kernel/workqueue: Let rescuers follow unbound wq cpumask changes
[linux-2.6-block.git] / kernel / workqueue.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/interrupt.h>
33#include <linux/signal.h>
34#include <linux/completion.h>
35#include <linux/workqueue.h>
36#include <linux/slab.h>
37#include <linux/cpu.h>
38#include <linux/notifier.h>
39#include <linux/kthread.h>
40#include <linux/hardirq.h>
41#include <linux/mempolicy.h>
42#include <linux/freezer.h>
43#include <linux/debug_locks.h>
44#include <linux/lockdep.h>
45#include <linux/idr.h>
46#include <linux/jhash.h>
47#include <linux/hashtable.h>
48#include <linux/rculist.h>
49#include <linux/nodemask.h>
50#include <linux/moduleparam.h>
51#include <linux/uaccess.h>
52#include <linux/sched/isolation.h>
53#include <linux/sched/debug.h>
54#include <linux/nmi.h>
55#include <linux/kvm_para.h>
56#include <linux/delay.h>
57
58#include "workqueue_internal.h"
59
60enum worker_pool_flags {
61 /*
62 * worker_pool flags
63 *
64 * A bound pool is either associated or disassociated with its CPU.
65 * While associated (!DISASSOCIATED), all workers are bound to the
66 * CPU and none has %WORKER_UNBOUND set and concurrency management
67 * is in effect.
68 *
69 * While DISASSOCIATED, the cpu may be offline and all workers have
70 * %WORKER_UNBOUND set and concurrency management disabled, and may
71 * be executing on any CPU. The pool behaves as an unbound one.
72 *
73 * Note that DISASSOCIATED should be flipped only while holding
74 * wq_pool_attach_mutex to avoid changing binding state while
75 * worker_attach_to_pool() is in progress.
76 *
77 * As there can only be one concurrent BH execution context per CPU, a
78 * BH pool is per-CPU and always DISASSOCIATED.
79 */
80 POOL_BH = 1 << 0, /* is a BH pool */
81 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
82 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
83};
84
85enum worker_flags {
86 /* worker flags */
87 WORKER_DIE = 1 << 1, /* die die die */
88 WORKER_IDLE = 1 << 2, /* is idle */
89 WORKER_PREP = 1 << 3, /* preparing to run works */
90 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
91 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
92 WORKER_REBOUND = 1 << 8, /* worker was rebound */
93
94 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
95 WORKER_UNBOUND | WORKER_REBOUND,
96};
97
98enum wq_internal_consts {
99 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
100
101 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
102 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
103
104 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
105 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
106
107 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
108 /* call for help after 10ms
109 (min two ticks) */
110 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
111 CREATE_COOLDOWN = HZ, /* time to breath after fail */
112
113 /*
114 * Rescue workers are used only on emergencies and shared by
115 * all cpus. Give MIN_NICE.
116 */
117 RESCUER_NICE_LEVEL = MIN_NICE,
118 HIGHPRI_NICE_LEVEL = MIN_NICE,
119
120 WQ_NAME_LEN = 32,
121};
122
123/*
124 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
125 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
126 * msecs_to_jiffies() can't be an initializer.
127 */
128#define BH_WORKER_JIFFIES msecs_to_jiffies(2)
129#define BH_WORKER_RESTARTS 10
130
131/*
132 * Structure fields follow one of the following exclusion rules.
133 *
134 * I: Modifiable by initialization/destruction paths and read-only for
135 * everyone else.
136 *
137 * P: Preemption protected. Disabling preemption is enough and should
138 * only be modified and accessed from the local cpu.
139 *
140 * L: pool->lock protected. Access with pool->lock held.
141 *
142 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
143 * reads.
144 *
145 * K: Only modified by worker while holding pool->lock. Can be safely read by
146 * self, while holding pool->lock or from IRQ context if %current is the
147 * kworker.
148 *
149 * S: Only modified by worker self.
150 *
151 * A: wq_pool_attach_mutex protected.
152 *
153 * PL: wq_pool_mutex protected.
154 *
155 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
156 *
157 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
158 *
159 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
160 * RCU for reads.
161 *
162 * WQ: wq->mutex protected.
163 *
164 * WR: wq->mutex protected for writes. RCU protected for reads.
165 *
166 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
167 * with READ_ONCE() without locking.
168 *
169 * MD: wq_mayday_lock protected.
170 *
171 * WD: Used internally by the watchdog.
172 */
173
174/* struct worker is defined in workqueue_internal.h */
175
176struct worker_pool {
177 raw_spinlock_t lock; /* the pool lock */
178 int cpu; /* I: the associated cpu */
179 int node; /* I: the associated node ID */
180 int id; /* I: pool ID */
181 unsigned int flags; /* L: flags */
182
183 unsigned long watchdog_ts; /* L: watchdog timestamp */
184 bool cpu_stall; /* WD: stalled cpu bound pool */
185
186 /*
187 * The counter is incremented in a process context on the associated CPU
188 * w/ preemption disabled, and decremented or reset in the same context
189 * but w/ pool->lock held. The readers grab pool->lock and are
190 * guaranteed to see if the counter reached zero.
191 */
192 int nr_running;
193
194 struct list_head worklist; /* L: list of pending works */
195
196 int nr_workers; /* L: total number of workers */
197 int nr_idle; /* L: currently idle workers */
198
199 struct list_head idle_list; /* L: list of idle workers */
200 struct timer_list idle_timer; /* L: worker idle timeout */
201 struct work_struct idle_cull_work; /* L: worker idle cleanup */
202
203 struct timer_list mayday_timer; /* L: SOS timer for workers */
204
205 /* a workers is either on busy_hash or idle_list, or the manager */
206 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
207 /* L: hash of busy workers */
208
209 struct worker *manager; /* L: purely informational */
210 struct list_head workers; /* A: attached workers */
211 struct list_head dying_workers; /* A: workers about to die */
212 struct completion *detach_completion; /* all workers detached */
213
214 struct ida worker_ida; /* worker IDs for task name */
215
216 struct workqueue_attrs *attrs; /* I: worker attributes */
217 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
218 int refcnt; /* PL: refcnt for unbound pools */
219
220 /*
221 * Destruction of pool is RCU protected to allow dereferences
222 * from get_work_pool().
223 */
224 struct rcu_head rcu;
225};
226
227/*
228 * Per-pool_workqueue statistics. These can be monitored using
229 * tools/workqueue/wq_monitor.py.
230 */
231enum pool_workqueue_stats {
232 PWQ_STAT_STARTED, /* work items started execution */
233 PWQ_STAT_COMPLETED, /* work items completed execution */
234 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
235 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
236 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
237 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
238 PWQ_STAT_MAYDAY, /* maydays to rescuer */
239 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
240
241 PWQ_NR_STATS,
242};
243
244/*
245 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
246 * of work_struct->data are used for flags and the remaining high bits
247 * point to the pwq; thus, pwqs need to be aligned at two's power of the
248 * number of flag bits.
249 */
250struct pool_workqueue {
251 struct worker_pool *pool; /* I: the associated pool */
252 struct workqueue_struct *wq; /* I: the owning workqueue */
253 int work_color; /* L: current color */
254 int flush_color; /* L: flushing color */
255 int refcnt; /* L: reference count */
256 int nr_in_flight[WORK_NR_COLORS];
257 /* L: nr of in_flight works */
258 bool plugged; /* L: execution suspended */
259
260 /*
261 * nr_active management and WORK_STRUCT_INACTIVE:
262 *
263 * When pwq->nr_active >= max_active, new work item is queued to
264 * pwq->inactive_works instead of pool->worklist and marked with
265 * WORK_STRUCT_INACTIVE.
266 *
267 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
268 * nr_active and all work items in pwq->inactive_works are marked with
269 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
270 * in pwq->inactive_works. Some of them are ready to run in
271 * pool->worklist or worker->scheduled. Those work itmes are only struct
272 * wq_barrier which is used for flush_work() and should not participate
273 * in nr_active. For non-barrier work item, it is marked with
274 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
275 */
276 int nr_active; /* L: nr of active works */
277 struct list_head inactive_works; /* L: inactive works */
278 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
279 struct list_head pwqs_node; /* WR: node on wq->pwqs */
280 struct list_head mayday_node; /* MD: node on wq->maydays */
281
282 u64 stats[PWQ_NR_STATS];
283
284 /*
285 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
286 * and pwq_release_workfn() for details. pool_workqueue itself is also
287 * RCU protected so that the first pwq can be determined without
288 * grabbing wq->mutex.
289 */
290 struct kthread_work release_work;
291 struct rcu_head rcu;
292} __aligned(1 << WORK_STRUCT_FLAG_BITS);
293
294/*
295 * Structure used to wait for workqueue flush.
296 */
297struct wq_flusher {
298 struct list_head list; /* WQ: list of flushers */
299 int flush_color; /* WQ: flush color waiting for */
300 struct completion done; /* flush completion */
301};
302
303struct wq_device;
304
305/*
306 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
307 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
308 * As sharing a single nr_active across multiple sockets can be very expensive,
309 * the counting and enforcement is per NUMA node.
310 *
311 * The following struct is used to enforce per-node max_active. When a pwq wants
312 * to start executing a work item, it should increment ->nr using
313 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
314 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
315 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
316 * round-robin order.
317 */
318struct wq_node_nr_active {
319 int max; /* per-node max_active */
320 atomic_t nr; /* per-node nr_active */
321 raw_spinlock_t lock; /* nests inside pool locks */
322 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
323};
324
325/*
326 * The externally visible workqueue. It relays the issued work items to
327 * the appropriate worker_pool through its pool_workqueues.
328 */
329struct workqueue_struct {
330 struct list_head pwqs; /* WR: all pwqs of this wq */
331 struct list_head list; /* PR: list of all workqueues */
332
333 struct mutex mutex; /* protects this wq */
334 int work_color; /* WQ: current work color */
335 int flush_color; /* WQ: current flush color */
336 atomic_t nr_pwqs_to_flush; /* flush in progress */
337 struct wq_flusher *first_flusher; /* WQ: first flusher */
338 struct list_head flusher_queue; /* WQ: flush waiters */
339 struct list_head flusher_overflow; /* WQ: flush overflow list */
340
341 struct list_head maydays; /* MD: pwqs requesting rescue */
342 struct worker *rescuer; /* MD: rescue worker */
343
344 int nr_drainers; /* WQ: drain in progress */
345
346 /* See alloc_workqueue() function comment for info on min/max_active */
347 int max_active; /* WO: max active works */
348 int min_active; /* WO: min active works */
349 int saved_max_active; /* WQ: saved max_active */
350 int saved_min_active; /* WQ: saved min_active */
351
352 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
353 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
354
355#ifdef CONFIG_SYSFS
356 struct wq_device *wq_dev; /* I: for sysfs interface */
357#endif
358#ifdef CONFIG_LOCKDEP
359 char *lock_name;
360 struct lock_class_key key;
361 struct lockdep_map lockdep_map;
362#endif
363 char name[WQ_NAME_LEN]; /* I: workqueue name */
364
365 /*
366 * Destruction of workqueue_struct is RCU protected to allow walking
367 * the workqueues list without grabbing wq_pool_mutex.
368 * This is used to dump all workqueues from sysrq.
369 */
370 struct rcu_head rcu;
371
372 /* hot fields used during command issue, aligned to cacheline */
373 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
374 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
375 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
376};
377
378static struct kmem_cache *pwq_cache;
379
380/*
381 * Each pod type describes how CPUs should be grouped for unbound workqueues.
382 * See the comment above workqueue_attrs->affn_scope.
383 */
384struct wq_pod_type {
385 int nr_pods; /* number of pods */
386 cpumask_var_t *pod_cpus; /* pod -> cpus */
387 int *pod_node; /* pod -> node */
388 int *cpu_pod; /* cpu -> pod */
389};
390
391static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
392static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
393
394static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
395 [WQ_AFFN_DFL] = "default",
396 [WQ_AFFN_CPU] = "cpu",
397 [WQ_AFFN_SMT] = "smt",
398 [WQ_AFFN_CACHE] = "cache",
399 [WQ_AFFN_NUMA] = "numa",
400 [WQ_AFFN_SYSTEM] = "system",
401};
402
403static bool wq_topo_initialized __read_mostly = false;
404
405/*
406 * Per-cpu work items which run for longer than the following threshold are
407 * automatically considered CPU intensive and excluded from concurrency
408 * management to prevent them from noticeably delaying other per-cpu work items.
409 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
410 * The actual value is initialized in wq_cpu_intensive_thresh_init().
411 */
412static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
413module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
414
415/* see the comment above the definition of WQ_POWER_EFFICIENT */
416static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
417module_param_named(power_efficient, wq_power_efficient, bool, 0444);
418
419static bool wq_online; /* can kworkers be created yet? */
420
421/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
422static struct workqueue_attrs *wq_update_pod_attrs_buf;
423
424static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
425static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
426static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
427/* wait for manager to go away */
428static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
429
430static LIST_HEAD(workqueues); /* PR: list of all workqueues */
431static bool workqueue_freezing; /* PL: have wqs started freezing? */
432
433/* PL&A: allowable cpus for unbound wqs and work items */
434static cpumask_var_t wq_unbound_cpumask;
435
436/* PL: user requested unbound cpumask via sysfs */
437static cpumask_var_t wq_requested_unbound_cpumask;
438
439/* PL: isolated cpumask to be excluded from unbound cpumask */
440static cpumask_var_t wq_isolated_cpumask;
441
442/* for further constrain wq_unbound_cpumask by cmdline parameter*/
443static struct cpumask wq_cmdline_cpumask __initdata;
444
445/* CPU where unbound work was last round robin scheduled from this CPU */
446static DEFINE_PER_CPU(int, wq_rr_cpu_last);
447
448/*
449 * Local execution of unbound work items is no longer guaranteed. The
450 * following always forces round-robin CPU selection on unbound work items
451 * to uncover usages which depend on it.
452 */
453#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
454static bool wq_debug_force_rr_cpu = true;
455#else
456static bool wq_debug_force_rr_cpu = false;
457#endif
458module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
459
460/* the BH worker pools */
461static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
462 bh_worker_pools);
463
464/* the per-cpu worker pools */
465static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
466 cpu_worker_pools);
467
468static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
469
470/* PL: hash of all unbound pools keyed by pool->attrs */
471static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
472
473/* I: attributes used when instantiating standard unbound pools on demand */
474static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
475
476/* I: attributes used when instantiating ordered pools on demand */
477static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
478
479/*
480 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
481 * process context while holding a pool lock. Bounce to a dedicated kthread
482 * worker to avoid A-A deadlocks.
483 */
484static struct kthread_worker *pwq_release_worker __ro_after_init;
485
486struct workqueue_struct *system_wq __ro_after_init;
487EXPORT_SYMBOL(system_wq);
488struct workqueue_struct *system_highpri_wq __ro_after_init;
489EXPORT_SYMBOL_GPL(system_highpri_wq);
490struct workqueue_struct *system_long_wq __ro_after_init;
491EXPORT_SYMBOL_GPL(system_long_wq);
492struct workqueue_struct *system_unbound_wq __ro_after_init;
493EXPORT_SYMBOL_GPL(system_unbound_wq);
494struct workqueue_struct *system_freezable_wq __ro_after_init;
495EXPORT_SYMBOL_GPL(system_freezable_wq);
496struct workqueue_struct *system_power_efficient_wq __ro_after_init;
497EXPORT_SYMBOL_GPL(system_power_efficient_wq);
498struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
499EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
500struct workqueue_struct *system_bh_wq;
501EXPORT_SYMBOL_GPL(system_bh_wq);
502struct workqueue_struct *system_bh_highpri_wq;
503EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
504
505static int worker_thread(void *__worker);
506static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
507static void show_pwq(struct pool_workqueue *pwq);
508static void show_one_worker_pool(struct worker_pool *pool);
509
510#define CREATE_TRACE_POINTS
511#include <trace/events/workqueue.h>
512
513#define assert_rcu_or_pool_mutex() \
514 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
515 !lockdep_is_held(&wq_pool_mutex), \
516 "RCU or wq_pool_mutex should be held")
517
518#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
519 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
520 !lockdep_is_held(&wq->mutex) && \
521 !lockdep_is_held(&wq_pool_mutex), \
522 "RCU, wq->mutex or wq_pool_mutex should be held")
523
524#define for_each_bh_worker_pool(pool, cpu) \
525 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
526 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
527 (pool)++)
528
529#define for_each_cpu_worker_pool(pool, cpu) \
530 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
531 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
532 (pool)++)
533
534/**
535 * for_each_pool - iterate through all worker_pools in the system
536 * @pool: iteration cursor
537 * @pi: integer used for iteration
538 *
539 * This must be called either with wq_pool_mutex held or RCU read
540 * locked. If the pool needs to be used beyond the locking in effect, the
541 * caller is responsible for guaranteeing that the pool stays online.
542 *
543 * The if/else clause exists only for the lockdep assertion and can be
544 * ignored.
545 */
546#define for_each_pool(pool, pi) \
547 idr_for_each_entry(&worker_pool_idr, pool, pi) \
548 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
549 else
550
551/**
552 * for_each_pool_worker - iterate through all workers of a worker_pool
553 * @worker: iteration cursor
554 * @pool: worker_pool to iterate workers of
555 *
556 * This must be called with wq_pool_attach_mutex.
557 *
558 * The if/else clause exists only for the lockdep assertion and can be
559 * ignored.
560 */
561#define for_each_pool_worker(worker, pool) \
562 list_for_each_entry((worker), &(pool)->workers, node) \
563 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
564 else
565
566/**
567 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
568 * @pwq: iteration cursor
569 * @wq: the target workqueue
570 *
571 * This must be called either with wq->mutex held or RCU read locked.
572 * If the pwq needs to be used beyond the locking in effect, the caller is
573 * responsible for guaranteeing that the pwq stays online.
574 *
575 * The if/else clause exists only for the lockdep assertion and can be
576 * ignored.
577 */
578#define for_each_pwq(pwq, wq) \
579 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
580 lockdep_is_held(&(wq->mutex)))
581
582#ifdef CONFIG_DEBUG_OBJECTS_WORK
583
584static const struct debug_obj_descr work_debug_descr;
585
586static void *work_debug_hint(void *addr)
587{
588 return ((struct work_struct *) addr)->func;
589}
590
591static bool work_is_static_object(void *addr)
592{
593 struct work_struct *work = addr;
594
595 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
596}
597
598/*
599 * fixup_init is called when:
600 * - an active object is initialized
601 */
602static bool work_fixup_init(void *addr, enum debug_obj_state state)
603{
604 struct work_struct *work = addr;
605
606 switch (state) {
607 case ODEBUG_STATE_ACTIVE:
608 cancel_work_sync(work);
609 debug_object_init(work, &work_debug_descr);
610 return true;
611 default:
612 return false;
613 }
614}
615
616/*
617 * fixup_free is called when:
618 * - an active object is freed
619 */
620static bool work_fixup_free(void *addr, enum debug_obj_state state)
621{
622 struct work_struct *work = addr;
623
624 switch (state) {
625 case ODEBUG_STATE_ACTIVE:
626 cancel_work_sync(work);
627 debug_object_free(work, &work_debug_descr);
628 return true;
629 default:
630 return false;
631 }
632}
633
634static const struct debug_obj_descr work_debug_descr = {
635 .name = "work_struct",
636 .debug_hint = work_debug_hint,
637 .is_static_object = work_is_static_object,
638 .fixup_init = work_fixup_init,
639 .fixup_free = work_fixup_free,
640};
641
642static inline void debug_work_activate(struct work_struct *work)
643{
644 debug_object_activate(work, &work_debug_descr);
645}
646
647static inline void debug_work_deactivate(struct work_struct *work)
648{
649 debug_object_deactivate(work, &work_debug_descr);
650}
651
652void __init_work(struct work_struct *work, int onstack)
653{
654 if (onstack)
655 debug_object_init_on_stack(work, &work_debug_descr);
656 else
657 debug_object_init(work, &work_debug_descr);
658}
659EXPORT_SYMBOL_GPL(__init_work);
660
661void destroy_work_on_stack(struct work_struct *work)
662{
663 debug_object_free(work, &work_debug_descr);
664}
665EXPORT_SYMBOL_GPL(destroy_work_on_stack);
666
667void destroy_delayed_work_on_stack(struct delayed_work *work)
668{
669 destroy_timer_on_stack(&work->timer);
670 debug_object_free(&work->work, &work_debug_descr);
671}
672EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
673
674#else
675static inline void debug_work_activate(struct work_struct *work) { }
676static inline void debug_work_deactivate(struct work_struct *work) { }
677#endif
678
679/**
680 * worker_pool_assign_id - allocate ID and assign it to @pool
681 * @pool: the pool pointer of interest
682 *
683 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
684 * successfully, -errno on failure.
685 */
686static int worker_pool_assign_id(struct worker_pool *pool)
687{
688 int ret;
689
690 lockdep_assert_held(&wq_pool_mutex);
691
692 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
693 GFP_KERNEL);
694 if (ret >= 0) {
695 pool->id = ret;
696 return 0;
697 }
698 return ret;
699}
700
701static struct pool_workqueue __rcu **
702unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
703{
704 if (cpu >= 0)
705 return per_cpu_ptr(wq->cpu_pwq, cpu);
706 else
707 return &wq->dfl_pwq;
708}
709
710/* @cpu < 0 for dfl_pwq */
711static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
712{
713 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
714 lockdep_is_held(&wq_pool_mutex) ||
715 lockdep_is_held(&wq->mutex));
716}
717
718/**
719 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
720 * @wq: workqueue of interest
721 *
722 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
723 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
724 * default pwq is always mapped to the pool with the current effective cpumask.
725 */
726static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
727{
728 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
729}
730
731static unsigned int work_color_to_flags(int color)
732{
733 return color << WORK_STRUCT_COLOR_SHIFT;
734}
735
736static int get_work_color(unsigned long work_data)
737{
738 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
739 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
740}
741
742static int work_next_color(int color)
743{
744 return (color + 1) % WORK_NR_COLORS;
745}
746
747/*
748 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
749 * contain the pointer to the queued pwq. Once execution starts, the flag
750 * is cleared and the high bits contain OFFQ flags and pool ID.
751 *
752 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
753 * and clear_work_data() can be used to set the pwq, pool or clear
754 * work->data. These functions should only be called while the work is
755 * owned - ie. while the PENDING bit is set.
756 *
757 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
758 * corresponding to a work. Pool is available once the work has been
759 * queued anywhere after initialization until it is sync canceled. pwq is
760 * available only while the work item is queued.
761 *
762 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
763 * canceled. While being canceled, a work item may have its PENDING set
764 * but stay off timer and worklist for arbitrarily long and nobody should
765 * try to steal the PENDING bit.
766 */
767static inline void set_work_data(struct work_struct *work, unsigned long data,
768 unsigned long flags)
769{
770 WARN_ON_ONCE(!work_pending(work));
771 atomic_long_set(&work->data, data | flags | work_static(work));
772}
773
774static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
775 unsigned long extra_flags)
776{
777 set_work_data(work, (unsigned long)pwq,
778 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
779}
780
781static void set_work_pool_and_keep_pending(struct work_struct *work,
782 int pool_id)
783{
784 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
785 WORK_STRUCT_PENDING);
786}
787
788static void set_work_pool_and_clear_pending(struct work_struct *work,
789 int pool_id)
790{
791 /*
792 * The following wmb is paired with the implied mb in
793 * test_and_set_bit(PENDING) and ensures all updates to @work made
794 * here are visible to and precede any updates by the next PENDING
795 * owner.
796 */
797 smp_wmb();
798 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
799 /*
800 * The following mb guarantees that previous clear of a PENDING bit
801 * will not be reordered with any speculative LOADS or STORES from
802 * work->current_func, which is executed afterwards. This possible
803 * reordering can lead to a missed execution on attempt to queue
804 * the same @work. E.g. consider this case:
805 *
806 * CPU#0 CPU#1
807 * ---------------------------- --------------------------------
808 *
809 * 1 STORE event_indicated
810 * 2 queue_work_on() {
811 * 3 test_and_set_bit(PENDING)
812 * 4 } set_..._and_clear_pending() {
813 * 5 set_work_data() # clear bit
814 * 6 smp_mb()
815 * 7 work->current_func() {
816 * 8 LOAD event_indicated
817 * }
818 *
819 * Without an explicit full barrier speculative LOAD on line 8 can
820 * be executed before CPU#0 does STORE on line 1. If that happens,
821 * CPU#0 observes the PENDING bit is still set and new execution of
822 * a @work is not queued in a hope, that CPU#1 will eventually
823 * finish the queued @work. Meanwhile CPU#1 does not see
824 * event_indicated is set, because speculative LOAD was executed
825 * before actual STORE.
826 */
827 smp_mb();
828}
829
830static void clear_work_data(struct work_struct *work)
831{
832 smp_wmb(); /* see set_work_pool_and_clear_pending() */
833 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
834}
835
836static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
837{
838 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
839}
840
841static struct pool_workqueue *get_work_pwq(struct work_struct *work)
842{
843 unsigned long data = atomic_long_read(&work->data);
844
845 if (data & WORK_STRUCT_PWQ)
846 return work_struct_pwq(data);
847 else
848 return NULL;
849}
850
851/**
852 * get_work_pool - return the worker_pool a given work was associated with
853 * @work: the work item of interest
854 *
855 * Pools are created and destroyed under wq_pool_mutex, and allows read
856 * access under RCU read lock. As such, this function should be
857 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
858 *
859 * All fields of the returned pool are accessible as long as the above
860 * mentioned locking is in effect. If the returned pool needs to be used
861 * beyond the critical section, the caller is responsible for ensuring the
862 * returned pool is and stays online.
863 *
864 * Return: The worker_pool @work was last associated with. %NULL if none.
865 */
866static struct worker_pool *get_work_pool(struct work_struct *work)
867{
868 unsigned long data = atomic_long_read(&work->data);
869 int pool_id;
870
871 assert_rcu_or_pool_mutex();
872
873 if (data & WORK_STRUCT_PWQ)
874 return work_struct_pwq(data)->pool;
875
876 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
877 if (pool_id == WORK_OFFQ_POOL_NONE)
878 return NULL;
879
880 return idr_find(&worker_pool_idr, pool_id);
881}
882
883/**
884 * get_work_pool_id - return the worker pool ID a given work is associated with
885 * @work: the work item of interest
886 *
887 * Return: The worker_pool ID @work was last associated with.
888 * %WORK_OFFQ_POOL_NONE if none.
889 */
890static int get_work_pool_id(struct work_struct *work)
891{
892 unsigned long data = atomic_long_read(&work->data);
893
894 if (data & WORK_STRUCT_PWQ)
895 return work_struct_pwq(data)->pool->id;
896
897 return data >> WORK_OFFQ_POOL_SHIFT;
898}
899
900static void mark_work_canceling(struct work_struct *work)
901{
902 unsigned long pool_id = get_work_pool_id(work);
903
904 pool_id <<= WORK_OFFQ_POOL_SHIFT;
905 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
906}
907
908static bool work_is_canceling(struct work_struct *work)
909{
910 unsigned long data = atomic_long_read(&work->data);
911
912 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
913}
914
915/*
916 * Policy functions. These define the policies on how the global worker
917 * pools are managed. Unless noted otherwise, these functions assume that
918 * they're being called with pool->lock held.
919 */
920
921/*
922 * Need to wake up a worker? Called from anything but currently
923 * running workers.
924 *
925 * Note that, because unbound workers never contribute to nr_running, this
926 * function will always return %true for unbound pools as long as the
927 * worklist isn't empty.
928 */
929static bool need_more_worker(struct worker_pool *pool)
930{
931 return !list_empty(&pool->worklist) && !pool->nr_running;
932}
933
934/* Can I start working? Called from busy but !running workers. */
935static bool may_start_working(struct worker_pool *pool)
936{
937 return pool->nr_idle;
938}
939
940/* Do I need to keep working? Called from currently running workers. */
941static bool keep_working(struct worker_pool *pool)
942{
943 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
944}
945
946/* Do we need a new worker? Called from manager. */
947static bool need_to_create_worker(struct worker_pool *pool)
948{
949 return need_more_worker(pool) && !may_start_working(pool);
950}
951
952/* Do we have too many workers and should some go away? */
953static bool too_many_workers(struct worker_pool *pool)
954{
955 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
956 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
957 int nr_busy = pool->nr_workers - nr_idle;
958
959 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
960}
961
962/**
963 * worker_set_flags - set worker flags and adjust nr_running accordingly
964 * @worker: self
965 * @flags: flags to set
966 *
967 * Set @flags in @worker->flags and adjust nr_running accordingly.
