| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* bit search implementation |
| 3 | * |
| 4 | * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. |
| 5 | * Written by David Howells (dhowells@redhat.com) |
| 6 | * |
| 7 | * Copyright (C) 2008 IBM Corporation |
| 8 | * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au> |
| 9 | * (Inspired by David Howell's find_next_bit implementation) |
| 10 | * |
| 11 | * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease |
| 12 | * size and improve performance, 2015. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/bitops.h> |
| 16 | #include <linux/bitmap.h> |
| 17 | #include <linux/export.h> |
| 18 | #include <linux/math.h> |
| 19 | #include <linux/minmax.h> |
| 20 | #include <linux/swab.h> |
| 21 | #include <linux/random.h> |
| 22 | |
| 23 | /* |
| 24 | * Common helper for find_bit() function family |
| 25 | * @FETCH: The expression that fetches and pre-processes each word of bitmap(s) |
| 26 | * @MUNGE: The expression that post-processes a word containing found bit (may be empty) |
| 27 | * @size: The bitmap size in bits |
| 28 | */ |
| 29 | #define FIND_FIRST_BIT(FETCH, MUNGE, size) \ |
| 30 | ({ \ |
| 31 | unsigned long idx, val, sz = (size); \ |
| 32 | \ |
| 33 | for (idx = 0; idx * BITS_PER_LONG < sz; idx++) { \ |
| 34 | val = (FETCH); \ |
| 35 | if (val) { \ |
| 36 | sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz); \ |
| 37 | break; \ |
| 38 | } \ |
| 39 | } \ |
| 40 | \ |
| 41 | sz; \ |
| 42 | }) |
| 43 | |
| 44 | /* |
| 45 | * Common helper for find_next_bit() function family |
| 46 | * @FETCH: The expression that fetches and pre-processes each word of bitmap(s) |
| 47 | * @MUNGE: The expression that post-processes a word containing found bit (may be empty) |
| 48 | * @size: The bitmap size in bits |
| 49 | * @start: The bitnumber to start searching at |
| 50 | */ |
| 51 | #define FIND_NEXT_BIT(FETCH, MUNGE, size, start) \ |
| 52 | ({ \ |
| 53 | unsigned long mask, idx, tmp, sz = (size), __start = (start); \ |
| 54 | \ |
| 55 | if (unlikely(__start >= sz)) \ |
| 56 | goto out; \ |
| 57 | \ |
| 58 | mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start)); \ |
| 59 | idx = __start / BITS_PER_LONG; \ |
| 60 | \ |
| 61 | for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) { \ |
| 62 | if ((idx + 1) * BITS_PER_LONG >= sz) \ |
| 63 | goto out; \ |
| 64 | idx++; \ |
| 65 | } \ |
| 66 | \ |
| 67 | sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz); \ |
| 68 | out: \ |
| 69 | sz; \ |
| 70 | }) |
| 71 | |
| 72 | #define FIND_NTH_BIT(FETCH, size, num) \ |
| 73 | ({ \ |
| 74 | unsigned long sz = (size), nr = (num), idx, w, tmp; \ |
| 75 | \ |
| 76 | for (idx = 0; (idx + 1) * BITS_PER_LONG <= sz; idx++) { \ |
| 77 | if (idx * BITS_PER_LONG + nr >= sz) \ |
| 78 | goto out; \ |
| 79 | \ |
| 80 | tmp = (FETCH); \ |
| 81 | w = hweight_long(tmp); \ |
| 82 | if (w > nr) \ |
| 83 | goto found; \ |
| 84 | \ |
| 85 | nr -= w; \ |
| 86 | } \ |
| 87 | \ |
| 88 | if (sz % BITS_PER_LONG) \ |
| 89 | tmp = (FETCH) & BITMAP_LAST_WORD_MASK(sz); \ |
| 90 | found: \ |
| 91 | sz = idx * BITS_PER_LONG + fns(tmp, nr); \ |
| 92 | out: \ |
| 93 | sz; \ |
| 94 | }) |
| 95 | |
| 96 | #ifndef find_first_bit |
| 97 | /* |
| 98 | * Find the first set bit in a memory region. |
| 99 | */ |
| 100 | unsigned long _find_first_bit(const unsigned long *addr, unsigned long size) |
| 101 | { |
| 102 | return FIND_FIRST_BIT(addr[idx], /* nop */, size); |
| 103 | } |
| 104 | EXPORT_SYMBOL(_find_first_bit); |
| 105 | #endif |
| 106 | |
| 107 | #ifndef find_first_and_bit |
