Linux 6.12-rc1
[linux-2.6-block.git] / lib / maple_tree.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9 */
10
11/*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56#include <linux/maple_tree.h>
57#include <linux/xarray.h>
58#include <linux/types.h>
59#include <linux/export.h>
60#include <linux/slab.h>
61#include <linux/limits.h>
62#include <asm/barrier.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/maple_tree.h>
66
67#define MA_ROOT_PARENT 1
68
69/*
70 * Maple state flags
71 * * MA_STATE_BULK - Bulk insert mode
72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
74 */
75#define MA_STATE_BULK 1
76#define MA_STATE_REBALANCE 2
77#define MA_STATE_PREALLOC 4
78
79#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
80#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
81#define ma_mnode_ptr(x) ((struct maple_node *)(x))
82#define ma_enode_ptr(x) ((struct maple_enode *)(x))
83static struct kmem_cache *maple_node_cache;
84
85#ifdef CONFIG_DEBUG_MAPLE_TREE
86static const unsigned long mt_max[] = {
87 [maple_dense] = MAPLE_NODE_SLOTS,
88 [maple_leaf_64] = ULONG_MAX,
89 [maple_range_64] = ULONG_MAX,
90 [maple_arange_64] = ULONG_MAX,
91};
92#define mt_node_max(x) mt_max[mte_node_type(x)]
93#endif
94
95static const unsigned char mt_slots[] = {
96 [maple_dense] = MAPLE_NODE_SLOTS,
97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
98 [maple_range_64] = MAPLE_RANGE64_SLOTS,
99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
100};
101#define mt_slot_count(x) mt_slots[mte_node_type(x)]
102
103static const unsigned char mt_pivots[] = {
104 [maple_dense] = 0,
105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
108};
109#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
110
111static const unsigned char mt_min_slots[] = {
112 [maple_dense] = MAPLE_NODE_SLOTS / 2,
113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
116};
117#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
118
119#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
120#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
121
122struct maple_big_node {
123 struct maple_pnode *parent;
124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
125 union {
126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
127 struct {
128 unsigned long padding[MAPLE_BIG_NODE_GAPS];
129 unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 };
131 };
132 unsigned char b_end;
133 enum maple_type type;
134};
135
136/*
137 * The maple_subtree_state is used to build a tree to replace a segment of an
138 * existing tree in a more atomic way. Any walkers of the older tree will hit a
139 * dead node and restart on updates.
140 */
141struct maple_subtree_state {
142 struct ma_state *orig_l; /* Original left side of subtree */
143 struct ma_state *orig_r; /* Original right side of subtree */
144 struct ma_state *l; /* New left side of subtree */
145 struct ma_state *m; /* New middle of subtree (rare) */
146 struct ma_state *r; /* New right side of subtree */
147 struct ma_topiary *free; /* nodes to be freed */
148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
149 struct maple_big_node *bn;
150};
151
152#ifdef CONFIG_KASAN_STACK
153/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154#define noinline_for_kasan noinline_for_stack
155#else
156#define noinline_for_kasan inline
157#endif
158
159/* Functions */
160static inline struct maple_node *mt_alloc_one(gfp_t gfp)
161{
162 return kmem_cache_alloc(maple_node_cache, gfp);
163}
164
165static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
166{
167 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
168}
169
170static inline void mt_free_one(struct maple_node *node)
171{
172 kmem_cache_free(maple_node_cache, node);
173}
174
175static inline void mt_free_bulk(size_t size, void __rcu **nodes)
176{
177 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
178}
179
180static void mt_free_rcu(struct rcu_head *head)
181{
182 struct maple_node *node = container_of(head, struct maple_node, rcu);
183
184 kmem_cache_free(maple_node_cache, node);
185}
186
187/*
188 * ma_free_rcu() - Use rcu callback to free a maple node
189 * @node: The node to free
190 *
191 * The maple tree uses the parent pointer to indicate this node is no longer in
192 * use and will be freed.
193 */
194static void ma_free_rcu(struct maple_node *node)
195{
196 WARN_ON(node->parent != ma_parent_ptr(node));
197 call_rcu(&node->rcu, mt_free_rcu);
198}
199
200static void mas_set_height(struct ma_state *mas)
201{
202 unsigned int new_flags = mas->tree->ma_flags;
203
204 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207 mas->tree->ma_flags = new_flags;
208}
209
210static unsigned int mas_mt_height(struct ma_state *mas)
211{
212 return mt_height(mas->tree);
213}
214
215static inline unsigned int mt_attr(struct maple_tree *mt)
216{
217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
218}
219
220static __always_inline enum maple_type mte_node_type(
221 const struct maple_enode *entry)
222{
223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
224 MAPLE_NODE_TYPE_MASK;
225}
226
227static __always_inline bool ma_is_dense(const enum maple_type type)
228{
229 return type < maple_leaf_64;
230}
231
232static __always_inline bool ma_is_leaf(const enum maple_type type)
233{
234 return type < maple_range_64;
235}
236
237static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
238{
239 return ma_is_leaf(mte_node_type(entry));
240}
241
242/*
243 * We also reserve values with the bottom two bits set to '10' which are
244 * below 4096
245 */
246static __always_inline bool mt_is_reserved(const void *entry)
247{
248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
249 xa_is_internal(entry);
250}
251
252static __always_inline void mas_set_err(struct ma_state *mas, long err)
253{
254 mas->node = MA_ERROR(err);
255 mas->status = ma_error;
256}
257
258static __always_inline bool mas_is_ptr(const struct ma_state *mas)
259{
260 return mas->status == ma_root;
261}
262
263static __always_inline bool mas_is_start(const struct ma_state *mas)
264{
265 return mas->status == ma_start;
266}
267
268static __always_inline bool mas_is_none(const struct ma_state *mas)
269{
270 return mas->status == ma_none;
271}
272
273static __always_inline bool mas_is_paused(const struct ma_state *mas)
274{
275 return mas->status == ma_pause;
276}
277
278static __always_inline bool mas_is_overflow(struct ma_state *mas)
279{
280 return mas->status == ma_overflow;
281}
282
283static inline bool mas_is_underflow(struct ma_state *mas)
284{
285 return mas->status == ma_underflow;
286}
287
288static __always_inline struct maple_node *mte_to_node(
289 const struct maple_enode *entry)
290{
291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
292}
293
294/*
295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
296 * @entry: The maple encoded node
297 *
298 * Return: a maple topiary pointer
299 */
300static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
301{
302 return (struct maple_topiary *)
303 ((unsigned long)entry & ~MAPLE_NODE_MASK);
304}
305
306/*
307 * mas_mn() - Get the maple state node.
308 * @mas: The maple state
309 *
310 * Return: the maple node (not encoded - bare pointer).
311 */
312static inline struct maple_node *mas_mn(const struct ma_state *mas)
313{
314 return mte_to_node(mas->node);
315}
316
317/*
318 * mte_set_node_dead() - Set a maple encoded node as dead.
319 * @mn: The maple encoded node.
320 */
321static inline void mte_set_node_dead(struct maple_enode *mn)
322{
323 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
324 smp_wmb(); /* Needed for RCU */
325}
326
327/* Bit 1 indicates the root is a node */
328#define MAPLE_ROOT_NODE 0x02
329/* maple_type stored bit 3-6 */
330#define MAPLE_ENODE_TYPE_SHIFT 0x03
331/* Bit 2 means a NULL somewhere below */
332#define MAPLE_ENODE_NULL 0x04
333
334static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
335 enum maple_type type)
336{
337 return (void *)((unsigned long)node |
338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
339}
340
341static inline void *mte_mk_root(const struct maple_enode *node)
342{
343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
344}
345
346static inline void *mte_safe_root(const struct maple_enode *node)
347{
348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
349}
350
351static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
352{
353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
354}
355
356static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
357{
358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
359}
360
361static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
362{
363 return (unsigned long)node & MAPLE_ENODE_NULL;
364}
365
366static __always_inline bool ma_is_root(struct maple_node *node)
367{
368 return ((unsigned long)node->parent & MA_ROOT_PARENT);
369}
370
371static __always_inline bool mte_is_root(const struct maple_enode *node)
372{
373 return ma_is_root(mte_to_node(node));
374}
375
376static inline bool mas_is_root_limits(const struct ma_state *mas)
377{
378 return !mas->min && mas->max == ULONG_MAX;
379}
380
381static __always_inline bool mt_is_alloc(struct maple_tree *mt)
382{
383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
384}
385
386/*
387 * The Parent Pointer
388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
390 * bit values need an extra bit to store the offset. This extra bit comes from
391 * a reuse of the last bit in the node type. This is possible by using bit 1 to
392 * indicate if bit 2 is part of the type or the slot.
393 *
394 * Note types:
395 * 0x??1 = Root
396 * 0x?00 = 16 bit nodes
397 * 0x010 = 32 bit nodes
398 * 0x110 = 64 bit nodes
399 *
400 * Slot size and alignment
401 * 0b??1 : Root
402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
405 */
406
407#define MAPLE_PARENT_ROOT 0x01
408
409#define MAPLE_PARENT_SLOT_SHIFT 0x03
410#define MAPLE_PARENT_SLOT_MASK 0xF8
411
412#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
413#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
414
415#define MAPLE_PARENT_RANGE64 0x06
416#define MAPLE_PARENT_RANGE32 0x04
417#define MAPLE_PARENT_NOT_RANGE16 0x02
418
419/*
420 * mte_parent_shift() - Get the parent shift for the slot storage.
421 * @parent: The parent pointer cast as an unsigned long
422 * Return: The shift into that pointer to the star to of the slot
423 */
424static inline unsigned long mte_parent_shift(unsigned long parent)
425{
426 /* Note bit 1 == 0 means 16B */
427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
428 return MAPLE_PARENT_SLOT_SHIFT;
429
430 return MAPLE_PARENT_16B_SLOT_SHIFT;
431}
432
433/*
434 * mte_parent_slot_mask() - Get the slot mask for the parent.
435 * @parent: The parent pointer cast as an unsigned long.
436 * Return: The slot mask for that parent.
437 */
438static inline unsigned long mte_parent_slot_mask(unsigned long parent)
439{
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_MASK;
443
444 return MAPLE_PARENT_16B_SLOT_MASK;
445}
446
447/*
448 * mas_parent_type() - Return the maple_type of the parent from the stored
449 * parent type.
450 * @mas: The maple state
451 * @enode: The maple_enode to extract the parent's enum
452 * Return: The node->parent maple_type
453 */
454static inline
455enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
456{
457 unsigned long p_type;
458
459 p_type = (unsigned long)mte_to_node(enode)->parent;
460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
461 return 0;
462
463 p_type &= MAPLE_NODE_MASK;
464 p_type &= ~mte_parent_slot_mask(p_type);
465 switch (p_type) {
466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
467 if (mt_is_alloc(mas->tree))
468 return maple_arange_64;
469 return maple_range_64;
470 }
471
472 return 0;
473}
474
475/*
476 * mas_set_parent() - Set the parent node and encode the slot
477 * @mas: The maple state
478 * @enode: The encoded maple node.
479 * @parent: The encoded maple node that is the parent of @enode.
480 * @slot: The slot that @enode resides in @parent.
481 *
482 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
483 * parent type.
484 */
485static inline
486void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
487 const struct maple_enode *parent, unsigned char slot)
488{
489 unsigned long val = (unsigned long)parent;
490 unsigned long shift;
491 unsigned long type;
492 enum maple_type p_type = mte_node_type(parent);
493
494 MAS_BUG_ON(mas, p_type == maple_dense);
495 MAS_BUG_ON(mas, p_type == maple_leaf_64);
496
497 switch (p_type) {
498 case maple_range_64:
499 case maple_arange_64:
500 shift = MAPLE_PARENT_SLOT_SHIFT;
501 type = MAPLE_PARENT_RANGE64;
502 break;
503 default:
504 case maple_dense:
505 case maple_leaf_64:
506 shift = type = 0;
507 break;
508 }
509
510 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
511 val |= (slot << shift) | type;
512 mte_to_node(enode)->parent = ma_parent_ptr(val);
513}
514
515/*
516 * mte_parent_slot() - get the parent slot of @enode.
517 * @enode: The encoded maple node.
518 *
519 * Return: The slot in the parent node where @enode resides.
520 */
521static __always_inline
522unsigned int mte_parent_slot(const struct maple_enode *enode)
523{
524 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
525
526 if (unlikely(val & MA_ROOT_PARENT))
527 return 0;
528
529 /*
530 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
531 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
532 */
533 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
534}
535
536/*
537 * mte_parent() - Get the parent of @node.
538 * @enode: The encoded maple node.
539 *
540 * Return: The parent maple node.
541 */
542static __always_inline
543struct maple_node *mte_parent(const struct maple_enode *enode)
544{
545 return (void *)((unsigned long)
546 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
547}
548
549/*
550 * ma_dead_node() - check if the @enode is dead.
551 * @enode: The encoded maple node
552 *
553 * Return: true if dead, false otherwise.
554 */
555static __always_inline bool ma_dead_node(const struct maple_node *node)
556{
557 struct maple_node *parent;
558
559 /* Do not reorder reads from the node prior to the parent check */
560 smp_rmb();
561 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
562 return (parent == node);
563}
564
565/*
566 * mte_dead_node() - check if the @enode is dead.
567 * @enode: The encoded maple node
568 *
569 * Return: true if dead, false otherwise.
570 */
571static __always_inline bool mte_dead_node(const struct maple_enode *enode)
572{
573 struct maple_node *parent, *node;
574
575 node = mte_to_node(enode);
576 /* Do not reorder reads from the node prior to the parent check */
577 smp_rmb();
578 parent = mte_parent(enode);
579 return (parent == node);
580}
581
582/*
583 * mas_allocated() - Get the number of nodes allocated in a maple state.
584 * @mas: The maple state
585 *
586 * The ma_state alloc member is overloaded to hold a pointer to the first
587 * allocated node or to the number of requested nodes to allocate. If bit 0 is
588 * set, then the alloc contains the number of requested nodes. If there is an
589 * allocated node, then the total allocated nodes is in that node.
590 *
591 * Return: The total number of nodes allocated
592 */
593static inline unsigned long mas_allocated(const struct ma_state *mas)
594{
595 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
596 return 0;
597
598 return mas->alloc->total;
599}
600
601/*
602 * mas_set_alloc_req() - Set the requested number of allocations.
603 * @mas: the maple state
604 * @count: the number of allocations.
605 *
606 * The requested number of allocations is either in the first allocated node,
607 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
608 * no allocated node. Set the request either in the node or do the necessary
609 * encoding to store in @mas->alloc directly.
610 */
611static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
612{
613 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
614 if (!count)
615 mas->alloc = NULL;
616 else
617 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
618 return;
619 }
620
621 mas->alloc->request_count = count;
622}
623
624/*
625 * mas_alloc_req() - get the requested number of allocations.
626 * @mas: The maple state
627 *
628 * The alloc count is either stored directly in @mas, or in
629 * @mas->alloc->request_count if there is at least one node allocated. Decode
630 * the request count if it's stored directly in @mas->alloc.
631 *
632 * Return: The allocation request count.
633 */
634static inline unsigned int mas_alloc_req(const struct ma_state *mas)
635{
636 if ((unsigned long)mas->alloc & 0x1)
637 return (unsigned long)(mas->alloc) >> 1;
638 else if (mas->alloc)
639 return mas->alloc->request_count;
640 return 0;
641}
642
643/*
644 * ma_pivots() - Get a pointer to the maple node pivots.
645 * @node: the maple node
646 * @type: the node type
647 *
648 * In the event of a dead node, this array may be %NULL
649 *
650 * Return: A pointer to the maple node pivots
651 */
652static inline unsigned long *ma_pivots(struct maple_node *node,
653 enum maple_type type)
654{
655 switch (type) {
656 case maple_arange_64:
657 return node->ma64.pivot;
658 case maple_range_64:
659 case maple_leaf_64:
660 return node->mr64.pivot;
661 case maple_dense:
662 return NULL;
663 }
664 return NULL;
665}
666
667/*
668 * ma_gaps() - Get a pointer to the maple node gaps.
669 * @node: the maple node
670 * @type: the node type
671 *
672 * Return: A pointer to the maple node gaps
673 */
674static inline unsigned long *ma_gaps(struct maple_node *node,
675 enum maple_type type)
676{
677 switch (type) {
678 case maple_arange_64:
679 return node->ma64.gap;
680 case maple_range_64:
681 case maple_leaf_64:
682 case maple_dense:
683 return NULL;
684 }
685 return NULL;
686}
687
688/*
689 * mas_safe_pivot() - get the pivot at @piv or mas->max.
690 * @mas: The maple state
691 * @pivots: The pointer to the maple node pivots
692 * @piv: The pivot to fetch
693 * @type: The maple node type
694 *
695 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
696 * otherwise.
697 */
698static __always_inline unsigned long
699mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
700 unsigned char piv, enum maple_type type)
701{
702 if (piv >= mt_pivots[type])
703 return mas->max;
704
705 return pivots[piv];
706}
707
708/*
709 * mas_safe_min() - Return the minimum for a given offset.
710 * @mas: The maple state
711 * @pivots: The pointer to the maple node pivots
712 * @offset: The offset into the pivot array
713 *
714 * Return: The minimum range value that is contained in @offset.
715 */
716static inline unsigned long
717mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
718{
719 if (likely(offset))
720 return pivots[offset - 1] + 1;
721
722 return mas->min;
723}
724
725/*
726 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
727 * @mn: The encoded maple node
728 * @piv: The pivot offset
729 * @val: The value of the pivot
730 */
731static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
732 unsigned long val)
733{
734 struct maple_node *node = mte_to_node(mn);
735 enum maple_type type = mte_node_type(mn);
736
737 BUG_ON(piv >= mt_pivots[type]);
738 switch (type) {
739 case maple_range_64:
740 case maple_leaf_64:
741 node->mr64.pivot[piv] = val;
742 break;
743 case maple_arange_64:
744 node->ma64.pivot[piv] = val;
745 break;
746 case maple_dense:
747 break;
748 }
749
750}
751
752/*
753 * ma_slots() - Get a pointer to the maple node slots.
754 * @mn: The maple node
755 * @mt: The maple node type
756 *
757 * Return: A pointer to the maple node slots
758 */
759static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
760{
761 switch (mt) {
762 case maple_arange_64:
763 return mn->ma64.slot;
764 case maple_range_64:
765 case maple_leaf_64:
766 return mn->mr64.slot;
767 case maple_dense:
768 return mn->slot;
769 }
770
771 return NULL;
772}
773
774static inline bool mt_write_locked(const struct maple_tree *mt)
775{
776 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
777 lockdep_is_held(&mt->ma_lock);
778}
779
780static __always_inline bool mt_locked(const struct maple_tree *mt)
781{
782 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
783 lockdep_is_held(&mt->ma_lock);
784}
785
786static __always_inline void *mt_slot(const struct maple_tree *mt,
787 void __rcu **slots, unsigned char offset)
788{
789 return rcu_dereference_check(slots[offset], mt_locked(mt));
790}
791
792static __always_inline void *mt_slot_locked(struct maple_tree *mt,
793 void __rcu **slots, unsigned char offset)
794{
795 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
796}
797/*
798 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
799 * @mas: The maple state
800 * @slots: The pointer to the slots
801 * @offset: The offset into the slots array to fetch
802 *
803 * Return: The entry stored in @slots at the @offset.
804 */
805static __always_inline void *mas_slot_locked(struct ma_state *mas,
806 void __rcu **slots, unsigned char offset)
807{
808 return mt_slot_locked(mas->tree, slots, offset);
809}
810
811/*
812 * mas_slot() - Get the slot value when not holding the maple tree lock.
813 * @mas: The maple state
814 * @slots: The pointer to the slots
815 * @offset: The offset into the slots array to fetch
816 *
817 * Return: The entry stored in @slots at the @offset
818 */
819static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
820 unsigned char offset)
821{
822 return mt_slot(mas->tree, slots, offset);
823}
824
825/*
826 * mas_root() - Get the maple tree root.
827 * @mas: The maple state.
828 *
829 * Return: The pointer to the root of the tree
830 */
831static __always_inline void *mas_root(struct ma_state *mas)
832{
833 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
834}
835
836static inline void *mt_root_locked(struct maple_tree *mt)
837{
838 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
839}
840
841/*
842 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
843 * @mas: The maple state.
844 *
845 * Return: The pointer to the root of the tree
846 */
847static inline void *mas_root_locked(struct ma_state *mas)
848{
849 return mt_root_locked(mas->tree);
850}
851
852static inline struct maple_metadata *ma_meta(struct maple_node *mn,
853 enum maple_type mt)
854{
855 switch (mt) {
856 case maple_arange_64:
857 return &mn->ma64.meta;
858 default:
859 return &mn->mr64.meta;
860 }
861}
862
863/*
864 * ma_set_meta() - Set the metadata information of a node.
865 * @mn: The maple node
866 * @mt: The maple node type
867 * @offset: The offset of the highest sub-gap in this node.
868 * @end: The end of the data in this node.
869 */
870static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
871 unsigned char offset, unsigned char end)
872{
873 struct maple_metadata *meta = ma_meta(mn, mt);
874
875 meta->gap = offset;
876 meta->end = end;
877}
878
879/*
880 * mt_clear_meta() - clear the metadata information of a node, if it exists
881 * @mt: The maple tree
882 * @mn: The maple node
883 * @type: The maple node type
884 */
885static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
886 enum maple_type type)
887{
888 struct maple_metadata *meta;
889 unsigned long *pivots;
890 void __rcu **slots;
891 void *next;
892
893 switch (type) {
894 case maple_range_64:
895 pivots = mn->mr64.pivot;
896 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
897 slots = mn->mr64.slot;
898 next = mt_slot_locked(mt, slots,
899 MAPLE_RANGE64_SLOTS - 1);
900 if (unlikely((mte_to_node(next) &&
901 mte_node_type(next))))
902 return; /* no metadata, could be node */
903 }
904 fallthrough;
905 case maple_arange_64:
906 meta = ma_meta(mn, type);
907 break;
908 default:
909 return;
910 }
911
912 meta->gap = 0;
913 meta->end = 0;
914}
915
916/*
917 * ma_meta_end() - Get the data end of a node from the metadata
918 * @mn: The maple node
919 * @mt: The maple node type
920 */
921static inline unsigned char ma_meta_end(struct maple_node *mn,
922 enum maple_type mt)
923{
924 struct maple_metadata *meta = ma_meta(mn, mt);
925
926 return meta->end;
927}
928
929/*
930 * ma_meta_gap() - Get the largest gap location of a node from the metadata
931 * @mn: The maple node
932 */
933static inline unsigned char ma_meta_gap(struct maple_node *mn)
934{
935 return mn->ma64.meta.gap;
936}
937
938/*
939 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
940 * @mn: The maple node
941 * @mt: The maple node type
942 * @offset: The location of the largest gap.
943 */
944static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
945 unsigned char offset)
946{
947
948 struct maple_metadata *meta = ma_meta(mn, mt);
949
950 meta->gap = offset;
951}
952
953/*
954 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
955 * @mat: the ma_topiary, a linked list of dead nodes.
956 * @dead_enode: the node to be marked as dead and added to the tail of the list
957 *
958 * Add the @dead_enode to the linked list in @mat.
959 */
960static inline void mat_add(struct ma_topiary *mat,
961 struct maple_enode *dead_enode)
962{
963 mte_set_node_dead(dead_enode);
964 mte_to_mat(dead_enode)->next = NULL;
965 if (!mat->tail) {
966 mat->tail = mat->head = dead_enode;
967 return;
968 }
969
970 mte_to_mat(mat->tail)->next = dead_enode;
971 mat->tail = dead_enode;
972}
973
974static void mt_free_walk(struct rcu_head *head);
975static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
976 bool free);
977/*
978 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
979 * @mas: the maple state
980 * @mat: the ma_topiary linked list of dead nodes to free.
981 *
982 * Destroy walk a dead list.
983 */
984static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
985{
986 struct maple_enode *next;
987 struct maple_node *node;
988 bool in_rcu = mt_in_rcu(mas->tree);
989
990 while (mat->head) {
991 next = mte_to_mat(mat->head)->next;
992 node = mte_to_node(mat->head);
993 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
994 if (in_rcu)
995 call_rcu(&node->rcu, mt_free_walk);
996 mat->head = next;
997 }
998}
999/*
1000 * mas_descend() - Descend into the slot stored in the ma_state.
1001 * @mas: the maple state.
1002 *
1003 * Note: Not RCU safe, only use in write side or debug code.
1004 */
1005static inline void mas_descend(struct ma_state *mas)
1006{
1007 enum maple_type type;
1008 unsigned long *pivots;
1009 struct maple_node *node;
1010 void __rcu **slots;
1011
1012 node = mas_mn(mas);
1013 type = mte_node_type(mas->node);
1014 pivots = ma_pivots(node, type);
1015 slots = ma_slots(node, type);
1016
1017 if (mas->offset)
1018 mas->min = pivots[mas->offset - 1] + 1;
1019 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1020 mas->node = mas_slot(mas, slots, mas->offset);
1021}
1022
1023/*
1024 * mte_set_gap() - Set a maple node gap.
1025 * @mn: The encoded maple node
1026 * @gap: The offset of the gap to set
1027 * @val: The gap value
1028 */
1029static inline void mte_set_gap(const struct maple_enode *mn,
1030 unsigned char gap, unsigned long val)
1031{
1032 switch (mte_node_type(mn)) {
1033 default:
1034 break;
1035 case maple_arange_64:
1036 mte_to_node(mn)->ma64.gap[gap] = val;
1037 break;
1038 }
1039}
1040
1041/*
1042 * mas_ascend() - Walk up a level of the tree.
1043 * @mas: The maple state
1044 *
1045 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1046 * may cause several levels of walking up to find the correct min and max.
1047 * May find a dead node which will cause a premature return.
1048 * Return: 1 on dead node, 0 otherwise
1049 */
1050static int mas_ascend(struct ma_state *mas)
1051{
1052 struct maple_enode *p_enode; /* parent enode. */
1053 struct maple_enode *a_enode; /* ancestor enode. */
1054 struct maple_node *a_node; /* ancestor node. */
1055 struct maple_node *p_node; /* parent node. */
1056 unsigned char a_slot;
1057 enum maple_type a_type;
1058 unsigned long min, max;
1059 unsigned long *pivots;
1060 bool set_max = false, set_min = false;
1061
1062 a_node = mas_mn(mas);
1063 if (ma_is_root(a_node)) {
1064 mas->offset = 0;
1065 return 0;
1066 }
1067
1068 p_node = mte_parent(mas->node);
1069 if (unlikely(a_node == p_node))
1070 return 1;
1071
1072 a_type = mas_parent_type(mas, mas->node);
1073 mas->offset = mte_parent_slot(mas->node);
1074 a_enode = mt_mk_node(p_node, a_type);
1075
1076 /* Check to make sure all parent information is still accurate */
1077 if (p_node != mte_parent(mas->node))
1078 return 1;
1079
1080 mas->node = a_enode;
1081
1082 if (mte_is_root(a_enode)) {
1083 mas->max = ULONG_MAX;
1084 mas->min = 0;
1085 return 0;
1086 }
1087
1088 min = 0;
1089 max = ULONG_MAX;
1090 if (!mas->offset) {
1091 min = mas->min;
1092 set_min = true;
1093 }
1094
1095 if (mas->max == ULONG_MAX)
1096 set_max = true;
1097
1098 do {
1099 p_enode = a_enode;
1100 a_type = mas_parent_type(mas, p_enode);
1101 a_node = mte_parent(p_enode);
1102 a_slot = mte_parent_slot(p_enode);
1103 a_enode = mt_mk_node(a_node, a_type);
1104 pivots = ma_pivots(a_node, a_type);
1105
1106 if (unlikely(ma_dead_node(a_node)))
1107 return 1;
1108
1109 if (!set_min && a_slot) {
1110 set_min = true;
1111 min = pivots[a_slot - 1] + 1;
1112 }
1113
1114 if (!set_max && a_slot < mt_pivots[a_type]) {
1115 set_max = true;
1116 max = pivots[a_slot];
1117 }
1118
1119 if (unlikely(ma_dead_node(a_node)))
1120 return 1;
1121
1122 if (unlikely(ma_is_root(a_node)))
1123 break;
1124
1125 } while (!set_min || !set_max);
1126
1127 mas->max = max;
1128 mas->min = min;
1129 return 0;
1130}
1131
1132/*
1133 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1134 * @mas: The maple state
1135 *
1136 * Return: A pointer to a maple node.