968 */
969static inline void worker_set_flags(struct worker *worker, unsigned int flags)
970{
971 struct worker_pool *pool = worker->pool;
972
973 lockdep_assert_held(&pool->lock);
974
975 /* If transitioning into NOT_RUNNING, adjust nr_running. */
976 if ((flags & WORKER_NOT_RUNNING) &&
977 !(worker->flags & WORKER_NOT_RUNNING)) {
978 pool->nr_running--;
979 }
980
981 worker->flags |= flags;
982}
983
984/**
985 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
986 * @worker: self
987 * @flags: flags to clear
988 *
989 * Clear @flags in @worker->flags and adjust nr_running accordingly.
990 */
991static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
992{
993 struct worker_pool *pool = worker->pool;
994 unsigned int oflags = worker->flags;
995
996 lockdep_assert_held(&pool->lock);
997
998 worker->flags &= ~flags;
999
1000 /*
1001 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1002 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1003 * of multiple flags, not a single flag.
1004 */
1005 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1006 if (!(worker->flags & WORKER_NOT_RUNNING))
1007 pool->nr_running++;
1008}
1009
1010/* Return the first idle worker. Called with pool->lock held. */
1011static struct worker *first_idle_worker(struct worker_pool *pool)
1012{
1013 if (unlikely(list_empty(&pool->idle_list)))
1014 return NULL;
1015
1016 return list_first_entry(&pool->idle_list, struct worker, entry);
1017}
1018
1019/**
1020 * worker_enter_idle - enter idle state
1021 * @worker: worker which is entering idle state
1022 *
1023 * @worker is entering idle state. Update stats and idle timer if
1024 * necessary.
1025 *
1026 * LOCKING:
1027 * raw_spin_lock_irq(pool->lock).
1028 */
1029static void worker_enter_idle(struct worker *worker)
1030{
1031 struct worker_pool *pool = worker->pool;
1032
1033 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1034 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1035 (worker->hentry.next || worker->hentry.pprev)))
1036 return;
1037
1038 /* can't use worker_set_flags(), also called from create_worker() */
1039 worker->flags |= WORKER_IDLE;
1040 pool->nr_idle++;
1041 worker->last_active = jiffies;
1042
1043 /* idle_list is LIFO */
1044 list_add(&worker->entry, &pool->idle_list);
1045
1046 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1047 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1048
1049 /* Sanity check nr_running. */
1050 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1051}
1052
1053/**
1054 * worker_leave_idle - leave idle state
1055 * @worker: worker which is leaving idle state
1056 *
1057 * @worker is leaving idle state. Update stats.
1058 *
1059 * LOCKING:
1060 * raw_spin_lock_irq(pool->lock).
1061 */
1062static void worker_leave_idle(struct worker *worker)
1063{
1064 struct worker_pool *pool = worker->pool;
1065
1066 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1067 return;
1068 worker_clr_flags(worker, WORKER_IDLE);
1069 pool->nr_idle--;
1070 list_del_init(&worker->entry);
1071}
1072
1073/**
1074 * find_worker_executing_work - find worker which is executing a work
1075 * @pool: pool of interest
1076 * @work: work to find worker for
1077 *
1078 * Find a worker which is executing @work on @pool by searching
1079 * @pool->busy_hash which is keyed by the address of @work. For a worker
1080 * to match, its current execution should match the address of @work and
1081 * its work function. This is to avoid unwanted dependency between
1082 * unrelated work executions through a work item being recycled while still
1083 * being executed.
1084 *
1085 * This is a bit tricky. A work item may be freed once its execution
1086 * starts and nothing prevents the freed area from being recycled for
1087 * another work item. If the same work item address ends up being reused
1088 * before the original execution finishes, workqueue will identify the
1089 * recycled work item as currently executing and make it wait until the
1090 * current execution finishes, introducing an unwanted dependency.
1091 *
1092 * This function checks the work item address and work function to avoid
1093 * false positives. Note that this isn't complete as one may construct a
1094 * work function which can introduce dependency onto itself through a
1095 * recycled work item. Well, if somebody wants to shoot oneself in the
1096 * foot that badly, there's only so much we can do, and if such deadlock
1097 * actually occurs, it should be easy to locate the culprit work function.
1098 *
1099 * CONTEXT:
1100 * raw_spin_lock_irq(pool->lock).
1101 *
1102 * Return:
1103 * Pointer to worker which is executing @work if found, %NULL
1104 * otherwise.
1105 */
1106static struct worker *find_worker_executing_work(struct worker_pool *pool,
1107 struct work_struct *work)
1108{
1109 struct worker *worker;
1110
1111 hash_for_each_possible(pool->busy_hash, worker, hentry,
1112 (unsigned long)work)
1113 if (worker->current_work == work &&
1114 worker->current_func == work->func)
1115 return worker;
1116
1117 return NULL;
1118}
1119
1120/**
1121 * move_linked_works - move linked works to a list
1122 * @work: start of series of works to be scheduled
1123 * @head: target list to append @work to
1124 * @nextp: out parameter for nested worklist walking
1125 *
1126 * Schedule linked works starting from @work to @head. Work series to be
1127 * scheduled starts at @work and includes any consecutive work with
1128 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1129 * @nextp.
1130 *
1131 * CONTEXT:
1132 * raw_spin_lock_irq(pool->lock).
1133 */
1134static void move_linked_works(struct work_struct *work, struct list_head *head,
1135 struct work_struct **nextp)
1136{
1137 struct work_struct *n;
1138
1139 /*
1140 * Linked worklist will always end before the end of the list,
1141 * use NULL for list head.
1142 */
1143 list_for_each_entry_safe_from(work, n, NULL, entry) {
1144 list_move_tail(&work->entry, head);
1145 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1146 break;
1147 }
1148
1149 /*
1150 * If we're already inside safe list traversal and have moved
1151 * multiple works to the scheduled queue, the next position
1152 * needs to be updated.
1153 */
1154 if (nextp)
1155 *nextp = n;
1156}
1157
1158/**
1159 * assign_work - assign a work item and its linked work items to a worker
1160 * @work: work to assign
1161 * @worker: worker to assign to
1162 * @nextp: out parameter for nested worklist walking
1163 *
1164 * Assign @work and its linked work items to @worker. If @work is already being
1165 * executed by another worker in the same pool, it'll be punted there.
1166 *
1167 * If @nextp is not NULL, it's updated to point to the next work of the last
1168 * scheduled work. This allows assign_work() to be nested inside
1169 * list_for_each_entry_safe().
1170 *
1171 * Returns %true if @work was successfully assigned to @worker. %false if @work
1172 * was punted to another worker already executing it.
1173 */
1174static bool assign_work(struct work_struct *work, struct worker *worker,
1175 struct work_struct **nextp)
1176{
1177 struct worker_pool *pool = worker->pool;
1178 struct worker *collision;
1179
1180 lockdep_assert_held(&pool->lock);
1181
1182 /*
1183 * A single work shouldn't be executed concurrently by multiple workers.
1184 * __queue_work() ensures that @work doesn't jump to a different pool
1185 * while still running in the previous pool. Here, we should ensure that
1186 * @work is not executed concurrently by multiple workers from the same
1187 * pool. Check whether anyone is already processing the work. If so,
1188 * defer the work to the currently executing one.
1189 */
1190 collision = find_worker_executing_work(pool, work);
1191 if (unlikely(collision)) {
1192 move_linked_works(work, &collision->scheduled, nextp);
1193 return false;
1194 }
1195
1196 move_linked_works(work, &worker->scheduled, nextp);
1197 return true;
1198}
1199
1200/**
1201 * kick_pool - wake up an idle worker if necessary
1202 * @pool: pool to kick
1203 *
1204 * @pool may have pending work items. Wake up worker if necessary. Returns
1205 * whether a worker was woken up.
1206 */
1207static bool kick_pool(struct worker_pool *pool)
1208{
1209 struct worker *worker = first_idle_worker(pool);
1210 struct task_struct *p;
1211
1212 lockdep_assert_held(&pool->lock);
1213
1214 if (!need_more_worker(pool) || !worker)
1215 return false;
1216
1217 if (pool->flags & POOL_BH) {
1218 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1219 raise_softirq_irqoff(HI_SOFTIRQ);
1220 else
1221 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1222 return true;
1223 }
1224
1225 p = worker->task;
1226
1227#ifdef CONFIG_SMP
1228 /*
1229 * Idle @worker is about to execute @work and waking up provides an
1230 * opportunity to migrate @worker at a lower cost by setting the task's
1231 * wake_cpu field. Let's see if we want to move @worker to improve
1232 * execution locality.
1233 *
1234 * We're waking the worker that went idle the latest and there's some
1235 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1236 * so, setting the wake_cpu won't do anything. As this is a best-effort
1237 * optimization and the race window is narrow, let's leave as-is for
1238 * now. If this becomes pronounced, we can skip over workers which are
1239 * still on cpu when picking an idle worker.
1240 *
1241 * If @pool has non-strict affinity, @worker might have ended up outside
1242 * its affinity scope. Repatriate.
1243 */
1244 if (!pool->attrs->affn_strict &&
1245 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1246 struct work_struct *work = list_first_entry(&pool->worklist,
1247 struct work_struct, entry);
1248 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1249 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1250 }
1251#endif
1252 wake_up_process(p);
1253 return true;
1254}
1255
1256#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1257
1258/*
1259 * Concurrency-managed per-cpu work items that hog CPU for longer than
1260 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1261 * which prevents them from stalling other concurrency-managed work items. If a
1262 * work function keeps triggering this mechanism, it's likely that the work item
1263 * should be using an unbound workqueue instead.
1264 *
1265 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1266 * and report them so that they can be examined and converted to use unbound
1267 * workqueues as appropriate. To avoid flooding the console, each violating work
1268 * function is tracked and reported with exponential backoff.
1269 */
1270#define WCI_MAX_ENTS 128
1271
1272struct wci_ent {
1273 work_func_t func;
1274 atomic64_t cnt;
1275 struct hlist_node hash_node;
1276};
1277
1278static struct wci_ent wci_ents[WCI_MAX_ENTS];
1279static int wci_nr_ents;
1280static DEFINE_RAW_SPINLOCK(wci_lock);
1281static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1282
1283static struct wci_ent *wci_find_ent(work_func_t func)
1284{
1285 struct wci_ent *ent;
1286
1287 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1288 (unsigned long)func) {
1289 if (ent->func == func)
1290 return ent;
1291 }
1292 return NULL;
1293}
1294
1295static void wq_cpu_intensive_report(work_func_t func)
1296{
1297 struct wci_ent *ent;
1298
1299restart:
1300 ent = wci_find_ent(func);
1301 if (ent) {
1302 u64 cnt;
1303
1304 /*
1305 * Start reporting from the fourth time and back off
1306 * exponentially.
1307 */
1308 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1309 if (cnt >= 4 && is_power_of_2(cnt))
1310 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1311 ent->func, wq_cpu_intensive_thresh_us,
1312 atomic64_read(&ent->cnt));
1313 return;
1314 }
1315
1316 /*
1317 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1318 * is exhausted, something went really wrong and we probably made enough
1319 * noise already.
1320 */
1321 if (wci_nr_ents >= WCI_MAX_ENTS)
1322 return;
1323
1324 raw_spin_lock(&wci_lock);
1325
1326 if (wci_nr_ents >= WCI_MAX_ENTS) {
1327 raw_spin_unlock(&wci_lock);
1328 return;
1329 }
1330
1331 if (wci_find_ent(func)) {
1332 raw_spin_unlock(&wci_lock);
1333 goto restart;
1334 }
1335
1336 ent = &wci_ents[wci_nr_ents++];
1337 ent->func = func;
1338 atomic64_set(&ent->cnt, 1);
1339 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1340
1341 raw_spin_unlock(&wci_lock);
1342}
1343
1344#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1345static void wq_cpu_intensive_report(work_func_t func) {}
1346#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1347
1348/**
1349 * wq_worker_running - a worker is running again
1350 * @task: task waking up
1351 *
1352 * This function is called when a worker returns from schedule()
1353 */
1354void wq_worker_running(struct task_struct *task)
1355{
1356 struct worker *worker = kthread_data(task);
1357
1358 if (!READ_ONCE(worker->sleeping))
1359 return;
1360
1361 /*
1362 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1363 * and the nr_running increment below, we may ruin the nr_running reset
1364 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1365 * pool. Protect against such race.
1366 */
1367 preempt_disable();
1368 if (!(worker->flags & WORKER_NOT_RUNNING))
1369 worker->pool->nr_running++;
1370 preempt_enable();
1371
1372 /*
1373 * CPU intensive auto-detection cares about how long a work item hogged
1374 * CPU without sleeping. Reset the starting timestamp on wakeup.
1375 */
1376 worker->current_at = worker->task->se.sum_exec_runtime;
1377
1378 WRITE_ONCE(worker->sleeping, 0);
1379}
1380
1381/**
1382 * wq_worker_sleeping - a worker is going to sleep
1383 * @task: task going to sleep
1384 *
1385 * This function is called from schedule() when a busy worker is
1386 * going to sleep.
1387 */
1388void wq_worker_sleeping(struct task_struct *task)
1389{
1390 struct worker *worker = kthread_data(task);
1391 struct worker_pool *pool;
1392
1393 /*
1394 * Rescuers, which may not have all the fields set up like normal
1395 * workers, also reach here, let's not access anything before
1396 * checking NOT_RUNNING.
1397 */
1398 if (worker->flags & WORKER_NOT_RUNNING)
1399 return;
1400
1401 pool = worker->pool;
1402
1403 /* Return if preempted before wq_worker_running() was reached */
1404 if (READ_ONCE(worker->sleeping))
1405 return;
1406
1407 WRITE_ONCE(worker->sleeping, 1);
1408 raw_spin_lock_irq(&pool->lock);
1409
1410 /*
1411 * Recheck in case unbind_workers() preempted us. We don't
1412 * want to decrement nr_running after the worker is unbound
1413 * and nr_running has been reset.
1414 */
1415 if (worker->flags & WORKER_NOT_RUNNING) {
1416 raw_spin_unlock_irq(&pool->lock);
1417 return;
1418 }
1419
1420 pool->nr_running--;
1421 if (kick_pool(pool))
1422 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1423
1424 raw_spin_unlock_irq(&pool->lock);
1425}
1426
1427/**
1428 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1429 * @task: task currently running
1430 *
1431 * Called from scheduler_tick(). We're in the IRQ context and the current
1432 * worker's fields which follow the 'K' locking rule can be accessed safely.
1433 */
1434void wq_worker_tick(struct task_struct *task)
1435{
1436 struct worker *worker = kthread_data(task);
1437 struct pool_workqueue *pwq = worker->current_pwq;
1438 struct worker_pool *pool = worker->pool;
1439
1440 if (!pwq)
1441 return;
1442
1443 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1444
1445 if (!wq_cpu_intensive_thresh_us)
1446 return;
1447
1448 /*
1449 * If the current worker is concurrency managed and hogged the CPU for
1450 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1451 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1452 *
1453 * Set @worker->sleeping means that @worker is in the process of
1454 * switching out voluntarily and won't be contributing to
1455 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1456 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1457 * double decrements. The task is releasing the CPU anyway. Let's skip.
1458 * We probably want to make this prettier in the future.
1459 */
1460 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1461 worker->task->se.sum_exec_runtime - worker->current_at <
1462 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1463 return;
1464
1465 raw_spin_lock(&pool->lock);
1466
1467 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1468 wq_cpu_intensive_report(worker->current_func);
1469 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1470
1471 if (kick_pool(pool))
1472 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1473
1474 raw_spin_unlock(&pool->lock);
1475}
1476
1477/**
1478 * wq_worker_last_func - retrieve worker's last work function
1479 * @task: Task to retrieve last work function of.
1480 *
1481 * Determine the last function a worker executed. This is called from
1482 * the scheduler to get a worker's last known identity.
1483 *
1484 * CONTEXT:
1485 * raw_spin_lock_irq(rq->lock)
1486 *
1487 * This function is called during schedule() when a kworker is going
1488 * to sleep. It's used by psi to identify aggregation workers during
1489 * dequeuing, to allow periodic aggregation to shut-off when that
1490 * worker is the last task in the system or cgroup to go to sleep.
1491 *
1492 * As this function doesn't involve any workqueue-related locking, it
1493 * only returns stable values when called from inside the scheduler's
1494 * queuing and dequeuing paths, when @task, which must be a kworker,
1495 * is guaranteed to not be processing any works.
1496 *
1497 * Return:
1498 * The last work function %current executed as a worker, NULL if it
1499 * hasn't executed any work yet.
1500 */
1501work_func_t wq_worker_last_func(struct task_struct *task)
1502{
1503 struct worker *worker = kthread_data(task);
1504
1505 return worker->last_func;
1506}
1507
1508/**
1509 * wq_node_nr_active - Determine wq_node_nr_active to use
1510 * @wq: workqueue of interest
1511 * @node: NUMA node, can be %NUMA_NO_NODE
1512 *
1513 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1514 *
1515 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1516 *
1517 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1518 *
1519 * - Otherwise, node_nr_active[@node].
1520 */
1521static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1522 int node)
1523{
1524 if (!(wq->flags & WQ_UNBOUND))
1525 return NULL;
1526
1527 if (node == NUMA_NO_NODE)
1528 node = nr_node_ids;
1529
1530 return wq->node_nr_active[node];
1531}
1532
1533/**
1534 * wq_update_node_max_active - Update per-node max_actives to use
1535 * @wq: workqueue to update
1536 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1537 *
1538 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1539 * distributed among nodes according to the proportions of numbers of online
1540 * cpus. The result is always between @wq->min_active and max_active.
1541 */
1542static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1543{
1544 struct cpumask *effective = unbound_effective_cpumask(wq);
1545 int min_active = READ_ONCE(wq->min_active);
1546 int max_active = READ_ONCE(wq->max_active);
1547 int total_cpus, node;
1548
1549 lockdep_assert_held(&wq->mutex);
1550
1551 if (!wq_topo_initialized)
1552 return;
1553
1554 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1555 off_cpu = -1;
1556
1557 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1558 if (off_cpu >= 0)
1559 total_cpus--;
1560
1561 for_each_node(node) {
1562 int node_cpus;
1563
1564 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1565 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1566 node_cpus--;
1567
1568 wq_node_nr_active(wq, node)->max =
1569 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1570 min_active, max_active);
1571 }
1572
1573 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1574}
1575
1576/**
1577 * get_pwq - get an extra reference on the specified pool_workqueue
1578 * @pwq: pool_workqueue to get
1579 *
1580 * Obtain an extra reference on @pwq. The caller should guarantee that
1581 * @pwq has positive refcnt and be holding the matching pool->lock.
1582 */
1583static void get_pwq(struct pool_workqueue *pwq)
1584{
1585 lockdep_assert_held(&pwq->pool->lock);
1586 WARN_ON_ONCE(pwq->refcnt <= 0);
1587 pwq->refcnt++;
1588}
1589
1590/**
1591 * put_pwq - put a pool_workqueue reference
1592 * @pwq: pool_workqueue to put
1593 *
1594 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1595 * destruction. The caller should be holding the matching pool->lock.
1596 */
1597static void put_pwq(struct pool_workqueue *pwq)
1598{
1599 lockdep_assert_held(&pwq->pool->lock);
1600 if (likely(--pwq->refcnt))
1601 return;
1602 /*
1603 * @pwq can't be released under pool->lock, bounce to a dedicated
1604 * kthread_worker to avoid A-A deadlocks.
1605 */
1606 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1607}
1608
1609/**
1610 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1611 * @pwq: pool_workqueue to put (can be %NULL)
1612 *
1613 * put_pwq() with locking. This function also allows %NULL @pwq.
1614 */
1615static void put_pwq_unlocked(struct pool_workqueue *pwq)
1616{
1617 if (pwq) {
1618 /*
1619 * As both pwqs and pools are RCU protected, the
1620 * following lock operations are safe.
1621 */
1622 raw_spin_lock_irq(&pwq->pool->lock);
1623 put_pwq(pwq);
1624 raw_spin_unlock_irq(&pwq->pool->lock);
1625 }
1626}
1627
1628static bool pwq_is_empty(struct pool_workqueue *pwq)
1629{
1630 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1631}
1632
1633static void __pwq_activate_work(struct pool_workqueue *pwq,
1634 struct work_struct *work)
1635{
1636 unsigned long *wdb = work_data_bits(work);
1637
1638 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1639 trace_workqueue_activate_work(work);
1640 if (list_empty(&pwq->pool->worklist))
1641 pwq->pool->watchdog_ts = jiffies;
1642 move_linked_works(work, &pwq->pool->worklist, NULL);
1643 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1644}
1645
1646/**
1647 * pwq_activate_work - Activate a work item if inactive
1648 * @pwq: pool_workqueue @work belongs to
1649 * @work: work item to activate
1650 *
1651 * Returns %true if activated. %false if already active.
1652 */
1653static bool pwq_activate_work(struct pool_workqueue *pwq,
1654 struct work_struct *work)
1655{
1656 struct worker_pool *pool = pwq->pool;
1657 struct wq_node_nr_active *nna;
1658
1659 lockdep_assert_held(&pool->lock);
1660
1661 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1662 return false;
1663
1664 nna = wq_node_nr_active(pwq->wq, pool->node);
1665 if (nna)
1666 atomic_inc(&nna->nr);
1667
1668 pwq->nr_active++;
1669 __pwq_activate_work(pwq, work);
1670 return true;
1671}
1672
1673static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1674{
1675 int max = READ_ONCE(nna->max);
1676
1677 while (true) {
1678 int old, tmp;
1679
1680 old = atomic_read(&nna->nr);
1681 if (old >= max)
1682 return false;
1683 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1684 if (tmp == old)
1685 return true;
1686 }
1687}
1688
1689/**
1690 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1691 * @pwq: pool_workqueue of interest
1692 * @fill: max_active may have increased, try to increase concurrency level
1693 *
1694 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1695 * successfully obtained. %false otherwise.
1696 */
1697static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1698{
1699 struct workqueue_struct *wq = pwq->wq;
1700 struct worker_pool *pool = pwq->pool;
1701 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1702 bool obtained = false;
1703
1704 lockdep_assert_held(&pool->lock);
1705
1706 if (!nna) {
1707 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1708 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1709 goto out;
1710 }
1711
1712 if (unlikely(pwq->plugged))
1713 return false;
1714
1715 /*
1716 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1717 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1718 * concurrency level. Don't jump the line.
1719 *
1720 * We need to ignore the pending test after max_active has increased as
1721 * pwq_dec_nr_active() can only maintain the concurrency level but not
1722 * increase it. This is indicated by @fill.
1723 */
1724 if (!list_empty(&pwq->pending_node) && likely(!fill))
1725 goto out;
1726
1727 obtained = tryinc_node_nr_active(nna);
1728 if (obtained)
1729 goto out;
1730
1731 /*
1732 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1733 * and try again. The smp_mb() is paired with the implied memory barrier
1734 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1735 * we see the decremented $nna->nr or they see non-empty
1736 * $nna->pending_pwqs.
1737 */
1738 raw_spin_lock(&nna->lock);
1739
1740 if (list_empty(&pwq->pending_node))
1741 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1742 else if (likely(!fill))
1743 goto out_unlock;
1744
1745 smp_mb();
1746
1747 obtained = tryinc_node_nr_active(nna);
1748
1749 /*
1750 * If @fill, @pwq might have already been pending. Being spuriously
1751 * pending in cold paths doesn't affect anything. Let's leave it be.
1752 */
1753 if (obtained && likely(!fill))
1754 list_del_init(&pwq->pending_node);
1755
1756out_unlock:
1757 raw_spin_unlock(&nna->lock);
1758out:
1759 if (obtained)
1760 pwq->nr_active++;
1761 return obtained;
1762}
1763
1764/**
1765 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1766 * @pwq: pool_workqueue of interest
1767 * @fill: max_active may have increased, try to increase concurrency level
1768 *
1769 * Activate the first inactive work item of @pwq if available and allowed by
1770 * max_active limit.
1771 *
1772 * Returns %true if an inactive work item has been activated. %false if no
1773 * inactive work item is found or max_active limit is reached.
1774 */
1775static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1776{
1777 struct work_struct *work =
1778 list_first_entry_or_null(&pwq->inactive_works,
1779 struct work_struct, entry);
1780
1781 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1782 __pwq_activate_work(pwq, work);
1783 return true;
1784 } else {
1785 return false;
1786 }
1787}
1788
1789/**
1790 * unplug_oldest_pwq - restart an oldest plugged pool_workqueue
1791 * @wq: workqueue_struct to be restarted
1792 *
1793 * pwq's are linked into wq->pwqs with the oldest first. For ordered
1794 * workqueues, only the oldest pwq is unplugged, the others are plugged to
1795 * suspend execution until the oldest one is drained. When this happens, the
1796 * next oldest one (first plugged pwq in iteration) will be unplugged to
1797 * restart work item execution to ensure proper work item ordering.
1798 *
1799 * dfl_pwq --------------+ [P] - plugged
1800 * |
1801 * v
1802 * pwqs -> A -> B [P] -> C [P] (newest)
1803 * | | |
1804 * 1 3 5
1805 * | | |
1806 * 2 4 6
1807 */
1808static void unplug_oldest_pwq(struct workqueue_struct *wq)
1809{
1810 struct pool_workqueue *pwq;
1811
1812 lockdep_assert_held(&wq->mutex);
1813
1814 /* Caller should make sure that pwqs isn't empty before calling */
1815 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1816 pwqs_node);
1817 raw_spin_lock_irq(&pwq->pool->lock);
1818 if (pwq->plugged) {
1819 pwq->plugged = false;
1820 if (pwq_activate_first_inactive(pwq, true))
1821 kick_pool(pwq->pool);
1822 }
1823 raw_spin_unlock_irq(&pwq->pool->lock);
1824}
1825
1826/**
1827 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1828 * @nna: wq_node_nr_active to activate a pending pwq for
1829 * @caller_pool: worker_pool the caller is locking
1830 *
1831 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1832 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1833 */
1834static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1835 struct worker_pool *caller_pool)
1836{
1837 struct worker_pool *locked_pool = caller_pool;
1838 struct pool_workqueue *pwq;
1839 struct work_struct *work;
1840
1841 lockdep_assert_held(&caller_pool->lock);
1842
1843 raw_spin_lock(&nna->lock);
1844retry:
1845 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1846 struct pool_workqueue, pending_node);
1847 if (!pwq)
1848 goto out_unlock;
1849
1850 /*
1851 * If @pwq is for a different pool than @locked_pool, we need to lock
1852 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1853 * / lock dance. For that, we also need to release @nna->lock as it's
1854 * nested inside pool locks.
1855 */
1856 if (pwq->pool != locked_pool) {
1857 raw_spin_unlock(&locked_pool->lock);
1858 locked_pool = pwq->pool;
1859 if (!raw_spin_trylock(&locked_pool->lock)) {
1860 raw_spin_unlock(&nna->lock);
1861 raw_spin_lock(&locked_pool->lock);
1862 raw_spin_lock(&nna->lock);
1863 goto retry;
1864 }
1865 }
1866
1867 /*
1868 * $pwq may not have any inactive work items due to e.g. cancellations.
1869 * Drop it from pending_pwqs and see if there's another one.
1870 */
1871 work = list_first_entry_or_null(&pwq->inactive_works,
1872 struct work_struct, entry);
1873 if (!work) {
1874 list_del_init(&pwq->pending_node);
1875 goto retry;
1876 }
1877
1878 /*
1879 * Acquire an nr_active count and activate the inactive work item. If
1880 * $pwq still has inactive work items, rotate it to the end of the
1881 * pending_pwqs so that we round-robin through them. This means that
1882 * inactive work items are not activated in queueing order which is fine
1883 * given that there has never been any ordering across different pwqs.
1884 */
1885 if (likely(tryinc_node_nr_active(nna))) {
1886 pwq->nr_active++;
1887 __pwq_activate_work(pwq, work);
1888
1889 if (list_empty(&pwq->inactive_works))
1890 list_del_init(&pwq->pending_node);
1891 else
1892 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1893
1894 /* if activating a foreign pool, make sure it's running */
1895 if (pwq->pool != caller_pool)
1896 kick_pool(pwq->pool);
1897 }
1898
1899out_unlock:
1900 raw_spin_unlock(&nna->lock);
1901 if (locked_pool != caller_pool) {
1902 raw_spin_unlock(&locked_pool->lock);
1903 raw_spin_lock(&caller_pool->lock);
1904 }
1905}
1906
1907/**
1908 * pwq_dec_nr_active - Retire an active count
1909 * @pwq: pool_workqueue of interest
1910 *
1911 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1912 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1913 */
1914static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1915{
1916 struct worker_pool *pool = pwq->pool;
1917 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1918
1919 lockdep_assert_held(&pool->lock);
1920
1921 /*
1922 * @pwq->nr_active should be decremented for both percpu and unbound
1923 * workqueues.
1924 */
1925 pwq->nr_active--;
1926
1927 /*
1928 * For a percpu workqueue, it's simple. Just need to kick the first
1929 * inactive work item on @pwq itself.