| 108 | /* |
| 109 | * Find the first set bit in two memory regions. |
| 110 | */ |
| 111 | unsigned long _find_first_and_bit(const unsigned long *addr1, |
| 112 | const unsigned long *addr2, |
| 113 | unsigned long size) |
| 114 | { |
| 115 | return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size); |
| 116 | } |
| 117 | EXPORT_SYMBOL(_find_first_and_bit); |
| 118 | #endif |
| 119 | |
| 120 | /* |
| 121 | * Find the first bit set in 1st memory region and unset in 2nd. |
| 122 | */ |
| 123 | unsigned long _find_first_andnot_bit(const unsigned long *addr1, |
| 124 | const unsigned long *addr2, |
| 125 | unsigned long size) |
| 126 | { |
| 127 | return FIND_FIRST_BIT(addr1[idx] & ~addr2[idx], /* nop */, size); |
| 128 | } |
| 129 | EXPORT_SYMBOL(_find_first_andnot_bit); |
| 130 | |
| 131 | /* |
| 132 | * Find the first set bit in three memory regions. |
| 133 | */ |
| 134 | unsigned long _find_first_and_and_bit(const unsigned long *addr1, |
| 135 | const unsigned long *addr2, |
| 136 | const unsigned long *addr3, |
| 137 | unsigned long size) |
| 138 | { |
| 139 | return FIND_FIRST_BIT(addr1[idx] & addr2[idx] & addr3[idx], /* nop */, size); |
| 140 | } |
| 141 | EXPORT_SYMBOL(_find_first_and_and_bit); |
| 142 | |
| 143 | #ifndef find_first_zero_bit |
| 144 | /* |
| 145 | * Find the first cleared bit in a memory region. |
| 146 | */ |
| 147 | unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size) |
| 148 | { |
| 149 | return FIND_FIRST_BIT(~addr[idx], /* nop */, size); |
| 150 | } |
| 151 | EXPORT_SYMBOL(_find_first_zero_bit); |
| 152 | #endif |
| 153 | |
| 154 | #ifndef find_next_bit |
| 155 | unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start) |
| 156 | { |
| 157 | return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start); |
| 158 | } |
| 159 | EXPORT_SYMBOL(_find_next_bit); |
| 160 | #endif |
| 161 | |
| 162 | unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n) |
| 163 | { |
| 164 | return FIND_NTH_BIT(addr[idx], size, n); |
| 165 | } |
| 166 | EXPORT_SYMBOL(__find_nth_bit); |
| 167 | |
| 168 | unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2, |
| 169 | unsigned long size, unsigned long n) |
| 170 | { |
| 171 | return FIND_NTH_BIT(addr1[idx] & addr2[idx], size, n); |
| 172 | } |
| 173 | EXPORT_SYMBOL(__find_nth_and_bit); |
| 174 | |
| 175 | unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, |
| 176 | unsigned long size, unsigned long n) |
| 177 | { |
| 178 | return FIND_NTH_BIT(addr1[idx] & ~addr2[idx], size, n); |
| 179 | } |
| 180 | EXPORT_SYMBOL(__find_nth_andnot_bit); |
| 181 | |
| 182 | unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1, |
| 183 | const unsigned long *addr2, |
| 184 | const unsigned long *addr3, |
| 185 | unsigned long size, unsigned long n) |
| 186 | { |
| 187 | return FIND_NTH_BIT(addr1[idx] & addr2[idx] & ~addr3[idx], size, n); |
| 188 | } |
| 189 | EXPORT_SYMBOL(__find_nth_and_andnot_bit); |
| 190 | |
| 191 | #ifndef find_next_and_bit |
| 192 | unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2, |
| 193 | unsigned long nbits, unsigned long start) |
| 194 | { |
| 195 | return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start); |
| 196 | } |
| 197 | EXPORT_SYMBOL(_find_next_and_bit); |
| 198 | #endif |
| 199 | |
| 200 | #ifndef find_next_andnot_bit |
| 201 | unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2, |
| 202 | unsigned long nbits, unsigned long start) |
| 203 | { |
| 204 | return FIND_NEXT_BIT(addr1[idx] & ~addr2[idx], /* nop */, nbits, start); |
| 205 | } |
| 206 | EXPORT_SYMBOL(_find_next_andnot_bit); |