1137 */
1138static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1139{
1140 struct maple_alloc *ret, *node = mas->alloc;
1141 unsigned long total = mas_allocated(mas);
1142 unsigned int req = mas_alloc_req(mas);
1143
1144 /* nothing or a request pending. */
1145 if (WARN_ON(!total))
1146 return NULL;
1147
1148 if (total == 1) {
1149 /* single allocation in this ma_state */
1150 mas->alloc = NULL;
1151 ret = node;
1152 goto single_node;
1153 }
1154
1155 if (node->node_count == 1) {
1156 /* Single allocation in this node. */
1157 mas->alloc = node->slot[0];
1158 mas->alloc->total = node->total - 1;
1159 ret = node;
1160 goto new_head;
1161 }
1162 node->total--;
1163 ret = node->slot[--node->node_count];
1164 node->slot[node->node_count] = NULL;
1165
1166single_node:
1167new_head:
1168 if (req) {
1169 req++;
1170 mas_set_alloc_req(mas, req);
1171 }
1172
1173 memset(ret, 0, sizeof(*ret));
1174 return (struct maple_node *)ret;
1175}
1176
1177/*
1178 * mas_push_node() - Push a node back on the maple state allocation.
1179 * @mas: The maple state
1180 * @used: The used maple node
1181 *
1182 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1183 * requested node count as necessary.
1184 */
1185static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1186{
1187 struct maple_alloc *reuse = (struct maple_alloc *)used;
1188 struct maple_alloc *head = mas->alloc;
1189 unsigned long count;
1190 unsigned int requested = mas_alloc_req(mas);
1191
1192 count = mas_allocated(mas);
1193
1194 reuse->request_count = 0;
1195 reuse->node_count = 0;
1196 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1197 head->slot[head->node_count++] = reuse;
1198 head->total++;
1199 goto done;
1200 }
1201
1202 reuse->total = 1;
1203 if ((head) && !((unsigned long)head & 0x1)) {
1204 reuse->slot[0] = head;
1205 reuse->node_count = 1;
1206 reuse->total += head->total;
1207 }
1208
1209 mas->alloc = reuse;
1210done:
1211 if (requested > 1)
1212 mas_set_alloc_req(mas, requested - 1);
1213}
1214
1215/*
1216 * mas_alloc_nodes() - Allocate nodes into a maple state
1217 * @mas: The maple state
1218 * @gfp: The GFP Flags
1219 */
1220static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1221{
1222 struct maple_alloc *node;
1223 unsigned long allocated = mas_allocated(mas);
1224 unsigned int requested = mas_alloc_req(mas);
1225 unsigned int count;
1226 void **slots = NULL;
1227 unsigned int max_req = 0;
1228
1229 if (!requested)
1230 return;
1231
1232 mas_set_alloc_req(mas, 0);
1233 if (mas->mas_flags & MA_STATE_PREALLOC) {
1234 if (allocated)
1235 return;
1236 BUG_ON(!allocated);
1237 WARN_ON(!allocated);
1238 }
1239
1240 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1241 node = (struct maple_alloc *)mt_alloc_one(gfp);
1242 if (!node)
1243 goto nomem_one;
1244
1245 if (allocated) {
1246 node->slot[0] = mas->alloc;
1247 node->node_count = 1;
1248 } else {
1249 node->node_count = 0;
1250 }
1251
1252 mas->alloc = node;
1253 node->total = ++allocated;
1254 requested--;
1255 }
1256
1257 node = mas->alloc;
1258 node->request_count = 0;
1259 while (requested) {
1260 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1261 slots = (void **)&node->slot[node->node_count];
1262 max_req = min(requested, max_req);
1263 count = mt_alloc_bulk(gfp, max_req, slots);
1264 if (!count)
1265 goto nomem_bulk;
1266
1267 if (node->node_count == 0) {
1268 node->slot[0]->node_count = 0;
1269 node->slot[0]->request_count = 0;
1270 }
1271
1272 node->node_count += count;
1273 allocated += count;
1274 node = node->slot[0];
1275 requested -= count;
1276 }
1277 mas->alloc->total = allocated;
1278 return;
1279
1280nomem_bulk:
1281 /* Clean up potential freed allocations on bulk failure */
1282 memset(slots, 0, max_req * sizeof(unsigned long));
1283nomem_one:
1284 mas_set_alloc_req(mas, requested);
1285 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1286 mas->alloc->total = allocated;
1287 mas_set_err(mas, -ENOMEM);
1288}
1289
1290/*
1291 * mas_free() - Free an encoded maple node
1292 * @mas: The maple state
1293 * @used: The encoded maple node to free.
1294 *
1295 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1296 * otherwise.
1297 */
1298static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1299{
1300 struct maple_node *tmp = mte_to_node(used);
1301
1302 if (mt_in_rcu(mas->tree))
1303 ma_free_rcu(tmp);
1304 else
1305 mas_push_node(mas, tmp);
1306}
1307
1308/*
1309 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1310 * if there is not enough nodes.
1311 * @mas: The maple state
1312 * @count: The number of nodes needed
1313 * @gfp: the gfp flags
1314 */
1315static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1316{
1317 unsigned long allocated = mas_allocated(mas);
1318
1319 if (allocated < count) {
1320 mas_set_alloc_req(mas, count - allocated);
1321 mas_alloc_nodes(mas, gfp);
1322 }
1323}
1324
1325/*
1326 * mas_node_count() - Check if enough nodes are allocated and request more if
1327 * there is not enough nodes.
1328 * @mas: The maple state
1329 * @count: The number of nodes needed
1330 *
1331 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1332 */
1333static void mas_node_count(struct ma_state *mas, int count)
1334{
1335 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1336}
1337
1338/*
1339 * mas_start() - Sets up maple state for operations.
1340 * @mas: The maple state.
1341 *
1342 * If mas->status == mas_start, then set the min, max and depth to
1343 * defaults.
1344 *
1345 * Return:
1346 * - If mas->node is an error or not mas_start, return NULL.
1347 * - If it's an empty tree: NULL & mas->status == ma_none
1348 * - If it's a single entry: The entry & mas->status == ma_root
1349 * - If it's a tree: NULL & mas->status == ma_active
1350 */
1351static inline struct maple_enode *mas_start(struct ma_state *mas)
1352{
1353 if (likely(mas_is_start(mas))) {
1354 struct maple_enode *root;
1355
1356 mas->min = 0;
1357 mas->max = ULONG_MAX;
1358
1359retry:
1360 mas->depth = 0;
1361 root = mas_root(mas);
1362 /* Tree with nodes */
1363 if (likely(xa_is_node(root))) {
1364 mas->depth = 1;
1365 mas->status = ma_active;
1366 mas->node = mte_safe_root(root);
1367 mas->offset = 0;
1368 if (mte_dead_node(mas->node))
1369 goto retry;
1370
1371 return NULL;
1372 }
1373
1374 mas->node = NULL;
1375 /* empty tree */
1376 if (unlikely(!root)) {
1377 mas->status = ma_none;
1378 mas->offset = MAPLE_NODE_SLOTS;
1379 return NULL;
1380 }
1381
1382 /* Single entry tree */
1383 mas->status = ma_root;
1384 mas->offset = MAPLE_NODE_SLOTS;
1385
1386 /* Single entry tree. */
1387 if (mas->index > 0)
1388 return NULL;
1389
1390 return root;
1391 }
1392
1393 return NULL;
1394}
1395
1396/*
1397 * ma_data_end() - Find the end of the data in a node.
1398 * @node: The maple node
1399 * @type: The maple node type
1400 * @pivots: The array of pivots in the node
1401 * @max: The maximum value in the node
1402 *
1403 * Uses metadata to find the end of the data when possible.
1404 * Return: The zero indexed last slot with data (may be null).
1405 */
1406static __always_inline unsigned char ma_data_end(struct maple_node *node,
1407 enum maple_type type, unsigned long *pivots, unsigned long max)
1408{
1409 unsigned char offset;
1410
1411 if (!pivots)
1412 return 0;
1413
1414 if (type == maple_arange_64)
1415 return ma_meta_end(node, type);
1416
1417 offset = mt_pivots[type] - 1;
1418 if (likely(!pivots[offset]))
1419 return ma_meta_end(node, type);
1420
1421 if (likely(pivots[offset] == max))
1422 return offset;
1423
1424 return mt_pivots[type];
1425}
1426
1427/*
1428 * mas_data_end() - Find the end of the data (slot).
1429 * @mas: the maple state
1430 *
1431 * This method is optimized to check the metadata of a node if the node type
1432 * supports data end metadata.
1433 *
1434 * Return: The zero indexed last slot with data (may be null).
1435 */
1436static inline unsigned char mas_data_end(struct ma_state *mas)
1437{
1438 enum maple_type type;
1439 struct maple_node *node;
1440 unsigned char offset;
1441 unsigned long *pivots;
1442
1443 type = mte_node_type(mas->node);
1444 node = mas_mn(mas);
1445 if (type == maple_arange_64)
1446 return ma_meta_end(node, type);
1447
1448 pivots = ma_pivots(node, type);
1449 if (unlikely(ma_dead_node(node)))
1450 return 0;
1451
1452 offset = mt_pivots[type] - 1;
1453 if (likely(!pivots[offset]))
1454 return ma_meta_end(node, type);
1455
1456 if (likely(pivots[offset] == mas->max))
1457 return offset;
1458
1459 return mt_pivots[type];
1460}
1461
1462/*
1463 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1464 * @mas: the maple state
1465 *
1466 * Return: The maximum gap in the leaf.
1467 */
1468static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1469{
1470 enum maple_type mt;
1471 unsigned long pstart, gap, max_gap;
1472 struct maple_node *mn;
1473 unsigned long *pivots;
1474 void __rcu **slots;
1475 unsigned char i;
1476 unsigned char max_piv;
1477
1478 mt = mte_node_type(mas->node);
1479 mn = mas_mn(mas);
1480 slots = ma_slots(mn, mt);
1481 max_gap = 0;
1482 if (unlikely(ma_is_dense(mt))) {
1483 gap = 0;
1484 for (i = 0; i < mt_slots[mt]; i++) {
1485 if (slots[i]) {
1486 if (gap > max_gap)
1487 max_gap = gap;
1488 gap = 0;
1489 } else {
1490 gap++;
1491 }
1492 }
1493 if (gap > max_gap)
1494 max_gap = gap;
1495 return max_gap;
1496 }
1497
1498 /*
1499 * Check the first implied pivot optimizes the loop below and slot 1 may
1500 * be skipped if there is a gap in slot 0.
1501 */
1502 pivots = ma_pivots(mn, mt);
1503 if (likely(!slots[0])) {
1504 max_gap = pivots[0] - mas->min + 1;
1505 i = 2;
1506 } else {
1507 i = 1;
1508 }
1509
1510 /* reduce max_piv as the special case is checked before the loop */
1511 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1512 /*
1513 * Check end implied pivot which can only be a gap on the right most
1514 * node.
1515 */
1516 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1517 gap = ULONG_MAX - pivots[max_piv];
1518 if (gap > max_gap)
1519 max_gap = gap;
1520
1521 if (max_gap > pivots[max_piv] - mas->min)
1522 return max_gap;
1523 }
1524
1525 for (; i <= max_piv; i++) {
1526 /* data == no gap. */
1527 if (likely(slots[i]))
1528 continue;
1529
1530 pstart = pivots[i - 1];
1531 gap = pivots[i] - pstart;
1532 if (gap > max_gap)
1533 max_gap = gap;
1534
1535 /* There cannot be two gaps in a row. */
1536 i++;
1537 }
1538 return max_gap;
1539}
1540
1541/*
1542 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1543 * @node: The maple node
1544 * @gaps: The pointer to the gaps
1545 * @mt: The maple node type
1546 * @off: Pointer to store the offset location of the gap.
1547 *
1548 * Uses the metadata data end to scan backwards across set gaps.
1549 *
1550 * Return: The maximum gap value
1551 */
1552static inline unsigned long
1553ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1554 unsigned char *off)
1555{
1556 unsigned char offset, i;
1557 unsigned long max_gap = 0;
1558
1559 i = offset = ma_meta_end(node, mt);
1560 do {
1561 if (gaps[i] > max_gap) {
1562 max_gap = gaps[i];
1563 offset = i;
1564 }
1565 } while (i--);
1566
1567 *off = offset;
1568 return max_gap;
1569}
1570
1571/*
1572 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1573 * @mas: The maple state.
1574 *
1575 * Return: The gap value.
1576 */
1577static inline unsigned long mas_max_gap(struct ma_state *mas)
1578{
1579 unsigned long *gaps;
1580 unsigned char offset;
1581 enum maple_type mt;
1582 struct maple_node *node;
1583
1584 mt = mte_node_type(mas->node);
1585 if (ma_is_leaf(mt))
1586 return mas_leaf_max_gap(mas);
1587
1588 node = mas_mn(mas);
1589 MAS_BUG_ON(mas, mt != maple_arange_64);
1590 offset = ma_meta_gap(node);
1591 gaps = ma_gaps(node, mt);
1592 return gaps[offset];
1593}
1594
1595/*
1596 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1597 * @mas: The maple state
1598 * @offset: The gap offset in the parent to set
1599 * @new: The new gap value.
1600 *
1601 * Set the parent gap then continue to set the gap upwards, using the metadata
1602 * of the parent to see if it is necessary to check the node above.
1603 */
1604static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1605 unsigned long new)
1606{
1607 unsigned long meta_gap = 0;
1608 struct maple_node *pnode;
1609 struct maple_enode *penode;
1610 unsigned long *pgaps;
1611 unsigned char meta_offset;
1612 enum maple_type pmt;
1613
1614 pnode = mte_parent(mas->node);
1615 pmt = mas_parent_type(mas, mas->node);
1616 penode = mt_mk_node(pnode, pmt);
1617 pgaps = ma_gaps(pnode, pmt);
1618
1619ascend:
1620 MAS_BUG_ON(mas, pmt != maple_arange_64);
1621 meta_offset = ma_meta_gap(pnode);
1622 meta_gap = pgaps[meta_offset];
1623
1624 pgaps[offset] = new;
1625
1626 if (meta_gap == new)
1627 return;
1628
1629 if (offset != meta_offset) {
1630 if (meta_gap > new)
1631 return;
1632
1633 ma_set_meta_gap(pnode, pmt, offset);
1634 } else if (new < meta_gap) {
1635 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1636 ma_set_meta_gap(pnode, pmt, meta_offset);
1637 }
1638
1639 if (ma_is_root(pnode))
1640 return;
1641
1642 /* Go to the parent node. */
1643 pnode = mte_parent(penode);
1644 pmt = mas_parent_type(mas, penode);
1645 pgaps = ma_gaps(pnode, pmt);
1646 offset = mte_parent_slot(penode);
1647 penode = mt_mk_node(pnode, pmt);
1648 goto ascend;
1649}
1650
1651/*
1652 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1653 * @mas: the maple state.
1654 */
1655static inline void mas_update_gap(struct ma_state *mas)
1656{
1657 unsigned char pslot;
1658 unsigned long p_gap;
1659 unsigned long max_gap;
1660
1661 if (!mt_is_alloc(mas->tree))
1662 return;
1663
1664 if (mte_is_root(mas->node))
1665 return;
1666
1667 max_gap = mas_max_gap(mas);
1668
1669 pslot = mte_parent_slot(mas->node);
1670 p_gap = ma_gaps(mte_parent(mas->node),
1671 mas_parent_type(mas, mas->node))[pslot];
1672
1673 if (p_gap != max_gap)
1674 mas_parent_gap(mas, pslot, max_gap);
1675}
1676
1677/*
1678 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1679 * @parent with the slot encoded.
1680 * @mas: the maple state (for the tree)
1681 * @parent: the maple encoded node containing the children.
1682 */
1683static inline void mas_adopt_children(struct ma_state *mas,
1684 struct maple_enode *parent)
1685{
1686 enum maple_type type = mte_node_type(parent);
1687 struct maple_node *node = mte_to_node(parent);
1688 void __rcu **slots = ma_slots(node, type);
1689 unsigned long *pivots = ma_pivots(node, type);
1690 struct maple_enode *child;
1691 unsigned char offset;
1692
1693 offset = ma_data_end(node, type, pivots, mas->max);
1694 do {
1695 child = mas_slot_locked(mas, slots, offset);
1696 mas_set_parent(mas, child, parent, offset);
1697 } while (offset--);
1698}
1699
1700/*
1701 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1702 * node as dead.
1703 * @mas: the maple state with the new node
1704 * @old_enode: The old maple encoded node to replace.
1705 */
1706static inline void mas_put_in_tree(struct ma_state *mas,
1707 struct maple_enode *old_enode)
1708 __must_hold(mas->tree->ma_lock)
1709{
1710 unsigned char offset;
1711 void __rcu **slots;
1712
1713 if (mte_is_root(mas->node)) {
1714 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1715 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1716 mas_set_height(mas);
1717 } else {
1718
1719 offset = mte_parent_slot(mas->node);
1720 slots = ma_slots(mte_parent(mas->node),
1721 mas_parent_type(mas, mas->node));
1722 rcu_assign_pointer(slots[offset], mas->node);
1723 }
1724
1725 mte_set_node_dead(old_enode);
1726}
1727
1728/*
1729 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1730 * dead, and freeing it.
1731 * the parent encoding to locate the maple node in the tree.
1732 * @mas: the ma_state with @mas->node pointing to the new node.
1733 * @old_enode: The old maple encoded node.
1734 */
1735static inline void mas_replace_node(struct ma_state *mas,
1736 struct maple_enode *old_enode)
1737 __must_hold(mas->tree->ma_lock)
1738{
1739 mas_put_in_tree(mas, old_enode);
1740 mas_free(mas, old_enode);
1741}
1742
1743/*
1744 * mas_find_child() - Find a child who has the parent @mas->node.
1745 * @mas: the maple state with the parent.
1746 * @child: the maple state to store the child.
1747 */
1748static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1749 __must_hold(mas->tree->ma_lock)
1750{
1751 enum maple_type mt;
1752 unsigned char offset;
1753 unsigned char end;
1754 unsigned long *pivots;
1755 struct maple_enode *entry;
1756 struct maple_node *node;
1757 void __rcu **slots;
1758
1759 mt = mte_node_type(mas->node);
1760 node = mas_mn(mas);
1761 slots = ma_slots(node, mt);
1762 pivots = ma_pivots(node, mt);
1763 end = ma_data_end(node, mt, pivots, mas->max);
1764 for (offset = mas->offset; offset <= end; offset++) {
1765 entry = mas_slot_locked(mas, slots, offset);
1766 if (mte_parent(entry) == node) {
1767 *child = *mas;
1768 mas->offset = offset + 1;
1769 child->offset = offset;
1770 mas_descend(child);
1771 child->offset = 0;
1772 return true;
1773 }
1774 }
1775 return false;
1776}
1777
1778/*
1779 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1780 * old data or set b_node->b_end.
1781 * @b_node: the maple_big_node
1782 * @shift: the shift count
1783 */
1784static inline void mab_shift_right(struct maple_big_node *b_node,
1785 unsigned char shift)
1786{
1787 unsigned long size = b_node->b_end * sizeof(unsigned long);
1788
1789 memmove(b_node->pivot + shift, b_node->pivot, size);
1790 memmove(b_node->slot + shift, b_node->slot, size);
1791 if (b_node->type == maple_arange_64)
1792 memmove(b_node->gap + shift, b_node->gap, size);
1793}
1794
1795/*
1796 * mab_middle_node() - Check if a middle node is needed (unlikely)
1797 * @b_node: the maple_big_node that contains the data.
1798 * @split: the potential split location
1799 * @slot_count: the size that can be stored in a single node being considered.
1800 *
1801 * Return: true if a middle node is required.
1802 */
1803static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1804 unsigned char slot_count)
1805{
1806 unsigned char size = b_node->b_end;
1807
1808 if (size >= 2 * slot_count)
1809 return true;
1810
1811 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1812 return true;
1813
1814 return false;
1815}
1816
1817/*
1818 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1819 * @b_node: the maple_big_node with the data
1820 * @split: the suggested split location
1821 * @slot_count: the number of slots in the node being considered.
1822 *
1823 * Return: the split location.
1824 */
1825static inline int mab_no_null_split(struct maple_big_node *b_node,
1826 unsigned char split, unsigned char slot_count)
1827{
1828 if (!b_node->slot[split]) {
1829 /*
1830 * If the split is less than the max slot && the right side will
1831 * still be sufficient, then increment the split on NULL.
1832 */
1833 if ((split < slot_count - 1) &&
1834 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1835 split++;
1836 else
1837 split--;
1838 }
1839 return split;
1840}
1841
1842/*
1843 * mab_calc_split() - Calculate the split location and if there needs to be two
1844 * splits.
1845 * @mas: The maple state
1846 * @bn: The maple_big_node with the data
1847 * @mid_split: The second split, if required. 0 otherwise.
1848 *
1849 * Return: The first split location. The middle split is set in @mid_split.
1850 */
1851static inline int mab_calc_split(struct ma_state *mas,
1852 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1853{
1854 unsigned char b_end = bn->b_end;
1855 int split = b_end / 2; /* Assume equal split. */
1856 unsigned char slot_min, slot_count = mt_slots[bn->type];
1857
1858 /*
1859 * To support gap tracking, all NULL entries are kept together and a node cannot
1860 * end on a NULL entry, with the exception of the left-most leaf. The
1861 * limitation means that the split of a node must be checked for this condition
1862 * and be able to put more data in one direction or the other.
1863 */
1864 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1865 *mid_split = 0;
1866 split = b_end - mt_min_slots[bn->type];
1867
1868 if (!ma_is_leaf(bn->type))
1869 return split;
1870
1871 mas->mas_flags |= MA_STATE_REBALANCE;
1872 if (!bn->slot[split])
1873 split--;
1874 return split;
1875 }
1876
1877 /*
1878 * Although extremely rare, it is possible to enter what is known as the 3-way
1879 * split scenario. The 3-way split comes about by means of a store of a range
1880 * that overwrites the end and beginning of two full nodes. The result is a set
1881 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1882 * also be located in different parent nodes which are also full. This can
1883 * carry upwards all the way to the root in the worst case.
1884 */
1885 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1886 split = b_end / 3;
1887 *mid_split = split * 2;
1888 } else {
1889 slot_min = mt_min_slots[bn->type];
1890
1891 *mid_split = 0;
1892 /*
1893 * Avoid having a range less than the slot count unless it
1894 * causes one node to be deficient.
1895 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1896 */
1897 while ((split < slot_count - 1) &&
1898 ((bn->pivot[split] - min) < slot_count - 1) &&
1899 (b_end - split > slot_min))
1900 split++;
1901 }
1902
1903 /* Avoid ending a node on a NULL entry */
1904 split = mab_no_null_split(bn, split, slot_count);
1905
1906 if (unlikely(*mid_split))
1907 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1908
1909 return split;
1910}
1911
1912/*
1913 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1914 * and set @b_node->b_end to the next free slot.
1915 * @mas: The maple state
1916 * @mas_start: The starting slot to copy
1917 * @mas_end: The end slot to copy (inclusively)
1918 * @b_node: The maple_big_node to place the data
1919 * @mab_start: The starting location in maple_big_node to store the data.
1920 */
1921static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1922 unsigned char mas_end, struct maple_big_node *b_node,
1923 unsigned char mab_start)
1924{
1925 enum maple_type mt;
1926 struct maple_node *node;
1927 void __rcu **slots;
1928 unsigned long *pivots, *gaps;
1929 int i = mas_start, j = mab_start;
1930 unsigned char piv_end;
1931
1932 node = mas_mn(mas);
1933 mt = mte_node_type(mas->node);
1934 pivots = ma_pivots(node, mt);
1935 if (!i) {
1936 b_node->pivot[j] = pivots[i++];
1937 if (unlikely(i > mas_end))
1938 goto complete;
1939 j++;
1940 }
1941
1942 piv_end = min(mas_end, mt_pivots[mt]);
1943 for (; i < piv_end; i++, j++) {
1944 b_node->pivot[j] = pivots[i];
1945 if (unlikely(!b_node->pivot[j]))
1946 break;
1947
1948 if (unlikely(mas->max == b_node->pivot[j]))
1949 goto complete;
1950 }
1951
1952 if (likely(i <= mas_end))
1953 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1954
1955complete:
1956 b_node->b_end = ++j;
1957 j -= mab_start;
1958 slots = ma_slots(node, mt);
1959 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1960 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1961 gaps = ma_gaps(node, mt);
1962 memcpy(b_node->gap + mab_start, gaps + mas_start,
1963 sizeof(unsigned long) * j);
1964 }
1965}
1966
1967/*
1968 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1969 * @node: The maple node
1970 * @mt: The maple type
1971 * @end: The node end
1972 */
1973static inline void mas_leaf_set_meta(struct maple_node *node,
1974 enum maple_type mt, unsigned char end)
1975{
1976 if (end < mt_slots[mt] - 1)
1977 ma_set_meta(node, mt, 0, end);
1978}
1979
1980/*
1981 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1982 * @b_node: the maple_big_node that has the data
1983 * @mab_start: the start location in @b_node.
1984 * @mab_end: The end location in @b_node (inclusively)
1985 * @mas: The maple state with the maple encoded node.
1986 */
1987static inline void mab_mas_cp(struct maple_big_node *b_node,
1988 unsigned char mab_start, unsigned char mab_end,
1989 struct ma_state *mas, bool new_max)
1990{
1991 int i, j = 0;
1992 enum maple_type mt = mte_node_type(mas->node);
1993 struct maple_node *node = mte_to_node(mas->node);
1994 void __rcu **slots = ma_slots(node, mt);
1995 unsigned long *pivots = ma_pivots(node, mt);
1996 unsigned long *gaps = NULL;
1997 unsigned char end;
1998
1999 if (mab_end - mab_start > mt_pivots[mt])
2000 mab_end--;
2001
2002 if (!pivots[mt_pivots[mt] - 1])
2003 slots[mt_pivots[mt]] = NULL;
2004
2005 i = mab_start;
2006 do {
2007 pivots[j++] = b_node->pivot[i++];
2008 } while (i <= mab_end && likely(b_node->pivot[i]));
2009
2010 memcpy(slots, b_node->slot + mab_start,
2011 sizeof(void *) * (i - mab_start));
2012
2013 if (new_max)
2014 mas->max = b_node->pivot[i - 1];
2015
2016 end = j - 1;
2017 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2018 unsigned long max_gap = 0;
2019 unsigned char offset = 0;
2020
2021 gaps = ma_gaps(node, mt);
2022 do {
2023 gaps[--j] = b_node->gap[--i];
2024 if (gaps[j] > max_gap) {
2025 offset = j;
2026 max_gap = gaps[j];
2027 }
2028 } while (j);
2029
2030 ma_set_meta(node, mt, offset, end);
2031 } else {
2032 mas_leaf_set_meta(node, mt, end);
2033 }
2034}
2035
2036/*
2037 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2038 * @mas: The maple state
2039 * @end: The maple node end
2040 * @mt: The maple node type
2041 */
2042static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2043 enum maple_type mt)
2044{
2045 if (!(mas->mas_flags & MA_STATE_BULK))
2046 return;
2047
2048 if (mte_is_root(mas->node))
2049 return;
2050
2051 if (end > mt_min_slots[mt]) {
2052 mas->mas_flags &= ~MA_STATE_REBALANCE;
2053 return;
2054 }
2055}
2056
2057/*
2058 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2059 * data from a maple encoded node.
