tidspbridge: convert to idr_alloc()
[linux-2.6-block.git] / lib / idr.c
... / ...
CommitLineData
1/*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
11 * Small id to pointer translation service.
12 *
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29#ifndef TEST // to test in user space...
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/export.h>
33#endif
34#include <linux/err.h>
35#include <linux/string.h>
36#include <linux/idr.h>
37#include <linux/spinlock.h>
38#include <linux/percpu.h>
39#include <linux/hardirq.h>
40
41#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
43
44/* Leave the possibility of an incomplete final layer */
45#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46
47/* Number of id_layer structs to leave in free list */
48#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49
50static struct kmem_cache *idr_layer_cache;
51static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52static DEFINE_PER_CPU(int, idr_preload_cnt);
53static DEFINE_SPINLOCK(simple_ida_lock);
54
55/* the maximum ID which can be allocated given idr->layers */
56static int idr_max(int layers)
57{
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59
60 return (1 << bits) - 1;
61}
62
63/*
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
66 * so on.
67 */
68static int idr_layer_prefix_mask(int layer)
69{
70 return ~idr_max(layer + 1);
71}
72
73static struct idr_layer *get_from_free_list(struct idr *idp)
74{
75 struct idr_layer *p;
76 unsigned long flags;
77
78 spin_lock_irqsave(&idp->lock, flags);
79 if ((p = idp->id_free)) {
80 idp->id_free = p->ary[0];
81 idp->id_free_cnt--;
82 p->ary[0] = NULL;
83 }
84 spin_unlock_irqrestore(&idp->lock, flags);
85 return(p);
86}
87
88/**
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
92 *
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
96 *
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
100 */
101static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102{
103 struct idr_layer *new;
104
105 /* this is the old path, bypass to get_from_free_list() */
106 if (layer_idr)
107 return get_from_free_list(layer_idr);
108
109 /* try to allocate directly from kmem_cache */
110 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
111 if (new)
112 return new;
113
114 /*
115 * Try to fetch one from the per-cpu preload buffer if in process
116 * context. See idr_preload() for details.
117 */
118 if (in_interrupt())
119 return NULL;
120
121 preempt_disable();
122 new = __this_cpu_read(idr_preload_head);
123 if (new) {
124 __this_cpu_write(idr_preload_head, new->ary[0]);
125 __this_cpu_dec(idr_preload_cnt);
126 new->ary[0] = NULL;
127 }
128 preempt_enable();
129 return new;
130}
131
132static void idr_layer_rcu_free(struct rcu_head *head)
133{
134 struct idr_layer *layer;
135
136 layer = container_of(head, struct idr_layer, rcu_head);
137 kmem_cache_free(idr_layer_cache, layer);
138}
139
140static inline void free_layer(struct idr *idr, struct idr_layer *p)
141{
142 if (idr->hint && idr->hint == p)
143 RCU_INIT_POINTER(idr->hint, NULL);
144 call_rcu(&p->rcu_head, idr_layer_rcu_free);
145}
146
147/* only called when idp->lock is held */
148static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
149{
150 p->ary[0] = idp->id_free;
151 idp->id_free = p;
152 idp->id_free_cnt++;
153}
154
155static void move_to_free_list(struct idr *idp, struct idr_layer *p)
156{
157 unsigned long flags;
158
159 /*
160 * Depends on the return element being zeroed.
161 */
162 spin_lock_irqsave(&idp->lock, flags);
163 __move_to_free_list(idp, p);
164 spin_unlock_irqrestore(&idp->lock, flags);
165}
166
167static void idr_mark_full(struct idr_layer **pa, int id)
168{
169 struct idr_layer *p = pa[0];
170 int l = 0;
171
172 __set_bit(id & IDR_MASK, p->bitmap);
173 /*
174 * If this layer is full mark the bit in the layer above to
175 * show that this part of the radix tree is full. This may
176 * complete the layer above and require walking up the radix
177 * tree.
178 */
179 while (bitmap_full(p->bitmap, IDR_SIZE)) {
180 if (!(p = pa[++l]))
181 break;
182 id = id >> IDR_BITS;
183 __set_bit((id & IDR_MASK), p->bitmap);
184 }
185}
186
187/**
188 * idr_pre_get - reserve resources for idr allocation
189 * @idp: idr handle
190 * @gfp_mask: memory allocation flags
191 *
192 * This function should be called prior to calling the idr_get_new* functions.
