Merge tag 'kbuild-v5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-block.git] / kernel / workqueue.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
39#include <linux/hardirq.h>
40#include <linux/mempolicy.h>
41#include <linux/freezer.h>
42#include <linux/debug_locks.h>
43#include <linux/lockdep.h>
44#include <linux/idr.h>
45#include <linux/jhash.h>
46#include <linux/hashtable.h>
47#include <linux/rculist.h>
48#include <linux/nodemask.h>
49#include <linux/moduleparam.h>
50#include <linux/uaccess.h>
51#include <linux/sched/isolation.h>
52#include <linux/nmi.h>
53#include <linux/kvm_para.h>
54
55#include "workqueue_internal.h"
56
57enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110};
111
112/*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146/* struct worker is defined in workqueue_internal.h */
147
148struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 /*
158 * The counter is incremented in a process context on the associated CPU
159 * w/ preemption disabled, and decremented or reset in the same context
160 * but w/ pool->lock held. The readers grab pool->lock and are
161 * guaranteed to see if the counter reached zero.
162 */
163 int nr_running;
164
165 struct list_head worklist; /* L: list of pending works */
166
167 int nr_workers; /* L: total number of workers */
168 int nr_idle; /* L: currently idle workers */
169
170 struct list_head idle_list; /* L: list of idle workers */
171 struct timer_list idle_timer; /* L: worker idle timeout */
172 struct timer_list mayday_timer; /* L: SOS timer for workers */
173
174 /* a workers is either on busy_hash or idle_list, or the manager */
175 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
176 /* L: hash of busy workers */
177
178 struct worker *manager; /* L: purely informational */
179 struct list_head workers; /* A: attached workers */
180 struct completion *detach_completion; /* all workers detached */
181
182 struct ida worker_ida; /* worker IDs for task name */
183
184 struct workqueue_attrs *attrs; /* I: worker attributes */
185 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
186 int refcnt; /* PL: refcnt for unbound pools */
187
188 /*
189 * Destruction of pool is RCU protected to allow dereferences
190 * from get_work_pool().
191 */
192 struct rcu_head rcu;
193};
194
195/*
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
200 */
201struct pool_workqueue {
202 struct worker_pool *pool; /* I: the associated pool */
203 struct workqueue_struct *wq; /* I: the owning workqueue */
204 int work_color; /* L: current color */
205 int flush_color; /* L: flushing color */
206 int refcnt; /* L: reference count */
207 int nr_in_flight[WORK_NR_COLORS];
208 /* L: nr of in_flight works */
209
210 /*
211 * nr_active management and WORK_STRUCT_INACTIVE:
212 *
213 * When pwq->nr_active >= max_active, new work item is queued to
214 * pwq->inactive_works instead of pool->worklist and marked with
215 * WORK_STRUCT_INACTIVE.
216 *
217 * All work items marked with WORK_STRUCT_INACTIVE do not participate
218 * in pwq->nr_active and all work items in pwq->inactive_works are
219 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
220 * work items are in pwq->inactive_works. Some of them are ready to
221 * run in pool->worklist or worker->scheduled. Those work itmes are
222 * only struct wq_barrier which is used for flush_work() and should
223 * not participate in pwq->nr_active. For non-barrier work item, it
224 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
225 */
226 int nr_active; /* L: nr of active works */
227 int max_active; /* L: max active works */
228 struct list_head inactive_works; /* L: inactive works */
229 struct list_head pwqs_node; /* WR: node on wq->pwqs */
230 struct list_head mayday_node; /* MD: node on wq->maydays */
231
232 /*
233 * Release of unbound pwq is punted to system_wq. See put_pwq()
234 * and pwq_unbound_release_workfn() for details. pool_workqueue
235 * itself is also RCU protected so that the first pwq can be
236 * determined without grabbing wq->mutex.
237 */
238 struct work_struct unbound_release_work;
239 struct rcu_head rcu;
240} __aligned(1 << WORK_STRUCT_FLAG_BITS);
241
242/*
243 * Structure used to wait for workqueue flush.
244 */
245struct wq_flusher {
246 struct list_head list; /* WQ: list of flushers */
247 int flush_color; /* WQ: flush color waiting for */
248 struct completion done; /* flush completion */
249};
250
251struct wq_device;
252
253/*
254 * The externally visible workqueue. It relays the issued work items to
255 * the appropriate worker_pool through its pool_workqueues.
256 */
257struct workqueue_struct {
258 struct list_head pwqs; /* WR: all pwqs of this wq */
259 struct list_head list; /* PR: list of all workqueues */
260
261 struct mutex mutex; /* protects this wq */
262 int work_color; /* WQ: current work color */
263 int flush_color; /* WQ: current flush color */
264 atomic_t nr_pwqs_to_flush; /* flush in progress */
265 struct wq_flusher *first_flusher; /* WQ: first flusher */
266 struct list_head flusher_queue; /* WQ: flush waiters */
267 struct list_head flusher_overflow; /* WQ: flush overflow list */
268
269 struct list_head maydays; /* MD: pwqs requesting rescue */
270 struct worker *rescuer; /* MD: rescue worker */
271
272 int nr_drainers; /* WQ: drain in progress */
273 int saved_max_active; /* WQ: saved pwq max_active */
274
275 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
276 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
277
278#ifdef CONFIG_SYSFS
279 struct wq_device *wq_dev; /* I: for sysfs interface */
280#endif
281#ifdef CONFIG_LOCKDEP
282 char *lock_name;
283 struct lock_class_key key;
284 struct lockdep_map lockdep_map;
285#endif
286 char name[WQ_NAME_LEN]; /* I: workqueue name */
287
288 /*
289 * Destruction of workqueue_struct is RCU protected to allow walking
290 * the workqueues list without grabbing wq_pool_mutex.
291 * This is used to dump all workqueues from sysrq.
292 */
293 struct rcu_head rcu;
294
295 /* hot fields used during command issue, aligned to cacheline */
296 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
297 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
298 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
299};
300
301static struct kmem_cache *pwq_cache;
302
303static cpumask_var_t *wq_numa_possible_cpumask;
304 /* possible CPUs of each node */
305
306static bool wq_disable_numa;
307module_param_named(disable_numa, wq_disable_numa, bool, 0444);
308
309/* see the comment above the definition of WQ_POWER_EFFICIENT */
310static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
311module_param_named(power_efficient, wq_power_efficient, bool, 0444);
312
313static bool wq_online; /* can kworkers be created yet? */
314
315static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
316
317/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
318static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
319
320static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
321static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
322static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
323/* wait for manager to go away */
324static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
325
326static LIST_HEAD(workqueues); /* PR: list of all workqueues */
327static bool workqueue_freezing; /* PL: have wqs started freezing? */
328
329/* PL: allowable cpus for unbound wqs and work items */
330static cpumask_var_t wq_unbound_cpumask;
331
332/* CPU where unbound work was last round robin scheduled from this CPU */
333static DEFINE_PER_CPU(int, wq_rr_cpu_last);
334
335/*
336 * Local execution of unbound work items is no longer guaranteed. The
337 * following always forces round-robin CPU selection on unbound work items
338 * to uncover usages which depend on it.
339 */
340#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
341static bool wq_debug_force_rr_cpu = true;
342#else
343static bool wq_debug_force_rr_cpu = false;
344#endif
345module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
346
347/* the per-cpu worker pools */
348static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
349
350static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
351
352/* PL: hash of all unbound pools keyed by pool->attrs */
353static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
354
355/* I: attributes used when instantiating standard unbound pools on demand */
356static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
357
358/* I: attributes used when instantiating ordered pools on demand */
359static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
360
361struct workqueue_struct *system_wq __read_mostly;
362EXPORT_SYMBOL(system_wq);
363struct workqueue_struct *system_highpri_wq __read_mostly;
364EXPORT_SYMBOL_GPL(system_highpri_wq);
365struct workqueue_struct *system_long_wq __read_mostly;
366EXPORT_SYMBOL_GPL(system_long_wq);
367struct workqueue_struct *system_unbound_wq __read_mostly;
368EXPORT_SYMBOL_GPL(system_unbound_wq);
369struct workqueue_struct *system_freezable_wq __read_mostly;
370EXPORT_SYMBOL_GPL(system_freezable_wq);
371struct workqueue_struct *system_power_efficient_wq __read_mostly;
372EXPORT_SYMBOL_GPL(system_power_efficient_wq);
373struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
374EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
375
376static int worker_thread(void *__worker);
377static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
378static void show_pwq(struct pool_workqueue *pwq);
379static void show_one_worker_pool(struct worker_pool *pool);
380
381#define CREATE_TRACE_POINTS
382#include <trace/events/workqueue.h>
383
384#define assert_rcu_or_pool_mutex() \
385 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
386 !lockdep_is_held(&wq_pool_mutex), \
387 "RCU or wq_pool_mutex should be held")
388
389#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
390 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
391 !lockdep_is_held(&wq->mutex) && \
392 !lockdep_is_held(&wq_pool_mutex), \
393 "RCU, wq->mutex or wq_pool_mutex should be held")
394
395#define for_each_cpu_worker_pool(pool, cpu) \
396 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
397 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
398 (pool)++)
399
400/**
401 * for_each_pool - iterate through all worker_pools in the system
402 * @pool: iteration cursor
403 * @pi: integer used for iteration
404 *
405 * This must be called either with wq_pool_mutex held or RCU read
406 * locked. If the pool needs to be used beyond the locking in effect, the
407 * caller is responsible for guaranteeing that the pool stays online.
408 *
409 * The if/else clause exists only for the lockdep assertion and can be
410 * ignored.
411 */
412#define for_each_pool(pool, pi) \
413 idr_for_each_entry(&worker_pool_idr, pool, pi) \
414 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
415 else
416
417/**
418 * for_each_pool_worker - iterate through all workers of a worker_pool
419 * @worker: iteration cursor
420 * @pool: worker_pool to iterate workers of
421 *
422 * This must be called with wq_pool_attach_mutex.
423 *
424 * The if/else clause exists only for the lockdep assertion and can be
425 * ignored.
426 */
427#define for_each_pool_worker(worker, pool) \
428 list_for_each_entry((worker), &(pool)->workers, node) \
429 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
430 else
431
432/**
433 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
434 * @pwq: iteration cursor
435 * @wq: the target workqueue
436 *
437 * This must be called either with wq->mutex held or RCU read locked.
438 * If the pwq needs to be used beyond the locking in effect, the caller is
439 * responsible for guaranteeing that the pwq stays online.
440 *
441 * The if/else clause exists only for the lockdep assertion and can be
442 * ignored.
443 */
444#define for_each_pwq(pwq, wq) \
445 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
446 lockdep_is_held(&(wq->mutex)))
447
448#ifdef CONFIG_DEBUG_OBJECTS_WORK
449
450static const struct debug_obj_descr work_debug_descr;
451
452static void *work_debug_hint(void *addr)
453{
454 return ((struct work_struct *) addr)->func;
455}
456
457static bool work_is_static_object(void *addr)
458{
459 struct work_struct *work = addr;
460
461 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
462}
463
464/*
465 * fixup_init is called when:
466 * - an active object is initialized
467 */
468static bool work_fixup_init(void *addr, enum debug_obj_state state)
469{
470 struct work_struct *work = addr;
471
472 switch (state) {
473 case ODEBUG_STATE_ACTIVE:
474 cancel_work_sync(work);
475 debug_object_init(work, &work_debug_descr);
476 return true;
477 default:
478 return false;
479 }
480}
481
482/*
483 * fixup_free is called when:
484 * - an active object is freed
485 */
486static bool work_fixup_free(void *addr, enum debug_obj_state state)
487{
488 struct work_struct *work = addr;
489
490 switch (state) {
491 case ODEBUG_STATE_ACTIVE:
492 cancel_work_sync(work);
493 debug_object_free(work, &work_debug_descr);
494 return true;
495 default:
496 return false;
497 }
498}
499
500static const struct debug_obj_descr work_debug_descr = {
501 .name = "work_struct",
502 .debug_hint = work_debug_hint,
503 .is_static_object = work_is_static_object,
504 .fixup_init = work_fixup_init,
505 .fixup_free = work_fixup_free,
506};
507
508static inline void debug_work_activate(struct work_struct *work)
509{
510 debug_object_activate(work, &work_debug_descr);
511}
512
513static inline void debug_work_deactivate(struct work_struct *work)
514{
515 debug_object_deactivate(work, &work_debug_descr);
516}
517
518void __init_work(struct work_struct *work, int onstack)
519{
520 if (onstack)
521 debug_object_init_on_stack(work, &work_debug_descr);
522 else
523 debug_object_init(work, &work_debug_descr);
524}
525EXPORT_SYMBOL_GPL(__init_work);
526
527void destroy_work_on_stack(struct work_struct *work)
528{
529 debug_object_free(work, &work_debug_descr);
530}
531EXPORT_SYMBOL_GPL(destroy_work_on_stack);
532
533void destroy_delayed_work_on_stack(struct delayed_work *work)
534{
535 destroy_timer_on_stack(&work->timer);
536 debug_object_free(&work->work, &work_debug_descr);
537}
538EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
539
540#else
541static inline void debug_work_activate(struct work_struct *work) { }
542static inline void debug_work_deactivate(struct work_struct *work) { }
543#endif
544
545/**
546 * worker_pool_assign_id - allocate ID and assign it to @pool
547 * @pool: the pool pointer of interest
548 *
549 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
550 * successfully, -errno on failure.
551 */
552static int worker_pool_assign_id(struct worker_pool *pool)
553{
554 int ret;
555
556 lockdep_assert_held(&wq_pool_mutex);
557
558 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
559 GFP_KERNEL);
560 if (ret >= 0) {
561 pool->id = ret;
562 return 0;
563 }
564 return ret;
565}
566
567/**
568 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
569 * @wq: the target workqueue
570 * @node: the node ID
571 *
572 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
573 * read locked.
574 * If the pwq needs to be used beyond the locking in effect, the caller is
575 * responsible for guaranteeing that the pwq stays online.
576 *
577 * Return: The unbound pool_workqueue for @node.
578 */
579static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
580 int node)
581{
582 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
583
584 /*
585 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
586 * delayed item is pending. The plan is to keep CPU -> NODE
587 * mapping valid and stable across CPU on/offlines. Once that
588 * happens, this workaround can be removed.
589 */
590 if (unlikely(node == NUMA_NO_NODE))
591 return wq->dfl_pwq;
592
593 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
594}
595
596static unsigned int work_color_to_flags(int color)
597{
598 return color << WORK_STRUCT_COLOR_SHIFT;
599}
600
601static int get_work_color(unsigned long work_data)
602{
603 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
604 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
605}
606
607static int work_next_color(int color)
608{
609 return (color + 1) % WORK_NR_COLORS;
610}
611
612/*
613 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
614 * contain the pointer to the queued pwq. Once execution starts, the flag
615 * is cleared and the high bits contain OFFQ flags and pool ID.
616 *
617 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
618 * and clear_work_data() can be used to set the pwq, pool or clear
619 * work->data. These functions should only be called while the work is
620 * owned - ie. while the PENDING bit is set.
621 *
622 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
623 * corresponding to a work. Pool is available once the work has been
624 * queued anywhere after initialization until it is sync canceled. pwq is
625 * available only while the work item is queued.
626 *
627 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
628 * canceled. While being canceled, a work item may have its PENDING set
629 * but stay off timer and worklist for arbitrarily long and nobody should
630 * try to steal the PENDING bit.
631 */
632static inline void set_work_data(struct work_struct *work, unsigned long data,
633 unsigned long flags)
634{
635 WARN_ON_ONCE(!work_pending(work));
636 atomic_long_set(&work->data, data | flags | work_static(work));
637}
638
639static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
640 unsigned long extra_flags)
641{
642 set_work_data(work, (unsigned long)pwq,
643 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
644}
645
646static void set_work_pool_and_keep_pending(struct work_struct *work,
647 int pool_id)
648{
649 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
650 WORK_STRUCT_PENDING);
651}
652
653static void set_work_pool_and_clear_pending(struct work_struct *work,
654 int pool_id)
655{
656 /*
657 * The following wmb is paired with the implied mb in
658 * test_and_set_bit(PENDING) and ensures all updates to @work made
659 * here are visible to and precede any updates by the next PENDING
660 * owner.
661 */
662 smp_wmb();
663 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
664 /*
665 * The following mb guarantees that previous clear of a PENDING bit
666 * will not be reordered with any speculative LOADS or STORES from
667 * work->current_func, which is executed afterwards. This possible
668 * reordering can lead to a missed execution on attempt to queue
669 * the same @work. E.g. consider this case:
670 *
671 * CPU#0 CPU#1
672 * ---------------------------- --------------------------------
673 *
674 * 1 STORE event_indicated
675 * 2 queue_work_on() {
676 * 3 test_and_set_bit(PENDING)
677 * 4 } set_..._and_clear_pending() {
678 * 5 set_work_data() # clear bit
679 * 6 smp_mb()
680 * 7 work->current_func() {
681 * 8 LOAD event_indicated
682 * }
683 *
684 * Without an explicit full barrier speculative LOAD on line 8 can
685 * be executed before CPU#0 does STORE on line 1. If that happens,
686 * CPU#0 observes the PENDING bit is still set and new execution of
687 * a @work is not queued in a hope, that CPU#1 will eventually
688 * finish the queued @work. Meanwhile CPU#1 does not see
689 * event_indicated is set, because speculative LOAD was executed
690 * before actual STORE.
691 */
692 smp_mb();
693}
694
695static void clear_work_data(struct work_struct *work)
696{
697 smp_wmb(); /* see set_work_pool_and_clear_pending() */
698 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
699}
700
701static struct pool_workqueue *get_work_pwq(struct work_struct *work)
702{
703 unsigned long data = atomic_long_read(&work->data);
704
705 if (data & WORK_STRUCT_PWQ)
706 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
707 else
708 return NULL;
709}
710
711/**
712 * get_work_pool - return the worker_pool a given work was associated with
713 * @work: the work item of interest
714 *
715 * Pools are created and destroyed under wq_pool_mutex, and allows read
716 * access under RCU read lock. As such, this function should be
717 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
718 *
719 * All fields of the returned pool are accessible as long as the above
720 * mentioned locking is in effect. If the returned pool needs to be used
721 * beyond the critical section, the caller is responsible for ensuring the
722 * returned pool is and stays online.
723 *
724 * Return: The worker_pool @work was last associated with. %NULL if none.
725 */
726static struct worker_pool *get_work_pool(struct work_struct *work)
727{
728 unsigned long data = atomic_long_read(&work->data);
729 int pool_id;
730
731 assert_rcu_or_pool_mutex();
732
733 if (data & WORK_STRUCT_PWQ)
734 return ((struct pool_workqueue *)
735 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
736
737 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
738 if (pool_id == WORK_OFFQ_POOL_NONE)
739 return NULL;
740
741 return idr_find(&worker_pool_idr, pool_id);
742}
743
744/**
745 * get_work_pool_id - return the worker pool ID a given work is associated with
746 * @work: the work item of interest
747 *
748 * Return: The worker_pool ID @work was last associated with.
749 * %WORK_OFFQ_POOL_NONE if none.
750 */
751static int get_work_pool_id(struct work_struct *work)
752{
753 unsigned long data = atomic_long_read(&work->data);
754
755 if (data & WORK_STRUCT_PWQ)
756 return ((struct pool_workqueue *)
757 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
758
759 return data >> WORK_OFFQ_POOL_SHIFT;
760}
761
762static void mark_work_canceling(struct work_struct *work)
763{
764 unsigned long pool_id = get_work_pool_id(work);
765
766 pool_id <<= WORK_OFFQ_POOL_SHIFT;
767 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
768}
769
770static bool work_is_canceling(struct work_struct *work)
771{
772 unsigned long data = atomic_long_read(&work->data);
773
774 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
775}
776
777/*
778 * Policy functions. These define the policies on how the global worker
779 * pools are managed. Unless noted otherwise, these functions assume that
780 * they're being called with pool->lock held.
781 */
782
783static bool __need_more_worker(struct worker_pool *pool)
784{
785 return !pool->nr_running;
786}
787
788/*
789 * Need to wake up a worker? Called from anything but currently
790 * running workers.
791 *
792 * Note that, because unbound workers never contribute to nr_running, this
793 * function will always return %true for unbound pools as long as the
794 * worklist isn't empty.
795 */
796static bool need_more_worker(struct worker_pool *pool)
797{
798 return !list_empty(&pool->worklist) && __need_more_worker(pool);
799}
800
801/* Can I start working? Called from busy but !running workers. */
802static bool may_start_working(struct worker_pool *pool)
803{
804 return pool->nr_idle;
805}
806
807/* Do I need to keep working? Called from currently running workers. */
808static bool keep_working(struct worker_pool *pool)
809{
810 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
811}
812
813/* Do we need a new worker? Called from manager. */
814static bool need_to_create_worker(struct worker_pool *pool)
815{
816 return need_more_worker(pool) && !may_start_working(pool);
817}
818
819/* Do we have too many workers and should some go away? */
820static bool too_many_workers(struct worker_pool *pool)
821{
822 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
823 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
824 int nr_busy = pool->nr_workers - nr_idle;
825
826 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
827}
828
829/*
830 * Wake up functions.
831 */
832
833/* Return the first idle worker. Called with pool->lock held. */
834static struct worker *first_idle_worker(struct worker_pool *pool)
835{
836 if (unlikely(list_empty(&pool->idle_list)))
837 return NULL;
838
839 return list_first_entry(&pool->idle_list, struct worker, entry);
840}
841
842/**
843 * wake_up_worker - wake up an idle worker
844 * @pool: worker pool to wake worker from
845 *
846 * Wake up the first idle worker of @pool.
847 *
848 * CONTEXT:
849 * raw_spin_lock_irq(pool->lock).
850 */
851static void wake_up_worker(struct worker_pool *pool)
852{
853 struct worker *worker = first_idle_worker(pool);
854
855 if (likely(worker))
856 wake_up_process(worker->task);
857}
858
859/**
860 * wq_worker_running - a worker is running again
861 * @task: task waking up
862 *
863 * This function is called when a worker returns from schedule()
864 */
865void wq_worker_running(struct task_struct *task)
866{
867 struct worker *worker = kthread_data(task);
868
869 if (!worker->sleeping)
870 return;
871
872 /*
873 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
874 * and the nr_running increment below, we may ruin the nr_running reset
875 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
876 * pool. Protect against such race.
877 */
878 preempt_disable();
879 if (!(worker->flags & WORKER_NOT_RUNNING))
880 worker->pool->nr_running++;
881 preempt_enable();
882 worker->sleeping = 0;
883}
884
885/**
886 * wq_worker_sleeping - a worker is going to sleep
887 * @task: task going to sleep
888 *
889 * This function is called from schedule() when a busy worker is
890 * going to sleep.
891 */
892void wq_worker_sleeping(struct task_struct *task)
893{
894 struct worker *worker = kthread_data(task);
895 struct worker_pool *pool;
896
897 /*
898 * Rescuers, which may not have all the fields set up like normal
899 * workers, also reach here, let's not access anything before
900 * checking NOT_RUNNING.