1930 */
1931 if (!nna) {
1932 pwq_activate_first_inactive(pwq, false);
1933 return;
1934 }
1935
1936 /*
1937 * If @pwq is for an unbound workqueue, it's more complicated because
1938 * multiple pwqs and pools may be sharing the nr_active count. When a
1939 * pwq needs to wait for an nr_active count, it puts itself on
1940 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1941 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1942 * guarantee that either we see non-empty pending_pwqs or they see
1943 * decremented $nna->nr.
1944 *
1945 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1946 * max_active gets updated. However, it is guaranteed to be equal to or
1947 * larger than @pwq->wq->min_active which is above zero unless freezing.
1948 * This maintains the forward progress guarantee.
1949 */
1950 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1951 return;
1952
1953 if (!list_empty(&nna->pending_pwqs))
1954 node_activate_pending_pwq(nna, pool);
1955}
1956
1957/**
1958 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1959 * @pwq: pwq of interest
1960 * @work_data: work_data of work which left the queue
1961 *
1962 * A work either has completed or is removed from pending queue,
1963 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1964 *
1965 * NOTE:
1966 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1967 * and thus should be called after all other state updates for the in-flight
1968 * work item is complete.
1969 *
1970 * CONTEXT:
1971 * raw_spin_lock_irq(pool->lock).
1972 */
1973static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1974{
1975 int color = get_work_color(work_data);
1976
1977 if (!(work_data & WORK_STRUCT_INACTIVE))
1978 pwq_dec_nr_active(pwq);
1979
1980 pwq->nr_in_flight[color]--;
1981
1982 /* is flush in progress and are we at the flushing tip? */
1983 if (likely(pwq->flush_color != color))
1984 goto out_put;
1985
1986 /* are there still in-flight works? */
1987 if (pwq->nr_in_flight[color])
1988 goto out_put;
1989
1990 /* this pwq is done, clear flush_color */
1991 pwq->flush_color = -1;
1992
1993 /*
1994 * If this was the last pwq, wake up the first flusher. It
1995 * will handle the rest.
1996 */
1997 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1998 complete(&pwq->wq->first_flusher->done);
1999out_put:
2000 put_pwq(pwq);
2001}
2002
2003/**
2004 * try_to_grab_pending - steal work item from worklist and disable irq
2005 * @work: work item to steal
2006 * @is_dwork: @work is a delayed_work
2007 * @flags: place to store irq state
2008 *
2009 * Try to grab PENDING bit of @work. This function can handle @work in any
2010 * stable state - idle, on timer or on worklist.
2011 *
2012 * Return:
2013 *
2014 * ======== ================================================================
2015 * 1 if @work was pending and we successfully stole PENDING
2016 * 0 if @work was idle and we claimed PENDING
2017 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
2018 * -ENOENT if someone else is canceling @work, this state may persist
2019 * for arbitrarily long
2020 * ======== ================================================================
2021 *
2022 * Note:
2023 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
2024 * interrupted while holding PENDING and @work off queue, irq must be
2025 * disabled on entry. This, combined with delayed_work->timer being
2026 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2027 *
2028 * On successful return, >= 0, irq is disabled and the caller is
2029 * responsible for releasing it using local_irq_restore(*@flags).
2030 *
2031 * This function is safe to call from any context including IRQ handler.
2032 */
2033static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
2034 unsigned long *flags)
2035{
2036 struct worker_pool *pool;
2037 struct pool_workqueue *pwq;
2038
2039 local_irq_save(*flags);
2040
2041 /* try to steal the timer if it exists */
2042 if (is_dwork) {
2043 struct delayed_work *dwork = to_delayed_work(work);
2044
2045 /*
2046 * dwork->timer is irqsafe. If del_timer() fails, it's
2047 * guaranteed that the timer is not queued anywhere and not
2048 * running on the local CPU.
2049 */
2050 if (likely(del_timer(&dwork->timer)))
2051 return 1;
2052 }
2053
2054 /* try to claim PENDING the normal way */
2055 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2056 return 0;
2057
2058 rcu_read_lock();
2059 /*
2060 * The queueing is in progress, or it is already queued. Try to
2061 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2062 */
2063 pool = get_work_pool(work);
2064 if (!pool)
2065 goto fail;
2066
2067 raw_spin_lock(&pool->lock);
2068 /*
2069 * work->data is guaranteed to point to pwq only while the work
2070 * item is queued on pwq->wq, and both updating work->data to point
2071 * to pwq on queueing and to pool on dequeueing are done under
2072 * pwq->pool->lock. This in turn guarantees that, if work->data
2073 * points to pwq which is associated with a locked pool, the work
2074 * item is currently queued on that pool.
2075 */
2076 pwq = get_work_pwq(work);
2077 if (pwq && pwq->pool == pool) {
2078 unsigned long work_data;
2079
2080 debug_work_deactivate(work);
2081
2082 /*
2083 * A cancelable inactive work item must be in the
2084 * pwq->inactive_works since a queued barrier can't be
2085 * canceled (see the comments in insert_wq_barrier()).
2086 *
2087 * An inactive work item cannot be grabbed directly because
2088 * it might have linked barrier work items which, if left
2089 * on the inactive_works list, will confuse pwq->nr_active
2090 * management later on and cause stall. Make sure the work
2091 * item is activated before grabbing.
2092 */
2093 pwq_activate_work(pwq, work);
2094
2095 list_del_init(&work->entry);
2096
2097 /*
2098 * work->data points to pwq iff queued. Let's point to pool. As
2099 * this destroys work->data needed by the next step, stash it.
2100 */
2101 work_data = *work_data_bits(work);
2102 set_work_pool_and_keep_pending(work, pool->id);
2103
2104 /* must be the last step, see the function comment */
2105 pwq_dec_nr_in_flight(pwq, work_data);
2106
2107 raw_spin_unlock(&pool->lock);
2108 rcu_read_unlock();
2109 return 1;
2110 }
2111 raw_spin_unlock(&pool->lock);
2112fail:
2113 rcu_read_unlock();
2114 local_irq_restore(*flags);
2115 if (work_is_canceling(work))
2116 return -ENOENT;
2117 cpu_relax();
2118 return -EAGAIN;
2119}
2120
2121/**
2122 * insert_work - insert a work into a pool
2123 * @pwq: pwq @work belongs to
2124 * @work: work to insert
2125 * @head: insertion point
2126 * @extra_flags: extra WORK_STRUCT_* flags to set
2127 *
2128 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2129 * work_struct flags.
2130 *
2131 * CONTEXT:
2132 * raw_spin_lock_irq(pool->lock).
2133 */
2134static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2135 struct list_head *head, unsigned int extra_flags)
2136{
2137 debug_work_activate(work);
2138
2139 /* record the work call stack in order to print it in KASAN reports */
2140 kasan_record_aux_stack_noalloc(work);
2141
2142 /* we own @work, set data and link */
2143 set_work_pwq(work, pwq, extra_flags);
2144 list_add_tail(&work->entry, head);
2145 get_pwq(pwq);
2146}
2147
2148/*
2149 * Test whether @work is being queued from another work executing on the
2150 * same workqueue.
2151 */
2152static bool is_chained_work(struct workqueue_struct *wq)
2153{
2154 struct worker *worker;
2155
2156 worker = current_wq_worker();
2157 /*
2158 * Return %true iff I'm a worker executing a work item on @wq. If
2159 * I'm @worker, it's safe to dereference it without locking.
2160 */
2161 return worker && worker->current_pwq->wq == wq;
2162}
2163
2164/*
2165 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2166 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2167 * avoid perturbing sensitive tasks.
2168 */
2169static int wq_select_unbound_cpu(int cpu)
2170{
2171 int new_cpu;
2172
2173 if (likely(!wq_debug_force_rr_cpu)) {
2174 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2175 return cpu;
2176 } else {
2177 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2178 }
2179
2180 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2181 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2182 if (unlikely(new_cpu >= nr_cpu_ids)) {
2183 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2184 if (unlikely(new_cpu >= nr_cpu_ids))
2185 return cpu;
2186 }
2187 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2188
2189 return new_cpu;
2190}
2191
2192static void __queue_work(int cpu, struct workqueue_struct *wq,
2193 struct work_struct *work)
2194{
2195 struct pool_workqueue *pwq;
2196 struct worker_pool *last_pool, *pool;
2197 unsigned int work_flags;
2198 unsigned int req_cpu = cpu;
2199
2200 /*
2201 * While a work item is PENDING && off queue, a task trying to
2202 * steal the PENDING will busy-loop waiting for it to either get
2203 * queued or lose PENDING. Grabbing PENDING and queueing should
2204 * happen with IRQ disabled.
2205 */
2206 lockdep_assert_irqs_disabled();
2207
2208
2209 /*
2210 * For a draining wq, only works from the same workqueue are
2211 * allowed. The __WQ_DESTROYING helps to spot the issue that
2212 * queues a new work item to a wq after destroy_workqueue(wq).
2213 */
2214 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2215 WARN_ON_ONCE(!is_chained_work(wq))))
2216 return;
2217 rcu_read_lock();
2218retry:
2219 /* pwq which will be used unless @work is executing elsewhere */
2220 if (req_cpu == WORK_CPU_UNBOUND) {
2221 if (wq->flags & WQ_UNBOUND)
2222 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2223 else
2224 cpu = raw_smp_processor_id();
2225 }
2226
2227 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2228 pool = pwq->pool;
2229
2230 /*
2231 * If @work was previously on a different pool, it might still be
2232 * running there, in which case the work needs to be queued on that
2233 * pool to guarantee non-reentrancy.
2234 */
2235 last_pool = get_work_pool(work);
2236 if (last_pool && last_pool != pool) {
2237 struct worker *worker;
2238
2239 raw_spin_lock(&last_pool->lock);
2240
2241 worker = find_worker_executing_work(last_pool, work);
2242
2243 if (worker && worker->current_pwq->wq == wq) {
2244 pwq = worker->current_pwq;
2245 pool = pwq->pool;
2246 WARN_ON_ONCE(pool != last_pool);
2247 } else {
2248 /* meh... not running there, queue here */
2249 raw_spin_unlock(&last_pool->lock);
2250 raw_spin_lock(&pool->lock);
2251 }
2252 } else {
2253 raw_spin_lock(&pool->lock);
2254 }
2255
2256 /*
2257 * pwq is determined and locked. For unbound pools, we could have raced
2258 * with pwq release and it could already be dead. If its refcnt is zero,
2259 * repeat pwq selection. Note that unbound pwqs never die without
2260 * another pwq replacing it in cpu_pwq or while work items are executing
2261 * on it, so the retrying is guaranteed to make forward-progress.
2262 */
2263 if (unlikely(!pwq->refcnt)) {
2264 if (wq->flags & WQ_UNBOUND) {
2265 raw_spin_unlock(&pool->lock);
2266 cpu_relax();
2267 goto retry;
2268 }
2269 /* oops */
2270 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2271 wq->name, cpu);
2272 }
2273
2274 /* pwq determined, queue */
2275 trace_workqueue_queue_work(req_cpu, pwq, work);
2276
2277 if (WARN_ON(!list_empty(&work->entry)))
2278 goto out;
2279
2280 pwq->nr_in_flight[pwq->work_color]++;
2281 work_flags = work_color_to_flags(pwq->work_color);
2282
2283 /*
2284 * Limit the number of concurrently active work items to max_active.
2285 * @work must also queue behind existing inactive work items to maintain
2286 * ordering when max_active changes. See wq_adjust_max_active().
2287 */
2288 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2289 if (list_empty(&pool->worklist))
2290 pool->watchdog_ts = jiffies;
2291
2292 trace_workqueue_activate_work(work);
2293 insert_work(pwq, work, &pool->worklist, work_flags);
2294 kick_pool(pool);
2295 } else {
2296 work_flags |= WORK_STRUCT_INACTIVE;
2297 insert_work(pwq, work, &pwq->inactive_works, work_flags);
2298 }
2299
2300out:
2301 raw_spin_unlock(&pool->lock);
2302 rcu_read_unlock();
2303}
2304
2305/**
2306 * queue_work_on - queue work on specific cpu
2307 * @cpu: CPU number to execute work on
2308 * @wq: workqueue to use
2309 * @work: work to queue
2310 *
2311 * We queue the work to a specific CPU, the caller must ensure it
2312 * can't go away. Callers that fail to ensure that the specified
2313 * CPU cannot go away will execute on a randomly chosen CPU.
2314 * But note well that callers specifying a CPU that never has been
2315 * online will get a splat.
2316 *
2317 * Return: %false if @work was already on a queue, %true otherwise.
2318 */
2319bool queue_work_on(int cpu, struct workqueue_struct *wq,
2320 struct work_struct *work)
2321{
2322 bool ret = false;
2323 unsigned long flags;
2324
2325 local_irq_save(flags);
2326
2327 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2328 __queue_work(cpu, wq, work);
2329 ret = true;
2330 }
2331
2332 local_irq_restore(flags);
2333 return ret;
2334}
2335EXPORT_SYMBOL(queue_work_on);
2336
2337/**
2338 * select_numa_node_cpu - Select a CPU based on NUMA node
2339 * @node: NUMA node ID that we want to select a CPU from
2340 *
2341 * This function will attempt to find a "random" cpu available on a given
2342 * node. If there are no CPUs available on the given node it will return
2343 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2344 * available CPU if we need to schedule this work.
2345 */
2346static int select_numa_node_cpu(int node)
2347{
2348 int cpu;
2349
2350 /* Delay binding to CPU if node is not valid or online */
2351 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2352 return WORK_CPU_UNBOUND;
2353
2354 /* Use local node/cpu if we are already there */
2355 cpu = raw_smp_processor_id();
2356 if (node == cpu_to_node(cpu))
2357 return cpu;
2358
2359 /* Use "random" otherwise know as "first" online CPU of node */
2360 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2361
2362 /* If CPU is valid return that, otherwise just defer */
2363 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2364}
2365
2366/**
2367 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2368 * @node: NUMA node that we are targeting the work for
2369 * @wq: workqueue to use
2370 * @work: work to queue
2371 *
2372 * We queue the work to a "random" CPU within a given NUMA node. The basic
2373 * idea here is to provide a way to somehow associate work with a given
2374 * NUMA node.
2375 *
2376 * This function will only make a best effort attempt at getting this onto
2377 * the right NUMA node. If no node is requested or the requested node is
2378 * offline then we just fall back to standard queue_work behavior.
2379 *
2380 * Currently the "random" CPU ends up being the first available CPU in the
2381 * intersection of cpu_online_mask and the cpumask of the node, unless we
2382 * are running on the node. In that case we just use the current CPU.
2383 *
2384 * Return: %false if @work was already on a queue, %true otherwise.
2385 */
2386bool queue_work_node(int node, struct workqueue_struct *wq,
2387 struct work_struct *work)
2388{
2389 unsigned long flags;
2390 bool ret = false;
2391
2392 /*
2393 * This current implementation is specific to unbound workqueues.
2394 * Specifically we only return the first available CPU for a given
2395 * node instead of cycling through individual CPUs within the node.
2396 *
2397 * If this is used with a per-cpu workqueue then the logic in
2398 * workqueue_select_cpu_near would need to be updated to allow for
2399 * some round robin type logic.
2400 */
2401 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2402
2403 local_irq_save(flags);
2404
2405 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2406 int cpu = select_numa_node_cpu(node);
2407
2408 __queue_work(cpu, wq, work);
2409 ret = true;
2410 }
2411
2412 local_irq_restore(flags);
2413 return ret;
2414}
2415EXPORT_SYMBOL_GPL(queue_work_node);
2416
2417void delayed_work_timer_fn(struct timer_list *t)
2418{
2419 struct delayed_work *dwork = from_timer(dwork, t, timer);
2420
2421 /* should have been called from irqsafe timer with irq already off */
2422 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2423}
2424EXPORT_SYMBOL(delayed_work_timer_fn);
2425
2426static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2427 struct delayed_work *dwork, unsigned long delay)
2428{
2429 struct timer_list *timer = &dwork->timer;
2430 struct work_struct *work = &dwork->work;
2431
2432 WARN_ON_ONCE(!wq);
2433 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2434 WARN_ON_ONCE(timer_pending(timer));
2435 WARN_ON_ONCE(!list_empty(&work->entry));
2436
2437 /*
2438 * If @delay is 0, queue @dwork->work immediately. This is for
2439 * both optimization and correctness. The earliest @timer can
2440 * expire is on the closest next tick and delayed_work users depend
2441 * on that there's no such delay when @delay is 0.
2442 */
2443 if (!delay) {
2444 __queue_work(cpu, wq, &dwork->work);
2445 return;
2446 }
2447
2448 dwork->wq = wq;
2449 dwork->cpu = cpu;
2450 timer->expires = jiffies + delay;
2451
2452 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2453 /* If the current cpu is a housekeeping cpu, use it. */
2454 cpu = smp_processor_id();
2455 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2456 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2457 add_timer_on(timer, cpu);
2458 } else {
2459 if (likely(cpu == WORK_CPU_UNBOUND))
2460 add_timer(timer);
2461 else
2462 add_timer_on(timer, cpu);
2463 }
2464}
2465
2466/**
2467 * queue_delayed_work_on - queue work on specific CPU after delay
2468 * @cpu: CPU number to execute work on
2469 * @wq: workqueue to use
2470 * @dwork: work to queue
2471 * @delay: number of jiffies to wait before queueing
2472 *
2473 * Return: %false if @work was already on a queue, %true otherwise. If
2474 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2475 * execution.
2476 */
2477bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2478 struct delayed_work *dwork, unsigned long delay)
2479{
2480 struct work_struct *work = &dwork->work;
2481 bool ret = false;
2482 unsigned long flags;
2483
2484 /* read the comment in __queue_work() */
2485 local_irq_save(flags);
2486
2487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2488 __queue_delayed_work(cpu, wq, dwork, delay);
2489 ret = true;
2490 }
2491
2492 local_irq_restore(flags);
2493 return ret;
2494}
2495EXPORT_SYMBOL(queue_delayed_work_on);
2496
2497/**
2498 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2499 * @cpu: CPU number to execute work on
2500 * @wq: workqueue to use
2501 * @dwork: work to queue
2502 * @delay: number of jiffies to wait before queueing
2503 *
2504 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2505 * modify @dwork's timer so that it expires after @delay. If @delay is
2506 * zero, @work is guaranteed to be scheduled immediately regardless of its
2507 * current state.
2508 *
2509 * Return: %false if @dwork was idle and queued, %true if @dwork was
2510 * pending and its timer was modified.
2511 *
2512 * This function is safe to call from any context including IRQ handler.
2513 * See try_to_grab_pending() for details.
2514 */
2515bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2516 struct delayed_work *dwork, unsigned long delay)
2517{
2518 unsigned long flags;
2519 int ret;
2520
2521 do {
2522 ret = try_to_grab_pending(&dwork->work, true, &flags);
2523 } while (unlikely(ret == -EAGAIN));
2524
2525 if (likely(ret >= 0)) {
2526 __queue_delayed_work(cpu, wq, dwork, delay);
2527 local_irq_restore(flags);
2528 }
2529
2530 /* -ENOENT from try_to_grab_pending() becomes %true */
2531 return ret;
2532}
2533EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2534
2535static void rcu_work_rcufn(struct rcu_head *rcu)
2536{
2537 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2538
2539 /* read the comment in __queue_work() */
2540 local_irq_disable();
2541 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2542 local_irq_enable();
2543}
2544
2545/**
2546 * queue_rcu_work - queue work after a RCU grace period
2547 * @wq: workqueue to use
2548 * @rwork: work to queue
2549 *
2550 * Return: %false if @rwork was already pending, %true otherwise. Note
2551 * that a full RCU grace period is guaranteed only after a %true return.
2552 * While @rwork is guaranteed to be executed after a %false return, the
2553 * execution may happen before a full RCU grace period has passed.
2554 */
2555bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2556{
2557 struct work_struct *work = &rwork->work;
2558
2559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2560 rwork->wq = wq;
2561 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2562 return true;
2563 }
2564
2565 return false;
2566}
2567EXPORT_SYMBOL(queue_rcu_work);
2568
2569static struct worker *alloc_worker(int node)
2570{
2571 struct worker *worker;
2572
2573 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2574 if (worker) {
2575 INIT_LIST_HEAD(&worker->entry);
2576 INIT_LIST_HEAD(&worker->scheduled);
2577 INIT_LIST_HEAD(&worker->node);
2578 /* on creation a worker is in !idle && prep state */
2579 worker->flags = WORKER_PREP;
2580 }
2581 return worker;
2582}
2583
2584static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2585{
2586 if (pool->cpu < 0 && pool->attrs->affn_strict)
2587 return pool->attrs->__pod_cpumask;
2588 else
2589 return pool->attrs->cpumask;
2590}
2591
2592/**
2593 * worker_attach_to_pool() - attach a worker to a pool
2594 * @worker: worker to be attached
2595 * @pool: the target pool
2596 *
2597 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2598 * cpu-binding of @worker are kept coordinated with the pool across
2599 * cpu-[un]hotplugs.
2600 */
2601static void worker_attach_to_pool(struct worker *worker,
2602 struct worker_pool *pool)
2603{
2604 mutex_lock(&wq_pool_attach_mutex);
2605
2606 /*
2607 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2608 * across this function. See the comments above the flag definition for
2609 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2610 */
2611 if (pool->flags & POOL_DISASSOCIATED) {
2612 worker->flags |= WORKER_UNBOUND;
2613 } else {
2614 WARN_ON_ONCE(pool->flags & POOL_BH);
2615 kthread_set_per_cpu(worker->task, pool->cpu);
2616 }
2617
2618 if (worker->rescue_wq)
2619 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2620
2621 list_add_tail(&worker->node, &pool->workers);
2622 worker->pool = pool;
2623
2624 mutex_unlock(&wq_pool_attach_mutex);
2625}
2626
2627/**
2628 * worker_detach_from_pool() - detach a worker from its pool
2629 * @worker: worker which is attached to its pool
2630 *
2631 * Undo the attaching which had been done in worker_attach_to_pool(). The
2632 * caller worker shouldn't access to the pool after detached except it has
2633 * other reference to the pool.
2634 */
2635static void worker_detach_from_pool(struct worker *worker)
2636{
2637 struct worker_pool *pool = worker->pool;
2638 struct completion *detach_completion = NULL;
2639
2640 /* there is one permanent BH worker per CPU which should never detach */
2641 WARN_ON_ONCE(pool->flags & POOL_BH);
2642
2643 mutex_lock(&wq_pool_attach_mutex);
2644
2645 kthread_set_per_cpu(worker->task, -1);
2646 list_del(&worker->node);
2647 worker->pool = NULL;
2648
2649 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2650 detach_completion = pool->detach_completion;
2651 mutex_unlock(&wq_pool_attach_mutex);
2652
2653 /* clear leftover flags without pool->lock after it is detached */
2654 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2655
2656 if (detach_completion)
2657 complete(detach_completion);
2658}
2659
2660/**
2661 * create_worker - create a new workqueue worker
2662 * @pool: pool the new worker will belong to
2663 *
2664 * Create and start a new worker which is attached to @pool.
2665 *
2666 * CONTEXT:
2667 * Might sleep. Does GFP_KERNEL allocations.
2668 *
2669 * Return:
2670 * Pointer to the newly created worker.
2671 */
2672static struct worker *create_worker(struct worker_pool *pool)
2673{
2674 struct worker *worker;
2675 int id;
2676 char id_buf[23];
2677
2678 /* ID is needed to determine kthread name */
2679 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2680 if (id < 0) {
2681 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2682 ERR_PTR(id));
2683 return NULL;
2684 }
2685
2686 worker = alloc_worker(pool->node);
2687 if (!worker) {
2688 pr_err_once("workqueue: Failed to allocate a worker\n");
2689 goto fail;
2690 }
2691
2692 worker->id = id;
2693
2694 if (!(pool->flags & POOL_BH)) {
2695 if (pool->cpu >= 0)
2696 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2697 pool->attrs->nice < 0 ? "H" : "");
2698 else
2699 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2700
2701 worker->task = kthread_create_on_node(worker_thread, worker,
2702 pool->node, "kworker/%s", id_buf);
2703 if (IS_ERR(worker->task)) {
2704 if (PTR_ERR(worker->task) == -EINTR) {
2705 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2706 id_buf);
2707 } else {
2708 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2709 worker->task);
2710 }
2711 goto fail;
2712 }
2713
2714 set_user_nice(worker->task, pool->attrs->nice);
2715 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2716 }
2717
2718 /* successful, attach the worker to the pool */
2719 worker_attach_to_pool(worker, pool);
2720
2721 /* start the newly created worker */
2722 raw_spin_lock_irq(&pool->lock);
2723
2724 worker->pool->nr_workers++;
2725 worker_enter_idle(worker);
2726
2727 /*
2728 * @worker is waiting on a completion in kthread() and will trigger hung
2729 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2730 * wake it up explicitly.
2731 */
2732 if (worker->task)
2733 wake_up_process(worker->task);
2734
2735 raw_spin_unlock_irq(&pool->lock);
2736
2737 return worker;
2738
2739fail:
2740 ida_free(&pool->worker_ida, id);
2741 kfree(worker);
2742 return NULL;
2743}
2744
2745static void unbind_worker(struct worker *worker)
2746{
2747 lockdep_assert_held(&wq_pool_attach_mutex);
2748
2749 kthread_set_per_cpu(worker->task, -1);
2750 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2751 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2752 else
2753 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2754}
2755
2756static void wake_dying_workers(struct list_head *cull_list)
2757{
2758 struct worker *worker, *tmp;
2759
2760 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2761 list_del_init(&worker->entry);
2762 unbind_worker(worker);
2763 /*
2764 * If the worker was somehow already running, then it had to be
2765 * in pool->idle_list when set_worker_dying() happened or we
2766 * wouldn't have gotten here.
2767 *
2768 * Thus, the worker must either have observed the WORKER_DIE
2769 * flag, or have set its state to TASK_IDLE. Either way, the
2770 * below will be observed by the worker and is safe to do
2771 * outside of pool->lock.
2772 */
2773 wake_up_process(worker->task);
2774 }
2775}
2776
2777/**
2778 * set_worker_dying - Tag a worker for destruction
2779 * @worker: worker to be destroyed
2780 * @list: transfer worker away from its pool->idle_list and into list
2781 *
2782 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2783 * should be idle.
2784 *
2785 * CONTEXT:
2786 * raw_spin_lock_irq(pool->lock).
2787 */
2788static void set_worker_dying(struct worker *worker, struct list_head *list)
2789{
2790 struct worker_pool *pool = worker->pool;
2791
2792 lockdep_assert_held(&pool->lock);
2793 lockdep_assert_held(&wq_pool_attach_mutex);
2794
2795 /* sanity check frenzy */
2796 if (WARN_ON(worker->current_work) ||
2797 WARN_ON(!list_empty(&worker->scheduled)) ||
2798 WARN_ON(!(worker->flags & WORKER_IDLE)))
2799 return;
2800
2801 pool->nr_workers--;
2802 pool->nr_idle--;
2803
2804 worker->flags |= WORKER_DIE;
2805
2806 list_move(&worker->entry, list);
2807 list_move(&worker->node, &pool->dying_workers);
2808}
2809
2810/**
2811 * idle_worker_timeout - check if some idle workers can now be deleted.
2812 * @t: The pool's idle_timer that just expired
2813 *
2814 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2815 * worker_leave_idle(), as a worker flicking between idle and active while its
2816 * pool is at the too_many_workers() tipping point would cause too much timer
2817 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2818 * it expire and re-evaluate things from there.
2819 */
2820static void idle_worker_timeout(struct timer_list *t)
2821{
2822 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2823 bool do_cull = false;
2824
2825 if (work_pending(&pool->idle_cull_work))
2826 return;
2827
2828 raw_spin_lock_irq(&pool->lock);
2829
2830 if (too_many_workers(pool)) {
2831 struct worker *worker;
2832 unsigned long expires;
2833
2834 /* idle_list is kept in LIFO order, check the last one */
2835 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2836 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2837 do_cull = !time_before(jiffies, expires);
2838
2839 if (!do_cull)
2840 mod_timer(&pool->idle_timer, expires);
2841 }
2842 raw_spin_unlock_irq(&pool->lock);
2843
2844 if (do_cull)
2845 queue_work(system_unbound_wq, &pool->idle_cull_work);
2846}
2847
2848/**
2849 * idle_cull_fn - cull workers that have been idle for too long.
2850 * @work: the pool's work for handling these idle workers
2851 *
2852 * This goes through a pool's idle workers and gets rid of those that have been
2853 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2854 *
2855 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2856 * culled, so this also resets worker affinity. This requires a sleepable
2857 * context, hence the split between timer callback and work item.
2858 */
2859static void idle_cull_fn(struct work_struct *work)
2860{
2861 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2862 LIST_HEAD(cull_list);
2863
2864 /*
2865 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2866 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2867 * path. This is required as a previously-preempted worker could run after
2868 * set_worker_dying() has happened but before wake_dying_workers() did.