2060 * @wr_mas: the maple write state
2061 * @b_node: the maple_big_node to fill with data
2062 * @offset_end: the offset to end copying
2063 *
2064 * Return: The actual end of the data stored in @b_node
2065 */
2066static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2067 struct maple_big_node *b_node, unsigned char offset_end)
2068{
2069 unsigned char slot;
2070 unsigned char b_end;
2071 /* Possible underflow of piv will wrap back to 0 before use. */
2072 unsigned long piv;
2073 struct ma_state *mas = wr_mas->mas;
2074
2075 b_node->type = wr_mas->type;
2076 b_end = 0;
2077 slot = mas->offset;
2078 if (slot) {
2079 /* Copy start data up to insert. */
2080 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2081 b_end = b_node->b_end;
2082 piv = b_node->pivot[b_end - 1];
2083 } else
2084 piv = mas->min - 1;
2085
2086 if (piv + 1 < mas->index) {
2087 /* Handle range starting after old range */
2088 b_node->slot[b_end] = wr_mas->content;
2089 if (!wr_mas->content)
2090 b_node->gap[b_end] = mas->index - 1 - piv;
2091 b_node->pivot[b_end++] = mas->index - 1;
2092 }
2093
2094 /* Store the new entry. */
2095 mas->offset = b_end;
2096 b_node->slot[b_end] = wr_mas->entry;
2097 b_node->pivot[b_end] = mas->last;
2098
2099 /* Appended. */
2100 if (mas->last >= mas->max)
2101 goto b_end;
2102
2103 /* Handle new range ending before old range ends */
2104 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2105 if (piv > mas->last) {
2106 if (piv == ULONG_MAX)
2107 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2108
2109 if (offset_end != slot)
2110 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2111 offset_end);
2112
2113 b_node->slot[++b_end] = wr_mas->content;
2114 if (!wr_mas->content)
2115 b_node->gap[b_end] = piv - mas->last + 1;
2116 b_node->pivot[b_end] = piv;
2117 }
2118
2119 slot = offset_end + 1;
2120 if (slot > mas->end)
2121 goto b_end;
2122
2123 /* Copy end data to the end of the node. */
2124 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2125 b_node->b_end--;
2126 return;
2127
2128b_end:
2129 b_node->b_end = b_end;
2130}
2131
2132/*
2133 * mas_prev_sibling() - Find the previous node with the same parent.
2134 * @mas: the maple state
2135 *
2136 * Return: True if there is a previous sibling, false otherwise.
2137 */
2138static inline bool mas_prev_sibling(struct ma_state *mas)
2139{
2140 unsigned int p_slot = mte_parent_slot(mas->node);
2141
2142 if (mte_is_root(mas->node))
2143 return false;
2144
2145 if (!p_slot)
2146 return false;
2147
2148 mas_ascend(mas);
2149 mas->offset = p_slot - 1;
2150 mas_descend(mas);
2151 return true;
2152}
2153
2154/*
2155 * mas_next_sibling() - Find the next node with the same parent.
2156 * @mas: the maple state
2157 *
2158 * Return: true if there is a next sibling, false otherwise.
2159 */
2160static inline bool mas_next_sibling(struct ma_state *mas)
2161{
2162 MA_STATE(parent, mas->tree, mas->index, mas->last);
2163
2164 if (mte_is_root(mas->node))
2165 return false;
2166
2167 parent = *mas;
2168 mas_ascend(&parent);
2169 parent.offset = mte_parent_slot(mas->node) + 1;
2170 if (parent.offset > mas_data_end(&parent))
2171 return false;
2172
2173 *mas = parent;
2174 mas_descend(mas);
2175 return true;
2176}
2177
2178/*
2179 * mas_node_or_none() - Set the enode and state.
2180 * @mas: the maple state
2181 * @enode: The encoded maple node.
2182 *
2183 * Set the node to the enode and the status.
2184 */
2185static inline void mas_node_or_none(struct ma_state *mas,
2186 struct maple_enode *enode)
2187{
2188 if (enode) {
2189 mas->node = enode;
2190 mas->status = ma_active;
2191 } else {
2192 mas->node = NULL;
2193 mas->status = ma_none;
2194 }
2195}
2196
2197/*
2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2199 * @wr_mas: The maple write state
2200 *
2201 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2202 */
2203static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2204{
2205 struct ma_state *mas = wr_mas->mas;
2206 unsigned char count, offset;
2207
2208 if (unlikely(ma_is_dense(wr_mas->type))) {
2209 wr_mas->r_max = wr_mas->r_min = mas->index;
2210 mas->offset = mas->index = mas->min;
2211 return;
2212 }
2213
2214 wr_mas->node = mas_mn(wr_mas->mas);
2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2217 wr_mas->pivots, mas->max);
2218 offset = mas->offset;
2219
2220 while (offset < count && mas->index > wr_mas->pivots[offset])
2221 offset++;
2222
2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2225 wr_mas->offset_end = mas->offset = offset;
2226}
2227
2228/*
2229 * mast_rebalance_next() - Rebalance against the next node
2230 * @mast: The maple subtree state
2231 */
2232static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2233{
2234 unsigned char b_end = mast->bn->b_end;
2235
2236 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2237 mast->bn, b_end);
2238 mast->orig_r->last = mast->orig_r->max;
2239}
2240
2241/*
2242 * mast_rebalance_prev() - Rebalance against the previous node
2243 * @mast: The maple subtree state
2244 */
2245static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2246{
2247 unsigned char end = mas_data_end(mast->orig_l) + 1;
2248 unsigned char b_end = mast->bn->b_end;
2249
2250 mab_shift_right(mast->bn, end);
2251 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2252 mast->l->min = mast->orig_l->min;
2253 mast->orig_l->index = mast->orig_l->min;
2254 mast->bn->b_end = end + b_end;
2255 mast->l->offset += end;
2256}
2257
2258/*
2259 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2260 * the node to the right. Checking the nodes to the right then the left at each
2261 * level upwards until root is reached.
2262 * Data is copied into the @mast->bn.
2263 * @mast: The maple_subtree_state.
2264 */
2265static inline
2266bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2267{
2268 struct ma_state r_tmp = *mast->orig_r;
2269 struct ma_state l_tmp = *mast->orig_l;
2270 unsigned char depth = 0;
2271
2272 do {
2273 mas_ascend(mast->orig_r);
2274 mas_ascend(mast->orig_l);
2275 depth++;
2276 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2277 mast->orig_r->offset++;
2278 do {
2279 mas_descend(mast->orig_r);
2280 mast->orig_r->offset = 0;
2281 } while (--depth);
2282
2283 mast_rebalance_next(mast);
2284 *mast->orig_l = l_tmp;
2285 return true;
2286 } else if (mast->orig_l->offset != 0) {
2287 mast->orig_l->offset--;
2288 do {
2289 mas_descend(mast->orig_l);
2290 mast->orig_l->offset =
2291 mas_data_end(mast->orig_l);
2292 } while (--depth);
2293
2294 mast_rebalance_prev(mast);
2295 *mast->orig_r = r_tmp;
2296 return true;
2297 }
2298 } while (!mte_is_root(mast->orig_r->node));
2299
2300 *mast->orig_r = r_tmp;
2301 *mast->orig_l = l_tmp;
2302 return false;
2303}
2304
2305/*
2306 * mast_ascend() - Ascend the original left and right maple states.
2307 * @mast: the maple subtree state.
2308 *
2309 * Ascend the original left and right sides. Set the offsets to point to the
2310 * data already in the new tree (@mast->l and @mast->r).
2311 */
2312static inline void mast_ascend(struct maple_subtree_state *mast)
2313{
2314 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2315 mas_ascend(mast->orig_l);
2316 mas_ascend(mast->orig_r);
2317
2318 mast->orig_r->offset = 0;
2319 mast->orig_r->index = mast->r->max;
2320 /* last should be larger than or equal to index */
2321 if (mast->orig_r->last < mast->orig_r->index)
2322 mast->orig_r->last = mast->orig_r->index;
2323
2324 wr_mas.type = mte_node_type(mast->orig_r->node);
2325 mas_wr_node_walk(&wr_mas);
2326 /* Set up the left side of things */
2327 mast->orig_l->offset = 0;
2328 mast->orig_l->index = mast->l->min;
2329 wr_mas.mas = mast->orig_l;
2330 wr_mas.type = mte_node_type(mast->orig_l->node);
2331 mas_wr_node_walk(&wr_mas);
2332
2333 mast->bn->type = wr_mas.type;
2334}
2335
2336/*
2337 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2338 * @mas: the maple state with the allocations.
2339 * @b_node: the maple_big_node with the type encoding.
2340 *
2341 * Use the node type from the maple_big_node to allocate a new node from the
2342 * ma_state. This function exists mainly for code readability.
2343 *
2344 * Return: A new maple encoded node
2345 */
2346static inline struct maple_enode
2347*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2348{
2349 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2350}
2351
2352/*
2353 * mas_mab_to_node() - Set up right and middle nodes
2354 *
2355 * @mas: the maple state that contains the allocations.
2356 * @b_node: the node which contains the data.
2357 * @left: The pointer which will have the left node
2358 * @right: The pointer which may have the right node
2359 * @middle: the pointer which may have the middle node (rare)
2360 * @mid_split: the split location for the middle node
2361 *
2362 * Return: the split of left.
2363 */
2364static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2365 struct maple_big_node *b_node, struct maple_enode **left,
2366 struct maple_enode **right, struct maple_enode **middle,
2367 unsigned char *mid_split, unsigned long min)
2368{
2369 unsigned char split = 0;
2370 unsigned char slot_count = mt_slots[b_node->type];
2371
2372 *left = mas_new_ma_node(mas, b_node);
2373 *right = NULL;
2374 *middle = NULL;
2375 *mid_split = 0;
2376
2377 if (b_node->b_end < slot_count) {
2378 split = b_node->b_end;
2379 } else {
2380 split = mab_calc_split(mas, b_node, mid_split, min);
2381 *right = mas_new_ma_node(mas, b_node);
2382 }
2383
2384 if (*mid_split)
2385 *middle = mas_new_ma_node(mas, b_node);
2386
2387 return split;
2388
2389}
2390
2391/*
2392 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2393 * pointer.
2394 * @b_node: the big node to add the entry
2395 * @mas: the maple state to get the pivot (mas->max)
2396 * @entry: the entry to add, if NULL nothing happens.
2397 */
2398static inline void mab_set_b_end(struct maple_big_node *b_node,
2399 struct ma_state *mas,
2400 void *entry)
2401{
2402 if (!entry)
2403 return;
2404
2405 b_node->slot[b_node->b_end] = entry;
2406 if (mt_is_alloc(mas->tree))
2407 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2408 b_node->pivot[b_node->b_end++] = mas->max;
2409}
2410
2411/*
2412 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2413 * of @mas->node to either @left or @right, depending on @slot and @split
2414 *
2415 * @mas: the maple state with the node that needs a parent
2416 * @left: possible parent 1
2417 * @right: possible parent 2
2418 * @slot: the slot the mas->node was placed
2419 * @split: the split location between @left and @right
2420 */
2421static inline void mas_set_split_parent(struct ma_state *mas,
2422 struct maple_enode *left,
2423 struct maple_enode *right,
2424 unsigned char *slot, unsigned char split)
2425{
2426 if (mas_is_none(mas))
2427 return;
2428
2429 if ((*slot) <= split)
2430 mas_set_parent(mas, mas->node, left, *slot);
2431 else if (right)
2432 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2433
2434 (*slot)++;
2435}
2436
2437/*
2438 * mte_mid_split_check() - Check if the next node passes the mid-split
2439 * @l: Pointer to left encoded maple node.
2440 * @m: Pointer to middle encoded maple node.
2441 * @r: Pointer to right encoded maple node.
2442 * @slot: The offset
2443 * @split: The split location.
2444 * @mid_split: The middle split.
2445 */
2446static inline void mte_mid_split_check(struct maple_enode **l,
2447 struct maple_enode **r,
2448 struct maple_enode *right,
2449 unsigned char slot,
2450 unsigned char *split,
2451 unsigned char mid_split)
2452{
2453 if (*r == right)
2454 return;
2455
2456 if (slot < mid_split)
2457 return;
2458
2459 *l = *r;
2460 *r = right;
2461 *split = mid_split;
2462}
2463
2464/*
2465 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2466 * is taken from @mast->l.
2467 * @mast: the maple subtree state
2468 * @left: the left node
2469 * @right: the right node
2470 * @split: the split location.
2471 */
2472static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2473 struct maple_enode *left,
2474 struct maple_enode *middle,
2475 struct maple_enode *right,
2476 unsigned char split,
2477 unsigned char mid_split)
2478{
2479 unsigned char slot;
2480 struct maple_enode *l = left;
2481 struct maple_enode *r = right;
2482
2483 if (mas_is_none(mast->l))
2484 return;
2485
2486 if (middle)
2487 r = middle;
2488
2489 slot = mast->l->offset;
2490
2491 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2492 mas_set_split_parent(mast->l, l, r, &slot, split);
2493
2494 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2495 mas_set_split_parent(mast->m, l, r, &slot, split);
2496
2497 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2498 mas_set_split_parent(mast->r, l, r, &slot, split);
2499}
2500
2501/*
2502 * mas_topiary_node() - Dispose of a single node
2503 * @mas: The maple state for pushing nodes
2504 * @in_rcu: If the tree is in rcu mode
2505 *
2506 * The node will either be RCU freed or pushed back on the maple state.
2507 */
2508static inline void mas_topiary_node(struct ma_state *mas,
2509 struct ma_state *tmp_mas, bool in_rcu)
2510{
2511 struct maple_node *tmp;
2512 struct maple_enode *enode;
2513
2514 if (mas_is_none(tmp_mas))
2515 return;
2516
2517 enode = tmp_mas->node;
2518 tmp = mte_to_node(enode);
2519 mte_set_node_dead(enode);
2520 if (in_rcu)
2521 ma_free_rcu(tmp);
2522 else
2523 mas_push_node(mas, tmp);
2524}
2525
2526/*
2527 * mas_topiary_replace() - Replace the data with new data, then repair the
2528 * parent links within the new tree. Iterate over the dead sub-tree and collect
2529 * the dead subtrees and topiary the nodes that are no longer of use.
2530 *
2531 * The new tree will have up to three children with the correct parent. Keep
2532 * track of the new entries as they need to be followed to find the next level
2533 * of new entries.
2534 *
2535 * The old tree will have up to three children with the old parent. Keep track
2536 * of the old entries as they may have more nodes below replaced. Nodes within
2537 * [index, last] are dead subtrees, others need to be freed and followed.
2538 *
2539 * @mas: The maple state pointing at the new data
2540 * @old_enode: The maple encoded node being replaced
2541 *
2542 */
2543static inline void mas_topiary_replace(struct ma_state *mas,
2544 struct maple_enode *old_enode)
2545{
2546 struct ma_state tmp[3], tmp_next[3];
2547 MA_TOPIARY(subtrees, mas->tree);
2548 bool in_rcu;
2549 int i, n;
2550
2551 /* Place data in tree & then mark node as old */
2552 mas_put_in_tree(mas, old_enode);
2553
2554 /* Update the parent pointers in the tree */
2555 tmp[0] = *mas;
2556 tmp[0].offset = 0;
2557 tmp[1].status = ma_none;
2558 tmp[2].status = ma_none;
2559 while (!mte_is_leaf(tmp[0].node)) {
2560 n = 0;
2561 for (i = 0; i < 3; i++) {
2562 if (mas_is_none(&tmp[i]))
2563 continue;
2564
2565 while (n < 3) {
2566 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2567 break;
2568 n++;
2569 }
2570
2571 mas_adopt_children(&tmp[i], tmp[i].node);
2572 }
2573
2574 if (MAS_WARN_ON(mas, n == 0))
2575 break;
2576
2577 while (n < 3)
2578 tmp_next[n++].status = ma_none;
2579
2580 for (i = 0; i < 3; i++)
2581 tmp[i] = tmp_next[i];
2582 }
2583
2584 /* Collect the old nodes that need to be discarded */
2585 if (mte_is_leaf(old_enode))
2586 return mas_free(mas, old_enode);
2587
2588 tmp[0] = *mas;
2589 tmp[0].offset = 0;
2590 tmp[0].node = old_enode;
2591 tmp[1].status = ma_none;
2592 tmp[2].status = ma_none;
2593 in_rcu = mt_in_rcu(mas->tree);
2594 do {
2595 n = 0;
2596 for (i = 0; i < 3; i++) {
2597 if (mas_is_none(&tmp[i]))
2598 continue;
2599
2600 while (n < 3) {
2601 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2602 break;
2603
2604 if ((tmp_next[n].min >= tmp_next->index) &&
2605 (tmp_next[n].max <= tmp_next->last)) {
2606 mat_add(&subtrees, tmp_next[n].node);
2607 tmp_next[n].status = ma_none;
2608 } else {
2609 n++;
2610 }
2611 }
2612 }
2613
2614 if (MAS_WARN_ON(mas, n == 0))
2615 break;
2616
2617 while (n < 3)
2618 tmp_next[n++].status = ma_none;
2619
2620 for (i = 0; i < 3; i++) {
2621 mas_topiary_node(mas, &tmp[i], in_rcu);
2622 tmp[i] = tmp_next[i];
2623 }
2624 } while (!mte_is_leaf(tmp[0].node));
2625
2626 for (i = 0; i < 3; i++)
2627 mas_topiary_node(mas, &tmp[i], in_rcu);
2628
2629 mas_mat_destroy(mas, &subtrees);
2630}
2631
2632/*
2633 * mas_wmb_replace() - Write memory barrier and replace
2634 * @mas: The maple state
2635 * @old_enode: The old maple encoded node that is being replaced.
2636 *
2637 * Updates gap as necessary.
2638 */
2639static inline void mas_wmb_replace(struct ma_state *mas,
2640 struct maple_enode *old_enode)
2641{
2642 /* Insert the new data in the tree */
2643 mas_topiary_replace(mas, old_enode);
2644
2645 if (mte_is_leaf(mas->node))
2646 return;
2647
2648 mas_update_gap(mas);
2649}
2650
2651/*
2652 * mast_cp_to_nodes() - Copy data out to nodes.
2653 * @mast: The maple subtree state
2654 * @left: The left encoded maple node
2655 * @middle: The middle encoded maple node
2656 * @right: The right encoded maple node
2657 * @split: The location to split between left and (middle ? middle : right)
2658 * @mid_split: The location to split between middle and right.
2659 */
2660static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2661 struct maple_enode *left, struct maple_enode *middle,
2662 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2663{
2664 bool new_lmax = true;
2665
2666 mas_node_or_none(mast->l, left);
2667 mas_node_or_none(mast->m, middle);
2668 mas_node_or_none(mast->r, right);
2669
2670 mast->l->min = mast->orig_l->min;
2671 if (split == mast->bn->b_end) {
2672 mast->l->max = mast->orig_r->max;
2673 new_lmax = false;
2674 }
2675
2676 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2677
2678 if (middle) {
2679 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2680 mast->m->min = mast->bn->pivot[split] + 1;
2681 split = mid_split;
2682 }
2683
2684 mast->r->max = mast->orig_r->max;
2685 if (right) {
2686 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2687 mast->r->min = mast->bn->pivot[split] + 1;
2688 }
2689}
2690
2691/*
2692 * mast_combine_cp_left - Copy in the original left side of the tree into the
2693 * combined data set in the maple subtree state big node.
2694 * @mast: The maple subtree state
2695 */
2696static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2697{
2698 unsigned char l_slot = mast->orig_l->offset;
2699
2700 if (!l_slot)
2701 return;
2702
2703 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2704}
2705
2706/*
2707 * mast_combine_cp_right: Copy in the original right side of the tree into the
2708 * combined data set in the maple subtree state big node.
2709 * @mast: The maple subtree state
2710 */
2711static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2712{
2713 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2714 return;
2715
2716 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2717 mt_slot_count(mast->orig_r->node), mast->bn,
2718 mast->bn->b_end);
2719 mast->orig_r->last = mast->orig_r->max;
2720}
2721
2722/*
2723 * mast_sufficient: Check if the maple subtree state has enough data in the big
2724 * node to create at least one sufficient node
2725 * @mast: the maple subtree state
2726 */
2727static inline bool mast_sufficient(struct maple_subtree_state *mast)
2728{
2729 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2730 return true;
2731
2732 return false;
2733}
2734
2735/*
2736 * mast_overflow: Check if there is too much data in the subtree state for a
2737 * single node.
2738 * @mast: The maple subtree state
2739 */
2740static inline bool mast_overflow(struct maple_subtree_state *mast)
2741{
2742 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2743 return true;
2744
2745 return false;
2746}
2747
2748static inline void *mtree_range_walk(struct ma_state *mas)
2749{
2750 unsigned long *pivots;
2751 unsigned char offset;
2752 struct maple_node *node;
2753 struct maple_enode *next, *last;
2754 enum maple_type type;
2755 void __rcu **slots;
2756 unsigned char end;
2757 unsigned long max, min;
2758 unsigned long prev_max, prev_min;
2759
2760 next = mas->node;
2761 min = mas->min;
2762 max = mas->max;
2763 do {
2764 last = next;
2765 node = mte_to_node(next);
2766 type = mte_node_type(next);
2767 pivots = ma_pivots(node, type);
2768 end = ma_data_end(node, type, pivots, max);
2769 prev_min = min;
2770 prev_max = max;
2771 if (pivots[0] >= mas->index) {
2772 offset = 0;
2773 max = pivots[0];
2774 goto next;
2775 }
2776
2777 offset = 1;
2778 while (offset < end) {
2779 if (pivots[offset] >= mas->index) {
2780 max = pivots[offset];
2781 break;
2782 }
2783 offset++;
2784 }
2785
2786 min = pivots[offset - 1] + 1;
2787next:
2788 slots = ma_slots(node, type);
2789 next = mt_slot(mas->tree, slots, offset);
2790 if (unlikely(ma_dead_node(node)))
2791 goto dead_node;
2792 } while (!ma_is_leaf(type));
2793
2794 mas->end = end;
2795 mas->offset = offset;
2796 mas->index = min;
2797 mas->last = max;
2798 mas->min = prev_min;
2799 mas->max = prev_max;
2800 mas->node = last;
2801 return (void *)next;
2802
2803dead_node:
2804 mas_reset(mas);
2805 return NULL;
2806}
2807
2808/*
2809 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2810 * @mas: The starting maple state
2811 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2812 * @count: The estimated count of iterations needed.
2813 *
2814 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2815 * is hit. First @b_node is split into two entries which are inserted into the
2816 * next iteration of the loop. @b_node is returned populated with the final
2817 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2818 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2819 * to account of what has been copied into the new sub-tree. The update of
2820 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2821 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2822 * the new sub-tree in case the sub-tree becomes the full tree.
2823 */
2824static void mas_spanning_rebalance(struct ma_state *mas,
2825 struct maple_subtree_state *mast, unsigned char count)
2826{
2827 unsigned char split, mid_split;
2828 unsigned char slot = 0;
2829 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2830 struct maple_enode *old_enode;
2831
2832 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2833 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2834 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2835
2836 /*
2837 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2838 * Rebalancing is done by use of the ``struct maple_topiary``.
2839 */
2840 mast->l = &l_mas;
2841 mast->m = &m_mas;
2842 mast->r = &r_mas;
2843 l_mas.status = r_mas.status = m_mas.status = ma_none;
2844
2845 /* Check if this is not root and has sufficient data. */
2846 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2847 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2848 mast_spanning_rebalance(mast);
2849
2850 l_mas.depth = 0;
2851
2852 /*
2853 * Each level of the tree is examined and balanced, pushing data to the left or
2854 * right, or rebalancing against left or right nodes is employed to avoid
2855 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2856 * the tree is created, there may be a mix of new and old nodes. The old nodes
2857 * will have the incorrect parent pointers and currently be in two trees: the
2858 * original tree and the partially new tree. To remedy the parent pointers in
2859 * the old tree, the new data is swapped into the active tree and a walk down
2860 * the tree is performed and the parent pointers are updated.
2861 * See mas_topiary_replace() for more information.
2862 */
2863 while (count--) {
2864 mast->bn->b_end--;
2865 mast->bn->type = mte_node_type(mast->orig_l->node);
2866 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2867 &mid_split, mast->orig_l->min);
2868 mast_set_split_parents(mast, left, middle, right, split,
2869 mid_split);
2870 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2871
2872 /*
2873 * Copy data from next level in the tree to mast->bn from next
2874 * iteration
2875 */
2876 memset(mast->bn, 0, sizeof(struct maple_big_node));
2877 mast->bn->type = mte_node_type(left);
2878 l_mas.depth++;
2879
2880 /* Root already stored in l->node. */
2881 if (mas_is_root_limits(mast->l))
2882 goto new_root;
2883
2884 mast_ascend(mast);
2885 mast_combine_cp_left(mast);
2886 l_mas.offset = mast->bn->b_end;
2887 mab_set_b_end(mast->bn, &l_mas, left);
2888 mab_set_b_end(mast->bn, &m_mas, middle);
2889 mab_set_b_end(mast->bn, &r_mas, right);
2890
2891 /* Copy anything necessary out of the right node. */
2892 mast_combine_cp_right(mast);
2893 mast->orig_l->last = mast->orig_l->max;
2894
2895 if (mast_sufficient(mast))
2896 continue;
2897
2898 if (mast_overflow(mast))
2899 continue;
2900
2901 /* May be a new root stored in mast->bn */
2902 if (mas_is_root_limits(mast->orig_l))
2903 break;
2904
2905 mast_spanning_rebalance(mast);
2906
2907 /* rebalancing from other nodes may require another loop. */
2908 if (!count)
2909 count++;
2910 }
2911
2912 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2913 mte_node_type(mast->orig_l->node));
2914 l_mas.depth++;
2915 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2916 mas_set_parent(mas, left, l_mas.node, slot);
2917 if (middle)
2918 mas_set_parent(mas, middle, l_mas.node, ++slot);
2919
2920 if (right)
2921 mas_set_parent(mas, right, l_mas.node, ++slot);
2922
2923 if (mas_is_root_limits(mast->l)) {
2924new_root:
2925 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2926 while (!mte_is_root(mast->orig_l->node))
2927 mast_ascend(mast);
2928 } else {
2929 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2930 }
2931
2932 old_enode = mast->orig_l->node;
2933 mas->depth = l_mas.depth;
2934 mas->node = l_mas.node;
2935 mas->min = l_mas.min;
2936 mas->max = l_mas.max;
2937 mas->offset = l_mas.offset;
2938 mas_wmb_replace(mas, old_enode);
2939 mtree_range_walk(mas);
2940 return;
2941}
2942
2943/*
2944 * mas_rebalance() - Rebalance a given node.
2945 * @mas: The maple state
2946 * @b_node: The big maple node.
2947 *
2948 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2949 * Continue upwards until tree is sufficient.
2950 */
2951static inline void mas_rebalance(struct ma_state *mas,
2952 struct maple_big_node *b_node)
2953{
2954 char empty_count = mas_mt_height(mas);
2955 struct maple_subtree_state mast;
2956 unsigned char shift, b_end = ++b_node->b_end;
2957
2958 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2959 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2960
2961 trace_ma_op(__func__, mas);
2962
2963 /*
2964 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2965 * against the node to the right if it exists, otherwise the node to the
2966 * left of this node is rebalanced against this node. If rebalancing
2967 * causes just one node to be produced instead of two, then the parent
2968 * is also examined and rebalanced if it is insufficient. Every level
2969 * tries to combine the data in the same way. If one node contains the
2970 * entire range of the tree, then that node is used as a new root node.
2971 */
2972
2973 mast.orig_l = &l_mas;
2974 mast.orig_r = &r_mas;
2975 mast.bn = b_node;
2976 mast.bn->type = mte_node_type(mas->node);
2977
2978 l_mas = r_mas = *mas;
2979
2980 if (mas_next_sibling(&r_mas)) {
2981 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2982 r_mas.last = r_mas.index = r_mas.max;
2983 } else {
2984 mas_prev_sibling(&l_mas);
2985 shift = mas_data_end(&l_mas) + 1;
2986 mab_shift_right(b_node, shift);
2987 mas->offset += shift;
2988 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2989 b_node->b_end = shift + b_end;
2990 l_mas.index = l_mas.last = l_mas.min;
2991 }
2992
2993 return mas_spanning_rebalance(mas, &mast, empty_count);
2994}
2995
2996/*
2997 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
2998 * state.
