be erased |
| 1641 | * and none of the entries will be part of a multi-index entry. |
| 1642 | * |
| 1643 | * Context: Any context. Expects xa_lock to be held on entry. |
| 1644 | * Return: The entry which used to be at this index. |
| 1645 | */ |
| 1646 | void *__xa_erase(struct xarray *xa, unsigned long index) |
| 1647 | { |
| 1648 | XA_STATE(xas, xa, index); |
| 1649 | return xas_result(&xas, xa_zero_to_null(xas_store(&xas, NULL))); |
| 1650 | } |
| 1651 | EXPORT_SYMBOL(__xa_erase); |
| 1652 | |
| 1653 | /** |
| 1654 | * xa_erase() - Erase this entry from the XArray. |
| 1655 | * @xa: XArray. |
| 1656 | * @index: Index of entry. |
| 1657 | * |
| 1658 | * After this function returns, loading from @index will return %NULL. |
| 1659 | * If the index is part of a multi-index entry, all indices will be erased |
| 1660 | * and none of the entries will be part of a multi-index entry. |
| 1661 | * |
| 1662 | * Context: Any context. Takes and releases the xa_lock. |
| 1663 | * Return: The entry which used to be at this index. |
| 1664 | */ |
| 1665 | void *xa_erase(struct xarray *xa, unsigned long index) |
| 1666 | { |
| 1667 | void *entry; |
| 1668 | |
| 1669 | xa_lock(xa); |
| 1670 | entry = __xa_erase(xa, index); |
| 1671 | xa_unlock(xa); |
| 1672 | |
| 1673 | return entry; |
| 1674 | } |
| 1675 | EXPORT_SYMBOL(xa_erase); |
| 1676 | |
| 1677 | /** |
| 1678 | * __xa_store() - Store this entry in the XArray. |
| 1679 | * @xa: XArray. |
| 1680 | * @index: Index into array. |
| 1681 | * @entry: New entry. |
| 1682 | * @gfp: Memory allocation flags. |
| 1683 | * |
| 1684 | * You must already be holding the xa_lock when calling this function. |
| 1685 | * It will drop the lock if needed to allocate memory, and then reacquire |
| 1686 | * it afterwards. |
| 1687 | * |
| 1688 | * Context: Any context. Expects xa_lock to be held on entry. May |
| 1689 | * release and reacquire xa_lock if @gfp flags permit. |
| 1690 | * Return: The old entry at this index or xa_err() if an error happened. |
| 1691 | */ |
| 1692 | void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) |
| 1693 | { |
| 1694 | XA_STATE(xas, xa, index); |
| 1695 | void *curr; |
| 1696 | |
| 1697 | if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| 1698 | return XA_ERROR(-EINVAL); |
| 1699 | if (xa_track_free(xa) && !entry) |
| 1700 | entry = XA_ZERO_ENTRY; |
| 1701 | |
| 1702 | do { |
| 1703 | curr = xas_store(&xas, entry); |
| 1704 | if (xa_track_free(xa)) |
| 1705 | xas_clear_mark(&xas, XA_FREE_MARK); |
| 1706 | } while (__xas_nomem(&xas, gfp)); |
| 1707 | |
| 1708 | return xas_result(&xas, xa_zero_to_null(curr)); |
| 1709 | } |
| 1710 | EXPORT_SYMBOL(__xa_store); |
| 1711 | |
| 1712 | /** |
| 1713 | * xa_store() - Store this entry in the XArray. |
| 1714 | * @xa: XArray. |
| 1715 | * @index: Index into array. |
| 1716 | * @entry: New entry. |
| 1717 | * @gfp: Memory allocation flags. |
| 1718 | * |
| 1719 | * After this function returns, loads from this index will return @entry. |
| 1720 | * Storing into an existing multi-index entry updates the entry of every index. |
| 1721 | * The marks associated with @index are unaffected unless @entry is %NULL. |
| 1722 | * |
| 1723 | * Context: Any context. Takes and releases the xa_lock. |
| 1724 | * May sleep if the @gfp flags permit. |
| 1725 | * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry |
| 1726 | * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation |
| 1727 | * failed. |
| 1728 | */ |
| 1729 | void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) |
| 1730 | { |
| 1731 | void *curr; |
| 1732 | |
| 1733 | xa_lock(xa); |
| 1734 | curr = __xa_store(xa, index, entry, gfp); |
| 1735 | xa_unlock(xa); |
| 1736 | |
| 1737 | return curr; |
| 1738 | } |
| 1739 | EXPORT_SYMBOL(xa_store); |
| 1740 | |
| 1741 | static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, |