2869 */
2870 mutex_lock(&wq_pool_attach_mutex);
2871 raw_spin_lock_irq(&pool->lock);
2872
2873 while (too_many_workers(pool)) {
2874 struct worker *worker;
2875 unsigned long expires;
2876
2877 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2878 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2879
2880 if (time_before(jiffies, expires)) {
2881 mod_timer(&pool->idle_timer, expires);
2882 break;
2883 }
2884
2885 set_worker_dying(worker, &cull_list);
2886 }
2887
2888 raw_spin_unlock_irq(&pool->lock);
2889 wake_dying_workers(&cull_list);
2890 mutex_unlock(&wq_pool_attach_mutex);
2891}
2892
2893static void send_mayday(struct work_struct *work)
2894{
2895 struct pool_workqueue *pwq = get_work_pwq(work);
2896 struct workqueue_struct *wq = pwq->wq;
2897
2898 lockdep_assert_held(&wq_mayday_lock);
2899
2900 if (!wq->rescuer)
2901 return;
2902
2903 /* mayday mayday mayday */
2904 if (list_empty(&pwq->mayday_node)) {
2905 /*
2906 * If @pwq is for an unbound wq, its base ref may be put at
2907 * any time due to an attribute change. Pin @pwq until the
2908 * rescuer is done with it.
2909 */
2910 get_pwq(pwq);
2911 list_add_tail(&pwq->mayday_node, &wq->maydays);
2912 wake_up_process(wq->rescuer->task);
2913 pwq->stats[PWQ_STAT_MAYDAY]++;
2914 }
2915}
2916
2917static void pool_mayday_timeout(struct timer_list *t)
2918{
2919 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2920 struct work_struct *work;
2921
2922 raw_spin_lock_irq(&pool->lock);
2923 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2924
2925 if (need_to_create_worker(pool)) {
2926 /*
2927 * We've been trying to create a new worker but
2928 * haven't been successful. We might be hitting an
2929 * allocation deadlock. Send distress signals to
2930 * rescuers.
2931 */
2932 list_for_each_entry(work, &pool->worklist, entry)
2933 send_mayday(work);
2934 }
2935
2936 raw_spin_unlock(&wq_mayday_lock);
2937 raw_spin_unlock_irq(&pool->lock);
2938
2939 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2940}
2941
2942/**
2943 * maybe_create_worker - create a new worker if necessary
2944 * @pool: pool to create a new worker for
2945 *
2946 * Create a new worker for @pool if necessary. @pool is guaranteed to
2947 * have at least one idle worker on return from this function. If
2948 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2949 * sent to all rescuers with works scheduled on @pool to resolve
2950 * possible allocation deadlock.
2951 *
2952 * On return, need_to_create_worker() is guaranteed to be %false and
2953 * may_start_working() %true.
2954 *
2955 * LOCKING:
2956 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2957 * multiple times. Does GFP_KERNEL allocations. Called only from
2958 * manager.
2959 */
2960static void maybe_create_worker(struct worker_pool *pool)
2961__releases(&pool->lock)
2962__acquires(&pool->lock)
2963{
2964restart:
2965 raw_spin_unlock_irq(&pool->lock);
2966
2967 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2968 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2969
2970 while (true) {
2971 if (create_worker(pool) || !need_to_create_worker(pool))
2972 break;
2973
2974 schedule_timeout_interruptible(CREATE_COOLDOWN);
2975
2976 if (!need_to_create_worker(pool))
2977 break;
2978 }
2979
2980 del_timer_sync(&pool->mayday_timer);
2981 raw_spin_lock_irq(&pool->lock);
2982 /*
2983 * This is necessary even after a new worker was just successfully
2984 * created as @pool->lock was dropped and the new worker might have
2985 * already become busy.
2986 */
2987 if (need_to_create_worker(pool))
2988 goto restart;
2989}
2990
2991/**
2992 * manage_workers - manage worker pool
2993 * @worker: self
2994 *
2995 * Assume the manager role and manage the worker pool @worker belongs
2996 * to. At any given time, there can be only zero or one manager per
2997 * pool. The exclusion is handled automatically by this function.
2998 *
2999 * The caller can safely start processing works on false return. On
3000 * true return, it's guaranteed that need_to_create_worker() is false
3001 * and may_start_working() is true.
3002 *
3003 * CONTEXT:
3004 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3005 * multiple times. Does GFP_KERNEL allocations.
3006 *
3007 * Return:
3008 * %false if the pool doesn't need management and the caller can safely
3009 * start processing works, %true if management function was performed and
3010 * the conditions that the caller verified before calling the function may
3011 * no longer be true.
3012 */
3013static bool manage_workers(struct worker *worker)
3014{
3015 struct worker_pool *pool = worker->pool;
3016
3017 if (pool->flags & POOL_MANAGER_ACTIVE)
3018 return false;
3019
3020 pool->flags |= POOL_MANAGER_ACTIVE;
3021 pool->manager = worker;
3022
3023 maybe_create_worker(pool);
3024
3025 pool->manager = NULL;
3026 pool->flags &= ~POOL_MANAGER_ACTIVE;
3027 rcuwait_wake_up(&manager_wait);
3028 return true;
3029}
3030
3031/**
3032 * process_one_work - process single work
3033 * @worker: self
3034 * @work: work to process
3035 *
3036 * Process @work. This function contains all the logics necessary to
3037 * process a single work including synchronization against and
3038 * interaction with other workers on the same cpu, queueing and
3039 * flushing. As long as context requirement is met, any worker can
3040 * call this function to process a work.
3041 *
3042 * CONTEXT:
3043 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3044 */
3045static void process_one_work(struct worker *worker, struct work_struct *work)
3046__releases(&pool->lock)
3047__acquires(&pool->lock)
3048{
3049 struct pool_workqueue *pwq = get_work_pwq(work);
3050 struct worker_pool *pool = worker->pool;
3051 unsigned long work_data;
3052 int lockdep_start_depth, rcu_start_depth;
3053#ifdef CONFIG_LOCKDEP
3054 /*
3055 * It is permissible to free the struct work_struct from
3056 * inside the function that is called from it, this we need to
3057 * take into account for lockdep too. To avoid bogus "held
3058 * lock freed" warnings as well as problems when looking into
3059 * work->lockdep_map, make a copy and use that here.
3060 */
3061 struct lockdep_map lockdep_map;
3062
3063 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3064#endif
3065 /* ensure we're on the correct CPU */
3066 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3067 raw_smp_processor_id() != pool->cpu);
3068
3069 /* claim and dequeue */
3070 debug_work_deactivate(work);
3071 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3072 worker->current_work = work;
3073 worker->current_func = work->func;
3074 worker->current_pwq = pwq;
3075 if (worker->task)
3076 worker->current_at = worker->task->se.sum_exec_runtime;
3077 work_data = *work_data_bits(work);
3078 worker->current_color = get_work_color(work_data);
3079
3080 /*
3081 * Record wq name for cmdline and debug reporting, may get
3082 * overridden through set_worker_desc().
3083 */
3084 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3085
3086 list_del_init(&work->entry);
3087
3088 /*
3089 * CPU intensive works don't participate in concurrency management.
3090 * They're the scheduler's responsibility. This takes @worker out
3091 * of concurrency management and the next code block will chain
3092 * execution of the pending work items.
3093 */
3094 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3095 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3096
3097 /*
3098 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3099 * since nr_running would always be >= 1 at this point. This is used to
3100 * chain execution of the pending work items for WORKER_NOT_RUNNING
3101 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3102 */
3103 kick_pool(pool);
3104
3105 /*
3106 * Record the last pool and clear PENDING which should be the last
3107 * update to @work. Also, do this inside @pool->lock so that
3108 * PENDING and queued state changes happen together while IRQ is
3109 * disabled.
3110 */
3111 set_work_pool_and_clear_pending(work, pool->id);
3112
3113 pwq->stats[PWQ_STAT_STARTED]++;
3114 raw_spin_unlock_irq(&pool->lock);
3115
3116 rcu_start_depth = rcu_preempt_depth();
3117 lockdep_start_depth = lockdep_depth(current);
3118 lock_map_acquire(&pwq->wq->lockdep_map);
3119 lock_map_acquire(&lockdep_map);
3120 /*
3121 * Strictly speaking we should mark the invariant state without holding
3122 * any locks, that is, before these two lock_map_acquire()'s.
3123 *
3124 * However, that would result in:
3125 *
3126 * A(W1)
3127 * WFC(C)
3128 * A(W1)
3129 * C(C)
3130 *
3131 * Which would create W1->C->W1 dependencies, even though there is no
3132 * actual deadlock possible. There are two solutions, using a
3133 * read-recursive acquire on the work(queue) 'locks', but this will then
3134 * hit the lockdep limitation on recursive locks, or simply discard
3135 * these locks.
3136 *
3137 * AFAICT there is no possible deadlock scenario between the
3138 * flush_work() and complete() primitives (except for single-threaded
3139 * workqueues), so hiding them isn't a problem.
3140 */
3141 lockdep_invariant_state(true);
3142 trace_workqueue_execute_start(work);
3143 worker->current_func(work);
3144 /*
3145 * While we must be careful to not use "work" after this, the trace
3146 * point will only record its address.
3147 */
3148 trace_workqueue_execute_end(work, worker->current_func);
3149 pwq->stats[PWQ_STAT_COMPLETED]++;
3150 lock_map_release(&lockdep_map);
3151 lock_map_release(&pwq->wq->lockdep_map);
3152
3153 if (unlikely((worker->task && in_atomic()) ||
3154 lockdep_depth(current) != lockdep_start_depth ||
3155 rcu_preempt_depth() != rcu_start_depth)) {
3156 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3157 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3158 current->comm, task_pid_nr(current), preempt_count(),
3159 lockdep_start_depth, lockdep_depth(current),
3160 rcu_start_depth, rcu_preempt_depth(),
3161 worker->current_func);
3162 debug_show_held_locks(current);
3163 dump_stack();
3164 }
3165
3166 /*
3167 * The following prevents a kworker from hogging CPU on !PREEMPTION
3168 * kernels, where a requeueing work item waiting for something to
3169 * happen could deadlock with stop_machine as such work item could
3170 * indefinitely requeue itself while all other CPUs are trapped in
3171 * stop_machine. At the same time, report a quiescent RCU state so
3172 * the same condition doesn't freeze RCU.
3173 */
3174 if (worker->task)
3175 cond_resched();
3176
3177 raw_spin_lock_irq(&pool->lock);
3178
3179 /*
3180 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3181 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3182 * wq_cpu_intensive_thresh_us. Clear it.
3183 */
3184 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3185
3186 /* tag the worker for identification in schedule() */
3187 worker->last_func = worker->current_func;
3188
3189 /* we're done with it, release */
3190 hash_del(&worker->hentry);
3191 worker->current_work = NULL;
3192 worker->current_func = NULL;
3193 worker->current_pwq = NULL;
3194 worker->current_color = INT_MAX;
3195
3196 /* must be the last step, see the function comment */
3197 pwq_dec_nr_in_flight(pwq, work_data);
3198}
3199
3200/**
3201 * process_scheduled_works - process scheduled works
3202 * @worker: self
3203 *
3204 * Process all scheduled works. Please note that the scheduled list
3205 * may change while processing a work, so this function repeatedly
3206 * fetches a work from the top and executes it.
3207 *
3208 * CONTEXT:
3209 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3210 * multiple times.
3211 */
3212static void process_scheduled_works(struct worker *worker)
3213{
3214 struct work_struct *work;
3215 bool first = true;
3216
3217 while ((work = list_first_entry_or_null(&worker->scheduled,
3218 struct work_struct, entry))) {
3219 if (first) {
3220 worker->pool->watchdog_ts = jiffies;
3221 first = false;
3222 }
3223 process_one_work(worker, work);
3224 }
3225}
3226
3227static void set_pf_worker(bool val)
3228{
3229 mutex_lock(&wq_pool_attach_mutex);
3230 if (val)
3231 current->flags |= PF_WQ_WORKER;
3232 else
3233 current->flags &= ~PF_WQ_WORKER;
3234 mutex_unlock(&wq_pool_attach_mutex);
3235}
3236
3237/**
3238 * worker_thread - the worker thread function
3239 * @__worker: self
3240 *
3241 * The worker thread function. All workers belong to a worker_pool -
3242 * either a per-cpu one or dynamic unbound one. These workers process all
3243 * work items regardless of their specific target workqueue. The only
3244 * exception is work items which belong to workqueues with a rescuer which
3245 * will be explained in rescuer_thread().
3246 *
3247 * Return: 0
3248 */
3249static int worker_thread(void *__worker)
3250{
3251 struct worker *worker = __worker;
3252 struct worker_pool *pool = worker->pool;
3253
3254 /* tell the scheduler that this is a workqueue worker */
3255 set_pf_worker(true);
3256woke_up:
3257 raw_spin_lock_irq(&pool->lock);
3258
3259 /* am I supposed to die? */
3260 if (unlikely(worker->flags & WORKER_DIE)) {
3261 raw_spin_unlock_irq(&pool->lock);
3262 set_pf_worker(false);
3263
3264 set_task_comm(worker->task, "kworker/dying");
3265 ida_free(&pool->worker_ida, worker->id);
3266 worker_detach_from_pool(worker);
3267 WARN_ON_ONCE(!list_empty(&worker->entry));
3268 kfree(worker);
3269 return 0;
3270 }
3271
3272 worker_leave_idle(worker);
3273recheck:
3274 /* no more worker necessary? */
3275 if (!need_more_worker(pool))
3276 goto sleep;
3277
3278 /* do we need to manage? */
3279 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3280 goto recheck;
3281
3282 /*
3283 * ->scheduled list can only be filled while a worker is
3284 * preparing to process a work or actually processing it.
3285 * Make sure nobody diddled with it while I was sleeping.
3286 */
3287 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3288
3289 /*
3290 * Finish PREP stage. We're guaranteed to have at least one idle
3291 * worker or that someone else has already assumed the manager
3292 * role. This is where @worker starts participating in concurrency
3293 * management if applicable and concurrency management is restored
3294 * after being rebound. See rebind_workers() for details.
3295 */
3296 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3297
3298 do {
3299 struct work_struct *work =
3300 list_first_entry(&pool->worklist,
3301 struct work_struct, entry);
3302
3303 if (assign_work(work, worker, NULL))
3304 process_scheduled_works(worker);
3305 } while (keep_working(pool));
3306
3307 worker_set_flags(worker, WORKER_PREP);
3308sleep:
3309 /*
3310 * pool->lock is held and there's no work to process and no need to
3311 * manage, sleep. Workers are woken up only while holding
3312 * pool->lock or from local cpu, so setting the current state
3313 * before releasing pool->lock is enough to prevent losing any
3314 * event.
3315 */
3316 worker_enter_idle(worker);
3317 __set_current_state(TASK_IDLE);
3318 raw_spin_unlock_irq(&pool->lock);
3319 schedule();
3320 goto woke_up;
3321}
3322
3323/**
3324 * rescuer_thread - the rescuer thread function
3325 * @__rescuer: self
3326 *
3327 * Workqueue rescuer thread function. There's one rescuer for each
3328 * workqueue which has WQ_MEM_RECLAIM set.
3329 *
3330 * Regular work processing on a pool may block trying to create a new
3331 * worker which uses GFP_KERNEL allocation which has slight chance of
3332 * developing into deadlock if some works currently on the same queue
3333 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3334 * the problem rescuer solves.
3335 *
3336 * When such condition is possible, the pool summons rescuers of all
3337 * workqueues which have works queued on the pool and let them process
3338 * those works so that forward progress can be guaranteed.
3339 *
3340 * This should happen rarely.
3341 *
3342 * Return: 0
3343 */
3344static int rescuer_thread(void *__rescuer)
3345{
3346 struct worker *rescuer = __rescuer;
3347 struct workqueue_struct *wq = rescuer->rescue_wq;
3348 bool should_stop;
3349
3350 set_user_nice(current, RESCUER_NICE_LEVEL);
3351
3352 /*
3353 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3354 * doesn't participate in concurrency management.
3355 */
3356 set_pf_worker(true);
3357repeat:
3358 set_current_state(TASK_IDLE);
3359
3360 /*
3361 * By the time the rescuer is requested to stop, the workqueue
3362 * shouldn't have any work pending, but @wq->maydays may still have
3363 * pwq(s) queued. This can happen by non-rescuer workers consuming
3364 * all the work items before the rescuer got to them. Go through
3365 * @wq->maydays processing before acting on should_stop so that the
3366 * list is always empty on exit.
3367 */
3368 should_stop = kthread_should_stop();
3369
3370 /* see whether any pwq is asking for help */
3371 raw_spin_lock_irq(&wq_mayday_lock);
3372
3373 while (!list_empty(&wq->maydays)) {
3374 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3375 struct pool_workqueue, mayday_node);
3376 struct worker_pool *pool = pwq->pool;
3377 struct work_struct *work, *n;
3378
3379 __set_current_state(TASK_RUNNING);
3380 list_del_init(&pwq->mayday_node);
3381
3382 raw_spin_unlock_irq(&wq_mayday_lock);
3383
3384 worker_attach_to_pool(rescuer, pool);
3385
3386 raw_spin_lock_irq(&pool->lock);
3387
3388 /*
3389 * Slurp in all works issued via this workqueue and
3390 * process'em.
3391 */
3392 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3393 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3394 if (get_work_pwq(work) == pwq &&
3395 assign_work(work, rescuer, &n))
3396 pwq->stats[PWQ_STAT_RESCUED]++;
3397 }
3398
3399 if (!list_empty(&rescuer->scheduled)) {
3400 process_scheduled_works(rescuer);
3401
3402 /*
3403 * The above execution of rescued work items could
3404 * have created more to rescue through
3405 * pwq_activate_first_inactive() or chained
3406 * queueing. Let's put @pwq back on mayday list so
3407 * that such back-to-back work items, which may be
3408 * being used to relieve memory pressure, don't
3409 * incur MAYDAY_INTERVAL delay inbetween.
3410 */
3411 if (pwq->nr_active && need_to_create_worker(pool)) {
3412 raw_spin_lock(&wq_mayday_lock);
3413 /*
3414 * Queue iff we aren't racing destruction
3415 * and somebody else hasn't queued it already.
3416 */
3417 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3418 get_pwq(pwq);
3419 list_add_tail(&pwq->mayday_node, &wq->maydays);
3420 }
3421 raw_spin_unlock(&wq_mayday_lock);
3422 }
3423 }
3424
3425 /*
3426 * Put the reference grabbed by send_mayday(). @pool won't
3427 * go away while we're still attached to it.
3428 */
3429 put_pwq(pwq);
3430
3431 /*
3432 * Leave this pool. Notify regular workers; otherwise, we end up
3433 * with 0 concurrency and stalling the execution.
3434 */
3435 kick_pool(pool);
3436
3437 raw_spin_unlock_irq(&pool->lock);
3438
3439 worker_detach_from_pool(rescuer);
3440
3441 raw_spin_lock_irq(&wq_mayday_lock);
3442 }
3443
3444 raw_spin_unlock_irq(&wq_mayday_lock);
3445
3446 if (should_stop) {
3447 __set_current_state(TASK_RUNNING);
3448 set_pf_worker(false);
3449 return 0;
3450 }
3451
3452 /* rescuers should never participate in concurrency management */
3453 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3454 schedule();
3455 goto repeat;
3456}
3457
3458static void bh_worker(struct worker *worker)
3459{
3460 struct worker_pool *pool = worker->pool;
3461 int nr_restarts = BH_WORKER_RESTARTS;
3462 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3463
3464 raw_spin_lock_irq(&pool->lock);
3465 worker_leave_idle(worker);
3466
3467 /*
3468 * This function follows the structure of worker_thread(). See there for
3469 * explanations on each step.
3470 */
3471 if (!need_more_worker(pool))
3472 goto done;
3473
3474 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3475 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3476
3477 do {
3478 struct work_struct *work =
3479 list_first_entry(&pool->worklist,
3480 struct work_struct, entry);
3481
3482 if (assign_work(work, worker, NULL))
3483 process_scheduled_works(worker);
3484 } while (keep_working(pool) &&
3485 --nr_restarts && time_before(jiffies, end));
3486
3487 worker_set_flags(worker, WORKER_PREP);
3488done:
3489 worker_enter_idle(worker);
3490 kick_pool(pool);
3491 raw_spin_unlock_irq(&pool->lock);
3492}
3493
3494/*
3495 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3496 *
3497 * This is currently called from tasklet[_hi]action() and thus is also called
3498 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3499 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3500 * can be dropped.
3501 *
3502 * After full conversion, we'll add worker->softirq_action, directly use the
3503 * softirq action and obtain the worker pointer from the softirq_action pointer.
3504 */
3505void workqueue_softirq_action(bool highpri)
3506{
3507 struct worker_pool *pool =
3508 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3509 if (need_more_worker(pool))
3510 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3511}
3512
3513/**
3514 * check_flush_dependency - check for flush dependency sanity
3515 * @target_wq: workqueue being flushed
3516 * @target_work: work item being flushed (NULL for workqueue flushes)
3517 *
3518 * %current is trying to flush the whole @target_wq or @target_work on it.
3519 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3520 * reclaiming memory or running on a workqueue which doesn't have
3521 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3522 * a deadlock.
3523 */
3524static void check_flush_dependency(struct workqueue_struct *target_wq,
3525 struct work_struct *target_work)
3526{
3527 work_func_t target_func = target_work ? target_work->func : NULL;
3528 struct worker *worker;
3529
3530 if (target_wq->flags & WQ_MEM_RECLAIM)
3531 return;
3532
3533 worker = current_wq_worker();
3534
3535 WARN_ONCE(current->flags & PF_MEMALLOC,
3536 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3537 current->pid, current->comm, target_wq->name, target_func);
3538 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3539 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3540 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3541 worker->current_pwq->wq->name, worker->current_func,
3542 target_wq->name, target_func);
3543}
3544
3545struct wq_barrier {
3546 struct work_struct work;
3547 struct completion done;
3548 struct task_struct *task; /* purely informational */
3549};
3550
3551static void wq_barrier_func(struct work_struct *work)
3552{
3553 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3554 complete(&barr->done);
3555}
3556
3557/**
3558 * insert_wq_barrier - insert a barrier work
3559 * @pwq: pwq to insert barrier into
3560 * @barr: wq_barrier to insert
3561 * @target: target work to attach @barr to
3562 * @worker: worker currently executing @target, NULL if @target is not executing
3563 *
3564 * @barr is linked to @target such that @barr is completed only after
3565 * @target finishes execution. Please note that the ordering
3566 * guarantee is observed only with respect to @target and on the local
3567 * cpu.
3568 *
3569 * Currently, a queued barrier can't be canceled. This is because
3570 * try_to_grab_pending() can't determine whether the work to be
3571 * grabbed is at the head of the queue and thus can't clear LINKED
3572 * flag of the previous work while there must be a valid next work
3573 * after a work with LINKED flag set.
3574 *
3575 * Note that when @worker is non-NULL, @target may be modified
3576 * underneath us, so we can't reliably determine pwq from @target.
3577 *
3578 * CONTEXT:
3579 * raw_spin_lock_irq(pool->lock).
3580 */
3581static void insert_wq_barrier(struct pool_workqueue *pwq,
3582 struct wq_barrier *barr,
3583 struct work_struct *target, struct worker *worker)
3584{
3585 static __maybe_unused struct lock_class_key bh_key, thr_key;
3586 unsigned int work_flags = 0;
3587 unsigned int work_color;
3588 struct list_head *head;
3589
3590 /*
3591 * debugobject calls are safe here even with pool->lock locked
3592 * as we know for sure that this will not trigger any of the
3593 * checks and call back into the fixup functions where we
3594 * might deadlock.
3595 *
3596 * BH and threaded workqueues need separate lockdep keys to avoid
3597 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3598 * usage".
3599 */
3600 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3601 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3602 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3603
3604 init_completion_map(&barr->done, &target->lockdep_map);
3605
3606 barr->task = current;
3607
3608 /* The barrier work item does not participate in nr_active. */
3609 work_flags |= WORK_STRUCT_INACTIVE;
3610
3611 /*
3612 * If @target is currently being executed, schedule the
3613 * barrier to the worker; otherwise, put it after @target.
3614 */
3615 if (worker) {
3616 head = worker->scheduled.next;
3617 work_color = worker->current_color;
3618 } else {
3619 unsigned long *bits = work_data_bits(target);
3620
3621 head = target->entry.next;
3622 /* there can already be other linked works, inherit and set */
3623 work_flags |= *bits & WORK_STRUCT_LINKED;
3624 work_color = get_work_color(*bits);
3625 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3626 }
3627
3628 pwq->nr_in_flight[work_color]++;
3629 work_flags |= work_color_to_flags(work_color);
3630
3631 insert_work(pwq, &barr->work, head, work_flags);
3632}
3633
3634/**
3635 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3636 * @wq: workqueue being flushed
3637 * @flush_color: new flush color, < 0 for no-op
3638 * @work_color: new work color, < 0 for no-op
3639 *
3640 * Prepare pwqs for workqueue flushing.
3641 *
3642 * If @flush_color is non-negative, flush_color on all pwqs should be
3643 * -1. If no pwq has in-flight commands at the specified color, all
3644 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3645 * has in flight commands, its pwq->flush_color is set to
3646 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3647 * wakeup logic is armed and %true is returned.
3648 *
3649 * The caller should have initialized @wq->first_flusher prior to
3650 * calling this function with non-negative @flush_color. If
3651 * @flush_color is negative, no flush color update is done and %false
3652 * is returned.
3653 *
3654 * If @work_color is non-negative, all pwqs should have the same
3655 * work_color which is previous to @work_color and all will be
3656 * advanced to @work_color.
3657 *
3658 * CONTEXT:
3659 * mutex_lock(wq->mutex).
3660 *
3661 * Return:
3662 * %true if @flush_color >= 0 and there's something to flush. %false
3663 * otherwise.
3664 */
3665static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3666 int flush_color, int work_color)
3667{
3668 bool wait = false;
3669 struct pool_workqueue *pwq;
3670
3671 if (flush_color >= 0) {
3672 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3673 atomic_set(&wq->nr_pwqs_to_flush, 1);
3674 }
3675
3676 for_each_pwq(pwq, wq) {
3677 struct worker_pool *pool = pwq->pool;
3678
3679 raw_spin_lock_irq(&pool->lock);
3680
3681 if (flush_color >= 0) {
3682 WARN_ON_ONCE(pwq->flush_color != -1);
3683
3684 if (pwq->nr_in_flight[flush_color]) {
3685 pwq->flush_color = flush_color;
3686 atomic_inc(&wq->nr_pwqs_to_flush);
3687 wait = true;
3688 }
3689 }
3690
3691 if (work_color >= 0) {
3692 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3693 pwq->work_color = work_color;
3694 }
3695
3696 raw_spin_unlock_irq(&pool->lock);
3697 }
3698
3699 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3700 complete(&wq->first_flusher->done);
3701
3702 return wait;
3703}
3704
3705static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3706{
3707#ifdef CONFIG_LOCKDEP
3708 if (wq->flags & WQ_BH)
3709 local_bh_disable();
3710
3711 lock_map_acquire(&wq->lockdep_map);
3712 lock_map_release(&wq->lockdep_map);
3713
3714 if (wq->flags & WQ_BH)
3715 local_bh_enable();
3716#endif
3717}
3718
3719static void touch_work_lockdep_map(struct work_struct *work,
3720 struct workqueue_struct *wq)
3721{
3722#ifdef CONFIG_LOCKDEP
3723 if (wq->flags & WQ_BH)
3724 local_bh_disable();
3725
3726 lock_map_acquire(&work->lockdep_map);
3727 lock_map_release(&work->lockdep_map);
3728
3729 if (wq->flags & WQ_BH)
3730 local_bh_enable();
3731#endif
3732}
3733
3734/**
3735 * __flush_workqueue - ensure that any scheduled work has run to completion.
3736 * @wq: workqueue to flush
3737 *
3738 * This function sleeps until all work items which were queued on entry
3739 * have finished execution, but it is not livelocked by new incoming ones.
3740 */
3741void __flush_workqueue(struct workqueue_struct *wq)
3742{
3743 struct wq_flusher this_flusher = {
3744 .list = LIST_HEAD_INIT(this_flusher.list),
3745 .flush_color = -1,
3746 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3747 };
3748 int next_color;
3749
3750 if (WARN_ON(!wq_online))
3751 return;
3752
3753 touch_wq_lockdep_map(wq);
3754
3755 mutex_lock(&wq->mutex);
3756
3757 /*
3758 * Start-to-wait phase
3759 */
3760 next_color = work_next_color(wq->work_color);
3761
3762 if (next_color != wq->flush_color) {
3763 /*
3764 * Color space is not full. The current work_color
3765 * becomes our flush_color and work_color is advanced
3766 * by one.