193 * It preallocates enough memory to satisfy the worst possible allocation. The
194 * caller should pass in GFP_KERNEL if possible. This of course requires that
195 * no spinning locks be held.
196 *
197 * If the system is REALLY out of memory this function returns %0,
198 * otherwise %1.
199 */
200int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
201{
202 while (idp->id_free_cnt < MAX_IDR_FREE) {
203 struct idr_layer *new;
204 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
205 if (new == NULL)
206 return (0);
207 move_to_free_list(idp, new);
208 }
209 return 1;
210}
211EXPORT_SYMBOL(idr_pre_get);
212
213/**
214 * sub_alloc - try to allocate an id without growing the tree depth
215 * @idp: idr handle
216 * @starting_id: id to start search at
217 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
218 * @gfp_mask: allocation mask for idr_layer_alloc()
219 * @layer_idr: optional idr passed to idr_layer_alloc()
220 *
221 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
222 * growing its depth. Returns
223 *
224 * the allocated id >= 0 if successful,
225 * -EAGAIN if the tree needs to grow for allocation to succeed,
226 * -ENOSPC if the id space is exhausted,
227 * -ENOMEM if more idr_layers need to be allocated.
228 */
229static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
230 gfp_t gfp_mask, struct idr *layer_idr)
231{
232 int n, m, sh;
233 struct idr_layer *p, *new;
234 int l, id, oid;
235
236 id = *starting_id;
237 restart:
238 p = idp->top;
239 l = idp->layers;
240 pa[l--] = NULL;
241 while (1) {
242 /*
243 * We run around this while until we reach the leaf node...
244 */
245 n = (id >> (IDR_BITS*l)) & IDR_MASK;
246 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
247 if (m == IDR_SIZE) {
248 /* no space available go back to previous layer. */
249 l++;
250 oid = id;
251 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
252
253 /* if already at the top layer, we need to grow */
254 if (id >= 1 << (idp->layers * IDR_BITS)) {
255 *starting_id = id;
256 return -EAGAIN;
257 }
258 p = pa[l];
259 BUG_ON(!p);
260
261 /* If we need to go up one layer, continue the
262 * loop; otherwise, restart from the top.
263 */
264 sh = IDR_BITS * (l + 1);
265 if (oid >> sh == id >> sh)
266 continue;
267 else
268 goto restart;
269 }
270 if (m != n) {
271 sh = IDR_BITS*l;
272 id = ((id >> sh) ^ n ^ m) << sh;
273 }
274 if ((id >= MAX_IDR_BIT) || (id < 0))
275 return -ENOSPC;
276 if (l == 0)
277 break;
278 /*
279 * Create the layer below if it is missing.
280 */
281 if (!p->ary[m]) {
282 new = idr_layer_alloc(gfp_mask, layer_idr);
283 if (!new)
284 return -ENOMEM;
285 new->layer = l-1;
286 new->prefix = id & idr_layer_prefix_mask(new->layer);
287 rcu_assign_pointer(p->ary[m], new);
288 p->count++;
289 }
290 pa[l--] = p;
291 p = p->ary[m];
292 }
293
294 pa[l] = p;
295 return id;
296}
297
298static int idr_get_empty_slot(struct idr *idp, int starting_id,
299 struct idr_layer **pa, gfp_t gfp_mask,
300 struct idr *layer_idr)
301{
302 struct idr_layer *p, *new;
303 int layers, v, id;
304 unsigned long flags;
305
306 id = starting_id;
307build_up:
308 p = idp->top;
309 layers = idp->layers;
310 if (unlikely(!p)) {
311 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
312 return -ENOMEM;
313 p->layer = 0;
314 layers = 1;
315 }
316 /*
317 * Add a new layer to the top of the tree if the requested
318 * id is larger than the currently allocated space.
319 */
320 while (id > idr_max(layers)) {
321 layers++;
322 if (!p->count) {
323 /* special case: if the tree is currently empty,
324 * then we grow the tree by moving the top node
325 * upwards.