| 1742 | void *old, void *entry, gfp_t gfp); |
| 1743 | |
| 1744 | /** |
| 1745 | * __xa_cmpxchg() - Conditionally replace an entry in the XArray. |
| 1746 | * @xa: XArray. |
| 1747 | * @index: Index into array. |
| 1748 | * @old: Old value to test against. |
| 1749 | * @entry: New value to place in array. |
| 1750 | * @gfp: Memory allocation flags. |
| 1751 | * |
| 1752 | * You must already be holding the xa_lock when calling this function. |
| 1753 | * It will drop the lock if needed to allocate memory, and then reacquire |
| 1754 | * it afterwards. |
| 1755 | * |
| 1756 | * If the entry at @index is the same as @old, replace it with @entry. |
| 1757 | * If the return value is equal to @old, then the exchange was successful. |
| 1758 | * |
| 1759 | * Context: Any context. Expects xa_lock to be held on entry. May |
| 1760 | * release and reacquire xa_lock if @gfp flags permit. |
| 1761 | * Return: The old value at this index or xa_err() if an error happened. |
| 1762 | */ |
| 1763 | void *__xa_cmpxchg(struct xarray *xa, unsigned long index, |
| 1764 | void *old, void *entry, gfp_t gfp) |
| 1765 | { |
| 1766 | return xa_zero_to_null(__xa_cmpxchg_raw(xa, index, old, entry, gfp)); |
| 1767 | } |
| 1768 | EXPORT_SYMBOL(__xa_cmpxchg); |
| 1769 | |
| 1770 | static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, |
| 1771 | void *old, void *entry, gfp_t gfp) |
| 1772 | { |
| 1773 | XA_STATE(xas, xa, index); |
| 1774 | void *curr; |
| 1775 | |
| 1776 | if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| 1777 | return XA_ERROR(-EINVAL); |
| 1778 | |
| 1779 | do { |
| 1780 | curr = xas_load(&xas); |
| 1781 | if (curr == old) { |
| 1782 | xas_store(&xas, entry); |
| 1783 | if (xa_track_free(xa) && entry && !curr) |
| 1784 | xas_clear_mark(&xas, XA_FREE_MARK); |
| 1785 | } |
| 1786 | } while (__xas_nomem(&xas, gfp)); |
| 1787 | |
| 1788 | return xas_result(&xas, curr); |
| 1789 | } |
| 1790 | |
| 1791 | /** |
| 1792 | * __xa_insert() - Store this entry in the XArray if no entry is present. |
| 1793 | * @xa: XArray. |
| 1794 | * @index: Index into array. |
| 1795 | * @entry: New entry. |
| 1796 | * @gfp: Memory allocation flags. |
| 1797 | * |
| 1798 | * Inserting a NULL entry will store a reserved entry (like xa_reserve()) |
| 1799 | * if no entry is present. Inserting will fail if a reserved entry is |
| 1800 | * present, even though loading from this index will return NULL. |
| 1801 | * |
| 1802 | * Context: Any context. Expects xa_lock to be held on entry. May |
| 1803 | * release and reacquire xa_lock if @gfp flags permit. |
| 1804 | * Return: 0 if the store succeeded. -EBUSY if another entry was present. |
| 1805 | * -ENOMEM if memory could not be allocated. |
| 1806 | */ |
| 1807 | int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) |
| 1808 | { |
| 1809 | void *curr; |
| 1810 | int errno; |
| 1811 | |
| 1812 | if (!entry) |
| 1813 | entry = XA_ZERO_ENTRY; |
| 1814 | curr = __xa_cmpxchg_raw(xa, index, NULL, entry, gfp); |
| 1815 | errno = xa_err(curr); |
| 1816 | if (errno) |
| 1817 | return errno; |
| 1818 | return (curr != NULL) ? -EBUSY : 0; |
| 1819 | } |
| 1820 | EXPORT_SYMBOL(__xa_insert); |
| 1821 | |
| 1822 | #ifdef CONFIG_XARRAY_MULTI |
| 1823 | static void xas_set_range(struct xa_state *xas, unsigned long first, |
| 1824 | unsigned long last) |
| 1825 | { |
| 1826 | unsigned int shift = 0; |
| 1827 | unsigned long sibs = last - first; |
| 1828 | unsigned int offset = XA_CHUNK_MASK; |
| 1829 | |
| 1830 | xas_set(xas, first); |
| 1831 | |
| 1832 | while ((first & XA_CHUNK_MASK) == 0) { |
| 1833 | if (sibs < XA_CHUNK_MASK) |
| 1834 | break; |
| 1835 | if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) |
| 1836 | break; |
| 1837 | shift += XA_CHUNK_SHIFT; |
| 1838 | if (offset == XA_CHUNK_MASK) |
| 1839 | offset = sibs & XA_CHUNK_MASK; |
| 1840 | sibs >>= XA_CHUNK_SHIFT; |