901 */
902 if (worker->flags & WORKER_NOT_RUNNING)
903 return;
904
905 pool = worker->pool;
906
907 /* Return if preempted before wq_worker_running() was reached */
908 if (worker->sleeping)
909 return;
910
911 worker->sleeping = 1;
912 raw_spin_lock_irq(&pool->lock);
913
914 /*
915 * Recheck in case unbind_workers() preempted us. We don't
916 * want to decrement nr_running after the worker is unbound
917 * and nr_running has been reset.
918 */
919 if (worker->flags & WORKER_NOT_RUNNING) {
920 raw_spin_unlock_irq(&pool->lock);
921 return;
922 }
923
924 pool->nr_running--;
925 if (need_more_worker(pool))
926 wake_up_worker(pool);
927 raw_spin_unlock_irq(&pool->lock);
928}
929
930/**
931 * wq_worker_last_func - retrieve worker's last work function
932 * @task: Task to retrieve last work function of.
933 *
934 * Determine the last function a worker executed. This is called from
935 * the scheduler to get a worker's last known identity.
936 *
937 * CONTEXT:
938 * raw_spin_lock_irq(rq->lock)
939 *
940 * This function is called during schedule() when a kworker is going
941 * to sleep. It's used by psi to identify aggregation workers during
942 * dequeuing, to allow periodic aggregation to shut-off when that
943 * worker is the last task in the system or cgroup to go to sleep.
944 *
945 * As this function doesn't involve any workqueue-related locking, it
946 * only returns stable values when called from inside the scheduler's
947 * queuing and dequeuing paths, when @task, which must be a kworker,
948 * is guaranteed to not be processing any works.
949 *
950 * Return:
951 * The last work function %current executed as a worker, NULL if it
952 * hasn't executed any work yet.
953 */
954work_func_t wq_worker_last_func(struct task_struct *task)
955{
956 struct worker *worker = kthread_data(task);
957
958 return worker->last_func;
959}
960
961/**
962 * worker_set_flags - set worker flags and adjust nr_running accordingly
963 * @worker: self
964 * @flags: flags to set
965 *
966 * Set @flags in @worker->flags and adjust nr_running accordingly.
967 *
968 * CONTEXT:
969 * raw_spin_lock_irq(pool->lock)
970 */
971static inline void worker_set_flags(struct worker *worker, unsigned int flags)
972{
973 struct worker_pool *pool = worker->pool;
974
975 WARN_ON_ONCE(worker->task != current);
976
977 /* If transitioning into NOT_RUNNING, adjust nr_running. */
978 if ((flags & WORKER_NOT_RUNNING) &&
979 !(worker->flags & WORKER_NOT_RUNNING)) {
980 pool->nr_running--;
981 }
982
983 worker->flags |= flags;
984}
985
986/**
987 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
988 * @worker: self
989 * @flags: flags to clear
990 *
991 * Clear @flags in @worker->flags and adjust nr_running accordingly.
992 *
993 * CONTEXT:
994 * raw_spin_lock_irq(pool->lock)
995 */
996static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
997{
998 struct worker_pool *pool = worker->pool;
999 unsigned int oflags = worker->flags;
1000
1001 WARN_ON_ONCE(worker->task != current);
1002
1003 worker->flags &= ~flags;
1004
1005 /*
1006 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1007 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1008 * of multiple flags, not a single flag.
1009 */
1010 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1011 if (!(worker->flags & WORKER_NOT_RUNNING))
1012 pool->nr_running++;
1013}
1014
1015/**
1016 * find_worker_executing_work - find worker which is executing a work
1017 * @pool: pool of interest
1018 * @work: work to find worker for
1019 *
1020 * Find a worker which is executing @work on @pool by searching
1021 * @pool->busy_hash which is keyed by the address of @work. For a worker
1022 * to match, its current execution should match the address of @work and
1023 * its work function. This is to avoid unwanted dependency between
1024 * unrelated work executions through a work item being recycled while still
1025 * being executed.
1026 *
1027 * This is a bit tricky. A work item may be freed once its execution
1028 * starts and nothing prevents the freed area from being recycled for
1029 * another work item. If the same work item address ends up being reused
1030 * before the original execution finishes, workqueue will identify the
1031 * recycled work item as currently executing and make it wait until the
1032 * current execution finishes, introducing an unwanted dependency.
1033 *
1034 * This function checks the work item address and work function to avoid
1035 * false positives. Note that this isn't complete as one may construct a
1036 * work function which can introduce dependency onto itself through a
1037 * recycled work item. Well, if somebody wants to shoot oneself in the
1038 * foot that badly, there's only so much we can do, and if such deadlock
1039 * actually occurs, it should be easy to locate the culprit work function.
1040 *
1041 * CONTEXT:
1042 * raw_spin_lock_irq(pool->lock).
1043 *
1044 * Return:
1045 * Pointer to worker which is executing @work if found, %NULL
1046 * otherwise.
1047 */
1048static struct worker *find_worker_executing_work(struct worker_pool *pool,
1049 struct work_struct *work)
1050{
1051 struct worker *worker;
1052
1053 hash_for_each_possible(pool->busy_hash, worker, hentry,
1054 (unsigned long)work)
1055 if (worker->current_work == work &&
1056 worker->current_func == work->func)
1057 return worker;
1058
1059 return NULL;
1060}
1061
1062/**
1063 * move_linked_works - move linked works to a list
1064 * @work: start of series of works to be scheduled
1065 * @head: target list to append @work to
1066 * @nextp: out parameter for nested worklist walking
1067 *
1068 * Schedule linked works starting from @work to @head. Work series to
1069 * be scheduled starts at @work and includes any consecutive work with
1070 * WORK_STRUCT_LINKED set in its predecessor.
1071 *
1072 * If @nextp is not NULL, it's updated to point to the next work of
1073 * the last scheduled work. This allows move_linked_works() to be
1074 * nested inside outer list_for_each_entry_safe().
1075 *
1076 * CONTEXT:
1077 * raw_spin_lock_irq(pool->lock).
1078 */
1079static void move_linked_works(struct work_struct *work, struct list_head *head,
1080 struct work_struct **nextp)
1081{
1082 struct work_struct *n;
1083
1084 /*
1085 * Linked worklist will always end before the end of the list,
1086 * use NULL for list head.
1087 */
1088 list_for_each_entry_safe_from(work, n, NULL, entry) {
1089 list_move_tail(&work->entry, head);
1090 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1091 break;
1092 }
1093
1094 /*
1095 * If we're already inside safe list traversal and have moved
1096 * multiple works to the scheduled queue, the next position
1097 * needs to be updated.
1098 */
1099 if (nextp)
1100 *nextp = n;
1101}
1102
1103/**
1104 * get_pwq - get an extra reference on the specified pool_workqueue
1105 * @pwq: pool_workqueue to get
1106 *
1107 * Obtain an extra reference on @pwq. The caller should guarantee that
1108 * @pwq has positive refcnt and be holding the matching pool->lock.
1109 */
1110static void get_pwq(struct pool_workqueue *pwq)
1111{
1112 lockdep_assert_held(&pwq->pool->lock);
1113 WARN_ON_ONCE(pwq->refcnt <= 0);
1114 pwq->refcnt++;
1115}
1116
1117/**
1118 * put_pwq - put a pool_workqueue reference
1119 * @pwq: pool_workqueue to put
1120 *
1121 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1122 * destruction. The caller should be holding the matching pool->lock.
1123 */
1124static void put_pwq(struct pool_workqueue *pwq)
1125{
1126 lockdep_assert_held(&pwq->pool->lock);
1127 if (likely(--pwq->refcnt))
1128 return;
1129 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1130 return;
1131 /*
1132 * @pwq can't be released under pool->lock, bounce to
1133 * pwq_unbound_release_workfn(). This never recurses on the same
1134 * pool->lock as this path is taken only for unbound workqueues and
1135 * the release work item is scheduled on a per-cpu workqueue. To
1136 * avoid lockdep warning, unbound pool->locks are given lockdep
1137 * subclass of 1 in get_unbound_pool().
1138 */
1139 schedule_work(&pwq->unbound_release_work);
1140}
1141
1142/**
1143 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1144 * @pwq: pool_workqueue to put (can be %NULL)
1145 *
1146 * put_pwq() with locking. This function also allows %NULL @pwq.
1147 */
1148static void put_pwq_unlocked(struct pool_workqueue *pwq)
1149{
1150 if (pwq) {
1151 /*
1152 * As both pwqs and pools are RCU protected, the
1153 * following lock operations are safe.
1154 */
1155 raw_spin_lock_irq(&pwq->pool->lock);
1156 put_pwq(pwq);
1157 raw_spin_unlock_irq(&pwq->pool->lock);
1158 }
1159}
1160
1161static void pwq_activate_inactive_work(struct work_struct *work)
1162{
1163 struct pool_workqueue *pwq = get_work_pwq(work);
1164
1165 trace_workqueue_activate_work(work);
1166 if (list_empty(&pwq->pool->worklist))
1167 pwq->pool->watchdog_ts = jiffies;
1168 move_linked_works(work, &pwq->pool->worklist, NULL);
1169 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1170 pwq->nr_active++;
1171}
1172
1173static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1174{
1175 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1176 struct work_struct, entry);
1177
1178 pwq_activate_inactive_work(work);
1179}
1180
1181/**
1182 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1183 * @pwq: pwq of interest
1184 * @work_data: work_data of work which left the queue
1185 *
1186 * A work either has completed or is removed from pending queue,
1187 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1188 *
1189 * CONTEXT:
1190 * raw_spin_lock_irq(pool->lock).
1191 */
1192static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1193{
1194 int color = get_work_color(work_data);
1195
1196 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1197 pwq->nr_active--;
1198 if (!list_empty(&pwq->inactive_works)) {
1199 /* one down, submit an inactive one */
1200 if (pwq->nr_active < pwq->max_active)
1201 pwq_activate_first_inactive(pwq);
1202 }
1203 }
1204
1205 pwq->nr_in_flight[color]--;
1206
1207 /* is flush in progress and are we at the flushing tip? */
1208 if (likely(pwq->flush_color != color))
1209 goto out_put;
1210
1211 /* are there still in-flight works? */
1212 if (pwq->nr_in_flight[color])
1213 goto out_put;
1214
1215 /* this pwq is done, clear flush_color */
1216 pwq->flush_color = -1;
1217
1218 /*
1219 * If this was the last pwq, wake up the first flusher. It
1220 * will handle the rest.
1221 */
1222 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1223 complete(&pwq->wq->first_flusher->done);
1224out_put:
1225 put_pwq(pwq);
1226}
1227
1228/**
1229 * try_to_grab_pending - steal work item from worklist and disable irq
1230 * @work: work item to steal
1231 * @is_dwork: @work is a delayed_work
1232 * @flags: place to store irq state
1233 *
1234 * Try to grab PENDING bit of @work. This function can handle @work in any
1235 * stable state - idle, on timer or on worklist.
1236 *
1237 * Return:
1238 *
1239 * ======== ================================================================
1240 * 1 if @work was pending and we successfully stole PENDING
1241 * 0 if @work was idle and we claimed PENDING
1242 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1243 * -ENOENT if someone else is canceling @work, this state may persist
1244 * for arbitrarily long
1245 * ======== ================================================================
1246 *
1247 * Note:
1248 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1249 * interrupted while holding PENDING and @work off queue, irq must be
1250 * disabled on entry. This, combined with delayed_work->timer being
1251 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1252 *
1253 * On successful return, >= 0, irq is disabled and the caller is
1254 * responsible for releasing it using local_irq_restore(*@flags).
1255 *
1256 * This function is safe to call from any context including IRQ handler.
1257 */
1258static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1259 unsigned long *flags)
1260{
1261 struct worker_pool *pool;
1262 struct pool_workqueue *pwq;
1263
1264 local_irq_save(*flags);
1265
1266 /* try to steal the timer if it exists */
1267 if (is_dwork) {
1268 struct delayed_work *dwork = to_delayed_work(work);
1269
1270 /*
1271 * dwork->timer is irqsafe. If del_timer() fails, it's
1272 * guaranteed that the timer is not queued anywhere and not
1273 * running on the local CPU.
1274 */
1275 if (likely(del_timer(&dwork->timer)))
1276 return 1;
1277 }
1278
1279 /* try to claim PENDING the normal way */
1280 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1281 return 0;
1282
1283 rcu_read_lock();
1284 /*
1285 * The queueing is in progress, or it is already queued. Try to
1286 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1287 */
1288 pool = get_work_pool(work);
1289 if (!pool)
1290 goto fail;
1291
1292 raw_spin_lock(&pool->lock);
1293 /*
1294 * work->data is guaranteed to point to pwq only while the work
1295 * item is queued on pwq->wq, and both updating work->data to point
1296 * to pwq on queueing and to pool on dequeueing are done under
1297 * pwq->pool->lock. This in turn guarantees that, if work->data
1298 * points to pwq which is associated with a locked pool, the work
1299 * item is currently queued on that pool.
1300 */
1301 pwq = get_work_pwq(work);
1302 if (pwq && pwq->pool == pool) {
1303 debug_work_deactivate(work);
1304
1305 /*
1306 * A cancelable inactive work item must be in the
1307 * pwq->inactive_works since a queued barrier can't be
1308 * canceled (see the comments in insert_wq_barrier()).
1309 *
1310 * An inactive work item cannot be grabbed directly because
1311 * it might have linked barrier work items which, if left
1312 * on the inactive_works list, will confuse pwq->nr_active
1313 * management later on and cause stall. Make sure the work
1314 * item is activated before grabbing.
1315 */
1316 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1317 pwq_activate_inactive_work(work);
1318
1319 list_del_init(&work->entry);
1320 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1321
1322 /* work->data points to pwq iff queued, point to pool */
1323 set_work_pool_and_keep_pending(work, pool->id);
1324
1325 raw_spin_unlock(&pool->lock);
1326 rcu_read_unlock();
1327 return 1;
1328 }
1329 raw_spin_unlock(&pool->lock);
1330fail:
1331 rcu_read_unlock();
1332 local_irq_restore(*flags);
1333 if (work_is_canceling(work))
1334 return -ENOENT;
1335 cpu_relax();
1336 return -EAGAIN;
1337}
1338
1339/**
1340 * insert_work - insert a work into a pool
1341 * @pwq: pwq @work belongs to
1342 * @work: work to insert
1343 * @head: insertion point
1344 * @extra_flags: extra WORK_STRUCT_* flags to set
1345 *
1346 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1347 * work_struct flags.
1348 *
1349 * CONTEXT:
1350 * raw_spin_lock_irq(pool->lock).
1351 */
1352static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1353 struct list_head *head, unsigned int extra_flags)
1354{
1355 struct worker_pool *pool = pwq->pool;
1356
1357 /* record the work call stack in order to print it in KASAN reports */
1358 kasan_record_aux_stack_noalloc(work);
1359
1360 /* we own @work, set data and link */
1361 set_work_pwq(work, pwq, extra_flags);
1362 list_add_tail(&work->entry, head);
1363 get_pwq(pwq);
1364
1365 if (__need_more_worker(pool))
1366 wake_up_worker(pool);
1367}
1368
1369/*
1370 * Test whether @work is being queued from another work executing on the
1371 * same workqueue.
1372 */
1373static bool is_chained_work(struct workqueue_struct *wq)
1374{
1375 struct worker *worker;
1376
1377 worker = current_wq_worker();
1378 /*
1379 * Return %true iff I'm a worker executing a work item on @wq. If
1380 * I'm @worker, it's safe to dereference it without locking.
1381 */
1382 return worker && worker->current_pwq->wq == wq;
1383}
1384
1385/*
1386 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1387 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1388 * avoid perturbing sensitive tasks.
1389 */
1390static int wq_select_unbound_cpu(int cpu)
1391{
1392 static bool printed_dbg_warning;
1393 int new_cpu;
1394
1395 if (likely(!wq_debug_force_rr_cpu)) {
1396 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1397 return cpu;
1398 } else if (!printed_dbg_warning) {
1399 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1400 printed_dbg_warning = true;
1401 }
1402
1403 if (cpumask_empty(wq_unbound_cpumask))
1404 return cpu;
1405
1406 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1407 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1408 if (unlikely(new_cpu >= nr_cpu_ids)) {
1409 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1410 if (unlikely(new_cpu >= nr_cpu_ids))
1411 return cpu;
1412 }
1413 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1414
1415 return new_cpu;
1416}
1417
1418static void __queue_work(int cpu, struct workqueue_struct *wq,
1419 struct work_struct *work)
1420{
1421 struct pool_workqueue *pwq;
1422 struct worker_pool *last_pool;
1423 struct list_head *worklist;
1424 unsigned int work_flags;
1425 unsigned int req_cpu = cpu;
1426
1427 /*
1428 * While a work item is PENDING && off queue, a task trying to
1429 * steal the PENDING will busy-loop waiting for it to either get
1430 * queued or lose PENDING. Grabbing PENDING and queueing should
1431 * happen with IRQ disabled.
1432 */
1433 lockdep_assert_irqs_disabled();
1434
1435
1436 /* if draining, only works from the same workqueue are allowed */
1437 if (unlikely(wq->flags & __WQ_DRAINING) &&
1438 WARN_ON_ONCE(!is_chained_work(wq)))
1439 return;
1440 rcu_read_lock();
1441retry:
1442 /* pwq which will be used unless @work is executing elsewhere */
1443 if (wq->flags & WQ_UNBOUND) {
1444 if (req_cpu == WORK_CPU_UNBOUND)
1445 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1446 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1447 } else {
1448 if (req_cpu == WORK_CPU_UNBOUND)
1449 cpu = raw_smp_processor_id();
1450 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1451 }
1452
1453 /*
1454 * If @work was previously on a different pool, it might still be
1455 * running there, in which case the work needs to be queued on that
1456 * pool to guarantee non-reentrancy.
1457 */
1458 last_pool = get_work_pool(work);
1459 if (last_pool && last_pool != pwq->pool) {
1460 struct worker *worker;
1461
1462 raw_spin_lock(&last_pool->lock);
1463
1464 worker = find_worker_executing_work(last_pool, work);
1465
1466 if (worker && worker->current_pwq->wq == wq) {
1467 pwq = worker->current_pwq;
1468 } else {
1469 /* meh... not running there, queue here */
1470 raw_spin_unlock(&last_pool->lock);
1471 raw_spin_lock(&pwq->pool->lock);
1472 }
1473 } else {
1474 raw_spin_lock(&pwq->pool->lock);
1475 }
1476
1477 /*
1478 * pwq is determined and locked. For unbound pools, we could have
1479 * raced with pwq release and it could already be dead. If its
1480 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1481 * without another pwq replacing it in the numa_pwq_tbl or while
1482 * work items are executing on it, so the retrying is guaranteed to
1483 * make forward-progress.
1484 */
1485 if (unlikely(!pwq->refcnt)) {
1486 if (wq->flags & WQ_UNBOUND) {
1487 raw_spin_unlock(&pwq->pool->lock);
1488 cpu_relax();
1489 goto retry;
1490 }
1491 /* oops */
1492 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1493 wq->name, cpu);
1494 }
1495
1496 /* pwq determined, queue */
1497 trace_workqueue_queue_work(req_cpu, pwq, work);
1498
1499 if (WARN_ON(!list_empty(&work->entry)))
1500 goto out;
1501
1502 pwq->nr_in_flight[pwq->work_color]++;
1503 work_flags = work_color_to_flags(pwq->work_color);
1504
1505 if (likely(pwq->nr_active < pwq->max_active)) {
1506 trace_workqueue_activate_work(work);
1507 pwq->nr_active++;
1508 worklist = &pwq->pool->worklist;
1509 if (list_empty(worklist))
1510 pwq->pool->watchdog_ts = jiffies;
1511 } else {
1512 work_flags |= WORK_STRUCT_INACTIVE;
1513 worklist = &pwq->inactive_works;
1514 }
1515
1516 debug_work_activate(work);
1517 insert_work(pwq, work, worklist, work_flags);
1518
1519out:
1520 raw_spin_unlock(&pwq->pool->lock);
1521 rcu_read_unlock();
1522}
1523
1524/**
1525 * queue_work_on - queue work on specific cpu
1526 * @cpu: CPU number to execute work on
1527 * @wq: workqueue to use
1528 * @work: work to queue
1529 *
1530 * We queue the work to a specific CPU, the caller must ensure it
1531 * can't go away. Callers that fail to ensure that the specified
1532 * CPU cannot go away will execute on a randomly chosen CPU.
1533 *
1534 * Return: %false if @work was already on a queue, %true otherwise.
1535 */
1536bool queue_work_on(int cpu, struct workqueue_struct *wq,
1537 struct work_struct *work)
1538{
1539 bool ret = false;
1540 unsigned long flags;
1541
1542 local_irq_save(flags);
1543
1544 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1545 __queue_work(cpu, wq, work);
1546 ret = true;
1547 }
1548
1549 local_irq_restore(flags);
1550 return ret;
1551}
1552EXPORT_SYMBOL(queue_work_on);
1553
1554/**
1555 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1556 * @node: NUMA node ID that we want to select a CPU from
1557 *
1558 * This function will attempt to find a "random" cpu available on a given
1559 * node. If there are no CPUs available on the given node it will return
1560 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1561 * available CPU if we need to schedule this work.
1562 */
1563static int workqueue_select_cpu_near(int node)
1564{
1565 int cpu;
1566
1567 /* No point in doing this if NUMA isn't enabled for workqueues */
1568 if (!wq_numa_enabled)
1569 return WORK_CPU_UNBOUND;
1570
1571 /* Delay binding to CPU if node is not valid or online */
1572 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1573 return WORK_CPU_UNBOUND;
1574
1575 /* Use local node/cpu if we are already there */
1576 cpu = raw_smp_processor_id();
1577 if (node == cpu_to_node(cpu))
1578 return cpu;
1579
1580 /* Use "random" otherwise know as "first" online CPU of node */
1581 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1582
1583 /* If CPU is valid return that, otherwise just defer */
1584 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1585}
1586
1587/**
1588 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1589 * @node: NUMA node that we are targeting the work for
1590 * @wq: workqueue to use
1591 * @work: work to queue
1592 *
1593 * We queue the work to a "random" CPU within a given NUMA node. The basic
1594 * idea here is to provide a way to somehow associate work with a given
1595 * NUMA node.
1596 *
1597 * This function will only make a best effort attempt at getting this onto
1598 * the right NUMA node. If no node is requested or the requested node is
1599 * offline then we just fall back to standard queue_work behavior.
1600 *
1601 * Currently the "random" CPU ends up being the first available CPU in the
1602 * intersection of cpu_online_mask and the cpumask of the node, unless we
1603 * are running on the node. In that case we just use the current CPU.
1604 *
1605 * Return: %false if @work was already on a queue, %true otherwise.