326 */
327 p->layer++;
328 WARN_ON_ONCE(p->prefix);
329 continue;
330 }
331 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
332 /*
333 * The allocation failed. If we built part of
334 * the structure tear it down.
335 */
336 spin_lock_irqsave(&idp->lock, flags);
337 for (new = p; p && p != idp->top; new = p) {
338 p = p->ary[0];
339 new->ary[0] = NULL;
340 new->count = 0;
341 bitmap_clear(new->bitmap, 0, IDR_SIZE);
342 __move_to_free_list(idp, new);
343 }
344 spin_unlock_irqrestore(&idp->lock, flags);
345 return -ENOMEM;
346 }
347 new->ary[0] = p;
348 new->count = 1;
349 new->layer = layers-1;
350 new->prefix = id & idr_layer_prefix_mask(new->layer);
351 if (bitmap_full(p->bitmap, IDR_SIZE))
352 __set_bit(0, new->bitmap);
353 p = new;
354 }
355 rcu_assign_pointer(idp->top, p);
356 idp->layers = layers;
357 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
358 if (v == -EAGAIN)
359 goto build_up;
360 return(v);
361}
362
363/*
364 * @id and @pa are from a successful allocation from idr_get_empty_slot().
365 * Install the user pointer @ptr and mark the slot full.
366 */
367static void idr_fill_slot(struct idr *idr, void *ptr, int id,
368 struct idr_layer **pa)
369{
370 /* update hint used for lookup, cleared from free_layer() */
371 rcu_assign_pointer(idr->hint, pa[0]);
372
373 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
374 pa[0]->count++;
375 idr_mark_full(pa, id);
376}
377
378/**
379 * idr_get_new_above - allocate new idr entry above or equal to a start id
380 * @idp: idr handle
381 * @ptr: pointer you want associated with the id
382 * @starting_id: id to start search at
383 * @id: pointer to the allocated handle
384 *
385 * This is the allocate id function. It should be called with any
386 * required locks.
387 *
388 * If allocation from IDR's private freelist fails, idr_get_new_above() will
389 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
390 * IDR's preallocation and then retry the idr_get_new_above() call.
391 *
392 * If the idr is full idr_get_new_above() will return %-ENOSPC.
393 *
394 * @id returns a value in the range @starting_id ... %0x7fffffff
395 */
396int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
397{
398 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
399 int rv;
400
401 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
402 if (rv < 0)
403 return rv == -ENOMEM ? -EAGAIN : rv;
404
405 idr_fill_slot(idp, ptr, rv, pa);
406 *id = rv;
407 return 0;
408}
409EXPORT_SYMBOL(idr_get_new_above);
410
411/**
412 * idr_preload - preload for idr_alloc()
413 * @gfp_mask: allocation mask to use for preloading
414 *
415 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
416 * process context and each idr_preload() invocation should be matched with
417 * idr_preload_end(). Note that preemption is disabled while preloaded.
418 *
419 * The first idr_alloc() in the preloaded section can be treated as if it
420 * were invoked with @gfp_mask used for preloading. This allows using more
421 * permissive allocation masks for idrs protected by spinlocks.
422 *
423 * For example, if idr_alloc() below fails, the failure can be treated as
424 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
425 *
426 * idr_preload(GFP_KERNEL);
427 * spin_lock(lock);
428 *
429 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
430 *
431 * spin_unlock(lock);
432 * idr_preload_end();
433 * if (id < 0)
434 * error;
435 */
436void idr_preload(gfp_t gfp_mask)
437{
438 /*
439 * Consuming preload buffer from non-process context breaks preload
440 * allocation guarantee. Disallow usage from those contexts.
441 */
442 WARN_ON_ONCE(in_interrupt());
443 might_sleep_if(gfp_mask & __GFP_WAIT);
444
445 preempt_disable();
446
447 /*
448 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
449 * return value from idr_alloc() needs to be checked for failure
450 * anyway. Silently give up if allocation fails. The caller can
451 * treat failures from idr_alloc() as if idr_alloc() were called
452 * with @gfp_mask which should be enough.