| 1841 | first >>= XA_CHUNK_SHIFT; |
| 1842 | } |
| 1843 | |
| 1844 | offset = first & XA_CHUNK_MASK; |
| 1845 | if (offset + sibs > XA_CHUNK_MASK) |
| 1846 | sibs = XA_CHUNK_MASK - offset; |
| 1847 | if ((((first + sibs + 1) << shift) - 1) > last) |
| 1848 | sibs -= 1; |
| 1849 | |
| 1850 | xas->xa_shift = shift; |
| 1851 | xas->xa_sibs = sibs; |
| 1852 | } |
| 1853 | |
| 1854 | /** |
| 1855 | * xa_store_range() - Store this entry at a range of indices in the XArray. |
| 1856 | * @xa: XArray. |
| 1857 | * @first: First index to affect. |
| 1858 | * @last: Last index to affect. |
| 1859 | * @entry: New entry. |
| 1860 | * @gfp: Memory allocation flags. |
| 1861 | * |
| 1862 | * After this function returns, loads from any index between @first and @last, |
| 1863 | * inclusive will return @entry. |
| 1864 | * Storing into an existing multi-index entry updates the entry of every index. |
| 1865 | * The marks associated with @index are unaffected unless @entry is %NULL. |
| 1866 | * |
| 1867 | * Context: Process context. Takes and releases the xa_lock. May sleep |
| 1868 | * if the @gfp flags permit. |
| 1869 | * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in |
| 1870 | * an XArray, or xa_err(-ENOMEM) if memory allocation failed. |
| 1871 | */ |
| 1872 | void *xa_store_range(struct xarray *xa, unsigned long first, |
| 1873 | unsigned long last, void *entry, gfp_t gfp) |
| 1874 | { |
| 1875 | XA_STATE(xas, xa, 0); |
| 1876 | |
| 1877 | if (WARN_ON_ONCE(xa_is_internal(entry))) |
| 1878 | return XA_ERROR(-EINVAL); |
| 1879 | if (last < first) |
| 1880 | return XA_ERROR(-EINVAL); |
| 1881 | |
| 1882 | do { |
| 1883 | xas_lock(&xas); |
| 1884 | if (entry) { |
| 1885 | unsigned int order = BITS_PER_LONG; |
| 1886 | if (last + 1) |
| 1887 | order = __ffs(last + 1); |
| 1888 | xas_set_order(&xas, last, order); |
| 1889 | xas_create(&xas, true); |
| 1890 | if (xas_error(&xas)) |
| 1891 | goto unlock; |
| 1892 | } |
| 1893 | do { |
| 1894 | xas_set_range(&xas, first, last); |
| 1895 | xas_store(&xas, entry); |
| 1896 | if (xas_error(&xas)) |
| 1897 | goto unlock; |
| 1898 | first += xas_size(&xas); |
| 1899 | } while (first <= last); |
| 1900 | unlock: |
| 1901 | xas_unlock(&xas); |
| 1902 | } while (xas_nomem(&xas, gfp)); |
| 1903 | |
| 1904 | return xas_result(&xas, NULL); |
| 1905 | } |
| 1906 | EXPORT_SYMBOL(xa_store_range); |
| 1907 | |
| 1908 | /** |
| 1909 | * xas_get_order() - Get the order of an entry. |
| 1910 | * @xas: XArray operation state. |
| 1911 | * |
| 1912 | * Called after xas_load, the xas should not be in an error state. |
| 1913 | * |
| 1914 | * Return: A number between 0 and 63 indicating the order of the entry. |
| 1915 | */ |
| 1916 | int xas_get_order(struct xa_state *xas) |
| 1917 | { |
| 1918 | int order = 0; |
| 1919 | |
| 1920 | if (!xas->xa_node) |
| 1921 | return 0; |
| 1922 | |
| 1923 | for (;;) { |
| 1924 | unsigned int slot = xas->xa_offset + (1 << order); |
| 1925 | |
| 1926 | if (slot >= XA_CHUNK_SIZE) |
| 1927 | break; |
| 1928 | if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot))) |
| 1929 | break; |
| 1930 | order++; |
| 1931 | } |
| 1932 | |
| 1933 | order += xas->xa_node->shift; |
| 1934 | return order; |
| 1935 | } |
| 1936 | EXPORT_SYMBOL_GPL(xas_get_order); |
| 1937 | |
| 1938 | /** |
| 1939 | * xa_get_order() - Get the order of an entry. |
| 1940 | * @xa: XArray. |
| 1941 | * @index: Index of the entry. |
| 1942 | * |
| 1943 | * Return: A number between 0 and 63 indicating the order of the entry. |
| 1944 | */ |
| 1945 | int xa_get_order(struct xarray *xa, unsigned long index) |
| 1946 | { |
| 1947 | XA_STATE(xas, xa, index); |
| 1948 | int order = 0; |
| 1949 | void *entry; |
| 1950 | |
| 1951 | rcu_read_lock(); |
| 1952 | entry = xas_load(&xas); |
| 1953 | if (entry) |
| 1954 | order = xas_get_order(&xas); |
| 1955 | rcu_read_unlock(); |