1606 */
1607bool queue_work_node(int node, struct workqueue_struct *wq,
1608 struct work_struct *work)
1609{
1610 unsigned long flags;
1611 bool ret = false;
1612
1613 /*
1614 * This current implementation is specific to unbound workqueues.
1615 * Specifically we only return the first available CPU for a given
1616 * node instead of cycling through individual CPUs within the node.
1617 *
1618 * If this is used with a per-cpu workqueue then the logic in
1619 * workqueue_select_cpu_near would need to be updated to allow for
1620 * some round robin type logic.
1621 */
1622 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1623
1624 local_irq_save(flags);
1625
1626 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1627 int cpu = workqueue_select_cpu_near(node);
1628
1629 __queue_work(cpu, wq, work);
1630 ret = true;
1631 }
1632
1633 local_irq_restore(flags);
1634 return ret;
1635}
1636EXPORT_SYMBOL_GPL(queue_work_node);
1637
1638void delayed_work_timer_fn(struct timer_list *t)
1639{
1640 struct delayed_work *dwork = from_timer(dwork, t, timer);
1641
1642 /* should have been called from irqsafe timer with irq already off */
1643 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1644}
1645EXPORT_SYMBOL(delayed_work_timer_fn);
1646
1647static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1648 struct delayed_work *dwork, unsigned long delay)
1649{
1650 struct timer_list *timer = &dwork->timer;
1651 struct work_struct *work = &dwork->work;
1652
1653 WARN_ON_ONCE(!wq);
1654 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1655 WARN_ON_ONCE(timer_pending(timer));
1656 WARN_ON_ONCE(!list_empty(&work->entry));
1657
1658 /*
1659 * If @delay is 0, queue @dwork->work immediately. This is for
1660 * both optimization and correctness. The earliest @timer can
1661 * expire is on the closest next tick and delayed_work users depend
1662 * on that there's no such delay when @delay is 0.
1663 */
1664 if (!delay) {
1665 __queue_work(cpu, wq, &dwork->work);
1666 return;
1667 }
1668
1669 dwork->wq = wq;
1670 dwork->cpu = cpu;
1671 timer->expires = jiffies + delay;
1672
1673 if (unlikely(cpu != WORK_CPU_UNBOUND))
1674 add_timer_on(timer, cpu);
1675 else
1676 add_timer(timer);
1677}
1678
1679/**
1680 * queue_delayed_work_on - queue work on specific CPU after delay
1681 * @cpu: CPU number to execute work on
1682 * @wq: workqueue to use
1683 * @dwork: work to queue
1684 * @delay: number of jiffies to wait before queueing
1685 *
1686 * Return: %false if @work was already on a queue, %true otherwise. If
1687 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1688 * execution.
1689 */
1690bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1691 struct delayed_work *dwork, unsigned long delay)
1692{
1693 struct work_struct *work = &dwork->work;
1694 bool ret = false;
1695 unsigned long flags;
1696
1697 /* read the comment in __queue_work() */
1698 local_irq_save(flags);
1699
1700 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1701 __queue_delayed_work(cpu, wq, dwork, delay);
1702 ret = true;
1703 }
1704
1705 local_irq_restore(flags);
1706 return ret;
1707}
1708EXPORT_SYMBOL(queue_delayed_work_on);
1709
1710/**
1711 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1712 * @cpu: CPU number to execute work on
1713 * @wq: workqueue to use
1714 * @dwork: work to queue
1715 * @delay: number of jiffies to wait before queueing
1716 *
1717 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1718 * modify @dwork's timer so that it expires after @delay. If @delay is
1719 * zero, @work is guaranteed to be scheduled immediately regardless of its
1720 * current state.
1721 *
1722 * Return: %false if @dwork was idle and queued, %true if @dwork was
1723 * pending and its timer was modified.
1724 *
1725 * This function is safe to call from any context including IRQ handler.
1726 * See try_to_grab_pending() for details.
1727 */
1728bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1729 struct delayed_work *dwork, unsigned long delay)
1730{
1731 unsigned long flags;
1732 int ret;
1733
1734 do {
1735 ret = try_to_grab_pending(&dwork->work, true, &flags);
1736 } while (unlikely(ret == -EAGAIN));
1737
1738 if (likely(ret >= 0)) {
1739 __queue_delayed_work(cpu, wq, dwork, delay);
1740 local_irq_restore(flags);
1741 }
1742
1743 /* -ENOENT from try_to_grab_pending() becomes %true */
1744 return ret;
1745}
1746EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1747
1748static void rcu_work_rcufn(struct rcu_head *rcu)
1749{
1750 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1751
1752 /* read the comment in __queue_work() */
1753 local_irq_disable();
1754 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1755 local_irq_enable();
1756}
1757
1758/**
1759 * queue_rcu_work - queue work after a RCU grace period
1760 * @wq: workqueue to use
1761 * @rwork: work to queue
1762 *
1763 * Return: %false if @rwork was already pending, %true otherwise. Note
1764 * that a full RCU grace period is guaranteed only after a %true return.
1765 * While @rwork is guaranteed to be executed after a %false return, the
1766 * execution may happen before a full RCU grace period has passed.
1767 */
1768bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1769{
1770 struct work_struct *work = &rwork->work;
1771
1772 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1773 rwork->wq = wq;
1774 call_rcu(&rwork->rcu, rcu_work_rcufn);
1775 return true;
1776 }
1777
1778 return false;
1779}
1780EXPORT_SYMBOL(queue_rcu_work);
1781
1782/**
1783 * worker_enter_idle - enter idle state
1784 * @worker: worker which is entering idle state
1785 *
1786 * @worker is entering idle state. Update stats and idle timer if
1787 * necessary.
1788 *
1789 * LOCKING:
1790 * raw_spin_lock_irq(pool->lock).
1791 */
1792static void worker_enter_idle(struct worker *worker)
1793{
1794 struct worker_pool *pool = worker->pool;
1795
1796 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1797 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1798 (worker->hentry.next || worker->hentry.pprev)))
1799 return;
1800
1801 /* can't use worker_set_flags(), also called from create_worker() */
1802 worker->flags |= WORKER_IDLE;
1803 pool->nr_idle++;
1804 worker->last_active = jiffies;
1805
1806 /* idle_list is LIFO */
1807 list_add(&worker->entry, &pool->idle_list);
1808
1809 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1810 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1811
1812 /* Sanity check nr_running. */
1813 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1814}
1815
1816/**
1817 * worker_leave_idle - leave idle state
1818 * @worker: worker which is leaving idle state
1819 *
1820 * @worker is leaving idle state. Update stats.
1821 *
1822 * LOCKING:
1823 * raw_spin_lock_irq(pool->lock).
1824 */
1825static void worker_leave_idle(struct worker *worker)
1826{
1827 struct worker_pool *pool = worker->pool;
1828
1829 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1830 return;
1831 worker_clr_flags(worker, WORKER_IDLE);
1832 pool->nr_idle--;
1833 list_del_init(&worker->entry);
1834}
1835
1836static struct worker *alloc_worker(int node)
1837{
1838 struct worker *worker;
1839
1840 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1841 if (worker) {
1842 INIT_LIST_HEAD(&worker->entry);
1843 INIT_LIST_HEAD(&worker->scheduled);
1844 INIT_LIST_HEAD(&worker->node);
1845 /* on creation a worker is in !idle && prep state */
1846 worker->flags = WORKER_PREP;
1847 }
1848 return worker;
1849}
1850
1851/**
1852 * worker_attach_to_pool() - attach a worker to a pool
1853 * @worker: worker to be attached
1854 * @pool: the target pool
1855 *
1856 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1857 * cpu-binding of @worker are kept coordinated with the pool across
1858 * cpu-[un]hotplugs.
1859 */
1860static void worker_attach_to_pool(struct worker *worker,
1861 struct worker_pool *pool)
1862{
1863 mutex_lock(&wq_pool_attach_mutex);
1864
1865 /*
1866 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1867 * stable across this function. See the comments above the flag
1868 * definition for details.
1869 */
1870 if (pool->flags & POOL_DISASSOCIATED)
1871 worker->flags |= WORKER_UNBOUND;
1872 else
1873 kthread_set_per_cpu(worker->task, pool->cpu);
1874
1875 if (worker->rescue_wq)
1876 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1877
1878 list_add_tail(&worker->node, &pool->workers);
1879 worker->pool = pool;
1880
1881 mutex_unlock(&wq_pool_attach_mutex);
1882}
1883
1884/**
1885 * worker_detach_from_pool() - detach a worker from its pool
1886 * @worker: worker which is attached to its pool
1887 *
1888 * Undo the attaching which had been done in worker_attach_to_pool(). The
1889 * caller worker shouldn't access to the pool after detached except it has
1890 * other reference to the pool.
1891 */
1892static void worker_detach_from_pool(struct worker *worker)
1893{
1894 struct worker_pool *pool = worker->pool;
1895 struct completion *detach_completion = NULL;
1896
1897 mutex_lock(&wq_pool_attach_mutex);
1898
1899 kthread_set_per_cpu(worker->task, -1);
1900 list_del(&worker->node);
1901 worker->pool = NULL;
1902
1903 if (list_empty(&pool->workers))
1904 detach_completion = pool->detach_completion;
1905 mutex_unlock(&wq_pool_attach_mutex);
1906
1907 /* clear leftover flags without pool->lock after it is detached */
1908 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1909
1910 if (detach_completion)
1911 complete(detach_completion);
1912}
1913
1914/**
1915 * create_worker - create a new workqueue worker
1916 * @pool: pool the new worker will belong to
1917 *
1918 * Create and start a new worker which is attached to @pool.
1919 *
1920 * CONTEXT:
1921 * Might sleep. Does GFP_KERNEL allocations.
1922 *
1923 * Return:
1924 * Pointer to the newly created worker.
1925 */
1926static struct worker *create_worker(struct worker_pool *pool)
1927{
1928 struct worker *worker;
1929 int id;
1930 char id_buf[16];
1931
1932 /* ID is needed to determine kthread name */
1933 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1934 if (id < 0)
1935 return NULL;
1936
1937 worker = alloc_worker(pool->node);
1938 if (!worker)
1939 goto fail;
1940
1941 worker->id = id;
1942
1943 if (pool->cpu >= 0)
1944 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1945 pool->attrs->nice < 0 ? "H" : "");
1946 else
1947 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1948
1949 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1950 "kworker/%s", id_buf);
1951 if (IS_ERR(worker->task))
1952 goto fail;
1953
1954 set_user_nice(worker->task, pool->attrs->nice);
1955 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1956
1957 /* successful, attach the worker to the pool */
1958 worker_attach_to_pool(worker, pool);
1959
1960 /* start the newly created worker */
1961 raw_spin_lock_irq(&pool->lock);
1962 worker->pool->nr_workers++;
1963 worker_enter_idle(worker);
1964 wake_up_process(worker->task);
1965 raw_spin_unlock_irq(&pool->lock);
1966
1967 return worker;
1968
1969fail:
1970 ida_free(&pool->worker_ida, id);
1971 kfree(worker);
1972 return NULL;
1973}
1974
1975/**
1976 * destroy_worker - destroy a workqueue worker
1977 * @worker: worker to be destroyed
1978 *
1979 * Destroy @worker and adjust @pool stats accordingly. The worker should
1980 * be idle.
1981 *
1982 * CONTEXT:
1983 * raw_spin_lock_irq(pool->lock).
1984 */
1985static void destroy_worker(struct worker *worker)
1986{
1987 struct worker_pool *pool = worker->pool;
1988
1989 lockdep_assert_held(&pool->lock);
1990
1991 /* sanity check frenzy */
1992 if (WARN_ON(worker->current_work) ||
1993 WARN_ON(!list_empty(&worker->scheduled)) ||
1994 WARN_ON(!(worker->flags & WORKER_IDLE)))
1995 return;
1996
1997 pool->nr_workers--;
1998 pool->nr_idle--;
1999
2000 list_del_init(&worker->entry);
2001 worker->flags |= WORKER_DIE;
2002 wake_up_process(worker->task);
2003}
2004
2005static void idle_worker_timeout(struct timer_list *t)
2006{
2007 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2008
2009 raw_spin_lock_irq(&pool->lock);
2010
2011 while (too_many_workers(pool)) {
2012 struct worker *worker;
2013 unsigned long expires;
2014
2015 /* idle_list is kept in LIFO order, check the last one */
2016 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2017 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2018
2019 if (time_before(jiffies, expires)) {
2020 mod_timer(&pool->idle_timer, expires);
2021 break;
2022 }
2023
2024 destroy_worker(worker);
2025 }
2026
2027 raw_spin_unlock_irq(&pool->lock);
2028}
2029
2030static void send_mayday(struct work_struct *work)
2031{
2032 struct pool_workqueue *pwq = get_work_pwq(work);
2033 struct workqueue_struct *wq = pwq->wq;
2034
2035 lockdep_assert_held(&wq_mayday_lock);
2036
2037 if (!wq->rescuer)
2038 return;
2039
2040 /* mayday mayday mayday */
2041 if (list_empty(&pwq->mayday_node)) {
2042 /*
2043 * If @pwq is for an unbound wq, its base ref may be put at
2044 * any time due to an attribute change. Pin @pwq until the
2045 * rescuer is done with it.
2046 */
2047 get_pwq(pwq);
2048 list_add_tail(&pwq->mayday_node, &wq->maydays);
2049 wake_up_process(wq->rescuer->task);
2050 }
2051}
2052
2053static void pool_mayday_timeout(struct timer_list *t)
2054{
2055 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2056 struct work_struct *work;
2057
2058 raw_spin_lock_irq(&pool->lock);
2059 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2060
2061 if (need_to_create_worker(pool)) {
2062 /*
2063 * We've been trying to create a new worker but
2064 * haven't been successful. We might be hitting an
2065 * allocation deadlock. Send distress signals to
2066 * rescuers.
2067 */
2068 list_for_each_entry(work, &pool->worklist, entry)
2069 send_mayday(work);
2070 }
2071
2072 raw_spin_unlock(&wq_mayday_lock);
2073 raw_spin_unlock_irq(&pool->lock);
2074
2075 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2076}
2077
2078/**
2079 * maybe_create_worker - create a new worker if necessary
2080 * @pool: pool to create a new worker for
2081 *
2082 * Create a new worker for @pool if necessary. @pool is guaranteed to
2083 * have at least one idle worker on return from this function. If
2084 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2085 * sent to all rescuers with works scheduled on @pool to resolve
2086 * possible allocation deadlock.
2087 *
2088 * On return, need_to_create_worker() is guaranteed to be %false and
2089 * may_start_working() %true.
2090 *
2091 * LOCKING:
2092 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2093 * multiple times. Does GFP_KERNEL allocations. Called only from
2094 * manager.
2095 */
2096static void maybe_create_worker(struct worker_pool *pool)
2097__releases(&pool->lock)
2098__acquires(&pool->lock)
2099{
2100restart:
2101 raw_spin_unlock_irq(&pool->lock);
2102
2103 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2104 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2105
2106 while (true) {
2107 if (create_worker(pool) || !need_to_create_worker(pool))
2108 break;
2109
2110 schedule_timeout_interruptible(CREATE_COOLDOWN);
2111
2112 if (!need_to_create_worker(pool))
2113 break;
2114 }
2115
2116 del_timer_sync(&pool->mayday_timer);
2117 raw_spin_lock_irq(&pool->lock);
2118 /*
2119 * This is necessary even after a new worker was just successfully
2120 * created as @pool->lock was dropped and the new worker might have
2121 * already become busy.
2122 */
2123 if (need_to_create_worker(pool))
2124 goto restart;
2125}
2126
2127/**
2128 * manage_workers - manage worker pool
2129 * @worker: self
2130 *
2131 * Assume the manager role and manage the worker pool @worker belongs
2132 * to. At any given time, there can be only zero or one manager per
2133 * pool. The exclusion is handled automatically by this function.
2134 *
2135 * The caller can safely start processing works on false return. On
2136 * true return, it's guaranteed that need_to_create_worker() is false
2137 * and may_start_working() is true.
2138 *
2139 * CONTEXT:
2140 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2141 * multiple times. Does GFP_KERNEL allocations.
2142 *
2143 * Return:
2144 * %false if the pool doesn't need management and the caller can safely
2145 * start processing works, %true if management function was performed and
2146 * the conditions that the caller verified before calling the function may
2147 * no longer be true.
2148 */
2149static bool manage_workers(struct worker *worker)
2150{
2151 struct worker_pool *pool = worker->pool;
2152
2153 if (pool->flags & POOL_MANAGER_ACTIVE)
2154 return false;
2155
2156 pool->flags |= POOL_MANAGER_ACTIVE;
2157 pool->manager = worker;
2158
2159 maybe_create_worker(pool);
2160
2161 pool->manager = NULL;
2162 pool->flags &= ~POOL_MANAGER_ACTIVE;
2163 rcuwait_wake_up(&manager_wait);
2164 return true;
2165}
2166
2167/**
2168 * process_one_work - process single work
2169 * @worker: self
2170 * @work: work to process
2171 *
2172 * Process @work. This function contains all the logics necessary to
2173 * process a single work including synchronization against and
2174 * interaction with other workers on the same cpu, queueing and
2175 * flushing. As long as context requirement is met, any worker can
2176 * call this function to process a work.
2177 *
2178 * CONTEXT:
2179 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2180 */
2181static void process_one_work(struct worker *worker, struct work_struct *work)
2182__releases(&pool->lock)
2183__acquires(&pool->lock)
2184{
2185 struct pool_workqueue *pwq = get_work_pwq(work);
2186 struct worker_pool *pool = worker->pool;
2187 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2188 unsigned long work_data;
2189 struct worker *collision;
2190#ifdef CONFIG_LOCKDEP
2191 /*
2192 * It is permissible to free the struct work_struct from
2193 * inside the function that is called from it, this we need to
2194 * take into account for lockdep too. To avoid bogus "held
2195 * lock freed" warnings as well as problems when looking into
2196 * work->lockdep_map, make a copy and use that here.
2197 */
2198 struct lockdep_map lockdep_map;
2199
2200 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2201#endif
2202 /* ensure we're on the correct CPU */
2203 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2204 raw_smp_processor_id() != pool->cpu);
2205
2206 /*
2207 * A single work shouldn't be executed concurrently by
2208 * multiple workers on a single cpu. Check whether anyone is
2209 * already processing the work. If so, defer the work to the
2210 * currently executing one.
2211 */
2212 collision = find_worker_executing_work(pool, work);
2213 if (unlikely(collision)) {
2214 move_linked_works(work, &collision->scheduled, NULL);
2215 return;
2216 }
2217
2218 /* claim and dequeue */
2219 debug_work_deactivate(work);
2220 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2221 worker->current_work = work;
2222 worker->current_func = work->func;
2223 worker->current_pwq = pwq;
2224 work_data = *work_data_bits(work);
2225 worker->current_color = get_work_color(work_data);
2226
2227 /*
2228 * Record wq name for cmdline and debug reporting, may get
2229 * overridden through set_worker_desc().
2230 */
2231 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2232
2233 list_del_init(&work->entry);
2234
2235 /*
2236 * CPU intensive works don't participate in concurrency management.
2237 * They're the scheduler's responsibility. This takes @worker out
2238 * of concurrency management and the next code block will chain
2239 * execution of the pending work items.
2240 */
2241 if (unlikely(cpu_intensive))
2242 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2243
2244 /*
2245 * Wake up another worker if necessary. The condition is always
2246 * false for normal per-cpu workers since nr_running would always
2247 * be >= 1 at this point. This is used to chain execution of the
2248 * pending work items for WORKER_NOT_RUNNING workers such as the
2249 * UNBOUND and CPU_INTENSIVE ones.
2250 */
2251 if (need_more_worker(pool))
2252 wake_up_worker(pool);
2253
2254 /*
2255 * Record the last pool and clear PENDING which should be the last
2256 * update to @work. Also, do this inside @pool->lock so that
2257 * PENDING and queued state changes happen together while IRQ is
2258 * disabled.
2259 */
2260 set_work_pool_and_clear_pending(work, pool->id);
2261
2262 raw_spin_unlock_irq(&pool->lock);
2263
2264 lock_map_acquire(&pwq->wq->lockdep_map);
2265 lock_map_acquire(&lockdep_map);
2266 /*
2267 * Strictly speaking we should mark the invariant state without holding
2268 * any locks, that is, before these two lock_map_acquire()'s.
2269 *
2270 * However, that would result in:
2271 *
2272 * A(W1)
2273 * WFC(C)
2274 * A(W1)
2275 * C(C)
2276 *
2277 * Which would create W1->C->W1 dependencies, even though there is no
2278 * actual deadlock possible. There are two solutions, using a
2279 * read-recursive acquire on the work(queue) 'locks', but this will then
2280 * hit the lockdep limitation on recursive locks, or simply discard
2281 * these locks.
2282 *
2283 * AFAICT there is no possible deadlock scenario between the
2284 * flush_work() and complete() primitives (except for single-threaded
2285 * workqueues), so hiding them isn't a problem.
2286 */
2287 lockdep_invariant_state(true);
2288 trace_workqueue_execute_start(work);
2289 worker->current_func(work);
2290 /*
2291 * While we must be careful to not use "work" after this, the trace
2292 * point will only record its address.
2293 */
2294 trace_workqueue_execute_end(work, worker->current_func);
2295 lock_map_release(&lockdep_map);
2296 lock_map_release(&pwq->wq->lockdep_map);
2297
2298 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2299 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2300 " last function: %ps\n",
2301 current->comm, preempt_count(), task_pid_nr(current),
2302 worker->current_func);
2303 debug_show_held_locks(current);
2304 dump_stack();
2305 }
2306
2307 /*
2308 * The following prevents a kworker from hogging CPU on !PREEMPTION
2309 * kernels, where a requeueing work item waiting for something to
2310 * happen could deadlock with stop_machine as such work item could
2311 * indefinitely requeue itself while all other CPUs are trapped in
2312 * stop_machine. At the same time, report a quiescent RCU state so
2313 * the same condition doesn't freeze RCU.
2314 */
2315 cond_resched();
2316
2317 raw_spin_lock_irq(&pool->lock);
2318
2319 /* clear cpu intensive status */
2320 if (unlikely(cpu_intensive))
2321 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2322
2323 /* tag the worker for identification in schedule() */
2324 worker->last_func = worker->current_func;
2325
2326 /* we're done with it, release */
2327 hash_del(&worker->hentry);
2328 worker->current_work = NULL;
2329 worker->current_func = NULL;
2330 worker->current_pwq = NULL;
2331 worker->current_color = INT_MAX;
2332 pwq_dec_nr_in_flight(pwq, work_data);
2333}
2334
2335/**
2336 * process_scheduled_works - process scheduled works
2337 * @worker: self
2338 *
2339 * Process all scheduled works. Please note that the scheduled list
2340 * may change while processing a work, so this function repeatedly
2341 * fetches a work from the top and executes it.
2342 *
2343 * CONTEXT:
2344 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2345 * multiple times.