2999 * @mas: The maple state
3000 * @end: The end of the left-most node.
3001 *
3002 * During a mass-insert event (such as forking), it may be necessary to
3003 * rebalance the left-most node when it is not sufficient.
3004 */
3005static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3006{
3007 enum maple_type mt = mte_node_type(mas->node);
3008 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3009 struct maple_enode *eparent, *old_eparent;
3010 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3011 void __rcu **l_slots, **slots;
3012 unsigned long *l_pivs, *pivs, gap;
3013 bool in_rcu = mt_in_rcu(mas->tree);
3014
3015 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3016
3017 l_mas = *mas;
3018 mas_prev_sibling(&l_mas);
3019
3020 /* set up node. */
3021 if (in_rcu) {
3022 newnode = mas_pop_node(mas);
3023 } else {
3024 newnode = &reuse;
3025 }
3026
3027 node = mas_mn(mas);
3028 newnode->parent = node->parent;
3029 slots = ma_slots(newnode, mt);
3030 pivs = ma_pivots(newnode, mt);
3031 left = mas_mn(&l_mas);
3032 l_slots = ma_slots(left, mt);
3033 l_pivs = ma_pivots(left, mt);
3034 if (!l_slots[split])
3035 split++;
3036 tmp = mas_data_end(&l_mas) - split;
3037
3038 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3039 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3040 pivs[tmp] = l_mas.max;
3041 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3042 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3043
3044 l_mas.max = l_pivs[split];
3045 mas->min = l_mas.max + 1;
3046 old_eparent = mt_mk_node(mte_parent(l_mas.node),
3047 mas_parent_type(&l_mas, l_mas.node));
3048 tmp += end;
3049 if (!in_rcu) {
3050 unsigned char max_p = mt_pivots[mt];
3051 unsigned char max_s = mt_slots[mt];
3052
3053 if (tmp < max_p)
3054 memset(pivs + tmp, 0,
3055 sizeof(unsigned long) * (max_p - tmp));
3056
3057 if (tmp < mt_slots[mt])
3058 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3059
3060 memcpy(node, newnode, sizeof(struct maple_node));
3061 ma_set_meta(node, mt, 0, tmp - 1);
3062 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3063 l_pivs[split]);
3064
3065 /* Remove data from l_pivs. */
3066 tmp = split + 1;
3067 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3068 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3069 ma_set_meta(left, mt, 0, split);
3070 eparent = old_eparent;
3071
3072 goto done;
3073 }
3074
3075 /* RCU requires replacing both l_mas, mas, and parent. */
3076 mas->node = mt_mk_node(newnode, mt);
3077 ma_set_meta(newnode, mt, 0, tmp);
3078
3079 new_left = mas_pop_node(mas);
3080 new_left->parent = left->parent;
3081 mt = mte_node_type(l_mas.node);
3082 slots = ma_slots(new_left, mt);
3083 pivs = ma_pivots(new_left, mt);
3084 memcpy(slots, l_slots, sizeof(void *) * split);
3085 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3086 ma_set_meta(new_left, mt, 0, split);
3087 l_mas.node = mt_mk_node(new_left, mt);
3088
3089 /* replace parent. */
3090 offset = mte_parent_slot(mas->node);
3091 mt = mas_parent_type(&l_mas, l_mas.node);
3092 parent = mas_pop_node(mas);
3093 slots = ma_slots(parent, mt);
3094 pivs = ma_pivots(parent, mt);
3095 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3096 rcu_assign_pointer(slots[offset], mas->node);
3097 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3098 pivs[offset - 1] = l_mas.max;
3099 eparent = mt_mk_node(parent, mt);
3100done:
3101 gap = mas_leaf_max_gap(mas);
3102 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3103 gap = mas_leaf_max_gap(&l_mas);
3104 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3105 mas_ascend(mas);
3106
3107 if (in_rcu) {
3108 mas_replace_node(mas, old_eparent);
3109 mas_adopt_children(mas, mas->node);
3110 }
3111
3112 mas_update_gap(mas);
3113}
3114
3115/*
3116 * mas_split_final_node() - Split the final node in a subtree operation.
3117 * @mast: the maple subtree state
3118 * @mas: The maple state
3119 * @height: The height of the tree in case it's a new root.
3120 */
3121static inline void mas_split_final_node(struct maple_subtree_state *mast,
3122 struct ma_state *mas, int height)
3123{
3124 struct maple_enode *ancestor;
3125
3126 if (mte_is_root(mas->node)) {
3127 if (mt_is_alloc(mas->tree))
3128 mast->bn->type = maple_arange_64;
3129 else
3130 mast->bn->type = maple_range_64;
3131 mas->depth = height;
3132 }
3133 /*
3134 * Only a single node is used here, could be root.
3135 * The Big_node data should just fit in a single node.
3136 */
3137 ancestor = mas_new_ma_node(mas, mast->bn);
3138 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3139 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3140 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3141
3142 mast->l->node = ancestor;
3143 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3144 mas->offset = mast->bn->b_end - 1;
3145}
3146
3147/*
3148 * mast_fill_bnode() - Copy data into the big node in the subtree state
3149 * @mast: The maple subtree state
3150 * @mas: the maple state
3151 * @skip: The number of entries to skip for new nodes insertion.
3152 */
3153static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3154 struct ma_state *mas,
3155 unsigned char skip)
3156{
3157 bool cp = true;
3158 unsigned char split;
3159
3160 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3161 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3162 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3163 mast->bn->b_end = 0;
3164
3165 if (mte_is_root(mas->node)) {
3166 cp = false;
3167 } else {
3168 mas_ascend(mas);
3169 mas->offset = mte_parent_slot(mas->node);
3170 }
3171
3172 if (cp && mast->l->offset)
3173 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3174
3175 split = mast->bn->b_end;
3176 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3177 mast->r->offset = mast->bn->b_end;
3178 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3179 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3180 cp = false;
3181
3182 if (cp)
3183 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3184 mast->bn, mast->bn->b_end);
3185
3186 mast->bn->b_end--;
3187 mast->bn->type = mte_node_type(mas->node);
3188}
3189
3190/*
3191 * mast_split_data() - Split the data in the subtree state big node into regular
3192 * nodes.
3193 * @mast: The maple subtree state
3194 * @mas: The maple state
3195 * @split: The location to split the big node
3196 */
3197static inline void mast_split_data(struct maple_subtree_state *mast,
3198 struct ma_state *mas, unsigned char split)
3199{
3200 unsigned char p_slot;
3201
3202 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3203 mte_set_pivot(mast->r->node, 0, mast->r->max);
3204 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3205 mast->l->offset = mte_parent_slot(mas->node);
3206 mast->l->max = mast->bn->pivot[split];
3207 mast->r->min = mast->l->max + 1;
3208 if (mte_is_leaf(mas->node))
3209 return;
3210
3211 p_slot = mast->orig_l->offset;
3212 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3213 &p_slot, split);
3214 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3215 &p_slot, split);
3216}
3217
3218/*
3219 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3220 * data to the right or left node if there is room.
3221 * @mas: The maple state
3222 * @height: The current height of the maple state
3223 * @mast: The maple subtree state
3224 * @left: Push left or not.
3225 *
3226 * Keeping the height of the tree low means faster lookups.
3227 *
3228 * Return: True if pushed, false otherwise.
3229 */
3230static inline bool mas_push_data(struct ma_state *mas, int height,
3231 struct maple_subtree_state *mast, bool left)
3232{
3233 unsigned char slot_total = mast->bn->b_end;
3234 unsigned char end, space, split;
3235
3236 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3237 tmp_mas = *mas;
3238 tmp_mas.depth = mast->l->depth;
3239
3240 if (left && !mas_prev_sibling(&tmp_mas))
3241 return false;
3242 else if (!left && !mas_next_sibling(&tmp_mas))
3243 return false;
3244
3245 end = mas_data_end(&tmp_mas);
3246 slot_total += end;
3247 space = 2 * mt_slot_count(mas->node) - 2;
3248 /* -2 instead of -1 to ensure there isn't a triple split */
3249 if (ma_is_leaf(mast->bn->type))
3250 space--;
3251
3252 if (mas->max == ULONG_MAX)
3253 space--;
3254
3255 if (slot_total >= space)
3256 return false;
3257
3258 /* Get the data; Fill mast->bn */
3259 mast->bn->b_end++;
3260 if (left) {
3261 mab_shift_right(mast->bn, end + 1);
3262 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3263 mast->bn->b_end = slot_total + 1;
3264 } else {
3265 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3266 }
3267
3268 /* Configure mast for splitting of mast->bn */
3269 split = mt_slots[mast->bn->type] - 2;
3270 if (left) {
3271 /* Switch mas to prev node */
3272 *mas = tmp_mas;
3273 /* Start using mast->l for the left side. */
3274 tmp_mas.node = mast->l->node;
3275 *mast->l = tmp_mas;
3276 } else {
3277 tmp_mas.node = mast->r->node;
3278 *mast->r = tmp_mas;
3279 split = slot_total - split;
3280 }
3281 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3282 /* Update parent slot for split calculation. */
3283 if (left)
3284 mast->orig_l->offset += end + 1;
3285
3286 mast_split_data(mast, mas, split);
3287 mast_fill_bnode(mast, mas, 2);
3288 mas_split_final_node(mast, mas, height + 1);
3289 return true;
3290}
3291
3292/*
3293 * mas_split() - Split data that is too big for one node into two.
3294 * @mas: The maple state
3295 * @b_node: The maple big node
3296 */
3297static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3298{
3299 struct maple_subtree_state mast;
3300 int height = 0;
3301 unsigned char mid_split, split = 0;
3302 struct maple_enode *old;
3303
3304 /*
3305 * Splitting is handled differently from any other B-tree; the Maple
3306 * Tree splits upwards. Splitting up means that the split operation
3307 * occurs when the walk of the tree hits the leaves and not on the way
3308 * down. The reason for splitting up is that it is impossible to know
3309 * how much space will be needed until the leaf is (or leaves are)
3310 * reached. Since overwriting data is allowed and a range could
3311 * overwrite more than one range or result in changing one entry into 3
3312 * entries, it is impossible to know if a split is required until the
3313 * data is examined.
3314 *
3315 * Splitting is a balancing act between keeping allocations to a minimum
3316 * and avoiding a 'jitter' event where a tree is expanded to make room
3317 * for an entry followed by a contraction when the entry is removed. To
3318 * accomplish the balance, there are empty slots remaining in both left
3319 * and right nodes after a split.
3320 */
3321 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3322 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3323 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3324 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3325
3326 trace_ma_op(__func__, mas);
3327 mas->depth = mas_mt_height(mas);
3328
3329 mast.l = &l_mas;
3330 mast.r = &r_mas;
3331 mast.orig_l = &prev_l_mas;
3332 mast.orig_r = &prev_r_mas;
3333 mast.bn = b_node;
3334
3335 while (height++ <= mas->depth) {
3336 if (mt_slots[b_node->type] > b_node->b_end) {
3337 mas_split_final_node(&mast, mas, height);
3338 break;
3339 }
3340
3341 l_mas = r_mas = *mas;
3342 l_mas.node = mas_new_ma_node(mas, b_node);
3343 r_mas.node = mas_new_ma_node(mas, b_node);
3344 /*
3345 * Another way that 'jitter' is avoided is to terminate a split up early if the
3346 * left or right node has space to spare. This is referred to as "pushing left"
3347 * or "pushing right" and is similar to the B* tree, except the nodes left or
3348 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3349 * is a significant savings.
3350 */
3351 /* Try to push left. */
3352 if (mas_push_data(mas, height, &mast, true))
3353 break;
3354 /* Try to push right. */
3355 if (mas_push_data(mas, height, &mast, false))
3356 break;
3357
3358 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3359 mast_split_data(&mast, mas, split);
3360 /*
3361 * Usually correct, mab_mas_cp in the above call overwrites
3362 * r->max.
3363 */
3364 mast.r->max = mas->max;
3365 mast_fill_bnode(&mast, mas, 1);
3366 prev_l_mas = *mast.l;
3367 prev_r_mas = *mast.r;
3368 }
3369
3370 /* Set the original node as dead */
3371 old = mas->node;
3372 mas->node = l_mas.node;
3373 mas_wmb_replace(mas, old);
3374 mtree_range_walk(mas);
3375 return;
3376}
3377
3378/*
3379 * mas_commit_b_node() - Commit the big node into the tree.
3380 * @wr_mas: The maple write state
3381 * @b_node: The maple big node
3382 */
3383static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3384 struct maple_big_node *b_node)
3385{
3386 enum store_type type = wr_mas->mas->store_type;
3387
3388 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3389
3390 if (type == wr_rebalance)
3391 return mas_rebalance(wr_mas->mas, b_node);
3392
3393 return mas_split(wr_mas->mas, b_node);
3394}
3395
3396/*
3397 * mas_root_expand() - Expand a root to a node
3398 * @mas: The maple state
3399 * @entry: The entry to store into the tree
3400 */
3401static inline int mas_root_expand(struct ma_state *mas, void *entry)
3402{
3403 void *contents = mas_root_locked(mas);
3404 enum maple_type type = maple_leaf_64;
3405 struct maple_node *node;
3406 void __rcu **slots;
3407 unsigned long *pivots;
3408 int slot = 0;
3409
3410 node = mas_pop_node(mas);
3411 pivots = ma_pivots(node, type);
3412 slots = ma_slots(node, type);
3413 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3414 mas->node = mt_mk_node(node, type);
3415 mas->status = ma_active;
3416
3417 if (mas->index) {
3418 if (contents) {
3419 rcu_assign_pointer(slots[slot], contents);
3420 if (likely(mas->index > 1))
3421 slot++;
3422 }
3423 pivots[slot++] = mas->index - 1;
3424 }
3425
3426 rcu_assign_pointer(slots[slot], entry);
3427 mas->offset = slot;
3428 pivots[slot] = mas->last;
3429 if (mas->last != ULONG_MAX)
3430 pivots[++slot] = ULONG_MAX;
3431
3432 mas->depth = 1;
3433 mas_set_height(mas);
3434 ma_set_meta(node, maple_leaf_64, 0, slot);
3435 /* swap the new root into the tree */
3436 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3437 return slot;
3438}
3439
3440static inline void mas_store_root(struct ma_state *mas, void *entry)
3441{
3442 if (likely((mas->last != 0) || (mas->index != 0)))
3443 mas_root_expand(mas, entry);
3444 else if (((unsigned long) (entry) & 3) == 2)
3445 mas_root_expand(mas, entry);
3446 else {
3447 rcu_assign_pointer(mas->tree->ma_root, entry);
3448 mas->status = ma_start;
3449 }
3450}
3451
3452/*
3453 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3454 * spans the node.
3455 * @wr_mas: The maple write state
3456 *
3457 * Spanning writes are writes that start in one node and end in another OR if
3458 * the write of a %NULL will cause the node to end with a %NULL.
3459 *
3460 * Return: True if this is a spanning write, false otherwise.
3461 */
3462static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3463{
3464 unsigned long max = wr_mas->r_max;
3465 unsigned long last = wr_mas->mas->last;
3466 enum maple_type type = wr_mas->type;
3467 void *entry = wr_mas->entry;
3468
3469 /* Contained in this pivot, fast path */
3470 if (last < max)
3471 return false;
3472
3473 if (ma_is_leaf(type)) {
3474 max = wr_mas->mas->max;
3475 if (last < max)
3476 return false;
3477 }
3478
3479 if (last == max) {
3480 /*
3481 * The last entry of leaf node cannot be NULL unless it is the
3482 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3483 */
3484 if (entry || last == ULONG_MAX)
3485 return false;
3486 }
3487
3488 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3489 return true;
3490}
3491
3492static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3493{
3494 wr_mas->type = mte_node_type(wr_mas->mas->node);
3495 mas_wr_node_walk(wr_mas);
3496 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3497}
3498
3499static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3500{
3501 wr_mas->mas->max = wr_mas->r_max;
3502 wr_mas->mas->min = wr_mas->r_min;
3503 wr_mas->mas->node = wr_mas->content;
3504 wr_mas->mas->offset = 0;
3505 wr_mas->mas->depth++;
3506}
3507/*
3508 * mas_wr_walk() - Walk the tree for a write.
3509 * @wr_mas: The maple write state
3510 *
3511 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3512 *
3513 * Return: True if it's contained in a node, false on spanning write.
3514 */
3515static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3516{
3517 struct ma_state *mas = wr_mas->mas;
3518
3519 while (true) {
3520 mas_wr_walk_descend(wr_mas);
3521 if (unlikely(mas_is_span_wr(wr_mas)))
3522 return false;
3523
3524 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3525 mas->offset);
3526 if (ma_is_leaf(wr_mas->type))
3527 return true;
3528
3529 mas_wr_walk_traverse(wr_mas);
3530 }
3531
3532 return true;
3533}
3534
3535static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3536{
3537 struct ma_state *mas = wr_mas->mas;
3538
3539 while (true) {
3540 mas_wr_walk_descend(wr_mas);
3541 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3542 mas->offset);
3543 if (ma_is_leaf(wr_mas->type))
3544 return true;
3545 mas_wr_walk_traverse(wr_mas);
3546
3547 }
3548 return true;
3549}
3550/*
3551 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3552 * @l_wr_mas: The left maple write state
3553 * @r_wr_mas: The right maple write state
3554 */
3555static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3556 struct ma_wr_state *r_wr_mas)
3557{
3558 struct ma_state *r_mas = r_wr_mas->mas;
3559 struct ma_state *l_mas = l_wr_mas->mas;
3560 unsigned char l_slot;
3561
3562 l_slot = l_mas->offset;
3563 if (!l_wr_mas->content)
3564 l_mas->index = l_wr_mas->r_min;
3565
3566 if ((l_mas->index == l_wr_mas->r_min) &&
3567 (l_slot &&
3568 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3569 if (l_slot > 1)
3570 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3571 else
3572 l_mas->index = l_mas->min;
3573
3574 l_mas->offset = l_slot - 1;
3575 }
3576
3577 if (!r_wr_mas->content) {
3578 if (r_mas->last < r_wr_mas->r_max)
3579 r_mas->last = r_wr_mas->r_max;
3580 r_mas->offset++;
3581 } else if ((r_mas->last == r_wr_mas->r_max) &&
3582 (r_mas->last < r_mas->max) &&
3583 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3584 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3585 r_wr_mas->type, r_mas->offset + 1);
3586 r_mas->offset++;
3587 }
3588}
3589
3590static inline void *mas_state_walk(struct ma_state *mas)
3591{
3592 void *entry;
3593
3594 entry = mas_start(mas);
3595 if (mas_is_none(mas))
3596 return NULL;
3597
3598 if (mas_is_ptr(mas))
3599 return entry;
3600
3601 return mtree_range_walk(mas);
3602}
3603
3604/*
3605 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3606 * to date.
3607 *
3608 * @mas: The maple state.
3609 *
3610 * Note: Leaves mas in undesirable state.
3611 * Return: The entry for @mas->index or %NULL on dead node.
3612 */
3613static inline void *mtree_lookup_walk(struct ma_state *mas)
3614{
3615 unsigned long *pivots;
3616 unsigned char offset;
3617 struct maple_node *node;
3618 struct maple_enode *next;
3619 enum maple_type type;
3620 void __rcu **slots;
3621 unsigned char end;
3622
3623 next = mas->node;
3624 do {
3625 node = mte_to_node(next);
3626 type = mte_node_type(next);
3627 pivots = ma_pivots(node, type);
3628 end = mt_pivots[type];
3629 offset = 0;
3630 do {
3631 if (pivots[offset] >= mas->index)
3632 break;
3633 } while (++offset < end);
3634
3635 slots = ma_slots(node, type);
3636 next = mt_slot(mas->tree, slots, offset);
3637 if (unlikely(ma_dead_node(node)))
3638 goto dead_node;
3639 } while (!ma_is_leaf(type));
3640
3641 return (void *)next;
3642
3643dead_node:
3644 mas_reset(mas);
3645 return NULL;
3646}
3647
3648static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3649/*
3650 * mas_new_root() - Create a new root node that only contains the entry passed
3651 * in.
3652 * @mas: The maple state
3653 * @entry: The entry to store.
3654 *
3655 * Only valid when the index == 0 and the last == ULONG_MAX
3656 */
3657static inline void mas_new_root(struct ma_state *mas, void *entry)
3658{
3659 struct maple_enode *root = mas_root_locked(mas);
3660 enum maple_type type = maple_leaf_64;
3661 struct maple_node *node;
3662 void __rcu **slots;
3663 unsigned long *pivots;
3664
3665 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3666 mas->depth = 0;
3667 mas_set_height(mas);
3668 rcu_assign_pointer(mas->tree->ma_root, entry);
3669 mas->status = ma_start;
3670 goto done;
3671 }
3672
3673 node = mas_pop_node(mas);
3674 pivots = ma_pivots(node, type);
3675 slots = ma_slots(node, type);
3676 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3677 mas->node = mt_mk_node(node, type);
3678 mas->status = ma_active;
3679 rcu_assign_pointer(slots[0], entry);
3680 pivots[0] = mas->last;
3681 mas->depth = 1;
3682 mas_set_height(mas);
3683 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3684
3685done:
3686 if (xa_is_node(root))
3687 mte_destroy_walk(root, mas->tree);
3688
3689 return;
3690}
3691/*
3692 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3693 * and new nodes where necessary, then place the sub-tree in the actual tree.
3694 * Note that mas is expected to point to the node which caused the store to
3695 * span.
3696 * @wr_mas: The maple write state
3697 */
3698static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3699{
3700 struct maple_subtree_state mast;
3701 struct maple_big_node b_node;
3702 struct ma_state *mas;
3703 unsigned char height;
3704
3705 /* Left and Right side of spanning store */
3706 MA_STATE(l_mas, NULL, 0, 0);
3707 MA_STATE(r_mas, NULL, 0, 0);
3708 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3709 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3710
3711 /*
3712 * A store operation that spans multiple nodes is called a spanning
3713 * store and is handled early in the store call stack by the function
3714 * mas_is_span_wr(). When a spanning store is identified, the maple
3715 * state is duplicated. The first maple state walks the left tree path
3716 * to ``index``, the duplicate walks the right tree path to ``last``.
3717 * The data in the two nodes are combined into a single node, two nodes,
3718 * or possibly three nodes (see the 3-way split above). A ``NULL``
3719 * written to the last entry of a node is considered a spanning store as
3720 * a rebalance is required for the operation to complete and an overflow
3721 * of data may happen.
3722 */
3723 mas = wr_mas->mas;
3724 trace_ma_op(__func__, mas);
3725
3726 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3727 return mas_new_root(mas, wr_mas->entry);
3728 /*
3729 * Node rebalancing may occur due to this store, so there may be three new
3730 * entries per level plus a new root.
3731 */
3732 height = mas_mt_height(mas);
3733
3734 /*
3735 * Set up right side. Need to get to the next offset after the spanning
3736 * store to ensure it's not NULL and to combine both the next node and
3737 * the node with the start together.
3738 */
3739 r_mas = *mas;
3740 /* Avoid overflow, walk to next slot in the tree. */
3741 if (r_mas.last + 1)
3742 r_mas.last++;
3743
3744 r_mas.index = r_mas.last;
3745 mas_wr_walk_index(&r_wr_mas);
3746 r_mas.last = r_mas.index = mas->last;
3747
3748 /* Set up left side. */
3749 l_mas = *mas;
3750 mas_wr_walk_index(&l_wr_mas);
3751
3752 if (!wr_mas->entry) {
3753 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3754 mas->offset = l_mas.offset;
3755 mas->index = l_mas.index;
3756 mas->last = l_mas.last = r_mas.last;
3757 }
3758
3759 /* expanding NULLs may make this cover the entire range */
3760 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3761 mas_set_range(mas, 0, ULONG_MAX);
3762 return mas_new_root(mas, wr_mas->entry);
3763 }
3764
3765 memset(&b_node, 0, sizeof(struct maple_big_node));
3766 /* Copy l_mas and store the value in b_node. */
3767 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3768 /* Copy r_mas into b_node. */
3769 if (r_mas.offset <= r_mas.end)
3770 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3771 &b_node, b_node.b_end + 1);
3772 else
3773 b_node.b_end++;
3774
3775 /* Stop spanning searches by searching for just index. */
3776 l_mas.index = l_mas.last = mas->index;
3777
3778 mast.bn = &b_node;
3779 mast.orig_l = &l_mas;
3780 mast.orig_r = &r_mas;
3781 /* Combine l_mas and r_mas and split them up evenly again. */
3782 return mas_spanning_rebalance(mas, &mast, height + 1);
3783}
3784
3785/*
3786 * mas_wr_node_store() - Attempt to store the value in a node
3787 * @wr_mas: The maple write state
3788 *
3789 * Attempts to reuse the node, but may allocate.
3790 */
3791static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3792 unsigned char new_end)
3793{
3794 struct ma_state *mas = wr_mas->mas;
3795 void __rcu **dst_slots;
3796 unsigned long *dst_pivots;
3797 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3798 struct maple_node reuse, *newnode;
3799 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3800 bool in_rcu = mt_in_rcu(mas->tree);
3801
3802 if (mas->last == wr_mas->end_piv)
3803 offset_end++; /* don't copy this offset */
3804 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3805 mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3806
3807 /* set up node. */
3808 if (in_rcu) {
3809 newnode = mas_pop_node(mas);
3810 } else {
3811 memset(&reuse, 0, sizeof(struct maple_node));
3812 newnode = &reuse;
3813 }
3814
3815 newnode->parent = mas_mn(mas)->parent;
3816 dst_pivots = ma_pivots(newnode, wr_mas->type);
3817 dst_slots = ma_slots(newnode, wr_mas->type);
3818 /* Copy from start to insert point */
3819 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3820 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3821
3822 /* Handle insert of new range starting after old range */
3823 if (wr_mas->r_min < mas->index) {
3824 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3825 dst_pivots[mas->offset++] = mas->index - 1;
3826 }
3827
3828 /* Store the new entry and range end. */
3829 if (mas->offset < node_pivots)
3830 dst_pivots[mas->offset] = mas->last;
3831 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3832
3833 /*
3834 * this range wrote to the end of the node or it overwrote the rest of
3835 * the data
3836 */
3837 if (offset_end > mas->end)
3838 goto done;
3839
3840 dst_offset = mas->offset + 1;
3841 /* Copy to the end of node if necessary. */
3842 copy_size = mas->end - offset_end + 1;
3843 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3844 sizeof(void *) * copy_size);
3845 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3846 sizeof(unsigned long) * (copy_size - 1));
3847
3848 if (new_end < node_pivots)
3849 dst_pivots[new_end] = mas->max;
3850
3851done:
3852 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3853 if (in_rcu) {
3854 struct maple_enode *old_enode = mas->node;
3855
3856 mas->node = mt_mk_node(newnode, wr_mas->type);
3857 mas_replace_node(mas, old_enode);
3858 } else {
3859 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3860 }
3861 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3862 mas_update_gap(mas);
3863 mas->end = new_end;
3864 return;
3865}
3866
3867/*
3868 * mas_wr_slot_store: Attempt to store a value in a slot.
3869 * @wr_mas: the maple write state
3870 */
3871static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3872{
3873 struct ma_state *mas = wr_mas->mas;
3874 unsigned char offset = mas->offset;
3875 void __rcu **slots = wr_mas->slots;
3876 bool gap = false;
3877
3878 gap |= !mt_slot_locked(mas->tree, slots, offset);
3879 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3880
3881 if (wr_mas->offset_end - offset == 1) {
3882 if (mas->index == wr_mas->r_min) {
3883 /* Overwriting the range and a part of the next one */
3884 rcu_assign_pointer(slots[offset], wr_mas->entry);
3885 wr_mas->pivots[offset] = mas->last;
3886 } else {
3887 /* Overwriting a part of the range and the next one */
3888 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3889 wr_mas->pivots[offset] = mas->index - 1;
3890 mas->offset++; /* Keep mas accurate. */
3891 }
3892 } else if (!mt_in_rcu(mas->tree)) {
3893 /*
3894 * Expand the range, only partially overwriting the previous and
3895 * next ranges
3896 */
3897 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3898 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3899 wr_mas->pivots[offset] = mas->index - 1;
3900 wr_mas->pivots[offset + 1] = mas->last;
3901 mas->offset++; /* Keep mas accurate. */
3902 } else {
3903 return;
3904 }
3905
3906 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3907 /*
3908 * Only update gap when the new entry is empty or there is an empty
3909 * entry in the original two ranges.