453 */
454 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
455 struct idr_layer *new;
456
457 preempt_enable();
458 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
459 preempt_disable();
460 if (!new)
461 break;
462
463 /* link the new one to per-cpu preload list */
464 new->ary[0] = __this_cpu_read(idr_preload_head);
465 __this_cpu_write(idr_preload_head, new);
466 __this_cpu_inc(idr_preload_cnt);
467 }
468}
469EXPORT_SYMBOL(idr_preload);
470
471/**
472 * idr_alloc - allocate new idr entry
473 * @idr: the (initialized) idr
474 * @ptr: pointer to be associated with the new id
475 * @start: the minimum id (inclusive)
476 * @end: the maximum id (exclusive, <= 0 for max)
477 * @gfp_mask: memory allocation flags
478 *
479 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
480 * available in the specified range, returns -ENOSPC. On memory allocation
481 * failure, returns -ENOMEM.
482 *
483 * Note that @end is treated as max when <= 0. This is to always allow
484 * using @start + N as @end as long as N is inside integer range.
485 *
486 * The user is responsible for exclusively synchronizing all operations
487 * which may modify @idr. However, read-only accesses such as idr_find()
488 * or iteration can be performed under RCU read lock provided the user
489 * destroys @ptr in RCU-safe way after removal from idr.
490 */
491int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
492{
493 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
494 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
495 int id;
496
497 might_sleep_if(gfp_mask & __GFP_WAIT);
498
499 /* sanity checks */
500 if (WARN_ON_ONCE(start < 0))
501 return -EINVAL;
502 if (unlikely(max < start))
503 return -ENOSPC;
504
505 /* allocate id */
506 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
507 if (unlikely(id < 0))
508 return id;
509 if (unlikely(id > max))
510 return -ENOSPC;
511
512 idr_fill_slot(idr, ptr, id, pa);
513 return id;
514}
515EXPORT_SYMBOL_GPL(idr_alloc);
516
517static void idr_remove_warning(int id)
518{
519 printk(KERN_WARNING
520 "idr_remove called for id=%d which is not allocated.\n", id);
521 dump_stack();
522}
523
524static void sub_remove(struct idr *idp, int shift, int id)
525{
526 struct idr_layer *p = idp->top;
527 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
528 struct idr_layer ***paa = &pa[0];
529 struct idr_layer *to_free;
530 int n;
531
532 *paa = NULL;
533 *++paa = &idp->top;
534
535 while ((shift > 0) && p) {
536 n = (id >> shift) & IDR_MASK;
537 __clear_bit(n, p->bitmap);
538 *++paa = &p->ary[n];
539 p = p->ary[n];
540 shift -= IDR_BITS;
541 }
542 n = id & IDR_MASK;
543 if (likely(p != NULL && test_bit(n, p->bitmap))) {
544 __clear_bit(n, p->bitmap);
545 rcu_assign_pointer(p->ary[n], NULL);
546 to_free = NULL;
547 while(*paa && ! --((**paa)->count)){
548 if (to_free)
549 free_layer(idp, to_free);
550 to_free = **paa;
551 **paa-- = NULL;
552 }
553 if (!*paa)
554 idp->layers = 0;
555 if (to_free)
556 free_layer(idp, to_free);
557 } else
558 idr_remove_warning(id);
559}
560
561/**
562 * idr_remove - remove the given id and free its slot
563 * @idp: idr handle
564 * @id: unique key
565 */
566void idr_remove(struct idr *idp, int id)
567{
568 struct idr_layer *p;
569 struct idr_layer *to_free;
570
571 if (id < 0)
572 return;
573
574 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
575 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
576 idp->top->ary[0]) {
577 /*
578 * Single child at leftmost slot: we can shrink the tree.
579 * This level is not needed anymore since when layers are
580 * inserted, they are inserted at the top of the existing
581 * tree.
582 */
583 to_free = idp->top;
584 p = idp->top->ary[0];
585 rcu_assign_pointer(idp->top, p);
586 --idp->layers;
587 to_free->count = 0;
588 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
589 free_layer(idp, to_free);
590 }
591 while (idp->id_free_cnt >= MAX_IDR_FREE) {
592 p = get_from_free_list(idp);
593 /*
594 * Note: we don't call the rcu callback here, since the only
595 * layers that fall into the freelist are those that have been
596 * preallocated.