3767 */
3768 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3769 this_flusher.flush_color = wq->work_color;
3770 wq->work_color = next_color;
3771
3772 if (!wq->first_flusher) {
3773 /* no flush in progress, become the first flusher */
3774 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3775
3776 wq->first_flusher = &this_flusher;
3777
3778 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3779 wq->work_color)) {
3780 /* nothing to flush, done */
3781 wq->flush_color = next_color;
3782 wq->first_flusher = NULL;
3783 goto out_unlock;
3784 }
3785 } else {
3786 /* wait in queue */
3787 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3788 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3789 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3790 }
3791 } else {
3792 /*
3793 * Oops, color space is full, wait on overflow queue.
3794 * The next flush completion will assign us
3795 * flush_color and transfer to flusher_queue.
3796 */
3797 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3798 }
3799
3800 check_flush_dependency(wq, NULL);
3801
3802 mutex_unlock(&wq->mutex);
3803
3804 wait_for_completion(&this_flusher.done);
3805
3806 /*
3807 * Wake-up-and-cascade phase
3808 *
3809 * First flushers are responsible for cascading flushes and
3810 * handling overflow. Non-first flushers can simply return.
3811 */
3812 if (READ_ONCE(wq->first_flusher) != &this_flusher)
3813 return;
3814
3815 mutex_lock(&wq->mutex);
3816
3817 /* we might have raced, check again with mutex held */
3818 if (wq->first_flusher != &this_flusher)
3819 goto out_unlock;
3820
3821 WRITE_ONCE(wq->first_flusher, NULL);
3822
3823 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3824 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3825
3826 while (true) {
3827 struct wq_flusher *next, *tmp;
3828
3829 /* complete all the flushers sharing the current flush color */
3830 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3831 if (next->flush_color != wq->flush_color)
3832 break;
3833 list_del_init(&next->list);
3834 complete(&next->done);
3835 }
3836
3837 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3838 wq->flush_color != work_next_color(wq->work_color));
3839
3840 /* this flush_color is finished, advance by one */
3841 wq->flush_color = work_next_color(wq->flush_color);
3842
3843 /* one color has been freed, handle overflow queue */
3844 if (!list_empty(&wq->flusher_overflow)) {
3845 /*
3846 * Assign the same color to all overflowed
3847 * flushers, advance work_color and append to
3848 * flusher_queue. This is the start-to-wait
3849 * phase for these overflowed flushers.
3850 */
3851 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3852 tmp->flush_color = wq->work_color;
3853
3854 wq->work_color = work_next_color(wq->work_color);
3855
3856 list_splice_tail_init(&wq->flusher_overflow,
3857 &wq->flusher_queue);
3858 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3859 }
3860
3861 if (list_empty(&wq->flusher_queue)) {
3862 WARN_ON_ONCE(wq->flush_color != wq->work_color);
3863 break;
3864 }
3865
3866 /*
3867 * Need to flush more colors. Make the next flusher
3868 * the new first flusher and arm pwqs.
3869 */
3870 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3871 WARN_ON_ONCE(wq->flush_color != next->flush_color);
3872
3873 list_del_init(&next->list);
3874 wq->first_flusher = next;
3875
3876 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3877 break;
3878
3879 /*
3880 * Meh... this color is already done, clear first
3881 * flusher and repeat cascading.
3882 */
3883 wq->first_flusher = NULL;
3884 }
3885
3886out_unlock:
3887 mutex_unlock(&wq->mutex);
3888}
3889EXPORT_SYMBOL(__flush_workqueue);
3890
3891/**
3892 * drain_workqueue - drain a workqueue
3893 * @wq: workqueue to drain
3894 *
3895 * Wait until the workqueue becomes empty. While draining is in progress,
3896 * only chain queueing is allowed. IOW, only currently pending or running
3897 * work items on @wq can queue further work items on it. @wq is flushed
3898 * repeatedly until it becomes empty. The number of flushing is determined
3899 * by the depth of chaining and should be relatively short. Whine if it
3900 * takes too long.
3901 */
3902void drain_workqueue(struct workqueue_struct *wq)
3903{
3904 unsigned int flush_cnt = 0;
3905 struct pool_workqueue *pwq;
3906
3907 /*
3908 * __queue_work() needs to test whether there are drainers, is much
3909 * hotter than drain_workqueue() and already looks at @wq->flags.
3910 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3911 */
3912 mutex_lock(&wq->mutex);
3913 if (!wq->nr_drainers++)
3914 wq->flags |= __WQ_DRAINING;
3915 mutex_unlock(&wq->mutex);
3916reflush:
3917 __flush_workqueue(wq);
3918
3919 mutex_lock(&wq->mutex);
3920
3921 for_each_pwq(pwq, wq) {
3922 bool drained;
3923
3924 raw_spin_lock_irq(&pwq->pool->lock);
3925 drained = pwq_is_empty(pwq);
3926 raw_spin_unlock_irq(&pwq->pool->lock);
3927
3928 if (drained)
3929 continue;
3930
3931 if (++flush_cnt == 10 ||
3932 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3933 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3934 wq->name, __func__, flush_cnt);
3935
3936 mutex_unlock(&wq->mutex);
3937 goto reflush;
3938 }
3939
3940 if (!--wq->nr_drainers)
3941 wq->flags &= ~__WQ_DRAINING;
3942 mutex_unlock(&wq->mutex);
3943}
3944EXPORT_SYMBOL_GPL(drain_workqueue);
3945
3946static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3947 bool from_cancel)
3948{
3949 struct worker *worker = NULL;
3950 struct worker_pool *pool;
3951 struct pool_workqueue *pwq;
3952 struct workqueue_struct *wq;
3953
3954 might_sleep();
3955
3956 rcu_read_lock();
3957 pool = get_work_pool(work);
3958 if (!pool) {
3959 rcu_read_unlock();
3960 return false;
3961 }
3962
3963 raw_spin_lock_irq(&pool->lock);
3964 /* see the comment in try_to_grab_pending() with the same code */
3965 pwq = get_work_pwq(work);
3966 if (pwq) {
3967 if (unlikely(pwq->pool != pool))
3968 goto already_gone;
3969 } else {
3970 worker = find_worker_executing_work(pool, work);
3971 if (!worker)
3972 goto already_gone;
3973 pwq = worker->current_pwq;
3974 }
3975
3976 wq = pwq->wq;
3977 check_flush_dependency(wq, work);
3978
3979 insert_wq_barrier(pwq, barr, work, worker);
3980 raw_spin_unlock_irq(&pool->lock);
3981
3982 touch_work_lockdep_map(work, wq);
3983
3984 /*
3985 * Force a lock recursion deadlock when using flush_work() inside a
3986 * single-threaded or rescuer equipped workqueue.
3987 *
3988 * For single threaded workqueues the deadlock happens when the work
3989 * is after the work issuing the flush_work(). For rescuer equipped
3990 * workqueues the deadlock happens when the rescuer stalls, blocking
3991 * forward progress.
3992 */
3993 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
3994 touch_wq_lockdep_map(wq);
3995
3996 rcu_read_unlock();
3997 return true;
3998already_gone:
3999 raw_spin_unlock_irq(&pool->lock);
4000 rcu_read_unlock();
4001 return false;
4002}
4003
4004static bool __flush_work(struct work_struct *work, bool from_cancel)
4005{
4006 struct wq_barrier barr;
4007
4008 if (WARN_ON(!wq_online))
4009 return false;
4010
4011 if (WARN_ON(!work->func))
4012 return false;
4013
4014 if (start_flush_work(work, &barr, from_cancel)) {
4015 wait_for_completion(&barr.done);
4016 destroy_work_on_stack(&barr.work);
4017 return true;
4018 } else {
4019 return false;
4020 }
4021}
4022
4023/**
4024 * flush_work - wait for a work to finish executing the last queueing instance
4025 * @work: the work to flush
4026 *
4027 * Wait until @work has finished execution. @work is guaranteed to be idle
4028 * on return if it hasn't been requeued since flush started.
4029 *
4030 * Return:
4031 * %true if flush_work() waited for the work to finish execution,
4032 * %false if it was already idle.
4033 */
4034bool flush_work(struct work_struct *work)
4035{
4036 return __flush_work(work, false);
4037}
4038EXPORT_SYMBOL_GPL(flush_work);
4039
4040struct cwt_wait {
4041 wait_queue_entry_t wait;
4042 struct work_struct *work;
4043};
4044
4045static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
4046{
4047 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
4048
4049 if (cwait->work != key)
4050 return 0;
4051 return autoremove_wake_function(wait, mode, sync, key);
4052}
4053
4054static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
4055{
4056 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
4057 unsigned long flags;
4058 int ret;
4059
4060 do {
4061 ret = try_to_grab_pending(work, is_dwork, &flags);
4062 /*
4063 * If someone else is already canceling, wait for it to
4064 * finish. flush_work() doesn't work for PREEMPT_NONE
4065 * because we may get scheduled between @work's completion
4066 * and the other canceling task resuming and clearing
4067 * CANCELING - flush_work() will return false immediately
4068 * as @work is no longer busy, try_to_grab_pending() will
4069 * return -ENOENT as @work is still being canceled and the
4070 * other canceling task won't be able to clear CANCELING as
4071 * we're hogging the CPU.
4072 *
4073 * Let's wait for completion using a waitqueue. As this
4074 * may lead to the thundering herd problem, use a custom
4075 * wake function which matches @work along with exclusive
4076 * wait and wakeup.
4077 */
4078 if (unlikely(ret == -ENOENT)) {
4079 struct cwt_wait cwait;
4080
4081 init_wait(&cwait.wait);
4082 cwait.wait.func = cwt_wakefn;
4083 cwait.work = work;
4084
4085 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
4086 TASK_UNINTERRUPTIBLE);
4087 if (work_is_canceling(work))
4088 schedule();
4089 finish_wait(&cancel_waitq, &cwait.wait);
4090 }
4091 } while (unlikely(ret < 0));
4092
4093 /* tell other tasks trying to grab @work to back off */
4094 mark_work_canceling(work);
4095 local_irq_restore(flags);
4096
4097 /*
4098 * This allows canceling during early boot. We know that @work
4099 * isn't executing.
4100 */
4101 if (wq_online)
4102 __flush_work(work, true);
4103
4104 clear_work_data(work);
4105
4106 /*
4107 * Paired with prepare_to_wait() above so that either
4108 * waitqueue_active() is visible here or !work_is_canceling() is
4109 * visible there.
4110 */
4111 smp_mb();
4112 if (waitqueue_active(&cancel_waitq))
4113 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
4114
4115 return ret;
4116}
4117
4118/**
4119 * cancel_work_sync - cancel a work and wait for it to finish
4120 * @work: the work to cancel
4121 *
4122 * Cancel @work and wait for its execution to finish. This function
4123 * can be used even if the work re-queues itself or migrates to
4124 * another workqueue. On return from this function, @work is
4125 * guaranteed to be not pending or executing on any CPU.
4126 *
4127 * cancel_work_sync(&delayed_work->work) must not be used for
4128 * delayed_work's. Use cancel_delayed_work_sync() instead.
4129 *
4130 * The caller must ensure that the workqueue on which @work was last
4131 * queued can't be destroyed before this function returns.
4132 *
4133 * Return:
4134 * %true if @work was pending, %false otherwise.
4135 */
4136bool cancel_work_sync(struct work_struct *work)
4137{
4138 return __cancel_work_timer(work, false);
4139}
4140EXPORT_SYMBOL_GPL(cancel_work_sync);
4141
4142/**
4143 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4144 * @dwork: the delayed work to flush
4145 *
4146 * Delayed timer is cancelled and the pending work is queued for
4147 * immediate execution. Like flush_work(), this function only
4148 * considers the last queueing instance of @dwork.
4149 *
4150 * Return:
4151 * %true if flush_work() waited for the work to finish execution,
4152 * %false if it was already idle.
4153 */
4154bool flush_delayed_work(struct delayed_work *dwork)
4155{
4156 local_irq_disable();
4157 if (del_timer_sync(&dwork->timer))
4158 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4159 local_irq_enable();
4160 return flush_work(&dwork->work);
4161}
4162EXPORT_SYMBOL(flush_delayed_work);
4163
4164/**
4165 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4166 * @rwork: the rcu work to flush
4167 *
4168 * Return:
4169 * %true if flush_rcu_work() waited for the work to finish execution,
4170 * %false if it was already idle.
4171 */
4172bool flush_rcu_work(struct rcu_work *rwork)
4173{
4174 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4175 rcu_barrier();
4176 flush_work(&rwork->work);
4177 return true;
4178 } else {
4179 return flush_work(&rwork->work);
4180 }
4181}
4182EXPORT_SYMBOL(flush_rcu_work);
4183
4184static bool __cancel_work(struct work_struct *work, bool is_dwork)
4185{
4186 unsigned long flags;
4187 int ret;
4188
4189 do {
4190 ret = try_to_grab_pending(work, is_dwork, &flags);
4191 } while (unlikely(ret == -EAGAIN));
4192
4193 if (unlikely(ret < 0))
4194 return false;
4195
4196 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
4197 local_irq_restore(flags);
4198 return ret;
4199}
4200
4201/*
4202 * See cancel_delayed_work()
4203 */
4204bool cancel_work(struct work_struct *work)
4205{
4206 return __cancel_work(work, false);
4207}
4208EXPORT_SYMBOL(cancel_work);
4209
4210/**
4211 * cancel_delayed_work - cancel a delayed work
4212 * @dwork: delayed_work to cancel
4213 *
4214 * Kill off a pending delayed_work.
4215 *
4216 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4217 * pending.
4218 *
4219 * Note:
4220 * The work callback function may still be running on return, unless
4221 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4222 * use cancel_delayed_work_sync() to wait on it.
4223 *
4224 * This function is safe to call from any context including IRQ handler.
4225 */
4226bool cancel_delayed_work(struct delayed_work *dwork)
4227{
4228 return __cancel_work(&dwork->work, true);
4229}
4230EXPORT_SYMBOL(cancel_delayed_work);
4231
4232/**
4233 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4234 * @dwork: the delayed work cancel
4235 *
4236 * This is cancel_work_sync() for delayed works.
4237 *
4238 * Return:
4239 * %true if @dwork was pending, %false otherwise.
4240 */
4241bool cancel_delayed_work_sync(struct delayed_work *dwork)
4242{
4243 return __cancel_work_timer(&dwork->work, true);
4244}
4245EXPORT_SYMBOL(cancel_delayed_work_sync);
4246
4247/**
4248 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4249 * @func: the function to call
4250 *
4251 * schedule_on_each_cpu() executes @func on each online CPU using the
4252 * system workqueue and blocks until all CPUs have completed.
4253 * schedule_on_each_cpu() is very slow.
4254 *
4255 * Return:
4256 * 0 on success, -errno on failure.
4257 */
4258int schedule_on_each_cpu(work_func_t func)
4259{
4260 int cpu;
4261 struct work_struct __percpu *works;
4262
4263 works = alloc_percpu(struct work_struct);
4264 if (!works)
4265 return -ENOMEM;
4266
4267 cpus_read_lock();
4268
4269 for_each_online_cpu(cpu) {
4270 struct work_struct *work = per_cpu_ptr(works, cpu);
4271
4272 INIT_WORK(work, func);
4273 schedule_work_on(cpu, work);
4274 }
4275
4276 for_each_online_cpu(cpu)
4277 flush_work(per_cpu_ptr(works, cpu));
4278
4279 cpus_read_unlock();
4280 free_percpu(works);
4281 return 0;
4282}
4283
4284/**
4285 * execute_in_process_context - reliably execute the routine with user context
4286 * @fn: the function to execute
4287 * @ew: guaranteed storage for the execute work structure (must
4288 * be available when the work executes)
4289 *
4290 * Executes the function immediately if process context is available,
4291 * otherwise schedules the function for delayed execution.
4292 *
4293 * Return: 0 - function was executed
4294 * 1 - function was scheduled for execution
4295 */
4296int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4297{
4298 if (!in_interrupt()) {
4299 fn(&ew->work);
4300 return 0;
4301 }
4302
4303 INIT_WORK(&ew->work, fn);
4304 schedule_work(&ew->work);
4305
4306 return 1;
4307}
4308EXPORT_SYMBOL_GPL(execute_in_process_context);
4309
4310/**
4311 * free_workqueue_attrs - free a workqueue_attrs
4312 * @attrs: workqueue_attrs to free
4313 *
4314 * Undo alloc_workqueue_attrs().
4315 */
4316void free_workqueue_attrs(struct workqueue_attrs *attrs)
4317{
4318 if (attrs) {
4319 free_cpumask_var(attrs->cpumask);
4320 free_cpumask_var(attrs->__pod_cpumask);
4321 kfree(attrs);
4322 }
4323}
4324
4325/**
4326 * alloc_workqueue_attrs - allocate a workqueue_attrs
4327 *
4328 * Allocate a new workqueue_attrs, initialize with default settings and
4329 * return it.
4330 *
4331 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4332 */
4333struct workqueue_attrs *alloc_workqueue_attrs(void)
4334{
4335 struct workqueue_attrs *attrs;
4336
4337 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4338 if (!attrs)
4339 goto fail;
4340 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4341 goto fail;
4342 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4343 goto fail;
4344
4345 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4346 attrs->affn_scope = WQ_AFFN_DFL;
4347 return attrs;
4348fail:
4349 free_workqueue_attrs(attrs);
4350 return NULL;
4351}
4352
4353static void copy_workqueue_attrs(struct workqueue_attrs *to,
4354 const struct workqueue_attrs *from)
4355{
4356 to->nice = from->nice;
4357 cpumask_copy(to->cpumask, from->cpumask);
4358 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4359 to->affn_strict = from->affn_strict;
4360
4361 /*
4362 * Unlike hash and equality test, copying shouldn't ignore wq-only
4363 * fields as copying is used for both pool and wq attrs. Instead,
4364 * get_unbound_pool() explicitly clears the fields.
4365 */
4366 to->affn_scope = from->affn_scope;
4367 to->ordered = from->ordered;
4368}
4369
4370/*
4371 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4372 * comments in 'struct workqueue_attrs' definition.
4373 */
4374static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4375{
4376 attrs->affn_scope = WQ_AFFN_NR_TYPES;
4377 attrs->ordered = false;
4378}
4379
4380/* hash value of the content of @attr */
4381static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4382{
4383 u32 hash = 0;
4384
4385 hash = jhash_1word(attrs->nice, hash);
4386 hash = jhash(cpumask_bits(attrs->cpumask),
4387 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4388 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4389 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4390 hash = jhash_1word(attrs->affn_strict, hash);
4391 return hash;
4392}
4393
4394/* content equality test */
4395static bool wqattrs_equal(const struct workqueue_attrs *a,
4396 const struct workqueue_attrs *b)
4397{
4398 if (a->nice != b->nice)
4399 return false;
4400 if (!cpumask_equal(a->cpumask, b->cpumask))
4401 return false;
4402 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4403 return false;
4404 if (a->affn_strict != b->affn_strict)
4405 return false;
4406 return true;
4407}
4408
4409/* Update @attrs with actually available CPUs */
4410static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4411 const cpumask_t *unbound_cpumask)
4412{
4413 /*
4414 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4415 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4416 * @unbound_cpumask.
4417 */
4418 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4419 if (unlikely(cpumask_empty(attrs->cpumask)))
4420 cpumask_copy(attrs->cpumask, unbound_cpumask);
4421}
4422
4423/* find wq_pod_type to use for @attrs */
4424static const struct wq_pod_type *
4425wqattrs_pod_type(const struct workqueue_attrs *attrs)
4426{
4427 enum wq_affn_scope scope;
4428 struct wq_pod_type *pt;
4429
4430 /* to synchronize access to wq_affn_dfl */
4431 lockdep_assert_held(&wq_pool_mutex);
4432
4433 if (attrs->affn_scope == WQ_AFFN_DFL)
4434 scope = wq_affn_dfl;
4435 else
4436 scope = attrs->affn_scope;
4437
4438 pt = &wq_pod_types[scope];
4439
4440 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4441 likely(pt->nr_pods))
4442 return pt;
4443
4444 /*
4445 * Before workqueue_init_topology(), only SYSTEM is available which is
4446 * initialized in workqueue_init_early().
4447 */
4448 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4449 BUG_ON(!pt->nr_pods);
4450 return pt;
4451}
4452
4453/**
4454 * init_worker_pool - initialize a newly zalloc'd worker_pool
4455 * @pool: worker_pool to initialize
4456 *
4457 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4458 *
4459 * Return: 0 on success, -errno on failure. Even on failure, all fields
4460 * inside @pool proper are initialized and put_unbound_pool() can be called
4461 * on @pool safely to release it.
4462 */
4463static int init_worker_pool(struct worker_pool *pool)
4464{
4465 raw_spin_lock_init(&pool->lock);
4466 pool->id = -1;
4467 pool->cpu = -1;
4468 pool->node = NUMA_NO_NODE;
4469 pool->flags |= POOL_DISASSOCIATED;
4470 pool->watchdog_ts = jiffies;
4471 INIT_LIST_HEAD(&pool->worklist);
4472 INIT_LIST_HEAD(&pool->idle_list);
4473 hash_init(pool->busy_hash);
4474
4475 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4476 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4477
4478 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4479
4480 INIT_LIST_HEAD(&pool->workers);
4481 INIT_LIST_HEAD(&pool->dying_workers);
4482
4483 ida_init(&pool->worker_ida);
4484 INIT_HLIST_NODE(&pool->hash_node);
4485 pool->refcnt = 1;
4486
4487 /* shouldn't fail above this point */
4488 pool->attrs = alloc_workqueue_attrs();
4489 if (!pool->attrs)
4490 return -ENOMEM;
4491
4492 wqattrs_clear_for_pool(pool->attrs);
4493
4494 return 0;
4495}
4496
4497#ifdef CONFIG_LOCKDEP
4498static void wq_init_lockdep(struct workqueue_struct *wq)
4499{
4500 char *lock_name;
4501
4502 lockdep_register_key(&wq->key);
4503 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4504 if (!lock_name)
4505 lock_name = wq->name;
4506
4507 wq->lock_name = lock_name;
4508 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4509}
4510
4511static void wq_unregister_lockdep(struct workqueue_struct *wq)
4512{
4513 lockdep_unregister_key(&wq->key);
4514}
4515
4516static void wq_free_lockdep(struct workqueue_struct *wq)
4517{
4518 if (wq->lock_name != wq->name)
4519 kfree(wq->lock_name);
4520}
4521#else
4522static void wq_init_lockdep(struct workqueue_struct *wq)
4523{
4524}
4525
4526static void wq_unregister_lockdep(struct workqueue_struct *wq)
4527{
4528}
4529
4530static void wq_free_lockdep(struct workqueue_struct *wq)
4531{
4532}
4533#endif
4534
4535static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4536{
4537 int node;
4538
4539 for_each_node(node) {
4540 kfree(nna_ar[node]);
4541 nna_ar[node] = NULL;
4542 }
4543
4544 kfree(nna_ar[nr_node_ids]);
4545 nna_ar[nr_node_ids] = NULL;
4546}
4547
4548static void init_node_nr_active(struct wq_node_nr_active *nna)
4549{
4550 nna->max = WQ_DFL_MIN_ACTIVE;
4551 atomic_set(&nna->nr, 0);
4552 raw_spin_lock_init(&nna->lock);
4553 INIT_LIST_HEAD(&nna->pending_pwqs);
4554}
4555
4556/*
4557 * Each node's nr_active counter will be accessed mostly from its own node and
4558 * should be allocated in the node.
4559 */
4560static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4561{
4562 struct wq_node_nr_active *nna;
4563 int node;
4564
4565 for_each_node(node) {
4566 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4567 if (!nna)
4568 goto err_free;
4569 init_node_nr_active(nna);
4570 nna_ar[node] = nna;
4571 }
4572
4573 /* [nr_node_ids] is used as the fallback */
4574 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4575 if (!nna)
4576 goto err_free;
4577 init_node_nr_active(nna);
4578 nna_ar[nr_node_ids] = nna;
4579
4580 return 0;
4581
4582err_free:
4583 free_node_nr_active(nna_ar);
4584 return -ENOMEM;
4585}
4586
4587static void rcu_free_wq(struct rcu_head *rcu)
4588{
4589 struct workqueue_struct *wq =
4590 container_of(rcu, struct workqueue_struct, rcu);
4591
4592 if (wq->flags & WQ_UNBOUND)
4593 free_node_nr_active(wq->node_nr_active);
4594
4595 wq_free_lockdep(wq);
4596 free_percpu(wq->cpu_pwq);
4597 free_workqueue_attrs(wq->unbound_attrs);
4598 kfree(wq);
4599}
4600
4601static void rcu_free_pool(struct rcu_head *rcu)
4602{
4603 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4604
4605 ida_destroy(&pool->worker_ida);
4606 free_workqueue_attrs(pool->attrs);
4607 kfree(pool);
4608}
4609
4610/**
4611 * put_unbound_pool - put a worker_pool
4612 * @pool: worker_pool to put
4613 *
4614 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4615 * safe manner. get_unbound_pool() calls this function on its failure path
4616 * and this function should be able to release pools which went through,
4617 * successfully or not, init_worker_pool().
4618 *
4619 * Should be called with wq_pool_mutex held.
4620 */
4621static void put_unbound_pool(struct worker_pool *pool)
4622{
4623 DECLARE_COMPLETION_ONSTACK(detach_completion);
4624 struct worker *worker;
4625 LIST_HEAD(cull_list);
4626
4627 lockdep_assert_held(&wq_pool_mutex);
4628
4629 if (--pool->refcnt)
4630 return;
4631
4632 /* sanity checks */
4633 if (WARN_ON(!(pool->cpu < 0)) ||
4634 WARN_ON(!list_empty(&pool->worklist)))
4635 return;
4636
4637 /* release id and unhash */
4638 if (pool->id >= 0)
4639 idr_remove(&worker_pool_idr, pool->id);
4640 hash_del(&pool->hash_node);
4641
4642 /*
4643 * Become the manager and destroy all workers. This prevents
4644 * @pool's workers from blocking on attach_mutex. We're the last
4645 * manager and @pool gets freed with the flag set.
4646 *
4647 * Having a concurrent manager is quite unlikely to happen as we can
4648 * only get here with
4649 * pwq->refcnt == pool->refcnt == 0
4650 * which implies no work queued to the pool, which implies no worker can
4651 * become the manager. However a worker could have taken the role of
4652 * manager before the refcnts dropped to 0, since maybe_create_worker()
4653 * drops pool->lock
4654 */
4655 while (true) {
4656 rcuwait_wait_event(&manager_wait,
4657 !(pool->flags & POOL_MANAGER_ACTIVE),
4658 TASK_UNINTERRUPTIBLE);
4659
4660 mutex_lock(&wq_pool_attach_mutex);
4661 raw_spin_lock_irq(&pool->lock);
4662 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4663 pool->flags |= POOL_MANAGER_ACTIVE;
4664 break;
4665 }
4666 raw_spin_unlock_irq(&pool->lock);
4667 mutex_unlock(&wq_pool_attach_mutex);
4668 }
4669
4670 while ((worker = first_idle_worker(pool)))
4671 set_worker_dying(worker, &cull_list);
4672 WARN_ON(pool->nr_workers || pool->nr_idle);
4673 raw_spin_unlock_irq(&pool->lock);
4674
4675 wake_dying_workers(&cull_list);
4676
4677 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4678 pool->detach_completion = &detach_completion;
4679 mutex_unlock(&wq_pool_attach_mutex);
4680
4681 if (pool->detach_completion)
4682 wait_for_completion(pool->detach_completion);
4683
4684 /* shut down the timers */
4685 del_timer_sync(&pool->idle_timer);
4686 cancel_work_sync(&pool->idle_cull_work);
4687 del_timer_sync(&pool->mayday_timer);
4688
4689 /* RCU protected to allow dereferences from get_work_pool() */
4690 call_rcu(&pool->rcu, rcu_free_pool);
4691}
4692
4693/**
4694 * get_unbound_pool - get a worker_pool with the specified attributes
4695 * @attrs: the attributes of the worker_pool to get
4696 *
4697 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4698 * reference count and return it. If there already is a matching
4699 * worker_pool, it will be used; otherwise, this function attempts to
4700 * create a new one.
4701 *
4702 * Should be called with wq_pool_mutex held.
4703 *
4704 * Return: On success, a worker_pool with the same attributes as @attrs.
4705 * On failure, %NULL.