3910 */
3911 if (!wr_mas->entry || gap)
3912 mas_update_gap(mas);
3913
3914 return;
3915}
3916
3917static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3918{
3919 struct ma_state *mas = wr_mas->mas;
3920
3921 if (!wr_mas->slots[wr_mas->offset_end]) {
3922 /* If this one is null, the next and prev are not */
3923 mas->last = wr_mas->end_piv;
3924 } else {
3925 /* Check next slot(s) if we are overwriting the end */
3926 if ((mas->last == wr_mas->end_piv) &&
3927 (mas->end != wr_mas->offset_end) &&
3928 !wr_mas->slots[wr_mas->offset_end + 1]) {
3929 wr_mas->offset_end++;
3930 if (wr_mas->offset_end == mas->end)
3931 mas->last = mas->max;
3932 else
3933 mas->last = wr_mas->pivots[wr_mas->offset_end];
3934 wr_mas->end_piv = mas->last;
3935 }
3936 }
3937
3938 if (!wr_mas->content) {
3939 /* If this one is null, the next and prev are not */
3940 mas->index = wr_mas->r_min;
3941 } else {
3942 /* Check prev slot if we are overwriting the start */
3943 if (mas->index == wr_mas->r_min && mas->offset &&
3944 !wr_mas->slots[mas->offset - 1]) {
3945 mas->offset--;
3946 wr_mas->r_min = mas->index =
3947 mas_safe_min(mas, wr_mas->pivots, mas->offset);
3948 wr_mas->r_max = wr_mas->pivots[mas->offset];
3949 }
3950 }
3951}
3952
3953static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3954{
3955 while ((wr_mas->offset_end < wr_mas->mas->end) &&
3956 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3957 wr_mas->offset_end++;
3958
3959 if (wr_mas->offset_end < wr_mas->mas->end)
3960 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3961 else
3962 wr_mas->end_piv = wr_mas->mas->max;
3963}
3964
3965static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3966{
3967 struct ma_state *mas = wr_mas->mas;
3968 unsigned char new_end = mas->end + 2;
3969
3970 new_end -= wr_mas->offset_end - mas->offset;
3971 if (wr_mas->r_min == mas->index)
3972 new_end--;
3973
3974 if (wr_mas->end_piv == mas->last)
3975 new_end--;
3976
3977 return new_end;
3978}
3979
3980/*
3981 * mas_wr_append: Attempt to append
3982 * @wr_mas: the maple write state
3983 * @new_end: The end of the node after the modification
3984 *
3985 * This is currently unsafe in rcu mode since the end of the node may be cached
3986 * by readers while the node contents may be updated which could result in
3987 * inaccurate information.
3988 */
3989static inline void mas_wr_append(struct ma_wr_state *wr_mas,
3990 unsigned char new_end)
3991{
3992 struct ma_state *mas = wr_mas->mas;
3993 void __rcu **slots;
3994 unsigned char end = mas->end;
3995
3996 if (new_end < mt_pivots[wr_mas->type]) {
3997 wr_mas->pivots[new_end] = wr_mas->pivots[end];
3998 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
3999 }
4000
4001 slots = wr_mas->slots;
4002 if (new_end == end + 1) {
4003 if (mas->last == wr_mas->r_max) {
4004 /* Append to end of range */
4005 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4006 wr_mas->pivots[end] = mas->index - 1;
4007 mas->offset = new_end;
4008 } else {
4009 /* Append to start of range */
4010 rcu_assign_pointer(slots[new_end], wr_mas->content);
4011 wr_mas->pivots[end] = mas->last;
4012 rcu_assign_pointer(slots[end], wr_mas->entry);
4013 }
4014 } else {
4015 /* Append to the range without touching any boundaries. */
4016 rcu_assign_pointer(slots[new_end], wr_mas->content);
4017 wr_mas->pivots[end + 1] = mas->last;
4018 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4019 wr_mas->pivots[end] = mas->index - 1;
4020 mas->offset = end + 1;
4021 }
4022
4023 if (!wr_mas->content || !wr_mas->entry)
4024 mas_update_gap(mas);
4025
4026 mas->end = new_end;
4027 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4028 return;
4029}
4030
4031/*
4032 * mas_wr_bnode() - Slow path for a modification.
4033 * @wr_mas: The write maple state
4034 *
4035 * This is where split, rebalance end up.
4036 */
4037static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4038{
4039 struct maple_big_node b_node;
4040
4041 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4042 memset(&b_node, 0, sizeof(struct maple_big_node));
4043 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4044 mas_commit_b_node(wr_mas, &b_node);
4045}
4046
4047/*
4048 * mas_wr_store_entry() - Internal call to store a value
4049 * @wr_mas: The maple write state
4050 */
4051static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4052{
4053 struct ma_state *mas = wr_mas->mas;
4054 unsigned char new_end = mas_wr_new_end(wr_mas);
4055
4056 switch (mas->store_type) {
4057 case wr_invalid:
4058 MT_BUG_ON(mas->tree, 1);
4059 return;
4060 case wr_new_root:
4061 mas_new_root(mas, wr_mas->entry);
4062 break;
4063 case wr_store_root:
4064 mas_store_root(mas, wr_mas->entry);
4065 break;
4066 case wr_exact_fit:
4067 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4068 if (!!wr_mas->entry ^ !!wr_mas->content)
4069 mas_update_gap(mas);
4070 break;
4071 case wr_append:
4072 mas_wr_append(wr_mas, new_end);
4073 break;
4074 case wr_slot_store:
4075 mas_wr_slot_store(wr_mas);
4076 break;
4077 case wr_node_store:
4078 mas_wr_node_store(wr_mas, new_end);
4079 break;
4080 case wr_spanning_store:
4081 mas_wr_spanning_store(wr_mas);
4082 break;
4083 case wr_split_store:
4084 case wr_rebalance:
4085 mas_wr_bnode(wr_mas);
4086 break;
4087 }
4088
4089 return;
4090}
4091
4092static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4093{
4094 struct ma_state *mas = wr_mas->mas;
4095
4096 if (!mas_is_active(mas)) {
4097 if (mas_is_start(mas))
4098 goto set_content;
4099
4100 if (unlikely(mas_is_paused(mas)))
4101 goto reset;
4102
4103 if (unlikely(mas_is_none(mas)))
4104 goto reset;
4105
4106 if (unlikely(mas_is_overflow(mas)))
4107 goto reset;
4108
4109 if (unlikely(mas_is_underflow(mas)))
4110 goto reset;
4111 }
4112
4113 /*
4114 * A less strict version of mas_is_span_wr() where we allow spanning
4115 * writes within this node. This is to stop partial walks in
4116 * mas_prealloc() from being reset.
4117 */
4118 if (mas->last > mas->max)
4119 goto reset;
4120
4121 if (wr_mas->entry)
4122 goto set_content;
4123
4124 if (mte_is_leaf(mas->node) && mas->last == mas->max)
4125 goto reset;
4126
4127 goto set_content;
4128
4129reset:
4130 mas_reset(mas);
4131set_content:
4132 wr_mas->content = mas_start(mas);
4133}
4134
4135/**
4136 * mas_prealloc_calc() - Calculate number of nodes needed for a
4137 * given store oepration
4138 * @mas: The maple state
4139 * @entry: The entry to store into the tree
4140 *
4141 * Return: Number of nodes required for preallocation.
4142 */
4143static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4144{
4145 int ret = mas_mt_height(mas) * 3 + 1;
4146
4147 switch (mas->store_type) {
4148 case wr_invalid:
4149 WARN_ON_ONCE(1);
4150 break;
4151 case wr_new_root:
4152 ret = 1;
4153 break;
4154 case wr_store_root:
4155 if (likely((mas->last != 0) || (mas->index != 0)))
4156 ret = 1;
4157 else if (((unsigned long) (entry) & 3) == 2)
4158 ret = 1;
4159 else
4160 ret = 0;
4161 break;
4162 case wr_spanning_store:
4163 ret = mas_mt_height(mas) * 3 + 1;
4164 break;
4165 case wr_split_store:
4166 ret = mas_mt_height(mas) * 2 + 1;
4167 break;
4168 case wr_rebalance:
4169 ret = mas_mt_height(mas) * 2 - 1;
4170 break;
4171 case wr_node_store:
4172 ret = mt_in_rcu(mas->tree) ? 1 : 0;
4173 break;
4174 case wr_append:
4175 case wr_exact_fit:
4176 case wr_slot_store:
4177 ret = 0;
4178 }
4179
4180 return ret;
4181}
4182
4183/*
4184 * mas_wr_store_type() - Set the store type for a given
4185 * store operation.
4186 * @wr_mas: The maple write state
4187 */
4188static inline void mas_wr_store_type(struct ma_wr_state *wr_mas)
4189{
4190 struct ma_state *mas = wr_mas->mas;
4191 unsigned char new_end;
4192
4193 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) {
4194 mas->store_type = wr_store_root;
4195 return;
4196 }
4197
4198 if (unlikely(!mas_wr_walk(wr_mas))) {
4199 mas->store_type = wr_spanning_store;
4200 return;
4201 }
4202
4203 /* At this point, we are at the leaf node that needs to be altered. */
4204 mas_wr_end_piv(wr_mas);
4205 if (!wr_mas->entry)
4206 mas_wr_extend_null(wr_mas);
4207
4208 new_end = mas_wr_new_end(wr_mas);
4209 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last)) {
4210 mas->store_type = wr_exact_fit;
4211 return;
4212 }
4213
4214 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4215 mas->store_type = wr_new_root;
4216 return;
4217 }
4218
4219 /* Potential spanning rebalance collapsing a node */
4220 if (new_end < mt_min_slots[wr_mas->type]) {
4221 if (!mte_is_root(mas->node)) {
4222 mas->store_type = wr_rebalance;
4223 return;
4224 }
4225 mas->store_type = wr_node_store;
4226 return;
4227 }
4228
4229 if (new_end >= mt_slots[wr_mas->type]) {
4230 mas->store_type = wr_split_store;
4231 return;
4232 }
4233
4234 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end)) {
4235 mas->store_type = wr_append;
4236 return;
4237 }
4238
4239 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4240 (wr_mas->offset_end - mas->offset == 1))) {
4241 mas->store_type = wr_slot_store;
4242 return;
4243 }
4244
4245 if (mte_is_root(mas->node) || (new_end >= mt_min_slots[wr_mas->type]) ||
4246 (mas->mas_flags & MA_STATE_BULK)) {
4247 mas->store_type = wr_node_store;
4248 return;
4249 }
4250
4251 mas->store_type = wr_invalid;
4252 MAS_WARN_ON(mas, 1);
4253}
4254
4255/**
4256 * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4257 * @wr_mas: The maple write state
4258 * @entry: The entry that will be stored
4259 *
4260 */
4261static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4262{
4263 struct ma_state *mas = wr_mas->mas;
4264 int request;
4265
4266 mas_wr_prealloc_setup(wr_mas);
4267 mas_wr_store_type(wr_mas);
4268 request = mas_prealloc_calc(mas, entry);
4269 if (!request)
4270 return;
4271
4272 mas_node_count(mas, request);
4273}
4274
4275/**
4276 * mas_insert() - Internal call to insert a value
4277 * @mas: The maple state
4278 * @entry: The entry to store
4279 *
4280 * Return: %NULL or the contents that already exists at the requested index
4281 * otherwise. The maple state needs to be checked for error conditions.
4282 */
4283static inline void *mas_insert(struct ma_state *mas, void *entry)
4284{
4285 MA_WR_STATE(wr_mas, mas, entry);
4286
4287 /*
4288 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4289 * tree. If the insert fits exactly into an existing gap with a value
4290 * of NULL, then the slot only needs to be written with the new value.
4291 * If the range being inserted is adjacent to another range, then only a
4292 * single pivot needs to be inserted (as well as writing the entry). If
4293 * the new range is within a gap but does not touch any other ranges,
4294 * then two pivots need to be inserted: the start - 1, and the end. As
4295 * usual, the entry must be written. Most operations require a new node
4296 * to be allocated and replace an existing node to ensure RCU safety,
4297 * when in RCU mode. The exception to requiring a newly allocated node
4298 * is when inserting at the end of a node (appending). When done
4299 * carefully, appending can reuse the node in place.
4300 */
4301 wr_mas.content = mas_start(mas);
4302 if (wr_mas.content)
4303 goto exists;
4304
4305 mas_wr_preallocate(&wr_mas, entry);
4306 if (mas_is_err(mas))
4307 return NULL;
4308
4309 /* spanning writes always overwrite something */
4310 if (mas->store_type == wr_spanning_store)
4311 goto exists;
4312
4313 /* At this point, we are at the leaf node that needs to be altered. */
4314 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4315 wr_mas.offset_end = mas->offset;
4316 wr_mas.end_piv = wr_mas.r_max;
4317
4318 if (wr_mas.content || (mas->last > wr_mas.r_max))
4319 goto exists;
4320 }
4321
4322 mas_wr_store_entry(&wr_mas);
4323 return wr_mas.content;
4324
4325exists:
4326 mas_set_err(mas, -EEXIST);
4327 return wr_mas.content;
4328
4329}
4330
4331/**
4332 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4333 * @mas: The maple state.
4334 * @startp: Pointer to ID.
4335 * @range_lo: Lower bound of range to search.
4336 * @range_hi: Upper bound of range to search.
4337 * @entry: The entry to store.
4338 * @next: Pointer to next ID to allocate.
4339 * @gfp: The GFP_FLAGS to use for allocations.
4340 *
4341 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4342 * allocation succeeded after wrapping, or -EBUSY if there are no
4343 * free entries.
4344 */
4345int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4346 void *entry, unsigned long range_lo, unsigned long range_hi,
4347 unsigned long *next, gfp_t gfp)
4348{
4349 unsigned long min = range_lo;
4350 int ret = 0;
4351
4352 range_lo = max(min, *next);
4353 ret = mas_empty_area(mas, range_lo, range_hi, 1);
4354 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4355 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4356 ret = 1;
4357 }
4358 if (ret < 0 && range_lo > min) {
4359 ret = mas_empty_area(mas, min, range_hi, 1);
4360 if (ret == 0)
4361 ret = 1;
4362 }
4363 if (ret < 0)
4364 return ret;
4365
4366 do {
4367 mas_insert(mas, entry);
4368 } while (mas_nomem(mas, gfp));
4369 if (mas_is_err(mas))
4370 return xa_err(mas->node);
4371
4372 *startp = mas->index;
4373 *next = *startp + 1;
4374 if (*next == 0)
4375 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4376
4377 mas_destroy(mas);
4378 return ret;
4379}
4380EXPORT_SYMBOL(mas_alloc_cyclic);
4381
4382static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4383{
4384retry:
4385 mas_set(mas, index);
4386 mas_state_walk(mas);
4387 if (mas_is_start(mas))
4388 goto retry;
4389}
4390
4391static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4392 struct maple_node *node, const unsigned long index)
4393{
4394 if (unlikely(ma_dead_node(node))) {
4395 mas_rewalk(mas, index);
4396 return true;
4397 }
4398 return false;
4399}
4400
4401/*
4402 * mas_prev_node() - Find the prev non-null entry at the same level in the
4403 * tree. The prev value will be mas->node[mas->offset] or the status will be
4404 * ma_none.
4405 * @mas: The maple state
4406 * @min: The lower limit to search
4407 *
4408 * The prev node value will be mas->node[mas->offset] or the status will be
4409 * ma_none.
4410 * Return: 1 if the node is dead, 0 otherwise.
4411 */
4412static int mas_prev_node(struct ma_state *mas, unsigned long min)
4413{
4414 enum maple_type mt;
4415 int offset, level;
4416 void __rcu **slots;
4417 struct maple_node *node;
4418 unsigned long *pivots;
4419 unsigned long max;
4420
4421 node = mas_mn(mas);
4422 if (!mas->min)
4423 goto no_entry;
4424
4425 max = mas->min - 1;
4426 if (max < min)
4427 goto no_entry;
4428
4429 level = 0;
4430 do {
4431 if (ma_is_root(node))
4432 goto no_entry;
4433
4434 /* Walk up. */
4435 if (unlikely(mas_ascend(mas)))
4436 return 1;
4437 offset = mas->offset;
4438 level++;
4439 node = mas_mn(mas);
4440 } while (!offset);
4441
4442 offset--;
4443 mt = mte_node_type(mas->node);
4444 while (level > 1) {
4445 level--;
4446 slots = ma_slots(node, mt);
4447 mas->node = mas_slot(mas, slots, offset);
4448 if (unlikely(ma_dead_node(node)))
4449 return 1;
4450
4451 mt = mte_node_type(mas->node);
4452 node = mas_mn(mas);
4453 pivots = ma_pivots(node, mt);
4454 offset = ma_data_end(node, mt, pivots, max);
4455 if (unlikely(ma_dead_node(node)))
4456 return 1;
4457 }
4458
4459 slots = ma_slots(node, mt);
4460 mas->node = mas_slot(mas, slots, offset);
4461 pivots = ma_pivots(node, mt);
4462 if (unlikely(ma_dead_node(node)))
4463 return 1;
4464
4465 if (likely(offset))
4466 mas->min = pivots[offset - 1] + 1;
4467 mas->max = max;
4468 mas->offset = mas_data_end(mas);
4469 if (unlikely(mte_dead_node(mas->node)))
4470 return 1;
4471
4472 mas->end = mas->offset;
4473 return 0;
4474
4475no_entry:
4476 if (unlikely(ma_dead_node(node)))
4477 return 1;
4478
4479 mas->status = ma_underflow;
4480 return 0;
4481}
4482
4483/*
4484 * mas_prev_slot() - Get the entry in the previous slot
4485 *
4486 * @mas: The maple state
4487 * @min: The minimum starting range
4488 * @empty: Can be empty
4489 *
4490 * Return: The entry in the previous slot which is possibly NULL
4491 */
4492static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4493{
4494 void *entry;
4495 void __rcu **slots;
4496 unsigned long pivot;
4497 enum maple_type type;
4498 unsigned long *pivots;
4499 struct maple_node *node;
4500 unsigned long save_point = mas->index;
4501
4502retry:
4503 node = mas_mn(mas);
4504 type = mte_node_type(mas->node);
4505 pivots = ma_pivots(node, type);
4506 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4507 goto retry;
4508
4509 if (mas->min <= min) {
4510 pivot = mas_safe_min(mas, pivots, mas->offset);
4511
4512 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4513 goto retry;
4514
4515 if (pivot <= min)
4516 goto underflow;
4517 }
4518
4519again:
4520 if (likely(mas->offset)) {
4521 mas->offset--;
4522 mas->last = mas->index - 1;
4523 mas->index = mas_safe_min(mas, pivots, mas->offset);
4524 } else {
4525 if (mas->index <= min)
4526 goto underflow;
4527
4528 if (mas_prev_node(mas, min)) {
4529 mas_rewalk(mas, save_point);
4530 goto retry;
4531 }
4532
4533 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4534 return NULL;
4535
4536 mas->last = mas->max;
4537 node = mas_mn(mas);
4538 type = mte_node_type(mas->node);
4539 pivots = ma_pivots(node, type);
4540 mas->index = pivots[mas->offset - 1] + 1;
4541 }
4542
4543 slots = ma_slots(node, type);
4544 entry = mas_slot(mas, slots, mas->offset);
4545 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4546 goto retry;
4547
4548
4549 if (likely(entry))
4550 return entry;
4551
4552 if (!empty) {
4553 if (mas->index <= min) {
4554 mas->status = ma_underflow;
4555 return NULL;
4556 }
4557
4558 goto again;
4559 }
4560
4561 return entry;
4562
4563underflow:
4564 mas->status = ma_underflow;
4565 return NULL;
4566}
4567
4568/*
4569 * mas_next_node() - Get the next node at the same level in the tree.
4570 * @mas: The maple state
4571 * @node: The maple node
4572 * @max: The maximum pivot value to check.
4573 *
4574 * The next value will be mas->node[mas->offset] or the status will have
4575 * overflowed.
4576 * Return: 1 on dead node, 0 otherwise.
4577 */
4578static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4579 unsigned long max)
4580{
4581 unsigned long min;
4582 unsigned long *pivots;
4583 struct maple_enode *enode;
4584 struct maple_node *tmp;
4585 int level = 0;
4586 unsigned char node_end;
4587 enum maple_type mt;
4588 void __rcu **slots;
4589
4590 if (mas->max >= max)
4591 goto overflow;
4592
4593 min = mas->max + 1;
4594 level = 0;
4595 do {
4596 if (ma_is_root(node))
4597 goto overflow;
4598
4599 /* Walk up. */
4600 if (unlikely(mas_ascend(mas)))
4601 return 1;
4602
4603 level++;
4604 node = mas_mn(mas);
4605 mt = mte_node_type(mas->node);
4606 pivots = ma_pivots(node, mt);
4607 node_end = ma_data_end(node, mt, pivots, mas->max);
4608 if (unlikely(ma_dead_node(node)))
4609 return 1;
4610
4611 } while (unlikely(mas->offset == node_end));
4612
4613 slots = ma_slots(node, mt);
4614 mas->offset++;
4615 enode = mas_slot(mas, slots, mas->offset);
4616 if (unlikely(ma_dead_node(node)))
4617 return 1;
4618
4619 if (level > 1)
4620 mas->offset = 0;
4621
4622 while (unlikely(level > 1)) {
4623 level--;
4624 mas->node = enode;
4625 node = mas_mn(mas);
4626 mt = mte_node_type(mas->node);
4627 slots = ma_slots(node, mt);
4628 enode = mas_slot(mas, slots, 0);
4629 if (unlikely(ma_dead_node(node)))
4630 return 1;
4631 }
4632
4633 if (!mas->offset)
4634 pivots = ma_pivots(node, mt);
4635
4636 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4637 tmp = mte_to_node(enode);
4638 mt = mte_node_type(enode);
4639 pivots = ma_pivots(tmp, mt);
4640 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4641 if (unlikely(ma_dead_node(node)))
4642 return 1;
4643
4644 mas->node = enode;
4645 mas->min = min;
4646 return 0;
4647
4648overflow:
4649 if (unlikely(ma_dead_node(node)))
4650 return 1;
4651
4652 mas->status = ma_overflow;
4653 return 0;
4654}
4655
4656/*
4657 * mas_next_slot() - Get the entry in the next slot
4658 *
4659 * @mas: The maple state
4660 * @max: The maximum starting range
4661 * @empty: Can be empty
4662 *
4663 * Return: The entry in the next slot which is possibly NULL
4664 */
4665static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4666{
4667 void __rcu **slots;
4668 unsigned long *pivots;
4669 unsigned long pivot;
4670 enum maple_type type;
4671 struct maple_node *node;
4672 unsigned long save_point = mas->last;
4673 void *entry;
4674
4675retry:
4676 node = mas_mn(mas);
4677 type = mte_node_type(mas->node);
4678 pivots = ma_pivots(node, type);
4679 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4680 goto retry;
4681
4682 if (mas->max >= max) {
4683 if (likely(mas->offset < mas->end))
4684 pivot = pivots[mas->offset];
4685 else
4686 pivot = mas->max;
4687
4688 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4689 goto retry;
4690
4691 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4692 mas->status = ma_overflow;
4693 return NULL;
4694 }
4695 }
4696
4697 if (likely(mas->offset < mas->end)) {
4698 mas->index = pivots[mas->offset] + 1;
4699again:
4700 mas->offset++;
4701 if (likely(mas->offset < mas->end))
4702 mas->last = pivots[mas->offset];
4703 else
4704 mas->last = mas->max;
4705 } else {
4706 if (mas->last >= max) {
4707 mas->status = ma_overflow;
4708 return NULL;
4709 }
4710
4711 if (mas_next_node(mas, node, max)) {
4712 mas_rewalk(mas, save_point);
4713 goto retry;
4714 }
4715
4716 if (WARN_ON_ONCE(mas_is_overflow(mas)))
4717 return NULL;
4718
4719 mas->offset = 0;
4720 mas->index = mas->min;
4721 node = mas_mn(mas);
4722 type = mte_node_type(mas->node);
4723 pivots = ma_pivots(node, type);
4724 mas->last = pivots[0];
4725 }
4726
4727 slots = ma_slots(node, type);
4728 entry = mt_slot(mas->tree, slots, mas->offset);
4729 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4730 goto retry;
4731
4732 if (entry)
4733 return entry;
4734
4735
4736 if (!empty) {
4737 if (mas->last >= max) {
4738 mas->status = ma_overflow;
4739 return NULL;
4740 }
4741
4742 mas->index = mas->last + 1;
4743 goto again;
4744 }
4745
4746 return entry;
4747}
4748
4749/*
4750 * mas_next_entry() - Internal function to get the next entry.
4751 * @mas: The maple state
4752 * @limit: The maximum range start.
4753 *
4754 * Set the @mas->node to the next entry and the range_start to
4755 * the beginning value for the entry. Does not check beyond @limit.
4756 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4757 * @mas->last on overflow.
4758 * Restarts on dead nodes.
4759 *
4760 * Return: the next entry or %NULL.
4761 */
4762static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4763{
4764 if (mas->last >= limit) {
4765 mas->status = ma_overflow;
4766 return NULL;
4767 }
4768
4769 return mas_next_slot(mas, limit, false);
4770}
4771
4772/*
4773 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4774 * highest gap address of a given size in a given node and descend.
4775 * @mas: The maple state
4776 * @size: The needed size.
4777 *
4778 * Return: True if found in a leaf, false otherwise.