| 1956 | |
| 1957 | return order; |
| 1958 | } |
| 1959 | EXPORT_SYMBOL(xa_get_order); |
| 1960 | #endif /* CONFIG_XARRAY_MULTI */ |
| 1961 | |
| 1962 | /** |
| 1963 | * __xa_alloc() - Find somewhere to store this entry in the XArray. |
| 1964 | * @xa: XArray. |
| 1965 | * @id: Pointer to ID. |
| 1966 | * @limit: Range for allocated ID. |
| 1967 | * @entry: New entry. |
| 1968 | * @gfp: Memory allocation flags. |
| 1969 | * |
| 1970 | * Finds an empty entry in @xa between @limit.min and @limit.max, |
| 1971 | * stores the index into the @id pointer, then stores the entry at |
| 1972 | * that index. A concurrent lookup will not see an uninitialised @id. |
| 1973 | * |
| 1974 | * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set |
| 1975 | * in xa_init_flags(). |
| 1976 | * |
| 1977 | * Context: Any context. Expects xa_lock to be held on entry. May |
| 1978 | * release and reacquire xa_lock if @gfp flags permit. |
| 1979 | * Return: 0 on success, -ENOMEM if memory could not be allocated or |
| 1980 | * -EBUSY if there are no free entries in @limit. |
| 1981 | */ |
| 1982 | int __xa_alloc(struct xarray *xa, u32 *id, void *entry, |
| 1983 | struct xa_limit limit, gfp_t gfp) |
| 1984 | { |
| 1985 | XA_STATE(xas, xa, 0); |
| 1986 | |
| 1987 | if (WARN_ON_ONCE(xa_is_advanced(entry))) |
| 1988 | return -EINVAL; |
| 1989 | if (WARN_ON_ONCE(!xa_track_free(xa))) |
| 1990 | return -EINVAL; |
| 1991 | |
| 1992 | if (!entry) |
| 1993 | entry = XA_ZERO_ENTRY; |
| 1994 | |
| 1995 | do { |
| 1996 | xas.xa_index = limit.min; |
| 1997 | xas_find_marked(&xas, limit.max, XA_FREE_MARK); |
| 1998 | if (xas.xa_node == XAS_RESTART) |
| 1999 | xas_set_err(&xas, -EBUSY); |
| 2000 | else |
| 2001 | *id = xas.xa_index; |
| 2002 | xas_store(&xas, entry); |
| 2003 | xas_clear_mark(&xas, XA_FREE_MARK); |
| 2004 | } while (__xas_nomem(&xas, gfp)); |
| 2005 | |
| 2006 | return xas_error(&xas); |
| 2007 | } |
| 2008 | EXPORT_SYMBOL(__xa_alloc); |
| 2009 | |
| 2010 | /** |
| 2011 | * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. |
| 2012 | * @xa: XArray. |
| 2013 | * @id: Pointer to ID. |
| 2014 | * @entry: New entry. |
| 2015 | * @limit: Range of allocated ID. |
| 2016 | * @next: Pointer to next ID to allocate. |
| 2017 | * @gfp: Memory allocation flags. |
| 2018 | * |
| 2019 | * Finds an empty entry in @xa between @limit.min and @limit.max, |
| 2020 | * stores the index into the @id pointer, then stores the entry at |
| 2021 | * that index. A concurrent lookup will not see an uninitialised @id. |
| 2022 | * The search for an empty entry will start at @next and will wrap |
| 2023 | * around if necessary. |
| 2024 | * |
| 2025 | * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set |
| 2026 | * in xa_init_flags(). |
| 2027 | * |
| 2028 | * Context: Any context. Expects xa_lock to be held on entry. May |
| 2029 | * release and reacquire xa_lock if @gfp flags permit. |
| 2030 | * Return: 0 if the allocation succeeded without wrapping. 1 if the |
| 2031 | * allocation succeeded after wrapping, -ENOMEM if memory could not be |
| 2032 | * allocated or -EBUSY if there are no free entries in @limit. |
| 2033 | */ |
| 2034 | int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, |
| 2035 | struct xa_limit limit, u32 *next, gfp_t gfp) |
| 2036 | { |
| 2037 | u32 min = limit.min; |
| 2038 | int ret; |
| 2039 | |
| 2040 | limit.min = max(min, *next); |
| 2041 | ret = __xa_alloc(xa, id, entry, limit, gfp); |
| 2042 | if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { |
| 2043 | xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; |
| 2044 | ret = 1; |
| 2045 | } |
| 2046 | |
| 2047 | if (ret < 0 && limit.min > min) { |
| 2048 | limit.min = min; |
| 2049 | ret = __xa_alloc(xa, id, entry, limit, gfp); |
| 2050 | if (ret == 0) |
| 2051 | ret = 1; |
| 2052 | } |
| 2053 | |
| 2054 | if (ret >= 0) { |
