Merge tag 'thermal-6.1-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-block.git] / lib / iov_iter.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2#include <crypto/hash.h>
3#include <linux/export.h>
4#include <linux/bvec.h>
5#include <linux/fault-inject-usercopy.h>
6#include <linux/uio.h>
7#include <linux/pagemap.h>
8#include <linux/highmem.h>
9#include <linux/slab.h>
10#include <linux/vmalloc.h>
11#include <linux/splice.h>
12#include <linux/compat.h>
13#include <net/checksum.h>
14#include <linux/scatterlist.h>
15#include <linux/instrumented.h>
16
17#define PIPE_PARANOIA /* for now */
18
19/* covers ubuf and kbuf alike */
20#define iterate_buf(i, n, base, len, off, __p, STEP) { \
21 size_t __maybe_unused off = 0; \
22 len = n; \
23 base = __p + i->iov_offset; \
24 len -= (STEP); \
25 i->iov_offset += len; \
26 n = len; \
27}
28
29/* covers iovec and kvec alike */
30#define iterate_iovec(i, n, base, len, off, __p, STEP) { \
31 size_t off = 0; \
32 size_t skip = i->iov_offset; \
33 do { \
34 len = min(n, __p->iov_len - skip); \
35 if (likely(len)) { \
36 base = __p->iov_base + skip; \
37 len -= (STEP); \
38 off += len; \
39 skip += len; \
40 n -= len; \
41 if (skip < __p->iov_len) \
42 break; \
43 } \
44 __p++; \
45 skip = 0; \
46 } while (n); \
47 i->iov_offset = skip; \
48 n = off; \
49}
50
51#define iterate_bvec(i, n, base, len, off, p, STEP) { \
52 size_t off = 0; \
53 unsigned skip = i->iov_offset; \
54 while (n) { \
55 unsigned offset = p->bv_offset + skip; \
56 unsigned left; \
57 void *kaddr = kmap_local_page(p->bv_page + \
58 offset / PAGE_SIZE); \
59 base = kaddr + offset % PAGE_SIZE; \
60 len = min(min(n, (size_t)(p->bv_len - skip)), \
61 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
62 left = (STEP); \
63 kunmap_local(kaddr); \
64 len -= left; \
65 off += len; \
66 skip += len; \
67 if (skip == p->bv_len) { \
68 skip = 0; \
69 p++; \
70 } \
71 n -= len; \
72 if (left) \
73 break; \
74 } \
75 i->iov_offset = skip; \
76 n = off; \
77}
78
79#define iterate_xarray(i, n, base, len, __off, STEP) { \
80 __label__ __out; \
81 size_t __off = 0; \
82 struct folio *folio; \
83 loff_t start = i->xarray_start + i->iov_offset; \
84 pgoff_t index = start / PAGE_SIZE; \
85 XA_STATE(xas, i->xarray, index); \
86 \
87 len = PAGE_SIZE - offset_in_page(start); \
88 rcu_read_lock(); \
89 xas_for_each(&xas, folio, ULONG_MAX) { \
90 unsigned left; \
91 size_t offset; \
92 if (xas_retry(&xas, folio)) \
93 continue; \
94 if (WARN_ON(xa_is_value(folio))) \
95 break; \
96 if (WARN_ON(folio_test_hugetlb(folio))) \
97 break; \
98 offset = offset_in_folio(folio, start + __off); \
99 while (offset < folio_size(folio)) { \
100 base = kmap_local_folio(folio, offset); \
101 len = min(n, len); \
102 left = (STEP); \
103 kunmap_local(base); \
104 len -= left; \
105 __off += len; \
106 n -= len; \
107 if (left || n == 0) \
108 goto __out; \
109 offset += len; \
110 len = PAGE_SIZE; \
111 } \
112 } \
113__out: \
114 rcu_read_unlock(); \
115 i->iov_offset += __off; \
116 n = __off; \
117}
118
119#define __iterate_and_advance(i, n, base, len, off, I, K) { \
120 if (unlikely(i->count < n)) \
121 n = i->count; \
122 if (likely(n)) { \
123 if (likely(iter_is_ubuf(i))) { \
124 void __user *base; \
125 size_t len; \
126 iterate_buf(i, n, base, len, off, \
127 i->ubuf, (I)) \
128 } else if (likely(iter_is_iovec(i))) { \
129 const struct iovec *iov = i->iov; \
130 void __user *base; \
131 size_t len; \
132 iterate_iovec(i, n, base, len, off, \
133 iov, (I)) \
134 i->nr_segs -= iov - i->iov; \
135 i->iov = iov; \
136 } else if (iov_iter_is_bvec(i)) { \
137 const struct bio_vec *bvec = i->bvec; \
138 void *base; \
139 size_t len; \
140 iterate_bvec(i, n, base, len, off, \
141 bvec, (K)) \
142 i->nr_segs -= bvec - i->bvec; \
143 i->bvec = bvec; \
144 } else if (iov_iter_is_kvec(i)) { \
145 const struct kvec *kvec = i->kvec; \
146 void *base; \
147 size_t len; \
148 iterate_iovec(i, n, base, len, off, \
149 kvec, (K)) \
150 i->nr_segs -= kvec - i->kvec; \
151 i->kvec = kvec; \
152 } else if (iov_iter_is_xarray(i)) { \
153 void *base; \
154 size_t len; \
155 iterate_xarray(i, n, base, len, off, \
156 (K)) \
157 } \
158 i->count -= n; \
159 } \
160}
161#define iterate_and_advance(i, n, base, len, off, I, K) \
162 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163
164static int copyout(void __user *to, const void *from, size_t n)
165{
166 if (should_fail_usercopy())
167 return n;
168 if (access_ok(to, n)) {
169 instrument_copy_to_user(to, from, n);
170 n = raw_copy_to_user(to, from, n);
171 }
172 return n;
173}
174
175static int copyin(void *to, const void __user *from, size_t n)
176{
177 if (should_fail_usercopy())
178 return n;
179 if (access_ok(from, n)) {
180 instrument_copy_from_user(to, from, n);
181 n = raw_copy_from_user(to, from, n);
182 }
183 return n;
184}
185
186static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
187 unsigned int slot)
188{
189 return &pipe->bufs[slot & (pipe->ring_size - 1)];
190}
191
192#ifdef PIPE_PARANOIA
193static bool sanity(const struct iov_iter *i)
194{
195 struct pipe_inode_info *pipe = i->pipe;
196 unsigned int p_head = pipe->head;
197 unsigned int p_tail = pipe->tail;
198 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
199 unsigned int i_head = i->head;
200 unsigned int idx;
201
202 if (i->last_offset) {
203 struct pipe_buffer *p;
204 if (unlikely(p_occupancy == 0))
205 goto Bad; // pipe must be non-empty
206 if (unlikely(i_head != p_head - 1))
207 goto Bad; // must be at the last buffer...