2346 */
2347static void process_scheduled_works(struct worker *worker)
2348{
2349 while (!list_empty(&worker->scheduled)) {
2350 struct work_struct *work = list_first_entry(&worker->scheduled,
2351 struct work_struct, entry);
2352 process_one_work(worker, work);
2353 }
2354}
2355
2356static void set_pf_worker(bool val)
2357{
2358 mutex_lock(&wq_pool_attach_mutex);
2359 if (val)
2360 current->flags |= PF_WQ_WORKER;
2361 else
2362 current->flags &= ~PF_WQ_WORKER;
2363 mutex_unlock(&wq_pool_attach_mutex);
2364}
2365
2366/**
2367 * worker_thread - the worker thread function
2368 * @__worker: self
2369 *
2370 * The worker thread function. All workers belong to a worker_pool -
2371 * either a per-cpu one or dynamic unbound one. These workers process all
2372 * work items regardless of their specific target workqueue. The only
2373 * exception is work items which belong to workqueues with a rescuer which
2374 * will be explained in rescuer_thread().
2375 *
2376 * Return: 0
2377 */
2378static int worker_thread(void *__worker)
2379{
2380 struct worker *worker = __worker;
2381 struct worker_pool *pool = worker->pool;
2382
2383 /* tell the scheduler that this is a workqueue worker */
2384 set_pf_worker(true);
2385woke_up:
2386 raw_spin_lock_irq(&pool->lock);
2387
2388 /* am I supposed to die? */
2389 if (unlikely(worker->flags & WORKER_DIE)) {
2390 raw_spin_unlock_irq(&pool->lock);
2391 WARN_ON_ONCE(!list_empty(&worker->entry));
2392 set_pf_worker(false);
2393
2394 set_task_comm(worker->task, "kworker/dying");
2395 ida_free(&pool->worker_ida, worker->id);
2396 worker_detach_from_pool(worker);
2397 kfree(worker);
2398 return 0;
2399 }
2400
2401 worker_leave_idle(worker);
2402recheck:
2403 /* no more worker necessary? */
2404 if (!need_more_worker(pool))
2405 goto sleep;
2406
2407 /* do we need to manage? */
2408 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2409 goto recheck;
2410
2411 /*
2412 * ->scheduled list can only be filled while a worker is
2413 * preparing to process a work or actually processing it.
2414 * Make sure nobody diddled with it while I was sleeping.
2415 */
2416 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2417
2418 /*
2419 * Finish PREP stage. We're guaranteed to have at least one idle
2420 * worker or that someone else has already assumed the manager
2421 * role. This is where @worker starts participating in concurrency
2422 * management if applicable and concurrency management is restored
2423 * after being rebound. See rebind_workers() for details.
2424 */
2425 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2426
2427 do {
2428 struct work_struct *work =
2429 list_first_entry(&pool->worklist,
2430 struct work_struct, entry);
2431
2432 pool->watchdog_ts = jiffies;
2433
2434 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2435 /* optimization path, not strictly necessary */
2436 process_one_work(worker, work);
2437 if (unlikely(!list_empty(&worker->scheduled)))
2438 process_scheduled_works(worker);
2439 } else {
2440 move_linked_works(work, &worker->scheduled, NULL);
2441 process_scheduled_works(worker);
2442 }
2443 } while (keep_working(pool));
2444
2445 worker_set_flags(worker, WORKER_PREP);
2446sleep:
2447 /*
2448 * pool->lock is held and there's no work to process and no need to
2449 * manage, sleep. Workers are woken up only while holding
2450 * pool->lock or from local cpu, so setting the current state
2451 * before releasing pool->lock is enough to prevent losing any
2452 * event.
2453 */
2454 worker_enter_idle(worker);
2455 __set_current_state(TASK_IDLE);
2456 raw_spin_unlock_irq(&pool->lock);
2457 schedule();
2458 goto woke_up;
2459}
2460
2461/**
2462 * rescuer_thread - the rescuer thread function
2463 * @__rescuer: self
2464 *
2465 * Workqueue rescuer thread function. There's one rescuer for each
2466 * workqueue which has WQ_MEM_RECLAIM set.
2467 *
2468 * Regular work processing on a pool may block trying to create a new
2469 * worker which uses GFP_KERNEL allocation which has slight chance of
2470 * developing into deadlock if some works currently on the same queue
2471 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2472 * the problem rescuer solves.
2473 *
2474 * When such condition is possible, the pool summons rescuers of all
2475 * workqueues which have works queued on the pool and let them process
2476 * those works so that forward progress can be guaranteed.
2477 *
2478 * This should happen rarely.
2479 *
2480 * Return: 0
2481 */
2482static int rescuer_thread(void *__rescuer)
2483{
2484 struct worker *rescuer = __rescuer;
2485 struct workqueue_struct *wq = rescuer->rescue_wq;
2486 struct list_head *scheduled = &rescuer->scheduled;
2487 bool should_stop;
2488
2489 set_user_nice(current, RESCUER_NICE_LEVEL);
2490
2491 /*
2492 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2493 * doesn't participate in concurrency management.
2494 */
2495 set_pf_worker(true);
2496repeat:
2497 set_current_state(TASK_IDLE);
2498
2499 /*
2500 * By the time the rescuer is requested to stop, the workqueue
2501 * shouldn't have any work pending, but @wq->maydays may still have
2502 * pwq(s) queued. This can happen by non-rescuer workers consuming
2503 * all the work items before the rescuer got to them. Go through
2504 * @wq->maydays processing before acting on should_stop so that the
2505 * list is always empty on exit.
2506 */
2507 should_stop = kthread_should_stop();
2508
2509 /* see whether any pwq is asking for help */
2510 raw_spin_lock_irq(&wq_mayday_lock);
2511
2512 while (!list_empty(&wq->maydays)) {
2513 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2514 struct pool_workqueue, mayday_node);
2515 struct worker_pool *pool = pwq->pool;
2516 struct work_struct *work, *n;
2517 bool first = true;
2518
2519 __set_current_state(TASK_RUNNING);
2520 list_del_init(&pwq->mayday_node);
2521
2522 raw_spin_unlock_irq(&wq_mayday_lock);
2523
2524 worker_attach_to_pool(rescuer, pool);
2525
2526 raw_spin_lock_irq(&pool->lock);
2527
2528 /*
2529 * Slurp in all works issued via this workqueue and
2530 * process'em.
2531 */
2532 WARN_ON_ONCE(!list_empty(scheduled));
2533 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2534 if (get_work_pwq(work) == pwq) {
2535 if (first)
2536 pool->watchdog_ts = jiffies;
2537 move_linked_works(work, scheduled, &n);
2538 }
2539 first = false;
2540 }
2541
2542 if (!list_empty(scheduled)) {
2543 process_scheduled_works(rescuer);
2544
2545 /*
2546 * The above execution of rescued work items could
2547 * have created more to rescue through
2548 * pwq_activate_first_inactive() or chained
2549 * queueing. Let's put @pwq back on mayday list so
2550 * that such back-to-back work items, which may be
2551 * being used to relieve memory pressure, don't
2552 * incur MAYDAY_INTERVAL delay inbetween.
2553 */
2554 if (pwq->nr_active && need_to_create_worker(pool)) {
2555 raw_spin_lock(&wq_mayday_lock);
2556 /*
2557 * Queue iff we aren't racing destruction
2558 * and somebody else hasn't queued it already.
2559 */
2560 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2561 get_pwq(pwq);
2562 list_add_tail(&pwq->mayday_node, &wq->maydays);
2563 }
2564 raw_spin_unlock(&wq_mayday_lock);
2565 }
2566 }
2567
2568 /*
2569 * Put the reference grabbed by send_mayday(). @pool won't
2570 * go away while we're still attached to it.
2571 */
2572 put_pwq(pwq);
2573
2574 /*
2575 * Leave this pool. If need_more_worker() is %true, notify a
2576 * regular worker; otherwise, we end up with 0 concurrency
2577 * and stalling the execution.
2578 */
2579 if (need_more_worker(pool))
2580 wake_up_worker(pool);
2581
2582 raw_spin_unlock_irq(&pool->lock);
2583
2584 worker_detach_from_pool(rescuer);
2585
2586 raw_spin_lock_irq(&wq_mayday_lock);
2587 }
2588
2589 raw_spin_unlock_irq(&wq_mayday_lock);
2590
2591 if (should_stop) {
2592 __set_current_state(TASK_RUNNING);
2593 set_pf_worker(false);
2594 return 0;
2595 }
2596
2597 /* rescuers should never participate in concurrency management */
2598 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2599 schedule();
2600 goto repeat;
2601}
2602
2603/**
2604 * check_flush_dependency - check for flush dependency sanity
2605 * @target_wq: workqueue being flushed
2606 * @target_work: work item being flushed (NULL for workqueue flushes)
2607 *
2608 * %current is trying to flush the whole @target_wq or @target_work on it.
2609 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2610 * reclaiming memory or running on a workqueue which doesn't have
2611 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2612 * a deadlock.
2613 */
2614static void check_flush_dependency(struct workqueue_struct *target_wq,
2615 struct work_struct *target_work)
2616{
2617 work_func_t target_func = target_work ? target_work->func : NULL;
2618 struct worker *worker;
2619
2620 if (target_wq->flags & WQ_MEM_RECLAIM)
2621 return;
2622
2623 worker = current_wq_worker();
2624
2625 WARN_ONCE(current->flags & PF_MEMALLOC,
2626 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2627 current->pid, current->comm, target_wq->name, target_func);
2628 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2629 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2630 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2631 worker->current_pwq->wq->name, worker->current_func,
2632 target_wq->name, target_func);
2633}
2634
2635struct wq_barrier {
2636 struct work_struct work;
2637 struct completion done;
2638 struct task_struct *task; /* purely informational */
2639};
2640
2641static void wq_barrier_func(struct work_struct *work)
2642{
2643 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2644 complete(&barr->done);
2645}
2646
2647/**
2648 * insert_wq_barrier - insert a barrier work
2649 * @pwq: pwq to insert barrier into
2650 * @barr: wq_barrier to insert
2651 * @target: target work to attach @barr to
2652 * @worker: worker currently executing @target, NULL if @target is not executing
2653 *
2654 * @barr is linked to @target such that @barr is completed only after
2655 * @target finishes execution. Please note that the ordering
2656 * guarantee is observed only with respect to @target and on the local
2657 * cpu.
2658 *
2659 * Currently, a queued barrier can't be canceled. This is because
2660 * try_to_grab_pending() can't determine whether the work to be
2661 * grabbed is at the head of the queue and thus can't clear LINKED
2662 * flag of the previous work while there must be a valid next work
2663 * after a work with LINKED flag set.
2664 *
2665 * Note that when @worker is non-NULL, @target may be modified
2666 * underneath us, so we can't reliably determine pwq from @target.
2667 *
2668 * CONTEXT:
2669 * raw_spin_lock_irq(pool->lock).
2670 */
2671static void insert_wq_barrier(struct pool_workqueue *pwq,
2672 struct wq_barrier *barr,
2673 struct work_struct *target, struct worker *worker)
2674{
2675 unsigned int work_flags = 0;
2676 unsigned int work_color;
2677 struct list_head *head;
2678
2679 /*
2680 * debugobject calls are safe here even with pool->lock locked
2681 * as we know for sure that this will not trigger any of the
2682 * checks and call back into the fixup functions where we
2683 * might deadlock.
2684 */
2685 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2686 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2687
2688 init_completion_map(&barr->done, &target->lockdep_map);
2689
2690 barr->task = current;
2691
2692 /* The barrier work item does not participate in pwq->nr_active. */
2693 work_flags |= WORK_STRUCT_INACTIVE;
2694
2695 /*
2696 * If @target is currently being executed, schedule the
2697 * barrier to the worker; otherwise, put it after @target.
2698 */
2699 if (worker) {
2700 head = worker->scheduled.next;
2701 work_color = worker->current_color;
2702 } else {
2703 unsigned long *bits = work_data_bits(target);
2704
2705 head = target->entry.next;
2706 /* there can already be other linked works, inherit and set */
2707 work_flags |= *bits & WORK_STRUCT_LINKED;
2708 work_color = get_work_color(*bits);
2709 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2710 }
2711
2712 pwq->nr_in_flight[work_color]++;
2713 work_flags |= work_color_to_flags(work_color);
2714
2715 debug_work_activate(&barr->work);
2716 insert_work(pwq, &barr->work, head, work_flags);
2717}
2718
2719/**
2720 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2721 * @wq: workqueue being flushed
2722 * @flush_color: new flush color, < 0 for no-op
2723 * @work_color: new work color, < 0 for no-op
2724 *
2725 * Prepare pwqs for workqueue flushing.
2726 *
2727 * If @flush_color is non-negative, flush_color on all pwqs should be
2728 * -1. If no pwq has in-flight commands at the specified color, all
2729 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2730 * has in flight commands, its pwq->flush_color is set to
2731 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2732 * wakeup logic is armed and %true is returned.
2733 *
2734 * The caller should have initialized @wq->first_flusher prior to
2735 * calling this function with non-negative @flush_color. If
2736 * @flush_color is negative, no flush color update is done and %false
2737 * is returned.
2738 *
2739 * If @work_color is non-negative, all pwqs should have the same
2740 * work_color which is previous to @work_color and all will be
2741 * advanced to @work_color.
2742 *
2743 * CONTEXT:
2744 * mutex_lock(wq->mutex).
2745 *
2746 * Return:
2747 * %true if @flush_color >= 0 and there's something to flush. %false
2748 * otherwise.
2749 */
2750static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2751 int flush_color, int work_color)
2752{
2753 bool wait = false;
2754 struct pool_workqueue *pwq;
2755
2756 if (flush_color >= 0) {
2757 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2758 atomic_set(&wq->nr_pwqs_to_flush, 1);
2759 }
2760
2761 for_each_pwq(pwq, wq) {
2762 struct worker_pool *pool = pwq->pool;
2763
2764 raw_spin_lock_irq(&pool->lock);
2765
2766 if (flush_color >= 0) {
2767 WARN_ON_ONCE(pwq->flush_color != -1);
2768
2769 if (pwq->nr_in_flight[flush_color]) {
2770 pwq->flush_color = flush_color;
2771 atomic_inc(&wq->nr_pwqs_to_flush);
2772 wait = true;
2773 }
2774 }
2775
2776 if (work_color >= 0) {
2777 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2778 pwq->work_color = work_color;
2779 }
2780
2781 raw_spin_unlock_irq(&pool->lock);
2782 }
2783
2784 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2785 complete(&wq->first_flusher->done);
2786
2787 return wait;
2788}
2789
2790/**
2791 * __flush_workqueue - ensure that any scheduled work has run to completion.
2792 * @wq: workqueue to flush
2793 *
2794 * This function sleeps until all work items which were queued on entry
2795 * have finished execution, but it is not livelocked by new incoming ones.
2796 */
2797void __flush_workqueue(struct workqueue_struct *wq)
2798{
2799 struct wq_flusher this_flusher = {
2800 .list = LIST_HEAD_INIT(this_flusher.list),
2801 .flush_color = -1,
2802 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2803 };
2804 int next_color;
2805
2806 if (WARN_ON(!wq_online))
2807 return;
2808
2809 lock_map_acquire(&wq->lockdep_map);
2810 lock_map_release(&wq->lockdep_map);
2811
2812 mutex_lock(&wq->mutex);
2813
2814 /*
2815 * Start-to-wait phase
2816 */
2817 next_color = work_next_color(wq->work_color);
2818
2819 if (next_color != wq->flush_color) {
2820 /*
2821 * Color space is not full. The current work_color
2822 * becomes our flush_color and work_color is advanced
2823 * by one.
2824 */
2825 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2826 this_flusher.flush_color = wq->work_color;
2827 wq->work_color = next_color;
2828
2829 if (!wq->first_flusher) {
2830 /* no flush in progress, become the first flusher */
2831 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2832
2833 wq->first_flusher = &this_flusher;
2834
2835 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2836 wq->work_color)) {
2837 /* nothing to flush, done */
2838 wq->flush_color = next_color;
2839 wq->first_flusher = NULL;
2840 goto out_unlock;
2841 }
2842 } else {
2843 /* wait in queue */
2844 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2845 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2846 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2847 }
2848 } else {
2849 /*
2850 * Oops, color space is full, wait on overflow queue.
2851 * The next flush completion will assign us
2852 * flush_color and transfer to flusher_queue.
2853 */
2854 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2855 }
2856
2857 check_flush_dependency(wq, NULL);
2858
2859 mutex_unlock(&wq->mutex);
2860
2861 wait_for_completion(&this_flusher.done);
2862
2863 /*
2864 * Wake-up-and-cascade phase
2865 *
2866 * First flushers are responsible for cascading flushes and
2867 * handling overflow. Non-first flushers can simply return.
2868 */
2869 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2870 return;
2871
2872 mutex_lock(&wq->mutex);
2873
2874 /* we might have raced, check again with mutex held */
2875 if (wq->first_flusher != &this_flusher)
2876 goto out_unlock;
2877
2878 WRITE_ONCE(wq->first_flusher, NULL);
2879
2880 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2881 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2882
2883 while (true) {
2884 struct wq_flusher *next, *tmp;
2885
2886 /* complete all the flushers sharing the current flush color */
2887 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2888 if (next->flush_color != wq->flush_color)
2889 break;
2890 list_del_init(&next->list);
2891 complete(&next->done);
2892 }
2893
2894 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2895 wq->flush_color != work_next_color(wq->work_color));
2896
2897 /* this flush_color is finished, advance by one */
2898 wq->flush_color = work_next_color(wq->flush_color);
2899
2900 /* one color has been freed, handle overflow queue */
2901 if (!list_empty(&wq->flusher_overflow)) {
2902 /*
2903 * Assign the same color to all overflowed
2904 * flushers, advance work_color and append to
2905 * flusher_queue. This is the start-to-wait
2906 * phase for these overflowed flushers.
2907 */
2908 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2909 tmp->flush_color = wq->work_color;
2910
2911 wq->work_color = work_next_color(wq->work_color);
2912
2913 list_splice_tail_init(&wq->flusher_overflow,
2914 &wq->flusher_queue);
2915 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2916 }
2917
2918 if (list_empty(&wq->flusher_queue)) {
2919 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2920 break;
2921 }
2922
2923 /*
2924 * Need to flush more colors. Make the next flusher
2925 * the new first flusher and arm pwqs.
2926 */
2927 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2928 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2929
2930 list_del_init(&next->list);
2931 wq->first_flusher = next;
2932
2933 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2934 break;
2935
2936 /*
2937 * Meh... this color is already done, clear first
2938 * flusher and repeat cascading.
2939 */
2940 wq->first_flusher = NULL;
2941 }
2942
2943out_unlock:
2944 mutex_unlock(&wq->mutex);
2945}
2946EXPORT_SYMBOL(__flush_workqueue);
2947
2948/**
2949 * drain_workqueue - drain a workqueue
2950 * @wq: workqueue to drain
2951 *
2952 * Wait until the workqueue becomes empty. While draining is in progress,
2953 * only chain queueing is allowed. IOW, only currently pending or running
2954 * work items on @wq can queue further work items on it. @wq is flushed
2955 * repeatedly until it becomes empty. The number of flushing is determined
2956 * by the depth of chaining and should be relatively short. Whine if it
2957 * takes too long.
2958 */
2959void drain_workqueue(struct workqueue_struct *wq)
2960{
2961 unsigned int flush_cnt = 0;
2962 struct pool_workqueue *pwq;
2963
2964 /*
2965 * __queue_work() needs to test whether there are drainers, is much
2966 * hotter than drain_workqueue() and already looks at @wq->flags.
2967 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2968 */
2969 mutex_lock(&wq->mutex);
2970 if (!wq->nr_drainers++)
2971 wq->flags |= __WQ_DRAINING;
2972 mutex_unlock(&wq->mutex);
2973reflush:
2974 __flush_workqueue(wq);
2975
2976 mutex_lock(&wq->mutex);
2977
2978 for_each_pwq(pwq, wq) {
2979 bool drained;
2980
2981 raw_spin_lock_irq(&pwq->pool->lock);
2982 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2983 raw_spin_unlock_irq(&pwq->pool->lock);
2984
2985 if (drained)
2986 continue;
2987
2988 if (++flush_cnt == 10 ||
2989 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2990 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2991 wq->name, __func__, flush_cnt);
2992
2993 mutex_unlock(&wq->mutex);
2994 goto reflush;
2995 }
2996
2997 if (!--wq->nr_drainers)
2998 wq->flags &= ~__WQ_DRAINING;
2999 mutex_unlock(&wq->mutex);
3000}
3001EXPORT_SYMBOL_GPL(drain_workqueue);
3002
3003static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3004 bool from_cancel)
3005{
3006 struct worker *worker = NULL;
3007 struct worker_pool *pool;
3008 struct pool_workqueue *pwq;
3009
3010 might_sleep();
3011
3012 rcu_read_lock();
3013 pool = get_work_pool(work);
3014 if (!pool) {
3015 rcu_read_unlock();
3016 return false;
3017 }
3018
3019 raw_spin_lock_irq(&pool->lock);
3020 /* see the comment in try_to_grab_pending() with the same code */
3021 pwq = get_work_pwq(work);
3022 if (pwq) {
3023 if (unlikely(pwq->pool != pool))
3024 goto already_gone;
3025 } else {
3026 worker = find_worker_executing_work(pool, work);
3027 if (!worker)
3028 goto already_gone;
3029 pwq = worker->current_pwq;
3030 }
3031
3032 check_flush_dependency(pwq->wq, work);
3033
3034 insert_wq_barrier(pwq, barr, work, worker);
3035 raw_spin_unlock_irq(&pool->lock);
3036
3037 /*
3038 * Force a lock recursion deadlock when using flush_work() inside a
3039 * single-threaded or rescuer equipped workqueue.
3040 *
3041 * For single threaded workqueues the deadlock happens when the work
3042 * is after the work issuing the flush_work(). For rescuer equipped
3043 * workqueues the deadlock happens when the rescuer stalls, blocking
3044 * forward progress.
3045 */
3046 if (!from_cancel &&
3047 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3048 lock_map_acquire(&pwq->wq->lockdep_map);
3049 lock_map_release(&pwq->wq->lockdep_map);
3050 }
3051 rcu_read_unlock();
3052 return true;
3053already_gone:
3054 raw_spin_unlock_irq(&pool->lock);
3055 rcu_read_unlock();
3056 return false;
3057}
3058
3059static bool __flush_work(struct work_struct *work, bool from_cancel)
3060{
3061 struct wq_barrier barr;
3062
3063 if (WARN_ON(!wq_online))
3064 return false;
3065
3066 if (WARN_ON(!work->func))
3067 return false;
3068
3069 if (!from_cancel) {
3070 lock_map_acquire(&work->lockdep_map);
3071 lock_map_release(&work->lockdep_map);
3072 }
3073
3074 if (start_flush_work(work, &barr, from_cancel)) {
3075 wait_for_completion(&barr.done);
3076 destroy_work_on_stack(&barr.work);
3077 return true;
3078 } else {
3079 return false;
3080 }
3081}
3082
3083/**
3084 * flush_work - wait for a work to finish executing the last queueing instance
3085 * @work: the work to flush
3086 *
3087 * Wait until @work has finished execution. @work is guaranteed to be idle
3088 * on return if it hasn't been requeued since flush started.