| 207 | #endif |
| 208 | |
| 209 | #ifndef find_next_or_bit |
| 210 | unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2, |
| 211 | unsigned long nbits, unsigned long start) |
| 212 | { |
| 213 | return FIND_NEXT_BIT(addr1[idx] | addr2[idx], /* nop */, nbits, start); |
| 214 | } |
| 215 | EXPORT_SYMBOL(_find_next_or_bit); |
| 216 | #endif |
| 217 | |
| 218 | #ifndef find_next_zero_bit |
| 219 | unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits, |
| 220 | unsigned long start) |
| 221 | { |
| 222 | return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start); |
| 223 | } |
| 224 | EXPORT_SYMBOL(_find_next_zero_bit); |
| 225 | #endif |
| 226 | |
| 227 | #ifndef find_last_bit |
| 228 | unsigned long _find_last_bit(const unsigned long *addr, unsigned long size) |
| 229 | { |
| 230 | if (size) { |
| 231 | unsigned long val = BITMAP_LAST_WORD_MASK(size); |
| 232 | unsigned long idx = (size-1) / BITS_PER_LONG; |
| 233 | |
| 234 | do { |
| 235 | val &= addr[idx]; |
| 236 | if (val) |
| 237 | return idx * BITS_PER_LONG + __fls(val); |
| 238 | |
| 239 | val = ~0ul; |
| 240 | } while (idx--); |
| 241 | } |
| 242 | return size; |
| 243 | } |
| 244 | EXPORT_SYMBOL(_find_last_bit); |
| 245 | #endif |
| 246 | |
| 247 | unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr, |
| 248 | unsigned long size, unsigned long offset) |
| 249 | { |
| 250 | offset = find_next_bit(addr, size, offset); |
| 251 | if (offset == size) |
| 252 | return size; |
| 253 | |
| 254 | offset = round_down(offset, 8); |
| 255 | *clump = bitmap_get_value8(addr, offset); |
| 256 | |
| 257 | return offset; |
| 258 | } |
| 259 | EXPORT_SYMBOL(find_next_clump8); |
| 260 | |
| 261 | #ifdef __BIG_ENDIAN |
| 262 | |
| 263 | #ifndef find_first_zero_bit_le |
| 264 | /* |
| 265 | * Find the first cleared bit in an LE memory region. |
| 266 | */ |
| 267 | unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size) |
| 268 | { |
| 269 | return FIND_FIRST_BIT(~addr[idx], swab, size); |
| 270 | } |
| 271 | EXPORT_SYMBOL(_find_first_zero_bit_le); |
| 272 | |
| 273 | #endif |
| 274 | |
| 275 | #ifndef find_next_zero_bit_le |
| 276 | unsigned long _find_next_zero_bit_le(const unsigned long *addr, |
| 277 | unsigned long size, unsigned long offset) |
| 278 | { |
| 279 | return FIND_NEXT_BIT(~addr[idx], swab, size, offset); |
| 280 | } |
| 281 | EXPORT_SYMBOL(_find_next_zero_bit_le); |
| 282 | #endif |
| 283 | |
| 284 | #ifndef find_next_bit_le |
| 285 | unsigned long _find_next_bit_le(const unsigned long *addr, |
| 286 | unsigned long size, unsigned long offset) |
| 287 | { |
| 288 | return FIND_NEXT_BIT(addr[idx], swab, size, offset); |
| 289 | } |
| 290 | EXPORT_SYMBOL(_find_next_bit_le); |
| 291 | |
| 292 | #endif |
| 293 | |
| 294 | #endif /* __BIG_ENDIAN */ |
| 295 | |
| 296 | /** |
| 297 | * find_random_bit - find a set bit at random position |
| 298 | * @addr: The address to base the search on |
| 299 | * @size: The bitmap size in bits |
| 300 | * |
| 301 | * Returns: a position of a random set bit; >= @size otherwise |
| 302 | */ |
| 303 | unsigned long find_random_bit(const unsigned long *addr, unsigned long size) |
| 304 | { |
| 305 | int w = bitmap_weight(addr, size); |
| 306 | |
| 307 | switch (w) { |
| 308 | case 0: |
| 309 | return size; |
| 310 | case 1: |
| 311 | /* Performance trick for single-bit bitmaps */ |
| 312 | return find_first_bit(addr, size); |
| 313 | default: |
| 314 | return find_nth_bit(addr, size, get_random_u32_below(w)); |
| 315 | } |
| 316 | } |
| 317 | EXPORT_SYMBOL(find_random_bit); |