4706 */
4707static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4708{
4709 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4710 u32 hash = wqattrs_hash(attrs);
4711 struct worker_pool *pool;
4712 int pod, node = NUMA_NO_NODE;
4713
4714 lockdep_assert_held(&wq_pool_mutex);
4715
4716 /* do we already have a matching pool? */
4717 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4718 if (wqattrs_equal(pool->attrs, attrs)) {
4719 pool->refcnt++;
4720 return pool;
4721 }
4722 }
4723
4724 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4725 for (pod = 0; pod < pt->nr_pods; pod++) {
4726 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4727 node = pt->pod_node[pod];
4728 break;
4729 }
4730 }
4731
4732 /* nope, create a new one */
4733 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4734 if (!pool || init_worker_pool(pool) < 0)
4735 goto fail;
4736
4737 pool->node = node;
4738 copy_workqueue_attrs(pool->attrs, attrs);
4739 wqattrs_clear_for_pool(pool->attrs);
4740
4741 if (worker_pool_assign_id(pool) < 0)
4742 goto fail;
4743
4744 /* create and start the initial worker */
4745 if (wq_online && !create_worker(pool))
4746 goto fail;
4747
4748 /* install */
4749 hash_add(unbound_pool_hash, &pool->hash_node, hash);
4750
4751 return pool;
4752fail:
4753 if (pool)
4754 put_unbound_pool(pool);
4755 return NULL;
4756}
4757
4758static void rcu_free_pwq(struct rcu_head *rcu)
4759{
4760 kmem_cache_free(pwq_cache,
4761 container_of(rcu, struct pool_workqueue, rcu));
4762}
4763
4764/*
4765 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4766 * refcnt and needs to be destroyed.
4767 */
4768static void pwq_release_workfn(struct kthread_work *work)
4769{
4770 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4771 release_work);
4772 struct workqueue_struct *wq = pwq->wq;
4773 struct worker_pool *pool = pwq->pool;
4774 bool is_last = false;
4775
4776 /*
4777 * When @pwq is not linked, it doesn't hold any reference to the
4778 * @wq, and @wq is invalid to access.
4779 */
4780 if (!list_empty(&pwq->pwqs_node)) {
4781 mutex_lock(&wq->mutex);
4782 list_del_rcu(&pwq->pwqs_node);
4783 is_last = list_empty(&wq->pwqs);
4784
4785 /*
4786 * For ordered workqueue with a plugged dfl_pwq, restart it now.
4787 */
4788 if (!is_last && (wq->flags & __WQ_ORDERED))
4789 unplug_oldest_pwq(wq);
4790
4791 mutex_unlock(&wq->mutex);
4792 }
4793
4794 if (wq->flags & WQ_UNBOUND) {
4795 mutex_lock(&wq_pool_mutex);
4796 put_unbound_pool(pool);
4797 mutex_unlock(&wq_pool_mutex);
4798 }
4799
4800 if (!list_empty(&pwq->pending_node)) {
4801 struct wq_node_nr_active *nna =
4802 wq_node_nr_active(pwq->wq, pwq->pool->node);
4803
4804 raw_spin_lock_irq(&nna->lock);
4805 list_del_init(&pwq->pending_node);
4806 raw_spin_unlock_irq(&nna->lock);
4807 }
4808
4809 call_rcu(&pwq->rcu, rcu_free_pwq);
4810
4811 /*
4812 * If we're the last pwq going away, @wq is already dead and no one
4813 * is gonna access it anymore. Schedule RCU free.
4814 */
4815 if (is_last) {
4816 wq_unregister_lockdep(wq);
4817 call_rcu(&wq->rcu, rcu_free_wq);
4818 }
4819}
4820
4821/* initialize newly allocated @pwq which is associated with @wq and @pool */
4822static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4823 struct worker_pool *pool)
4824{
4825 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4826
4827 memset(pwq, 0, sizeof(*pwq));
4828
4829 pwq->pool = pool;
4830 pwq->wq = wq;
4831 pwq->flush_color = -1;
4832 pwq->refcnt = 1;
4833 INIT_LIST_HEAD(&pwq->inactive_works);
4834 INIT_LIST_HEAD(&pwq->pending_node);
4835 INIT_LIST_HEAD(&pwq->pwqs_node);
4836 INIT_LIST_HEAD(&pwq->mayday_node);
4837 kthread_init_work(&pwq->release_work, pwq_release_workfn);
4838}
4839
4840/* sync @pwq with the current state of its associated wq and link it */
4841static void link_pwq(struct pool_workqueue *pwq)
4842{
4843 struct workqueue_struct *wq = pwq->wq;
4844
4845 lockdep_assert_held(&wq->mutex);
4846
4847 /* may be called multiple times, ignore if already linked */
4848 if (!list_empty(&pwq->pwqs_node))
4849 return;
4850
4851 /* set the matching work_color */
4852 pwq->work_color = wq->work_color;
4853
4854 /* link in @pwq */
4855 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
4856}
4857
4858/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4859static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4860 const struct workqueue_attrs *attrs)
4861{
4862 struct worker_pool *pool;
4863 struct pool_workqueue *pwq;
4864
4865 lockdep_assert_held(&wq_pool_mutex);
4866
4867 pool = get_unbound_pool(attrs);
4868 if (!pool)
4869 return NULL;
4870
4871 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4872 if (!pwq) {
4873 put_unbound_pool(pool);
4874 return NULL;
4875 }
4876
4877 init_pwq(pwq, wq, pool);
4878 return pwq;
4879}
4880
4881/**
4882 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4883 * @attrs: the wq_attrs of the default pwq of the target workqueue
4884 * @cpu: the target CPU
4885 * @cpu_going_down: if >= 0, the CPU to consider as offline
4886 *
4887 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4888 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4889 * The result is stored in @attrs->__pod_cpumask.
4890 *
4891 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4892 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4893 * intersection of the possible CPUs of @pod and @attrs->cpumask.
4894 *
4895 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4896 */
4897static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4898 int cpu_going_down)
4899{
4900 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4901 int pod = pt->cpu_pod[cpu];
4902
4903 /* does @pod have any online CPUs @attrs wants? */
4904 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4905 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4906 if (cpu_going_down >= 0)
4907 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4908
4909 if (cpumask_empty(attrs->__pod_cpumask)) {
4910 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4911 return;
4912 }
4913
4914 /* yeap, return possible CPUs in @pod that @attrs wants */
4915 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4916
4917 if (cpumask_empty(attrs->__pod_cpumask))
4918 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4919 "possible intersect\n");
4920}
4921
4922/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
4923static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4924 int cpu, struct pool_workqueue *pwq)
4925{
4926 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
4927 struct pool_workqueue *old_pwq;
4928
4929 lockdep_assert_held(&wq_pool_mutex);
4930 lockdep_assert_held(&wq->mutex);
4931
4932 /* link_pwq() can handle duplicate calls */
4933 link_pwq(pwq);
4934
4935 old_pwq = rcu_access_pointer(*slot);
4936 rcu_assign_pointer(*slot, pwq);
4937 return old_pwq;
4938}
4939
4940/* context to store the prepared attrs & pwqs before applying */
4941struct apply_wqattrs_ctx {
4942 struct workqueue_struct *wq; /* target workqueue */
4943 struct workqueue_attrs *attrs; /* attrs to apply */
4944 struct list_head list; /* queued for batching commit */
4945 struct pool_workqueue *dfl_pwq;
4946 struct pool_workqueue *pwq_tbl[];
4947};
4948
4949/* free the resources after success or abort */
4950static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4951{
4952 if (ctx) {
4953 int cpu;
4954
4955 for_each_possible_cpu(cpu)
4956 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4957 put_pwq_unlocked(ctx->dfl_pwq);
4958
4959 free_workqueue_attrs(ctx->attrs);
4960
4961 kfree(ctx);
4962 }
4963}
4964
4965/* allocate the attrs and pwqs for later installation */
4966static struct apply_wqattrs_ctx *
4967apply_wqattrs_prepare(struct workqueue_struct *wq,
4968 const struct workqueue_attrs *attrs,
4969 const cpumask_var_t unbound_cpumask)
4970{
4971 struct apply_wqattrs_ctx *ctx;
4972 struct workqueue_attrs *new_attrs;
4973 int cpu;
4974
4975 lockdep_assert_held(&wq_pool_mutex);
4976
4977 if (WARN_ON(attrs->affn_scope < 0 ||
4978 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4979 return ERR_PTR(-EINVAL);
4980
4981 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4982
4983 new_attrs = alloc_workqueue_attrs();
4984 if (!ctx || !new_attrs)
4985 goto out_free;
4986
4987 /*
4988 * If something goes wrong during CPU up/down, we'll fall back to
4989 * the default pwq covering whole @attrs->cpumask. Always create
4990 * it even if we don't use it immediately.
4991 */
4992 copy_workqueue_attrs(new_attrs, attrs);
4993 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4994 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4995 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4996 if (!ctx->dfl_pwq)
4997 goto out_free;
4998
4999 for_each_possible_cpu(cpu) {
5000 if (new_attrs->ordered) {
5001 ctx->dfl_pwq->refcnt++;
5002 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5003 } else {
5004 wq_calc_pod_cpumask(new_attrs, cpu, -1);
5005 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5006 if (!ctx->pwq_tbl[cpu])
5007 goto out_free;
5008 }
5009 }
5010
5011 /* save the user configured attrs and sanitize it. */
5012 copy_workqueue_attrs(new_attrs, attrs);
5013 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5014 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5015 ctx->attrs = new_attrs;
5016
5017 /*
5018 * For initialized ordered workqueues, there should only be one pwq
5019 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5020 * of newly queued work items until execution of older work items in
5021 * the old pwq's have completed.
5022 */
5023 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5024 ctx->dfl_pwq->plugged = true;
5025
5026 ctx->wq = wq;
5027 return ctx;
5028
5029out_free:
5030 free_workqueue_attrs(new_attrs);
5031 apply_wqattrs_cleanup(ctx);
5032 return ERR_PTR(-ENOMEM);
5033}
5034
5035/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5036static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5037{
5038 int cpu;
5039
5040 /* all pwqs have been created successfully, let's install'em */
5041 mutex_lock(&ctx->wq->mutex);
5042
5043 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5044
5045 /* save the previous pwqs and install the new ones */
5046 for_each_possible_cpu(cpu)
5047 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5048 ctx->pwq_tbl[cpu]);
5049 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5050
5051 /* update node_nr_active->max */
5052 wq_update_node_max_active(ctx->wq, -1);
5053
5054 /* rescuer needs to respect wq cpumask changes */
5055 if (ctx->wq->rescuer)
5056 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5057 unbound_effective_cpumask(ctx->wq));
5058
5059 mutex_unlock(&ctx->wq->mutex);
5060}
5061
5062static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5063 const struct workqueue_attrs *attrs)
5064{
5065 struct apply_wqattrs_ctx *ctx;
5066
5067 /* only unbound workqueues can change attributes */
5068 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5069 return -EINVAL;
5070
5071 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5072 if (IS_ERR(ctx))
5073 return PTR_ERR(ctx);
5074
5075 /* the ctx has been prepared successfully, let's commit it */
5076 apply_wqattrs_commit(ctx);
5077 apply_wqattrs_cleanup(ctx);
5078
5079 return 0;
5080}
5081
5082/**
5083 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5084 * @wq: the target workqueue
5085 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5086 *
5087 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5088 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5089 * work items are affine to the pod it was issued on. Older pwqs are released as
5090 * in-flight work items finish. Note that a work item which repeatedly requeues
5091 * itself back-to-back will stay on its current pwq.
5092 *
5093 * Performs GFP_KERNEL allocations.
5094 *
5095 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5096 *
5097 * Return: 0 on success and -errno on failure.
5098 */
5099int apply_workqueue_attrs(struct workqueue_struct *wq,
5100 const struct workqueue_attrs *attrs)
5101{
5102 int ret;
5103
5104 lockdep_assert_cpus_held();
5105
5106 mutex_lock(&wq_pool_mutex);
5107 ret = apply_workqueue_attrs_locked(wq, attrs);
5108 mutex_unlock(&wq_pool_mutex);
5109
5110 return ret;
5111}
5112
5113/**
5114 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5115 * @wq: the target workqueue
5116 * @cpu: the CPU to update pool association for
5117 * @hotplug_cpu: the CPU coming up or going down
5118 * @online: whether @cpu is coming up or going down
5119 *
5120 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5121 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
5122 * @wq accordingly.
5123 *
5124 *
5125 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5126 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5127 *
5128 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5129 * with a cpumask spanning multiple pods, the workers which were already
5130 * executing the work items for the workqueue will lose their CPU affinity and
5131 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5132 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5133 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5134 */
5135static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5136 int hotplug_cpu, bool online)
5137{
5138 int off_cpu = online ? -1 : hotplug_cpu;
5139 struct pool_workqueue *old_pwq = NULL, *pwq;
5140 struct workqueue_attrs *target_attrs;
5141
5142 lockdep_assert_held(&wq_pool_mutex);
5143
5144 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5145 return;
5146
5147 /*
5148 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5149 * Let's use a preallocated one. The following buf is protected by
5150 * CPU hotplug exclusion.
5151 */
5152 target_attrs = wq_update_pod_attrs_buf;
5153
5154 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5155 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5156
5157 /* nothing to do if the target cpumask matches the current pwq */
5158 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5159 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5160 return;
5161
5162 /* create a new pwq */
5163 pwq = alloc_unbound_pwq(wq, target_attrs);
5164 if (!pwq) {
5165 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5166 wq->name);
5167 goto use_dfl_pwq;
5168 }
5169
5170 /* Install the new pwq. */
5171 mutex_lock(&wq->mutex);
5172 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5173 goto out_unlock;
5174
5175use_dfl_pwq:
5176 mutex_lock(&wq->mutex);
5177 pwq = unbound_pwq(wq, -1);
5178 raw_spin_lock_irq(&pwq->pool->lock);
5179 get_pwq(pwq);
5180 raw_spin_unlock_irq(&pwq->pool->lock);
5181 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5182out_unlock:
5183 mutex_unlock(&wq->mutex);
5184 put_pwq_unlocked(old_pwq);
5185}
5186
5187static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5188{
5189 bool highpri = wq->flags & WQ_HIGHPRI;
5190 int cpu, ret;
5191
5192 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5193 if (!wq->cpu_pwq)
5194 goto enomem;
5195
5196 if (!(wq->flags & WQ_UNBOUND)) {
5197 for_each_possible_cpu(cpu) {
5198 struct pool_workqueue **pwq_p;
5199 struct worker_pool __percpu *pools;
5200 struct worker_pool *pool;
5201
5202 if (wq->flags & WQ_BH)
5203 pools = bh_worker_pools;
5204 else
5205 pools = cpu_worker_pools;
5206
5207 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5208 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5209
5210 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5211 pool->node);
5212 if (!*pwq_p)
5213 goto enomem;
5214
5215 init_pwq(*pwq_p, wq, pool);
5216
5217 mutex_lock(&wq->mutex);
5218 link_pwq(*pwq_p);
5219 mutex_unlock(&wq->mutex);
5220 }
5221 return 0;
5222 }
5223
5224 cpus_read_lock();
5225 if (wq->flags & __WQ_ORDERED) {
5226 struct pool_workqueue *dfl_pwq;
5227
5228 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5229 /* there should only be single pwq for ordering guarantee */
5230 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5231 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5232 wq->pwqs.prev != &dfl_pwq->pwqs_node),
5233 "ordering guarantee broken for workqueue %s\n", wq->name);
5234 } else {
5235 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5236 }
5237 cpus_read_unlock();
5238
5239 /* for unbound pwq, flush the pwq_release_worker ensures that the
5240 * pwq_release_workfn() completes before calling kfree(wq).
5241 */
5242 if (ret)
5243 kthread_flush_worker(pwq_release_worker);
5244
5245 return ret;
5246
5247enomem:
5248 if (wq->cpu_pwq) {
5249 for_each_possible_cpu(cpu) {
5250 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5251
5252 if (pwq)
5253 kmem_cache_free(pwq_cache, pwq);
5254 }
5255 free_percpu(wq->cpu_pwq);
5256 wq->cpu_pwq = NULL;
5257 }
5258 return -ENOMEM;
5259}
5260
5261static int wq_clamp_max_active(int max_active, unsigned int flags,
5262 const char *name)
5263{
5264 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5265 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5266 max_active, name, 1, WQ_MAX_ACTIVE);
5267
5268 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5269}
5270
5271/*
5272 * Workqueues which may be used during memory reclaim should have a rescuer
5273 * to guarantee forward progress.
5274 */
5275static int init_rescuer(struct workqueue_struct *wq)
5276{
5277 struct worker *rescuer;
5278 int ret;
5279
5280 if (!(wq->flags & WQ_MEM_RECLAIM))
5281 return 0;
5282
5283 rescuer = alloc_worker(NUMA_NO_NODE);
5284 if (!rescuer) {
5285 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5286 wq->name);
5287 return -ENOMEM;
5288 }
5289
5290 rescuer->rescue_wq = wq;
5291 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5292 if (IS_ERR(rescuer->task)) {
5293 ret = PTR_ERR(rescuer->task);
5294 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5295 wq->name, ERR_PTR(ret));
5296 kfree(rescuer);
5297 return ret;
5298 }
5299
5300 wq->rescuer = rescuer;
5301 if (wq->flags & WQ_UNBOUND)
5302 kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask);
5303 else
5304 kthread_bind_mask(rescuer->task, cpu_possible_mask);
5305 wake_up_process(rescuer->task);
5306
5307 return 0;
5308}
5309
5310/**
5311 * wq_adjust_max_active - update a wq's max_active to the current setting
5312 * @wq: target workqueue
5313 *
5314 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5315 * activate inactive work items accordingly. If @wq is freezing, clear
5316 * @wq->max_active to zero.
5317 */
5318static void wq_adjust_max_active(struct workqueue_struct *wq)
5319{
5320 bool activated;
5321 int new_max, new_min;
5322
5323 lockdep_assert_held(&wq->mutex);
5324
5325 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5326 new_max = 0;
5327 new_min = 0;
5328 } else {
5329 new_max = wq->saved_max_active;
5330 new_min = wq->saved_min_active;
5331 }
5332
5333 if (wq->max_active == new_max && wq->min_active == new_min)
5334 return;
5335
5336 /*
5337 * Update @wq->max/min_active and then kick inactive work items if more
5338 * active work items are allowed. This doesn't break work item ordering
5339 * because new work items are always queued behind existing inactive
5340 * work items if there are any.
5341 */
5342 WRITE_ONCE(wq->max_active, new_max);
5343 WRITE_ONCE(wq->min_active, new_min);
5344
5345 if (wq->flags & WQ_UNBOUND)
5346 wq_update_node_max_active(wq, -1);
5347
5348 if (new_max == 0)
5349 return;
5350
5351 /*
5352 * Round-robin through pwq's activating the first inactive work item
5353 * until max_active is filled.
5354 */
5355 do {
5356 struct pool_workqueue *pwq;
5357
5358 activated = false;
5359 for_each_pwq(pwq, wq) {
5360 unsigned long flags;
5361
5362 /* can be called during early boot w/ irq disabled */
5363 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5364 if (pwq_activate_first_inactive(pwq, true)) {
5365 activated = true;
5366 kick_pool(pwq->pool);
5367 }
5368 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5369 }
5370 } while (activated);
5371}
5372
5373__printf(1, 4)
5374struct workqueue_struct *alloc_workqueue(const char *fmt,
5375 unsigned int flags,
5376 int max_active, ...)
5377{
5378 va_list args;
5379 struct workqueue_struct *wq;
5380 size_t wq_size;
5381 int name_len;
5382
5383 if (flags & WQ_BH) {
5384 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5385 return NULL;
5386 if (WARN_ON_ONCE(max_active))
5387 return NULL;
5388 }
5389
5390 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5391 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5392 flags |= WQ_UNBOUND;
5393
5394 /* allocate wq and format name */
5395 if (flags & WQ_UNBOUND)
5396 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5397 else
5398 wq_size = sizeof(*wq);
5399
5400 wq = kzalloc(wq_size, GFP_KERNEL);
5401 if (!wq)
5402 return NULL;
5403
5404 if (flags & WQ_UNBOUND) {
5405 wq->unbound_attrs = alloc_workqueue_attrs();
5406 if (!wq->unbound_attrs)
5407 goto err_free_wq;
5408 }
5409
5410 va_start(args, max_active);
5411 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5412 va_end(args);
5413
5414 if (name_len >= WQ_NAME_LEN)
5415 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5416 wq->name);
5417
5418 if (flags & WQ_BH) {
5419 /*
5420 * BH workqueues always share a single execution context per CPU
5421 * and don't impose any max_active limit.
5422 */
5423 max_active = INT_MAX;
5424 } else {
5425 max_active = max_active ?: WQ_DFL_ACTIVE;
5426 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5427 }
5428
5429 /* init wq */
5430 wq->flags = flags;
5431 wq->max_active = max_active;
5432 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5433 wq->saved_max_active = wq->max_active;
5434 wq->saved_min_active = wq->min_active;
5435 mutex_init(&wq->mutex);
5436 atomic_set(&wq->nr_pwqs_to_flush, 0);
5437 INIT_LIST_HEAD(&wq->pwqs);
5438 INIT_LIST_HEAD(&wq->flusher_queue);
5439 INIT_LIST_HEAD(&wq->flusher_overflow);
5440 INIT_LIST_HEAD(&wq->maydays);
5441
5442 wq_init_lockdep(wq);
5443 INIT_LIST_HEAD(&wq->list);
5444
5445 if (flags & WQ_UNBOUND) {
5446 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5447 goto err_unreg_lockdep;
5448 }
5449
5450 if (alloc_and_link_pwqs(wq) < 0)
5451 goto err_free_node_nr_active;
5452
5453 if (wq_online && init_rescuer(wq) < 0)
5454 goto err_destroy;
5455
5456 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5457 goto err_destroy;
5458
5459 /*
5460 * wq_pool_mutex protects global freeze state and workqueues list.
5461 * Grab it, adjust max_active and add the new @wq to workqueues
5462 * list.
5463 */
5464 mutex_lock(&wq_pool_mutex);
5465
5466 mutex_lock(&wq->mutex);
5467 wq_adjust_max_active(wq);
5468 mutex_unlock(&wq->mutex);
5469
5470 list_add_tail_rcu(&wq->list, &workqueues);
5471
5472 mutex_unlock(&wq_pool_mutex);
5473
5474 return wq;
5475
5476err_free_node_nr_active:
5477 if (wq->flags & WQ_UNBOUND)
5478 free_node_nr_active(wq->node_nr_active);
5479err_unreg_lockdep:
5480 wq_unregister_lockdep(wq);
5481 wq_free_lockdep(wq);
5482err_free_wq:
5483 free_workqueue_attrs(wq->unbound_attrs);
5484 kfree(wq);
5485 return NULL;
5486err_destroy:
5487 destroy_workqueue(wq);
5488 return NULL;
5489}
5490EXPORT_SYMBOL_GPL(alloc_workqueue);
5491
5492static bool pwq_busy(struct pool_workqueue *pwq)
5493{
5494 int i;
5495
5496 for (i = 0; i < WORK_NR_COLORS; i++)
5497 if (pwq->nr_in_flight[i])
5498 return true;
5499
5500 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5501 return true;
5502 if (!pwq_is_empty(pwq))
5503 return true;
5504
5505 return false;
5506}
5507
5508/**
5509 * destroy_workqueue - safely terminate a workqueue
5510 * @wq: target workqueue
5511 *
5512 * Safely destroy a workqueue. All work currently pending will be done first.
5513 */
5514void destroy_workqueue(struct workqueue_struct *wq)
5515{
5516 struct pool_workqueue *pwq;
5517 int cpu;
5518
5519 /*
5520 * Remove it from sysfs first so that sanity check failure doesn't
5521 * lead to sysfs name conflicts.
5522 */
5523 workqueue_sysfs_unregister(wq);
5524
5525 /* mark the workqueue destruction is in progress */
5526 mutex_lock(&wq->mutex);
5527 wq->flags |= __WQ_DESTROYING;
5528 mutex_unlock(&wq->mutex);
5529
5530 /* drain it before proceeding with destruction */
5531 drain_workqueue(wq);
5532
5533 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5534 if (wq->rescuer) {
5535 struct worker *rescuer = wq->rescuer;
5536
5537 /* this prevents new queueing */
5538 raw_spin_lock_irq(&wq_mayday_lock);
5539 wq->rescuer = NULL;
5540 raw_spin_unlock_irq(&wq_mayday_lock);
5541
5542 /* rescuer will empty maydays list before exiting */
5543 kthread_stop(rescuer->task);
5544 kfree(rescuer);
5545 }
5546
5547 /*
5548 * Sanity checks - grab all the locks so that we wait for all
5549 * in-flight operations which may do put_pwq().
5550 */
5551 mutex_lock(&wq_pool_mutex);
5552 mutex_lock(&wq->mutex);
5553 for_each_pwq(pwq, wq) {
5554 raw_spin_lock_irq(&pwq->pool->lock);
5555 if (WARN_ON(pwq_busy(pwq))) {
5556 pr_warn("%s: %s has the following busy pwq\n",
5557 __func__, wq->name);
5558 show_pwq(pwq);
5559 raw_spin_unlock_irq(&pwq->pool->lock);
5560 mutex_unlock(&wq->mutex);
5561 mutex_unlock(&wq_pool_mutex);
5562 show_one_workqueue(wq);
5563 return;
5564 }
5565 raw_spin_unlock_irq(&pwq->pool->lock);
5566 }
5567 mutex_unlock(&wq->mutex);
5568
5569 /*
5570 * wq list is used to freeze wq, remove from list after
5571 * flushing is complete in case freeze races us.
5572 */
5573 list_del_rcu(&wq->list);
5574 mutex_unlock(&wq_pool_mutex);
5575
5576 /*
5577 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5578 * to put the base refs. @wq will be auto-destroyed from the last
5579 * pwq_put. RCU read lock prevents @wq from going away from under us.
5580 */
5581 rcu_read_lock();
5582
5583 for_each_possible_cpu(cpu) {
5584 put_pwq_unlocked(unbound_pwq(wq, cpu));
5585 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5586 }
5587
5588 put_pwq_unlocked(unbound_pwq(wq, -1));
5589 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5590
5591 rcu_read_unlock();
5592}
5593EXPORT_SYMBOL_GPL(destroy_workqueue);
5594
5595/**
5596 * workqueue_set_max_active - adjust max_active of a workqueue
5597 * @wq: target workqueue
5598 * @max_active: new max_active value.
5599 *
5600 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5601 * comment.
5602 *
5603 * CONTEXT:
5604 * Don't call from IRQ context.
5605 */
5606void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5607{
5608 /* max_active doesn't mean anything for BH workqueues */
5609 if (WARN_ON(wq->flags & WQ_BH))
5610 return;
5611 /* disallow meddling with max_active for ordered workqueues */
5612 if (WARN_ON(wq->flags & __WQ_ORDERED))
5613 return;
5614
5615 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5616
5617 mutex_lock(&wq->mutex);
5618
5619 wq->saved_max_active = max_active;
5620 if (wq->flags & WQ_UNBOUND)
5621 wq->saved_min_active = min(wq->saved_min_active, max_active);
5622
5623 wq_adjust_max_active(wq);
5624
5625 mutex_unlock(&wq->mutex);
5626}
5627EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5628
5629/**
5630 * current_work - retrieve %current task's work struct
5631 *
5632 * Determine if %current task is a workqueue worker and what it's working on.
5633 * Useful to find out the context that the %current task is running in.
5634 *
5635 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5636 */
5637struct work_struct *current_work(void)
5638{
5639 struct worker *worker = current_wq_worker();
5640
5641 return worker ? worker->current_work : NULL;
5642}
5643EXPORT_SYMBOL(current_work);
5644
5645/**
5646 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5647 *
5648 * Determine whether %current is a workqueue rescuer. Can be used from
5649 * work functions to determine whether it's being run off the rescuer task.
5650 *
5651 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5652 */
5653bool current_is_workqueue_rescuer(void)
5654{
5655 struct worker *worker = current_wq_worker();
5656
5657 return worker && worker->rescue_wq;
5658}
5659
5660/**
5661 * workqueue_congested - test whether a workqueue is congested
5662 * @cpu: CPU in question
5663 * @wq: target workqueue
5664 *
5665 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5666 * no synchronization around this function and the test result is
5667 * unreliable and only useful as advisory hints or for debugging.
5668 *
5669 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5670 *
5671 * With the exception of ordered workqueues, all workqueues have per-cpu
5672 * pool_workqueues, each with its own congested state. A workqueue being
5673 * congested on one CPU doesn't mean that the workqueue is contested on any
5674 * other CPUs.
5675 *
5676 * Return:
5677 * %true if congested, %false otherwise.
5678 */
5679bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5680{
5681 struct pool_workqueue *pwq;
5682 bool ret;
5683
5684 rcu_read_lock();
5685 preempt_disable();
5686
5687 if (cpu == WORK_CPU_UNBOUND)
5688 cpu = smp_processor_id();
5689
5690 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5691 ret = !list_empty(&pwq->inactive_works);
5692
5693 preempt_enable();
5694 rcu_read_unlock();
5695
5696 return ret;
5697}
5698EXPORT_SYMBOL_GPL(workqueue_congested);
5699
5700/**
5701 * work_busy - test whether a work is currently pending or running
5702 * @work: the work to be tested
5703 *
5704 * Test whether @work is currently pending or running. There is no
5705 * synchronization around this function and the test result is
5706 * unreliable and only useful as advisory hints or for debugging.