3089 *
3090 * Return:
3091 * %true if flush_work() waited for the work to finish execution,
3092 * %false if it was already idle.
3093 */
3094bool flush_work(struct work_struct *work)
3095{
3096 return __flush_work(work, false);
3097}
3098EXPORT_SYMBOL_GPL(flush_work);
3099
3100struct cwt_wait {
3101 wait_queue_entry_t wait;
3102 struct work_struct *work;
3103};
3104
3105static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3106{
3107 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3108
3109 if (cwait->work != key)
3110 return 0;
3111 return autoremove_wake_function(wait, mode, sync, key);
3112}
3113
3114static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3115{
3116 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3117 unsigned long flags;
3118 int ret;
3119
3120 do {
3121 ret = try_to_grab_pending(work, is_dwork, &flags);
3122 /*
3123 * If someone else is already canceling, wait for it to
3124 * finish. flush_work() doesn't work for PREEMPT_NONE
3125 * because we may get scheduled between @work's completion
3126 * and the other canceling task resuming and clearing
3127 * CANCELING - flush_work() will return false immediately
3128 * as @work is no longer busy, try_to_grab_pending() will
3129 * return -ENOENT as @work is still being canceled and the
3130 * other canceling task won't be able to clear CANCELING as
3131 * we're hogging the CPU.
3132 *
3133 * Let's wait for completion using a waitqueue. As this
3134 * may lead to the thundering herd problem, use a custom
3135 * wake function which matches @work along with exclusive
3136 * wait and wakeup.
3137 */
3138 if (unlikely(ret == -ENOENT)) {
3139 struct cwt_wait cwait;
3140
3141 init_wait(&cwait.wait);
3142 cwait.wait.func = cwt_wakefn;
3143 cwait.work = work;
3144
3145 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3146 TASK_UNINTERRUPTIBLE);
3147 if (work_is_canceling(work))
3148 schedule();
3149 finish_wait(&cancel_waitq, &cwait.wait);
3150 }
3151 } while (unlikely(ret < 0));
3152
3153 /* tell other tasks trying to grab @work to back off */
3154 mark_work_canceling(work);
3155 local_irq_restore(flags);
3156
3157 /*
3158 * This allows canceling during early boot. We know that @work
3159 * isn't executing.
3160 */
3161 if (wq_online)
3162 __flush_work(work, true);
3163
3164 clear_work_data(work);
3165
3166 /*
3167 * Paired with prepare_to_wait() above so that either
3168 * waitqueue_active() is visible here or !work_is_canceling() is
3169 * visible there.
3170 */
3171 smp_mb();
3172 if (waitqueue_active(&cancel_waitq))
3173 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3174
3175 return ret;
3176}
3177
3178/**
3179 * cancel_work_sync - cancel a work and wait for it to finish
3180 * @work: the work to cancel
3181 *
3182 * Cancel @work and wait for its execution to finish. This function
3183 * can be used even if the work re-queues itself or migrates to
3184 * another workqueue. On return from this function, @work is
3185 * guaranteed to be not pending or executing on any CPU.
3186 *
3187 * cancel_work_sync(&delayed_work->work) must not be used for
3188 * delayed_work's. Use cancel_delayed_work_sync() instead.
3189 *
3190 * The caller must ensure that the workqueue on which @work was last
3191 * queued can't be destroyed before this function returns.
3192 *
3193 * Return:
3194 * %true if @work was pending, %false otherwise.
3195 */
3196bool cancel_work_sync(struct work_struct *work)
3197{
3198 return __cancel_work_timer(work, false);
3199}
3200EXPORT_SYMBOL_GPL(cancel_work_sync);
3201
3202/**
3203 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3204 * @dwork: the delayed work to flush
3205 *
3206 * Delayed timer is cancelled and the pending work is queued for
3207 * immediate execution. Like flush_work(), this function only
3208 * considers the last queueing instance of @dwork.
3209 *
3210 * Return:
3211 * %true if flush_work() waited for the work to finish execution,
3212 * %false if it was already idle.
3213 */
3214bool flush_delayed_work(struct delayed_work *dwork)
3215{
3216 local_irq_disable();
3217 if (del_timer_sync(&dwork->timer))
3218 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3219 local_irq_enable();
3220 return flush_work(&dwork->work);
3221}
3222EXPORT_SYMBOL(flush_delayed_work);
3223
3224/**
3225 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3226 * @rwork: the rcu work to flush
3227 *
3228 * Return:
3229 * %true if flush_rcu_work() waited for the work to finish execution,
3230 * %false if it was already idle.
3231 */
3232bool flush_rcu_work(struct rcu_work *rwork)
3233{
3234 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3235 rcu_barrier();
3236 flush_work(&rwork->work);
3237 return true;
3238 } else {
3239 return flush_work(&rwork->work);
3240 }
3241}
3242EXPORT_SYMBOL(flush_rcu_work);
3243
3244static bool __cancel_work(struct work_struct *work, bool is_dwork)
3245{
3246 unsigned long flags;
3247 int ret;
3248
3249 do {
3250 ret = try_to_grab_pending(work, is_dwork, &flags);
3251 } while (unlikely(ret == -EAGAIN));
3252
3253 if (unlikely(ret < 0))
3254 return false;
3255
3256 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3257 local_irq_restore(flags);
3258 return ret;
3259}
3260
3261/*
3262 * See cancel_delayed_work()
3263 */
3264bool cancel_work(struct work_struct *work)
3265{
3266 return __cancel_work(work, false);
3267}
3268EXPORT_SYMBOL(cancel_work);
3269
3270/**
3271 * cancel_delayed_work - cancel a delayed work
3272 * @dwork: delayed_work to cancel
3273 *
3274 * Kill off a pending delayed_work.
3275 *
3276 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3277 * pending.
3278 *
3279 * Note:
3280 * The work callback function may still be running on return, unless
3281 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3282 * use cancel_delayed_work_sync() to wait on it.
3283 *
3284 * This function is safe to call from any context including IRQ handler.
3285 */
3286bool cancel_delayed_work(struct delayed_work *dwork)
3287{
3288 return __cancel_work(&dwork->work, true);
3289}
3290EXPORT_SYMBOL(cancel_delayed_work);
3291
3292/**
3293 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3294 * @dwork: the delayed work cancel
3295 *
3296 * This is cancel_work_sync() for delayed works.
3297 *
3298 * Return:
3299 * %true if @dwork was pending, %false otherwise.
3300 */
3301bool cancel_delayed_work_sync(struct delayed_work *dwork)
3302{
3303 return __cancel_work_timer(&dwork->work, true);
3304}
3305EXPORT_SYMBOL(cancel_delayed_work_sync);
3306
3307/**
3308 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3309 * @func: the function to call
3310 *
3311 * schedule_on_each_cpu() executes @func on each online CPU using the
3312 * system workqueue and blocks until all CPUs have completed.
3313 * schedule_on_each_cpu() is very slow.
3314 *
3315 * Return:
3316 * 0 on success, -errno on failure.
3317 */
3318int schedule_on_each_cpu(work_func_t func)
3319{
3320 int cpu;
3321 struct work_struct __percpu *works;
3322
3323 works = alloc_percpu(struct work_struct);
3324 if (!works)
3325 return -ENOMEM;
3326
3327 cpus_read_lock();
3328
3329 for_each_online_cpu(cpu) {
3330 struct work_struct *work = per_cpu_ptr(works, cpu);
3331
3332 INIT_WORK(work, func);
3333 schedule_work_on(cpu, work);
3334 }
3335
3336 for_each_online_cpu(cpu)
3337 flush_work(per_cpu_ptr(works, cpu));
3338
3339 cpus_read_unlock();
3340 free_percpu(works);
3341 return 0;
3342}
3343
3344/**
3345 * execute_in_process_context - reliably execute the routine with user context
3346 * @fn: the function to execute
3347 * @ew: guaranteed storage for the execute work structure (must
3348 * be available when the work executes)
3349 *
3350 * Executes the function immediately if process context is available,
3351 * otherwise schedules the function for delayed execution.
3352 *
3353 * Return: 0 - function was executed
3354 * 1 - function was scheduled for execution
3355 */
3356int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3357{
3358 if (!in_interrupt()) {
3359 fn(&ew->work);
3360 return 0;
3361 }
3362
3363 INIT_WORK(&ew->work, fn);
3364 schedule_work(&ew->work);
3365
3366 return 1;
3367}
3368EXPORT_SYMBOL_GPL(execute_in_process_context);
3369
3370/**
3371 * free_workqueue_attrs - free a workqueue_attrs
3372 * @attrs: workqueue_attrs to free
3373 *
3374 * Undo alloc_workqueue_attrs().
3375 */
3376void free_workqueue_attrs(struct workqueue_attrs *attrs)
3377{
3378 if (attrs) {
3379 free_cpumask_var(attrs->cpumask);
3380 kfree(attrs);
3381 }
3382}
3383
3384/**
3385 * alloc_workqueue_attrs - allocate a workqueue_attrs
3386 *
3387 * Allocate a new workqueue_attrs, initialize with default settings and
3388 * return it.
3389 *
3390 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3391 */
3392struct workqueue_attrs *alloc_workqueue_attrs(void)
3393{
3394 struct workqueue_attrs *attrs;
3395
3396 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3397 if (!attrs)
3398 goto fail;
3399 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3400 goto fail;
3401
3402 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3403 return attrs;
3404fail:
3405 free_workqueue_attrs(attrs);
3406 return NULL;
3407}
3408
3409static void copy_workqueue_attrs(struct workqueue_attrs *to,
3410 const struct workqueue_attrs *from)
3411{
3412 to->nice = from->nice;
3413 cpumask_copy(to->cpumask, from->cpumask);
3414 /*
3415 * Unlike hash and equality test, this function doesn't ignore
3416 * ->no_numa as it is used for both pool and wq attrs. Instead,
3417 * get_unbound_pool() explicitly clears ->no_numa after copying.
3418 */
3419 to->no_numa = from->no_numa;
3420}
3421
3422/* hash value of the content of @attr */
3423static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3424{
3425 u32 hash = 0;
3426
3427 hash = jhash_1word(attrs->nice, hash);
3428 hash = jhash(cpumask_bits(attrs->cpumask),
3429 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3430 return hash;
3431}
3432
3433/* content equality test */
3434static bool wqattrs_equal(const struct workqueue_attrs *a,
3435 const struct workqueue_attrs *b)
3436{
3437 if (a->nice != b->nice)
3438 return false;
3439 if (!cpumask_equal(a->cpumask, b->cpumask))
3440 return false;
3441 return true;
3442}
3443
3444/**
3445 * init_worker_pool - initialize a newly zalloc'd worker_pool
3446 * @pool: worker_pool to initialize
3447 *
3448 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3449 *
3450 * Return: 0 on success, -errno on failure. Even on failure, all fields
3451 * inside @pool proper are initialized and put_unbound_pool() can be called
3452 * on @pool safely to release it.
3453 */
3454static int init_worker_pool(struct worker_pool *pool)
3455{
3456 raw_spin_lock_init(&pool->lock);
3457 pool->id = -1;
3458 pool->cpu = -1;
3459 pool->node = NUMA_NO_NODE;
3460 pool->flags |= POOL_DISASSOCIATED;
3461 pool->watchdog_ts = jiffies;
3462 INIT_LIST_HEAD(&pool->worklist);
3463 INIT_LIST_HEAD(&pool->idle_list);
3464 hash_init(pool->busy_hash);
3465
3466 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3467
3468 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3469
3470 INIT_LIST_HEAD(&pool->workers);
3471
3472 ida_init(&pool->worker_ida);
3473 INIT_HLIST_NODE(&pool->hash_node);
3474 pool->refcnt = 1;
3475
3476 /* shouldn't fail above this point */
3477 pool->attrs = alloc_workqueue_attrs();
3478 if (!pool->attrs)
3479 return -ENOMEM;
3480 return 0;
3481}
3482
3483#ifdef CONFIG_LOCKDEP
3484static void wq_init_lockdep(struct workqueue_struct *wq)
3485{
3486 char *lock_name;
3487
3488 lockdep_register_key(&wq->key);
3489 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3490 if (!lock_name)
3491 lock_name = wq->name;
3492
3493 wq->lock_name = lock_name;
3494 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3495}
3496
3497static void wq_unregister_lockdep(struct workqueue_struct *wq)
3498{
3499 lockdep_unregister_key(&wq->key);
3500}
3501
3502static void wq_free_lockdep(struct workqueue_struct *wq)
3503{
3504 if (wq->lock_name != wq->name)
3505 kfree(wq->lock_name);
3506}
3507#else
3508static void wq_init_lockdep(struct workqueue_struct *wq)
3509{
3510}
3511
3512static void wq_unregister_lockdep(struct workqueue_struct *wq)
3513{
3514}
3515
3516static void wq_free_lockdep(struct workqueue_struct *wq)
3517{
3518}
3519#endif
3520
3521static void rcu_free_wq(struct rcu_head *rcu)
3522{
3523 struct workqueue_struct *wq =
3524 container_of(rcu, struct workqueue_struct, rcu);
3525
3526 wq_free_lockdep(wq);
3527
3528 if (!(wq->flags & WQ_UNBOUND))
3529 free_percpu(wq->cpu_pwqs);
3530 else
3531 free_workqueue_attrs(wq->unbound_attrs);
3532
3533 kfree(wq);
3534}
3535
3536static void rcu_free_pool(struct rcu_head *rcu)
3537{
3538 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3539
3540 ida_destroy(&pool->worker_ida);
3541 free_workqueue_attrs(pool->attrs);
3542 kfree(pool);
3543}
3544
3545/* This returns with the lock held on success (pool manager is inactive). */
3546static bool wq_manager_inactive(struct worker_pool *pool)
3547{
3548 raw_spin_lock_irq(&pool->lock);
3549
3550 if (pool->flags & POOL_MANAGER_ACTIVE) {
3551 raw_spin_unlock_irq(&pool->lock);
3552 return false;
3553 }
3554 return true;
3555}
3556
3557/**
3558 * put_unbound_pool - put a worker_pool
3559 * @pool: worker_pool to put
3560 *
3561 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3562 * safe manner. get_unbound_pool() calls this function on its failure path
3563 * and this function should be able to release pools which went through,
3564 * successfully or not, init_worker_pool().
3565 *
3566 * Should be called with wq_pool_mutex held.
3567 */
3568static void put_unbound_pool(struct worker_pool *pool)
3569{
3570 DECLARE_COMPLETION_ONSTACK(detach_completion);
3571 struct worker *worker;
3572
3573 lockdep_assert_held(&wq_pool_mutex);
3574
3575 if (--pool->refcnt)
3576 return;
3577
3578 /* sanity checks */
3579 if (WARN_ON(!(pool->cpu < 0)) ||
3580 WARN_ON(!list_empty(&pool->worklist)))
3581 return;
3582
3583 /* release id and unhash */
3584 if (pool->id >= 0)
3585 idr_remove(&worker_pool_idr, pool->id);
3586 hash_del(&pool->hash_node);
3587
3588 /*
3589 * Become the manager and destroy all workers. This prevents
3590 * @pool's workers from blocking on attach_mutex. We're the last
3591 * manager and @pool gets freed with the flag set.
3592 * Because of how wq_manager_inactive() works, we will hold the
3593 * spinlock after a successful wait.
3594 */
3595 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3596 TASK_UNINTERRUPTIBLE);
3597 pool->flags |= POOL_MANAGER_ACTIVE;
3598
3599 while ((worker = first_idle_worker(pool)))
3600 destroy_worker(worker);
3601 WARN_ON(pool->nr_workers || pool->nr_idle);
3602 raw_spin_unlock_irq(&pool->lock);
3603
3604 mutex_lock(&wq_pool_attach_mutex);
3605 if (!list_empty(&pool->workers))
3606 pool->detach_completion = &detach_completion;
3607 mutex_unlock(&wq_pool_attach_mutex);
3608
3609 if (pool->detach_completion)
3610 wait_for_completion(pool->detach_completion);
3611
3612 /* shut down the timers */
3613 del_timer_sync(&pool->idle_timer);
3614 del_timer_sync(&pool->mayday_timer);
3615
3616 /* RCU protected to allow dereferences from get_work_pool() */
3617 call_rcu(&pool->rcu, rcu_free_pool);
3618}
3619
3620/**
3621 * get_unbound_pool - get a worker_pool with the specified attributes
3622 * @attrs: the attributes of the worker_pool to get
3623 *
3624 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3625 * reference count and return it. If there already is a matching
3626 * worker_pool, it will be used; otherwise, this function attempts to
3627 * create a new one.
3628 *
3629 * Should be called with wq_pool_mutex held.
3630 *
3631 * Return: On success, a worker_pool with the same attributes as @attrs.
3632 * On failure, %NULL.
3633 */
3634static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3635{
3636 u32 hash = wqattrs_hash(attrs);
3637 struct worker_pool *pool;
3638 int node;
3639 int target_node = NUMA_NO_NODE;
3640
3641 lockdep_assert_held(&wq_pool_mutex);
3642
3643 /* do we already have a matching pool? */
3644 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3645 if (wqattrs_equal(pool->attrs, attrs)) {
3646 pool->refcnt++;
3647 return pool;
3648 }
3649 }
3650
3651 /* if cpumask is contained inside a NUMA node, we belong to that node */
3652 if (wq_numa_enabled) {
3653 for_each_node(node) {
3654 if (cpumask_subset(attrs->cpumask,
3655 wq_numa_possible_cpumask[node])) {
3656 target_node = node;
3657 break;
3658 }
3659 }
3660 }
3661
3662 /* nope, create a new one */
3663 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3664 if (!pool || init_worker_pool(pool) < 0)
3665 goto fail;
3666
3667 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3668 copy_workqueue_attrs(pool->attrs, attrs);
3669 pool->node = target_node;
3670
3671 /*
3672 * no_numa isn't a worker_pool attribute, always clear it. See
3673 * 'struct workqueue_attrs' comments for detail.
3674 */
3675 pool->attrs->no_numa = false;
3676
3677 if (worker_pool_assign_id(pool) < 0)
3678 goto fail;
3679
3680 /* create and start the initial worker */
3681 if (wq_online && !create_worker(pool))
3682 goto fail;
3683
3684 /* install */
3685 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3686
3687 return pool;
3688fail:
3689 if (pool)
3690 put_unbound_pool(pool);
3691 return NULL;
3692}
3693
3694static void rcu_free_pwq(struct rcu_head *rcu)
3695{
3696 kmem_cache_free(pwq_cache,
3697 container_of(rcu, struct pool_workqueue, rcu));
3698}
3699
3700/*
3701 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3702 * and needs to be destroyed.
3703 */
3704static void pwq_unbound_release_workfn(struct work_struct *work)
3705{
3706 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3707 unbound_release_work);
3708 struct workqueue_struct *wq = pwq->wq;
3709 struct worker_pool *pool = pwq->pool;
3710 bool is_last = false;
3711
3712 /*
3713 * when @pwq is not linked, it doesn't hold any reference to the
3714 * @wq, and @wq is invalid to access.
3715 */
3716 if (!list_empty(&pwq->pwqs_node)) {
3717 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3718 return;
3719
3720 mutex_lock(&wq->mutex);
3721 list_del_rcu(&pwq->pwqs_node);
3722 is_last = list_empty(&wq->pwqs);
3723 mutex_unlock(&wq->mutex);
3724 }
3725
3726 mutex_lock(&wq_pool_mutex);
3727 put_unbound_pool(pool);
3728 mutex_unlock(&wq_pool_mutex);
3729
3730 call_rcu(&pwq->rcu, rcu_free_pwq);
3731
3732 /*
3733 * If we're the last pwq going away, @wq is already dead and no one
3734 * is gonna access it anymore. Schedule RCU free.
3735 */
3736 if (is_last) {
3737 wq_unregister_lockdep(wq);
3738 call_rcu(&wq->rcu, rcu_free_wq);
3739 }
3740}
3741
3742/**
3743 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3744 * @pwq: target pool_workqueue
3745 *
3746 * If @pwq isn't freezing, set @pwq->max_active to the associated
3747 * workqueue's saved_max_active and activate inactive work items
3748 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3749 */
3750static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3751{
3752 struct workqueue_struct *wq = pwq->wq;
3753 bool freezable = wq->flags & WQ_FREEZABLE;
3754 unsigned long flags;
3755
3756 /* for @wq->saved_max_active */
3757 lockdep_assert_held(&wq->mutex);
3758
3759 /* fast exit for non-freezable wqs */
3760 if (!freezable && pwq->max_active == wq->saved_max_active)
3761 return;
3762
3763 /* this function can be called during early boot w/ irq disabled */
3764 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3765
3766 /*
3767 * During [un]freezing, the caller is responsible for ensuring that
3768 * this function is called at least once after @workqueue_freezing
3769 * is updated and visible.
3770 */
3771 if (!freezable || !workqueue_freezing) {
3772 bool kick = false;
3773
3774 pwq->max_active = wq->saved_max_active;
3775
3776 while (!list_empty(&pwq->inactive_works) &&
3777 pwq->nr_active < pwq->max_active) {
3778 pwq_activate_first_inactive(pwq);
3779 kick = true;
3780 }
3781
3782 /*
3783 * Need to kick a worker after thawed or an unbound wq's
3784 * max_active is bumped. In realtime scenarios, always kicking a
3785 * worker will cause interference on the isolated cpu cores, so
3786 * let's kick iff work items were activated.
3787 */
3788 if (kick)
3789 wake_up_worker(pwq->pool);
3790 } else {
3791 pwq->max_active = 0;
3792 }
3793
3794 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3795}
3796
3797/* initialize newly allocated @pwq which is associated with @wq and @pool */
3798static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3799 struct worker_pool *pool)
3800{
3801 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3802
3803 memset(pwq, 0, sizeof(*pwq));
3804
3805 pwq->pool = pool;
3806 pwq->wq = wq;
3807 pwq->flush_color = -1;
3808 pwq->refcnt = 1;
3809 INIT_LIST_HEAD(&pwq->inactive_works);
3810 INIT_LIST_HEAD(&pwq->pwqs_node);
3811 INIT_LIST_HEAD(&pwq->mayday_node);
3812 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3813}
3814
3815/* sync @pwq with the current state of its associated wq and link it */
3816static void link_pwq(struct pool_workqueue *pwq)
3817{
3818 struct workqueue_struct *wq = pwq->wq;
3819
3820 lockdep_assert_held(&wq->mutex);
3821
3822 /* may be called multiple times, ignore if already linked */
3823 if (!list_empty(&pwq->pwqs_node))
3824 return;
3825
3826 /* set the matching work_color */
3827 pwq->work_color = wq->work_color;
3828
3829 /* sync max_active to the current setting */
3830 pwq_adjust_max_active(pwq);
3831
3832 /* link in @pwq */
3833 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3834}
3835
3836/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3837static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3838 const struct workqueue_attrs *attrs)
3839{
3840 struct worker_pool *pool;
3841 struct pool_workqueue *pwq;
3842
3843 lockdep_assert_held(&wq_pool_mutex);
3844
3845 pool = get_unbound_pool(attrs);
3846 if (!pool)
3847 return NULL;
3848
3849 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3850 if (!pwq) {
3851 put_unbound_pool(pool);
3852 return NULL;
3853 }
3854
3855 init_pwq(pwq, wq, pool);
3856 return pwq;
3857}
3858
3859/**
3860 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3861 * @attrs: the wq_attrs of the default pwq of the target workqueue
3862 * @node: the target NUMA node
3863 * @cpu_going_down: if >= 0, the CPU to consider as offline
3864 * @cpumask: outarg, the resulting cpumask
3865 *
3866 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3867 * @cpu_going_down is >= 0, that cpu is considered offline during
3868 * calculation. The result is stored in @cpumask.