597 */
598 kmem_cache_free(idr_layer_cache, p);
599 }
600 return;
601}
602EXPORT_SYMBOL(idr_remove);
603
604void __idr_remove_all(struct idr *idp)
605{
606 int n, id, max;
607 int bt_mask;
608 struct idr_layer *p;
609 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
610 struct idr_layer **paa = &pa[0];
611
612 n = idp->layers * IDR_BITS;
613 p = idp->top;
614 rcu_assign_pointer(idp->top, NULL);
615 max = idr_max(idp->layers);
616
617 id = 0;
618 while (id >= 0 && id <= max) {
619 while (n > IDR_BITS && p) {
620 n -= IDR_BITS;
621 *paa++ = p;
622 p = p->ary[(id >> n) & IDR_MASK];
623 }
624
625 bt_mask = id;
626 id += 1 << n;
627 /* Get the highest bit that the above add changed from 0->1. */
628 while (n < fls(id ^ bt_mask)) {
629 if (p)
630 free_layer(idp, p);
631 n += IDR_BITS;
632 p = *--paa;
633 }
634 }
635 idp->layers = 0;
636}
637EXPORT_SYMBOL(__idr_remove_all);
638
639/**
640 * idr_destroy - release all cached layers within an idr tree
641 * @idp: idr handle
642 *
643 * Free all id mappings and all idp_layers. After this function, @idp is
644 * completely unused and can be freed / recycled. The caller is
645 * responsible for ensuring that no one else accesses @idp during or after
646 * idr_destroy().
647 *
648 * A typical clean-up sequence for objects stored in an idr tree will use
649 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
650 * free up the id mappings and cached idr_layers.
651 */
652void idr_destroy(struct idr *idp)
653{
654 __idr_remove_all(idp);
655
656 while (idp->id_free_cnt) {
657 struct idr_layer *p = get_from_free_list(idp);
658 kmem_cache_free(idr_layer_cache, p);
659 }
660}
661EXPORT_SYMBOL(idr_destroy);
662
663void *idr_find_slowpath(struct idr *idp, int id)
664{
665 int n;
666 struct idr_layer *p;
667
668 if (id < 0)
669 return NULL;
670
671 p = rcu_dereference_raw(idp->top);
672 if (!p)
673 return NULL;
674 n = (p->layer+1) * IDR_BITS;
675
676 if (id > idr_max(p->layer + 1))
677 return NULL;
678 BUG_ON(n == 0);
679
680 while (n > 0 && p) {
681 n -= IDR_BITS;
682 BUG_ON(n != p->layer*IDR_BITS);
683 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
684 }
685 return((void *)p);
686}
687EXPORT_SYMBOL(idr_find_slowpath);
688
689/**
690 * idr_for_each - iterate through all stored pointers
691 * @idp: idr handle
692 * @fn: function to be called for each pointer
693 * @data: data passed back to callback function
694 *
695 * Iterate over the pointers registered with the given idr. The
696 * callback function will be called for each pointer currently
697 * registered, passing the id, the pointer and the data pointer passed
698 * to this function. It is not safe to modify the idr tree while in
699 * the callback, so functions such as idr_get_new and idr_remove are
700 * not allowed.
701 *
702 * We check the return of @fn each time. If it returns anything other
703 * than %0, we break out and return that value.
704 *
705 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
706 */
707int idr_for_each(struct idr *idp,
708 int (*fn)(int id, void *p, void *data), void *data)
709{
710 int n, id, max, error = 0;
711 struct idr_layer *p;
712 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
713 struct idr_layer **paa = &pa[0];
714
715 n = idp->layers * IDR_BITS;
716 p = rcu_dereference_raw(idp->top);
717 max = idr_max(idp->layers);
718
719 id = 0;
720 while (id >= 0 && id <= max) {
721 while (n > 0 && p) {
722 n -= IDR_BITS;
723 *paa++ = p;
724 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
725 }
726
727 if (p) {
728 error = fn(id, (void *)p, data);
729 if (error)
730 break;
731 }
732
733 id += 1 << n;
734 while (n < fls(id)) {
735 n += IDR_BITS;
736 p = *--paa;
737 }
738 }
739
740 return error;
741}
742EXPORT_SYMBOL(idr_for_each);
743
744/**
745 * idr_get_next - lookup next object of id to given id.