208
209 p = pipe_buf(pipe, i_head);
210 if (unlikely(p->offset + p->len != abs(i->last_offset)))
211 goto Bad; // ... at the end of segment
212 } else {
213 if (i_head != p_head)
214 goto Bad; // must be right after the last buffer
215 }
216 return true;
217Bad:
218 printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
219 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
220 p_head, p_tail, pipe->ring_size);
221 for (idx = 0; idx < pipe->ring_size; idx++)
222 printk(KERN_ERR "[%p %p %d %d]\n",
223 pipe->bufs[idx].ops,
224 pipe->bufs[idx].page,
225 pipe->bufs[idx].offset,
226 pipe->bufs[idx].len);
227 WARN_ON(1);
228 return false;
229}
230#else
231#define sanity(i) true
232#endif
233
234static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
235{
236 struct page *page = alloc_page(GFP_USER);
237 if (page) {
238 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
239 *buf = (struct pipe_buffer) {
240 .ops = &default_pipe_buf_ops,
241 .page = page,
242 .offset = 0,
243 .len = size
244 };
245 }
246 return page;
247}
248
249static void push_page(struct pipe_inode_info *pipe, struct page *page,
250 unsigned int offset, unsigned int size)
251{
252 struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
253 *buf = (struct pipe_buffer) {
254 .ops = &page_cache_pipe_buf_ops,
255 .page = page,
256 .offset = offset,
257 .len = size
258 };
259 get_page(page);
260}
261
262static inline int last_offset(const struct pipe_buffer *buf)
263{
264 if (buf->ops == &default_pipe_buf_ops)
265 return buf->len; // buf->offset is 0 for those
266 else
267 return -(buf->offset + buf->len);
268}
269
270static struct page *append_pipe(struct iov_iter *i, size_t size,
271 unsigned int *off)
272{
273 struct pipe_inode_info *pipe = i->pipe;
274 int offset = i->last_offset;
275 struct pipe_buffer *buf;
276 struct page *page;
277
278 if (offset > 0 && offset < PAGE_SIZE) {
279 // some space in the last buffer; add to it
280 buf = pipe_buf(pipe, pipe->head - 1);
281 size = min_t(size_t, size, PAGE_SIZE - offset);
282 buf->len += size;
283 i->last_offset += size;
284 i->count -= size;
285 *off = offset;
286 return buf->page;
287 }
288 // OK, we need a new buffer
289 *off = 0;
290 size = min_t(size_t, size, PAGE_SIZE);
291 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
292 return NULL;
293 page = push_anon(pipe, size);
294 if (!page)
295 return NULL;
296 i->head = pipe->head - 1;
297 i->last_offset = size;
298 i->count -= size;
299 return page;
300}
301
302static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
303 struct iov_iter *i)
304{
305 struct pipe_inode_info *pipe = i->pipe;
306 unsigned int head = pipe->head;
307
308 if (unlikely(bytes > i->count))
309 bytes = i->count;
310
311 if (unlikely(!bytes))
312 return 0;
313
314 if (!sanity(i))
315 return 0;
316
317 if (offset && i->last_offset == -offset) { // could we merge it?
318 struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
319 if (buf->page == page) {
320 buf->len += bytes;
321 i->last_offset -= bytes;
322 i->count -= bytes;
323 return bytes;
324 }
325 }
326 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
327 return 0;
328
329 push_page(pipe, page, offset, bytes);
330 i->last_offset = -(offset + bytes);
331 i->head = head;
332 i->count -= bytes;
333 return bytes;
334}
335
336/*
337 * fault_in_iov_iter_readable - fault in iov iterator for reading
338 * @i: iterator
339 * @size: maximum length
340 *
341 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
342 * @size. For each iovec, fault in each page that constitutes the iovec.
343 *
344 * Returns the number of bytes not faulted in (like copy_to_user() and
345 * copy_from_user()).
346 *
347 * Always returns 0 for non-userspace iterators.
348 */
349size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
350{
351 if (iter_is_ubuf(i)) {
352 size_t n = min(size, iov_iter_count(i));
353 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
354 return size - n;
355 } else if (iter_is_iovec(i)) {
356 size_t count = min(size, iov_iter_count(i));
357 const struct iovec *p;
358 size_t skip;
359
360 size -= count;
361 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
362 size_t len = min(count, p->iov_len - skip);
363 size_t ret;
364
365 if (unlikely(!len))
366 continue;
367 ret = fault_in_readable(p->iov_base + skip, len);
368 count -= len - ret;
369 if (ret)
370 break;
371 }
372 return count + size;
373 }
374 return 0;
375}
376EXPORT_SYMBOL(fault_in_iov_iter_readable);
377
378/*
379 * fault_in_iov_iter_writeable - fault in iov iterator for writing
380 * @i: iterator
381 * @size: maximum length
382 *
383 * Faults in the iterator using get_user_pages(), i.e., without triggering
384 * hardware page faults. This is primarily useful when we already know that
385 * some or all of the pages in @i aren't in memory.
386 *
387 * Returns the number of bytes not faulted in, like copy_to_user() and
388 * copy_from_user().
389 *
390 * Always returns 0 for non-user-space iterators.