3869 *
3870 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3871 * enabled and @node has online CPUs requested by @attrs, the returned
3872 * cpumask is the intersection of the possible CPUs of @node and
3873 * @attrs->cpumask.
3874 *
3875 * The caller is responsible for ensuring that the cpumask of @node stays
3876 * stable.
3877 *
3878 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3879 * %false if equal.
3880 */
3881static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3882 int cpu_going_down, cpumask_t *cpumask)
3883{
3884 if (!wq_numa_enabled || attrs->no_numa)
3885 goto use_dfl;
3886
3887 /* does @node have any online CPUs @attrs wants? */
3888 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3889 if (cpu_going_down >= 0)
3890 cpumask_clear_cpu(cpu_going_down, cpumask);
3891
3892 if (cpumask_empty(cpumask))
3893 goto use_dfl;
3894
3895 /* yeap, return possible CPUs in @node that @attrs wants */
3896 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3897
3898 if (cpumask_empty(cpumask)) {
3899 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3900 "possible intersect\n");
3901 return false;
3902 }
3903
3904 return !cpumask_equal(cpumask, attrs->cpumask);
3905
3906use_dfl:
3907 cpumask_copy(cpumask, attrs->cpumask);
3908 return false;
3909}
3910
3911/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3912static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3913 int node,
3914 struct pool_workqueue *pwq)
3915{
3916 struct pool_workqueue *old_pwq;
3917
3918 lockdep_assert_held(&wq_pool_mutex);
3919 lockdep_assert_held(&wq->mutex);
3920
3921 /* link_pwq() can handle duplicate calls */
3922 link_pwq(pwq);
3923
3924 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3925 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3926 return old_pwq;
3927}
3928
3929/* context to store the prepared attrs & pwqs before applying */
3930struct apply_wqattrs_ctx {
3931 struct workqueue_struct *wq; /* target workqueue */
3932 struct workqueue_attrs *attrs; /* attrs to apply */
3933 struct list_head list; /* queued for batching commit */
3934 struct pool_workqueue *dfl_pwq;
3935 struct pool_workqueue *pwq_tbl[];
3936};
3937
3938/* free the resources after success or abort */
3939static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3940{
3941 if (ctx) {
3942 int node;
3943
3944 for_each_node(node)
3945 put_pwq_unlocked(ctx->pwq_tbl[node]);
3946 put_pwq_unlocked(ctx->dfl_pwq);
3947
3948 free_workqueue_attrs(ctx->attrs);
3949
3950 kfree(ctx);
3951 }
3952}
3953
3954/* allocate the attrs and pwqs for later installation */
3955static struct apply_wqattrs_ctx *
3956apply_wqattrs_prepare(struct workqueue_struct *wq,
3957 const struct workqueue_attrs *attrs)
3958{
3959 struct apply_wqattrs_ctx *ctx;
3960 struct workqueue_attrs *new_attrs, *tmp_attrs;
3961 int node;
3962
3963 lockdep_assert_held(&wq_pool_mutex);
3964
3965 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3966
3967 new_attrs = alloc_workqueue_attrs();
3968 tmp_attrs = alloc_workqueue_attrs();
3969 if (!ctx || !new_attrs || !tmp_attrs)
3970 goto out_free;
3971
3972 /*
3973 * Calculate the attrs of the default pwq.
3974 * If the user configured cpumask doesn't overlap with the
3975 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3976 */
3977 copy_workqueue_attrs(new_attrs, attrs);
3978 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3979 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3980 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3981
3982 /*
3983 * We may create multiple pwqs with differing cpumasks. Make a
3984 * copy of @new_attrs which will be modified and used to obtain
3985 * pools.
3986 */
3987 copy_workqueue_attrs(tmp_attrs, new_attrs);
3988
3989 /*
3990 * If something goes wrong during CPU up/down, we'll fall back to
3991 * the default pwq covering whole @attrs->cpumask. Always create
3992 * it even if we don't use it immediately.
3993 */
3994 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3995 if (!ctx->dfl_pwq)
3996 goto out_free;
3997
3998 for_each_node(node) {
3999 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4000 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4001 if (!ctx->pwq_tbl[node])
4002 goto out_free;
4003 } else {
4004 ctx->dfl_pwq->refcnt++;
4005 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4006 }
4007 }
4008
4009 /* save the user configured attrs and sanitize it. */
4010 copy_workqueue_attrs(new_attrs, attrs);
4011 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4012 ctx->attrs = new_attrs;
4013
4014 ctx->wq = wq;
4015 free_workqueue_attrs(tmp_attrs);
4016 return ctx;
4017
4018out_free:
4019 free_workqueue_attrs(tmp_attrs);
4020 free_workqueue_attrs(new_attrs);
4021 apply_wqattrs_cleanup(ctx);
4022 return NULL;
4023}
4024
4025/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4026static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4027{
4028 int node;
4029
4030 /* all pwqs have been created successfully, let's install'em */
4031 mutex_lock(&ctx->wq->mutex);
4032
4033 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4034
4035 /* save the previous pwq and install the new one */
4036 for_each_node(node)
4037 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4038 ctx->pwq_tbl[node]);
4039
4040 /* @dfl_pwq might not have been used, ensure it's linked */
4041 link_pwq(ctx->dfl_pwq);
4042 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4043
4044 mutex_unlock(&ctx->wq->mutex);
4045}
4046
4047static void apply_wqattrs_lock(void)
4048{
4049 /* CPUs should stay stable across pwq creations and installations */
4050 cpus_read_lock();
4051 mutex_lock(&wq_pool_mutex);
4052}
4053
4054static void apply_wqattrs_unlock(void)
4055{
4056 mutex_unlock(&wq_pool_mutex);
4057 cpus_read_unlock();
4058}
4059
4060static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4061 const struct workqueue_attrs *attrs)
4062{
4063 struct apply_wqattrs_ctx *ctx;
4064
4065 /* only unbound workqueues can change attributes */
4066 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4067 return -EINVAL;
4068
4069 /* creating multiple pwqs breaks ordering guarantee */
4070 if (!list_empty(&wq->pwqs)) {
4071 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4072 return -EINVAL;
4073
4074 wq->flags &= ~__WQ_ORDERED;
4075 }
4076
4077 ctx = apply_wqattrs_prepare(wq, attrs);
4078 if (!ctx)
4079 return -ENOMEM;
4080
4081 /* the ctx has been prepared successfully, let's commit it */
4082 apply_wqattrs_commit(ctx);
4083 apply_wqattrs_cleanup(ctx);
4084
4085 return 0;
4086}
4087
4088/**
4089 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4090 * @wq: the target workqueue
4091 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4092 *
4093 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4094 * machines, this function maps a separate pwq to each NUMA node with
4095 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4096 * NUMA node it was issued on. Older pwqs are released as in-flight work
4097 * items finish. Note that a work item which repeatedly requeues itself
4098 * back-to-back will stay on its current pwq.
4099 *
4100 * Performs GFP_KERNEL allocations.
4101 *
4102 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4103 *
4104 * Return: 0 on success and -errno on failure.
4105 */
4106int apply_workqueue_attrs(struct workqueue_struct *wq,
4107 const struct workqueue_attrs *attrs)
4108{
4109 int ret;
4110
4111 lockdep_assert_cpus_held();
4112
4113 mutex_lock(&wq_pool_mutex);
4114 ret = apply_workqueue_attrs_locked(wq, attrs);
4115 mutex_unlock(&wq_pool_mutex);
4116
4117 return ret;
4118}
4119
4120/**
4121 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4122 * @wq: the target workqueue
4123 * @cpu: the CPU coming up or going down
4124 * @online: whether @cpu is coming up or going down
4125 *
4126 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4127 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4128 * @wq accordingly.
4129 *
4130 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4131 * falls back to @wq->dfl_pwq which may not be optimal but is always
4132 * correct.
4133 *
4134 * Note that when the last allowed CPU of a NUMA node goes offline for a
4135 * workqueue with a cpumask spanning multiple nodes, the workers which were
4136 * already executing the work items for the workqueue will lose their CPU
4137 * affinity and may execute on any CPU. This is similar to how per-cpu
4138 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4139 * affinity, it's the user's responsibility to flush the work item from
4140 * CPU_DOWN_PREPARE.
4141 */
4142static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4143 bool online)
4144{
4145 int node = cpu_to_node(cpu);
4146 int cpu_off = online ? -1 : cpu;
4147 struct pool_workqueue *old_pwq = NULL, *pwq;
4148 struct workqueue_attrs *target_attrs;
4149 cpumask_t *cpumask;
4150
4151 lockdep_assert_held(&wq_pool_mutex);
4152
4153 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4154 wq->unbound_attrs->no_numa)
4155 return;
4156
4157 /*
4158 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4159 * Let's use a preallocated one. The following buf is protected by
4160 * CPU hotplug exclusion.
4161 */
4162 target_attrs = wq_update_unbound_numa_attrs_buf;
4163 cpumask = target_attrs->cpumask;
4164
4165 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4166 pwq = unbound_pwq_by_node(wq, node);
4167
4168 /*
4169 * Let's determine what needs to be done. If the target cpumask is
4170 * different from the default pwq's, we need to compare it to @pwq's
4171 * and create a new one if they don't match. If the target cpumask
4172 * equals the default pwq's, the default pwq should be used.
4173 */
4174 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4175 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4176 return;
4177 } else {
4178 goto use_dfl_pwq;
4179 }
4180
4181 /* create a new pwq */
4182 pwq = alloc_unbound_pwq(wq, target_attrs);
4183 if (!pwq) {
4184 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4185 wq->name);
4186 goto use_dfl_pwq;
4187 }
4188
4189 /* Install the new pwq. */
4190 mutex_lock(&wq->mutex);
4191 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4192 goto out_unlock;
4193
4194use_dfl_pwq:
4195 mutex_lock(&wq->mutex);
4196 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4197 get_pwq(wq->dfl_pwq);
4198 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4199 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4200out_unlock:
4201 mutex_unlock(&wq->mutex);
4202 put_pwq_unlocked(old_pwq);
4203}
4204
4205static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4206{
4207 bool highpri = wq->flags & WQ_HIGHPRI;
4208 int cpu, ret;
4209
4210 if (!(wq->flags & WQ_UNBOUND)) {
4211 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4212 if (!wq->cpu_pwqs)
4213 return -ENOMEM;
4214
4215 for_each_possible_cpu(cpu) {
4216 struct pool_workqueue *pwq =
4217 per_cpu_ptr(wq->cpu_pwqs, cpu);
4218 struct worker_pool *cpu_pools =
4219 per_cpu(cpu_worker_pools, cpu);
4220
4221 init_pwq(pwq, wq, &cpu_pools[highpri]);
4222
4223 mutex_lock(&wq->mutex);
4224 link_pwq(pwq);
4225 mutex_unlock(&wq->mutex);
4226 }
4227 return 0;
4228 }
4229
4230 cpus_read_lock();
4231 if (wq->flags & __WQ_ORDERED) {
4232 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4233 /* there should only be single pwq for ordering guarantee */
4234 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4235 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4236 "ordering guarantee broken for workqueue %s\n", wq->name);
4237 } else {
4238 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4239 }
4240 cpus_read_unlock();
4241
4242 return ret;
4243}
4244
4245static int wq_clamp_max_active(int max_active, unsigned int flags,
4246 const char *name)
4247{
4248 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4249
4250 if (max_active < 1 || max_active > lim)
4251 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4252 max_active, name, 1, lim);
4253
4254 return clamp_val(max_active, 1, lim);
4255}
4256
4257/*
4258 * Workqueues which may be used during memory reclaim should have a rescuer
4259 * to guarantee forward progress.
4260 */
4261static int init_rescuer(struct workqueue_struct *wq)
4262{
4263 struct worker *rescuer;
4264 int ret;
4265
4266 if (!(wq->flags & WQ_MEM_RECLAIM))
4267 return 0;
4268
4269 rescuer = alloc_worker(NUMA_NO_NODE);
4270 if (!rescuer)
4271 return -ENOMEM;
4272
4273 rescuer->rescue_wq = wq;
4274 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4275 if (IS_ERR(rescuer->task)) {
4276 ret = PTR_ERR(rescuer->task);
4277 kfree(rescuer);
4278 return ret;
4279 }
4280
4281 wq->rescuer = rescuer;
4282 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4283 wake_up_process(rescuer->task);
4284
4285 return 0;
4286}
4287
4288__printf(1, 4)
4289struct workqueue_struct *alloc_workqueue(const char *fmt,
4290 unsigned int flags,
4291 int max_active, ...)
4292{
4293 size_t tbl_size = 0;
4294 va_list args;
4295 struct workqueue_struct *wq;
4296 struct pool_workqueue *pwq;
4297
4298 /*
4299 * Unbound && max_active == 1 used to imply ordered, which is no
4300 * longer the case on NUMA machines due to per-node pools. While
4301 * alloc_ordered_workqueue() is the right way to create an ordered
4302 * workqueue, keep the previous behavior to avoid subtle breakages
4303 * on NUMA.
4304 */
4305 if ((flags & WQ_UNBOUND) && max_active == 1)
4306 flags |= __WQ_ORDERED;
4307
4308 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4309 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4310 flags |= WQ_UNBOUND;
4311
4312 /* allocate wq and format name */
4313 if (flags & WQ_UNBOUND)
4314 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4315
4316 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4317 if (!wq)
4318 return NULL;
4319
4320 if (flags & WQ_UNBOUND) {
4321 wq->unbound_attrs = alloc_workqueue_attrs();
4322 if (!wq->unbound_attrs)
4323 goto err_free_wq;
4324 }
4325
4326 va_start(args, max_active);
4327 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4328 va_end(args);
4329
4330 max_active = max_active ?: WQ_DFL_ACTIVE;
4331 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4332
4333 /* init wq */
4334 wq->flags = flags;
4335 wq->saved_max_active = max_active;
4336 mutex_init(&wq->mutex);
4337 atomic_set(&wq->nr_pwqs_to_flush, 0);
4338 INIT_LIST_HEAD(&wq->pwqs);
4339 INIT_LIST_HEAD(&wq->flusher_queue);
4340 INIT_LIST_HEAD(&wq->flusher_overflow);
4341 INIT_LIST_HEAD(&wq->maydays);
4342
4343 wq_init_lockdep(wq);
4344 INIT_LIST_HEAD(&wq->list);
4345
4346 if (alloc_and_link_pwqs(wq) < 0)
4347 goto err_unreg_lockdep;
4348
4349 if (wq_online && init_rescuer(wq) < 0)
4350 goto err_destroy;
4351
4352 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4353 goto err_destroy;
4354
4355 /*
4356 * wq_pool_mutex protects global freeze state and workqueues list.
4357 * Grab it, adjust max_active and add the new @wq to workqueues
4358 * list.
4359 */
4360 mutex_lock(&wq_pool_mutex);
4361
4362 mutex_lock(&wq->mutex);
4363 for_each_pwq(pwq, wq)
4364 pwq_adjust_max_active(pwq);
4365 mutex_unlock(&wq->mutex);
4366
4367 list_add_tail_rcu(&wq->list, &workqueues);
4368
4369 mutex_unlock(&wq_pool_mutex);
4370
4371 return wq;
4372
4373err_unreg_lockdep:
4374 wq_unregister_lockdep(wq);
4375 wq_free_lockdep(wq);
4376err_free_wq:
4377 free_workqueue_attrs(wq->unbound_attrs);
4378 kfree(wq);
4379 return NULL;
4380err_destroy:
4381 destroy_workqueue(wq);
4382 return NULL;
4383}
4384EXPORT_SYMBOL_GPL(alloc_workqueue);
4385
4386static bool pwq_busy(struct pool_workqueue *pwq)
4387{
4388 int i;
4389
4390 for (i = 0; i < WORK_NR_COLORS; i++)
4391 if (pwq->nr_in_flight[i])
4392 return true;
4393
4394 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4395 return true;
4396 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4397 return true;
4398
4399 return false;
4400}
4401
4402/**
4403 * destroy_workqueue - safely terminate a workqueue
4404 * @wq: target workqueue
4405 *
4406 * Safely destroy a workqueue. All work currently pending will be done first.
4407 */
4408void destroy_workqueue(struct workqueue_struct *wq)
4409{
4410 struct pool_workqueue *pwq;
4411 int node;
4412
4413 /*
4414 * Remove it from sysfs first so that sanity check failure doesn't
4415 * lead to sysfs name conflicts.
4416 */
4417 workqueue_sysfs_unregister(wq);
4418
4419 /* drain it before proceeding with destruction */
4420 drain_workqueue(wq);
4421
4422 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4423 if (wq->rescuer) {
4424 struct worker *rescuer = wq->rescuer;
4425
4426 /* this prevents new queueing */
4427 raw_spin_lock_irq(&wq_mayday_lock);
4428 wq->rescuer = NULL;
4429 raw_spin_unlock_irq(&wq_mayday_lock);
4430
4431 /* rescuer will empty maydays list before exiting */
4432 kthread_stop(rescuer->task);
4433 kfree(rescuer);
4434 }
4435
4436 /*
4437 * Sanity checks - grab all the locks so that we wait for all
4438 * in-flight operations which may do put_pwq().
4439 */
4440 mutex_lock(&wq_pool_mutex);
4441 mutex_lock(&wq->mutex);
4442 for_each_pwq(pwq, wq) {
4443 raw_spin_lock_irq(&pwq->pool->lock);
4444 if (WARN_ON(pwq_busy(pwq))) {
4445 pr_warn("%s: %s has the following busy pwq\n",
4446 __func__, wq->name);
4447 show_pwq(pwq);
4448 raw_spin_unlock_irq(&pwq->pool->lock);
4449 mutex_unlock(&wq->mutex);
4450 mutex_unlock(&wq_pool_mutex);
4451 show_one_workqueue(wq);
4452 return;
4453 }
4454 raw_spin_unlock_irq(&pwq->pool->lock);
4455 }
4456 mutex_unlock(&wq->mutex);
4457
4458 /*
4459 * wq list is used to freeze wq, remove from list after
4460 * flushing is complete in case freeze races us.
4461 */
4462 list_del_rcu(&wq->list);
4463 mutex_unlock(&wq_pool_mutex);
4464
4465 if (!(wq->flags & WQ_UNBOUND)) {
4466 wq_unregister_lockdep(wq);
4467 /*
4468 * The base ref is never dropped on per-cpu pwqs. Directly
4469 * schedule RCU free.
4470 */
4471 call_rcu(&wq->rcu, rcu_free_wq);
4472 } else {
4473 /*
4474 * We're the sole accessor of @wq at this point. Directly
4475 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4476 * @wq will be freed when the last pwq is released.
4477 */
4478 for_each_node(node) {
4479 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4480 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4481 put_pwq_unlocked(pwq);
4482 }
4483
4484 /*
4485 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4486 * put. Don't access it afterwards.
4487 */
4488 pwq = wq->dfl_pwq;
4489 wq->dfl_pwq = NULL;
4490 put_pwq_unlocked(pwq);
4491 }
4492}
4493EXPORT_SYMBOL_GPL(destroy_workqueue);
4494
4495/**
4496 * workqueue_set_max_active - adjust max_active of a workqueue
4497 * @wq: target workqueue
4498 * @max_active: new max_active value.
4499 *
4500 * Set max_active of @wq to @max_active.
4501 *
4502 * CONTEXT:
4503 * Don't call from IRQ context.
4504 */
4505void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4506{
4507 struct pool_workqueue *pwq;
4508
4509 /* disallow meddling with max_active for ordered workqueues */
4510 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4511 return;
4512
4513 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4514
4515 mutex_lock(&wq->mutex);
4516
4517 wq->flags &= ~__WQ_ORDERED;
4518 wq->saved_max_active = max_active;
4519
4520 for_each_pwq(pwq, wq)
4521 pwq_adjust_max_active(pwq);
4522
4523 mutex_unlock(&wq->mutex);
4524}
4525EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4526
4527/**
4528 * current_work - retrieve %current task's work struct
4529 *
4530 * Determine if %current task is a workqueue worker and what it's working on.
4531 * Useful to find out the context that the %current task is running in.
4532 *
4533 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4534 */
4535struct work_struct *current_work(void)
4536{
4537 struct worker *worker = current_wq_worker();
4538
4539 return worker ? worker->current_work : NULL;
4540}
4541EXPORT_SYMBOL(current_work);
4542
4543/**
4544 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4545 *
4546 * Determine whether %current is a workqueue rescuer. Can be used from
4547 * work functions to determine whether it's being run off the rescuer task.
4548 *
4549 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4550 */
4551bool current_is_workqueue_rescuer(void)
4552{
4553 struct worker *worker = current_wq_worker();
4554
4555 return worker && worker->rescue_wq;
4556}
4557
4558/**
4559 * workqueue_congested - test whether a workqueue is congested
4560 * @cpu: CPU in question
4561 * @wq: target workqueue
4562 *
4563 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4564 * no synchronization around this function and the test result is
4565 * unreliable and only useful as advisory hints or for debugging.
4566 *
4567 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4568 * Note that both per-cpu and unbound workqueues may be associated with
4569 * multiple pool_workqueues which have separate congested states. A
4570 * workqueue being congested on one CPU doesn't mean the workqueue is also
4571 * contested on other CPUs / NUMA nodes.
4572 *
4573 * Return:
4574 * %true if congested, %false otherwise.
4575 */
4576bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4577{
4578 struct pool_workqueue *pwq;
4579 bool ret;
4580
4581 rcu_read_lock();
4582 preempt_disable();
4583
4584 if (cpu == WORK_CPU_UNBOUND)
4585 cpu = smp_processor_id();
4586
4587 if (!(wq->flags & WQ_UNBOUND))
4588 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4589 else
4590 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4591
4592 ret = !list_empty(&pwq->inactive_works);
4593 preempt_enable();
4594 rcu_read_unlock();
4595
4596 return ret;
4597}
4598EXPORT_SYMBOL_GPL(workqueue_congested);
4599
4600/**
4601 * work_busy - test whether a work is currently pending or running
4602 * @work: the work to be tested
4603 *
4604 * Test whether @work is currently pending or running. There is no
4605 * synchronization around this function and the test result is
4606 * unreliable and only useful as advisory hints or for debugging.