746 * @idp: idr handle
747 * @nextidp: pointer to lookup key
748 *
749 * Returns pointer to registered object with id, which is next number to
750 * given id. After being looked up, *@nextidp will be updated for the next
751 * iteration.
752 *
753 * This function can be called under rcu_read_lock(), given that the leaf
754 * pointers lifetimes are correctly managed.
755 */
756void *idr_get_next(struct idr *idp, int *nextidp)
757{
758 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
759 struct idr_layer **paa = &pa[0];
760 int id = *nextidp;
761 int n, max;
762
763 /* find first ent */
764 p = rcu_dereference_raw(idp->top);
765 if (!p)
766 return NULL;
767 n = (p->layer + 1) * IDR_BITS;
768 max = idr_max(p->layer + 1);
769
770 while (id >= 0 && id <= max) {
771 while (n > 0 && p) {
772 n -= IDR_BITS;
773 *paa++ = p;
774 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
775 }
776
777 if (p) {
778 *nextidp = id;
779 return p;
780 }
781
782 /*
783 * Proceed to the next layer at the current level. Unlike
784 * idr_for_each(), @id isn't guaranteed to be aligned to
785 * layer boundary at this point and adding 1 << n may
786 * incorrectly skip IDs. Make sure we jump to the
787 * beginning of the next layer using round_up().
788 */
789 id = round_up(id + 1, 1 << n);
790 while (n < fls(id)) {
791 n += IDR_BITS;
792 p = *--paa;
793 }
794 }
795 return NULL;
796}
797EXPORT_SYMBOL(idr_get_next);
798
799
800/**
801 * idr_replace - replace pointer for given id
802 * @idp: idr handle
803 * @ptr: pointer you want associated with the id
804 * @id: lookup key
805 *
806 * Replace the pointer registered with an id and return the old value.
807 * A %-ENOENT return indicates that @id was not found.
808 * A %-EINVAL return indicates that @id was not within valid constraints.
809 *
810 * The caller must serialize with writers.
811 */
812void *idr_replace(struct idr *idp, void *ptr, int id)
813{
814 int n;
815 struct idr_layer *p, *old_p;
816
817 if (id < 0)
818 return ERR_PTR(-EINVAL);
819
820 p = idp->top;
821 if (!p)
822 return ERR_PTR(-EINVAL);
823
824 n = (p->layer+1) * IDR_BITS;
825
826 if (id >= (1 << n))
827 return ERR_PTR(-EINVAL);
828
829 n -= IDR_BITS;
830 while ((n > 0) && p) {
831 p = p->ary[(id >> n) & IDR_MASK];
832 n -= IDR_BITS;
833 }
834
835 n = id & IDR_MASK;
836 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
837 return ERR_PTR(-ENOENT);
838
839 old_p = p->ary[n];
840 rcu_assign_pointer(p->ary[n], ptr);
841
842 return old_p;
843}
844EXPORT_SYMBOL(idr_replace);
845
846void __init idr_init_cache(void)
847{
848 idr_layer_cache = kmem_cache_create("idr_layer_cache",
849 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
850}
851
852/**
853 * idr_init - initialize idr handle
854 * @idp: idr handle
855 *
856 * This function is use to set up the handle (@idp) that you will pass
857 * to the rest of the functions.
858 */
859void idr_init(struct idr *idp)
860{
861 memset(idp, 0, sizeof(struct idr));
862 spin_lock_init(&idp->lock);
863}
864EXPORT_SYMBOL(idr_init);
865
866
867/**
868 * DOC: IDA description
869 * IDA - IDR based ID allocator
870 *
871 * This is id allocator without id -> pointer translation. Memory
872 * usage is much lower than full blown idr because each id only
873 * occupies a bit. ida uses a custom leaf node which contains
874 * IDA_BITMAP_BITS slots.