391 */
392size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
393{
394 if (iter_is_ubuf(i)) {
395 size_t n = min(size, iov_iter_count(i));
396 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
397 return size - n;
398 } else if (iter_is_iovec(i)) {
399 size_t count = min(size, iov_iter_count(i));
400 const struct iovec *p;
401 size_t skip;
402
403 size -= count;
404 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
405 size_t len = min(count, p->iov_len - skip);
406 size_t ret;
407
408 if (unlikely(!len))
409 continue;
410 ret = fault_in_safe_writeable(p->iov_base + skip, len);
411 count -= len - ret;
412 if (ret)
413 break;
414 }
415 return count + size;
416 }
417 return 0;
418}
419EXPORT_SYMBOL(fault_in_iov_iter_writeable);
420
421void iov_iter_init(struct iov_iter *i, unsigned int direction,
422 const struct iovec *iov, unsigned long nr_segs,
423 size_t count)
424{
425 WARN_ON(direction & ~(READ | WRITE));
426 *i = (struct iov_iter) {
427 .iter_type = ITER_IOVEC,
428 .nofault = false,
429 .user_backed = true,
430 .data_source = direction,
431 .iov = iov,
432 .nr_segs = nr_segs,
433 .iov_offset = 0,
434 .count = count
435 };
436}
437EXPORT_SYMBOL(iov_iter_init);
438
439// returns the offset in partial buffer (if any)
440static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
441{
442 struct pipe_inode_info *pipe = i->pipe;
443 int used = pipe->head - pipe->tail;
444 int off = i->last_offset;
445
446 *npages = max((int)pipe->max_usage - used, 0);
447
448 if (off > 0 && off < PAGE_SIZE) { // anon and not full
449 (*npages)++;
450 return off;
451 }
452 return 0;
453}
454
455static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
456 struct iov_iter *i)
457{
458 unsigned int off, chunk;
459
460 if (unlikely(bytes > i->count))
461 bytes = i->count;
462 if (unlikely(!bytes))
463 return 0;
464
465 if (!sanity(i))
466 return 0;
467
468 for (size_t n = bytes; n; n -= chunk) {
469 struct page *page = append_pipe(i, n, &off);
470 chunk = min_t(size_t, n, PAGE_SIZE - off);
471 if (!page)
472 return bytes - n;
473 memcpy_to_page(page, off, addr, chunk);
474 addr += chunk;
475 }
476 return bytes;
477}
478
479static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
480 __wsum sum, size_t off)
481{
482 __wsum next = csum_partial_copy_nocheck(from, to, len);
483 return csum_block_add(sum, next, off);
484}
485
486static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
487 struct iov_iter *i, __wsum *sump)
488{
489 __wsum sum = *sump;
490 size_t off = 0;
491 unsigned int chunk, r;
492
493 if (unlikely(bytes > i->count))
494 bytes = i->count;
495 if (unlikely(!bytes))
496 return 0;
497
498 if (!sanity(i))
499 return 0;
500
501 while (bytes) {
502 struct page *page = append_pipe(i, bytes, &r);
503 char *p;
504
505 if (!page)
506 break;
507 chunk = min_t(size_t, bytes, PAGE_SIZE - r);
508 p = kmap_local_page(page);
509 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
510 kunmap_local(p);
511 off += chunk;
512 bytes -= chunk;
513 }
514 *sump = sum;
515 return off;
516}
517
518size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
519{
520 if (unlikely(iov_iter_is_pipe(i)))
521 return copy_pipe_to_iter(addr, bytes, i);
522 if (user_backed_iter(i))
523 might_fault();
524 iterate_and_advance(i, bytes, base, len, off,
525 copyout(base, addr + off, len),
526 memcpy(base, addr + off, len)
527 )
528
529 return bytes;
530}
531EXPORT_SYMBOL(_copy_to_iter);
532
533#ifdef CONFIG_ARCH_HAS_COPY_MC
534static int copyout_mc(void __user *to, const void *from, size_t n)
535{
536 if (access_ok(to, n)) {
537 instrument_copy_to_user(to, from, n);
538 n = copy_mc_to_user((__force void *) to, from, n);
539 }
540 return n;
541}
542
543static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
544 struct iov_iter *i)
545{
546 size_t xfer = 0;
547 unsigned int off, chunk;
548
549 if (unlikely(bytes > i->count))
550 bytes = i->count;
551 if (unlikely(!bytes))
552 return 0;
553
554 if (!sanity(i))
555 return 0;
556
557 while (bytes) {
558 struct page *page = append_pipe(i, bytes, &off);
559 unsigned long rem;
560 char *p;
561
562 if (!page)
563 break;
564 chunk = min_t(size_t, bytes, PAGE_SIZE - off);
565 p = kmap_local_page(page);
566 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
567 chunk -= rem;
568 kunmap_local(p);
569 xfer += chunk;
570 bytes -= chunk;
571 if (rem) {
572 iov_iter_revert(i, rem);
573 break;
574 }
575 }
576 return xfer;
577}
578
579/**
580 * _copy_mc_to_iter - copy to iter with source memory error exception handling
581 * @addr: source kernel address
582 * @bytes: total transfer length
583 * @i: destination iterator
584 *
585 * The pmem driver deploys this for the dax operation
586 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
587 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
588 * successfully copied.
589 *
590 * The main differences between this and typical _copy_to_iter().
591 *
592 * * Typical tail/residue handling after a fault retries the copy
593 * byte-by-byte until the fault happens again. Re-triggering machine
594 * checks is potentially fatal so the implementation uses source
595 * alignment and poison alignment assumptions to avoid re-triggering
596 * hardware exceptions.
597 *
598 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
599 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
600 * a short copy.
601 *
602 * Return: number of bytes copied (may be %0)
603 */
604size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
605{
606 if (unlikely(iov_iter_is_pipe(i)))
607 return copy_mc_pipe_to_iter(addr, bytes, i);
608 if (user_backed_iter(i))
609 might_fault();
610 __iterate_and_advance(i, bytes, base, len, off,
611 copyout_mc(base, addr + off, len),
612 copy_mc_to_kernel(base, addr + off, len)
613 )
614
615 return bytes;
616}
617EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
618#endif /* CONFIG_ARCH_HAS_COPY_MC */
619
620size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
621{
622 if (unlikely(iov_iter_is_pipe(i))) {
623 WARN_ON(1);
624 return 0;
625 }
626 if (user_backed_iter(i))
627 might_fault();
628 iterate_and_advance(i, bytes, base, len, off,
629 copyin(addr + off, base, len),
630 memcpy(addr + off, base, len)
631 )
632
633 return bytes;
634}
635EXPORT_SYMBOL(_copy_from_iter);
636
637size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
638{
639 if (unlikely(iov_iter_is_pipe(i))) {
640 WARN_ON(1);
641 return 0;
642 }
643 iterate_and_advance(i, bytes, base, len, off,
644 __copy_from_user_inatomic_nocache(addr + off, base, len),
645 memcpy(addr + off, base, len)
646 )
647
648 return bytes;
649}
650EXPORT_SYMBOL(_copy_from_iter_nocache);
651
652#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
653/**
654 * _copy_from_iter_flushcache - write destination through cpu cache
655 * @addr: destination kernel address
656 * @bytes: total transfer length
657 * @i: source iterator
658 *
659 * The pmem driver arranges for filesystem-dax to use this facility via
660 * dax_copy_from_iter() for ensuring that writes to persistent memory
661 * are flushed through the CPU cache. It is differentiated from
662 * _copy_from_iter_nocache() in that guarantees all data is flushed for
663 * all iterator types. The _copy_from_iter_nocache() only attempts to
664 * bypass the cache for the ITER_IOVEC case, and on some archs may use
665 * instructions that strand dirty-data in the cache.
666 *
667 * Return: number of bytes copied (may be %0)
668 */
669size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
670{
671 if (unlikely(iov_iter_is_pipe(i))) {
672 WARN_ON(1);
673 return 0;
674 }
675 iterate_and_advance(i, bytes, base, len, off,
676 __copy_from_user_flushcache(addr + off, base, len),
677 memcpy_flushcache(addr + off, base, len)
678 )
679
680 return bytes;
681}
682EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
683#endif
684
685static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
686{
687 struct page *head;
688 size_t v = n + offset;
689
690 /*
691 * The general case needs to access the page order in order
692 * to compute the page size.
693 * However, we mostly deal with order-0 pages and thus can
694 * avoid a possible cache line miss for requests that fit all
695 * page orders.