5707 *
5708 * Return:
5709 * OR'd bitmask of WORK_BUSY_* bits.
5710 */
5711unsigned int work_busy(struct work_struct *work)
5712{
5713 struct worker_pool *pool;
5714 unsigned long flags;
5715 unsigned int ret = 0;
5716
5717 if (work_pending(work))
5718 ret |= WORK_BUSY_PENDING;
5719
5720 rcu_read_lock();
5721 pool = get_work_pool(work);
5722 if (pool) {
5723 raw_spin_lock_irqsave(&pool->lock, flags);
5724 if (find_worker_executing_work(pool, work))
5725 ret |= WORK_BUSY_RUNNING;
5726 raw_spin_unlock_irqrestore(&pool->lock, flags);
5727 }
5728 rcu_read_unlock();
5729
5730 return ret;
5731}
5732EXPORT_SYMBOL_GPL(work_busy);
5733
5734/**
5735 * set_worker_desc - set description for the current work item
5736 * @fmt: printf-style format string
5737 * @...: arguments for the format string
5738 *
5739 * This function can be called by a running work function to describe what
5740 * the work item is about. If the worker task gets dumped, this
5741 * information will be printed out together to help debugging. The
5742 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5743 */
5744void set_worker_desc(const char *fmt, ...)
5745{
5746 struct worker *worker = current_wq_worker();
5747 va_list args;
5748
5749 if (worker) {
5750 va_start(args, fmt);
5751 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5752 va_end(args);
5753 }
5754}
5755EXPORT_SYMBOL_GPL(set_worker_desc);
5756
5757/**
5758 * print_worker_info - print out worker information and description
5759 * @log_lvl: the log level to use when printing
5760 * @task: target task
5761 *
5762 * If @task is a worker and currently executing a work item, print out the
5763 * name of the workqueue being serviced and worker description set with
5764 * set_worker_desc() by the currently executing work item.
5765 *
5766 * This function can be safely called on any task as long as the
5767 * task_struct itself is accessible. While safe, this function isn't
5768 * synchronized and may print out mixups or garbages of limited length.
5769 */
5770void print_worker_info(const char *log_lvl, struct task_struct *task)
5771{
5772 work_func_t *fn = NULL;
5773 char name[WQ_NAME_LEN] = { };
5774 char desc[WORKER_DESC_LEN] = { };
5775 struct pool_workqueue *pwq = NULL;
5776 struct workqueue_struct *wq = NULL;
5777 struct worker *worker;
5778
5779 if (!(task->flags & PF_WQ_WORKER))
5780 return;
5781
5782 /*
5783 * This function is called without any synchronization and @task
5784 * could be in any state. Be careful with dereferences.
5785 */
5786 worker = kthread_probe_data(task);
5787
5788 /*
5789 * Carefully copy the associated workqueue's workfn, name and desc.
5790 * Keep the original last '\0' in case the original is garbage.
5791 */
5792 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5793 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5794 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5795 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5796 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5797
5798 if (fn || name[0] || desc[0]) {
5799 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5800 if (strcmp(name, desc))
5801 pr_cont(" (%s)", desc);
5802 pr_cont("\n");
5803 }
5804}
5805
5806static void pr_cont_pool_info(struct worker_pool *pool)
5807{
5808 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5809 if (pool->node != NUMA_NO_NODE)
5810 pr_cont(" node=%d", pool->node);
5811 pr_cont(" flags=0x%x", pool->flags);
5812 if (pool->flags & POOL_BH)
5813 pr_cont(" bh%s",
5814 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5815 else
5816 pr_cont(" nice=%d", pool->attrs->nice);
5817}
5818
5819static void pr_cont_worker_id(struct worker *worker)
5820{
5821 struct worker_pool *pool = worker->pool;
5822
5823 if (pool->flags & WQ_BH)
5824 pr_cont("bh%s",
5825 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5826 else
5827 pr_cont("%d%s", task_pid_nr(worker->task),
5828 worker->rescue_wq ? "(RESCUER)" : "");
5829}
5830
5831struct pr_cont_work_struct {
5832 bool comma;
5833 work_func_t func;
5834 long ctr;
5835};
5836
5837static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5838{
5839 if (!pcwsp->ctr)
5840 goto out_record;
5841 if (func == pcwsp->func) {
5842 pcwsp->ctr++;
5843 return;
5844 }
5845 if (pcwsp->ctr == 1)
5846 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5847 else
5848 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5849 pcwsp->ctr = 0;
5850out_record:
5851 if ((long)func == -1L)
5852 return;
5853 pcwsp->comma = comma;
5854 pcwsp->func = func;
5855 pcwsp->ctr = 1;
5856}
5857
5858static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5859{
5860 if (work->func == wq_barrier_func) {
5861 struct wq_barrier *barr;
5862
5863 barr = container_of(work, struct wq_barrier, work);
5864
5865 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5866 pr_cont("%s BAR(%d)", comma ? "," : "",
5867 task_pid_nr(barr->task));
5868 } else {
5869 if (!comma)
5870 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5871 pr_cont_work_flush(comma, work->func, pcwsp);
5872 }
5873}
5874
5875static void show_pwq(struct pool_workqueue *pwq)
5876{
5877 struct pr_cont_work_struct pcws = { .ctr = 0, };
5878 struct worker_pool *pool = pwq->pool;
5879 struct work_struct *work;
5880 struct worker *worker;
5881 bool has_in_flight = false, has_pending = false;
5882 int bkt;
5883
5884 pr_info(" pwq %d:", pool->id);
5885 pr_cont_pool_info(pool);
5886
5887 pr_cont(" active=%d refcnt=%d%s\n",
5888 pwq->nr_active, pwq->refcnt,
5889 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5890
5891 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5892 if (worker->current_pwq == pwq) {
5893 has_in_flight = true;
5894 break;
5895 }
5896 }
5897 if (has_in_flight) {
5898 bool comma = false;
5899
5900 pr_info(" in-flight:");
5901 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5902 if (worker->current_pwq != pwq)
5903 continue;
5904
5905 pr_cont(" %s", comma ? "," : "");
5906 pr_cont_worker_id(worker);
5907 pr_cont(":%ps", worker->current_func);
5908 list_for_each_entry(work, &worker->scheduled, entry)
5909 pr_cont_work(false, work, &pcws);
5910 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5911 comma = true;
5912 }
5913 pr_cont("\n");
5914 }
5915
5916 list_for_each_entry(work, &pool->worklist, entry) {
5917 if (get_work_pwq(work) == pwq) {
5918 has_pending = true;
5919 break;
5920 }
5921 }
5922 if (has_pending) {
5923 bool comma = false;
5924
5925 pr_info(" pending:");
5926 list_for_each_entry(work, &pool->worklist, entry) {
5927 if (get_work_pwq(work) != pwq)
5928 continue;
5929
5930 pr_cont_work(comma, work, &pcws);
5931 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5932 }
5933 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5934 pr_cont("\n");
5935 }
5936
5937 if (!list_empty(&pwq->inactive_works)) {
5938 bool comma = false;
5939
5940 pr_info(" inactive:");
5941 list_for_each_entry(work, &pwq->inactive_works, entry) {
5942 pr_cont_work(comma, work, &pcws);
5943 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5944 }
5945 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5946 pr_cont("\n");
5947 }
5948}
5949
5950/**
5951 * show_one_workqueue - dump state of specified workqueue
5952 * @wq: workqueue whose state will be printed
5953 */
5954void show_one_workqueue(struct workqueue_struct *wq)
5955{
5956 struct pool_workqueue *pwq;
5957 bool idle = true;
5958 unsigned long flags;
5959
5960 for_each_pwq(pwq, wq) {
5961 if (!pwq_is_empty(pwq)) {
5962 idle = false;
5963 break;
5964 }
5965 }
5966 if (idle) /* Nothing to print for idle workqueue */
5967 return;
5968
5969 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5970
5971 for_each_pwq(pwq, wq) {
5972 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5973 if (!pwq_is_empty(pwq)) {
5974 /*
5975 * Defer printing to avoid deadlocks in console
5976 * drivers that queue work while holding locks
5977 * also taken in their write paths.
5978 */
5979 printk_deferred_enter();
5980 show_pwq(pwq);
5981 printk_deferred_exit();
5982 }
5983 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5984 /*
5985 * We could be printing a lot from atomic context, e.g.
5986 * sysrq-t -> show_all_workqueues(). Avoid triggering
5987 * hard lockup.
5988 */
5989 touch_nmi_watchdog();
5990 }
5991
5992}
5993
5994/**
5995 * show_one_worker_pool - dump state of specified worker pool
5996 * @pool: worker pool whose state will be printed
5997 */
5998static void show_one_worker_pool(struct worker_pool *pool)
5999{
6000 struct worker *worker;
6001 bool first = true;
6002 unsigned long flags;
6003 unsigned long hung = 0;
6004
6005 raw_spin_lock_irqsave(&pool->lock, flags);
6006 if (pool->nr_workers == pool->nr_idle)
6007 goto next_pool;
6008
6009 /* How long the first pending work is waiting for a worker. */
6010 if (!list_empty(&pool->worklist))
6011 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6012
6013 /*
6014 * Defer printing to avoid deadlocks in console drivers that
6015 * queue work while holding locks also taken in their write
6016 * paths.
6017 */
6018 printk_deferred_enter();
6019 pr_info("pool %d:", pool->id);
6020 pr_cont_pool_info(pool);
6021 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6022 if (pool->manager)
6023 pr_cont(" manager: %d",
6024 task_pid_nr(pool->manager->task));
6025 list_for_each_entry(worker, &pool->idle_list, entry) {
6026 pr_cont(" %s", first ? "idle: " : "");
6027 pr_cont_worker_id(worker);
6028 first = false;
6029 }
6030 pr_cont("\n");
6031 printk_deferred_exit();
6032next_pool:
6033 raw_spin_unlock_irqrestore(&pool->lock, flags);
6034 /*
6035 * We could be printing a lot from atomic context, e.g.
6036 * sysrq-t -> show_all_workqueues(). Avoid triggering
6037 * hard lockup.
6038 */
6039 touch_nmi_watchdog();
6040
6041}
6042
6043/**
6044 * show_all_workqueues - dump workqueue state
6045 *
6046 * Called from a sysrq handler and prints out all busy workqueues and pools.
6047 */
6048void show_all_workqueues(void)
6049{
6050 struct workqueue_struct *wq;
6051 struct worker_pool *pool;
6052 int pi;
6053
6054 rcu_read_lock();
6055
6056 pr_info("Showing busy workqueues and worker pools:\n");
6057
6058 list_for_each_entry_rcu(wq, &workqueues, list)
6059 show_one_workqueue(wq);
6060
6061 for_each_pool(pool, pi)
6062 show_one_worker_pool(pool);
6063
6064 rcu_read_unlock();
6065}
6066
6067/**
6068 * show_freezable_workqueues - dump freezable workqueue state
6069 *
6070 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6071 * still busy.
6072 */
6073void show_freezable_workqueues(void)
6074{
6075 struct workqueue_struct *wq;
6076
6077 rcu_read_lock();
6078
6079 pr_info("Showing freezable workqueues that are still busy:\n");
6080
6081 list_for_each_entry_rcu(wq, &workqueues, list) {
6082 if (!(wq->flags & WQ_FREEZABLE))
6083 continue;
6084 show_one_workqueue(wq);
6085 }
6086
6087 rcu_read_unlock();
6088}
6089
6090/* used to show worker information through /proc/PID/{comm,stat,status} */
6091void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6092{
6093 int off;
6094
6095 /* always show the actual comm */
6096 off = strscpy(buf, task->comm, size);
6097 if (off < 0)
6098 return;
6099
6100 /* stabilize PF_WQ_WORKER and worker pool association */
6101 mutex_lock(&wq_pool_attach_mutex);
6102
6103 if (task->flags & PF_WQ_WORKER) {
6104 struct worker *worker = kthread_data(task);
6105 struct worker_pool *pool = worker->pool;
6106
6107 if (pool) {
6108 raw_spin_lock_irq(&pool->lock);
6109 /*
6110 * ->desc tracks information (wq name or
6111 * set_worker_desc()) for the latest execution. If
6112 * current, prepend '+', otherwise '-'.
6113 */
6114 if (worker->desc[0] != '\0') {
6115 if (worker->current_work)
6116 scnprintf(buf + off, size - off, "+%s",
6117 worker->desc);
6118 else
6119 scnprintf(buf + off, size - off, "-%s",
6120 worker->desc);
6121 }
6122 raw_spin_unlock_irq(&pool->lock);
6123 }
6124 }
6125
6126 mutex_unlock(&wq_pool_attach_mutex);
6127}
6128
6129#ifdef CONFIG_SMP
6130
6131/*
6132 * CPU hotplug.
6133 *
6134 * There are two challenges in supporting CPU hotplug. Firstly, there
6135 * are a lot of assumptions on strong associations among work, pwq and
6136 * pool which make migrating pending and scheduled works very
6137 * difficult to implement without impacting hot paths. Secondly,
6138 * worker pools serve mix of short, long and very long running works making
6139 * blocked draining impractical.
6140 *
6141 * This is solved by allowing the pools to be disassociated from the CPU
6142 * running as an unbound one and allowing it to be reattached later if the
6143 * cpu comes back online.
6144 */
6145
6146static void unbind_workers(int cpu)
6147{
6148 struct worker_pool *pool;
6149 struct worker *worker;
6150
6151 for_each_cpu_worker_pool(pool, cpu) {
6152 mutex_lock(&wq_pool_attach_mutex);
6153 raw_spin_lock_irq(&pool->lock);
6154
6155 /*
6156 * We've blocked all attach/detach operations. Make all workers
6157 * unbound and set DISASSOCIATED. Before this, all workers
6158 * must be on the cpu. After this, they may become diasporas.
6159 * And the preemption disabled section in their sched callbacks
6160 * are guaranteed to see WORKER_UNBOUND since the code here
6161 * is on the same cpu.
6162 */
6163 for_each_pool_worker(worker, pool)
6164 worker->flags |= WORKER_UNBOUND;
6165
6166 pool->flags |= POOL_DISASSOCIATED;
6167
6168 /*
6169 * The handling of nr_running in sched callbacks are disabled
6170 * now. Zap nr_running. After this, nr_running stays zero and
6171 * need_more_worker() and keep_working() are always true as
6172 * long as the worklist is not empty. This pool now behaves as
6173 * an unbound (in terms of concurrency management) pool which
6174 * are served by workers tied to the pool.
6175 */
6176 pool->nr_running = 0;
6177
6178 /*
6179 * With concurrency management just turned off, a busy
6180 * worker blocking could lead to lengthy stalls. Kick off
6181 * unbound chain execution of currently pending work items.
6182 */
6183 kick_pool(pool);
6184
6185 raw_spin_unlock_irq(&pool->lock);
6186
6187 for_each_pool_worker(worker, pool)
6188 unbind_worker(worker);
6189
6190 mutex_unlock(&wq_pool_attach_mutex);
6191 }
6192}
6193
6194/**
6195 * rebind_workers - rebind all workers of a pool to the associated CPU
6196 * @pool: pool of interest
6197 *
6198 * @pool->cpu is coming online. Rebind all workers to the CPU.
6199 */
6200static void rebind_workers(struct worker_pool *pool)
6201{
6202 struct worker *worker;
6203
6204 lockdep_assert_held(&wq_pool_attach_mutex);
6205
6206 /*
6207 * Restore CPU affinity of all workers. As all idle workers should
6208 * be on the run-queue of the associated CPU before any local
6209 * wake-ups for concurrency management happen, restore CPU affinity
6210 * of all workers first and then clear UNBOUND. As we're called
6211 * from CPU_ONLINE, the following shouldn't fail.
6212 */
6213 for_each_pool_worker(worker, pool) {
6214 kthread_set_per_cpu(worker->task, pool->cpu);
6215 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6216 pool_allowed_cpus(pool)) < 0);
6217 }
6218
6219 raw_spin_lock_irq(&pool->lock);
6220
6221 pool->flags &= ~POOL_DISASSOCIATED;
6222
6223 for_each_pool_worker(worker, pool) {
6224 unsigned int worker_flags = worker->flags;
6225
6226 /*
6227 * We want to clear UNBOUND but can't directly call
6228 * worker_clr_flags() or adjust nr_running. Atomically
6229 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6230 * @worker will clear REBOUND using worker_clr_flags() when
6231 * it initiates the next execution cycle thus restoring
6232 * concurrency management. Note that when or whether
6233 * @worker clears REBOUND doesn't affect correctness.
6234 *
6235 * WRITE_ONCE() is necessary because @worker->flags may be
6236 * tested without holding any lock in
6237 * wq_worker_running(). Without it, NOT_RUNNING test may
6238 * fail incorrectly leading to premature concurrency
6239 * management operations.
6240 */
6241 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6242 worker_flags |= WORKER_REBOUND;
6243 worker_flags &= ~WORKER_UNBOUND;
6244 WRITE_ONCE(worker->flags, worker_flags);
6245 }
6246
6247 raw_spin_unlock_irq(&pool->lock);
6248}
6249
6250/**
6251 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6252 * @pool: unbound pool of interest
6253 * @cpu: the CPU which is coming up
6254 *
6255 * An unbound pool may end up with a cpumask which doesn't have any online
6256 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6257 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6258 * online CPU before, cpus_allowed of all its workers should be restored.
6259 */
6260static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6261{
6262 static cpumask_t cpumask;
6263 struct worker *worker;
6264
6265 lockdep_assert_held(&wq_pool_attach_mutex);
6266
6267 /* is @cpu allowed for @pool? */
6268 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6269 return;
6270
6271 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6272
6273 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6274 for_each_pool_worker(worker, pool)
6275 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6276}
6277
6278int workqueue_prepare_cpu(unsigned int cpu)
6279{
6280 struct worker_pool *pool;
6281
6282 for_each_cpu_worker_pool(pool, cpu) {
6283 if (pool->nr_workers)
6284 continue;
6285 if (!create_worker(pool))
6286 return -ENOMEM;
6287 }
6288 return 0;
6289}
6290
6291int workqueue_online_cpu(unsigned int cpu)
6292{
6293 struct worker_pool *pool;
6294 struct workqueue_struct *wq;
6295 int pi;
6296
6297 mutex_lock(&wq_pool_mutex);
6298
6299 for_each_pool(pool, pi) {
6300 /* BH pools aren't affected by hotplug */
6301 if (pool->flags & POOL_BH)
6302 continue;
6303
6304 mutex_lock(&wq_pool_attach_mutex);
6305 if (pool->cpu == cpu)
6306 rebind_workers(pool);
6307 else if (pool->cpu < 0)
6308 restore_unbound_workers_cpumask(pool, cpu);
6309 mutex_unlock(&wq_pool_attach_mutex);
6310 }
6311
6312 /* update pod affinity of unbound workqueues */
6313 list_for_each_entry(wq, &workqueues, list) {
6314 struct workqueue_attrs *attrs = wq->unbound_attrs;
6315
6316 if (attrs) {
6317 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6318 int tcpu;
6319
6320 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6321 wq_update_pod(wq, tcpu, cpu, true);
6322
6323 mutex_lock(&wq->mutex);
6324 wq_update_node_max_active(wq, -1);
6325 mutex_unlock(&wq->mutex);
6326 }
6327 }
6328
6329 mutex_unlock(&wq_pool_mutex);
6330 return 0;
6331}
6332
6333int workqueue_offline_cpu(unsigned int cpu)
6334{
6335 struct workqueue_struct *wq;
6336
6337 /* unbinding per-cpu workers should happen on the local CPU */
6338 if (WARN_ON(cpu != smp_processor_id()))
6339 return -1;
6340
6341 unbind_workers(cpu);
6342
6343 /* update pod affinity of unbound workqueues */
6344 mutex_lock(&wq_pool_mutex);
6345 list_for_each_entry(wq, &workqueues, list) {
6346 struct workqueue_attrs *attrs = wq->unbound_attrs;
6347
6348 if (attrs) {
6349 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6350 int tcpu;
6351
6352 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6353 wq_update_pod(wq, tcpu, cpu, false);
6354
6355 mutex_lock(&wq->mutex);
6356 wq_update_node_max_active(wq, cpu);
6357 mutex_unlock(&wq->mutex);
6358 }
6359 }
6360 mutex_unlock(&wq_pool_mutex);
6361
6362 return 0;
6363}
6364
6365struct work_for_cpu {
6366 struct work_struct work;
6367 long (*fn)(void *);
6368 void *arg;
6369 long ret;
6370};
6371
6372static void work_for_cpu_fn(struct work_struct *work)
6373{
6374 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6375
6376 wfc->ret = wfc->fn(wfc->arg);
6377}
6378
6379/**
6380 * work_on_cpu_key - run a function in thread context on a particular cpu
6381 * @cpu: the cpu to run on
6382 * @fn: the function to run
6383 * @arg: the function arg
6384 * @key: The lock class key for lock debugging purposes
6385 *
6386 * It is up to the caller to ensure that the cpu doesn't go offline.
6387 * The caller must not hold any locks which would prevent @fn from completing.
6388 *
6389 * Return: The value @fn returns.
6390 */
6391long work_on_cpu_key(int cpu, long (*fn)(void *),
6392 void *arg, struct lock_class_key *key)
6393{
6394 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6395
6396 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6397 schedule_work_on(cpu, &wfc.work);
6398 flush_work(&wfc.work);
6399 destroy_work_on_stack(&wfc.work);
6400 return wfc.ret;
6401}
6402EXPORT_SYMBOL_GPL(work_on_cpu_key);
6403
6404/**
6405 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6406 * @cpu: the cpu to run on
6407 * @fn: the function to run
6408 * @arg: the function argument
6409 * @key: The lock class key for lock debugging purposes
6410 *
6411 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6412 * any locks which would prevent @fn from completing.
6413 *
6414 * Return: The value @fn returns.
6415 */
6416long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6417 void *arg, struct lock_class_key *key)
6418{
6419 long ret = -ENODEV;
6420
6421 cpus_read_lock();
6422 if (cpu_online(cpu))
6423 ret = work_on_cpu_key(cpu, fn, arg, key);
6424 cpus_read_unlock();
6425 return ret;
6426}
6427EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6428#endif /* CONFIG_SMP */
6429
6430#ifdef CONFIG_FREEZER
6431
6432/**
6433 * freeze_workqueues_begin - begin freezing workqueues
6434 *
6435 * Start freezing workqueues. After this function returns, all freezable
6436 * workqueues will queue new works to their inactive_works list instead of
6437 * pool->worklist.
6438 *
6439 * CONTEXT:
6440 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6441 */
6442void freeze_workqueues_begin(void)
6443{
6444 struct workqueue_struct *wq;
6445
6446 mutex_lock(&wq_pool_mutex);
6447
6448 WARN_ON_ONCE(workqueue_freezing);
6449 workqueue_freezing = true;
6450
6451 list_for_each_entry(wq, &workqueues, list) {
6452 mutex_lock(&wq->mutex);
6453 wq_adjust_max_active(wq);
6454 mutex_unlock(&wq->mutex);
6455 }
6456
6457 mutex_unlock(&wq_pool_mutex);
6458}
6459
6460/**
6461 * freeze_workqueues_busy - are freezable workqueues still busy?
6462 *
6463 * Check whether freezing is complete. This function must be called
6464 * between freeze_workqueues_begin() and thaw_workqueues().
6465 *
6466 * CONTEXT:
6467 * Grabs and releases wq_pool_mutex.
6468 *
6469 * Return:
6470 * %true if some freezable workqueues are still busy. %false if freezing
6471 * is complete.
6472 */
6473bool freeze_workqueues_busy(void)
6474{
6475 bool busy = false;
6476 struct workqueue_struct *wq;
6477 struct pool_workqueue *pwq;
6478
6479 mutex_lock(&wq_pool_mutex);
6480
6481 WARN_ON_ONCE(!workqueue_freezing);
6482
6483 list_for_each_entry(wq, &workqueues, list) {
6484 if (!(wq->flags & WQ_FREEZABLE))
6485 continue;
6486 /*
6487 * nr_active is monotonically decreasing. It's safe
6488 * to peek without lock.
6489 */
6490 rcu_read_lock();
6491 for_each_pwq(pwq, wq) {
6492 WARN_ON_ONCE(pwq->nr_active < 0);
6493 if (pwq->nr_active) {
6494 busy = true;
6495 rcu_read_unlock();
6496 goto out_unlock;
6497 }
6498 }
6499 rcu_read_unlock();
6500 }
6501out_unlock:
6502 mutex_unlock(&wq_pool_mutex);
6503 return busy;
6504}
6505
6506/**
6507 * thaw_workqueues - thaw workqueues
6508 *
6509 * Thaw workqueues. Normal queueing is restored and all collected
6510 * frozen works are transferred to their respective pool worklists.
6511 *
6512 * CONTEXT:
6513 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6514 */
6515void thaw_workqueues(void)
6516{
6517 struct workqueue_struct *wq;
6518
6519 mutex_lock(&wq_pool_mutex);
6520
6521 if (!workqueue_freezing)
6522 goto out_unlock;
6523
6524 workqueue_freezing = false;
6525
6526 /* restore max_active and repopulate worklist */
6527 list_for_each_entry(wq, &workqueues, list) {
6528 mutex_lock(&wq->mutex);
6529 wq_adjust_max_active(wq);
6530 mutex_unlock(&wq->mutex);
6531 }
6532
6533out_unlock:
6534 mutex_unlock(&wq_pool_mutex);
6535}
6536#endif /* CONFIG_FREEZER */
6537
6538static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6539{
6540 LIST_HEAD(ctxs);
6541 int ret = 0;
6542 struct workqueue_struct *wq;
6543 struct apply_wqattrs_ctx *ctx, *n;
6544
6545 lockdep_assert_held(&wq_pool_mutex);
6546
6547 list_for_each_entry(wq, &workqueues, list) {
6548 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6549 continue;
6550
6551 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6552 if (IS_ERR(ctx)) {
6553 ret = PTR_ERR(ctx);
6554 break;
6555 }
6556
6557 list_add_tail(&ctx->list, &ctxs);
6558 }
6559
6560 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6561 if (!ret)
6562 apply_wqattrs_commit(ctx);
6563 apply_wqattrs_cleanup(ctx);
6564 }
6565
6566 if (!ret) {
6567 mutex_lock(&wq_pool_attach_mutex);
6568 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6569 mutex_unlock(&wq_pool_attach_mutex);
6570 }
6571 return ret;
6572}
6573
6574/**
6575 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6576 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6577 *
6578 * This function can be called from cpuset code to provide a set of isolated
6579 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6580 * either cpus_read_lock or cpus_write_lock.
6581 */
6582int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6583{
6584 cpumask_var_t cpumask;
6585 int ret = 0;
6586
6587 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6588 return -ENOMEM;
6589
6590 lockdep_assert_cpus_held();
6591 mutex_lock(&wq_pool_mutex);
6592
6593 /* Save the current isolated cpumask & export it via sysfs */
6594 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6595
6596 /*
6597 * If the operation fails, it will fall back to
6598 * wq_requested_unbound_cpumask which is initially set to
6599 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6600 * by any subsequent write to workqueue/cpumask sysfs file.
6601 */
6602 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6603 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6604 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6605 ret = workqueue_apply_unbound_cpumask(cpumask);
6606
6607 mutex_unlock(&wq_pool_mutex);
6608 free_cpumask_var(cpumask);
6609 return ret;
6610}
6611
6612static int parse_affn_scope(const char *val)
6613{
6614 int i;
6615
6616 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6617 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6618 return i;
6619 }
6620 return -EINVAL;
6621}
6622
6623static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6624{
6625 struct workqueue_struct *wq;
6626 int affn, cpu;
6627
6628 affn = parse_affn_scope(val);
6629 if (affn < 0)
6630 return affn;
6631 if (affn == WQ_AFFN_DFL)
6632 return -EINVAL;
6633
6634 cpus_read_lock();
6635 mutex_lock(&wq_pool_mutex);
6636
6637 wq_affn_dfl = affn;
6638
6639 list_for_each_entry(wq, &workqueues, list) {
6640 for_each_online_cpu(cpu) {
6641 wq_update_pod(wq, cpu, cpu, true);
6642 }
6643 }
6644
6645 mutex_unlock(&wq_pool_mutex);
6646 cpus_read_unlock();
6647
6648 return 0;
6649}
6650
6651static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6652{
6653 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6654}
6655
6656static const struct kernel_param_ops wq_affn_dfl_ops = {
6657 .set = wq_affn_dfl_set,
6658 .get = wq_affn_dfl_get,
6659};
6660
6661module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6662
6663#ifdef CONFIG_SYSFS
6664/*
6665 * Workqueues with WQ_SYSFS flag set is visible to userland via
6666 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6667 * following attributes.