875 *
876 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
877 */
878
879static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
880{
881 unsigned long flags;
882
883 if (!ida->free_bitmap) {
884 spin_lock_irqsave(&ida->idr.lock, flags);
885 if (!ida->free_bitmap) {
886 ida->free_bitmap = bitmap;
887 bitmap = NULL;
888 }
889 spin_unlock_irqrestore(&ida->idr.lock, flags);
890 }
891
892 kfree(bitmap);
893}
894
895/**
896 * ida_pre_get - reserve resources for ida allocation
897 * @ida: ida handle
898 * @gfp_mask: memory allocation flag
899 *
900 * This function should be called prior to locking and calling the
901 * following function. It preallocates enough memory to satisfy the
902 * worst possible allocation.
903 *
904 * If the system is REALLY out of memory this function returns %0,
905 * otherwise %1.
906 */
907int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
908{
909 /* allocate idr_layers */
910 if (!idr_pre_get(&ida->idr, gfp_mask))
911 return 0;
912
913 /* allocate free_bitmap */
914 if (!ida->free_bitmap) {
915 struct ida_bitmap *bitmap;
916
917 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
918 if (!bitmap)
919 return 0;
920
921 free_bitmap(ida, bitmap);
922 }
923
924 return 1;
925}
926EXPORT_SYMBOL(ida_pre_get);
927
928/**
929 * ida_get_new_above - allocate new ID above or equal to a start id
930 * @ida: ida handle
931 * @starting_id: id to start search at
932 * @p_id: pointer to the allocated handle
933 *
934 * Allocate new ID above or equal to @starting_id. It should be called
935 * with any required locks.
936 *
937 * If memory is required, it will return %-EAGAIN, you should unlock
938 * and go back to the ida_pre_get() call. If the ida is full, it will
939 * return %-ENOSPC.
940 *
941 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
942 */
943int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
944{
945 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
946 struct ida_bitmap *bitmap;
947 unsigned long flags;
948 int idr_id = starting_id / IDA_BITMAP_BITS;
949 int offset = starting_id % IDA_BITMAP_BITS;
950 int t, id;
951
952 restart:
953 /* get vacant slot */
954 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
955 if (t < 0)
956 return t == -ENOMEM ? -EAGAIN : t;
957
958 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
959 return -ENOSPC;
960
961 if (t != idr_id)
962 offset = 0;
963 idr_id = t;
964
965 /* if bitmap isn't there, create a new one */
966 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
967 if (!bitmap) {
968 spin_lock_irqsave(&ida->idr.lock, flags);
969 bitmap = ida->free_bitmap;
970 ida->free_bitmap = NULL;
971 spin_unlock_irqrestore(&ida->idr.lock, flags);
972
973 if (!bitmap)
974 return -EAGAIN;
975
976 memset(bitmap, 0, sizeof(struct ida_bitmap));
977 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
978 (void *)bitmap);
979 pa[0]->count++;
980 }
981
982 /* lookup for empty slot */
983 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
984 if (t == IDA_BITMAP_BITS) {
985 /* no empty slot after offset, continue to the next chunk */
986 idr_id++;
987 offset = 0;
988 goto restart;
989 }
990
991 id = idr_id * IDA_BITMAP_BITS + t;
992 if (id >= MAX_IDR_BIT)
993 return -ENOSPC;
994
995 __set_bit(t, bitmap->bitmap);
996 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
997 idr_mark_full(pa, idr_id);
998
999 *p_id = id;
1000
1001 /* Each leaf node can handle nearly a thousand slots and the
1002 * whole idea of ida is to have small memory foot print.
1003 * Throw away extra resources one by one after each successful
1004 * allocation.