4779 *
4780 */
4781static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4782 unsigned long *gap_min, unsigned long *gap_max)
4783{
4784 enum maple_type type = mte_node_type(mas->node);
4785 struct maple_node *node = mas_mn(mas);
4786 unsigned long *pivots, *gaps;
4787 void __rcu **slots;
4788 unsigned long gap = 0;
4789 unsigned long max, min;
4790 unsigned char offset;
4791
4792 if (unlikely(mas_is_err(mas)))
4793 return true;
4794
4795 if (ma_is_dense(type)) {
4796 /* dense nodes. */
4797 mas->offset = (unsigned char)(mas->index - mas->min);
4798 return true;
4799 }
4800
4801 pivots = ma_pivots(node, type);
4802 slots = ma_slots(node, type);
4803 gaps = ma_gaps(node, type);
4804 offset = mas->offset;
4805 min = mas_safe_min(mas, pivots, offset);
4806 /* Skip out of bounds. */
4807 while (mas->last < min)
4808 min = mas_safe_min(mas, pivots, --offset);
4809
4810 max = mas_safe_pivot(mas, pivots, offset, type);
4811 while (mas->index <= max) {
4812 gap = 0;
4813 if (gaps)
4814 gap = gaps[offset];
4815 else if (!mas_slot(mas, slots, offset))
4816 gap = max - min + 1;
4817
4818 if (gap) {
4819 if ((size <= gap) && (size <= mas->last - min + 1))
4820 break;
4821
4822 if (!gaps) {
4823 /* Skip the next slot, it cannot be a gap. */
4824 if (offset < 2)
4825 goto ascend;
4826
4827 offset -= 2;
4828 max = pivots[offset];
4829 min = mas_safe_min(mas, pivots, offset);
4830 continue;
4831 }
4832 }
4833
4834 if (!offset)
4835 goto ascend;
4836
4837 offset--;
4838 max = min - 1;
4839 min = mas_safe_min(mas, pivots, offset);
4840 }
4841
4842 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4843 goto no_space;
4844
4845 if (unlikely(ma_is_leaf(type))) {
4846 mas->offset = offset;
4847 *gap_min = min;
4848 *gap_max = min + gap - 1;
4849 return true;
4850 }
4851
4852 /* descend, only happens under lock. */
4853 mas->node = mas_slot(mas, slots, offset);
4854 mas->min = min;
4855 mas->max = max;
4856 mas->offset = mas_data_end(mas);
4857 return false;
4858
4859ascend:
4860 if (!mte_is_root(mas->node))
4861 return false;
4862
4863no_space:
4864 mas_set_err(mas, -EBUSY);
4865 return false;
4866}
4867
4868static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4869{
4870 enum maple_type type = mte_node_type(mas->node);
4871 unsigned long pivot, min, gap = 0;
4872 unsigned char offset, data_end;
4873 unsigned long *gaps, *pivots;
4874 void __rcu **slots;
4875 struct maple_node *node;
4876 bool found = false;
4877
4878 if (ma_is_dense(type)) {
4879 mas->offset = (unsigned char)(mas->index - mas->min);
4880 return true;
4881 }
4882
4883 node = mas_mn(mas);
4884 pivots = ma_pivots(node, type);
4885 slots = ma_slots(node, type);
4886 gaps = ma_gaps(node, type);
4887 offset = mas->offset;
4888 min = mas_safe_min(mas, pivots, offset);
4889 data_end = ma_data_end(node, type, pivots, mas->max);
4890 for (; offset <= data_end; offset++) {
4891 pivot = mas_safe_pivot(mas, pivots, offset, type);
4892
4893 /* Not within lower bounds */
4894 if (mas->index > pivot)
4895 goto next_slot;
4896
4897 if (gaps)
4898 gap = gaps[offset];
4899 else if (!mas_slot(mas, slots, offset))
4900 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4901 else
4902 goto next_slot;
4903
4904 if (gap >= size) {
4905 if (ma_is_leaf(type)) {
4906 found = true;
4907 goto done;
4908 }
4909 if (mas->index <= pivot) {
4910 mas->node = mas_slot(mas, slots, offset);
4911 mas->min = min;
4912 mas->max = pivot;
4913 offset = 0;
4914 break;
4915 }
4916 }
4917next_slot:
4918 min = pivot + 1;
4919 if (mas->last <= pivot) {
4920 mas_set_err(mas, -EBUSY);
4921 return true;
4922 }
4923 }
4924
4925 if (mte_is_root(mas->node))
4926 found = true;
4927done:
4928 mas->offset = offset;
4929 return found;
4930}
4931
4932/**
4933 * mas_walk() - Search for @mas->index in the tree.
4934 * @mas: The maple state.
4935 *
4936 * mas->index and mas->last will be set to the range if there is a value. If
4937 * mas->status is ma_none, reset to ma_start
4938 *
4939 * Return: the entry at the location or %NULL.
4940 */
4941void *mas_walk(struct ma_state *mas)
4942{
4943 void *entry;
4944
4945 if (!mas_is_active(mas) || !mas_is_start(mas))
4946 mas->status = ma_start;
4947retry:
4948 entry = mas_state_walk(mas);
4949 if (mas_is_start(mas)) {
4950 goto retry;
4951 } else if (mas_is_none(mas)) {
4952 mas->index = 0;
4953 mas->last = ULONG_MAX;
4954 } else if (mas_is_ptr(mas)) {
4955 if (!mas->index) {
4956 mas->last = 0;
4957 return entry;
4958 }
4959
4960 mas->index = 1;
4961 mas->last = ULONG_MAX;
4962 mas->status = ma_none;
4963 return NULL;
4964 }
4965
4966 return entry;
4967}
4968EXPORT_SYMBOL_GPL(mas_walk);
4969
4970static inline bool mas_rewind_node(struct ma_state *mas)
4971{
4972 unsigned char slot;
4973
4974 do {
4975 if (mte_is_root(mas->node)) {
4976 slot = mas->offset;
4977 if (!slot)
4978 return false;
4979 } else {
4980 mas_ascend(mas);
4981 slot = mas->offset;
4982 }
4983 } while (!slot);
4984
4985 mas->offset = --slot;
4986 return true;
4987}
4988
4989/*
4990 * mas_skip_node() - Internal function. Skip over a node.
4991 * @mas: The maple state.
4992 *
4993 * Return: true if there is another node, false otherwise.
4994 */
4995static inline bool mas_skip_node(struct ma_state *mas)
4996{
4997 if (mas_is_err(mas))
4998 return false;
4999
5000 do {
5001 if (mte_is_root(mas->node)) {
5002 if (mas->offset >= mas_data_end(mas)) {
5003 mas_set_err(mas, -EBUSY);
5004 return false;
5005 }
5006 } else {
5007 mas_ascend(mas);
5008 }
5009 } while (mas->offset >= mas_data_end(mas));
5010
5011 mas->offset++;
5012 return true;
5013}
5014
5015/*
5016 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5017 * @size
5018 * @mas: The maple state
5019 * @size: The size of the gap required
5020 *
5021 * Search between @mas->index and @mas->last for a gap of @size.
5022 */
5023static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5024{
5025 struct maple_enode *last = NULL;
5026
5027 /*
5028 * There are 4 options:
5029 * go to child (descend)
5030 * go back to parent (ascend)
5031 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5032 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5033 */
5034 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5035 if (last == mas->node)
5036 mas_skip_node(mas);
5037 else
5038 last = mas->node;
5039 }
5040}
5041
5042/*
5043 * mas_sparse_area() - Internal function. Return upper or lower limit when
5044 * searching for a gap in an empty tree.
5045 * @mas: The maple state
5046 * @min: the minimum range
5047 * @max: The maximum range
5048 * @size: The size of the gap
5049 * @fwd: Searching forward or back
5050 */
5051static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5052 unsigned long max, unsigned long size, bool fwd)
5053{
5054 if (!unlikely(mas_is_none(mas)) && min == 0) {
5055 min++;
5056 /*
5057 * At this time, min is increased, we need to recheck whether
5058 * the size is satisfied.
5059 */
5060 if (min > max || max - min + 1 < size)
5061 return -EBUSY;
5062 }
5063 /* mas_is_ptr */
5064
5065 if (fwd) {
5066 mas->index = min;
5067 mas->last = min + size - 1;
5068 } else {
5069 mas->last = max;
5070 mas->index = max - size + 1;
5071 }
5072 return 0;
5073}
5074
5075/*
5076 * mas_empty_area() - Get the lowest address within the range that is
5077 * sufficient for the size requested.
5078 * @mas: The maple state
5079 * @min: The lowest value of the range
5080 * @max: The highest value of the range
5081 * @size: The size needed
5082 */
5083int mas_empty_area(struct ma_state *mas, unsigned long min,
5084 unsigned long max, unsigned long size)
5085{
5086 unsigned char offset;
5087 unsigned long *pivots;
5088 enum maple_type mt;
5089 struct maple_node *node;
5090
5091 if (min > max)
5092 return -EINVAL;
5093
5094 if (size == 0 || max - min < size - 1)
5095 return -EINVAL;
5096
5097 if (mas_is_start(mas))
5098 mas_start(mas);
5099 else if (mas->offset >= 2)
5100 mas->offset -= 2;
5101 else if (!mas_skip_node(mas))
5102 return -EBUSY;
5103
5104 /* Empty set */
5105 if (mas_is_none(mas) || mas_is_ptr(mas))
5106 return mas_sparse_area(mas, min, max, size, true);
5107
5108 /* The start of the window can only be within these values */
5109 mas->index = min;
5110 mas->last = max;
5111 mas_awalk(mas, size);
5112
5113 if (unlikely(mas_is_err(mas)))
5114 return xa_err(mas->node);
5115
5116 offset = mas->offset;
5117 if (unlikely(offset == MAPLE_NODE_SLOTS))
5118 return -EBUSY;
5119
5120 node = mas_mn(mas);
5121 mt = mte_node_type(mas->node);
5122 pivots = ma_pivots(node, mt);
5123 min = mas_safe_min(mas, pivots, offset);
5124 if (mas->index < min)
5125 mas->index = min;
5126 mas->last = mas->index + size - 1;
5127 mas->end = ma_data_end(node, mt, pivots, mas->max);
5128 return 0;
5129}
5130EXPORT_SYMBOL_GPL(mas_empty_area);
5131
5132/*
5133 * mas_empty_area_rev() - Get the highest address within the range that is
5134 * sufficient for the size requested.
5135 * @mas: The maple state
5136 * @min: The lowest value of the range
5137 * @max: The highest value of the range
5138 * @size: The size needed
5139 */
5140int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5141 unsigned long max, unsigned long size)
5142{
5143 struct maple_enode *last = mas->node;
5144
5145 if (min > max)
5146 return -EINVAL;
5147
5148 if (size == 0 || max - min < size - 1)
5149 return -EINVAL;
5150
5151 if (mas_is_start(mas))
5152 mas_start(mas);
5153 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5154 return -EBUSY;
5155
5156 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5157 return mas_sparse_area(mas, min, max, size, false);
5158 else if (mas->offset >= 2)
5159 mas->offset -= 2;
5160 else
5161 mas->offset = mas_data_end(mas);
5162
5163
5164 /* The start of the window can only be within these values. */
5165 mas->index = min;
5166 mas->last = max;
5167
5168 while (!mas_rev_awalk(mas, size, &min, &max)) {
5169 if (last == mas->node) {
5170 if (!mas_rewind_node(mas))
5171 return -EBUSY;
5172 } else {
5173 last = mas->node;
5174 }
5175 }
5176
5177 if (mas_is_err(mas))
5178 return xa_err(mas->node);
5179
5180 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5181 return -EBUSY;
5182
5183 /* Trim the upper limit to the max. */
5184 if (max < mas->last)
5185 mas->last = max;
5186
5187 mas->index = mas->last - size + 1;
5188 mas->end = mas_data_end(mas);
5189 return 0;
5190}
5191EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5192
5193/*
5194 * mte_dead_leaves() - Mark all leaves of a node as dead.
5195 * @enode: the encoded node
5196 * @mt: the maple tree
5197 * @slots: Pointer to the slot array
5198 *
5199 * Must hold the write lock.
5200 *
5201 * Return: The number of leaves marked as dead.
5202 */
5203static inline
5204unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5205 void __rcu **slots)
5206{
5207 struct maple_node *node;
5208 enum maple_type type;
5209 void *entry;
5210 int offset;
5211
5212 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5213 entry = mt_slot(mt, slots, offset);
5214 type = mte_node_type(entry);
5215 node = mte_to_node(entry);
5216 /* Use both node and type to catch LE & BE metadata */
5217 if (!node || !type)
5218 break;
5219
5220 mte_set_node_dead(entry);
5221 node->type = type;
5222 rcu_assign_pointer(slots[offset], node);
5223 }
5224
5225 return offset;
5226}
5227
5228/**
5229 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5230 * @enode: The maple encoded node
5231 * @offset: The starting offset
5232 *
5233 * Note: This can only be used from the RCU callback context.
5234 */
5235static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5236{
5237 struct maple_node *node, *next;
5238 void __rcu **slots = NULL;
5239
5240 next = mte_to_node(*enode);
5241 do {
5242 *enode = ma_enode_ptr(next);
5243 node = mte_to_node(*enode);
5244 slots = ma_slots(node, node->type);
5245 next = rcu_dereference_protected(slots[offset],
5246 lock_is_held(&rcu_callback_map));
5247 offset = 0;
5248 } while (!ma_is_leaf(next->type));
5249
5250 return slots;
5251}
5252
5253/**
5254 * mt_free_walk() - Walk & free a tree in the RCU callback context
5255 * @head: The RCU head that's within the node.
5256 *
5257 * Note: This can only be used from the RCU callback context.
5258 */
5259static void mt_free_walk(struct rcu_head *head)
5260{
5261 void __rcu **slots;
5262 struct maple_node *node, *start;
5263 struct maple_enode *enode;
5264 unsigned char offset;
5265 enum maple_type type;
5266
5267 node = container_of(head, struct maple_node, rcu);
5268
5269 if (ma_is_leaf(node->type))
5270 goto free_leaf;
5271
5272 start = node;
5273 enode = mt_mk_node(node, node->type);
5274 slots = mte_dead_walk(&enode, 0);
5275 node = mte_to_node(enode);
5276 do {
5277 mt_free_bulk(node->slot_len, slots);
5278 offset = node->parent_slot + 1;
5279 enode = node->piv_parent;
5280 if (mte_to_node(enode) == node)
5281 goto free_leaf;
5282
5283 type = mte_node_type(enode);
5284 slots = ma_slots(mte_to_node(enode), type);
5285 if ((offset < mt_slots[type]) &&
5286 rcu_dereference_protected(slots[offset],
5287 lock_is_held(&rcu_callback_map)))
5288 slots = mte_dead_walk(&enode, offset);
5289 node = mte_to_node(enode);
5290 } while ((node != start) || (node->slot_len < offset));
5291
5292 slots = ma_slots(node, node->type);
5293 mt_free_bulk(node->slot_len, slots);
5294
5295free_leaf:
5296 mt_free_rcu(&node->rcu);
5297}
5298
5299static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5300 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5301{
5302 struct maple_node *node;
5303 struct maple_enode *next = *enode;
5304 void __rcu **slots = NULL;
5305 enum maple_type type;
5306 unsigned char next_offset = 0;
5307
5308 do {
5309 *enode = next;
5310 node = mte_to_node(*enode);
5311 type = mte_node_type(*enode);
5312 slots = ma_slots(node, type);
5313 next = mt_slot_locked(mt, slots, next_offset);
5314 if ((mte_dead_node(next)))
5315 next = mt_slot_locked(mt, slots, ++next_offset);
5316
5317 mte_set_node_dead(*enode);
5318 node->type = type;
5319 node->piv_parent = prev;
5320 node->parent_slot = offset;
5321 offset = next_offset;
5322 next_offset = 0;
5323 prev = *enode;
5324 } while (!mte_is_leaf(next));
5325
5326 return slots;
5327}
5328
5329static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5330 bool free)
5331{
5332 void __rcu **slots;
5333 struct maple_node *node = mte_to_node(enode);
5334 struct maple_enode *start;
5335
5336 if (mte_is_leaf(enode)) {
5337 node->type = mte_node_type(enode);
5338 goto free_leaf;
5339 }
5340
5341 start = enode;
5342 slots = mte_destroy_descend(&enode, mt, start, 0);
5343 node = mte_to_node(enode); // Updated in the above call.
5344 do {
5345 enum maple_type type;
5346 unsigned char offset;
5347 struct maple_enode *parent, *tmp;
5348
5349 node->slot_len = mte_dead_leaves(enode, mt, slots);
5350 if (free)
5351 mt_free_bulk(node->slot_len, slots);
5352 offset = node->parent_slot + 1;
5353 enode = node->piv_parent;
5354 if (mte_to_node(enode) == node)
5355 goto free_leaf;
5356
5357 type = mte_node_type(enode);
5358 slots = ma_slots(mte_to_node(enode), type);
5359 if (offset >= mt_slots[type])
5360 goto next;
5361
5362 tmp = mt_slot_locked(mt, slots, offset);
5363 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5364 parent = enode;
5365 enode = tmp;
5366 slots = mte_destroy_descend(&enode, mt, parent, offset);
5367 }
5368next:
5369 node = mte_to_node(enode);
5370 } while (start != enode);
5371
5372 node = mte_to_node(enode);
5373 node->slot_len = mte_dead_leaves(enode, mt, slots);
5374 if (free)
5375 mt_free_bulk(node->slot_len, slots);
5376
5377free_leaf:
5378 if (free)
5379 mt_free_rcu(&node->rcu);
5380 else
5381 mt_clear_meta(mt, node, node->type);
5382}
5383
5384/*
5385 * mte_destroy_walk() - Free a tree or sub-tree.
5386 * @enode: the encoded maple node (maple_enode) to start
5387 * @mt: the tree to free - needed for node types.
5388 *
5389 * Must hold the write lock.
5390 */
5391static inline void mte_destroy_walk(struct maple_enode *enode,
5392 struct maple_tree *mt)
5393{
5394 struct maple_node *node = mte_to_node(enode);
5395
5396 if (mt_in_rcu(mt)) {
5397 mt_destroy_walk(enode, mt, false);
5398 call_rcu(&node->rcu, mt_free_walk);
5399 } else {
5400 mt_destroy_walk(enode, mt, true);
5401 }
5402}
5403/* Interface */
5404
5405/**
5406 * mas_store() - Store an @entry.
5407 * @mas: The maple state.
5408 * @entry: The entry to store.
5409 *
5410 * The @mas->index and @mas->last is used to set the range for the @entry.
5411 *
5412 * Return: the first entry between mas->index and mas->last or %NULL.
5413 */
5414void *mas_store(struct ma_state *mas, void *entry)
5415{
5416 int request;
5417 MA_WR_STATE(wr_mas, mas, entry);
5418
5419 trace_ma_write(__func__, mas, 0, entry);
5420#ifdef CONFIG_DEBUG_MAPLE_TREE
5421 if (MAS_WARN_ON(mas, mas->index > mas->last))
5422 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5423
5424 if (mas->index > mas->last) {
5425 mas_set_err(mas, -EINVAL);
5426 return NULL;
5427 }
5428
5429#endif
5430
5431 /*
5432 * Storing is the same operation as insert with the added caveat that it
5433 * can overwrite entries. Although this seems simple enough, one may
5434 * want to examine what happens if a single store operation was to
5435 * overwrite multiple entries within a self-balancing B-Tree.
5436 */
5437 mas_wr_prealloc_setup(&wr_mas);
5438 mas_wr_store_type(&wr_mas);
5439 if (mas->mas_flags & MA_STATE_PREALLOC) {
5440 mas_wr_store_entry(&wr_mas);
5441 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5442 return wr_mas.content;
5443 }
5444
5445 request = mas_prealloc_calc(mas, entry);
5446 if (!request)
5447 goto store;
5448
5449 mas_node_count(mas, request);
5450 if (mas_is_err(mas))
5451 return NULL;
5452
5453store:
5454 mas_wr_store_entry(&wr_mas);
5455 mas_destroy(mas);
5456 return wr_mas.content;
5457}
5458EXPORT_SYMBOL_GPL(mas_store);
5459
5460/**
5461 * mas_store_gfp() - Store a value into the tree.
5462 * @mas: The maple state
5463 * @entry: The entry to store
5464 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5465 *
5466 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5467 * be allocated.
5468 */
5469int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5470{
5471 unsigned long index = mas->index;
5472 unsigned long last = mas->last;
5473 MA_WR_STATE(wr_mas, mas, entry);
5474 int ret = 0;
5475
5476retry:
5477 mas_wr_preallocate(&wr_mas, entry);
5478 if (unlikely(mas_nomem(mas, gfp))) {
5479 if (!entry)
5480 __mas_set_range(mas, index, last);
5481 goto retry;
5482 }
5483
5484 if (mas_is_err(mas)) {
5485 ret = xa_err(mas->node);
5486 goto out;
5487 }
5488
5489 mas_wr_store_entry(&wr_mas);
5490out:
5491 mas_destroy(mas);
5492 return ret;
5493}
5494EXPORT_SYMBOL_GPL(mas_store_gfp);
5495
5496/**
5497 * mas_store_prealloc() - Store a value into the tree using memory
5498 * preallocated in the maple state.
5499 * @mas: The maple state
5500 * @entry: The entry to store.
5501 */
5502void mas_store_prealloc(struct ma_state *mas, void *entry)
5503{
5504 MA_WR_STATE(wr_mas, mas, entry);
5505
5506 if (mas->store_type == wr_store_root) {
5507 mas_wr_prealloc_setup(&wr_mas);
5508 goto store;
5509 }
5510
5511 mas_wr_walk_descend(&wr_mas);
5512 if (mas->store_type != wr_spanning_store) {
5513 /* set wr_mas->content to current slot */
5514 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5515 mas_wr_end_piv(&wr_mas);
5516 }
5517
5518store:
5519 trace_ma_write(__func__, mas, 0, entry);
5520 mas_wr_store_entry(&wr_mas);
5521 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5522 mas_destroy(mas);
5523}
5524EXPORT_SYMBOL_GPL(mas_store_prealloc);
5525
5526/**
5527 * mas_preallocate() - Preallocate enough nodes for a store operation
5528 * @mas: The maple state
5529 * @entry: The entry that will be stored
5530 * @gfp: The GFP_FLAGS to use for allocations.
5531 *
5532 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5533 */
5534int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5535{
5536 MA_WR_STATE(wr_mas, mas, entry);
5537 int ret = 0;
5538 int request;
5539
5540 mas_wr_prealloc_setup(&wr_mas);
5541 mas_wr_store_type(&wr_mas);
5542 request = mas_prealloc_calc(mas, entry);
5543 if (!request)
5544 return ret;
5545
5546 mas_node_count_gfp(mas, request, gfp);
5547 if (mas_is_err(mas)) {
5548 mas_set_alloc_req(mas, 0);
5549 ret = xa_err(mas->node);
5550 mas_destroy(mas);
5551 mas_reset(mas);
5552 return ret;
5553 }
5554
5555 mas->mas_flags |= MA_STATE_PREALLOC;
5556 return ret;
5557}
5558EXPORT_SYMBOL_GPL(mas_preallocate);
5559
5560/*
5561 * mas_destroy() - destroy a maple state.
5562 * @mas: The maple state
5563 *
5564 * Upon completion, check the left-most node and rebalance against the node to
5565 * the right if necessary. Frees any allocated nodes associated with this maple
5566 * state.
5567 */
5568void mas_destroy(struct ma_state *mas)
5569{
5570 struct maple_alloc *node;
5571 unsigned long total;
5572
5573 /*
5574 * When using mas_for_each() to insert an expected number of elements,
5575 * it is possible that the number inserted is less than the expected
5576 * number. To fix an invalid final node, a check is performed here to
5577 * rebalance the previous node with the final node.
5578 */
5579 if (mas->mas_flags & MA_STATE_REBALANCE) {
5580 unsigned char end;
5581 if (mas_is_err(mas))
5582 mas_reset(mas);
5583 mas_start(mas);
5584 mtree_range_walk(mas);
5585 end = mas->end + 1;
5586 if (end < mt_min_slot_count(mas->node) - 1)
5587 mas_destroy_rebalance(mas, end);
5588
5589 mas->mas_flags &= ~MA_STATE_REBALANCE;
5590 }
5591 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5592
5593 total = mas_allocated(mas);
5594 while (total) {
5595 node = mas->alloc;
5596 mas->alloc = node->slot[0];
5597 if (node->node_count > 1) {
5598 size_t count = node->node_count - 1;
5599
5600 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5601 total -= count;
5602 }
5603 mt_free_one(ma_mnode_ptr(node));
5604 total--;
5605 }
5606
5607 mas->alloc = NULL;
5608}
5609EXPORT_SYMBOL_GPL(mas_destroy);
5610
5611/*
5612 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5613 * @mas: The maple state
5614 * @nr_entries: The number of expected entries.
5615 *
5616 * This will attempt to pre-allocate enough nodes to store the expected number
5617 * of entries. The allocations will occur using the bulk allocator interface
5618 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5619 * to ensure any unused nodes are freed.
5620 *
5621 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5622 */
5623int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5624{
5625 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5626 struct maple_enode *enode = mas->node;
5627 int nr_nodes;
5628 int ret;
5629
5630 /*
5631 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5632 * forking a process and duplicating the VMAs from one tree to a new
5633 * tree. When such a situation arises, it is known that the new tree is
5634 * not going to be used until the entire tree is populated. For
5635 * performance reasons, it is best to use a bulk load with RCU disabled.
5636 * This allows for optimistic splitting that favours the left and reuse
5637 * of nodes during the operation.
5638 */
5639
5640 /* Optimize splitting for bulk insert in-order */
5641 mas->mas_flags |= MA_STATE_BULK;
5642
5643 /*
5644 * Avoid overflow, assume a gap between each entry and a trailing null.
5645 * If this is wrong, it just means allocation can happen during
5646 * insertion of entries.
5647 */
5648 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5649 if (!mt_is_alloc(mas->tree))
5650 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5651
5652 /* Leaves; reduce slots to keep space for expansion */
5653 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5654 /* Internal nodes */
5655 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5656 /* Add working room for split (2 nodes) + new parents */
5657 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5658
5659 /* Detect if allocations run out */
5660 mas->mas_flags |= MA_STATE_PREALLOC;
5661
5662 if (!mas_is_err(mas))
5663 return 0;
5664
5665 ret = xa_err(mas->node);
5666 mas->node = enode;
5667 mas_destroy(mas);
5668 return ret;
5669
5670}
5671EXPORT_SYMBOL_GPL(mas_expected_entries);
5672
5673static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5674 void **entry)
5675{
5676 bool was_none = mas_is_none(mas);
5677
5678 if (unlikely(mas->last >= max)) {
5679 mas->status = ma_overflow;
5680 return true;
5681 }
5682
5683 switch (mas->status) {
5684 case ma_active:
5685 return false;
5686 case ma_none:
5687 fallthrough;
5688 case ma_pause:
5689 mas->status = ma_start;
5690 fallthrough;
5691 case ma_start:
5692 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5693 break;
5694 case ma_overflow:
5695 /* Overflowed before, but the max changed */
5696 mas->status = ma_active;
5697 break;
5698 case ma_underflow:
5699 /* The user expects the mas to be one before where it is */
5700 mas->status = ma_active;
5701 *entry = mas_walk(mas);
5702 if (*entry)
5703 return true;
5704 break;
5705 case ma_root:
5706 break;
5707 case ma_error:
5708 return true;
5709 }
5710
5711 if (likely(mas_is_active(mas))) /* Fast path */
5712 return false;
5713
5714 if (mas_is_ptr(mas)) {
5715 *entry = NULL;
5716 if (was_none && mas->index == 0) {
5717 mas->index = mas->last = 0;
5718 return true;
5719 }
5720 mas->index = 1;
5721 mas->last = ULONG_MAX;
5722 mas->status = ma_none;
5723 return true;
5724 }
5725
5726 if (mas_is_none(mas))
5727 return true;
5728
5729 return false;
5730}
5731
5732/**
5733 * mas_next() - Get the next entry.
5734 * @mas: The maple state
5735 * @max: The maximum index to check.
5736 *
5737 * Returns the next entry after @mas->index.
5738 * Must hold rcu_read_lock or the write lock.
5739 * Can return the zero entry.
5740 *
5741 * Return: The next entry or %NULL
5742 */
5743void *mas_next(struct ma_state *mas, unsigned long max)
5744{
5745 void *entry = NULL;
5746
5747 if (mas_next_setup(mas, max, &entry))
5748 return entry;
5749
5750 /* Retries on dead nodes handled by mas_next_slot */
5751 return mas_next_slot(mas, max, false);
5752}
5753EXPORT_SYMBOL_GPL(mas_next);
5754
5755/**
5756 * mas_next_range() - Advance the maple state to the next range
5757 * @mas: The maple state
5758 * @max: The maximum index to check.
5759 *
5760 * Sets @mas->index and @mas->last to the range.
5761 * Must hold rcu_read_lock or the write lock.
5762 * Can return the zero entry.
5763 *
5764 * Return: The next entry or %NULL
5765 */
5766void *mas_next_range(struct ma_state *mas, unsigned long max)
5767{
5768 void *entry = NULL;
5769
5770 if (mas_next_setup(mas, max, &entry))
5771 return entry;
5772
5773 /* Retries on dead nodes handled by mas_next_slot */
5774 return mas_next_slot(mas, max, true);
5775}
5776EXPORT_SYMBOL_GPL(mas_next_range);
5777
5778/**
5779 * mt_next() - get the next value in the maple tree
5780 * @mt: The maple tree
5781 * @index: The start index
5782 * @max: The maximum index to check
5783 *
5784 * Takes RCU read lock internally to protect the search, which does not
5785 * protect the returned pointer after dropping RCU read lock.
5786 * See also: Documentation/core-api/maple_tree.rst
5787 *
5788 * Return: The entry higher than @index or %NULL if nothing is found.