6668 *
6669 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6670 * max_active RW int : maximum number of in-flight work items
6671 *
6672 * Unbound workqueues have the following extra attributes.
6673 *
6674 * nice RW int : nice value of the workers
6675 * cpumask RW mask : bitmask of allowed CPUs for the workers
6676 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
6677 * affinity_strict RW bool : worker CPU affinity is strict
6678 */
6679struct wq_device {
6680 struct workqueue_struct *wq;
6681 struct device dev;
6682};
6683
6684static struct workqueue_struct *dev_to_wq(struct device *dev)
6685{
6686 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6687
6688 return wq_dev->wq;
6689}
6690
6691static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6692 char *buf)
6693{
6694 struct workqueue_struct *wq = dev_to_wq(dev);
6695
6696 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6697}
6698static DEVICE_ATTR_RO(per_cpu);
6699
6700static ssize_t max_active_show(struct device *dev,
6701 struct device_attribute *attr, char *buf)
6702{
6703 struct workqueue_struct *wq = dev_to_wq(dev);
6704
6705 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6706}
6707
6708static ssize_t max_active_store(struct device *dev,
6709 struct device_attribute *attr, const char *buf,
6710 size_t count)
6711{
6712 struct workqueue_struct *wq = dev_to_wq(dev);
6713 int val;
6714
6715 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6716 return -EINVAL;
6717
6718 workqueue_set_max_active(wq, val);
6719 return count;
6720}
6721static DEVICE_ATTR_RW(max_active);
6722
6723static struct attribute *wq_sysfs_attrs[] = {
6724 &dev_attr_per_cpu.attr,
6725 &dev_attr_max_active.attr,
6726 NULL,
6727};
6728ATTRIBUTE_GROUPS(wq_sysfs);
6729
6730static void apply_wqattrs_lock(void)
6731{
6732 /* CPUs should stay stable across pwq creations and installations */
6733 cpus_read_lock();
6734 mutex_lock(&wq_pool_mutex);
6735}
6736
6737static void apply_wqattrs_unlock(void)
6738{
6739 mutex_unlock(&wq_pool_mutex);
6740 cpus_read_unlock();
6741}
6742
6743static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6744 char *buf)
6745{
6746 struct workqueue_struct *wq = dev_to_wq(dev);
6747 int written;
6748
6749 mutex_lock(&wq->mutex);
6750 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6751 mutex_unlock(&wq->mutex);
6752
6753 return written;
6754}
6755
6756/* prepare workqueue_attrs for sysfs store operations */
6757static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6758{
6759 struct workqueue_attrs *attrs;
6760
6761 lockdep_assert_held(&wq_pool_mutex);
6762
6763 attrs = alloc_workqueue_attrs();
6764 if (!attrs)
6765 return NULL;
6766
6767 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6768 return attrs;
6769}
6770
6771static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6772 const char *buf, size_t count)
6773{
6774 struct workqueue_struct *wq = dev_to_wq(dev);
6775 struct workqueue_attrs *attrs;
6776 int ret = -ENOMEM;
6777
6778 apply_wqattrs_lock();
6779
6780 attrs = wq_sysfs_prep_attrs(wq);
6781 if (!attrs)
6782 goto out_unlock;
6783
6784 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6785 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6786 ret = apply_workqueue_attrs_locked(wq, attrs);
6787 else
6788 ret = -EINVAL;
6789
6790out_unlock:
6791 apply_wqattrs_unlock();
6792 free_workqueue_attrs(attrs);
6793 return ret ?: count;
6794}
6795
6796static ssize_t wq_cpumask_show(struct device *dev,
6797 struct device_attribute *attr, char *buf)
6798{
6799 struct workqueue_struct *wq = dev_to_wq(dev);
6800 int written;
6801
6802 mutex_lock(&wq->mutex);
6803 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6804 cpumask_pr_args(wq->unbound_attrs->cpumask));
6805 mutex_unlock(&wq->mutex);
6806 return written;
6807}
6808
6809static ssize_t wq_cpumask_store(struct device *dev,
6810 struct device_attribute *attr,
6811 const char *buf, size_t count)
6812{
6813 struct workqueue_struct *wq = dev_to_wq(dev);
6814 struct workqueue_attrs *attrs;
6815 int ret = -ENOMEM;
6816
6817 apply_wqattrs_lock();
6818
6819 attrs = wq_sysfs_prep_attrs(wq);
6820 if (!attrs)
6821 goto out_unlock;
6822
6823 ret = cpumask_parse(buf, attrs->cpumask);
6824 if (!ret)
6825 ret = apply_workqueue_attrs_locked(wq, attrs);
6826
6827out_unlock:
6828 apply_wqattrs_unlock();
6829 free_workqueue_attrs(attrs);
6830 return ret ?: count;
6831}
6832
6833static ssize_t wq_affn_scope_show(struct device *dev,
6834 struct device_attribute *attr, char *buf)
6835{
6836 struct workqueue_struct *wq = dev_to_wq(dev);
6837 int written;
6838
6839 mutex_lock(&wq->mutex);
6840 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6841 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6842 wq_affn_names[WQ_AFFN_DFL],
6843 wq_affn_names[wq_affn_dfl]);
6844 else
6845 written = scnprintf(buf, PAGE_SIZE, "%s\n",
6846 wq_affn_names[wq->unbound_attrs->affn_scope]);
6847 mutex_unlock(&wq->mutex);
6848
6849 return written;
6850}
6851
6852static ssize_t wq_affn_scope_store(struct device *dev,
6853 struct device_attribute *attr,
6854 const char *buf, size_t count)
6855{
6856 struct workqueue_struct *wq = dev_to_wq(dev);
6857 struct workqueue_attrs *attrs;
6858 int affn, ret = -ENOMEM;
6859
6860 affn = parse_affn_scope(buf);
6861 if (affn < 0)
6862 return affn;
6863
6864 apply_wqattrs_lock();
6865 attrs = wq_sysfs_prep_attrs(wq);
6866 if (attrs) {
6867 attrs->affn_scope = affn;
6868 ret = apply_workqueue_attrs_locked(wq, attrs);
6869 }
6870 apply_wqattrs_unlock();
6871 free_workqueue_attrs(attrs);
6872 return ret ?: count;
6873}
6874
6875static ssize_t wq_affinity_strict_show(struct device *dev,
6876 struct device_attribute *attr, char *buf)
6877{
6878 struct workqueue_struct *wq = dev_to_wq(dev);
6879
6880 return scnprintf(buf, PAGE_SIZE, "%d\n",
6881 wq->unbound_attrs->affn_strict);
6882}
6883
6884static ssize_t wq_affinity_strict_store(struct device *dev,
6885 struct device_attribute *attr,
6886 const char *buf, size_t count)
6887{
6888 struct workqueue_struct *wq = dev_to_wq(dev);
6889 struct workqueue_attrs *attrs;
6890 int v, ret = -ENOMEM;
6891
6892 if (sscanf(buf, "%d", &v) != 1)
6893 return -EINVAL;
6894
6895 apply_wqattrs_lock();
6896 attrs = wq_sysfs_prep_attrs(wq);
6897 if (attrs) {
6898 attrs->affn_strict = (bool)v;
6899 ret = apply_workqueue_attrs_locked(wq, attrs);
6900 }
6901 apply_wqattrs_unlock();
6902 free_workqueue_attrs(attrs);
6903 return ret ?: count;
6904}
6905
6906static struct device_attribute wq_sysfs_unbound_attrs[] = {
6907 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6908 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6909 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6910 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6911 __ATTR_NULL,
6912};
6913
6914static struct bus_type wq_subsys = {
6915 .name = "workqueue",
6916 .dev_groups = wq_sysfs_groups,
6917};
6918
6919/**
6920 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6921 * @cpumask: the cpumask to set
6922 *
6923 * The low-level workqueues cpumask is a global cpumask that limits
6924 * the affinity of all unbound workqueues. This function check the @cpumask
6925 * and apply it to all unbound workqueues and updates all pwqs of them.
6926 *
6927 * Return: 0 - Success
6928 * -EINVAL - Invalid @cpumask
6929 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
6930 */
6931static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6932{
6933 int ret = -EINVAL;
6934
6935 /*
6936 * Not excluding isolated cpus on purpose.
6937 * If the user wishes to include them, we allow that.
6938 */
6939 cpumask_and(cpumask, cpumask, cpu_possible_mask);
6940 if (!cpumask_empty(cpumask)) {
6941 apply_wqattrs_lock();
6942 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6943 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6944 ret = 0;
6945 goto out_unlock;
6946 }
6947
6948 ret = workqueue_apply_unbound_cpumask(cpumask);
6949
6950out_unlock:
6951 apply_wqattrs_unlock();
6952 }
6953
6954 return ret;
6955}
6956
6957static ssize_t __wq_cpumask_show(struct device *dev,
6958 struct device_attribute *attr, char *buf, cpumask_var_t mask)
6959{
6960 int written;
6961
6962 mutex_lock(&wq_pool_mutex);
6963 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
6964 mutex_unlock(&wq_pool_mutex);
6965
6966 return written;
6967}
6968
6969static ssize_t wq_unbound_cpumask_show(struct device *dev,
6970 struct device_attribute *attr, char *buf)
6971{
6972 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6973}
6974
6975static ssize_t wq_requested_cpumask_show(struct device *dev,
6976 struct device_attribute *attr, char *buf)
6977{
6978 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6979}
6980
6981static ssize_t wq_isolated_cpumask_show(struct device *dev,
6982 struct device_attribute *attr, char *buf)
6983{
6984 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6985}
6986
6987static ssize_t wq_unbound_cpumask_store(struct device *dev,
6988 struct device_attribute *attr, const char *buf, size_t count)
6989{
6990 cpumask_var_t cpumask;
6991 int ret;
6992
6993 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6994 return -ENOMEM;
6995
6996 ret = cpumask_parse(buf, cpumask);
6997 if (!ret)
6998 ret = workqueue_set_unbound_cpumask(cpumask);
6999
7000 free_cpumask_var(cpumask);
7001 return ret ? ret : count;
7002}
7003
7004static struct device_attribute wq_sysfs_cpumask_attrs[] = {
7005 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
7006 wq_unbound_cpumask_store),
7007 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7008 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7009 __ATTR_NULL,
7010};
7011
7012static int __init wq_sysfs_init(void)
7013{
7014 struct device *dev_root;
7015 int err;
7016
7017 err = subsys_virtual_register(&wq_subsys, NULL);
7018 if (err)
7019 return err;
7020
7021 dev_root = bus_get_dev_root(&wq_subsys);
7022 if (dev_root) {
7023 struct device_attribute *attr;
7024
7025 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7026 err = device_create_file(dev_root, attr);
7027 if (err)
7028 break;
7029 }
7030 put_device(dev_root);
7031 }
7032 return err;
7033}
7034core_initcall(wq_sysfs_init);
7035
7036static void wq_device_release(struct device *dev)
7037{
7038 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7039
7040 kfree(wq_dev);
7041}
7042
7043/**
7044 * workqueue_sysfs_register - make a workqueue visible in sysfs
7045 * @wq: the workqueue to register
7046 *
7047 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7048 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7049 * which is the preferred method.
7050 *
7051 * Workqueue user should use this function directly iff it wants to apply
7052 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7053 * apply_workqueue_attrs() may race against userland updating the
7054 * attributes.
7055 *
7056 * Return: 0 on success, -errno on failure.
7057 */
7058int workqueue_sysfs_register(struct workqueue_struct *wq)
7059{
7060 struct wq_device *wq_dev;
7061 int ret;
7062
7063 /*
7064 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7065 * ordered workqueues.
7066 */
7067 if (WARN_ON(wq->flags & __WQ_ORDERED))
7068 return -EINVAL;
7069
7070 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7071 if (!wq_dev)
7072 return -ENOMEM;
7073
7074 wq_dev->wq = wq;
7075 wq_dev->dev.bus = &wq_subsys;
7076 wq_dev->dev.release = wq_device_release;
7077 dev_set_name(&wq_dev->dev, "%s", wq->name);
7078
7079 /*
7080 * unbound_attrs are created separately. Suppress uevent until
7081 * everything is ready.
7082 */
7083 dev_set_uevent_suppress(&wq_dev->dev, true);
7084
7085 ret = device_register(&wq_dev->dev);
7086 if (ret) {
7087 put_device(&wq_dev->dev);
7088 wq->wq_dev = NULL;
7089 return ret;
7090 }
7091
7092 if (wq->flags & WQ_UNBOUND) {
7093 struct device_attribute *attr;
7094
7095 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7096 ret = device_create_file(&wq_dev->dev, attr);
7097 if (ret) {
7098 device_unregister(&wq_dev->dev);
7099 wq->wq_dev = NULL;
7100 return ret;
7101 }
7102 }
7103 }
7104
7105 dev_set_uevent_suppress(&wq_dev->dev, false);
7106 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7107 return 0;
7108}
7109
7110/**
7111 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7112 * @wq: the workqueue to unregister
7113 *
7114 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7115 */
7116static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7117{
7118 struct wq_device *wq_dev = wq->wq_dev;
7119
7120 if (!wq->wq_dev)
7121 return;
7122
7123 wq->wq_dev = NULL;
7124 device_unregister(&wq_dev->dev);
7125}
7126#else /* CONFIG_SYSFS */
7127static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7128#endif /* CONFIG_SYSFS */
7129
7130/*
7131 * Workqueue watchdog.
7132 *
7133 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7134 * flush dependency, a concurrency managed work item which stays RUNNING
7135 * indefinitely. Workqueue stalls can be very difficult to debug as the
7136 * usual warning mechanisms don't trigger and internal workqueue state is
7137 * largely opaque.
7138 *
7139 * Workqueue watchdog monitors all worker pools periodically and dumps
7140 * state if some pools failed to make forward progress for a while where
7141 * forward progress is defined as the first item on ->worklist changing.
7142 *
7143 * This mechanism is controlled through the kernel parameter
7144 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7145 * corresponding sysfs parameter file.
7146 */
7147#ifdef CONFIG_WQ_WATCHDOG
7148
7149static unsigned long wq_watchdog_thresh = 30;
7150static struct timer_list wq_watchdog_timer;
7151
7152static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7153static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7154
7155/*
7156 * Show workers that might prevent the processing of pending work items.
7157 * The only candidates are CPU-bound workers in the running state.
7158 * Pending work items should be handled by another idle worker
7159 * in all other situations.
7160 */
7161static void show_cpu_pool_hog(struct worker_pool *pool)
7162{
7163 struct worker *worker;
7164 unsigned long flags;
7165 int bkt;
7166
7167 raw_spin_lock_irqsave(&pool->lock, flags);
7168
7169 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7170 if (task_is_running(worker->task)) {
7171 /*
7172 * Defer printing to avoid deadlocks in console
7173 * drivers that queue work while holding locks
7174 * also taken in their write paths.
7175 */
7176 printk_deferred_enter();
7177
7178 pr_info("pool %d:\n", pool->id);
7179 sched_show_task(worker->task);
7180
7181 printk_deferred_exit();
7182 }
7183 }
7184
7185 raw_spin_unlock_irqrestore(&pool->lock, flags);
7186}
7187
7188static void show_cpu_pools_hogs(void)
7189{
7190 struct worker_pool *pool;
7191 int pi;
7192
7193 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7194
7195 rcu_read_lock();
7196
7197 for_each_pool(pool, pi) {
7198 if (pool->cpu_stall)
7199 show_cpu_pool_hog(pool);
7200
7201 }
7202
7203 rcu_read_unlock();
7204}
7205
7206static void wq_watchdog_reset_touched(void)
7207{
7208 int cpu;
7209
7210 wq_watchdog_touched = jiffies;
7211 for_each_possible_cpu(cpu)
7212 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7213}
7214
7215static void wq_watchdog_timer_fn(struct timer_list *unused)
7216{
7217 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7218 bool lockup_detected = false;
7219 bool cpu_pool_stall = false;
7220 unsigned long now = jiffies;
7221 struct worker_pool *pool;
7222 int pi;
7223
7224 if (!thresh)
7225 return;
7226
7227 rcu_read_lock();
7228
7229 for_each_pool(pool, pi) {
7230 unsigned long pool_ts, touched, ts;
7231
7232 pool->cpu_stall = false;
7233 if (list_empty(&pool->worklist))
7234 continue;
7235
7236 /*
7237 * If a virtual machine is stopped by the host it can look to
7238 * the watchdog like a stall.
7239 */
7240 kvm_check_and_clear_guest_paused();
7241
7242 /* get the latest of pool and touched timestamps */
7243 if (pool->cpu >= 0)
7244 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7245 else
7246 touched = READ_ONCE(wq_watchdog_touched);
7247 pool_ts = READ_ONCE(pool->watchdog_ts);
7248
7249 if (time_after(pool_ts, touched))
7250 ts = pool_ts;
7251 else
7252 ts = touched;
7253
7254 /* did we stall? */
7255 if (time_after(now, ts + thresh)) {
7256 lockup_detected = true;
7257 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7258 pool->cpu_stall = true;
7259 cpu_pool_stall = true;
7260 }
7261 pr_emerg("BUG: workqueue lockup - pool");
7262 pr_cont_pool_info(pool);
7263 pr_cont(" stuck for %us!\n",
7264 jiffies_to_msecs(now - pool_ts) / 1000);
7265 }
7266
7267
7268 }
7269
7270 rcu_read_unlock();
7271
7272 if (lockup_detected)
7273 show_all_workqueues();
7274
7275 if (cpu_pool_stall)
7276 show_cpu_pools_hogs();
7277
7278 wq_watchdog_reset_touched();
7279 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7280}
7281
7282notrace void wq_watchdog_touch(int cpu)
7283{
7284 if (cpu >= 0)
7285 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7286
7287 wq_watchdog_touched = jiffies;
7288}
7289
7290static void wq_watchdog_set_thresh(unsigned long thresh)
7291{
7292 wq_watchdog_thresh = 0;
7293 del_timer_sync(&wq_watchdog_timer);
7294
7295 if (thresh) {
7296 wq_watchdog_thresh = thresh;
7297 wq_watchdog_reset_touched();
7298 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7299 }
7300}
7301
7302static int wq_watchdog_param_set_thresh(const char *val,
7303 const struct kernel_param *kp)
7304{
7305 unsigned long thresh;
7306 int ret;
7307
7308 ret = kstrtoul(val, 0, &thresh);
7309 if (ret)
7310 return ret;
7311
7312 if (system_wq)
7313 wq_watchdog_set_thresh(thresh);
7314 else
7315 wq_watchdog_thresh = thresh;
7316
7317 return 0;
7318}
7319
7320static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7321 .set = wq_watchdog_param_set_thresh,
7322 .get = param_get_ulong,
7323};
7324
7325module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7326 0644);
7327
7328static void wq_watchdog_init(void)
7329{
7330 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7331 wq_watchdog_set_thresh(wq_watchdog_thresh);
7332}
7333
7334#else /* CONFIG_WQ_WATCHDOG */
7335
7336static inline void wq_watchdog_init(void) { }
7337
7338#endif /* CONFIG_WQ_WATCHDOG */
7339
7340static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7341{
7342 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7343 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7344 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7345 return;
7346 }
7347
7348 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7349}
7350
7351static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7352{
7353 BUG_ON(init_worker_pool(pool));
7354 pool->cpu = cpu;
7355 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7356 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7357 pool->attrs->nice = nice;
7358 pool->attrs->affn_strict = true;
7359 pool->node = cpu_to_node(cpu);
7360
7361 /* alloc pool ID */
7362 mutex_lock(&wq_pool_mutex);
7363 BUG_ON(worker_pool_assign_id(pool));
7364 mutex_unlock(&wq_pool_mutex);
7365}
7366
7367/**
7368 * workqueue_init_early - early init for workqueue subsystem
7369 *
7370 * This is the first step of three-staged workqueue subsystem initialization and
7371 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7372 * up. It sets up all the data structures and system workqueues and allows early
7373 * boot code to create workqueues and queue/cancel work items. Actual work item
7374 * execution starts only after kthreads can be created and scheduled right
7375 * before early initcalls.
7376 */
7377void __init workqueue_init_early(void)
7378{
7379 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7380 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7381 int i, cpu;
7382
7383 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7384
7385 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7386 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7387 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7388
7389 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7390 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7391 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7392 if (!cpumask_empty(&wq_cmdline_cpumask))
7393 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7394
7395 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7396
7397 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7398
7399 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7400 BUG_ON(!wq_update_pod_attrs_buf);
7401
7402 /*
7403 * If nohz_full is enabled, set power efficient workqueue as unbound.
7404 * This allows workqueue items to be moved to HK CPUs.
7405 */
7406 if (housekeeping_enabled(HK_TYPE_TICK))
7407 wq_power_efficient = true;
7408
7409 /* initialize WQ_AFFN_SYSTEM pods */
7410 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7411 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7412 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7413 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7414
7415 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7416
7417 pt->nr_pods = 1;
7418 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7419 pt->pod_node[0] = NUMA_NO_NODE;
7420 pt->cpu_pod[0] = 0;
7421
7422 /* initialize BH and CPU pools */
7423 for_each_possible_cpu(cpu) {
7424 struct worker_pool *pool;
7425
7426 i = 0;
7427 for_each_bh_worker_pool(pool, cpu) {
7428 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7429 pool->flags |= POOL_BH;
7430 }
7431
7432 i = 0;
7433 for_each_cpu_worker_pool(pool, cpu)
7434 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7435 }
7436
7437 /* create default unbound and ordered wq attrs */
7438 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7439 struct workqueue_attrs *attrs;
7440
7441 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7442 attrs->nice = std_nice[i];
7443 unbound_std_wq_attrs[i] = attrs;
7444
7445 /*
7446 * An ordered wq should have only one pwq as ordering is
7447 * guaranteed by max_active which is enforced by pwqs.
7448 */
7449 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7450 attrs->nice = std_nice[i];
7451 attrs->ordered = true;
7452 ordered_wq_attrs[i] = attrs;
7453 }
7454
7455 system_wq = alloc_workqueue("events", 0, 0);
7456 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7457 system_long_wq = alloc_workqueue("events_long", 0, 0);
7458 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7459 WQ_MAX_ACTIVE);
7460 system_freezable_wq = alloc_workqueue("events_freezable",
7461 WQ_FREEZABLE, 0);
7462 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7463 WQ_POWER_EFFICIENT, 0);
7464 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7465 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7466 0);
7467 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7468 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7469 WQ_BH | WQ_HIGHPRI, 0);
7470 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7471 !system_unbound_wq || !system_freezable_wq ||
7472 !system_power_efficient_wq ||
7473 !system_freezable_power_efficient_wq ||
7474 !system_bh_wq || !system_bh_highpri_wq);
7475}
7476
7477static void __init wq_cpu_intensive_thresh_init(void)
7478{
7479 unsigned long thresh;
7480 unsigned long bogo;
7481
7482 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7483 BUG_ON(IS_ERR(pwq_release_worker));
7484
7485 /* if the user set it to a specific value, keep it */
7486 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7487 return;
7488
7489 /*
7490 * The default of 10ms is derived from the fact that most modern (as of
7491 * 2023) processors can do a lot in 10ms and that it's just below what
7492 * most consider human-perceivable. However, the kernel also runs on a
7493 * lot slower CPUs including microcontrollers where the threshold is way
7494 * too low.
7495 *
7496 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7497 * This is by no means accurate but it doesn't have to be. The mechanism
7498 * is still useful even when the threshold is fully scaled up. Also, as
7499 * the reports would usually be applicable to everyone, some machines
7500 * operating on longer thresholds won't significantly diminish their
7501 * usefulness.
7502 */
7503 thresh = 10 * USEC_PER_MSEC;
7504
7505 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7506 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7507 if (bogo < 4000)
7508 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7509
7510 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7511 loops_per_jiffy, bogo, thresh);
7512
7513 wq_cpu_intensive_thresh_us = thresh;
7514}
7515
7516/**
7517 * workqueue_init - bring workqueue subsystem fully online
7518 *
7519 * This is the second step of three-staged workqueue subsystem initialization
7520 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7521 * been created and work items queued on them, but there are no kworkers
7522 * executing the work items yet. Populate the worker pools with the initial
7523 * workers and enable future kworker creations.
7524 */
7525void __init workqueue_init(void)
7526{
7527 struct workqueue_struct *wq;
7528 struct worker_pool *pool;
7529 int cpu, bkt;
7530
7531 wq_cpu_intensive_thresh_init();
7532
7533 mutex_lock(&wq_pool_mutex);
7534
7535 /*
7536 * Per-cpu pools created earlier could be missing node hint. Fix them
7537 * up. Also, create a rescuer for workqueues that requested it.
7538 */
7539 for_each_possible_cpu(cpu) {
7540 for_each_bh_worker_pool(pool, cpu)
7541 pool->node = cpu_to_node(cpu);
7542 for_each_cpu_worker_pool(pool, cpu)
7543 pool->node = cpu_to_node(cpu);
7544 }
7545
7546 list_for_each_entry(wq, &workqueues, list) {
7547 WARN(init_rescuer(wq),
7548 "workqueue: failed to create early rescuer for %s",
7549 wq->name);
7550 }
7551
7552 mutex_unlock(&wq_pool_mutex);
7553
7554 /*
7555 * Create the initial workers. A BH pool has one pseudo worker that
7556 * represents the shared BH execution context and thus doesn't get
7557 * affected by hotplug events. Create the BH pseudo workers for all
7558 * possible CPUs here.
7559 */
7560 for_each_possible_cpu(cpu)
7561 for_each_bh_worker_pool(pool, cpu)
7562 BUG_ON(!create_worker(pool));
7563
7564 for_each_online_cpu(cpu) {
7565 for_each_cpu_worker_pool(pool, cpu) {
7566 pool->flags &= ~POOL_DISASSOCIATED;
7567 BUG_ON(!create_worker(pool));
7568 }
7569 }
7570
7571 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7572 BUG_ON(!create_worker(pool));
7573
7574 wq_online = true;
7575 wq_watchdog_init();
7576}
7577
7578/*
7579 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7580 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7581 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7582 */
7583static void __init init_pod_type(struct wq_pod_type *pt,
7584 bool (*cpus_share_pod)(int, int))
7585{
7586 int cur, pre, cpu, pod;
7587
7588 pt->nr_pods = 0;
7589
7590 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7591 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7592 BUG_ON(!pt->cpu_pod);
7593
7594 for_each_possible_cpu(cur) {
7595 for_each_possible_cpu(pre) {
7596 if (pre >= cur) {
7597 pt->cpu_pod[cur] = pt->nr_pods++;
7598 break;
7599 }
7600 if (cpus_share_pod(cur, pre)) {
7601 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7602 break;
7603 }
7604 }
7605 }
7606
7607 /* init the rest to match @pt->cpu_pod[] */
7608 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7609 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7610 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7611
7612 for (pod = 0; pod < pt->nr_pods; pod++)
7613 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7614
7615 for_each_possible_cpu(cpu) {
7616 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7617 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7618 }
7619}
7620
7621static bool __init cpus_dont_share(int cpu0, int cpu1)
7622{
7623 return false;
7624}
7625
7626static bool __init cpus_share_smt(int cpu0, int cpu1)
7627{
7628#ifdef CONFIG_SCHED_SMT
7629 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7630#else
7631 return false;
7632#endif
7633}
7634
7635static bool __init cpus_share_numa(int cpu0, int cpu1)
7636{
7637 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7638}
7639
7640/**
7641 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7642 *
7643 * This is the third step of three-staged workqueue subsystem initialization and
7644 * invoked after SMP and topology information are fully initialized. It
7645 * initializes the unbound CPU pods accordingly.
7646 */
7647void __init workqueue_init_topology(void)
7648{
7649 struct workqueue_struct *wq;
7650 int cpu;
7651
7652 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7653 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7654 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7655 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7656
7657 wq_topo_initialized = true;
7658
7659 mutex_lock(&wq_pool_mutex);
7660
7661 /*
7662 * Workqueues allocated earlier would have all CPUs sharing the default
7663 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7664 * combinations to apply per-pod sharing.
7665 */
7666 list_for_each_entry(wq, &workqueues, list) {
7667 for_each_online_cpu(cpu)
7668 wq_update_pod(wq, cpu, cpu, true);
7669 if (wq->flags & WQ_UNBOUND) {
7670 mutex_lock(&wq->mutex);
7671 wq_update_node_max_active(wq, -1);
7672 mutex_unlock(&wq->mutex);
7673 }
7674 }
7675
7676 mutex_unlock(&wq_pool_mutex);
7677}
7678
7679void __warn_flushing_systemwide_wq(void)
7680{
7681 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7682 dump_stack();
7683}
7684EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7685
7686static int __init workqueue_unbound_cpus_setup(char *str)
7687{
7688 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7689 cpumask_clear(&wq_cmdline_cpumask);
7690 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7691 }
7692
7693 return 1;
7694}
7695__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);