| 2055 | *next = *id + 1; |
| 2056 | if (*next == 0) |
| 2057 | xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; |
| 2058 | } |
| 2059 | return ret; |
| 2060 | } |
| 2061 | EXPORT_SYMBOL(__xa_alloc_cyclic); |
| 2062 | |
| 2063 | /** |
| 2064 | * __xa_set_mark() - Set this mark on this entry while locked. |
| 2065 | * @xa: XArray. |
| 2066 | * @index: Index of entry. |
| 2067 | * @mark: Mark number. |
| 2068 | * |
| 2069 | * Attempting to set a mark on a %NULL entry does not succeed. |
| 2070 | * |
| 2071 | * Context: Any context. Expects xa_lock to be held on entry. |
| 2072 | */ |
| 2073 | void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| 2074 | { |
| 2075 | XA_STATE(xas, xa, index); |
| 2076 | void *entry = xas_load(&xas); |
| 2077 | |
| 2078 | if (entry) |
| 2079 | xas_set_mark(&xas, mark); |
| 2080 | } |
| 2081 | EXPORT_SYMBOL(__xa_set_mark); |
| 2082 | |
| 2083 | /** |
| 2084 | * __xa_clear_mark() - Clear this mark on this entry while locked. |
| 2085 | * @xa: XArray. |
| 2086 | * @index: Index of entry. |
| 2087 | * @mark: Mark number. |
| 2088 | * |
| 2089 | * Context: Any context. Expects xa_lock to be held on entry. |
| 2090 | */ |
| 2091 | void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| 2092 | { |
| 2093 | XA_STATE(xas, xa, index); |
| 2094 | void *entry = xas_load(&xas); |
| 2095 | |
| 2096 | if (entry) |
| 2097 | xas_clear_mark(&xas, mark); |
| 2098 | } |
| 2099 | EXPORT_SYMBOL(__xa_clear_mark); |
| 2100 | |
| 2101 | /** |
| 2102 | * xa_get_mark() - Inquire whether this mark is set on this entry. |
| 2103 | * @xa: XArray. |
| 2104 | * @index: Index of entry. |
| 2105 | * @mark: Mark number. |
| 2106 | * |
| 2107 | * This function uses the RCU read lock, so the result may be out of date |
| 2108 | * by the time it returns. If you need the result to be stable, use a lock. |
| 2109 | * |
| 2110 | * Context: Any context. Takes and releases the RCU lock. |
| 2111 | * Return: True if the entry at @index has this mark set, false if it doesn't. |
| 2112 | */ |
| 2113 | bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| 2114 | { |
| 2115 | XA_STATE(xas, xa, index); |
| 2116 | void *entry; |
| 2117 | |
| 2118 | rcu_read_lock(); |
| 2119 | entry = xas_start(&xas); |
| 2120 | while (xas_get_mark(&xas, mark)) { |
| 2121 | if (!xa_is_node(entry)) |
| 2122 | goto found; |
| 2123 | entry = xas_descend(&xas, xa_to_node(entry)); |
| 2124 | } |
| 2125 | rcu_read_unlock(); |
| 2126 | return false; |
| 2127 | found: |
| 2128 | rcu_read_unlock(); |
| 2129 | return true; |
| 2130 | } |
| 2131 | EXPORT_SYMBOL(xa_get_mark); |
| 2132 | |
| 2133 | /** |
| 2134 | * xa_set_mark() - Set this mark on this entry. |
| 2135 | * @xa: XArray. |
| 2136 | * @index: Index of entry. |
| 2137 | * @mark: Mark number. |
| 2138 | * |
| 2139 | * Attempting to set a mark on a %NULL entry does not succeed. |
| 2140 | * |
| 2141 | * Context: Process context. Takes and releases the xa_lock. |
| 2142 | */ |
| 2143 | void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| 2144 | { |
| 2145 | xa_lock(xa); |
| 2146 | __xa_set_mark(xa, index, mark); |
| 2147 | xa_unlock(xa); |
| 2148 | } |
| 2149 | EXPORT_SYMBOL(xa_set_mark); |
| 2150 | |
| 2151 | /** |
| 2152 | * xa_clear_mark() - Clear this mark on this entry. |
| 2153 | * @xa: XArray. |
| 2154 | * @index: Index of entry. |
| 2155 | * @mark: Mark number. |
| 2156 | * |
| 2157 | * Clearing a mark always succeeds. |
| 2158 | * |
| 2159 | * Context: Process context. Takes and releases the xa_lock. |
| 2160 | */ |
| 2161 | void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) |
| 2162 | { |
| 2163 | xa_lock(xa); |
| 2164 | __xa_clear_mark(xa, index, mark); |
| 2165 | xa_unlock(xa); |
| 2166 | } |
| 2167 | EXPORT_SYMBOL(xa_clear_mark); |
| 2168 | |
| 2169 | /** |
| 2170 | * xa_find() - Search the XArray for an entry. |
| 2171 | * @xa: XArray. |