5789 */
5790void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5791{
5792 void *entry = NULL;
5793 MA_STATE(mas, mt, index, index);
5794
5795 rcu_read_lock();
5796 entry = mas_next(&mas, max);
5797 rcu_read_unlock();
5798 return entry;
5799}
5800EXPORT_SYMBOL_GPL(mt_next);
5801
5802static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5803{
5804 if (unlikely(mas->index <= min)) {
5805 mas->status = ma_underflow;
5806 return true;
5807 }
5808
5809 switch (mas->status) {
5810 case ma_active:
5811 return false;
5812 case ma_start:
5813 break;
5814 case ma_none:
5815 fallthrough;
5816 case ma_pause:
5817 mas->status = ma_start;
5818 break;
5819 case ma_underflow:
5820 /* underflowed before but the min changed */
5821 mas->status = ma_active;
5822 break;
5823 case ma_overflow:
5824 /* User expects mas to be one after where it is */
5825 mas->status = ma_active;
5826 *entry = mas_walk(mas);
5827 if (*entry)
5828 return true;
5829 break;
5830 case ma_root:
5831 break;
5832 case ma_error:
5833 return true;
5834 }
5835
5836 if (mas_is_start(mas))
5837 mas_walk(mas);
5838
5839 if (unlikely(mas_is_ptr(mas))) {
5840 if (!mas->index) {
5841 mas->status = ma_none;
5842 return true;
5843 }
5844 mas->index = mas->last = 0;
5845 *entry = mas_root(mas);
5846 return true;
5847 }
5848
5849 if (mas_is_none(mas)) {
5850 if (mas->index) {
5851 /* Walked to out-of-range pointer? */
5852 mas->index = mas->last = 0;
5853 mas->status = ma_root;
5854 *entry = mas_root(mas);
5855 return true;
5856 }
5857 return true;
5858 }
5859
5860 return false;
5861}
5862
5863/**
5864 * mas_prev() - Get the previous entry
5865 * @mas: The maple state
5866 * @min: The minimum value to check.
5867 *
5868 * Must hold rcu_read_lock or the write lock.
5869 * Will reset mas to ma_start if the status is ma_none. Will stop on not
5870 * searchable nodes.
5871 *
5872 * Return: the previous value or %NULL.
5873 */
5874void *mas_prev(struct ma_state *mas, unsigned long min)
5875{
5876 void *entry = NULL;
5877
5878 if (mas_prev_setup(mas, min, &entry))
5879 return entry;
5880
5881 return mas_prev_slot(mas, min, false);
5882}
5883EXPORT_SYMBOL_GPL(mas_prev);
5884
5885/**
5886 * mas_prev_range() - Advance to the previous range
5887 * @mas: The maple state
5888 * @min: The minimum value to check.
5889 *
5890 * Sets @mas->index and @mas->last to the range.
5891 * Must hold rcu_read_lock or the write lock.
5892 * Will reset mas to ma_start if the node is ma_none. Will stop on not
5893 * searchable nodes.
5894 *
5895 * Return: the previous value or %NULL.
5896 */
5897void *mas_prev_range(struct ma_state *mas, unsigned long min)
5898{
5899 void *entry = NULL;
5900
5901 if (mas_prev_setup(mas, min, &entry))
5902 return entry;
5903
5904 return mas_prev_slot(mas, min, true);
5905}
5906EXPORT_SYMBOL_GPL(mas_prev_range);
5907
5908/**
5909 * mt_prev() - get the previous value in the maple tree
5910 * @mt: The maple tree
5911 * @index: The start index
5912 * @min: The minimum index to check
5913 *
5914 * Takes RCU read lock internally to protect the search, which does not
5915 * protect the returned pointer after dropping RCU read lock.
5916 * See also: Documentation/core-api/maple_tree.rst
5917 *
5918 * Return: The entry before @index or %NULL if nothing is found.
5919 */
5920void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5921{
5922 void *entry = NULL;
5923 MA_STATE(mas, mt, index, index);
5924
5925 rcu_read_lock();
5926 entry = mas_prev(&mas, min);
5927 rcu_read_unlock();
5928 return entry;
5929}
5930EXPORT_SYMBOL_GPL(mt_prev);
5931
5932/**
5933 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5934 * @mas: The maple state to pause
5935 *
5936 * Some users need to pause a walk and drop the lock they're holding in
5937 * order to yield to a higher priority thread or carry out an operation
5938 * on an entry. Those users should call this function before they drop
5939 * the lock. It resets the @mas to be suitable for the next iteration
5940 * of the loop after the user has reacquired the lock. If most entries
5941 * found during a walk require you to call mas_pause(), the mt_for_each()
5942 * iterator may be more appropriate.
5943 *
5944 */
5945void mas_pause(struct ma_state *mas)
5946{
5947 mas->status = ma_pause;
5948 mas->node = NULL;
5949}
5950EXPORT_SYMBOL_GPL(mas_pause);
5951
5952/**
5953 * mas_find_setup() - Internal function to set up mas_find*().
5954 * @mas: The maple state
5955 * @max: The maximum index
5956 * @entry: Pointer to the entry
5957 *
5958 * Returns: True if entry is the answer, false otherwise.
5959 */
5960static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5961{
5962 switch (mas->status) {
5963 case ma_active:
5964 if (mas->last < max)
5965 return false;
5966 return true;
5967 case ma_start:
5968 break;
5969 case ma_pause:
5970 if (unlikely(mas->last >= max))
5971 return true;
5972
5973 mas->index = ++mas->last;
5974 mas->status = ma_start;
5975 break;
5976 case ma_none:
5977 if (unlikely(mas->last >= max))
5978 return true;
5979
5980 mas->index = mas->last;
5981 mas->status = ma_start;
5982 break;
5983 case ma_underflow:
5984 /* mas is pointing at entry before unable to go lower */
5985 if (unlikely(mas->index >= max)) {
5986 mas->status = ma_overflow;
5987 return true;
5988 }
5989
5990 mas->status = ma_active;
5991 *entry = mas_walk(mas);
5992 if (*entry)
5993 return true;
5994 break;
5995 case ma_overflow:
5996 if (unlikely(mas->last >= max))
5997 return true;
5998
5999 mas->status = ma_active;
6000 *entry = mas_walk(mas);
6001 if (*entry)
6002 return true;
6003 break;
6004 case ma_root:
6005 break;
6006 case ma_error:
6007 return true;
6008 }
6009
6010 if (mas_is_start(mas)) {
6011 /* First run or continue */
6012 if (mas->index > max)
6013 return true;
6014
6015 *entry = mas_walk(mas);
6016 if (*entry)
6017 return true;
6018
6019 }
6020
6021 if (unlikely(mas_is_ptr(mas)))
6022 goto ptr_out_of_range;
6023
6024 if (unlikely(mas_is_none(mas)))
6025 return true;
6026
6027 if (mas->index == max)
6028 return true;
6029
6030 return false;
6031
6032ptr_out_of_range:
6033 mas->status = ma_none;
6034 mas->index = 1;
6035 mas->last = ULONG_MAX;
6036 return true;
6037}
6038
6039/**
6040 * mas_find() - On the first call, find the entry at or after mas->index up to
6041 * %max. Otherwise, find the entry after mas->index.
6042 * @mas: The maple state
6043 * @max: The maximum value to check.
6044 *
6045 * Must hold rcu_read_lock or the write lock.
6046 * If an entry exists, last and index are updated accordingly.
6047 * May set @mas->status to ma_overflow.
6048 *
6049 * Return: The entry or %NULL.
6050 */
6051void *mas_find(struct ma_state *mas, unsigned long max)
6052{
6053 void *entry = NULL;
6054
6055 if (mas_find_setup(mas, max, &entry))
6056 return entry;
6057
6058 /* Retries on dead nodes handled by mas_next_slot */
6059 entry = mas_next_slot(mas, max, false);
6060 /* Ignore overflow */
6061 mas->status = ma_active;
6062 return entry;
6063}
6064EXPORT_SYMBOL_GPL(mas_find);
6065
6066/**
6067 * mas_find_range() - On the first call, find the entry at or after
6068 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6069 * @mas: The maple state
6070 * @max: The maximum value to check.
6071 *
6072 * Must hold rcu_read_lock or the write lock.
6073 * If an entry exists, last and index are updated accordingly.
6074 * May set @mas->status to ma_overflow.
6075 *
6076 * Return: The entry or %NULL.
6077 */
6078void *mas_find_range(struct ma_state *mas, unsigned long max)
6079{
6080 void *entry = NULL;
6081
6082 if (mas_find_setup(mas, max, &entry))
6083 return entry;
6084
6085 /* Retries on dead nodes handled by mas_next_slot */
6086 return mas_next_slot(mas, max, true);
6087}
6088EXPORT_SYMBOL_GPL(mas_find_range);
6089
6090/**
6091 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6092 * @mas: The maple state
6093 * @min: The minimum index
6094 * @entry: Pointer to the entry
6095 *
6096 * Returns: True if entry is the answer, false otherwise.
6097 */
6098static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6099 void **entry)
6100{
6101
6102 switch (mas->status) {
6103 case ma_active:
6104 goto active;
6105 case ma_start:
6106 break;
6107 case ma_pause:
6108 if (unlikely(mas->index <= min)) {
6109 mas->status = ma_underflow;
6110 return true;
6111 }
6112 mas->last = --mas->index;
6113 mas->status = ma_start;
6114 break;
6115 case ma_none:
6116 if (mas->index <= min)
6117 goto none;
6118
6119 mas->last = mas->index;
6120 mas->status = ma_start;
6121 break;
6122 case ma_overflow: /* user expects the mas to be one after where it is */
6123 if (unlikely(mas->index <= min)) {
6124 mas->status = ma_underflow;
6125 return true;
6126 }
6127
6128 mas->status = ma_active;
6129 break;
6130 case ma_underflow: /* user expects the mas to be one before where it is */
6131 if (unlikely(mas->index <= min))
6132 return true;
6133
6134 mas->status = ma_active;
6135 break;
6136 case ma_root:
6137 break;
6138 case ma_error:
6139 return true;
6140 }
6141
6142 if (mas_is_start(mas)) {
6143 /* First run or continue */
6144 if (mas->index < min)
6145 return true;
6146
6147 *entry = mas_walk(mas);
6148 if (*entry)
6149 return true;
6150 }
6151
6152 if (unlikely(mas_is_ptr(mas)))
6153 goto none;
6154
6155 if (unlikely(mas_is_none(mas))) {
6156 /*
6157 * Walked to the location, and there was nothing so the previous
6158 * location is 0.
6159 */
6160 mas->last = mas->index = 0;
6161 mas->status = ma_root;
6162 *entry = mas_root(mas);
6163 return true;
6164 }
6165
6166active:
6167 if (mas->index < min)
6168 return true;
6169
6170 return false;
6171
6172none:
6173 mas->status = ma_none;
6174 return true;
6175}
6176
6177/**
6178 * mas_find_rev: On the first call, find the first non-null entry at or below
6179 * mas->index down to %min. Otherwise find the first non-null entry below
6180 * mas->index down to %min.
6181 * @mas: The maple state
6182 * @min: The minimum value to check.
6183 *
6184 * Must hold rcu_read_lock or the write lock.
6185 * If an entry exists, last and index are updated accordingly.
6186 * May set @mas->status to ma_underflow.
6187 *
6188 * Return: The entry or %NULL.
6189 */
6190void *mas_find_rev(struct ma_state *mas, unsigned long min)
6191{
6192 void *entry = NULL;
6193
6194 if (mas_find_rev_setup(mas, min, &entry))
6195 return entry;
6196
6197 /* Retries on dead nodes handled by mas_prev_slot */
6198 return mas_prev_slot(mas, min, false);
6199
6200}
6201EXPORT_SYMBOL_GPL(mas_find_rev);
6202
6203/**
6204 * mas_find_range_rev: On the first call, find the first non-null entry at or
6205 * below mas->index down to %min. Otherwise advance to the previous slot after
6206 * mas->index down to %min.
6207 * @mas: The maple state
6208 * @min: The minimum value to check.
6209 *
6210 * Must hold rcu_read_lock or the write lock.
6211 * If an entry exists, last and index are updated accordingly.
6212 * May set @mas->status to ma_underflow.
6213 *
6214 * Return: The entry or %NULL.
6215 */
6216void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6217{
6218 void *entry = NULL;
6219
6220 if (mas_find_rev_setup(mas, min, &entry))
6221 return entry;
6222
6223 /* Retries on dead nodes handled by mas_prev_slot */
6224 return mas_prev_slot(mas, min, true);
6225}
6226EXPORT_SYMBOL_GPL(mas_find_range_rev);
6227
6228/**
6229 * mas_erase() - Find the range in which index resides and erase the entire
6230 * range.
6231 * @mas: The maple state
6232 *
6233 * Must hold the write lock.
6234 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6235 * erases that range.
6236 *
6237 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6238 */
6239void *mas_erase(struct ma_state *mas)
6240{
6241 void *entry;
6242 unsigned long index = mas->index;
6243 MA_WR_STATE(wr_mas, mas, NULL);
6244
6245 if (!mas_is_active(mas) || !mas_is_start(mas))
6246 mas->status = ma_start;
6247
6248write_retry:
6249 entry = mas_state_walk(mas);
6250 if (!entry)
6251 return NULL;
6252
6253 /* Must reset to ensure spanning writes of last slot are detected */
6254 mas_reset(mas);
6255 mas_wr_preallocate(&wr_mas, NULL);
6256 if (mas_nomem(mas, GFP_KERNEL)) {
6257 /* in case the range of entry changed when unlocked */
6258 mas->index = mas->last = index;
6259 goto write_retry;
6260 }
6261
6262 if (mas_is_err(mas))
6263 goto out;
6264
6265 mas_wr_store_entry(&wr_mas);
6266out:
6267 mas_destroy(mas);
6268 return entry;
6269}
6270EXPORT_SYMBOL_GPL(mas_erase);
6271
6272/**
6273 * mas_nomem() - Check if there was an error allocating and do the allocation
6274 * if necessary If there are allocations, then free them.
6275 * @mas: The maple state
6276 * @gfp: The GFP_FLAGS to use for allocations
6277 * Return: true on allocation, false otherwise.
6278 */
6279bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6280 __must_hold(mas->tree->ma_lock)
6281{
6282 if (likely(mas->node != MA_ERROR(-ENOMEM)))
6283 return false;
6284
6285 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6286 mtree_unlock(mas->tree);
6287 mas_alloc_nodes(mas, gfp);
6288 mtree_lock(mas->tree);
6289 } else {
6290 mas_alloc_nodes(mas, gfp);
6291 }
6292
6293 if (!mas_allocated(mas))
6294 return false;
6295
6296 mas->status = ma_start;
6297 return true;
6298}
6299
6300void __init maple_tree_init(void)
6301{
6302 maple_node_cache = kmem_cache_create("maple_node",
6303 sizeof(struct maple_node), sizeof(struct maple_node),
6304 SLAB_PANIC, NULL);
6305}
6306
6307/**
6308 * mtree_load() - Load a value stored in a maple tree
6309 * @mt: The maple tree
6310 * @index: The index to load
6311 *
6312 * Return: the entry or %NULL
6313 */
6314void *mtree_load(struct maple_tree *mt, unsigned long index)
6315{
6316 MA_STATE(mas, mt, index, index);
6317 void *entry;
6318
6319 trace_ma_read(__func__, &mas);
6320 rcu_read_lock();
6321retry:
6322 entry = mas_start(&mas);
6323 if (unlikely(mas_is_none(&mas)))
6324 goto unlock;
6325
6326 if (unlikely(mas_is_ptr(&mas))) {
6327 if (index)
6328 entry = NULL;
6329
6330 goto unlock;
6331 }
6332
6333 entry = mtree_lookup_walk(&mas);
6334 if (!entry && unlikely(mas_is_start(&mas)))
6335 goto retry;
6336unlock:
6337 rcu_read_unlock();
6338 if (xa_is_zero(entry))
6339 return NULL;
6340
6341 return entry;
6342}
6343EXPORT_SYMBOL(mtree_load);
6344
6345/**
6346 * mtree_store_range() - Store an entry at a given range.
6347 * @mt: The maple tree
6348 * @index: The start of the range
6349 * @last: The end of the range
6350 * @entry: The entry to store
6351 * @gfp: The GFP_FLAGS to use for allocations
6352 *
6353 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6354 * be allocated.
6355 */
6356int mtree_store_range(struct maple_tree *mt, unsigned long index,
6357 unsigned long last, void *entry, gfp_t gfp)
6358{
6359 MA_STATE(mas, mt, index, last);
6360 int ret = 0;
6361
6362 trace_ma_write(__func__, &mas, 0, entry);
6363 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6364 return -EINVAL;
6365
6366 if (index > last)
6367 return -EINVAL;
6368
6369 mtree_lock(mt);
6370 ret = mas_store_gfp(&mas, entry, gfp);
6371 mtree_unlock(mt);
6372
6373 return ret;
6374}
6375EXPORT_SYMBOL(mtree_store_range);
6376
6377/**
6378 * mtree_store() - Store an entry at a given index.
6379 * @mt: The maple tree
6380 * @index: The index to store the value
6381 * @entry: The entry to store
6382 * @gfp: The GFP_FLAGS to use for allocations
6383 *
6384 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6385 * be allocated.
6386 */
6387int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6388 gfp_t gfp)
6389{
6390 return mtree_store_range(mt, index, index, entry, gfp);
6391}
6392EXPORT_SYMBOL(mtree_store);
6393
6394/**
6395 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6396 * @mt: The maple tree
6397 * @first: The start of the range
6398 * @last: The end of the range
6399 * @entry: The entry to store
6400 * @gfp: The GFP_FLAGS to use for allocations.
6401 *
6402 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6403 * request, -ENOMEM if memory could not be allocated.
6404 */
6405int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6406 unsigned long last, void *entry, gfp_t gfp)
6407{
6408 MA_STATE(ms, mt, first, last);
6409 int ret = 0;
6410
6411 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6412 return -EINVAL;
6413
6414 if (first > last)
6415 return -EINVAL;
6416
6417 mtree_lock(mt);
6418retry:
6419 mas_insert(&ms, entry);
6420 if (mas_nomem(&ms, gfp))
6421 goto retry;
6422
6423 mtree_unlock(mt);
6424 if (mas_is_err(&ms))
6425 ret = xa_err(ms.node);
6426
6427 mas_destroy(&ms);
6428 return ret;
6429}
6430EXPORT_SYMBOL(mtree_insert_range);
6431
6432/**
6433 * mtree_insert() - Insert an entry at a given index if there is no value.
6434 * @mt: The maple tree
6435 * @index : The index to store the value
6436 * @entry: The entry to store
6437 * @gfp: The GFP_FLAGS to use for allocations.
6438 *
6439 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6440 * request, -ENOMEM if memory could not be allocated.
6441 */
6442int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6443 gfp_t gfp)
6444{
6445 return mtree_insert_range(mt, index, index, entry, gfp);
6446}
6447EXPORT_SYMBOL(mtree_insert);
6448
6449int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6450 void *entry, unsigned long size, unsigned long min,
6451 unsigned long max, gfp_t gfp)
6452{
6453 int ret = 0;
6454
6455 MA_STATE(mas, mt, 0, 0);
6456 if (!mt_is_alloc(mt))
6457 return -EINVAL;
6458
6459 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6460 return -EINVAL;
6461
6462 mtree_lock(mt);
6463retry:
6464 ret = mas_empty_area(&mas, min, max, size);
6465 if (ret)
6466 goto unlock;
6467
6468 mas_insert(&mas, entry);
6469 /*
6470 * mas_nomem() may release the lock, causing the allocated area
6471 * to be unavailable, so try to allocate a free area again.
6472 */
6473 if (mas_nomem(&mas, gfp))
6474 goto retry;
6475
6476 if (mas_is_err(&mas))
6477 ret = xa_err(mas.node);
6478 else
6479 *startp = mas.index;
6480
6481unlock:
6482 mtree_unlock(mt);
6483 mas_destroy(&mas);
6484 return ret;
6485}
6486EXPORT_SYMBOL(mtree_alloc_range);
6487
6488/**
6489 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6490 * @mt: The maple tree.
6491 * @startp: Pointer to ID.
6492 * @range_lo: Lower bound of range to search.
6493 * @range_hi: Upper bound of range to search.
6494 * @entry: The entry to store.
6495 * @next: Pointer to next ID to allocate.
6496 * @gfp: The GFP_FLAGS to use for allocations.
6497 *
6498 * Finds an empty entry in @mt after @next, stores the new index into
6499 * the @id pointer, stores the entry at that index, then updates @next.
6500 *
6501 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6502 *
6503 * Context: Any context. Takes and releases the mt.lock. May sleep if
6504 * the @gfp flags permit.
6505 *
6506 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6507 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6508 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6509 * free entries.
6510 */
6511int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6512 void *entry, unsigned long range_lo, unsigned long range_hi,
6513 unsigned long *next, gfp_t gfp)
6514{
6515 int ret;
6516
6517 MA_STATE(mas, mt, 0, 0);
6518
6519 if (!mt_is_alloc(mt))
6520 return -EINVAL;
6521 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6522 return -EINVAL;
6523 mtree_lock(mt);
6524 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6525 next, gfp);
6526 mtree_unlock(mt);
6527 return ret;
6528}
6529EXPORT_SYMBOL(mtree_alloc_cyclic);
6530
6531int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6532 void *entry, unsigned long size, unsigned long min,
6533 unsigned long max, gfp_t gfp)
6534{
6535 int ret = 0;
6536
6537 MA_STATE(mas, mt, 0, 0);
6538 if (!mt_is_alloc(mt))
6539 return -EINVAL;
6540
6541 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6542 return -EINVAL;
6543
6544 mtree_lock(mt);
6545retry:
6546 ret = mas_empty_area_rev(&mas, min, max, size);
6547 if (ret)
6548 goto unlock;
6549
6550 mas_insert(&mas, entry);
6551 /*
6552 * mas_nomem() may release the lock, causing the allocated area
6553 * to be unavailable, so try to allocate a free area again.
6554 */
6555 if (mas_nomem(&mas, gfp))
6556 goto retry;
6557
6558 if (mas_is_err(&mas))
6559 ret = xa_err(mas.node);
6560 else
6561 *startp = mas.index;
6562
6563unlock:
6564 mtree_unlock(mt);
6565 mas_destroy(&mas);
6566 return ret;
6567}
6568EXPORT_SYMBOL(mtree_alloc_rrange);
6569
6570/**
6571 * mtree_erase() - Find an index and erase the entire range.
6572 * @mt: The maple tree
6573 * @index: The index to erase
6574 *
6575 * Erasing is the same as a walk to an entry then a store of a NULL to that
6576 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6577 *
6578 * Return: The entry stored at the @index or %NULL
6579 */
6580void *mtree_erase(struct maple_tree *mt, unsigned long index)
6581{
6582 void *entry = NULL;
6583
6584 MA_STATE(mas, mt, index, index);
6585 trace_ma_op(__func__, &mas);
6586
6587 mtree_lock(mt);
6588 entry = mas_erase(&mas);
6589 mtree_unlock(mt);
6590
6591 return entry;
6592}
6593EXPORT_SYMBOL(mtree_erase);
6594
6595/*
6596 * mas_dup_free() - Free an incomplete duplication of a tree.
6597 * @mas: The maple state of a incomplete tree.
6598 *
6599 * The parameter @mas->node passed in indicates that the allocation failed on
6600 * this node. This function frees all nodes starting from @mas->node in the
6601 * reverse order of mas_dup_build(). There is no need to hold the source tree
6602 * lock at this time.
6603 */
6604static void mas_dup_free(struct ma_state *mas)
6605{
6606 struct maple_node *node;
6607 enum maple_type type;
6608 void __rcu **slots;
6609 unsigned char count, i;
6610
6611 /* Maybe the first node allocation failed. */
6612 if (mas_is_none(mas))
6613 return;
6614
6615 while (!mte_is_root(mas->node)) {
6616 mas_ascend(mas);
6617 if (mas->offset) {
6618 mas->offset--;
6619 do {
6620 mas_descend(mas);
6621 mas->offset = mas_data_end(mas);
6622 } while (!mte_is_leaf(mas->node));
6623
6624 mas_ascend(mas);
6625 }
6626
6627 node = mte_to_node(mas->node);
6628 type = mte_node_type(mas->node);
6629 slots = ma_slots(node, type);
6630 count = mas_data_end(mas) + 1;
6631 for (i = 0; i < count; i++)
6632 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6633 mt_free_bulk(count, slots);
6634 }
6635
6636 node = mte_to_node(mas->node);
6637 mt_free_one(node);
6638}
6639
6640/*
6641 * mas_copy_node() - Copy a maple node and replace the parent.
6642 * @mas: The maple state of source tree.
6643 * @new_mas: The maple state of new tree.
6644 * @parent: The parent of the new node.
6645 *
6646 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6647 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6648 */
6649static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6650 struct maple_pnode *parent)
6651{
6652 struct maple_node *node = mte_to_node(mas->node);
6653 struct maple_node *new_node = mte_to_node(new_mas->node);
6654 unsigned long val;
6655
6656 /* Copy the node completely. */
6657 memcpy(new_node, node, sizeof(struct maple_node));
6658 /* Update the parent node pointer. */
6659 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6660 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6661}
6662
6663/*
6664 * mas_dup_alloc() - Allocate child nodes for a maple node.
6665 * @mas: The maple state of source tree.
6666 * @new_mas: The maple state of new tree.
6667 * @gfp: The GFP_FLAGS to use for allocations.
6668 *
6669 * This function allocates child nodes for @new_mas->node during the duplication
6670 * process. If memory allocation fails, @mas is set to -ENOMEM.
6671 */
6672static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6673 gfp_t gfp)
6674{
6675 struct maple_node *node = mte_to_node(mas->node);
6676 struct maple_node *new_node = mte_to_node(new_mas->node);
6677 enum maple_type type;
6678 unsigned char request, count, i;
6679 void __rcu **slots;
6680 void __rcu **new_slots;
6681 unsigned long val;
6682
6683 /* Allocate memory for child nodes. */
6684 type = mte_node_type(mas->node);
6685 new_slots = ma_slots(new_node, type);
6686 request = mas_data_end(mas) + 1;
6687 count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6688 if (unlikely(count < request)) {
6689 memset(new_slots, 0, request * sizeof(void *));
6690 mas_set_err(mas, -ENOMEM);
6691 return;
6692 }
6693
6694 /* Restore node type information in slots. */
6695 slots = ma_slots(node, type);
6696 for (i = 0; i < count; i++) {
6697 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6698 val &= MAPLE_NODE_MASK;
6699 ((unsigned long *)new_slots)[i] |= val;
6700 }
6701}
6702
6703/*
6704 * mas_dup_build() - Build a new maple tree from a source tree
6705 * @mas: The maple state of source tree, need to be in MAS_START state.
6706 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6707 * @gfp: The GFP_FLAGS to use for allocations.
6708 *
6709 * This function builds a new tree in DFS preorder. If the memory allocation
6710 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6711 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6712 *
6713 * Note that the attributes of the two trees need to be exactly the same, and the
6714 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6715 */
6716static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6717 gfp_t gfp)
6718{
6719 struct maple_node *node;
6720 struct maple_pnode *parent = NULL;
6721 struct maple_enode *root;
6722 enum maple_type type;
6723
6724 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6725 unlikely(!mtree_empty(new_mas->tree))) {
6726 mas_set_err(mas, -EINVAL);
6727 return;
6728 }
6729
6730 root = mas_start(mas);
6731 if (mas_is_ptr(mas) || mas_is_none(mas))
6732 goto set_new_tree;
6733
6734 node = mt_alloc_one(gfp);
6735 if (!node) {
6736 new_mas->status = ma_none;
6737 mas_set_err(mas, -ENOMEM);
6738 return;
6739 }
6740
6741 type = mte_node_type(mas->node);
6742 root = mt_mk_node(node, type);
6743 new_mas->node = root;
6744 new_mas->min = 0;
6745 new_mas->max = ULONG_MAX;
6746 root = mte_mk_root(root);
6747 while (1) {
6748 mas_copy_node(mas, new_mas, parent);
6749 if (!mte_is_leaf(mas->node)) {
6750 /* Only allocate child nodes for non-leaf nodes. */
6751 mas_dup_alloc(mas, new_mas, gfp);
6752 if (unlikely(mas_is_err(mas)))
6753 return;
6754 } else {
6755 /*
6756 * This is the last leaf node and duplication is
6757 * completed.