696 */
697 if (n <= v && v <= PAGE_SIZE)
698 return true;
699
700 head = compound_head(page);
701 v += (page - head) << PAGE_SHIFT;
702
703 if (likely(n <= v && v <= (page_size(head))))
704 return true;
705 WARN_ON(1);
706 return false;
707}
708
709size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
710 struct iov_iter *i)
711{
712 size_t res = 0;
713 if (unlikely(!page_copy_sane(page, offset, bytes)))
714 return 0;
715 if (unlikely(iov_iter_is_pipe(i)))
716 return copy_page_to_iter_pipe(page, offset, bytes, i);
717 page += offset / PAGE_SIZE; // first subpage
718 offset %= PAGE_SIZE;
719 while (1) {
720 void *kaddr = kmap_local_page(page);
721 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
722 n = _copy_to_iter(kaddr + offset, n, i);
723 kunmap_local(kaddr);
724 res += n;
725 bytes -= n;
726 if (!bytes || !n)
727 break;
728 offset += n;
729 if (offset == PAGE_SIZE) {
730 page++;
731 offset = 0;
732 }
733 }
734 return res;
735}
736EXPORT_SYMBOL(copy_page_to_iter);
737
738size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
739 struct iov_iter *i)
740{
741 size_t res = 0;
742 if (!page_copy_sane(page, offset, bytes))
743 return 0;
744 page += offset / PAGE_SIZE; // first subpage
745 offset %= PAGE_SIZE;
746 while (1) {
747 void *kaddr = kmap_local_page(page);
748 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
749 n = _copy_from_iter(kaddr + offset, n, i);
750 kunmap_local(kaddr);
751 res += n;
752 bytes -= n;
753 if (!bytes || !n)
754 break;
755 offset += n;
756 if (offset == PAGE_SIZE) {
757 page++;
758 offset = 0;
759 }
760 }
761 return res;
762}
763EXPORT_SYMBOL(copy_page_from_iter);
764
765static size_t pipe_zero(size_t bytes, struct iov_iter *i)
766{
767 unsigned int chunk, off;
768
769 if (unlikely(bytes > i->count))
770 bytes = i->count;
771 if (unlikely(!bytes))
772 return 0;
773
774 if (!sanity(i))
775 return 0;
776
777 for (size_t n = bytes; n; n -= chunk) {
778 struct page *page = append_pipe(i, n, &off);
779 char *p;
780
781 if (!page)
782 return bytes - n;
783 chunk = min_t(size_t, n, PAGE_SIZE - off);
784 p = kmap_local_page(page);
785 memset(p + off, 0, chunk);
786 kunmap_local(p);
787 }
788 return bytes;
789}
790
791size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
792{
793 if (unlikely(iov_iter_is_pipe(i)))
794 return pipe_zero(bytes, i);
795 iterate_and_advance(i, bytes, base, len, count,
796 clear_user(base, len),
797 memset(base, 0, len)
798 )
799
800 return bytes;
801}
802EXPORT_SYMBOL(iov_iter_zero);
803
804size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
805 struct iov_iter *i)
806{
807 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
808 if (unlikely(!page_copy_sane(page, offset, bytes))) {
809 kunmap_atomic(kaddr);
810 return 0;
811 }
812 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
813 kunmap_atomic(kaddr);
814 WARN_ON(1);
815 return 0;
816 }
817 iterate_and_advance(i, bytes, base, len, off,
818 copyin(p + off, base, len),
819 memcpy(p + off, base, len)
820 )
821 kunmap_atomic(kaddr);
822 return bytes;
823}
824EXPORT_SYMBOL(copy_page_from_iter_atomic);
825
826static void pipe_advance(struct iov_iter *i, size_t size)
827{
828 struct pipe_inode_info *pipe = i->pipe;
829 int off = i->last_offset;
830
831 if (!off && !size) {
832 pipe_discard_from(pipe, i->start_head); // discard everything
833 return;
834 }
835 i->count -= size;
836 while (1) {
837 struct pipe_buffer *buf = pipe_buf(pipe, i->head);
838 if (off) /* make it relative to the beginning of buffer */
839 size += abs(off) - buf->offset;
840 if (size <= buf->len) {
841 buf->len = size;
842 i->last_offset = last_offset(buf);
843 break;
844 }
845 size -= buf->len;
846 i->head++;
847 off = 0;
848 }
849 pipe_discard_from(pipe, i->head + 1); // discard everything past this one
850}
851
852static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
853{
854 const struct bio_vec *bvec, *end;
855
856 if (!i->count)
857 return;
858 i->count -= size;
859
860 size += i->iov_offset;
861
862 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
863 if (likely(size < bvec->bv_len))
864 break;
865 size -= bvec->bv_len;
866 }
867 i->iov_offset = size;
868 i->nr_segs -= bvec - i->bvec;
869 i->bvec = bvec;
870}
871
872static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
873{
874 const struct iovec *iov, *end;
875
876 if (!i->count)
877 return;
878 i->count -= size;
879
880 size += i->iov_offset; // from beginning of current segment
881 for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
882 if (likely(size < iov->iov_len))
883 break;
884 size -= iov->iov_len;
885 }
886 i->iov_offset = size;
887 i->nr_segs -= iov - i->iov;
888 i->iov = iov;
889}
890
891void iov_iter_advance(struct iov_iter *i, size_t size)
892{
893 if (unlikely(i->count < size))
894 size = i->count;
895 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
896 i->iov_offset += size;
897 i->count -= size;
898 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
899 /* iovec and kvec have identical layouts */
900 iov_iter_iovec_advance(i, size);
901 } else if (iov_iter_is_bvec(i)) {
902 iov_iter_bvec_advance(i, size);
903 } else if (iov_iter_is_pipe(i)) {
904 pipe_advance(i, size);
905 } else if (iov_iter_is_discard(i)) {
906 i->count -= size;
907 }
908}
909EXPORT_SYMBOL(iov_iter_advance);
910
911void iov_iter_revert(struct iov_iter *i, size_t unroll)
912{
913 if (!unroll)
914 return;
915 if (WARN_ON(unroll > MAX_RW_COUNT))
916 return;
917 i->count += unroll;
918 if (unlikely(iov_iter_is_pipe(i))) {
919 struct pipe_inode_info *pipe = i->pipe;
920 unsigned int head = pipe->head;
921
922 while (head > i->start_head) {
923 struct pipe_buffer *b = pipe_buf(pipe, --head);
924 if (unroll < b->len) {
925 b->len -= unroll;
926 i->last_offset = last_offset(b);
927 i->head = head;
928 return;
929 }
930 unroll -= b->len;
931 pipe_buf_release(pipe, b);
932 pipe->head--;
933 }
934 i->last_offset = 0;
935 i->head = head;
936 return;
937 }
938 if (unlikely(iov_iter_is_discard(i)))
939 return;
940 if (unroll <= i->iov_offset) {
941 i->iov_offset -= unroll;
942 return;
943 }
944 unroll -= i->iov_offset;
945 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
946 BUG(); /* We should never go beyond the start of the specified
947 * range since we might then be straying into pages that
948 * aren't pinned.