| 2172 | * @indexp: Pointer to an index. |
| 2173 | * @max: Maximum index to search to. |
| 2174 | * @filter: Selection criterion. |
| 2175 | * |
| 2176 | * Finds the entry in @xa which matches the @filter, and has the lowest |
| 2177 | * index that is at least @indexp and no more than @max. |
| 2178 | * If an entry is found, @indexp is updated to be the index of the entry. |
| 2179 | * This function is protected by the RCU read lock, so it may not find |
| 2180 | * entries which are being simultaneously added. It will not return an |
| 2181 | * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). |
| 2182 | * |
| 2183 | * Context: Any context. Takes and releases the RCU lock. |
| 2184 | * Return: The entry, if found, otherwise %NULL. |
| 2185 | */ |
| 2186 | void *xa_find(struct xarray *xa, unsigned long *indexp, |
| 2187 | unsigned long max, xa_mark_t filter) |
| 2188 | { |
| 2189 | XA_STATE(xas, xa, *indexp); |
| 2190 | void *entry; |
| 2191 | |
| 2192 | rcu_read_lock(); |
| 2193 | do { |
| 2194 | if ((__force unsigned int)filter < XA_MAX_MARKS) |
| 2195 | entry = xas_find_marked(&xas, max, filter); |
| 2196 | else |
| 2197 | entry = xas_find(&xas, max); |
| 2198 | } while (xas_retry(&xas, entry)); |
| 2199 | rcu_read_unlock(); |
| 2200 | |
| 2201 | if (entry) |
| 2202 | *indexp = xas.xa_index; |
| 2203 | return entry; |
| 2204 | } |
| 2205 | EXPORT_SYMBOL(xa_find); |
| 2206 | |
| 2207 | static bool xas_sibling(struct xa_state *xas) |
| 2208 | { |
| 2209 | struct xa_node *node = xas->xa_node; |
| 2210 | unsigned long mask; |
| 2211 | |
| 2212 | if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) |
| 2213 | return false; |
| 2214 | mask = (XA_CHUNK_SIZE << node->shift) - 1; |
| 2215 | return (xas->xa_index & mask) > |
| 2216 | ((unsigned long)xas->xa_offset << node->shift); |
| 2217 | } |
| 2218 | |
| 2219 | /** |
| 2220 | * xa_find_after() - Search the XArray for a present entry. |
| 2221 | * @xa: XArray. |
| 2222 | * @indexp: Pointer to an index. |
| 2223 | * @max: Maximum index to search to. |
| 2224 | * @filter: Selection criterion. |
| 2225 | * |
| 2226 | * Finds the entry in @xa which matches the @filter and has the lowest |
| 2227 | * index that is above @indexp and no more than @max. |
| 2228 | * If an entry is found, @indexp is updated to be the index of the entry. |
| 2229 | * This function is protected by the RCU read lock, so it may miss entries |
| 2230 | * which are being simultaneously added. It will not return an |
| 2231 | * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). |
| 2232 | * |
| 2233 | * Context: Any context. Takes and releases the RCU lock. |
| 2234 | * Return: The pointer, if found, otherwise %NULL. |
| 2235 | */ |
| 2236 | void *xa_find_after(struct xarray *xa, unsigned long *indexp, |
| 2237 | unsigned long max, xa_mark_t filter) |
| 2238 | { |
| 2239 | XA_STATE(xas, xa, *indexp + 1); |
| 2240 | void *entry; |
| 2241 | |
| 2242 | if (xas.xa_index == 0) |
| 2243 | return NULL; |
| 2244 | |
| 2245 | rcu_read_lock(); |
| 2246 | for (;;) { |
| 2247 | if ((__force unsigned int)filter < XA_MAX_MARKS) |
| 2248 | entry = xas_find_marked(&xas, max, filter); |
| 2249 | else |
| 2250 | entry = xas_find(&xas, max); |
| 2251 | |
| 2252 | if (xas_invalid(&xas)) |
| 2253 | break; |
| 2254 | if (xas_sibling(&xas)) |
| 2255 | continue; |
| 2256 | if (!xas_retry(&xas, entry)) |
| 2257 | break; |
| 2258 | } |
| 2259 | rcu_read_unlock(); |
| 2260 | |
| 2261 | if (entry) |
| 2262 | *indexp = xas.xa_index; |
| 2263 | return entry; |
| 2264 | } |
| 2265 | EXPORT_SYMBOL(xa_find_after); |
| 2266 | |
| 2267 | static unsigned int xas_extract_present(struct xa_state *xas, void **dst, |
| 2268 | unsigned long max, unsigned int n) |
| 2269 | { |
| 2270 | void *entry; |
| 2271 | unsigned int i = 0; |
| 2272 | |
| 2273 | rcu_read_lock(); |
| 2274 | xas_for_each(xas, entry, max) { |