1005 */
1006 if (ida->idr.id_free_cnt || ida->free_bitmap) {
1007 struct idr_layer *p = get_from_free_list(&ida->idr);
1008 if (p)
1009 kmem_cache_free(idr_layer_cache, p);
1010 }
1011
1012 return 0;
1013}
1014EXPORT_SYMBOL(ida_get_new_above);
1015
1016/**
1017 * ida_remove - remove the given ID
1018 * @ida: ida handle
1019 * @id: ID to free
1020 */
1021void ida_remove(struct ida *ida, int id)
1022{
1023 struct idr_layer *p = ida->idr.top;
1024 int shift = (ida->idr.layers - 1) * IDR_BITS;
1025 int idr_id = id / IDA_BITMAP_BITS;
1026 int offset = id % IDA_BITMAP_BITS;
1027 int n;
1028 struct ida_bitmap *bitmap;
1029
1030 /* clear full bits while looking up the leaf idr_layer */
1031 while ((shift > 0) && p) {
1032 n = (idr_id >> shift) & IDR_MASK;
1033 __clear_bit(n, p->bitmap);
1034 p = p->ary[n];
1035 shift -= IDR_BITS;
1036 }
1037
1038 if (p == NULL)
1039 goto err;
1040
1041 n = idr_id & IDR_MASK;
1042 __clear_bit(n, p->bitmap);
1043
1044 bitmap = (void *)p->ary[n];
1045 if (!test_bit(offset, bitmap->bitmap))
1046 goto err;
1047
1048 /* update bitmap and remove it if empty */
1049 __clear_bit(offset, bitmap->bitmap);
1050 if (--bitmap->nr_busy == 0) {
1051 __set_bit(n, p->bitmap); /* to please idr_remove() */
1052 idr_remove(&ida->idr, idr_id);
1053 free_bitmap(ida, bitmap);
1054 }
1055
1056 return;
1057
1058 err:
1059 printk(KERN_WARNING
1060 "ida_remove called for id=%d which is not allocated.\n", id);
1061}
1062EXPORT_SYMBOL(ida_remove);
1063
1064/**
1065 * ida_destroy - release all cached layers within an ida tree
1066 * @ida: ida handle
1067 */
1068void ida_destroy(struct ida *ida)
1069{
1070 idr_destroy(&ida->idr);
1071 kfree(ida->free_bitmap);
1072}
1073EXPORT_SYMBOL(ida_destroy);
1074
1075/**
1076 * ida_simple_get - get a new id.
1077 * @ida: the (initialized) ida.
1078 * @start: the minimum id (inclusive, < 0x8000000)
1079 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1080 * @gfp_mask: memory allocation flags
1081 *
1082 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1083 * On memory allocation failure, returns -ENOMEM.
1084 *
1085 * Use ida_simple_remove() to get rid of an id.
1086 */
1087int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1088 gfp_t gfp_mask)
1089{
1090 int ret, id;
1091 unsigned int max;
1092 unsigned long flags;
1093
1094 BUG_ON((int)start < 0);
1095 BUG_ON((int)end < 0);
1096
1097 if (end == 0)
1098 max = 0x80000000;
1099 else {
1100 BUG_ON(end < start);
1101 max = end - 1;
1102 }
1103
1104again:
1105 if (!ida_pre_get(ida, gfp_mask))
1106 return -ENOMEM;
1107
1108 spin_lock_irqsave(&simple_ida_lock, flags);
1109 ret = ida_get_new_above(ida, start, &id);
1110 if (!ret) {
1111 if (id > max) {
1112 ida_remove(ida, id);
1113 ret = -ENOSPC;
1114 } else {
1115 ret = id;
1116 }
1117 }
1118 spin_unlock_irqrestore(&simple_ida_lock, flags);
1119
1120 if (unlikely(ret == -EAGAIN))
1121 goto again;
1122
1123 return ret;
1124}
1125EXPORT_SYMBOL(ida_simple_get);
1126
1127/**
1128 * ida_simple_remove - remove an allocated id.
1129 * @ida: the (initialized) ida.
1130 * @id: the id returned by ida_simple_get.
1131 */
1132void ida_simple_remove(struct ida *ida, unsigned int id)
1133{
1134 unsigned long flags;
1135
1136 BUG_ON((int)id < 0);
1137 spin_lock_irqsave(&simple_ida_lock, flags);
1138 ida_remove(ida, id);
1139 spin_unlock_irqrestore(&simple_ida_lock, flags);
1140}
1141EXPORT_SYMBOL(ida_simple_remove);
1142
1143/**
1144 * ida_init - initialize ida handle
1145 * @ida: ida handle
1146 *
1147 * This function is use to set up the handle (@ida) that you will pass
1148 * to the rest of the functions.
1149 */
1150void ida_init(struct ida *ida)
1151{
1152 memset(ida, 0, sizeof(struct ida));
1153 idr_init(&ida->idr);
1154
1155}
1156EXPORT_SYMBOL(ida_init);