949 */
950 } else if (iov_iter_is_bvec(i)) {
951 const struct bio_vec *bvec = i->bvec;
952 while (1) {
953 size_t n = (--bvec)->bv_len;
954 i->nr_segs++;
955 if (unroll <= n) {
956 i->bvec = bvec;
957 i->iov_offset = n - unroll;
958 return;
959 }
960 unroll -= n;
961 }
962 } else { /* same logics for iovec and kvec */
963 const struct iovec *iov = i->iov;
964 while (1) {
965 size_t n = (--iov)->iov_len;
966 i->nr_segs++;
967 if (unroll <= n) {
968 i->iov = iov;
969 i->iov_offset = n - unroll;
970 return;
971 }
972 unroll -= n;
973 }
974 }
975}
976EXPORT_SYMBOL(iov_iter_revert);
977
978/*
979 * Return the count of just the current iov_iter segment.
980 */
981size_t iov_iter_single_seg_count(const struct iov_iter *i)
982{
983 if (i->nr_segs > 1) {
984 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
985 return min(i->count, i->iov->iov_len - i->iov_offset);
986 if (iov_iter_is_bvec(i))
987 return min(i->count, i->bvec->bv_len - i->iov_offset);
988 }
989 return i->count;
990}
991EXPORT_SYMBOL(iov_iter_single_seg_count);
992
993void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
994 const struct kvec *kvec, unsigned long nr_segs,
995 size_t count)
996{
997 WARN_ON(direction & ~(READ | WRITE));
998 *i = (struct iov_iter){
999 .iter_type = ITER_KVEC,
1000 .data_source = direction,
1001 .kvec = kvec,
1002 .nr_segs = nr_segs,
1003 .iov_offset = 0,
1004 .count = count
1005 };
1006}
1007EXPORT_SYMBOL(iov_iter_kvec);
1008
1009void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1010 const struct bio_vec *bvec, unsigned long nr_segs,
1011 size_t count)
1012{
1013 WARN_ON(direction & ~(READ | WRITE));
1014 *i = (struct iov_iter){
1015 .iter_type = ITER_BVEC,
1016 .data_source = direction,
1017 .bvec = bvec,
1018 .nr_segs = nr_segs,
1019 .iov_offset = 0,
1020 .count = count
1021 };
1022}
1023EXPORT_SYMBOL(iov_iter_bvec);
1024
1025void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1026 struct pipe_inode_info *pipe,
1027 size_t count)
1028{
1029 BUG_ON(direction != READ);
1030 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1031 *i = (struct iov_iter){
1032 .iter_type = ITER_PIPE,
1033 .data_source = false,
1034 .pipe = pipe,
1035 .head = pipe->head,
1036 .start_head = pipe->head,
1037 .last_offset = 0,
1038 .count = count
1039 };
1040}
1041EXPORT_SYMBOL(iov_iter_pipe);
1042
1043/**
1044 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1045 * @i: The iterator to initialise.
1046 * @direction: The direction of the transfer.
1047 * @xarray: The xarray to access.
1048 * @start: The start file position.
1049 * @count: The size of the I/O buffer in bytes.
1050 *
1051 * Set up an I/O iterator to either draw data out of the pages attached to an
1052 * inode or to inject data into those pages. The pages *must* be prevented
1053 * from evaporation, either by taking a ref on them or locking them by the
1054 * caller.
1055 */
1056void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1057 struct xarray *xarray, loff_t start, size_t count)
1058{
1059 BUG_ON(direction & ~1);
1060 *i = (struct iov_iter) {
1061 .iter_type = ITER_XARRAY,
1062 .data_source = direction,
1063 .xarray = xarray,
1064 .xarray_start = start,
1065 .count = count,
1066 .iov_offset = 0
1067 };
1068}
1069EXPORT_SYMBOL(iov_iter_xarray);
1070
1071/**
1072 * iov_iter_discard - Initialise an I/O iterator that discards data
1073 * @i: The iterator to initialise.
1074 * @direction: The direction of the transfer.
1075 * @count: The size of the I/O buffer in bytes.
1076 *
1077 * Set up an I/O iterator that just discards everything that's written to it.
1078 * It's only available as a READ iterator.
1079 */
1080void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1081{
1082 BUG_ON(direction != READ);
1083 *i = (struct iov_iter){
1084 .iter_type = ITER_DISCARD,
1085 .data_source = false,
1086 .count = count,
1087 .iov_offset = 0
1088 };
1089}
1090EXPORT_SYMBOL(iov_iter_discard);
1091
1092static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1093 unsigned len_mask)
1094{
1095 size_t size = i->count;
1096 size_t skip = i->iov_offset;
1097 unsigned k;
1098
1099 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1100 size_t len = i->iov[k].iov_len - skip;
1101
1102 if (len > size)
1103 len = size;
1104 if (len & len_mask)
1105 return false;
1106 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1107 return false;
1108
1109 size -= len;
1110 if (!size)
1111 break;
1112 }
1113 return true;
1114}
1115
1116static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1117 unsigned len_mask)
1118{
1119 size_t size = i->count;
1120 unsigned skip = i->iov_offset;
1121 unsigned k;
1122
1123 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1124 size_t len = i->bvec[k].bv_len - skip;
1125
1126 if (len > size)
1127 len = size;
1128 if (len & len_mask)
1129 return false;
1130 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1131 return false;
1132
1133 size -= len;
1134 if (!size)
1135 break;
1136 }
1137 return true;
1138}
1139
1140/**
1141 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1142 * are aligned to the parameters.