| 2275 | if (xas_retry(xas, entry)) |
| 2276 | continue; |
| 2277 | dst[i++] = entry; |
| 2278 | if (i == n) |
| 2279 | break; |
| 2280 | } |
| 2281 | rcu_read_unlock(); |
| 2282 | |
| 2283 | return i; |
| 2284 | } |
| 2285 | |
| 2286 | static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, |
| 2287 | unsigned long max, unsigned int n, xa_mark_t mark) |
| 2288 | { |
| 2289 | void *entry; |
| 2290 | unsigned int i = 0; |
| 2291 | |
| 2292 | rcu_read_lock(); |
| 2293 | xas_for_each_marked(xas, entry, max, mark) { |
| 2294 | if (xas_retry(xas, entry)) |
| 2295 | continue; |
| 2296 | dst[i++] = entry; |
| 2297 | if (i == n) |
| 2298 | break; |
| 2299 | } |
| 2300 | rcu_read_unlock(); |
| 2301 | |
| 2302 | return i; |
| 2303 | } |
| 2304 | |
| 2305 | /** |
| 2306 | * xa_extract() - Copy selected entries from the XArray into a normal array. |
| 2307 | * @xa: The source XArray to copy from. |
| 2308 | * @dst: The buffer to copy entries into. |
| 2309 | * @start: The first index in the XArray eligible to be selected. |
| 2310 | * @max: The last index in the XArray eligible to be selected. |
| 2311 | * @n: The maximum number of entries to copy. |
| 2312 | * @filter: Selection criterion. |
| 2313 | * |
| 2314 | * Copies up to @n entries that match @filter from the XArray. The |
| 2315 | * copied entries will have indices between @start and @max, inclusive. |
| 2316 | * |
| 2317 | * The @filter may be an XArray mark value, in which case entries which are |
| 2318 | * marked with that mark will be copied. It may also be %XA_PRESENT, in |
| 2319 | * which case all entries which are not %NULL will be copied. |
| 2320 | * |
| 2321 | * The entries returned may not represent a snapshot of the XArray at a |
| 2322 | * moment in time. For example, if another thread stores to index 5, then |
| 2323 | * index 10, calling xa_extract() may return the old contents of index 5 |
| 2324 | * and the new contents of index 10. Indices not modified while this |
| 2325 | * function is running will not be skipped. |
| 2326 | * |
| 2327 | * If you need stronger guarantees, holding the xa_lock across calls to this |
| 2328 | * function will prevent concurrent modification. |
| 2329 | * |
| 2330 | * Context: Any context. Takes and releases the RCU lock. |
| 2331 | * Return: The number of entries copied. |
| 2332 | */ |
| 2333 | unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, |
| 2334 | unsigned long max, unsigned int n, xa_mark_t filter) |
| 2335 | { |
| 2336 | XA_STATE(xas, xa, start); |
| 2337 | |
| 2338 | if (!n) |
| 2339 | return 0; |
| 2340 | |
| 2341 | if ((__force unsigned int)filter < XA_MAX_MARKS) |
| 2342 | return xas_extract_marked(&xas, dst, max, n, filter); |
| 2343 | return xas_extract_present(&xas, dst, max, n); |
| 2344 | } |
| 2345 | EXPORT_SYMBOL(xa_extract); |
| 2346 | |
| 2347 | /** |
| 2348 | * xa_delete_node() - Private interface for workingset code. |
| 2349 | * @node: Node to be removed from the tree. |
| 2350 | * @update: Function to call to update ancestor nodes. |
| 2351 | * |
| 2352 | * Context: xa_lock must be held on entry and will not be released. |
| 2353 | */ |
| 2354 | void xa_delete_node(struct xa_node *node, xa_update_node_t update) |
| 2355 | { |
| 2356 | struct xa_state xas = { |
| 2357 | .xa = node->array, |
| 2358 | .xa_index = (unsigned long)node->offset << |
| 2359 | (node->shift + XA_CHUNK_SHIFT), |
| 2360 | .xa_shift = node->shift + XA_CHUNK_SHIFT, |
| 2361 | .xa_offset = node->offset, |
| 2362 | .xa_node = xa_parent_locked(node->array, node), |
| 2363 | .xa_update = update, |
| 2364 | }; |
| 2365 | |
| 2366 | xas_store(&xas, NULL); |
| 2367 | } |
| 2368 | EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ |
| 2369 | |
| 2370 | /** |
| 2371 | * xa_destroy() - Free all internal data structures. |
| 2372 | * @xa: XArray. |
| 2373 | * |