6758 */
6759 if (mas->max == ULONG_MAX)
6760 goto done;
6761
6762 /* This is not the last leaf node and needs to go up. */
6763 do {
6764 mas_ascend(mas);
6765 mas_ascend(new_mas);
6766 } while (mas->offset == mas_data_end(mas));
6767
6768 /* Move to the next subtree. */
6769 mas->offset++;
6770 new_mas->offset++;
6771 }
6772
6773 mas_descend(mas);
6774 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6775 mas_descend(new_mas);
6776 mas->offset = 0;
6777 new_mas->offset = 0;
6778 }
6779done:
6780 /* Specially handle the parent of the root node. */
6781 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6782set_new_tree:
6783 /* Make them the same height */
6784 new_mas->tree->ma_flags = mas->tree->ma_flags;
6785 rcu_assign_pointer(new_mas->tree->ma_root, root);
6786}
6787
6788/**
6789 * __mt_dup(): Duplicate an entire maple tree
6790 * @mt: The source maple tree
6791 * @new: The new maple tree
6792 * @gfp: The GFP_FLAGS to use for allocations
6793 *
6794 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6795 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6796 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6797 * source node except for all the addresses stored in it. It will be faster than
6798 * traversing all elements in the source tree and inserting them one by one into
6799 * the new tree.
6800 * The user needs to ensure that the attributes of the source tree and the new
6801 * tree are the same, and the new tree needs to be an empty tree, otherwise
6802 * -EINVAL will be returned.
6803 * Note that the user needs to manually lock the source tree and the new tree.
6804 *
6805 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6806 * the attributes of the two trees are different or the new tree is not an empty
6807 * tree.
6808 */
6809int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6810{
6811 int ret = 0;
6812 MA_STATE(mas, mt, 0, 0);
6813 MA_STATE(new_mas, new, 0, 0);
6814
6815 mas_dup_build(&mas, &new_mas, gfp);
6816 if (unlikely(mas_is_err(&mas))) {
6817 ret = xa_err(mas.node);
6818 if (ret == -ENOMEM)
6819 mas_dup_free(&new_mas);
6820 }
6821
6822 return ret;
6823}
6824EXPORT_SYMBOL(__mt_dup);
6825
6826/**
6827 * mtree_dup(): Duplicate an entire maple tree
6828 * @mt: The source maple tree
6829 * @new: The new maple tree
6830 * @gfp: The GFP_FLAGS to use for allocations
6831 *
6832 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6833 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6834 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6835 * source node except for all the addresses stored in it. It will be faster than
6836 * traversing all elements in the source tree and inserting them one by one into
6837 * the new tree.
6838 * The user needs to ensure that the attributes of the source tree and the new
6839 * tree are the same, and the new tree needs to be an empty tree, otherwise
6840 * -EINVAL will be returned.
6841 *
6842 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6843 * the attributes of the two trees are different or the new tree is not an empty
6844 * tree.
6845 */
6846int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6847{
6848 int ret = 0;
6849 MA_STATE(mas, mt, 0, 0);
6850 MA_STATE(new_mas, new, 0, 0);
6851
6852 mas_lock(&new_mas);
6853 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6854 mas_dup_build(&mas, &new_mas, gfp);
6855 mas_unlock(&mas);
6856 if (unlikely(mas_is_err(&mas))) {
6857 ret = xa_err(mas.node);
6858 if (ret == -ENOMEM)
6859 mas_dup_free(&new_mas);
6860 }
6861
6862 mas_unlock(&new_mas);
6863 return ret;
6864}
6865EXPORT_SYMBOL(mtree_dup);
6866
6867/**
6868 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6869 * @mt: The maple tree
6870 *
6871 * Note: Does not handle locking.
6872 */
6873void __mt_destroy(struct maple_tree *mt)
6874{
6875 void *root = mt_root_locked(mt);
6876
6877 rcu_assign_pointer(mt->ma_root, NULL);
6878 if (xa_is_node(root))
6879 mte_destroy_walk(root, mt);
6880
6881 mt->ma_flags = mt_attr(mt);
6882}
6883EXPORT_SYMBOL_GPL(__mt_destroy);
6884
6885/**
6886 * mtree_destroy() - Destroy a maple tree
6887 * @mt: The maple tree
6888 *
6889 * Frees all resources used by the tree. Handles locking.
6890 */
6891void mtree_destroy(struct maple_tree *mt)
6892{
6893 mtree_lock(mt);
6894 __mt_destroy(mt);
6895 mtree_unlock(mt);
6896}
6897EXPORT_SYMBOL(mtree_destroy);
6898
6899/**
6900 * mt_find() - Search from the start up until an entry is found.
6901 * @mt: The maple tree
6902 * @index: Pointer which contains the start location of the search
6903 * @max: The maximum value of the search range
6904 *
6905 * Takes RCU read lock internally to protect the search, which does not
6906 * protect the returned pointer after dropping RCU read lock.
6907 * See also: Documentation/core-api/maple_tree.rst
6908 *
6909 * In case that an entry is found @index is updated to point to the next
6910 * possible entry independent whether the found entry is occupying a
6911 * single index or a range if indices.
6912 *
6913 * Return: The entry at or after the @index or %NULL
6914 */
6915void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6916{
6917 MA_STATE(mas, mt, *index, *index);
6918 void *entry;
6919#ifdef CONFIG_DEBUG_MAPLE_TREE
6920 unsigned long copy = *index;
6921#endif
6922
6923 trace_ma_read(__func__, &mas);
6924
6925 if ((*index) > max)
6926 return NULL;
6927
6928 rcu_read_lock();
6929retry:
6930 entry = mas_state_walk(&mas);
6931 if (mas_is_start(&mas))
6932 goto retry;
6933
6934 if (unlikely(xa_is_zero(entry)))
6935 entry = NULL;
6936
6937 if (entry)
6938 goto unlock;
6939
6940 while (mas_is_active(&mas) && (mas.last < max)) {
6941 entry = mas_next_entry(&mas, max);
6942 if (likely(entry && !xa_is_zero(entry)))
6943 break;
6944 }
6945
6946 if (unlikely(xa_is_zero(entry)))
6947 entry = NULL;
6948unlock:
6949 rcu_read_unlock();
6950 if (likely(entry)) {
6951 *index = mas.last + 1;
6952#ifdef CONFIG_DEBUG_MAPLE_TREE
6953 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6954 pr_err("index not increased! %lx <= %lx\n",
6955 *index, copy);
6956#endif
6957 }
6958
6959 return entry;
6960}
6961EXPORT_SYMBOL(mt_find);
6962
6963/**
6964 * mt_find_after() - Search from the start up until an entry is found.
6965 * @mt: The maple tree
6966 * @index: Pointer which contains the start location of the search
6967 * @max: The maximum value to check
6968 *
6969 * Same as mt_find() except that it checks @index for 0 before
6970 * searching. If @index == 0, the search is aborted. This covers a wrap
6971 * around of @index to 0 in an iterator loop.
6972 *
6973 * Return: The entry at or after the @index or %NULL
6974 */
6975void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6976 unsigned long max)
6977{
6978 if (!(*index))
6979 return NULL;
6980
6981 return mt_find(mt, index, max);
6982}
6983EXPORT_SYMBOL(mt_find_after);
6984
6985#ifdef CONFIG_DEBUG_MAPLE_TREE
6986atomic_t maple_tree_tests_run;
6987EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6988atomic_t maple_tree_tests_passed;
6989EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6990
6991#ifndef __KERNEL__
6992extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6993void mt_set_non_kernel(unsigned int val)
6994{
6995 kmem_cache_set_non_kernel(maple_node_cache, val);
6996}
6997
6998extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6999 void (*callback)(void *));
7000void mt_set_callback(void (*callback)(void *))
7001{
7002 kmem_cache_set_callback(maple_node_cache, callback);
7003}
7004
7005extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
7006void mt_set_private(void *private)
7007{
7008 kmem_cache_set_private(maple_node_cache, private);
7009}
7010
7011extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7012unsigned long mt_get_alloc_size(void)
7013{
7014 return kmem_cache_get_alloc(maple_node_cache);
7015}
7016
7017extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7018void mt_zero_nr_tallocated(void)
7019{
7020 kmem_cache_zero_nr_tallocated(maple_node_cache);
7021}
7022
7023extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7024unsigned int mt_nr_tallocated(void)
7025{
7026 return kmem_cache_nr_tallocated(maple_node_cache);
7027}
7028
7029extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7030unsigned int mt_nr_allocated(void)
7031{
7032 return kmem_cache_nr_allocated(maple_node_cache);
7033}
7034
7035void mt_cache_shrink(void)
7036{
7037}
7038#else
7039/*
7040 * mt_cache_shrink() - For testing, don't use this.
7041 *
7042 * Certain testcases can trigger an OOM when combined with other memory
7043 * debugging configuration options. This function is used to reduce the
7044 * possibility of an out of memory even due to kmem_cache objects remaining
7045 * around for longer than usual.
7046 */
7047void mt_cache_shrink(void)
7048{
7049 kmem_cache_shrink(maple_node_cache);
7050
7051}
7052EXPORT_SYMBOL_GPL(mt_cache_shrink);
7053
7054#endif /* not defined __KERNEL__ */
7055/*
7056 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7057 * @mas: The maple state
7058 * @offset: The offset into the slot array to fetch.
7059 *
7060 * Return: The entry stored at @offset.
7061 */
7062static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7063 unsigned char offset)
7064{
7065 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7066 offset);
7067}
7068
7069/* Depth first search, post-order */
7070static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7071{
7072
7073 struct maple_enode *p, *mn = mas->node;
7074 unsigned long p_min, p_max;
7075
7076 mas_next_node(mas, mas_mn(mas), max);
7077 if (!mas_is_overflow(mas))
7078 return;
7079
7080 if (mte_is_root(mn))
7081 return;
7082
7083 mas->node = mn;
7084 mas_ascend(mas);
7085 do {
7086 p = mas->node;
7087 p_min = mas->min;
7088 p_max = mas->max;
7089 mas_prev_node(mas, 0);
7090 } while (!mas_is_underflow(mas));
7091
7092 mas->node = p;
7093 mas->max = p_max;
7094 mas->min = p_min;
7095}
7096
7097/* Tree validations */
7098static void mt_dump_node(const struct maple_tree *mt, void *entry,
7099 unsigned long min, unsigned long max, unsigned int depth,
7100 enum mt_dump_format format);
7101static void mt_dump_range(unsigned long min, unsigned long max,
7102 unsigned int depth, enum mt_dump_format format)
7103{
7104 static const char spaces[] = " ";
7105
7106 switch(format) {
7107 case mt_dump_hex:
7108 if (min == max)
7109 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7110 else
7111 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7112 break;
7113 case mt_dump_dec:
7114 if (min == max)
7115 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7116 else
7117 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7118 }
7119}
7120
7121static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7122 unsigned int depth, enum mt_dump_format format)
7123{
7124 mt_dump_range(min, max, depth, format);
7125
7126 if (xa_is_value(entry))
7127 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7128 xa_to_value(entry), entry);
7129 else if (xa_is_zero(entry))
7130 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7131 else if (mt_is_reserved(entry))
7132 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7133 else
7134 pr_cont("%p\n", entry);
7135}
7136
7137static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7138 unsigned long min, unsigned long max, unsigned int depth,
7139 enum mt_dump_format format)
7140{
7141 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7142 bool leaf = mte_is_leaf(entry);
7143 unsigned long first = min;
7144 int i;
7145
7146 pr_cont(" contents: ");
7147 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7148 switch(format) {
7149 case mt_dump_hex:
7150 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7151 break;
7152 case mt_dump_dec:
7153 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7154 }
7155 }
7156 pr_cont("%p\n", node->slot[i]);
7157 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7158 unsigned long last = max;
7159
7160 if (i < (MAPLE_RANGE64_SLOTS - 1))
7161 last = node->pivot[i];
7162 else if (!node->slot[i] && max != mt_node_max(entry))
7163 break;
7164 if (last == 0 && i > 0)
7165 break;
7166 if (leaf)
7167 mt_dump_entry(mt_slot(mt, node->slot, i),
7168 first, last, depth + 1, format);
7169 else if (node->slot[i])
7170 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7171 first, last, depth + 1, format);
7172
7173 if (last == max)
7174 break;
7175 if (last > max) {
7176 switch(format) {
7177 case mt_dump_hex:
7178 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7179 node, last, max, i);
7180 break;
7181 case mt_dump_dec:
7182 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7183 node, last, max, i);
7184 }
7185 }
7186 first = last + 1;
7187 }
7188}
7189
7190static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7191 unsigned long min, unsigned long max, unsigned int depth,
7192 enum mt_dump_format format)
7193{
7194 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7195 unsigned long first = min;
7196 int i;
7197
7198 pr_cont(" contents: ");
7199 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7200 switch (format) {
7201 case mt_dump_hex:
7202 pr_cont("%lx ", node->gap[i]);
7203 break;
7204 case mt_dump_dec:
7205 pr_cont("%lu ", node->gap[i]);
7206 }
7207 }
7208 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7209 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7210 switch (format) {
7211 case mt_dump_hex:
7212 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7213 break;
7214 case mt_dump_dec:
7215 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7216 }
7217 }
7218 pr_cont("%p\n", node->slot[i]);
7219 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7220 unsigned long last = max;
7221
7222 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7223 last = node->pivot[i];
7224 else if (!node->slot[i])
7225 break;
7226 if (last == 0 && i > 0)
7227 break;
7228 if (node->slot[i])
7229 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7230 first, last, depth + 1, format);
7231
7232 if (last == max)
7233 break;
7234 if (last > max) {
7235 switch(format) {
7236 case mt_dump_hex:
7237 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7238 node, last, max, i);
7239 break;
7240 case mt_dump_dec:
7241 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7242 node, last, max, i);
7243 }
7244 }
7245 first = last + 1;
7246 }
7247}
7248
7249static void mt_dump_node(const struct maple_tree *mt, void *entry,
7250 unsigned long min, unsigned long max, unsigned int depth,
7251 enum mt_dump_format format)
7252{
7253 struct maple_node *node = mte_to_node(entry);
7254 unsigned int type = mte_node_type(entry);
7255 unsigned int i;
7256
7257 mt_dump_range(min, max, depth, format);
7258
7259 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7260 node ? node->parent : NULL);
7261 switch (type) {
7262 case maple_dense:
7263 pr_cont("\n");
7264 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7265 if (min + i > max)
7266 pr_cont("OUT OF RANGE: ");
7267 mt_dump_entry(mt_slot(mt, node->slot, i),
7268 min + i, min + i, depth, format);
7269 }
7270 break;
7271 case maple_leaf_64:
7272 case maple_range_64:
7273 mt_dump_range64(mt, entry, min, max, depth, format);
7274 break;
7275 case maple_arange_64:
7276 mt_dump_arange64(mt, entry, min, max, depth, format);
7277 break;
7278
7279 default:
7280 pr_cont(" UNKNOWN TYPE\n");
7281 }
7282}
7283
7284void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7285{
7286 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7287
7288 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7289 mt, mt->ma_flags, mt_height(mt), entry);
7290 if (!xa_is_node(entry))
7291 mt_dump_entry(entry, 0, 0, 0, format);
7292 else if (entry)
7293 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7294}
7295EXPORT_SYMBOL_GPL(mt_dump);
7296
7297/*
7298 * Calculate the maximum gap in a node and check if that's what is reported in
7299 * the parent (unless root).
7300 */
7301static void mas_validate_gaps(struct ma_state *mas)
7302{
7303 struct maple_enode *mte = mas->node;
7304 struct maple_node *p_mn, *node = mte_to_node(mte);
7305 enum maple_type mt = mte_node_type(mas->node);
7306 unsigned long gap = 0, max_gap = 0;
7307 unsigned long p_end, p_start = mas->min;
7308 unsigned char p_slot, offset;
7309 unsigned long *gaps = NULL;
7310 unsigned long *pivots = ma_pivots(node, mt);
7311 unsigned int i;
7312
7313 if (ma_is_dense(mt)) {
7314 for (i = 0; i < mt_slot_count(mte); i++) {
7315 if (mas_get_slot(mas, i)) {
7316 if (gap > max_gap)
7317 max_gap = gap;
7318 gap = 0;
7319 continue;
7320 }
7321 gap++;
7322 }
7323 goto counted;
7324 }
7325
7326 gaps = ma_gaps(node, mt);
7327 for (i = 0; i < mt_slot_count(mte); i++) {
7328 p_end = mas_safe_pivot(mas, pivots, i, mt);
7329
7330 if (!gaps) {
7331 if (!mas_get_slot(mas, i))
7332 gap = p_end - p_start + 1;
7333 } else {
7334 void *entry = mas_get_slot(mas, i);
7335
7336 gap = gaps[i];
7337 MT_BUG_ON(mas->tree, !entry);
7338
7339 if (gap > p_end - p_start + 1) {
7340 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7341 mas_mn(mas), i, gap, p_end, p_start,
7342 p_end - p_start + 1);
7343 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7344 }
7345 }
7346
7347 if (gap > max_gap)
7348 max_gap = gap;
7349
7350 p_start = p_end + 1;
7351 if (p_end >= mas->max)
7352 break;
7353 }
7354
7355counted:
7356 if (mt == maple_arange_64) {
7357 MT_BUG_ON(mas->tree, !gaps);
7358 offset = ma_meta_gap(node);
7359 if (offset > i) {
7360 pr_err("gap offset %p[%u] is invalid\n", node, offset);
7361 MT_BUG_ON(mas->tree, 1);
7362 }
7363
7364 if (gaps[offset] != max_gap) {
7365 pr_err("gap %p[%u] is not the largest gap %lu\n",
7366 node, offset, max_gap);
7367 MT_BUG_ON(mas->tree, 1);
7368 }
7369
7370 for (i++ ; i < mt_slot_count(mte); i++) {
7371 if (gaps[i] != 0) {
7372 pr_err("gap %p[%u] beyond node limit != 0\n",
7373 node, i);
7374 MT_BUG_ON(mas->tree, 1);
7375 }
7376 }
7377 }
7378
7379 if (mte_is_root(mte))
7380 return;
7381
7382 p_slot = mte_parent_slot(mas->node);
7383 p_mn = mte_parent(mte);
7384 MT_BUG_ON(mas->tree, max_gap > mas->max);
7385 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7386 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7387 mt_dump(mas->tree, mt_dump_hex);
7388 MT_BUG_ON(mas->tree, 1);
7389 }
7390}
7391
7392static void mas_validate_parent_slot(struct ma_state *mas)
7393{
7394 struct maple_node *parent;
7395 struct maple_enode *node;
7396 enum maple_type p_type;
7397 unsigned char p_slot;
7398 void __rcu **slots;
7399 int i;
7400
7401 if (mte_is_root(mas->node))
7402 return;
7403
7404 p_slot = mte_parent_slot(mas->node);
7405 p_type = mas_parent_type(mas, mas->node);
7406 parent = mte_parent(mas->node);
7407 slots = ma_slots(parent, p_type);
7408 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7409
7410 /* Check prev/next parent slot for duplicate node entry */
7411
7412 for (i = 0; i < mt_slots[p_type]; i++) {
7413 node = mas_slot(mas, slots, i);
7414 if (i == p_slot) {
7415 if (node != mas->node)
7416 pr_err("parent %p[%u] does not have %p\n",
7417 parent, i, mas_mn(mas));
7418 MT_BUG_ON(mas->tree, node != mas->node);
7419 } else if (node == mas->node) {
7420 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7421 mas_mn(mas), parent, i, p_slot);
7422 MT_BUG_ON(mas->tree, node == mas->node);
7423 }
7424 }
7425}
7426
7427static void mas_validate_child_slot(struct ma_state *mas)
7428{
7429 enum maple_type type = mte_node_type(mas->node);
7430 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7431 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7432 struct maple_enode *child;
7433 unsigned char i;
7434
7435 if (mte_is_leaf(mas->node))
7436 return;
7437
7438 for (i = 0; i < mt_slots[type]; i++) {
7439 child = mas_slot(mas, slots, i);
7440
7441 if (!child) {
7442 pr_err("Non-leaf node lacks child at %p[%u]\n",
7443 mas_mn(mas), i);
7444 MT_BUG_ON(mas->tree, 1);
7445 }
7446
7447 if (mte_parent_slot(child) != i) {
7448 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7449 mas_mn(mas), i, mte_to_node(child),
7450 mte_parent_slot(child));
7451 MT_BUG_ON(mas->tree, 1);
7452 }
7453
7454 if (mte_parent(child) != mte_to_node(mas->node)) {
7455 pr_err("child %p has parent %p not %p\n",
7456 mte_to_node(child), mte_parent(child),
7457 mte_to_node(mas->node));
7458 MT_BUG_ON(mas->tree, 1);
7459 }
7460
7461 if (i < mt_pivots[type] && pivots[i] == mas->max)
7462 break;
7463 }
7464}
7465
7466/*
7467 * Validate all pivots are within mas->min and mas->max, check metadata ends
7468 * where the maximum ends and ensure there is no slots or pivots set outside of
7469 * the end of the data.
7470 */
7471static void mas_validate_limits(struct ma_state *mas)
7472{
7473 int i;
7474 unsigned long prev_piv = 0;
7475 enum maple_type type = mte_node_type(mas->node);
7476 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7477 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7478
7479 for (i = 0; i < mt_slots[type]; i++) {
7480 unsigned long piv;
7481
7482 piv = mas_safe_pivot(mas, pivots, i, type);
7483
7484 if (!piv && (i != 0)) {
7485 pr_err("Missing node limit pivot at %p[%u]",
7486 mas_mn(mas), i);
7487 MAS_WARN_ON(mas, 1);
7488 }
7489
7490 if (prev_piv > piv) {
7491 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7492 mas_mn(mas), i, piv, prev_piv);
7493 MAS_WARN_ON(mas, piv < prev_piv);
7494 }
7495
7496 if (piv < mas->min) {
7497 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7498 piv, mas->min);
7499 MAS_WARN_ON(mas, piv < mas->min);
7500 }
7501 if (piv > mas->max) {
7502 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7503 piv, mas->max);
7504 MAS_WARN_ON(mas, piv > mas->max);
7505 }
7506 prev_piv = piv;
7507 if (piv == mas->max)
7508 break;
7509 }
7510
7511 if (mas_data_end(mas) != i) {
7512 pr_err("node%p: data_end %u != the last slot offset %u\n",
7513 mas_mn(mas), mas_data_end(mas), i);
7514 MT_BUG_ON(mas->tree, 1);
7515 }
7516
7517 for (i += 1; i < mt_slots[type]; i++) {
7518 void *entry = mas_slot(mas, slots, i);
7519
7520 if (entry && (i != mt_slots[type] - 1)) {
7521 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7522 i, entry);
7523 MT_BUG_ON(mas->tree, entry != NULL);
7524 }
7525
7526 if (i < mt_pivots[type]) {
7527 unsigned long piv = pivots[i];
7528
7529 if (!piv)
7530 continue;
7531
7532 pr_err("%p[%u] should not have piv %lu\n",
7533 mas_mn(mas), i, piv);
7534 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7535 }
7536 }
7537}
7538
7539static void mt_validate_nulls(struct maple_tree *mt)
7540{
7541 void *entry, *last = (void *)1;
7542 unsigned char offset = 0;
7543 void __rcu **slots;
7544 MA_STATE(mas, mt, 0, 0);
7545
7546 mas_start(&mas);
7547 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7548 return;
7549
7550 while (!mte_is_leaf(mas.node))
7551 mas_descend(&mas);
7552
7553 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7554 do {
7555 entry = mas_slot(&mas, slots, offset);
7556 if (!last && !entry) {
7557 pr_err("Sequential nulls end at %p[%u]\n",
7558 mas_mn(&mas), offset);
7559 }
7560 MT_BUG_ON(mt, !last && !entry);
7561 last = entry;
7562 if (offset == mas_data_end(&mas)) {
7563 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7564 if (mas_is_overflow(&mas))
7565 return;
7566 offset = 0;
7567 slots = ma_slots(mte_to_node(mas.node),
7568 mte_node_type(mas.node));
7569 } else {
7570 offset++;
7571 }
7572
7573 } while (!mas_is_overflow(&mas));
7574}
7575
7576/*
7577 * validate a maple tree by checking:
7578 * 1. The limits (pivots are within mas->min to mas->max)
7579 * 2. The gap is correctly set in the parents
7580 */
7581void mt_validate(struct maple_tree *mt)
7582 __must_hold(mas->tree->ma_lock)
7583{
7584 unsigned char end;
7585
7586 MA_STATE(mas, mt, 0, 0);
7587 mas_start(&mas);
7588 if (!mas_is_active(&mas))
7589 return;
7590
7591 while (!mte_is_leaf(mas.node))
7592 mas_descend(&mas);
7593
7594 while (!mas_is_overflow(&mas)) {
7595 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7596 end = mas_data_end(&mas);
7597 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7598 (mas.max != ULONG_MAX))) {
7599 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7600 }
7601
7602 mas_validate_parent_slot(&mas);
7603 mas_validate_limits(&mas);
7604 mas_validate_child_slot(&mas);
7605 if (mt_is_alloc(mt))
7606 mas_validate_gaps(&mas);
7607 mas_dfs_postorder(&mas, ULONG_MAX);
7608 }
7609 mt_validate_nulls(mt);
7610}
7611EXPORT_SYMBOL_GPL(mt_validate);
7612
7613void mas_dump(const struct ma_state *mas)
7614{
7615 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7616 switch (mas->status) {
7617 case ma_active:
7618 pr_err("(ma_active)");
7619 break;
7620 case ma_none:
7621 pr_err("(ma_none)");
7622 break;
7623 case ma_root:
7624 pr_err("(ma_root)");
7625 break;
7626 case ma_start:
7627 pr_err("(ma_start) ");
7628 break;
7629 case ma_pause:
7630 pr_err("(ma_pause) ");
7631 break;
7632 case ma_overflow:
7633 pr_err("(ma_overflow) ");
7634 break;
7635 case ma_underflow:
7636 pr_err("(ma_underflow) ");
7637 break;
7638 case ma_error:
7639 pr_err("(ma_error) ");
7640 break;
7641 }
7642
7643 pr_err("Store Type: ");
7644 switch (mas->store_type) {
7645 case wr_invalid:
7646 pr_err("invalid store type\n");
7647 break;
7648 case wr_new_root:
7649 pr_err("new_root\n");
7650 break;
7651 case wr_store_root:
7652 pr_err("store_root\n");
7653 break;
7654 case wr_exact_fit:
7655 pr_err("exact_fit\n");
7656 break;
7657 case wr_split_store:
7658 pr_err("split_store\n");
7659 break;
7660 case wr_slot_store:
7661 pr_err("slot_store\n");
7662 break;
7663 case wr_append:
7664 pr_err("append\n");
7665 break;
7666 case wr_node_store:
7667 pr_err("node_store\n");
7668 break;
7669 case wr_spanning_store:
7670 pr_err("spanning_store\n");
7671 break;
7672 case wr_rebalance:
7673 pr_err("rebalance\n");
7674 break;
7675 }
7676
7677 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7678 mas->index, mas->last);
7679 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7680 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7681 if (mas->index > mas->last)
7682 pr_err("Check index & last\n");
7683}
7684EXPORT_SYMBOL_GPL(mas_dump);
7685
7686void mas_wr_dump(const struct ma_wr_state *wr_mas)
7687{
7688 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7689 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7690 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7691 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7692 wr_mas->end_piv);
7693}
7694EXPORT_SYMBOL_GPL(mas_wr_dump);
7695
7696#endif /* CONFIG_DEBUG_MAPLE_TREE */