1143 *
1144 * @i: &struct iov_iter to restore
1145 * @addr_mask: bit mask to check against the iov element's addresses
1146 * @len_mask: bit mask to check against the iov element's lengths
1147 *
1148 * Return: false if any addresses or lengths intersect with the provided masks
1149 */
1150bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1151 unsigned len_mask)
1152{
1153 if (likely(iter_is_ubuf(i))) {
1154 if (i->count & len_mask)
1155 return false;
1156 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1157 return false;
1158 return true;
1159 }
1160
1161 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1162 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1163
1164 if (iov_iter_is_bvec(i))
1165 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1166
1167 if (iov_iter_is_pipe(i)) {
1168 size_t size = i->count;
1169
1170 if (size & len_mask)
1171 return false;
1172 if (size && i->last_offset > 0) {
1173 if (i->last_offset & addr_mask)
1174 return false;
1175 }
1176
1177 return true;
1178 }
1179
1180 if (iov_iter_is_xarray(i)) {
1181 if (i->count & len_mask)
1182 return false;
1183 if ((i->xarray_start + i->iov_offset) & addr_mask)
1184 return false;
1185 }
1186
1187 return true;
1188}
1189EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1190
1191static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1192{
1193 unsigned long res = 0;
1194 size_t size = i->count;
1195 size_t skip = i->iov_offset;
1196 unsigned k;
1197
1198 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1199 size_t len = i->iov[k].iov_len - skip;
1200 if (len) {
1201 res |= (unsigned long)i->iov[k].iov_base + skip;
1202 if (len > size)
1203 len = size;
1204 res |= len;
1205 size -= len;
1206 if (!size)
1207 break;
1208 }
1209 }
1210 return res;
1211}
1212
1213static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1214{
1215 unsigned res = 0;
1216 size_t size = i->count;
1217 unsigned skip = i->iov_offset;
1218 unsigned k;
1219
1220 for (k = 0; k < i->nr_segs; k++, skip = 0) {
1221 size_t len = i->bvec[k].bv_len - skip;
1222 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1223 if (len > size)
1224 len = size;
1225 res |= len;
1226 size -= len;
1227 if (!size)
1228 break;
1229 }
1230 return res;
1231}
1232
1233unsigned long iov_iter_alignment(const struct iov_iter *i)
1234{
1235 if (likely(iter_is_ubuf(i))) {
1236 size_t size = i->count;
1237 if (size)
1238 return ((unsigned long)i->ubuf + i->iov_offset) | size;
1239 return 0;
1240 }
1241
1242 /* iovec and kvec have identical layouts */
1243 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1244 return iov_iter_alignment_iovec(i);
1245
1246 if (iov_iter_is_bvec(i))
1247 return iov_iter_alignment_bvec(i);
1248
1249 if (iov_iter_is_pipe(i)) {
1250 size_t size = i->count;
1251
1252 if (size && i->last_offset > 0)
1253 return size | i->last_offset;
1254 return size;
1255 }
1256
1257 if (iov_iter_is_xarray(i))
1258 return (i->xarray_start + i->iov_offset) | i->count;
1259
1260 return 0;
1261}
1262EXPORT_SYMBOL(iov_iter_alignment);
1263
1264unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1265{
1266 unsigned long res = 0;
1267 unsigned long v = 0;
1268 size_t size = i->count;
1269 unsigned k;
1270
1271 if (iter_is_ubuf(i))
1272 return 0;
1273
1274 if (WARN_ON(!iter_is_iovec(i)))
1275 return ~0U;
1276
1277 for (k = 0; k < i->nr_segs; k++) {
1278 if (i->iov[k].iov_len) {
1279 unsigned long base = (unsigned long)i->iov[k].iov_base;
1280 if (v) // if not the first one
1281 res |= base | v; // this start | previous end
1282 v = base + i->iov[k].iov_len;
1283 if (size <= i->iov[k].iov_len)
1284 break;
1285 size -= i->iov[k].iov_len;
1286 }
1287 }
1288 return res;
1289}
1290EXPORT_SYMBOL(iov_iter_gap_alignment);
1291
1292static int want_pages_array(struct page ***res, size_t size,
1293 size_t start, unsigned int maxpages)
1294{
1295 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1296
1297 if (count > maxpages)
1298 count = maxpages;
1299 WARN_ON(!count); // caller should've prevented that
1300 if (!*res) {
1301 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1302 if (!*res)
1303 return 0;
1304 }
1305 return count;
1306}
1307
1308static ssize_t pipe_get_pages(struct iov_iter *i,
1309 struct page ***pages, size_t maxsize, unsigned maxpages,
1310 size_t *start)
1311{
1312 unsigned int npages, count, off, chunk;
1313 struct page **p;
1314 size_t left;
1315
1316 if (!sanity(i))
1317 return -EFAULT;
1318
1319 *start = off = pipe_npages(i, &npages);
1320 if (!npages)
1321 return -EFAULT;
1322 count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1323 if (!count)
1324 return -ENOMEM;
1325 p = *pages;
1326 for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1327 struct page *page = append_pipe(i, left, &off);
1328 if (!page)
1329 break;
1330 chunk = min_t(size_t, left, PAGE_SIZE - off);
1331 get_page(*p++ = page);
1332 }
1333 if (!npages)
1334 return -EFAULT;
1335 return maxsize - left;
1336}
1337
1338static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1339 pgoff_t index, unsigned int nr_pages)
1340{
1341 XA_STATE(xas, xa, index);
1342 struct page *page;
1343 unsigned int ret = 0;
1344
1345 rcu_read_lock();
1346 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1347 if (xas_retry(&xas, page))
1348 continue;
1349
1350 /* Has the page moved or been split? */
1351 if (unlikely(page != xas_reload(&xas))) {
1352 xas_reset(&xas);
1353 continue;
1354 }
1355
1356 pages[ret] = find_subpage(page, xas.xa_index);
1357 get_page(pages[ret]);
1358 if (++ret == nr_pages)
1359 break;
1360 }
1361 rcu_read_unlock();
1362 return ret;
1363}
1364
1365static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1366 struct page ***pages, size_t maxsize,
1367 unsigned maxpages, size_t *_start_offset)
1368{
1369 unsigned nr, offset, count;
1370 pgoff_t index;
1371 loff_t pos;
1372
1373 pos = i->xarray_start + i->iov_offset;
1374 index = pos >> PAGE_SHIFT;
1375 offset = pos & ~PAGE_MASK;
1376 *_start_offset = offset;
1377
1378 count = want_pages_array(pages, maxsize, offset, maxpages);
1379 if (!count)
1380 return -ENOMEM;
1381 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1382 if (nr == 0)
1383 return 0;
1384
1385 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1386 i->iov_offset += maxsize;
1387 i->count -= maxsize;
1388 return maxsize;
1389}
1390
1391/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1392static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1393{
1394 size_t skip;
1395 long k;
1396
1397 if (iter_is_ubuf(i))
1398 return (unsigned long)i->ubuf + i->iov_offset;
1399
1400 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1401 size_t len = i->iov[k].iov_len - skip;
1402
1403 if (unlikely(!len))
1404 continue;
1405 if (*size > len)
1406 *size = len;
1407 return (unsigned long)i->iov[k].iov_base + skip;
1408 }
1409 BUG(); // if it had been empty, we wouldn't get called
1410}
1411
1412/* must be done on non-empty ITER_BVEC one */
1413static struct page *first_bvec_segment(const struct iov_iter *i,
1414 size_t *size, size_t *start)
1415{
1416 struct page *page;
1417 size_t skip = i->iov_offset, len;
1418
1419 len = i->bvec->bv_len - skip;
1420 if (*size > len)
1421 *size = len;
1422 skip += i->bvec->bv_offset;
1423 page = i->bvec->bv_page + skip / PAGE_SIZE;
1424 *start = skip % PAGE_SIZE;
1425 return page;
1426}
1427
1428static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1429 struct page ***pages, size_t maxsize,
1430 unsigned int maxpages, size_t *start)
1431{
1432 unsigned int n;
1433
1434 if (maxsize > i->count)
1435 maxsize = i->count;
1436 if (!maxsize)
1437 return 0;
1438 if (maxsize > MAX_RW_COUNT)
1439 maxsize = MAX_RW_COUNT;
1440
1441 if (likely(user_backed_iter(i))) {
1442 unsigned int gup_flags = 0;
1443 unsigned long addr;
1444 int res;
1445
1446 if (iov_iter_rw(i) != WRITE)
1447 gup_flags |= FOLL_WRITE;
1448 if (i->nofault)
1449 gup_flags |= FOLL_NOFAULT;
1450
1451 addr = first_iovec_segment(i, &maxsize);