| 2374 | * After calling this function, the XArray is empty and has freed all memory |
| 2375 | * allocated for its internal data structures. You are responsible for |
| 2376 | * freeing the objects referenced by the XArray. |
| 2377 | * |
| 2378 | * Context: Any context. Takes and releases the xa_lock, interrupt-safe. |
| 2379 | */ |
| 2380 | void xa_destroy(struct xarray *xa) |
| 2381 | { |
| 2382 | XA_STATE(xas, xa, 0); |
| 2383 | unsigned long flags; |
| 2384 | void *entry; |
| 2385 | |
| 2386 | xas.xa_node = NULL; |
| 2387 | xas_lock_irqsave(&xas, flags); |
| 2388 | entry = xa_head_locked(xa); |
| 2389 | RCU_INIT_POINTER(xa->xa_head, NULL); |
| 2390 | xas_init_marks(&xas); |
| 2391 | if (xa_zero_busy(xa)) |
| 2392 | xa_mark_clear(xa, XA_FREE_MARK); |
| 2393 | /* lockdep checks we're still holding the lock in xas_free_nodes() */ |
| 2394 | if (xa_is_node(entry)) |
| 2395 | xas_free_nodes(&xas, xa_to_node(entry)); |
| 2396 | xas_unlock_irqrestore(&xas, flags); |
| 2397 | } |
| 2398 | EXPORT_SYMBOL(xa_destroy); |
| 2399 | |
| 2400 | #ifdef XA_DEBUG |
| 2401 | void xa_dump_node(const struct xa_node *node) |
| 2402 | { |
| 2403 | unsigned i, j; |
| 2404 | |
| 2405 | if (!node) |
| 2406 | return; |
| 2407 | if ((unsigned long)node & 3) { |
| 2408 | pr_cont("node %px\n", node); |
| 2409 | return; |
| 2410 | } |
| 2411 | |
| 2412 | pr_cont("node %px %s %d parent %px shift %d count %d values %d " |
| 2413 | "array %px list %px %px marks", |
| 2414 | node, node->parent ? "offset" : "max", node->offset, |
| 2415 | node->parent, node->shift, node->count, node->nr_values, |
| 2416 | node->array, node->private_list.prev, node->private_list.next); |
| 2417 | for (i = 0; i < XA_MAX_MARKS; i++) |
| 2418 | for (j = 0; j < XA_MARK_LONGS; j++) |
| 2419 | pr_cont(" %lx", node->marks[i][j]); |
| 2420 | pr_cont("\n"); |
| 2421 | } |
| 2422 | |
| 2423 | void xa_dump_index(unsigned long index, unsigned int shift) |
| 2424 | { |
| 2425 | if (!shift) |
| 2426 | pr_info("%lu: ", index); |
| 2427 | else if (shift >= BITS_PER_LONG) |
| 2428 | pr_info("0-%lu: ", ~0UL); |
| 2429 | else |
| 2430 | pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); |
| 2431 | } |
| 2432 | |
| 2433 | void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) |
| 2434 | { |
| 2435 | if (!entry) |
| 2436 | return; |
| 2437 | |
| 2438 | xa_dump_index(index, shift); |
| 2439 | |
| 2440 | if (xa_is_node(entry)) { |
| 2441 | if (shift == 0) { |
| 2442 | pr_cont("%px\n", entry); |
| 2443 | } else { |
| 2444 | unsigned long i; |
| 2445 | struct xa_node *node = xa_to_node(entry); |
| 2446 | xa_dump_node(node); |
| 2447 | for (i = 0; i < XA_CHUNK_SIZE; i++) |
| 2448 | xa_dump_entry(node->slots[i], |
| 2449 | index + (i << node->shift), node->shift); |
| 2450 | } |
| 2451 | } else if (xa_is_value(entry)) |
| 2452 | pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), |
| 2453 | xa_to_value(entry), entry); |
| 2454 | else if (!xa_is_internal(entry)) |
| 2455 | pr_cont("%px\n", entry); |
| 2456 | else if (xa_is_retry(entry)) |
| 2457 | pr_cont("retry (%ld)\n", xa_to_internal(entry)); |
| 2458 | else if (xa_is_sibling(entry)) |
| 2459 | pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); |
| 2460 | else if (xa_is_zero(entry)) |
| 2461 | pr_cont("zero (%ld)\n", xa_to_internal(entry)); |
| 2462 | else |
| 2463 | pr_cont("UNKNOWN ENTRY (%px)\n", entry); |
| 2464 | } |
| 2465 | |
| 2466 | void xa_dump(const struct xarray *xa) |
| 2467 | { |
| 2468 | void *entry = xa->xa_head; |
| 2469 | unsigned int shift = 0; |
| 2470 | |
| 2471 | pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, |
| 2472 | xa->xa_flags, xa_marked(xa, XA_MARK_0), |
| 2473 | xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); |
| 2474 | if (xa_is_node(entry)) |
| 2475 | shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; |
| 2476 | xa_dump_entry(entry, 0, shift); |
| 2477 | } |
| 2478 | #endif |