4607 *
4608 * Return:
4609 * OR'd bitmask of WORK_BUSY_* bits.
4610 */
4611unsigned int work_busy(struct work_struct *work)
4612{
4613 struct worker_pool *pool;
4614 unsigned long flags;
4615 unsigned int ret = 0;
4616
4617 if (work_pending(work))
4618 ret |= WORK_BUSY_PENDING;
4619
4620 rcu_read_lock();
4621 pool = get_work_pool(work);
4622 if (pool) {
4623 raw_spin_lock_irqsave(&pool->lock, flags);
4624 if (find_worker_executing_work(pool, work))
4625 ret |= WORK_BUSY_RUNNING;
4626 raw_spin_unlock_irqrestore(&pool->lock, flags);
4627 }
4628 rcu_read_unlock();
4629
4630 return ret;
4631}
4632EXPORT_SYMBOL_GPL(work_busy);
4633
4634/**
4635 * set_worker_desc - set description for the current work item
4636 * @fmt: printf-style format string
4637 * @...: arguments for the format string
4638 *
4639 * This function can be called by a running work function to describe what
4640 * the work item is about. If the worker task gets dumped, this
4641 * information will be printed out together to help debugging. The
4642 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4643 */
4644void set_worker_desc(const char *fmt, ...)
4645{
4646 struct worker *worker = current_wq_worker();
4647 va_list args;
4648
4649 if (worker) {
4650 va_start(args, fmt);
4651 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4652 va_end(args);
4653 }
4654}
4655EXPORT_SYMBOL_GPL(set_worker_desc);
4656
4657/**
4658 * print_worker_info - print out worker information and description
4659 * @log_lvl: the log level to use when printing
4660 * @task: target task
4661 *
4662 * If @task is a worker and currently executing a work item, print out the
4663 * name of the workqueue being serviced and worker description set with
4664 * set_worker_desc() by the currently executing work item.
4665 *
4666 * This function can be safely called on any task as long as the
4667 * task_struct itself is accessible. While safe, this function isn't
4668 * synchronized and may print out mixups or garbages of limited length.
4669 */
4670void print_worker_info(const char *log_lvl, struct task_struct *task)
4671{
4672 work_func_t *fn = NULL;
4673 char name[WQ_NAME_LEN] = { };
4674 char desc[WORKER_DESC_LEN] = { };
4675 struct pool_workqueue *pwq = NULL;
4676 struct workqueue_struct *wq = NULL;
4677 struct worker *worker;
4678
4679 if (!(task->flags & PF_WQ_WORKER))
4680 return;
4681
4682 /*
4683 * This function is called without any synchronization and @task
4684 * could be in any state. Be careful with dereferences.
4685 */
4686 worker = kthread_probe_data(task);
4687
4688 /*
4689 * Carefully copy the associated workqueue's workfn, name and desc.
4690 * Keep the original last '\0' in case the original is garbage.
4691 */
4692 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4693 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4694 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4695 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4696 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4697
4698 if (fn || name[0] || desc[0]) {
4699 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4700 if (strcmp(name, desc))
4701 pr_cont(" (%s)", desc);
4702 pr_cont("\n");
4703 }
4704}
4705
4706static void pr_cont_pool_info(struct worker_pool *pool)
4707{
4708 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4709 if (pool->node != NUMA_NO_NODE)
4710 pr_cont(" node=%d", pool->node);
4711 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4712}
4713
4714static void pr_cont_work(bool comma, struct work_struct *work)
4715{
4716 if (work->func == wq_barrier_func) {
4717 struct wq_barrier *barr;
4718
4719 barr = container_of(work, struct wq_barrier, work);
4720
4721 pr_cont("%s BAR(%d)", comma ? "," : "",
4722 task_pid_nr(barr->task));
4723 } else {
4724 pr_cont("%s %ps", comma ? "," : "", work->func);
4725 }
4726}
4727
4728static void show_pwq(struct pool_workqueue *pwq)
4729{
4730 struct worker_pool *pool = pwq->pool;
4731 struct work_struct *work;
4732 struct worker *worker;
4733 bool has_in_flight = false, has_pending = false;
4734 int bkt;
4735
4736 pr_info(" pwq %d:", pool->id);
4737 pr_cont_pool_info(pool);
4738
4739 pr_cont(" active=%d/%d refcnt=%d%s\n",
4740 pwq->nr_active, pwq->max_active, pwq->refcnt,
4741 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4742
4743 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4744 if (worker->current_pwq == pwq) {
4745 has_in_flight = true;
4746 break;
4747 }
4748 }
4749 if (has_in_flight) {
4750 bool comma = false;
4751
4752 pr_info(" in-flight:");
4753 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4754 if (worker->current_pwq != pwq)
4755 continue;
4756
4757 pr_cont("%s %d%s:%ps", comma ? "," : "",
4758 task_pid_nr(worker->task),
4759 worker->rescue_wq ? "(RESCUER)" : "",
4760 worker->current_func);
4761 list_for_each_entry(work, &worker->scheduled, entry)
4762 pr_cont_work(false, work);
4763 comma = true;
4764 }
4765 pr_cont("\n");
4766 }
4767
4768 list_for_each_entry(work, &pool->worklist, entry) {
4769 if (get_work_pwq(work) == pwq) {
4770 has_pending = true;
4771 break;
4772 }
4773 }
4774 if (has_pending) {
4775 bool comma = false;
4776
4777 pr_info(" pending:");
4778 list_for_each_entry(work, &pool->worklist, entry) {
4779 if (get_work_pwq(work) != pwq)
4780 continue;
4781
4782 pr_cont_work(comma, work);
4783 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4784 }
4785 pr_cont("\n");
4786 }
4787
4788 if (!list_empty(&pwq->inactive_works)) {
4789 bool comma = false;
4790
4791 pr_info(" inactive:");
4792 list_for_each_entry(work, &pwq->inactive_works, entry) {
4793 pr_cont_work(comma, work);
4794 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4795 }
4796 pr_cont("\n");
4797 }
4798}
4799
4800/**
4801 * show_one_workqueue - dump state of specified workqueue
4802 * @wq: workqueue whose state will be printed
4803 */
4804void show_one_workqueue(struct workqueue_struct *wq)
4805{
4806 struct pool_workqueue *pwq;
4807 bool idle = true;
4808 unsigned long flags;
4809
4810 for_each_pwq(pwq, wq) {
4811 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4812 idle = false;
4813 break;
4814 }
4815 }
4816 if (idle) /* Nothing to print for idle workqueue */
4817 return;
4818
4819 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4820
4821 for_each_pwq(pwq, wq) {
4822 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4823 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4824 /*
4825 * Defer printing to avoid deadlocks in console
4826 * drivers that queue work while holding locks
4827 * also taken in their write paths.
4828 */
4829 printk_deferred_enter();
4830 show_pwq(pwq);
4831 printk_deferred_exit();
4832 }
4833 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4834 /*
4835 * We could be printing a lot from atomic context, e.g.
4836 * sysrq-t -> show_all_workqueues(). Avoid triggering
4837 * hard lockup.
4838 */
4839 touch_nmi_watchdog();
4840 }
4841
4842}
4843
4844/**
4845 * show_one_worker_pool - dump state of specified worker pool
4846 * @pool: worker pool whose state will be printed
4847 */
4848static void show_one_worker_pool(struct worker_pool *pool)
4849{
4850 struct worker *worker;
4851 bool first = true;
4852 unsigned long flags;
4853
4854 raw_spin_lock_irqsave(&pool->lock, flags);
4855 if (pool->nr_workers == pool->nr_idle)
4856 goto next_pool;
4857 /*
4858 * Defer printing to avoid deadlocks in console drivers that
4859 * queue work while holding locks also taken in their write
4860 * paths.
4861 */
4862 printk_deferred_enter();
4863 pr_info("pool %d:", pool->id);
4864 pr_cont_pool_info(pool);
4865 pr_cont(" hung=%us workers=%d",
4866 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4867 pool->nr_workers);
4868 if (pool->manager)
4869 pr_cont(" manager: %d",
4870 task_pid_nr(pool->manager->task));
4871 list_for_each_entry(worker, &pool->idle_list, entry) {
4872 pr_cont(" %s%d", first ? "idle: " : "",
4873 task_pid_nr(worker->task));
4874 first = false;
4875 }
4876 pr_cont("\n");
4877 printk_deferred_exit();
4878next_pool:
4879 raw_spin_unlock_irqrestore(&pool->lock, flags);
4880 /*
4881 * We could be printing a lot from atomic context, e.g.
4882 * sysrq-t -> show_all_workqueues(). Avoid triggering
4883 * hard lockup.
4884 */
4885 touch_nmi_watchdog();
4886
4887}
4888
4889/**
4890 * show_all_workqueues - dump workqueue state
4891 *
4892 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4893 * all busy workqueues and pools.
4894 */
4895void show_all_workqueues(void)
4896{
4897 struct workqueue_struct *wq;
4898 struct worker_pool *pool;
4899 int pi;
4900
4901 rcu_read_lock();
4902
4903 pr_info("Showing busy workqueues and worker pools:\n");
4904
4905 list_for_each_entry_rcu(wq, &workqueues, list)
4906 show_one_workqueue(wq);
4907
4908 for_each_pool(pool, pi)
4909 show_one_worker_pool(pool);
4910
4911 rcu_read_unlock();
4912}
4913
4914/* used to show worker information through /proc/PID/{comm,stat,status} */
4915void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4916{
4917 int off;
4918
4919 /* always show the actual comm */
4920 off = strscpy(buf, task->comm, size);
4921 if (off < 0)
4922 return;
4923
4924 /* stabilize PF_WQ_WORKER and worker pool association */
4925 mutex_lock(&wq_pool_attach_mutex);
4926
4927 if (task->flags & PF_WQ_WORKER) {
4928 struct worker *worker = kthread_data(task);
4929 struct worker_pool *pool = worker->pool;
4930
4931 if (pool) {
4932 raw_spin_lock_irq(&pool->lock);
4933 /*
4934 * ->desc tracks information (wq name or
4935 * set_worker_desc()) for the latest execution. If
4936 * current, prepend '+', otherwise '-'.
4937 */
4938 if (worker->desc[0] != '\0') {
4939 if (worker->current_work)
4940 scnprintf(buf + off, size - off, "+%s",
4941 worker->desc);
4942 else
4943 scnprintf(buf + off, size - off, "-%s",
4944 worker->desc);
4945 }
4946 raw_spin_unlock_irq(&pool->lock);
4947 }
4948 }
4949
4950 mutex_unlock(&wq_pool_attach_mutex);
4951}
4952
4953#ifdef CONFIG_SMP
4954
4955/*
4956 * CPU hotplug.
4957 *
4958 * There are two challenges in supporting CPU hotplug. Firstly, there
4959 * are a lot of assumptions on strong associations among work, pwq and
4960 * pool which make migrating pending and scheduled works very
4961 * difficult to implement without impacting hot paths. Secondly,
4962 * worker pools serve mix of short, long and very long running works making
4963 * blocked draining impractical.
4964 *
4965 * This is solved by allowing the pools to be disassociated from the CPU
4966 * running as an unbound one and allowing it to be reattached later if the
4967 * cpu comes back online.
4968 */
4969
4970static void unbind_workers(int cpu)
4971{
4972 struct worker_pool *pool;
4973 struct worker *worker;
4974
4975 for_each_cpu_worker_pool(pool, cpu) {
4976 mutex_lock(&wq_pool_attach_mutex);
4977 raw_spin_lock_irq(&pool->lock);
4978
4979 /*
4980 * We've blocked all attach/detach operations. Make all workers
4981 * unbound and set DISASSOCIATED. Before this, all workers
4982 * must be on the cpu. After this, they may become diasporas.
4983 * And the preemption disabled section in their sched callbacks
4984 * are guaranteed to see WORKER_UNBOUND since the code here
4985 * is on the same cpu.
4986 */
4987 for_each_pool_worker(worker, pool)
4988 worker->flags |= WORKER_UNBOUND;
4989
4990 pool->flags |= POOL_DISASSOCIATED;
4991
4992 /*
4993 * The handling of nr_running in sched callbacks are disabled
4994 * now. Zap nr_running. After this, nr_running stays zero and
4995 * need_more_worker() and keep_working() are always true as
4996 * long as the worklist is not empty. This pool now behaves as
4997 * an unbound (in terms of concurrency management) pool which
4998 * are served by workers tied to the pool.
4999 */
5000 pool->nr_running = 0;
5001
5002 /*
5003 * With concurrency management just turned off, a busy
5004 * worker blocking could lead to lengthy stalls. Kick off
5005 * unbound chain execution of currently pending work items.
5006 */
5007 wake_up_worker(pool);
5008
5009 raw_spin_unlock_irq(&pool->lock);
5010
5011 for_each_pool_worker(worker, pool) {
5012 kthread_set_per_cpu(worker->task, -1);
5013 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5014 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
5015 else
5016 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5017 }
5018
5019 mutex_unlock(&wq_pool_attach_mutex);
5020 }
5021}
5022
5023/**
5024 * rebind_workers - rebind all workers of a pool to the associated CPU
5025 * @pool: pool of interest
5026 *
5027 * @pool->cpu is coming online. Rebind all workers to the CPU.
5028 */
5029static void rebind_workers(struct worker_pool *pool)
5030{
5031 struct worker *worker;
5032
5033 lockdep_assert_held(&wq_pool_attach_mutex);
5034
5035 /*
5036 * Restore CPU affinity of all workers. As all idle workers should
5037 * be on the run-queue of the associated CPU before any local
5038 * wake-ups for concurrency management happen, restore CPU affinity
5039 * of all workers first and then clear UNBOUND. As we're called
5040 * from CPU_ONLINE, the following shouldn't fail.
5041 */
5042 for_each_pool_worker(worker, pool) {
5043 kthread_set_per_cpu(worker->task, pool->cpu);
5044 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5045 pool->attrs->cpumask) < 0);
5046 }
5047
5048 raw_spin_lock_irq(&pool->lock);
5049
5050 pool->flags &= ~POOL_DISASSOCIATED;
5051
5052 for_each_pool_worker(worker, pool) {
5053 unsigned int worker_flags = worker->flags;
5054
5055 /*
5056 * We want to clear UNBOUND but can't directly call
5057 * worker_clr_flags() or adjust nr_running. Atomically
5058 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5059 * @worker will clear REBOUND using worker_clr_flags() when
5060 * it initiates the next execution cycle thus restoring
5061 * concurrency management. Note that when or whether
5062 * @worker clears REBOUND doesn't affect correctness.
5063 *
5064 * WRITE_ONCE() is necessary because @worker->flags may be
5065 * tested without holding any lock in
5066 * wq_worker_running(). Without it, NOT_RUNNING test may
5067 * fail incorrectly leading to premature concurrency
5068 * management operations.
5069 */
5070 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5071 worker_flags |= WORKER_REBOUND;
5072 worker_flags &= ~WORKER_UNBOUND;
5073 WRITE_ONCE(worker->flags, worker_flags);
5074 }
5075
5076 raw_spin_unlock_irq(&pool->lock);
5077}
5078
5079/**
5080 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5081 * @pool: unbound pool of interest
5082 * @cpu: the CPU which is coming up
5083 *
5084 * An unbound pool may end up with a cpumask which doesn't have any online
5085 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5086 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5087 * online CPU before, cpus_allowed of all its workers should be restored.
5088 */
5089static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5090{
5091 static cpumask_t cpumask;
5092 struct worker *worker;
5093
5094 lockdep_assert_held(&wq_pool_attach_mutex);
5095
5096 /* is @cpu allowed for @pool? */
5097 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5098 return;
5099
5100 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5101
5102 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5103 for_each_pool_worker(worker, pool)
5104 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5105}
5106
5107int workqueue_prepare_cpu(unsigned int cpu)
5108{
5109 struct worker_pool *pool;
5110
5111 for_each_cpu_worker_pool(pool, cpu) {
5112 if (pool->nr_workers)
5113 continue;
5114 if (!create_worker(pool))
5115 return -ENOMEM;
5116 }
5117 return 0;
5118}
5119
5120int workqueue_online_cpu(unsigned int cpu)
5121{
5122 struct worker_pool *pool;
5123 struct workqueue_struct *wq;
5124 int pi;
5125
5126 mutex_lock(&wq_pool_mutex);
5127
5128 for_each_pool(pool, pi) {
5129 mutex_lock(&wq_pool_attach_mutex);
5130
5131 if (pool->cpu == cpu)
5132 rebind_workers(pool);
5133 else if (pool->cpu < 0)
5134 restore_unbound_workers_cpumask(pool, cpu);
5135
5136 mutex_unlock(&wq_pool_attach_mutex);
5137 }
5138
5139 /* update NUMA affinity of unbound workqueues */
5140 list_for_each_entry(wq, &workqueues, list)
5141 wq_update_unbound_numa(wq, cpu, true);
5142
5143 mutex_unlock(&wq_pool_mutex);
5144 return 0;
5145}
5146
5147int workqueue_offline_cpu(unsigned int cpu)
5148{
5149 struct workqueue_struct *wq;
5150
5151 /* unbinding per-cpu workers should happen on the local CPU */
5152 if (WARN_ON(cpu != smp_processor_id()))
5153 return -1;
5154
5155 unbind_workers(cpu);
5156
5157 /* update NUMA affinity of unbound workqueues */
5158 mutex_lock(&wq_pool_mutex);
5159 list_for_each_entry(wq, &workqueues, list)
5160 wq_update_unbound_numa(wq, cpu, false);
5161 mutex_unlock(&wq_pool_mutex);
5162
5163 return 0;
5164}
5165
5166struct work_for_cpu {
5167 struct work_struct work;
5168 long (*fn)(void *);
5169 void *arg;
5170 long ret;
5171};
5172
5173static void work_for_cpu_fn(struct work_struct *work)
5174{
5175 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5176
5177 wfc->ret = wfc->fn(wfc->arg);
5178}
5179
5180/**
5181 * work_on_cpu - run a function in thread context on a particular cpu
5182 * @cpu: the cpu to run on
5183 * @fn: the function to run
5184 * @arg: the function arg
5185 *
5186 * It is up to the caller to ensure that the cpu doesn't go offline.
5187 * The caller must not hold any locks which would prevent @fn from completing.
5188 *
5189 * Return: The value @fn returns.
5190 */
5191long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5192{
5193 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5194
5195 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5196 schedule_work_on(cpu, &wfc.work);
5197 flush_work(&wfc.work);
5198 destroy_work_on_stack(&wfc.work);
5199 return wfc.ret;
5200}
5201EXPORT_SYMBOL_GPL(work_on_cpu);
5202
5203/**
5204 * work_on_cpu_safe - run a function in thread context on a particular cpu
5205 * @cpu: the cpu to run on
5206 * @fn: the function to run
5207 * @arg: the function argument
5208 *
5209 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5210 * any locks which would prevent @fn from completing.
5211 *
5212 * Return: The value @fn returns.
5213 */
5214long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5215{
5216 long ret = -ENODEV;
5217
5218 cpus_read_lock();
5219 if (cpu_online(cpu))
5220 ret = work_on_cpu(cpu, fn, arg);
5221 cpus_read_unlock();
5222 return ret;
5223}
5224EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5225#endif /* CONFIG_SMP */
5226
5227#ifdef CONFIG_FREEZER
5228
5229/**
5230 * freeze_workqueues_begin - begin freezing workqueues
5231 *
5232 * Start freezing workqueues. After this function returns, all freezable
5233 * workqueues will queue new works to their inactive_works list instead of
5234 * pool->worklist.
5235 *
5236 * CONTEXT:
5237 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5238 */
5239void freeze_workqueues_begin(void)
5240{
5241 struct workqueue_struct *wq;
5242 struct pool_workqueue *pwq;
5243
5244 mutex_lock(&wq_pool_mutex);
5245
5246 WARN_ON_ONCE(workqueue_freezing);
5247 workqueue_freezing = true;
5248
5249 list_for_each_entry(wq, &workqueues, list) {
5250 mutex_lock(&wq->mutex);
5251 for_each_pwq(pwq, wq)
5252 pwq_adjust_max_active(pwq);
5253 mutex_unlock(&wq->mutex);
5254 }
5255
5256 mutex_unlock(&wq_pool_mutex);
5257}
5258
5259/**
5260 * freeze_workqueues_busy - are freezable workqueues still busy?
5261 *
5262 * Check whether freezing is complete. This function must be called
5263 * between freeze_workqueues_begin() and thaw_workqueues().
5264 *
5265 * CONTEXT:
5266 * Grabs and releases wq_pool_mutex.
5267 *
5268 * Return:
5269 * %true if some freezable workqueues are still busy. %false if freezing
5270 * is complete.
5271 */
5272bool freeze_workqueues_busy(void)
5273{
5274 bool busy = false;
5275 struct workqueue_struct *wq;
5276 struct pool_workqueue *pwq;
5277
5278 mutex_lock(&wq_pool_mutex);
5279
5280 WARN_ON_ONCE(!workqueue_freezing);
5281
5282 list_for_each_entry(wq, &workqueues, list) {
5283 if (!(wq->flags & WQ_FREEZABLE))
5284 continue;
5285 /*
5286 * nr_active is monotonically decreasing. It's safe
5287 * to peek without lock.
5288 */
5289 rcu_read_lock();
5290 for_each_pwq(pwq, wq) {
5291 WARN_ON_ONCE(pwq->nr_active < 0);
5292 if (pwq->nr_active) {
5293 busy = true;
5294 rcu_read_unlock();
5295 goto out_unlock;
5296 }
5297 }
5298 rcu_read_unlock();
5299 }
5300out_unlock:
5301 mutex_unlock(&wq_pool_mutex);
5302 return busy;
5303}
5304
5305/**
5306 * thaw_workqueues - thaw workqueues
5307 *
5308 * Thaw workqueues. Normal queueing is restored and all collected
5309 * frozen works are transferred to their respective pool worklists.