1452 *start = addr % PAGE_SIZE;
1453 addr &= PAGE_MASK;
1454 n = want_pages_array(pages, maxsize, *start, maxpages);
1455 if (!n)
1456 return -ENOMEM;
1457 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1458 if (unlikely(res <= 0))
1459 return res;
1460 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1461 iov_iter_advance(i, maxsize);
1462 return maxsize;
1463 }
1464 if (iov_iter_is_bvec(i)) {
1465 struct page **p;
1466 struct page *page;
1467
1468 page = first_bvec_segment(i, &maxsize, start);
1469 n = want_pages_array(pages, maxsize, *start, maxpages);
1470 if (!n)
1471 return -ENOMEM;
1472 p = *pages;
1473 for (int k = 0; k < n; k++)
1474 get_page(p[k] = page + k);
1475 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1476 i->count -= maxsize;
1477 i->iov_offset += maxsize;
1478 if (i->iov_offset == i->bvec->bv_len) {
1479 i->iov_offset = 0;
1480 i->bvec++;
1481 i->nr_segs--;
1482 }
1483 return maxsize;
1484 }
1485 if (iov_iter_is_pipe(i))
1486 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1487 if (iov_iter_is_xarray(i))
1488 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1489 return -EFAULT;
1490}
1491
1492ssize_t iov_iter_get_pages2(struct iov_iter *i,
1493 struct page **pages, size_t maxsize, unsigned maxpages,
1494 size_t *start)
1495{
1496 if (!maxpages)
1497 return 0;
1498 BUG_ON(!pages);
1499
1500 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1501}
1502EXPORT_SYMBOL(iov_iter_get_pages2);
1503
1504ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1505 struct page ***pages, size_t maxsize,
1506 size_t *start)
1507{
1508 ssize_t len;
1509
1510 *pages = NULL;
1511
1512 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1513 if (len <= 0) {
1514 kvfree(*pages);
1515 *pages = NULL;
1516 }
1517 return len;
1518}
1519EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1520
1521size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1522 struct iov_iter *i)
1523{
1524 __wsum sum, next;
1525 sum = *csum;
1526 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1527 WARN_ON(1);
1528 return 0;
1529 }
1530 iterate_and_advance(i, bytes, base, len, off, ({
1531 next = csum_and_copy_from_user(base, addr + off, len);
1532 sum = csum_block_add(sum, next, off);
1533 next ? 0 : len;
1534 }), ({
1535 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1536 })
1537 )
1538 *csum = sum;
1539 return bytes;
1540}
1541EXPORT_SYMBOL(csum_and_copy_from_iter);
1542
1543size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1544 struct iov_iter *i)
1545{
1546 struct csum_state *csstate = _csstate;
1547 __wsum sum, next;
1548
1549 if (unlikely(iov_iter_is_discard(i))) {
1550 WARN_ON(1); /* for now */
1551 return 0;
1552 }
1553
1554 sum = csum_shift(csstate->csum, csstate->off);
1555 if (unlikely(iov_iter_is_pipe(i)))
1556 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1557 else iterate_and_advance(i, bytes, base, len, off, ({
1558 next = csum_and_copy_to_user(addr + off, base, len);
1559 sum = csum_block_add(sum, next, off);
1560 next ? 0 : len;
1561 }), ({
1562 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1563 })
1564 )
1565 csstate->csum = csum_shift(sum, csstate->off);
1566 csstate->off += bytes;
1567 return bytes;
1568}
1569EXPORT_SYMBOL(csum_and_copy_to_iter);
1570
1571size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1572 struct iov_iter *i)
1573{
1574#ifdef CONFIG_CRYPTO_HASH
1575 struct ahash_request *hash = hashp;
1576 struct scatterlist sg;
1577 size_t copied;
1578
1579 copied = copy_to_iter(addr, bytes, i);
1580 sg_init_one(&sg, addr, copied);
1581 ahash_request_set_crypt(hash, &sg, NULL, copied);
1582 crypto_ahash_update(hash);
1583 return copied;
1584#else
1585 return 0;
1586#endif
1587}
1588EXPORT_SYMBOL(hash_and_copy_to_iter);
1589
1590static int iov_npages(const struct iov_iter *i, int maxpages)
1591{
1592 size_t skip = i->iov_offset, size = i->count;
1593 const struct iovec *p;
1594 int npages = 0;
1595
1596 for (p = i->iov; size; skip = 0, p++) {
1597 unsigned offs = offset_in_page(p->iov_base + skip);
1598 size_t len = min(p->iov_len - skip, size);
1599
1600 if (len) {
1601 size -= len;
1602 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1603 if (unlikely(npages > maxpages))
1604 return maxpages;
1605 }
1606 }
1607 return npages;
1608}
1609
1610static int bvec_npages(const struct iov_iter *i, int maxpages)
1611{
1612 size_t skip = i->iov_offset, size = i->count;
1613 const struct bio_vec *p;
1614 int npages = 0;
1615
1616 for (p = i->bvec; size; skip = 0, p++) {
1617 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1618 size_t len = min(p->bv_len - skip, size);
1619
1620 size -= len;
1621 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1622 if (unlikely(npages > maxpages))
1623 return maxpages;
1624 }
1625 return npages;
1626}
1627
1628int iov_iter_npages(const struct iov_iter *i, int maxpages)
1629{
1630 if (unlikely(!i->count))
1631 return 0;
1632 if (likely(iter_is_ubuf(i))) {
1633 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1634 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1635 return min(npages, maxpages);
1636 }
1637 /* iovec and kvec have identical layouts */
1638 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1639 return iov_npages(i, maxpages);
1640 if (iov_iter_is_bvec(i))
1641 return bvec_npages(i, maxpages);
1642 if (iov_iter_is_pipe(i)) {
1643 int npages;
1644
1645 if (!sanity(i))
1646 return 0;
1647
1648 pipe_npages(i, &npages);
1649 return min(npages, maxpages);
1650 }
1651 if (iov_iter_is_xarray(i)) {
1652 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1653 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1654 return min(npages, maxpages);
1655 }
1656 return 0;
1657}
1658EXPORT_SYMBOL(iov_iter_npages);
1659
1660const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1661{
1662 *new = *old;
1663 if (unlikely(iov_iter_is_pipe(new))) {
1664 WARN_ON(1);
1665 return NULL;
1666 }
1667 if (iov_iter_is_bvec(new))
1668 return new->bvec = kmemdup(new->bvec,
1669 new->nr_segs * sizeof(struct bio_vec),
1670 flags);
1671 else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1672 /* iovec and kvec have identical layout */
1673 return new->iov = kmemdup(new->iov,
1674 new->nr_segs * sizeof(struct iovec),
1675 flags);
1676 return NULL;
1677}
1678EXPORT_SYMBOL(dup_iter);
1679
1680static int copy_compat_iovec_from_user(struct iovec *iov,
1681 const struct iovec __user *uvec, unsigned long nr_segs)
1682{
1683 const struct compat_iovec __user *uiov =
1684 (const struct compat_iovec __user *)uvec;
1685 int ret = -EFAULT, i;
1686
1687 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1688 return -EFAULT;
1689
1690 for (i = 0; i < nr_segs; i++) {
1691 compat_uptr_t buf;
1692 compat_ssize_t len;
1693
1694 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1695 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1696
1697 /* check for compat_size_t not fitting in compat_ssize_t .. */
1698 if (len < 0) {
1699 ret = -EINVAL;
1700 goto uaccess_end;
1701 }
1702 iov[i].iov_base = compat_ptr(buf);
1703 iov[i].iov_len = len;
1704 }
1705
1706 ret = 0;
1707uaccess_end:
1708 user_access_end();
1709 return ret;
1710}
1711
1712static int copy_iovec_from_user(struct iovec *iov,
1713 const struct iovec __user *uvec, unsigned long nr_segs)
1714{
1715 unsigned long seg;
1716
1717 if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1718 return -EFAULT;
1719 for (seg = 0; seg < nr_segs; seg++) {
1720 if ((ssize_t)iov[seg].iov_len < 0)
1721 return -EINVAL;
1722 }
1723
1724 return 0;
1725}
1726
1727struct iovec *iovec_from_user(const struct iovec __user *uvec,
1728 unsigned long nr_segs, unsigned long fast_segs,
1729 struct iovec *fast_iov, bool compat)
1730{
1731 struct iovec *iov = fast_iov;
1732 int ret;
1733
1734 /*
1735 * SuS says "The readv() function *may* fail if the iovcnt argument was
1736 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1737 * traditionally returned zero for zero segments, so...
1738 */
1739 if (nr_segs == 0)
1740 return iov;
1741 if (nr_segs > UIO_MAXIOV)
1742 return ERR_PTR(-EINVAL);
1743 if (nr_segs > fast_segs) {
1744 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1745 if (!iov)
1746 return ERR_PTR(-ENOMEM);
1747 }
1748
1749 if (compat)
1750 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1751 else
1752 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1753 if (ret) {
1754 if (iov != fast_iov)
1755 kfree(iov);
1756 return ERR_PTR(ret);
1757 }
1758
1759 return iov;
1760}
1761
1762ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1763 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1764 struct iov_iter *i, bool compat)
1765{
1766 ssize_t total_len = 0;
1767 unsigned long seg;
1768 struct iovec *iov;
1769
1770 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1771 if (IS_ERR(iov)) {
1772 *iovp = NULL;
1773 return PTR_ERR(iov);
1774 }
1775
1776 /*
1777 * According to the Single Unix Specification we should return EINVAL if
1778 * an element length is < 0 when cast to ssize_t or if the total length
1779 * would overflow the ssize_t return value of the system call.
1780 *
1781 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1782 * overflow case.
1783 */
1784 for (seg = 0; seg < nr_segs; seg++) {
1785 ssize_t len = (ssize_t)iov[seg].iov_len;
1786
1787 if (!access_ok(iov[seg].iov_base, len)) {
1788 if (iov != *iovp)
1789 kfree(iov);
1790 *iovp = NULL;
1791 return -EFAULT;
1792 }
1793
1794 if (len > MAX_RW_COUNT - total_len) {
1795 len = MAX_RW_COUNT - total_len;
1796 iov[seg].iov_len = len;
1797 }
1798 total_len += len;
1799 }
1800
1801 iov_iter_init(i, type, iov, nr_segs, total_len);
1802 if (iov == *iovp)
1803 *iovp = NULL;
1804 else
1805 *iovp = iov;
1806 return total_len;
1807}
1808
1809/**
1810 * import_iovec() - Copy an array of &struct iovec from userspace
1811 * into the kernel, check that it is valid, and initialize a new
1812 * &struct iov_iter iterator to access it.
1813 *
1814 * @type: One of %READ or %WRITE.
1815 * @uvec: Pointer to the userspace array.
1816 * @nr_segs: Number of elements in userspace array.
1817 * @fast_segs: Number of elements in @iov.
1818 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1819 * on-stack) kernel array.
1820 * @i: Pointer to iterator that will be initialized on success.
1821 *
1822 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1823 * then this function places %NULL in *@iov on return. Otherwise, a new
1824 * array will be allocated and the result placed in *@iov. This means that
1825 * the caller may call kfree() on *@iov regardless of whether the small
1826 * on-stack array was used or not (and regardless of whether this function
1827 * returns an error or not).
1828 *
1829 * Return: Negative error code on error, bytes imported on success
1830 */
1831ssize_t import_iovec(int type, const struct iovec __user *uvec,
1832 unsigned nr_segs, unsigned fast_segs,
1833 struct iovec **iovp, struct iov_iter *i)
1834{
1835 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1836 in_compat_syscall());
1837}
1838EXPORT_SYMBOL(import_iovec);
1839
1840int import_single_range(int rw, void __user *buf, size_t len,
1841 struct iovec *iov, struct iov_iter *i)
1842{
1843 if (len > MAX_RW_COUNT)
1844 len = MAX_RW_COUNT;
1845 if (unlikely(!access_ok(buf, len)))
1846 return -EFAULT;
1847
1848 iov->iov_base = buf;
1849 iov->iov_len = len;
1850 iov_iter_init(i, rw, iov, 1, len);
1851 return 0;
1852}
1853EXPORT_SYMBOL(import_single_range);
1854
1855/**
1856 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1857 * iov_iter_save_state() was called.
1858 *
1859 * @i: &struct iov_iter to restore
1860 * @state: state to restore from
1861 *
1862 * Used after iov_iter_save_state() to bring restore @i, if operations may
1863 * have advanced it.
1864 *
1865 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1866 */
1867void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1868{
1869 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1870 !iov_iter_is_kvec(i) && !iter_is_ubuf(i))
1871 return;
1872 i->iov_offset = state->iov_offset;
1873 i->count = state->count;
1874 if (iter_is_ubuf(i))
1875 return;
1876 /*
1877 * For the *vec iters, nr_segs + iov is constant - if we increment
1878 * the vec, then we also decrement the nr_segs count. Hence we don't
1879 * need to track both of these, just one is enough and we can deduct
1880 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1881 * size, so we can just increment the iov pointer as they are unionzed.
1882 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1883 * not. Be safe and handle it separately.
1884 */
1885 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1886 if (iov_iter_is_bvec(i))
1887 i->bvec -= state->nr_segs - i->nr_segs;
1888 else
1889 i->iov -= state->nr_segs - i->nr_segs;
1890 i->nr_segs = state->nr_segs;
1891}