5310 *
5311 * CONTEXT:
5312 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5313 */
5314void thaw_workqueues(void)
5315{
5316 struct workqueue_struct *wq;
5317 struct pool_workqueue *pwq;
5318
5319 mutex_lock(&wq_pool_mutex);
5320
5321 if (!workqueue_freezing)
5322 goto out_unlock;
5323
5324 workqueue_freezing = false;
5325
5326 /* restore max_active and repopulate worklist */
5327 list_for_each_entry(wq, &workqueues, list) {
5328 mutex_lock(&wq->mutex);
5329 for_each_pwq(pwq, wq)
5330 pwq_adjust_max_active(pwq);
5331 mutex_unlock(&wq->mutex);
5332 }
5333
5334out_unlock:
5335 mutex_unlock(&wq_pool_mutex);
5336}
5337#endif /* CONFIG_FREEZER */
5338
5339static int workqueue_apply_unbound_cpumask(void)
5340{
5341 LIST_HEAD(ctxs);
5342 int ret = 0;
5343 struct workqueue_struct *wq;
5344 struct apply_wqattrs_ctx *ctx, *n;
5345
5346 lockdep_assert_held(&wq_pool_mutex);
5347
5348 list_for_each_entry(wq, &workqueues, list) {
5349 if (!(wq->flags & WQ_UNBOUND))
5350 continue;
5351 /* creating multiple pwqs breaks ordering guarantee */
5352 if (wq->flags & __WQ_ORDERED)
5353 continue;
5354
5355 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5356 if (!ctx) {
5357 ret = -ENOMEM;
5358 break;
5359 }
5360
5361 list_add_tail(&ctx->list, &ctxs);
5362 }
5363
5364 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5365 if (!ret)
5366 apply_wqattrs_commit(ctx);
5367 apply_wqattrs_cleanup(ctx);
5368 }
5369
5370 return ret;
5371}
5372
5373/**
5374 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5375 * @cpumask: the cpumask to set
5376 *
5377 * The low-level workqueues cpumask is a global cpumask that limits
5378 * the affinity of all unbound workqueues. This function check the @cpumask
5379 * and apply it to all unbound workqueues and updates all pwqs of them.
5380 *
5381 * Return: 0 - Success
5382 * -EINVAL - Invalid @cpumask
5383 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5384 */
5385int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5386{
5387 int ret = -EINVAL;
5388 cpumask_var_t saved_cpumask;
5389
5390 /*
5391 * Not excluding isolated cpus on purpose.
5392 * If the user wishes to include them, we allow that.
5393 */
5394 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5395 if (!cpumask_empty(cpumask)) {
5396 apply_wqattrs_lock();
5397 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5398 ret = 0;
5399 goto out_unlock;
5400 }
5401
5402 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5403 ret = -ENOMEM;
5404 goto out_unlock;
5405 }
5406
5407 /* save the old wq_unbound_cpumask. */
5408 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5409
5410 /* update wq_unbound_cpumask at first and apply it to wqs. */
5411 cpumask_copy(wq_unbound_cpumask, cpumask);
5412 ret = workqueue_apply_unbound_cpumask();
5413
5414 /* restore the wq_unbound_cpumask when failed. */
5415 if (ret < 0)
5416 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5417
5418 free_cpumask_var(saved_cpumask);
5419out_unlock:
5420 apply_wqattrs_unlock();
5421 }
5422
5423 return ret;
5424}
5425
5426#ifdef CONFIG_SYSFS
5427/*
5428 * Workqueues with WQ_SYSFS flag set is visible to userland via
5429 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5430 * following attributes.
5431 *
5432 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5433 * max_active RW int : maximum number of in-flight work items
5434 *
5435 * Unbound workqueues have the following extra attributes.
5436 *
5437 * pool_ids RO int : the associated pool IDs for each node
5438 * nice RW int : nice value of the workers
5439 * cpumask RW mask : bitmask of allowed CPUs for the workers
5440 * numa RW bool : whether enable NUMA affinity
5441 */
5442struct wq_device {
5443 struct workqueue_struct *wq;
5444 struct device dev;
5445};
5446
5447static struct workqueue_struct *dev_to_wq(struct device *dev)
5448{
5449 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5450
5451 return wq_dev->wq;
5452}
5453
5454static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5455 char *buf)
5456{
5457 struct workqueue_struct *wq = dev_to_wq(dev);
5458
5459 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5460}
5461static DEVICE_ATTR_RO(per_cpu);
5462
5463static ssize_t max_active_show(struct device *dev,
5464 struct device_attribute *attr, char *buf)
5465{
5466 struct workqueue_struct *wq = dev_to_wq(dev);
5467
5468 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5469}
5470
5471static ssize_t max_active_store(struct device *dev,
5472 struct device_attribute *attr, const char *buf,
5473 size_t count)
5474{
5475 struct workqueue_struct *wq = dev_to_wq(dev);
5476 int val;
5477
5478 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5479 return -EINVAL;
5480
5481 workqueue_set_max_active(wq, val);
5482 return count;
5483}
5484static DEVICE_ATTR_RW(max_active);
5485
5486static struct attribute *wq_sysfs_attrs[] = {
5487 &dev_attr_per_cpu.attr,
5488 &dev_attr_max_active.attr,
5489 NULL,
5490};
5491ATTRIBUTE_GROUPS(wq_sysfs);
5492
5493static ssize_t wq_pool_ids_show(struct device *dev,
5494 struct device_attribute *attr, char *buf)
5495{
5496 struct workqueue_struct *wq = dev_to_wq(dev);
5497 const char *delim = "";
5498 int node, written = 0;
5499
5500 cpus_read_lock();
5501 rcu_read_lock();
5502 for_each_node(node) {
5503 written += scnprintf(buf + written, PAGE_SIZE - written,
5504 "%s%d:%d", delim, node,
5505 unbound_pwq_by_node(wq, node)->pool->id);
5506 delim = " ";
5507 }
5508 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5509 rcu_read_unlock();
5510 cpus_read_unlock();
5511
5512 return written;
5513}
5514
5515static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5516 char *buf)
5517{
5518 struct workqueue_struct *wq = dev_to_wq(dev);
5519 int written;
5520
5521 mutex_lock(&wq->mutex);
5522 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5523 mutex_unlock(&wq->mutex);
5524
5525 return written;
5526}
5527
5528/* prepare workqueue_attrs for sysfs store operations */
5529static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5530{
5531 struct workqueue_attrs *attrs;
5532
5533 lockdep_assert_held(&wq_pool_mutex);
5534
5535 attrs = alloc_workqueue_attrs();
5536 if (!attrs)
5537 return NULL;
5538
5539 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5540 return attrs;
5541}
5542
5543static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5544 const char *buf, size_t count)
5545{
5546 struct workqueue_struct *wq = dev_to_wq(dev);
5547 struct workqueue_attrs *attrs;
5548 int ret = -ENOMEM;
5549
5550 apply_wqattrs_lock();
5551
5552 attrs = wq_sysfs_prep_attrs(wq);
5553 if (!attrs)
5554 goto out_unlock;
5555
5556 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5557 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5558 ret = apply_workqueue_attrs_locked(wq, attrs);
5559 else
5560 ret = -EINVAL;
5561
5562out_unlock:
5563 apply_wqattrs_unlock();
5564 free_workqueue_attrs(attrs);
5565 return ret ?: count;
5566}
5567
5568static ssize_t wq_cpumask_show(struct device *dev,
5569 struct device_attribute *attr, char *buf)
5570{
5571 struct workqueue_struct *wq = dev_to_wq(dev);
5572 int written;
5573
5574 mutex_lock(&wq->mutex);
5575 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5576 cpumask_pr_args(wq->unbound_attrs->cpumask));
5577 mutex_unlock(&wq->mutex);
5578 return written;
5579}
5580
5581static ssize_t wq_cpumask_store(struct device *dev,
5582 struct device_attribute *attr,
5583 const char *buf, size_t count)
5584{
5585 struct workqueue_struct *wq = dev_to_wq(dev);
5586 struct workqueue_attrs *attrs;
5587 int ret = -ENOMEM;
5588
5589 apply_wqattrs_lock();
5590
5591 attrs = wq_sysfs_prep_attrs(wq);
5592 if (!attrs)
5593 goto out_unlock;
5594
5595 ret = cpumask_parse(buf, attrs->cpumask);
5596 if (!ret)
5597 ret = apply_workqueue_attrs_locked(wq, attrs);
5598
5599out_unlock:
5600 apply_wqattrs_unlock();
5601 free_workqueue_attrs(attrs);
5602 return ret ?: count;
5603}
5604
5605static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5606 char *buf)
5607{
5608 struct workqueue_struct *wq = dev_to_wq(dev);
5609 int written;
5610
5611 mutex_lock(&wq->mutex);
5612 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5613 !wq->unbound_attrs->no_numa);
5614 mutex_unlock(&wq->mutex);
5615
5616 return written;
5617}
5618
5619static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5620 const char *buf, size_t count)
5621{
5622 struct workqueue_struct *wq = dev_to_wq(dev);
5623 struct workqueue_attrs *attrs;
5624 int v, ret = -ENOMEM;
5625
5626 apply_wqattrs_lock();
5627
5628 attrs = wq_sysfs_prep_attrs(wq);
5629 if (!attrs)
5630 goto out_unlock;
5631
5632 ret = -EINVAL;
5633 if (sscanf(buf, "%d", &v) == 1) {
5634 attrs->no_numa = !v;
5635 ret = apply_workqueue_attrs_locked(wq, attrs);
5636 }
5637
5638out_unlock:
5639 apply_wqattrs_unlock();
5640 free_workqueue_attrs(attrs);
5641 return ret ?: count;
5642}
5643
5644static struct device_attribute wq_sysfs_unbound_attrs[] = {
5645 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5646 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5647 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5648 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5649 __ATTR_NULL,
5650};
5651
5652static struct bus_type wq_subsys = {
5653 .name = "workqueue",
5654 .dev_groups = wq_sysfs_groups,
5655};
5656
5657static ssize_t wq_unbound_cpumask_show(struct device *dev,
5658 struct device_attribute *attr, char *buf)
5659{
5660 int written;
5661
5662 mutex_lock(&wq_pool_mutex);
5663 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5664 cpumask_pr_args(wq_unbound_cpumask));
5665 mutex_unlock(&wq_pool_mutex);
5666
5667 return written;
5668}
5669
5670static ssize_t wq_unbound_cpumask_store(struct device *dev,
5671 struct device_attribute *attr, const char *buf, size_t count)
5672{
5673 cpumask_var_t cpumask;
5674 int ret;
5675
5676 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5677 return -ENOMEM;
5678
5679 ret = cpumask_parse(buf, cpumask);
5680 if (!ret)
5681 ret = workqueue_set_unbound_cpumask(cpumask);
5682
5683 free_cpumask_var(cpumask);
5684 return ret ? ret : count;
5685}
5686
5687static struct device_attribute wq_sysfs_cpumask_attr =
5688 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5689 wq_unbound_cpumask_store);
5690
5691static int __init wq_sysfs_init(void)
5692{
5693 int err;
5694
5695 err = subsys_virtual_register(&wq_subsys, NULL);
5696 if (err)
5697 return err;
5698
5699 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5700}
5701core_initcall(wq_sysfs_init);
5702
5703static void wq_device_release(struct device *dev)
5704{
5705 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5706
5707 kfree(wq_dev);
5708}
5709
5710/**
5711 * workqueue_sysfs_register - make a workqueue visible in sysfs
5712 * @wq: the workqueue to register
5713 *
5714 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5715 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5716 * which is the preferred method.
5717 *
5718 * Workqueue user should use this function directly iff it wants to apply
5719 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5720 * apply_workqueue_attrs() may race against userland updating the
5721 * attributes.
5722 *
5723 * Return: 0 on success, -errno on failure.
5724 */
5725int workqueue_sysfs_register(struct workqueue_struct *wq)
5726{
5727 struct wq_device *wq_dev;
5728 int ret;
5729
5730 /*
5731 * Adjusting max_active or creating new pwqs by applying
5732 * attributes breaks ordering guarantee. Disallow exposing ordered
5733 * workqueues.
5734 */
5735 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5736 return -EINVAL;
5737
5738 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5739 if (!wq_dev)
5740 return -ENOMEM;
5741
5742 wq_dev->wq = wq;
5743 wq_dev->dev.bus = &wq_subsys;
5744 wq_dev->dev.release = wq_device_release;
5745 dev_set_name(&wq_dev->dev, "%s", wq->name);
5746
5747 /*
5748 * unbound_attrs are created separately. Suppress uevent until
5749 * everything is ready.
5750 */
5751 dev_set_uevent_suppress(&wq_dev->dev, true);
5752
5753 ret = device_register(&wq_dev->dev);
5754 if (ret) {
5755 put_device(&wq_dev->dev);
5756 wq->wq_dev = NULL;
5757 return ret;
5758 }
5759
5760 if (wq->flags & WQ_UNBOUND) {
5761 struct device_attribute *attr;
5762
5763 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5764 ret = device_create_file(&wq_dev->dev, attr);
5765 if (ret) {
5766 device_unregister(&wq_dev->dev);
5767 wq->wq_dev = NULL;
5768 return ret;
5769 }
5770 }
5771 }
5772
5773 dev_set_uevent_suppress(&wq_dev->dev, false);
5774 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5775 return 0;
5776}
5777
5778/**
5779 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5780 * @wq: the workqueue to unregister
5781 *
5782 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5783 */
5784static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5785{
5786 struct wq_device *wq_dev = wq->wq_dev;
5787
5788 if (!wq->wq_dev)
5789 return;
5790
5791 wq->wq_dev = NULL;
5792 device_unregister(&wq_dev->dev);
5793}
5794#else /* CONFIG_SYSFS */
5795static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5796#endif /* CONFIG_SYSFS */
5797
5798/*
5799 * Workqueue watchdog.
5800 *
5801 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5802 * flush dependency, a concurrency managed work item which stays RUNNING
5803 * indefinitely. Workqueue stalls can be very difficult to debug as the
5804 * usual warning mechanisms don't trigger and internal workqueue state is
5805 * largely opaque.
5806 *
5807 * Workqueue watchdog monitors all worker pools periodically and dumps
5808 * state if some pools failed to make forward progress for a while where
5809 * forward progress is defined as the first item on ->worklist changing.
5810 *
5811 * This mechanism is controlled through the kernel parameter
5812 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5813 * corresponding sysfs parameter file.
5814 */
5815#ifdef CONFIG_WQ_WATCHDOG
5816
5817static unsigned long wq_watchdog_thresh = 30;
5818static struct timer_list wq_watchdog_timer;
5819
5820static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5821static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5822
5823static void wq_watchdog_reset_touched(void)
5824{
5825 int cpu;
5826
5827 wq_watchdog_touched = jiffies;
5828 for_each_possible_cpu(cpu)
5829 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5830}
5831
5832static void wq_watchdog_timer_fn(struct timer_list *unused)
5833{
5834 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5835 bool lockup_detected = false;
5836 unsigned long now = jiffies;
5837 struct worker_pool *pool;
5838 int pi;
5839
5840 if (!thresh)
5841 return;
5842
5843 rcu_read_lock();
5844
5845 for_each_pool(pool, pi) {
5846 unsigned long pool_ts, touched, ts;
5847
5848 if (list_empty(&pool->worklist))
5849 continue;
5850
5851 /*
5852 * If a virtual machine is stopped by the host it can look to
5853 * the watchdog like a stall.
5854 */
5855 kvm_check_and_clear_guest_paused();
5856
5857 /* get the latest of pool and touched timestamps */
5858 if (pool->cpu >= 0)
5859 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5860 else
5861 touched = READ_ONCE(wq_watchdog_touched);
5862 pool_ts = READ_ONCE(pool->watchdog_ts);
5863
5864 if (time_after(pool_ts, touched))
5865 ts = pool_ts;
5866 else
5867 ts = touched;
5868
5869 /* did we stall? */
5870 if (time_after(now, ts + thresh)) {
5871 lockup_detected = true;
5872 pr_emerg("BUG: workqueue lockup - pool");
5873 pr_cont_pool_info(pool);
5874 pr_cont(" stuck for %us!\n",
5875 jiffies_to_msecs(now - pool_ts) / 1000);
5876 }
5877 }
5878
5879 rcu_read_unlock();
5880
5881 if (lockup_detected)
5882 show_all_workqueues();
5883
5884 wq_watchdog_reset_touched();
5885 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5886}
5887
5888notrace void wq_watchdog_touch(int cpu)
5889{
5890 if (cpu >= 0)
5891 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5892
5893 wq_watchdog_touched = jiffies;
5894}
5895
5896static void wq_watchdog_set_thresh(unsigned long thresh)
5897{
5898 wq_watchdog_thresh = 0;
5899 del_timer_sync(&wq_watchdog_timer);
5900
5901 if (thresh) {
5902 wq_watchdog_thresh = thresh;
5903 wq_watchdog_reset_touched();
5904 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5905 }
5906}
5907
5908static int wq_watchdog_param_set_thresh(const char *val,
5909 const struct kernel_param *kp)
5910{
5911 unsigned long thresh;
5912 int ret;
5913
5914 ret = kstrtoul(val, 0, &thresh);
5915 if (ret)
5916 return ret;
5917
5918 if (system_wq)
5919 wq_watchdog_set_thresh(thresh);
5920 else
5921 wq_watchdog_thresh = thresh;
5922
5923 return 0;
5924}
5925
5926static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5927 .set = wq_watchdog_param_set_thresh,
5928 .get = param_get_ulong,
5929};
5930
5931module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5932 0644);
5933
5934static void wq_watchdog_init(void)
5935{
5936 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5937 wq_watchdog_set_thresh(wq_watchdog_thresh);
5938}
5939
5940#else /* CONFIG_WQ_WATCHDOG */
5941
5942static inline void wq_watchdog_init(void) { }
5943
5944#endif /* CONFIG_WQ_WATCHDOG */
5945
5946static void __init wq_numa_init(void)
5947{
5948 cpumask_var_t *tbl;
5949 int node, cpu;
5950
5951 if (num_possible_nodes() <= 1)
5952 return;
5953
5954 if (wq_disable_numa) {
5955 pr_info("workqueue: NUMA affinity support disabled\n");
5956 return;
5957 }
5958
5959 for_each_possible_cpu(cpu) {
5960 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5961 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5962 return;
5963 }
5964 }
5965
5966 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5967 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5968
5969 /*
5970 * We want masks of possible CPUs of each node which isn't readily
5971 * available. Build one from cpu_to_node() which should have been
5972 * fully initialized by now.
5973 */
5974 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5975 BUG_ON(!tbl);
5976
5977 for_each_node(node)
5978 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5979 node_online(node) ? node : NUMA_NO_NODE));
5980
5981 for_each_possible_cpu(cpu) {
5982 node = cpu_to_node(cpu);
5983 cpumask_set_cpu(cpu, tbl[node]);
5984 }
5985
5986 wq_numa_possible_cpumask = tbl;
5987 wq_numa_enabled = true;
5988}
5989
5990/**
5991 * workqueue_init_early - early init for workqueue subsystem
5992 *
5993 * This is the first half of two-staged workqueue subsystem initialization
5994 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5995 * idr are up. It sets up all the data structures and system workqueues
5996 * and allows early boot code to create workqueues and queue/cancel work
5997 * items. Actual work item execution starts only after kthreads can be
5998 * created and scheduled right before early initcalls.
5999 */
6000void __init workqueue_init_early(void)
6001{
6002 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6003 int i, cpu;
6004
6005 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6006
6007 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6008 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6009 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6010
6011 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6012
6013 /* initialize CPU pools */
6014 for_each_possible_cpu(cpu) {
6015 struct worker_pool *pool;
6016
6017 i = 0;
6018 for_each_cpu_worker_pool(pool, cpu) {
6019 BUG_ON(init_worker_pool(pool));
6020 pool->cpu = cpu;
6021 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6022 pool->attrs->nice = std_nice[i++];
6023 pool->node = cpu_to_node(cpu);
6024
6025 /* alloc pool ID */
6026 mutex_lock(&wq_pool_mutex);
6027 BUG_ON(worker_pool_assign_id(pool));
6028 mutex_unlock(&wq_pool_mutex);
6029 }
6030 }
6031
6032 /* create default unbound and ordered wq attrs */
6033 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6034 struct workqueue_attrs *attrs;
6035
6036 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6037 attrs->nice = std_nice[i];
6038 unbound_std_wq_attrs[i] = attrs;
6039
6040 /*
6041 * An ordered wq should have only one pwq as ordering is
6042 * guaranteed by max_active which is enforced by pwqs.
6043 * Turn off NUMA so that dfl_pwq is used for all nodes.
6044 */
6045 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6046 attrs->nice = std_nice[i];
6047 attrs->no_numa = true;
6048 ordered_wq_attrs[i] = attrs;
6049 }
6050
6051 system_wq = alloc_workqueue("events", 0, 0);
6052 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6053 system_long_wq = alloc_workqueue("events_long", 0, 0);
6054 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6055 WQ_UNBOUND_MAX_ACTIVE);
6056 system_freezable_wq = alloc_workqueue("events_freezable",
6057 WQ_FREEZABLE, 0);
6058 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6059 WQ_POWER_EFFICIENT, 0);
6060 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6061 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6062 0);
6063 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6064 !system_unbound_wq || !system_freezable_wq ||
6065 !system_power_efficient_wq ||
6066 !system_freezable_power_efficient_wq);
6067}
6068
6069/**
6070 * workqueue_init - bring workqueue subsystem fully online
6071 *
6072 * This is the latter half of two-staged workqueue subsystem initialization
6073 * and invoked as soon as kthreads can be created and scheduled.
6074 * Workqueues have been created and work items queued on them, but there
6075 * are no kworkers executing the work items yet. Populate the worker pools
6076 * with the initial workers and enable future kworker creations.
6077 */
6078void __init workqueue_init(void)
6079{
6080 struct workqueue_struct *wq;
6081 struct worker_pool *pool;
6082 int cpu, bkt;
6083
6084 /*
6085 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6086 * CPU to node mapping may not be available that early on some
6087 * archs such as power and arm64. As per-cpu pools created
6088 * previously could be missing node hint and unbound pools NUMA
6089 * affinity, fix them up.
6090 *
6091 * Also, while iterating workqueues, create rescuers if requested.
6092 */
6093 wq_numa_init();
6094
6095 mutex_lock(&wq_pool_mutex);
6096
6097 for_each_possible_cpu(cpu) {
6098 for_each_cpu_worker_pool(pool, cpu) {
6099 pool->node = cpu_to_node(cpu);
6100 }
6101 }
6102
6103 list_for_each_entry(wq, &workqueues, list) {
6104 wq_update_unbound_numa(wq, smp_processor_id(), true);
6105 WARN(init_rescuer(wq),
6106 "workqueue: failed to create early rescuer for %s",
6107 wq->name);
6108 }
6109
6110 mutex_unlock(&wq_pool_mutex);
6111
6112 /* create the initial workers */
6113 for_each_online_cpu(cpu) {
6114 for_each_cpu_worker_pool(pool, cpu) {
6115 pool->flags &= ~POOL_DISASSOCIATED;
6116 BUG_ON(!create_worker(pool));
6117 }
6118 }
6119
6120 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6121 BUG_ON(!create_worker(pool));
6122
6123 wq_online = true;
6124 wq_watchdog_init();
6125}
6126
6127/*
6128 * Despite the naming, this is a no-op function which is here only for avoiding
6129 * link error. Since compile-time warning may fail to catch, we will need to
6130 * emit run-time warning from __flush_workqueue().
6131 */
6132void __warn_flushing_systemwide_wq(void) { }
6133EXPORT_SYMBOL(__warn_flushing_systemwide_wq);